Sample records for amorphous pe layers

  1. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications.

    PubMed

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike

    2015-12-04

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  2. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    PubMed Central

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T.C. Mike

    2015-01-01

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications. PMID:26690232

  3. Thin film GaP for solar cell application

    NASA Astrophysics Data System (ADS)

    Morozov, I. A.; Gudovskikh, A. S.; Kudryashov, D. A.; Nikitina, E. V.; Kleider, J.-P.; Myasoedov, A. V.; Levitskiy, V.

    2016-08-01

    A new approach to the silicon based heterostructures technology consisting of the growth of III-V compounds (GaP) on a silicon substrate by low-temperature plasma enhanced atomic layer deposition (PE-ALD) is proposed. The basic idea of the method is to use a time modulation of the growth process, i.e. time separated stages of atoms or precursors transport to the growing surface, migration over the surface, and crystal lattice relaxation for each monolayer. The GaP layers were grown on Si substrates by PE-ALD at 350°C with phosphine (PH3) and trimethylgallium (TMG) as sources of III and V atoms. Scanning and transmission electron microscopy demonstrate that the grown GaP films have homogeneous amorphous structure, smooth surface and a sharp GaP/Si interface. The GaP/Si heterostructures obtained by PE-ALD compare favourably to that conventionally grown by molecular beam epitaxy (MBE). Indeed, spectroscopic ellipsometry measurements indicate similar interband optical absorption while photoluminescence measurements indicate higher charge carrier effective lifetime. The better passivation properties of GaP layers grown by PE-ALD demonstrate a potential of this technology for new silicon based photovoltaic heterostructure

  4. The impact of ultra-thin titania interlayers on open circuit voltage and carrier lifetime in thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moerman, David; Colbert, Adam E.; Ginger, David S., E-mail: ginger@chem.washington.edu

    We study the effects of modifying indium tin oxide electrodes with ultrathin titania (TiO{sub 2}) layers grown via plasma-enhanced atomic layer deposition (PE-ALD). We find an optimal thickness of PE-ALD-grown titania by tracking performance, which initially increases, peaks, and eventually decreases with increasing TiO{sub 2} thickness. We use scanning Kelvin probe microscopy (SKPM) to measure both the local work function and its distribution as a function of TiO{sub 2} thickness. We find that the variance in contact potential difference across the surface of the film is related to either the amorphous or anatase TiO{sub 2} form. Finally, we use localmore » SKPM recombination rate experiments, supported by bulk transient photovoltage and charge extraction measurements. We show that the optimum TiO{sub 2} thickness is the one for which the carrier lifetime is the longest and the charge carrier density is the highest, when the TiO{sub 2} is amorphous, in agreement with the device measurements.« less

  5. Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Wen, Dongsheng; Tarakina, Nadezda V.; Liang, Jierong; Bushby, Andy J.; Sukhorukov, Gleb B.

    2016-02-01

    Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These rigid TiO2 NPs yielded the formed capsules with excellent mechanical strength, showing a free standing structure. A possible mechanism is proposed for the special morphology formation of the TiO2 NPs and their reinforcing effects. Synergistically, their response to UV and ultrasound was visualized via SEM, with the results showing an irreversible shell rapture upon exposure to either UV or ultrasound irradiation. As expected, the release studies revealed that the dextran release from the TiO2/PE capsules was both UV-dependent and ultrasound-dependent. Besides, the biocompatibility of the capsules with the incorporation of amorphous TiO2 NPs was confirmed by an MTT assay experiment. All these pieces of evidence suggested a considerable potential medicinal application of TiO2/PE capsules for controlled drug delivery.Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These rigid TiO2 NPs yielded the formed capsules with excellent mechanical strength, showing a free standing structure. A possible mechanism is proposed for the special morphology formation of the TiO2 NPs and their reinforcing effects. Synergistically, their response to UV and ultrasound was visualized via SEM, with the results showing an irreversible shell rapture upon exposure to either UV or ultrasound irradiation. As expected, the release studies revealed that the dextran release from the TiO2/PE capsules was both UV-dependent and ultrasound-dependent. Besides, the biocompatibility of the capsules with the incorporation of amorphous TiO2 NPs was confirmed by an MTT assay experiment. All these pieces of evidence suggested a considerable potential medicinal application of TiO2/PE capsules for controlled drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06666b

  6. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.

  7. Shock-wave propagation and reflection in semicrystalline polyethylene: A molecular-level investigation

    NASA Astrophysics Data System (ADS)

    Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.

    2017-09-01

    Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (<1.0 km /s ) the simulations show enhanced energy reflection relative to the continuum predictions. Furthermore, the simulations show an effect not captured by the continuum theory: the size of amorphous regions is important. The theory assumes a sharp (discontinuous) interface between two bulk phases and a sharp change in thermodynamic and hydrodynamic quantities at the shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff, ordered crystalline domains increases the stiffness and chain ordering in small amorphous regions. Moreover, in terms of stiffness the interfaces are similar in width to the shock front, which may contribute to the underprediction of the theory for weak shocks, where the shock front is widest. We conclude by discussing the significance of these results, namely, how they can be applied to tune shock attenuation for particular applications.

  8. Systems and Methods for Fabricating Objects Including Amorphous Metal Using Techniques Akin to Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including amorphous metals using techniques akin to additive manufacturing. In one embodiment, a method of fabricating an object that includes an amorphous metal includes: applying a first layer of molten metallic alloy to a surface; cooling the first layer of molten metallic alloy such that it solidifies and thereby forms a first layer including amorphous metal; subsequently applying at least one layer of molten metallic alloy onto a layer including amorphous metal; cooling each subsequently applied layer of molten metallic alloy such that it solidifies and thereby forms a layer including amorphous metal prior to the application of any adjacent layer of molten metallic alloy; where the aggregate of the solidified layers including amorphous metal forms a desired shape in the object to be fabricated; and removing at least the first layer including amorphous metal from the surface.

  9. Use of inverse quasi-epitaxy to modify order during post-deposition processing of organic photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R.; Zimmerman, Jeramy D.; Lassiter, Brian E .

    Disclosed herein are methods for fabricating an organic photovoltaic device comprising depositing an amorphous organic layer and a crystalline organic layer over a first electrode, wherein the amorphous organic layer and the crystalline organic layer contact one another at an interface; annealing the amorphous organic layer and the crystalline organic layer for a time sufficient to induce at least partial crystallinity in the amorphous organic layer; and depositing a second electrode over the amorphous organic layer and the crystalline organic layer. In the methods and devices herein, the amorphous organic layer may comprise at least one material that undergoes inverse-quasimore » epitaxial (IQE) alignment to a material of the crystalline organic layer as a result of the annealing.« less

  10. Propagation of SH waves in an infinite/semi-infinite piezoelectric/piezomagnetic periodically layered structure.

    PubMed

    Pang, Yu; Liu, Yu-Shan; Liu, Jin-Xi; Feng, Wen-Jie

    2016-04-01

    In this paper, SH bulk/surface waves propagating in the corresponding infinite/semi-infinite piezoelectric (PE)/piezomagnetic (PM) and PM/PE periodically layered composites are investigated by two methods, the stiffness matrix method and the transfer matrix method. For a semi-infinite PE/PM or PM/PE medium, the free surface is parallel to the layer interface. Both PE and PM materials are assumed to be transversely isotropic solids. Dispersion equations are derived by the stiffness/transfer matrix methods, respectively. The effects of electric-magnetic (ME) boundary conditions at the free surface and the layer thickness ratios on dispersion curves are considered in detail. Numerical examples show that the results calculated by the two methods are the same. The dispersion curves of SH surface waves are below the bulk bands or inside the frequency gaps. The ratio of the layer thickness has an important effect not only on the bulk bands but also on the dispersion curves of SH surface waves. Electric and magnetic boundary conditions, respectively, determine the dispersion curves of SH surface waves for the PE/PM and PM/PE semi-infinite structures. The band structures of SH bulk waves are consistent for the PE/PM and PM/PE structures, however, the dispersive behaviors of SH surface waves are indeed different for the two composites. The realization of the above-mentioned characteristics of SH waves will make it possible to design PE/PM acoustic wave devices with periodical structures and achieve the better performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Electric Double Layer electrostatics of spherical polyelectrolyte brushes with pH-dependent charge density

    NASA Astrophysics Data System (ADS)

    Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team

    Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.

  12. High efficiency photovoltaic device

    DOEpatents

    Guha, Subhendu; Yang, Chi C.; Xu, Xi Xiang

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  13. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOEpatents

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  14. Satellite based assessment of recent permafrost extent and active layer trends over Alaska and Northwest Canada

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kimball, J. S.; PARK, H.; Yi, Y.

    2017-12-01

    Climate change in the Boreal-Arctic region has experienced greater surface air temperature (SAT) warming than the global average in recent decades, which is promoting permafrost thawing and active layer deepening. Permafrost extent (PE) and active layer thickness (ALT) are key environmental indicators of recent climate change, and strongly impact other eco-hydrological processes including land-atmosphere carbon exchange. We developed a new approach for regional estimation and monitoring of PE using daily landscape freeze-thaw (FT) records derived from satellite microwave (37 GHz) brightness temperature (Tb) observations. ALT was estimated within the PE domain using empirical modeling of land cover dependent edaphic factors and an annual thawing index derived from MODIS land surface temperature (LST) observations and reanalysis based surface air temperatures (SAT). The PE and ALT estimates were derived over the 1980-2016 satellite record and NASA ABoVE (Arctic Boreal Vulnerability Experiment) domain encompassing Alaska and Northwest Canada. The baseline model estimates were derived at 25-km resolution consistent with the satellite FT global record. Our results show recent widespread PE decline and deepening ALT trends, with larger spatial variability and model uncertainty along the southern PE boundary. Larger PE and ALT variability occurs over heterogeneous permafrost subzones characterized by dense vegetation, and variable snow cover and organic layer conditions. We also tested alternative PE and ALT estimates derived using finer (6-km) scale satellite Tb (36.5 GHz) and FT retrievals from a calibrated AMSR-E and AMSR2 sensor record. The PE and ALT results were compared against other independent observations, including process model simulations, in situ measurements, and permafrost inventory records. A model sensitivity analysis was conducted to evaluate snow cover, soil organic layer, and vegetation composition impacts to ALT. The finer delineation of permafrost and active layer conditions provides enhanced regional monitoring of PE and ALT changes over the ABoVE domain, including heterogeneous permafrost subzones.

  15. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    PubMed

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium phosphate (ACP) environments could also arise from a transient amorphous precursor phase of apatite. Here, we provide an NMR spectroscopy methodology to reveal the origin of these ACP environments in bone mineral or in biomimetic apatite. The 1 H magnetization exchange between protons arising from amorphous and crystalline domains shows unambiguously that an ACP layer coats the apatitic crystalline core of bone et biomimetic apatite platelets. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. A facile method to enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene separators

    NASA Astrophysics Data System (ADS)

    Lee, Hoogil; Jeon, Hyunkyu; Gong, Seokhyeon; Ryou, Myung-Hyun; Lee, Yong Min

    2018-01-01

    To enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene (PE) separators, their surfaces were treated with thin and hydrophilic polydopamine layers. As a result, an aqueous ceramic coating slurry consisting of Al2O3 particles, carboxyl methyl cellulose (CMC) binders, and water solvent was easily spread on the separator surface, and a uniform ceramic layer was formed after solvent drying. Moreover, the ceramic coating layer showed greatly improved adhesion properties to the PE separator surface. Whereas the adhesion strength within the bulk coating layer (Fmid) ranged from 43 to 86 N m-1 depending on the binder content of 1.5-3.0 wt%, the adhesion strength at the interface between the ceramic coating layer and PE separator (Fsepa-Al2O3) was 245-360 N m-1, a value equivalent to an increase of four or five times. Furthermore, an additional ceramic coating layer of approximately 7 μm did not degrade the ionic conductivity and electrochemical properties of the bare PE separators. Thus, all the LiMn2O4/graphite cells with ceramic-coated separators delivered an improved cycle life and rate capability compared with those of the control cells with bare PE separators.

  17. Effect of POLYURETHANE/NANO-SiO2 Composites Coating on Thermo-Mechanical Properties of Polyethylene Film

    NASA Astrophysics Data System (ADS)

    Ching, Yern Chee; Yaacob, Iskandar Idris

    2011-06-01

    Polyethylene (PE) film was coated with polyurethane/nanosilica composite layer using rod Mayer process. The polyurethane/nanosilica system was prepared by dispersing nanosilica powder into solvent borne polyurethane (PU) binder under vigorous stirring. The silica nanoparticle used has an average diameter of 16 nm, and their weight fraction were varied from 0 % to 14 %. Two different thicknesses of the PU/nanosilica coating layer were fabricated which were about 4 μm and 8 μm. The structure and thermal mechanical features of the nanocomposite coated PE film were characterized by scanning electron microscope (SEM), dynamic mechanical analyzer (DMA), thermogravimetric analyzer (TGA) as well as tensile tests. The results showed that thin layer coating of the PU/nanosilica composite reduced tensile strength of PE substrate slightly. However, the nanocomposite coating of up to 8 μm reduced the elongation % of PE substrate significantly. PU/nanosilica composite coating layer increased the tensile modulus and stiffness of PE substrate. There was no influence of the PU/nanosilica composite coating to the thermal degradation rate of PE film.

  18. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOEpatents

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  19. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

    DOEpatents

    Madan, A.

    1984-12-10

    A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

  20. A Yellow-Emitting Homoleptic Iridium(III) Complex Constructed from a Multifunctional Spiro Ligand for Highly Efficient Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Ren, Bao-Yi; Guo, Run-Da; Zhong, Dao-Kun; Ou, Chang-Jin; Xiong, Gang; Zhao, Xiang-Hua; Sun, Ya-Guang; Jurow, Matthew; Kang, Jun; Zhao, Yi; Li, Sheng-Biao; You, Li-Xin; Wang, Lin-Wang; Liu, Yi; Huang, Wei

    2017-07-17

    To suppress concentration quenching and to improve charge-carrier injection/transport in the emission layer (EML) of phosphorescent organic light-emitting diodes (PhOLEDs), a facial homoleptic iridium(III) complex emitter with amorphous characteristics was designed and prepared in one step from a multifunctional spiro ligand containing spiro[fluorene-9,9'-xanthene] (SFX) unit. Single-crystal X-ray analysis of the resulting fac-Ir(SFXpy) 3 complex revealed an enlarged Ir···Ir distance and negligible intermolecular π-π interactions between the spiro ligands. The emitter exhibits yellow emission and almost equal energy levels compared to the commercial phosphor iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C 2 ')acetylacetonate (PO-01). Dry-processed devices using a common host, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, and the fac-Ir(SFXpy) 3 emitter at a doping concentration of 15 wt % exhibited a peak performance of 46.2 cd A -1 , 36.3 lm W -1 , and 12.1% for the current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE), respectively. Compared to control devices using PO-01 as the dopant, the fac-Ir(SFXpy) 3 -based devices remained superior in the doping range between 8 and 15 wt %. The current densities went up with increasing doping concentration at the same driving voltage, while the roll-offs remain relatively low even at high doping levels. The superior performance of the new emitter-based devices was ascribed to key roles of the spiro ligand for suppressing aggregation and assisting charge-carrier injection/transport. Benefiting from the amorphous stability of the emitter, the wet-processed device also exhibited respectful CE, PE, and EQE of 32.2 cd A -1 , 22.1 lm W -1 , and 11.3%, respectively, while the EQE roll-off was as low as 1.7% at the luminance of 1000 cd m -2 . The three-dimensional geometry and binary-conjugation features render SFX the ideal multifunctional module for suppressing concentration quenching, facilitating charge-carrier injection/transport, and improving the amorphous stability of iridium(III)-based phosphorescent emitters.

  1. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV.

    PubMed

    Nikezic, D; Shahmohammadi Beni, Mehrdad; Krstic, D; Yu, K N

    2016-01-01

    Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy.

  2. Characteristics of Protons Exiting from a Polyethylene Converter Irradiated by Neutrons with Energies between 1 keV and 10 MeV

    PubMed Central

    Nikezic, D.; Shahmohammadi Beni, Mehrdad; Krstic, D.; Yu, K. N.

    2016-01-01

    Monte Carlo method has been used to determine the efficiency for proton production and to study the energy and angular distributions of the generated protons. The ENDF library of cross sections is used to simulate the interactions between the neutrons and the atoms in a polyethylene (PE) layer, while the ranges of protons with different energies in PE are determined using the Stopping and Range of Ions in Matter (SRIM) computer code. The efficiency of proton production increases with the PE layer thickness. However the proton escaping from a certain polyethylene volume is highly dependent on the neutron energy and target thickness, except for a very thin PE layer. The energy and angular distributions of protons are also estimated in the present paper, showing that, for the range of energy and thickness considered, the proton flux escaping is dependent on the PE layer thickness, with the presence of an optimal thickness for a fixed primary neutron energy. PMID:27362656

  3. First-principle simulations of electronic structure in semicrystalline polyethylene

    NASA Astrophysics Data System (ADS)

    Moyassari, A.; Unge, M.; Hedenqvist, M. S.; Gedde, U. W.; Nilsson, F.

    2017-05-01

    In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed. The modeled PE had a structure in agreement with established experimental data. Linear-scaling density functional theory (LS-DFT) was used to examine the electronic structure (e.g., spatial distribution of molecular orbitals, bandgaps and mobility edges) on all the materials, whereas conventional DFT was used to validate the LS-DFT results on small systems. When hybrid functionals were used, the simulated bandgaps were close to the experimental values. The localization of valence and conduction band states was demonstrated. The localized states in the conduction band were primarily found in the free volume (result of gauche conformations) present in the amorphous regions. For branched and crosslinked structures, the localized electronic states closest to the valence band edge were positioned at branches and crosslinks, respectively. At 0 K, the activation energy for transport was lower for holes than for electrons. However, at room temperature, the effective activation energy was very low (˜0.1 eV) for both holes and electrons, which indicates that the mobility will be relatively high even below the mobility edges and suggests that charge carriers can be hot carriers above the mobility edges in the presence of a high electrical field.

  4. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    DOE PAGES

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; ...

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less

  5. Influence of structure on radiation shielding effectiveness of graphite fiber reinforced polyethylene composite

    NASA Astrophysics Data System (ADS)

    Emmanuel, A.; Raghavan, J.

    2015-10-01

    While LEO and GEO are used for most satellite missions, Highly Elliptical Orbits (HEOs) are also used for satellite missions covering Polar Regions of Earth. Satellites in HEO are exposed to a relatively harsher radiation environment than LEO and GEO. The mass of traditionally used aluminum radiation shield, required to attenuate the radiation to a level below a certain threshold that is safe for the satellite bus and payload, scales with the level of radiation. It has been shown (Emmanuel et al., 2014) that materials with low atomic number (Z) such as polyethylene (PE) can result in a lighter shield than aluminum (Al) in HEO. However, PE has to be reinforced with relatively high Z fibers such as graphite (G) to improve its mechanical properties. The effect of introduction of G and the resulting composite structure (that meets the requirements on mechanical properties, manufacturing and service) on the radiation shielding effectiveness of PE was studied through simulation using a layered PE-G composite. The Total Ionization Dose (TID), deposited in a silicon detector behind the composite shield, has been found to be function of layer volume fraction, layer thickness and stacking sequence of the PE and G layers. One composite configuration has resulted in a TID lower than that for PE, demonstrating the possibility of tailoring the mechanical properties of PE-based composite radiation shield with minimal negative impact on its radiation shielding effectiveness.

  6. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y. Simon; Deb, Satyen K.

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  7. Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water

    USGS Publications Warehouse

    Fournier, Robert O.; Williams, Marshall L.

    1983-01-01

    The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model

  8. Production and crosslinking of multi-layer tubes (PE & metal) by E-beam

    NASA Astrophysics Data System (ADS)

    Zyball, Alfred

    2000-03-01

    Irradiation crosslinking of PE-tubes has been used for heating floors for about 25 years. Such tubes are also used today for drinking water supply. A further development has been the coating of such tubes with Ethylene-Vinyl-Alcohol-Copolymers (EVAL), in order to prevent oxygen diffusion into the water through the PE tube. For about 15 years composite tubes made of PE and aluminum have been available. These tubes are crosslinked with electron beams. The energy of the accelerated electrons must be adjusted for the particular tube configuration, so that the inner PE-layer will be crosslinked. This paper will concern itself with the manufacture and the crosslinking of composite tubes.

  9. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  10. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  11. Piezoresistive effect observed in flexible amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Wang, B.; Jiang, Y. C.; Zhao, R.; Liu, G. Z.; He, A. P.; Gao, J.

    2018-05-01

    Amorphous carbon (a-C) films, deposited on Si substrates at 500 °C, were transferred onto flexible polyethylene (PE) substrates by a lift-off method, which overcomes the limit of deposition temperature. After transferring, a-C films exhibited a large piezoresistive effect. Such flexible samples could detect the change of bending angle by attaching them onto Cu foils. The ratio of the bending and non-bending resistances reaches as large as ~27.8, which indicates a potential application as a pressure sensor. Also, the a-C/PE sample revealed an enhanced sensitivity to gas pressure compared with the a-C/Si one. By controlling the bending angle, the sensitivity range can be tuned to shift to a low- or high-pressure region. The fatigue test shows a less than 1% change in resistance after 10 000 bending cycles. Our work provides a route to prepare the flexible and piezoresistive carbon-based devices with high sensitivity, controllable pressure-sensing and high stability.

  12. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  13. Low temperature production of large-grain polycrystalline semiconductors

    DOEpatents

    Naseem, Hameed A [Fayetteville, AR; Albarghouti, Marwan [Loudonville, NY

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  14. Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliviero, E.; David, M. L.; Beaufort, M. F.

    The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes placemore » and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.« less

  15. Using synchrotron radiation angiography with a highly sensitive detector to identify impaired peripheral perfusion in rat pulmonary emphysema

    PubMed Central

    Ito, Hiromichi; Matsushita, Shonosuke; Hyodo, Kazuyuki; Sato, Yukio; Sakakibara, Yuzuru

    2013-01-01

    Owing to limitations in spatial resolution and sensitivity, it is difficult for conventional angiography to detect minute changes of perfusion in diffuse lung diseases, including pulmonary emphysema (PE). However, a high-gain avalanche rushing amorphous photoconductor (HARP) detector can give high sensitivity to synchrotron radiation (SR) angiography. SR angiography with a HARP detector provides high spatial resolution and sensitivity in addition to time resolution owing to its angiographic nature. The purpose of this study was to investigate whether this SR angiography with a HARP detector could evaluate altered microcirculation in PE. Two groups of rats were used: group PE and group C (control). Transvenous SR angiography with a HARP detector was performed and histopathological findings were compared. Peak density of contrast material in peripheral lung was lower in group PE than group C (p < 0.01). The slope of the linear regression line in scattering diagrams was also lower in group PE than C (p < 0.05). The correlation between the slope and extent of PE in histopathology showed significant negative correlation (p < 0.05, r = 0.61). SR angiography with a HARP detector made it possible to identify impaired microcirculation in PE by means of its high spatial resolution and sensitivity. PMID:23412496

  16. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOEpatents

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  17. Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Záruba, K.; Král, V.; Bláhová, O.; Macková, A.; Hnatowicz, V.

    2009-08-01

    Polyethylene (PE) was treated in Ar plasma discharge and then grafted from methanol solution of 1,2-ethanedithiol to enhance adhesion of gold nano-particles or sputtered gold layers. The modified PE samples were either immersed into freshly prepared colloid solution of Au nano-particles or covered by sputtered, 50 nm thick gold nano-layer. Properties of the plasma modified, dithiol grafted and gold coated PE were studied using XPS, UV-VIS, AFM, EPR, RBS methods and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain, creation of excessive free radicals and conjugated double bonds. After grafting with 1,2-ethanedithiol the concentration of free radicals declined but the concentration of double bonds remained unchanged. Plasma treatment changes PE surface morphology and increases surface roughness too. Another significant change in the surface morphology and roughness was observed after deposition of Au nano-particles. The presence of Au on the sample surface after the coating with Au nano-particles was proved by XPS and RBS methods. Nanoindentation measurements shown that the grafting of plasma activated PE surface with dithiol increases significantly adhesion of sputtered Au nano-layer.

  18. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccard, Mathieu; Holman, Zachary C.

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide beingmore » shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  19. Inhibiting surface crystallization of amorphous indomethacin by nanocoating.

    PubMed

    Wu, Tian; Sun, Ye; Li, Ning; de Villiers, Melgardt M; Yu, Lian

    2007-04-24

    An amorphous solid (glass) may crystallize faster at the surface than through the bulk, making surface crystallization a mechanism of failure for amorphous pharmaceuticals and other materials. An ultrathin coating of gold or polyelectrolytes inhibited the surface crystallization of amorphous indomethacin (IMC), an anti-inflammatory drug and model organic glass. The gold coating (10 nm) was deposited by sputtering, and the polyelectrolyte coating (3-20 nm) was deposited by an electrostatic layer-by-layer assembly of cationic poly(dimethyldiallyl ammonium chloride) (PDDA) and anionic sodium poly(styrenesulfonate) (PSS) in aqueous solution. The coating also inhibited the growth of existing crystals. The inhibition was strong even with one layer of PDDA. The polyelectrolyte coating still permitted fast dissolution of amorphous IMC and improved its wetting and flow. The finding supports the view that the surface crystallization of amorphous IMC is enabled by the mobility of a thin layer of surface molecules, and this mobility can be suppressed by a coating of only a few nanometers. This technique may be used to stabilize amorphous drugs prone to surface crystallization, with the aqueous coating process especially suitable for drugs of low aqueous solubility.

  20. Amorphous silicon solar cell allowing infrared transmission

    DOEpatents

    Carlson, David E.

    1979-01-01

    An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

  1. Nanoscale solely amorphous layer in silicon wafers induced by a newly developed diamond wheel

    PubMed Central

    Zhang, Zhenyu; Guo, Liangchao; Cui, Junfeng; Wang, Bo; Kang, Renke; Guo, Dongming

    2016-01-01

    Nanoscale solely amorphous layer is achieved in silicon (Si) wafers, using a developed diamond wheel with ceria, which is confirmed by high resolution transmission electron microscopy (HRTEM). This is different from previous reports of ultraprecision grinding, nanoindentation and nanoscratch, in which an amorphous layer at the top, followed by a crystalline damaged layer beneath. The thicknesses of amorphous layer are 43 and 48 nm at infeed rates of 8 and 15 μm/min, respectively, which is verified using HRTEM. Diamond-cubic Si-I phase is verified in Si wafers using selected area electron diffraction patterns, indicating the absence of high pressure phases. Ceria plays an important role in the diamond wheel for achieving ultrasmooth and bright surfaces using ultraprecision grinding. PMID:27734934

  2. Selective Oxidation of Amorphous Carbon Layers without Damaging Embedded Single Wall Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Choi, Young Chul; Lim, Seong Chu

    2013-11-01

    Single wall carbon nanotubes (SWCNTs) were synthesized by arc discharge, and then purified by selective oxidation of amorphous carbon layers that were found to encase SWCNT bundles and catalyst metal particles. In order to remove selectively the amorphous carbon layers with SWCNTs being intact, we have systematically investigated the thermal treatment conditions; firstly, setting the temperature by measuring the activation energies of SWCNTs and amorphous carbon layers, and then, secondly, finding the optimal process time. As a consequence, the optimal temperature and time for the thermal treatment was found to be 460 °C and 20 min, respectively. The complete elimination of surrounding amorphous carbon layers makes it possible to efficiently disperse the SWCNT bundles, resulting in high absorbance of SWCNT-ink. The SWCNTs which were thermal-treated at optimized temperature (460 °C) and duration (20 min) showed much better crystallinity, dispersibility, and transparent conducting properties, compared with as-synthesized and the nanotubes thermal-treated at different experimental conditions.

  3. Au-nanoparticles grafted on plasma treated PE

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Řezanka, P.; Slepička, P.; Kolská, Z.; Kasálková, N.; Hubáček, T.; Siegel, J.

    2010-03-01

    Polyethylene (PE) surface was treated with Ar plasma. Activated surface was grafted from methanol solution of 1,2-ethanedithiol. Then the sample was immersed into freshly prepared colloid solution of Au-nanoparticles. Finally Au layer was sputtered on the samples. Properties of the modified PE were studied using various methods: AFM, EPR, RBS and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain (AFM) and creation of free radicals by EPR. After grafting with dithiol, the concentration of free radicals declines. The presence of Au and S in the surface layer after the coating with Au-nanoparticles was proved by RBS. Plasma treatment changes PE surface morphology and increases surface roughness, too. Another significant change in surface morphology and roughness was observed after deposition of Au-nanoparticles. Nanoindentation measurements show that the grafting with Au-nanoparticles increases adhesion of subsequently sputtered Au layer.

  4. Transmissive metallic contact for amorphous silicon solar cells

    DOEpatents

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  5. Method for depositing layers of high quality semiconductor material

    DOEpatents

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  6. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boccard, Mathieu; Holman, Zachary C.

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  7. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE PAGES

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  8. Electrically programmable-erasable In-Ga-Zn-O thin-film transistor memory with atomic-layer-deposited Al{sub 2}O{sub 3}/Pt nanocrystals/Al{sub 2}O{sub 3} gate stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Shi-Bing; Zhang, Wen-Peng; Liu, Wen-Jun

    Amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistor (TFT) memory is very promising for transparent and flexible system-on-panel displays; however, electrical erasability has always been a severe challenge for this memory. In this article, we demonstrated successfully an electrically programmable-erasable memory with atomic-layer-deposited Al{sub 2}O{sub 3}/Pt nanocrystals/Al{sub 2}O{sub 3} gate stack under a maximal processing temperature of 300 {sup o}C. As the programming voltage was enhanced from 14 to 19 V for a constant pulse of 0.2 ms, the threshold voltage shift increased significantly from 0.89 to 4.67 V. When the programmed device was subjected to an appropriate pulse under negative gatemore » bias, it could return to the original state with a superior erasing efficiency. The above phenomena could be attributed to Fowler-Nordheim tunnelling of electrons from the IGZO channel to the Pt nanocrystals during programming, and inverse tunnelling of the trapped electrons during erasing. In terms of 0.2-ms programming at 16 V and 350-ms erasing at −17 V, a large memory window of 3.03 V was achieved successfully. Furthermore, the memory exhibited stable repeated programming/erasing (P/E) characteristics and good data retention, i.e., for 2-ms programming at 14 V and 250-ms erasing at −14 V, a memory window of 2.08 V was still maintained after 10{sup 3} P/E cycles, and a memory window of 1.1 V was retained after 10{sup 5} s retention time.« less

  9. Si amorphization by focused ion beam milling: Point defect model with dynamic BCA simulation and experimental validation.

    PubMed

    Huang, J; Loeffler, M; Muehle, U; Moeller, W; Mulders, J J L; Kwakman, L F Tz; Van Dorp, W F; Zschech, E

    2018-01-01

    A Ga focused ion beam (FIB) is often used in transmission electron microscopy (TEM) analysis sample preparation. In case of a crystalline Si sample, an amorphous near-surface layer is formed by the FIB process. In order to optimize the FIB recipe by minimizing the amorphization, it is important to predict the amorphous layer thickness from simulation. Molecular Dynamics (MD) simulation has been used to describe the amorphization, however, it is limited by computational power for a realistic FIB process simulation. On the other hand, Binary Collision Approximation (BCA) simulation is able and has been used to simulate ion-solid interaction process at a realistic scale. In this study, a Point Defect Density approach is introduced to a dynamic BCA simulation, considering dynamic ion-solid interactions. We used this method to predict the c-Si amorphization caused by FIB milling on Si. To validate the method, dedicated TEM studies are performed. It shows that the amorphous layer thickness predicted by the numerical simulation is consistent with the experimental data. In summary, the thickness of the near-surface Si amorphization layer caused by FIB milling can be well predicted using the Point Defect Density approach within the dynamic BCA model. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  11. Microscopic Characterization of Individual Submicron Bubbles during the Layer-by-Layer Deposition: Towards Creating Smart Agents

    NASA Astrophysics Data System (ADS)

    Kato, Riku; Frusawa, Hiroshi

    2015-07-01

    We investigated the individual properties of various polyion-coated bubbles with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to track the individual particles of the submicron bubbles (SBs) encapsulated by the layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is on the two-step charge reversals of PE-SB complexes: the first is a reversal from negatively charged bare SBs with no PEs added to positive SBs encapsulated by polycations (monolayer deposition), and the second is overcharging into negatively charged PE-SB complexes due to the subsequent addition of polyanions (double-layer deposition). The details of these phenomena have been clarified through the analysis of a number of trajectories of various PE-SB complexes that experience either Brownian motion or electrophoresis. The contrasted results obtained from the analysis were as follows: an amount in excess of the stoichiometric ratio of the cationic polymers was required for the first charge-reversal, whereas the stoichiometric addition of the polyanions lead to the electrical neutralization of the PE-SB complex particles. The recovery of the stoichiometry in the double-layer deposition paves the way for fabricating multi-layered SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol to create smart agents for either drug delivery or ultrasound contrast imaging.

  12. Microscopic Characterization of Individual Submicron Bubbles during the Layer-by-Layer Deposition: Towards Creating Smart Agents.

    PubMed

    Kato, Riku; Frusawa, Hiroshi

    2015-07-08

    We investigated the individual properties of various polyion-coated bubbles with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to track the individual particles of the submicron bubbles (SBs) encapsulated by the layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is on the two-step charge reversals of PE-SB complexes: the first is a reversal from negatively charged bare SBs with no PEs added to positive SBs encapsulated by polycations (monolayer deposition), and the second is overcharging into negatively charged PE-SB complexes due to the subsequent addition of polyanions (double-layer deposition). The details of these phenomena have been clarified through the analysis of a number of trajectories of various PE-SB complexes that experience either Brownian motion or electrophoresis. The contrasted results obtained from the analysis were as follows: an amount in excess of the stoichiometric ratio of the cationic polymers was required for the first charge-reversal, whereas the stoichiometric addition of the polyanions lead to the electrical neutralization of the PE-SB complex particles. The recovery of the stoichiometry in the double-layer deposition paves the way for fabricating multi-layered SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol to create smart agents for either drug delivery or ultrasound contrast imaging.

  13. Improving the Stability of Metal Halide Perovskite Materials and Light-Emitting Diodes.

    PubMed

    Cho, Himchan; Kim, Young-Hoon; Wolf, Christoph; Lee, Hyeon-Dong; Lee, Tae-Woo

    2018-01-25

    Metal halide perovskites (MHPs) have numerous advantages as light emitters such as high photoluminescence quantum efficiency with a direct bandgap, very narrow emission linewidth, high charge-carrier mobility, low energetic disorder, solution processability, simple color tuning, and low material cost. Based on these advantages, MHPs have recently shown unprecedented radical progress (maximum current efficiency from 0.3 to 42.9 cd A -1 ) in the field of light-emitting diodes. However, perovskite light-emitting diodes (PeLEDs) suffer from intrinsic instability of MHP materials and instability arising from the operation of the PeLEDs. Recently, many researchers have devoted efforts to overcome these instabilities. Here, the origins of the instability in PeLEDs are reviewed by categorizing it into two types: instability of (i) the MHP materials and (ii) the constituent layers and interfaces in PeLED devices. Then, the strategies to improve the stability of MHP materials and PeLEDs are critically reviewed, such as A-site cation engineering, Ruddlesden-Popper phase, suppression of ion migration with additives and blocking layers, fabrication of uniform bulk polycrystalline MHP layers, and fabrication of stable MHP nanoparticles. Based on this review of recent advances, future research directions and an outlook of PeLEDs for display applications are suggested. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improvement of barrier properties of rotomolded PE containers with nanoclay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamshidi, Shadi; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca

    Polyethylene (PE) is widely used to make bulk containers in rotational molding process. The challenge in this study is to improve permeation resistance of PE to hydrocarbon solvents and gases. Adding organomodified clay improves the thermal, barrier and mechanical properties of PE. In fact, clay layers create a tortuous path against the permeant, yielding better barrier properties. Due to the non-polar hydrophobic nature of PE and polar hydrophilic structure of clay minerals, the compatibilizer plays a crucial role to enhance the dispersion level of clay in the matrix. In this study High Density Polyethylene (HDPE) and Linear Low Density Polyethylenemore » (LLDPE) layered silicate nanocomposite were melt-compounded with two concentrations of organomodified clay (2 and 4 wt. %). The interaction between nanoclay, compatibilizer and rotomolding grade of PE were examined by using X-ray diffraction, transmission electron microscopy (TEM) and rheology test. Rheology was used to determine the performance of our material at low shear processing condition.« less

  15. The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD

    NASA Astrophysics Data System (ADS)

    Kim, Doyoung; Kang, Hyemin; Kim, Jae-Min; Kim, Hyungjun

    2011-02-01

    Zinc oxide (ZnO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD) using oxygen plasma as a reactant and the properties were compared with those of thermal atomic layer deposition (TH-ALD) ZnO thin films. While hexagonal wurzite phase with preferential (0 0 2) orientation was obtained for both cases, significant differences were observed in various aspects of film properties including resistivity values between these two techniques. Photoluminescence (PL) measurements have shown that high resistivity of PE-ALD ZnO thin films is due to the oxygen interstitials at low growth temperature of 200 °C, whose amount decreases with increasing growth temperature. Thin film transistors (TFT) using TH- and PE-ALD ZnO as an active layer were also fabricated and the device properties were evaluated comparatively.

  16. Electrolytic etch for preventing electrical shorts in solar cells on polymer surfaces

    DOEpatents

    Weber, Michael F.

    1991-10-08

    A method for preventing shorts and shunts in solar cells having in order, an insulating substrate, a conductive metal layer on the substrate, an amorphous silicon layer and a transparent conductive layer. The method includes anodic etching of exposed portions of the metal layer after deposition of the amorphous silicon and prior to depositing the transparent conductive layer.

  17. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  18. Amorphous surface layers in Ti-implanted Fe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, J.A.; Follstaedt, D.M.; Picraux, S.T.

    1979-01-01

    Implanting Ti into high-purity Fe results in an amorphous surface layer which is composed of not only Fe and Ti, but also C. Implantations were carried out at room temperature over the energy range 90 to 190 keV and fluence range 1 to 2 x 10/sup 16/ at/cm/sup 2/. The Ti-implanted Fe system has been characterized using transmission electron microscopy (TEM), ion backscattering and channeling analysis, and (d,p) nuclear reaction analysis. The amorphous layer was observed to form at the surface and grow inward with increasing Ti fluence. For an implant of 1 x 10/sup 17/ Ti/cm/sup 2/ at 180more » keV the layer thickness was 150 A, while the measured range of the implanted Ti was approx. 550 A. This difference is due to the incorporation of C into the amorphous alloy by C being deposited on the surface during implantation and subsequently diffusing into the solid. Our results indicate that C is an essential constituent of the amorphous phase for Ti concentrations less than or equal to 10 at. %. For the 1 x 10/sup 17/ Ti/cm/sup 2/ implant, the concentration of C in the amorphous phase was approx. 25 at. %, while that of Ti was only approx. 3 at. %. A higher fluence implant of 2 x 10/sup 17/ Ti/cm/sup 2/ produced an amorphous layer with a lower C concentration of approx. 10 at. % and a Ti concentration of approx. 20 at. %.« less

  19. Understanding the corrosion behavior of amorphous multiple-layer carbon coating

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Gao, Ying; Xu, Yongxian; Zhang, Renhui; Madkour, Loutfy H.; Yang, Yingchang

    2018-04-01

    The corrosion behavior of multiple-layer carbon coating that contained hydrogen, fluorine and silicon, possessed dual amorphous structure with sutured interfaces was investigated using potentiodynamic polarization and electrochemical impedances (ETS) in 3.5 wt.% NaCl solution. The coating exhibited good resistance to corrosion in 3.5 wt.% NaCl solution due to its amorphous and dense structures.

  20. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, K.H.

    1998-06-30

    A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.

  1. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  2. Molecular Origins of Thermal Transitions in Polyelectrolyte Assemblies

    NASA Astrophysics Data System (ADS)

    Yildirim, Erol; Zhang, Yanpu; Antila, Hanne S.; Lutkenhaus, Jodie L.; Sammalkorpi, Maria; Aalto Team; Texas A&M Team

    2015-03-01

    Polyelectrolyte (PE) multilayers and complexes formed from oppositely charged polymers can exhibit extraordinary superhydrophobicity, mechanical strength and responsiveness resulting in applications ranging functional membranes, optics, sensors and drug delivery. Depending on the assembly conditions, PE assemblies may undergo a thermal transition from glassy to soft behavior under heating. Our earlier work using thermal analysis measurements shows a distinct thermal transition for PE layer-by-layer (LbL) systems assembled with added salt but no analogous transition in films assembled without added salt or dry systems. These findings raise interesting questions on the nature of the thermal transition; here, we explore its molecular origins through characterization of the PE aggregates by temperature-controlled all-atom molecular dynamics simulations. We show via molecular simulations the thermal transition results from the existence of an LCST (lower critical solution temperature) in the PE systems: the diffusion behavior, hydrogen bond formation, and bridging capacity of water molecules plasticizing the complex changes at the transition temperature. We quantify the behavior, map its chemistry specificity through comparison of strongly and weakly charged PE complexes, and connect the findings to our interrelated QCM-D experiments.

  3. Confine Clay in an Alternating Multilayered Structure through Injection Molding: A Simple and Efficient Route to Improve Barrier Performance of Polymeric Materials.

    PubMed

    Yu, Feilong; Deng, Hua; Bai, Hongwei; Zhang, Qin; Wang, Ke; Chen, Feng; Fu, Qiang

    2015-05-20

    Various methods have been devoted to trigger the formation of multilayered structure for wide range of applications. These methods are often complicated with low production efficiency or require complex equipment. Herein, we demonstrate a simple and efficient method for the fabrication of polymeric sheets containing multilayered structure with enhanced barrier property through high speed thin-wall injection molding (HSIM). To achieve this, montmorillonite (MMT) is added into PE first, then blended with PP to fabricate PE-MMT/PP ternary composites. It is demonstrated that alternating multilayer structure could be obtained in the ternary composites because of low interfacial tension and good viscosity match between different polymer components. MMT is selectively dispersed in PE phase with partial exfoliated/partial intercalated microstructure. 2D-WAXD analysis indicates that the clay tactoids in PE-MMT/PP exhibits an uniplanar-axial orientation with their surface parallel to the molded part surface, while the tactoids in binary PE-MMT composites with the same overall MMT contents illustrate less orientation. The enhanced orientation of nanoclay in PE-MMT/PP could be attributed to the confinement of alternating multilayer structure, which prohibits the tumbling and rotation of nanoplatelets. Therefore, the oxygen barrier property of PE-MMT/PP is superior to that of PE-MMT because of increased gas permeation pathway. Comparing with the results obtained for PE based composites in literature, outstanding barrier property performance (45.7% and 58.2% improvement with 1.5 and 2.5 wt % MMT content, respectively) is achieved in current study. Two issues are considered responsible for such improvement: enhanced MMT orientation caused by the confinement in layered structure, and higher local density of MMT in layered structure induced denser assembly. Finally, enhancement in barrier property by confining impermeable filler into alternating multilayer structure through such simple and efficient method could provide a novel route toward high-performance packaging materials and other functional materials require layered structure.

  4. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents.

    PubMed

    Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea

    2016-06-14

    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents.

  5. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible

    PubMed Central

    Bentov, Shmuel; Zaslansky, Paul; Al-Sawalmih, Ali; Masic, Admir; Fratzl, Peter; Sagi, Amir; Berman, Amir; Aichmayer, Barbara

    2012-01-01

    Carbonated hydroxyapatite is the mineral found in vertebrate bones and teeth, whereas invertebrates utilize calcium carbonate in their mineralized organs. In particular, stable amorphous calcium carbonate is found in many crustaceans. Here we report on an unusual, crystalline enamel-like apatite layer found in the mandibles of the arthropod Cherax quadricarinatus (freshwater crayfish). Despite their very different thermodynamic stabilities, amorphous calcium carbonate, amorphous calcium phosphate, calcite and fluorapatite coexist in well-defined functional layers in close proximity within the mandible. The softer amorphous minerals are found primarily in the bulk of the mandible whereas apatite, the harder and less soluble mineral, forms a wear-resistant, enamel-like coating of the molar tooth. Our findings suggest a unique case of convergent evolution, where similar functional challenges of mastication led to independent developments of structurally and mechanically similar, apatite-based layers in the teeth of genetically remote phyla: vertebrates and crustaceans. PMID:22588301

  6. Mechanisms of aluminium-induced crystallization and layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers.

    PubMed

    Wang, J Y; Wang, Z M; Jeurgens, L P H; Mittemeijer, E J

    2009-06-01

    Aluminium-induced crystallization (ALIC) of amorphous Si and subsequent layer exchange (ALILE) occur in amorphous-Si/polycrystalline-Al bilayers (a-Si/c-Al) upon annealing at temperatures as low as 165 degrees C and were studied by X-ray diffraction and Auger electron spectroscopic depth profiling. It follows that: (i) nucleation of Si crystallization is initiated at Al grain boundaries and not at the a-Si/c-Al interface; (ii) low-temperature annealing results in a large Si grain size in the continuous c-Si layer produced by ALILE. Thermodynamic model calculations show that: (i) Si can "wet" the Al grain boundaries due to the favourable a-Si/c-Al interface energy (as compared to the Al grain-boundary energy); (ii) the wetting-induced a-Si layer at the Al grain boundary can maintain its amorphous state only up to a critical thickness, beyond which nucleation of Si crystallization takes place; and (iii) a tiny driving force controls the kinetics of the layer exchange.

  7. Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics.

    PubMed

    Kim, Yebyeol; Bae, Jaehyun; Song, Hyun Woo; An, Tae Kyu; Kim, Se Hyun; Kim, Yun-Hi; Park, Chan Eon

    2017-11-15

    Electrohydrodynamic-jet (EHD-jet) printing provides an opportunity to directly assembled amorphous polymer chains in the printed pattern. Herein, an EHD-jet printed amorphous polymer was employed as the active layer for fabrication of organic field-effect transistors (OFETs). Under optimized conditions, the field-effect mobility (μ FET ) of the EHD-jet printed OFETs was 5 times higher than the highest μ FET observed in the spin-coated OFETs, and this improvement was achieved without the use of complex surface templating or additional pre- or post-deposition processing. As the chain alignment can be affected by the surface energy of the dielectric layer in EHD-jet printed OFETs, dielectric layers with varying wettability were examined. Near-edge X-ray absorption fine structure measurements were performed to compare the amorphous chain alignment in OFET active layers prepared by EHD-jet printing and spin coating.

  8. Tellurium n-type doping of highly mismatched amorphous GaN 1-xAs x alloys in plasma-assisted molecular beam epitaxy

    DOE PAGES

    Novikov, S. V.; Ting, M.; Yu, K. M.; ...

    2014-10-01

    In this paper we report our study on n-type Te doping of amorphous GaN 1-xAs x layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN 1-xAs x layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN 1-xAs x layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN 1-xAs x layers hasmore » been determined.« less

  9. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.

    PubMed

    Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

    2014-07-23

    This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.

  10. Transport mechanisms through PE-CVD coatings: influence of temperature, coating properties and defects on permeation of water vapour

    NASA Astrophysics Data System (ADS)

    Kirchheim, Dennis; Jaritz, Montgomery; Mitschker, Felix; Gebhard, Maximilian; Brochhagen, Markus; Hopmann, Christian; Böke, Marc; Devi, Anjana; Awakowicz, Peter; Dahlmann, Rainer

    2017-03-01

    Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments.

  11. Different structural morphologies of the two surfaces in some Co-based amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Bordin, G.; Buttino, G.

    1992-12-01

    In nearly zero magnetostriction Co-based Metglas amorphous ribbons, the anomalous Hall effect is used to investigate the behaviour of the surfaces (dull or shiny). The electronic transport properties of a double-layer film, where one of the two layers examined is ferromagnetic and amorphous, and the other is a non-magnetic film, are interpreted on the basis of the mean free path method of Bergmann and Fuchs-Sondheimer theory. The results obtained confirm the different structural morphology of the amorphous surfaces (dull or shiny) already observed by means of bending effects on the initial permeability that depends on the way of winding the ribbons in toroidal samples of the same amorphous materials.

  12. Thin-film limit formalism applied to surface defect absorption.

    PubMed

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  13. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  14. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    DOE PAGES

    Neumayer, Sabine M.; Ivanov, Ilia N.; Manzo, Michele; ...

    2015-12-08

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg: LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg: LN above buried PE phases that allow for precise ferroelectric patterning via domain growthmore » control. Furthermore, piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the "up" to the "down" state increases with increasing thickness in pure Mg: LN, whereas the voltage required for stable back switching to the original "up" state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg: LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg: LN layer above due to the presence of uncompensated polarization charge at the PE-Mg: LN boundary. Furthermore, these alterations in internal electric fields within the sample cause long-range lattice distortions in Mg: LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.« less

  15. Interface and thickness dependent domain switching and stability in Mg doped lithium niobate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: gallo@kth.se, E-mail: brian.rodriguez@ucd.ie; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4

    2015-12-14

    Controlling ferroelectric switching in Mg doped lithium niobate (Mg:LN) is of fundamental importance for optical device and domain wall electronics applications that require precise domain patterns. Stable ferroelectric switching has been previously observed in undoped LN layers above proton exchanged (PE) phases that exhibit reduced polarization, whereas PE layers have been found to inhibit lateral domain growth. Here, Mg doping, which is known to significantly alter ferroelectric switching properties including coercive field and switching currents, is shown to inhibit domain nucleation and stability in Mg:LN above buried PE phases that allow for precise ferroelectric patterning via domain growth control. Furthermore,more » piezoresponse force microscopy (PFM) and switching spectroscopy PFM reveal that the voltage at which polarization switches from the “up” to the “down” state increases with increasing thickness in pure Mg:LN, whereas the voltage required for stable back switching to the original “up” state does not exhibit this thickness dependence. This behavior is consistent with the presence of an internal frozen defect field. The inhibition of domain nucleation above PE interfaces, observed in this study, is a phenomenon that occurs in Mg:LN but not in undoped samples and is mainly ascribed to a remaining frozen polarization in the PE phase that opposes polarization reversal. This reduced frozen depolarization field in the PE phase also influences the depolarization field of the Mg:LN layer above due to the presence of uncompensated polarization charge at the PE-Mg:LN boundary. These alterations in internal electric fields within the sample cause long-range lattice distortions in Mg:LN via electromechanical coupling, which were corroborated with complimentary Raman measurements.« less

  16. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Seong-Jae, E-mail: jsjigst@ecei.tohoku.ac.jp; Saito, Shin; Hinata, Shintaro

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain sizemore » in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.« less

  17. β-relaxation related bright bands in thin film metallic glasses: Localized percolation of flow units captured via transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Huang, P.; Xu, K. W.; Wang, F.; Lu, T. J.

    2016-12-01

    We report that β-relaxation of amorphous NiW alloy film was effectively enhanced by adding two thin crystalline layers into the amorphous layer. Correspondingly, more bright bands, i.e., nano shear bands, were captured in the amorphous layer, which experienced more pronounced β-relaxations. Based on the potential energy landscape theory, the bright band was proposed to be the localized percolation of flow units corresponding to β-relaxation. Our findings may help connecting experimentally β-relaxation with flow units and shed light on the microstructure origin of β-relaxation.

  18. Photoemission studies of amorphous silicon induced by P + ion implantation

    NASA Astrophysics Data System (ADS)

    Petö, G.; Kanski, J.

    1995-12-01

    An amorphous Si layer was formed on a Si (1 0 0) surface by P + implantation at 80 keV. This layer was investigated by means of photoelectron spectroscopy. The resulting spectra are different from earlier spectra on amorphous Si prepared by e-gun evaporation or cathode sputtering. The differences consist of a decreased intensity in the spectral region corresponding to p-states, and appearace of new states at higher binding energy. Qualitativity similar results have been reported for Sb implanted amorphous Ge and the modification seems to be due to the changed short range order.

  19. Inverted amorphous silicon solar cell utilizing cermet layers

    DOEpatents

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  20. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  1. In situ observation of defect annihilation in Kr ion-irradiated bulk Fe/amorphous-Fe 2 Zr nanocomposite alloy

    DOE PAGES

    Yu, K. Y.; Fan, Z.; Chen, Y.; ...

    2014-08-26

    Enhanced irradiation tolerance in crystalline multilayers has received significant attention lately. However, little is known on the irradiation response of crystal/amorphous nanolayers. We report on in situ Kr ion irradiation studies of a bulk Fe 96Zr 4 nanocomposite alloy. Irradiation resulted in amorphization of Fe 2Zr and formed crystal/amorphous nanolayers. α-Fe layers exhibited drastically lower defect density and size than those in large α-Fe grains. In situ video revealed that mobile dislocation loops in α-Fe layers were confined by the crystal/amorphous interfaces and kept migrating to annihilate other defects. This study provides new insights on the design of irradiation-tolerant crystal/amorphousmore » nanocomposites.« less

  2. A delta-doped amorphous silicon thin-film transistor with high mobility and stability

    NASA Astrophysics Data System (ADS)

    Kim, Pyunghun; Lee, Kyung Min; Lee, Eui-Wan; Jo, Younjung; Kim, Do-Hyung; Kim, Hong-jae; Yang, Key Young; Son, Hyunji; Choi, Hyun Chul

    2012-12-01

    Ultrathin doped layers, known as delta-doped layers, were introduced within the intrinsic amorphous silicon (a-Si) active layer to fabricate hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) with enhanced field-effect mobility. The performance of the delta-doped a-Si:H TFTs depended on the phosphine (PH3) flow rate and the distance from the n+ a-Si to the deltadoping layer. The delta-doped a-Si:H TFTs fabricated using a commercial manufacturing process exhibited an enhanced field-effect mobility of approximately ˜0.23 cm2/Vs (compared to a conventional a-Si:H TFT with 0.15 cm2/Vs) and a desirable stability under a bias-temperature stress test.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, S. V.; Ting, M.; Yu, K. M.

    In this paper we report our study on n-type Te doping of amorphous GaN 1-xAs x layers grown by plasma-assisted molecular beam epitaxy. We have used a low temperature PbTe source as a source of tellurium. Reproducible and uniform tellurium incorporation in amorphous GaN 1-xAs x layers has been successfully achieved with a maximum Te concentration of 9×10²⁰ cm⁻³. Tellurium incorporation resulted in n-doping of GaN 1-xAs x layers with Hall carrier concentrations up to 3×10¹⁹ cm⁻³ and mobilities of ~1 cm²/V s. The optimal growth temperature window for efficient Te doping of the amorphous GaN 1-xAs x layers hasmore » been determined.« less

  4. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei; Zaslavsky, Alexander; Longo, Paolo

    2016-01-07

    Accurate optical methods are required to determine the energy bandgap of amorphous semiconductors and elucidate the role of quantum confinement in nanometer-scale, ultra-thin absorbing layers. Here, we provide a critical comparison between well-established methods that are generally employed to determine the optical bandgap of thin-film amorphous semiconductors, starting from normal-incidence reflectance and transmittance measurements. First, we demonstrate that a more accurate estimate of the optical bandgap can be achieved by using a multiple-reflection interference model. We show that this model generates more reliable results compared to the widely accepted single-pass absorption method. Second, we compare two most representative methods (Taucmore » and Cody plots) that are extensively used to determine the optical bandgap of thin-film amorphous semiconductors starting from the extracted absorption coefficient. Analysis of the experimental absorption data acquired for ultra-thin amorphous germanium (a-Ge) layers demonstrates that the Cody model is able to provide a less ambiguous energy bandgap value. Finally, we apply our proposed method to experimentally determine the optical bandgap of a-Ge/SiO{sub 2} superlattices with single and multiple a-Ge layers down to 2 nm thickness.« less

  5. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: multi-parameter measurement reliability and precision studies.

    PubMed

    Zhang, Y; Melnikov, A; Mandelis, A; Halliop, B; Kherani, N P; Zhu, R

    2015-03-01

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results were studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.

  6. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions measured by frequency-domain photocarrier radiometry: Multi-parameter measurement reliability and precision studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094; Melnikov, A.

    2015-03-15

    A theoretical one-dimensional two-layer linear photocarrier radiometry (PCR) model including the presence of effective interface carrier traps was used to evaluate the transport parameters of p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) passivated by an intrinsic hydrogenated amorphous silicon (i-layer) nanolayer. Several crystalline Si heterojunction structures were examined to investigate the influence of the i-layer thickness and the doping concentration of the a-Si:H layer. The experimental data of a series of heterojunction structures with intrinsic thin layers were fitted to PCR theory to gain insight into the transport properties of these devices. The quantitative multi-parameter results weremore » studied with regard to measurement reliability (uniqueness) and precision using two independent computational best-fit programs. The considerable influence on the transport properties of the entire structure of two key parameters that can limit the performance of amorphous thin film solar cells, namely, the doping concentration of the a-Si:H layer and the i-layer thickness was demonstrated. It was shown that PCR can be applied to the non-destructive characterization of a-Si:H/c-Si heterojunction solar cells yielding reliable measurements of the key parameters.« less

  7. Light-induced V{sub oc} increase and decrease in high-efficiency amorphous silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuckelberger, M., E-mail: michael.stuckelberger@epfl.ch; Riesen, Y.; Despeisse, M.

    High-efficiency amorphous silicon (a-Si:H) solar cells were deposited with different thicknesses of the p-type amorphous silicon carbide layer on substrates of varying roughness. We observed a light-induced open-circuit voltage (V{sub oc}) increase upon light soaking for thin p-layers, but a decrease for thick p-layers. Further, the V{sub oc} increase is enhanced with increasing substrate roughness. After correction of the p-layer thickness for the increased surface area of rough substrates, we can exclude varying the effective p-layer thickness as the cause of the substrate roughness dependence. Instead, we explain the observations by an increase of the dangling-bond density in both themore » p-layer—causing a V{sub oc} increase—and in the intrinsic absorber layer, causing a V{sub oc} decrease. We present a mechanism for the light-induced increase and decrease, justified by the investigation of light-induced changes of the p-layer and supported by Advanced Semiconductor Analysis simulation. We conclude that a shift of the electron quasi-Fermi level towards the conduction band is the reason for the observed V{sub oc} enhancements, and poor amorphous silicon quality on rough substrates enhances this effect.« less

  8. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass

    PubMed Central

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-01-01

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671

  9. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass.

    PubMed

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-12-14

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant.

  10. Chemically sensitive free-volume study of amorphization of Cu60Zr40 induced by cold rolling and folding

    NASA Astrophysics Data System (ADS)

    Puff, Werner; Rabitsch, Herbert; Wilde, Gerhard; Dinda, Guru P.; Würschum, Roland

    2007-06-01

    With the aim to contribute to a microscopical understanding of the processes of solid-state amorphization, the chemically sensitive technique of background—reduced Doppler broadening of positron-electron annihilation radiation in combination with positron lifetime spectroscopy and microstructural characterization is applied to a free volume study of the amorphization of Cu60Zr40 induced by consecutive folding and rolling. Starting from the constituent pure metal foils, a nanosale multilayer structure of elemental layers and amorphous interlayers develops in an intermediate state of folding and rolling, where free volumes with a Zr-rich environment occur presumably located in the hetero-interfaces between the various layers or in grain boundaries of the Cu layers. After complete intermixing and amorphization, the local chemical environment of the free volumes reflects the average chemical alloy composition. In contrast to other processes of amorphization, free volumes of the size of few missing atoms occur in the rolling-induced amorphous state. Self-consistent results from three different methods for analyzing the Doppler broadening spectra, i.e., S-W-parameter correlation, multicomponent fit, and the shape of ratio curves, demonstrate the potential of the background-reduced Doppler technique for chemically sensitive characterization of structurally complex materials on an atomic scale.

  11. Structure determination of a multilayer with an island-like overlayer using hard x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isomura, N., E-mail: isomura@mosk.tytlabs.co.jp; Kataoka, K.; Horibuchi, K.

    We use hard X-ray photoelectron spectroscopy (HAXPES) to obtain the surface structure of a multilayer Au/SiO{sub 2}/Si substrate sample with an island-like overlayer. Photoelectron intensities are measured as a function of incident photon energy (PE) and take-off angle (TOA, measured from the sample surface). The Au layer coverage and Au and SiO{sub 2} layer thicknesses are obtained by the PE dependence, and are used for the following TOA analysis. The Au island lateral width in the cross section is obtained by the TOA dependence, including information about surface roughness, in consideration of the island shadowing at small TOAs. In bothmore » cases, curve-fitting analysis is conducted. The surface structure, which consists of layer thicknesses, overlayer coverage and island width, is determined nondestructively by a combination of PE and TOA dependent HAXPES measurements.« less

  12. Fabrication of luminescent porous silicon with stain etches and evidence that luminescence originates in amorphous layers

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.

    1992-01-01

    Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.

  13. Strong Deformation of the Thick Electric Double Layer around a Charged Particle during Sedimentation or Electrophoresis.

    PubMed

    Khair, Aditya S

    2018-01-23

    The deformation of the electric double layer around a charged colloidal particle during sedimentation or electrophoresis in a binary, symmetric electrolyte is studied. The surface potential of the particle is assumed to be small compared to the thermal voltage scale. Additionally, the Debye length is assumed to be large compared to the particle size. These assumptions enable a linearization of the electrokinetic equations. The particle appears as a point charge in this thick-double-layer limit; the distribution of charge in the diffuse cloud surrounding it is determined by a balance of advection due to the particle motion, Brownian diffusion of ions, and electrostatic screening of the particle by the cloud. The ability of advection to deform the charge cloud from its equilibrium state is parametrized by a Péclet number, Pe. For weak advection (Pe ≪ 1), the cloud is only slightly deformed. In contrast, the cloud can be completely stripped from the particle at Pe ≫ 1; consequently, electrokinetic effects on the particle motion vanish in this regime. Therefore, in sedimentation the drag limits to Stokes' law for an uncharged particle as Pe → ∞. Likewise, the particle velocity for electrophoresis approaches Huckel's result. The strongly deformed cloud at large Pe is predicted to generate a concomitant increase in the sedimentation field in a dilute settling suspension.

  14. Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation.

    PubMed

    Grieb, Tim; Tewes, Moritz; Schowalter, Marco; Müller-Caspary, Knut; Krause, Florian F; Mehrtens, Thorsten; Hartmann, Jean-Michel; Rosenauer, Andreas

    2018-01-01

    The chemical composition of four Si 1-x Ge x layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated. By means of simulations, the effect of amorphous surface layers on the HAADF intensity of crystalline silicon and germanium is investigated. Based on these simulations, a method is developed to analyze the experimental HAADF-STEM images by taking the influence of the amorphous layers into account which is done by a reduction of the intensities by multiplication with a constant factor. This suggested modified HAADF analysis gives germanium concentrations which are in agreement with the nominal values. The same TEM lamella was treated with low-voltage ion milling which removed the amorphous surface layers completely. The results from subsequent quantitative HAADF analyses are in agreement with the nominal concentrations which validates the applicability of the used frozen-lattice based multislice simulations to describe the HAADF scattering of Si 1-x Ge x in STEM. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. TU-EF-204-12: Quantitative Evaluation of Spectral Detector CT Using Virtual Monochromatic Images: Initial Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, X; Guild, J; Arbique, G

    2015-06-15

    Purpose To evaluate the image quality and spectral information of a spectral detector CT (SDCT) scanner using virtual monochromatic (VM) energy images. Methods The SDCT scanner (Philips Healthcare) was equipped with a dual-layer detector and spectral iterative reconstruction (IR), which generates conventional 80–140 kV polychromatic energy (PE) CT images using both detector layers, PE images from the low-energy (upper) and high-energy (lower) detector layers and VM images. A solid water phantom with iodine (2.0–20.0 mg I/ml) and calcium (50.0–600.0 mg Ca/ml) rod inserts was used to evaluate effective energy estimate (EEE) and iodine contrast to noise ratio (CNR). The EEEmore » corresponding to an insert CT number in a PE image was calculated from a CT number fit to the VM image set. Since PE image is prone to beam-hardening artifact EEE may underestimate the actual energy separation from two layers of the detector. A 30-cm-diameter water phantom was used to evaluate noise power spectrum (NPS). The phantoms were scanned at 120 and 140 kV with the same CTDIvol. Results The CT number difference for contrast inserts in VM images (50–150 keV) was 1.3±6% between 120 and 140 kV scans. The difference of EEE calculated from low- and high-energy detector images was 11.5 and 16.7 keV for 120 and 140 kV scans, respectively. The differences calculated from 140 and 100 kV conventional PE images were 12.8, and 20.1 keV from 140 and 80 kV conventional PE images. The iodine CNR increased monotonically with decreased keV. Compared to conventional PE images, the peak of NPS curves from VM images were shifted to lower frequency. Conclusion The EEE results indicates that SDCT at 120 and 140 kV may have energy separation comparable to 100/140 kV and 80/140 kV dual-kV imaging. The effects of IR on CNR and NPS require further investigation for SDCT. Author YY and AD are Philips Healthcare employees.« less

  16. Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer

    NASA Astrophysics Data System (ADS)

    Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping

    2018-06-01

    In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.

  17. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents

    PubMed Central

    Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea

    2016-01-01

    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents. PMID:28773592

  18. Interfacial Energy-Level Alignment for High-Performance All-Inorganic Perovskite CsPbBr3 Quantum Dot-Based Inverted Light-Emitting Diodes.

    PubMed

    Subramanian, Alagesan; Pan, Zhenghui; Zhang, Zhenbo; Ahmad, Imtiaz; Chen, Jing; Liu, Meinan; Cheng, Shuang; Xu, Yijun; Wu, Jun; Lei, Wei; Khan, Qasim; Zhang, Yuegang

    2018-04-18

    All-inorganic perovskite light-emitting diode (PeLED) has a high stability in ambient atmosphere, but it is a big challenge to achieve high performance of the device. Basically, device design, control of energy-level alignment, and reducing the energy barrier between adjacent layers in the architecture of PeLED are important factors to achieve high efficiency. In this study, we report a CsPbBr 3 -based PeLED with an inverted architecture using lithium-doped TiO 2 nanoparticles as the electron transport layer (ETL). The optimal lithium doping balances the charge carrier injection between the hole transport layer and ETL, leading to superior device performance. The device exhibits a current efficiency of 3 cd A -1 , a luminance efficiency of 2210 cd m -2 , and a low turn-on voltage of 2.3 V. The turn-on voltage is one of the lowest values among reported CsPbBr 3 -based PeLEDs. A 7-fold increase in device efficiencies has been obtained for lithium-doped TiO 2 compared to that for undoped TiO 2 -based devices.

  19. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Veblen, David R.; Blum, Alex E.; Chipera, Stephen J.

    2006-09-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 μm thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ˜10 5 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface.

  20. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    USGS Publications Warehouse

    Zhu, Chen; Veblen, D.R.; Blum, A.E.; Chipera, S.J.

    2006-01-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 ??m thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ???105 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the possibility of this amorphous layer on feldspar surface. ?? 2006 Elsevier Inc. All rights reserved.

  1. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    PubMed

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  2. Direct synthesis of multilayer graphene on an insulator by Ni-induced layer exchange growth of amorphous carbon

    NASA Astrophysics Data System (ADS)

    Murata, H.; Toko, K.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.

    2017-01-01

    Multilayer graphene (MLG) growth on arbitrary substrates is desired for incorporating carbon wiring and heat spreaders into electronic devices. We investigated the metal-induced layer exchange growth of a sputtered amorphous C layer using Ni as a catalyst. A MLG layer uniformly formed on a SiO2 substrate at 600 °C by layer exchange between the C and Ni layers. Raman spectroscopy and electron microscopy showed that the resulting MLG layer was highly oriented and contained relatively few defects. The present investigation will pave the way for advanced electronic devices integrated with carbon materials.

  3. Electrooptical properties and structural features of amorphous ITO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amosova, L. P., E-mail: l-amosova@mail.ru

    2015-03-15

    Thin indium-tin oxide (ITO) films are deposited onto cold substrates by magnetron-assisted sputtering. The dependences of the structural, electrical, and optical properties of the films on the oxygen content in the atmosphere of sputtering and the growth rate are studied. It is shown that, if the substrate temperature is no higher than the ITO crystallization temperature and the conditions of growth deviate from the optimal relationship between the oxygen pressure and the growth rate, the resistance of the layers can be six or seven orders of magnitude higher than the resistance of conducting amorphous layers and reach hundreds of megaohms.more » At the same time, the optical properties of insulating layers in the visible spectral region are completely identical to the properties of the conducing amorphous modification. A conceptual model of defects responsible for the insulating properties of amorphous ITO is proposed.« less

  4. Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition.

    PubMed

    Shi, Jian; Li, Zhaodong; Kvit, Alexander; Krylyuk, Sergiy; Davydov, Albert V; Wang, Xudong

    2013-01-01

    Understanding the evolution of amorphous and crystalline phases during atomic layer deposition (ALD) is essential for creating high quality dielectrics, multifunctional films/coatings, and predictable surface functionalization. Through comprehensive atomistic electron microscopy study of ALD TiO2 nanostructures at designed growth cycles, we revealed the transformation process and sequence of atom arrangement during TiO2 ALD growth. Evolution of TiO2 nanostructures in ALD was found following a path from amorphous layers to amorphous particles to metastable crystallites and ultimately to stable crystalline forms. Such a phase evolution is a manifestation of the Ostwald-Lussac Law, which governs the advent sequence and amount ratio of different phases in high-temperature TiO2 ALD nanostructures. The amorphous-crystalline mixture also enables a unique anisotropic crystal growth behavior at high temperature forming TiO2 nanorods via the principle of vapor-phase oriented attachment.

  5. Localized entrapment of green fluorescent protein within nanostructured polymer films

    NASA Astrophysics Data System (ADS)

    Ankner, John; Kozlovskaya, Veronika; O'Neill, Hugh; Zhang, Qiu; Kharlampieva, Eugenia

    2012-02-01

    Protein entrapment within ultrathin polymer films is of interest for applications in biosensing, drug delivery, and bioconversion, but controlling protein distribution within the films is difficult. We report on nanostructured protein/polyelectrolyte (PE) materials obtained through incorporation of green fluorescent protein (GFP) within poly(styrene sulfonate)/poly(allylamine hydrochloride) multilayer films assembled via the spin-assisted layer-by-layer method. By using deuterated GFP as a marker for neutron scattering contrast we have inferred the architecture of the films in both normal and lateral directions. We find that films assembled with a single GFP layer exhibit a strong localization of the GFP without intermixing into the PE matrix. The GFP volume fraction approaches the monolayer density of close-packed randomly oriented GFP molecules. However, intermixing of the GFP with the PE matrix occurs in multiple-GFP layer films. Our results yield new insight into the organization of immobilized proteins within polyelectrolyte matrices and open opportunities for fabrication of protein-containing films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.

  6. Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer.

    PubMed

    Jaramillo-Quintero, Oscar A; Sanchez, Rafael S; Rincon, Marina; Mora-Sero, Ivan

    2015-05-21

    Hybrid halide perovskites that are currently intensively studied for photovoltaic applications, also present outstanding properties for light emission. Here, we report on the preparation of bright solid state light emitting diodes (LEDs) based on a solution-processed hybrid lead halide perovskite (Pe). In particular, we have utilized the perovskite generally described with the formula CH3NH3PbI(3-x)Cl(x) and exploited a configuration without electron or hole blocking layer in addition to the injecting layers. Compact TiO2 and Spiro-OMeTAD were used as electron and hole injecting layers, respectively. We have demonstrated a bright combined visible-infrared radiance of 7.1 W·sr(-1)·m(-2) at a current density of 232 mA·cm(-2), and a maximum external quantum efficiency (EQE) of 0.48%. The devices prepared surpass the EQE values achieved in previous reports, considering devices with just an injecting layer without any additional blocking layer. Significantly, the maximum EQE value of our devices is obtained at applied voltages as low as 2 V, with a turn-on voltage as low as the Pe band gap (V(turn-on) = 1.45 ± 0.06 V). This outstanding performance, despite the simplicity of the approach, highlights the enormous potentiality of Pe-LEDs. In addition, we present a stability study of unsealed Pe-LEDs, which demonstrates a dramatic influence of the measurement atmosphere on the performance of the devices. The decrease of the electroluminescence (EL) under continuous operation can be attributed to an increase of the non-radiative recombination pathways, rather than a degradation of the perovskite material itself.

  7. Localization of vibrational modes leads to reduced thermal conductivity of amorphous heterostructures

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Donovan, Brian F.; Hopkins, Patrick E.

    2018-05-01

    We investigate the vibrational heat transfer mechanisms in amorphous Stillinger-Weber silicon and germanium-based alloys and heterostructures via equilibrium and nonequilibrium molecular dynamics simulations along with lattice dynamics calculations. We find that similar to crystalline alloys, amorphous alloys demonstrate large size effects in thermal conductivity, while layering the constituent materials into superlattice structures leads to length-independent thermal conductivities. The thermal conductivity of an amorphous SixGe1 -x alloy reduces by as much as ˜53 % compared to the thermal conductivity of amorphous silicon; compared to the larger reduction in crystalline phases due to alloying, we show that compositional disorder rather than structural disorder has a larger impact on the thermal conductivity reduction. Our thermal conductivity predictions for a-Si/a-Ge superlattices suggest that the alloy limit in amorphous SiGe-based structures can be surpassed with interface densities above ˜0.35 nm-1 . We attribute the larger reduction in thermal conductivity of layered Si/Ge heterostructures to greater localization of modes at and around the cutoff frequency of the softer layer as demonstrated via lattice dynamics calculations and diffusivities of individual eigenmodes calculated according to the Allen-Feldman theory [P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993), 10.1103/PhysRevB.48.12581] for our amorphous SiGe-based alloys and superlattice structures.

  8. Low-temperature interface reactions in layered Au/Sb films: In situ investigation of the formation of an amorphous phase

    NASA Astrophysics Data System (ADS)

    Boyen, H.-G.; Cossy-Favre, A.; Oelhafen, P.; Siber, A.; Ziemann, P.; Lauinger, C.; Moser, T.; Häussler, P.; Baumann, F.

    1995-01-01

    Photoelectron-spectroscopy methods combined with electrical-resistance measurements were employed to study the effects of intermixing at Au/Sb interfaces at low temperatures. For the purpose of characterizing the growth processes of the intermixed phase on a ML scale, Au/Sb bilayers (layer thicknesses DAu=0.5-75 ML and DSb=150 ML) were evaporated at 77 K and the different in situ techniques allowed a comparison to vapor-quenched amorphous AuxSb100-x alloys. For Au thicknesses between 0.5 and 0.9 ML, a change from a semiconducting to a metallic behavior of the samples has been detected, as indicated by the development of a steplike photoelectron intensity at the Fermi level. Evidence has been found that for Au coverages <= 6 ML chemical reactions at the Au/Sb interface occur, leading to the formation of a homogeneously intermixed amorphous layer with a maximum thickness of about 2.3 nm and Au concentrations as high as x~=80 at. %. This latter value corresponds to the limiting Au content where amorphous alloys can be prepared at low temperature (0 at. % <=x<= 80 at. %). For nominal coverages beyond 6 ML polycrystalline Au films were formed. Consequently, Au/Sb multilayers with sufficiently small modulation lengths, which were prepared at 130 K by ion-beam sputtering, were observed to grow as a homogeneous amorphous phase over a broad range of compositions, as evidenced by in situ resistance measurements and by comparing the obtained crystallization temperatures to those of vapor-quenched amorphous alloys. Variation of the deposition temperature Ts revealed that an amorphous interface layer is only formed for Ts<= 220 K. This is consistent with the fact that for multilayers with large modulation lengths containing unreacted polycrystalline Au and Sb layers, long-range interdiffusion is found to set in at temperatures above 230 K. This interdiffusion, however, results in the formation of polycrystalline Au-Sb alloys.

  9. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  10. Investigations of YBa2Cu3O y films sputtered onto a substrate of amorphous quartz with a platinum buffer layer

    NASA Astrophysics Data System (ADS)

    Blinova, Yu. V.; Snigirev, O. V.; Porokhov, N. V.; Evlashin, S. A.

    2017-10-01

    Results of investigations using X-ray diffraction and scanning electron microscopy of composite materials made from YBa2Cu3O y films sputtered (using various regimes) onto a substrate of amorphous quartz with a platinum buffer layer, have been given.

  11. Characterization of carbon ion implantation induced graded microstructure and phase transformation in stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Kai; Wang, Yibo; Li, Zhuguo, E-mail: lizg@sjtu.edu.cn

    Austenitic stainless steel 316L is ion implanted by carbon with implantation fluences of 1.2 × 10{sup 17} ions-cm{sup −} {sup 2}, 2.4 × 10{sup 17} ions-cm{sup −} {sup 2}, and 4.8 × 10{sup 17} ions-cm{sup −} {sup 2}. The ion implantation induced graded microstructure and phase transformation in stainless steel is investigated by X-ray diffraction, X-ray photoelectron spectroscopy and high resolution transmission electron microscopy. The corrosion resistance is evaluated by potentiodynamic test. It is found that the initial phase is austenite with a small amount of ferrite. After low fluence carbon ion implantation, an amorphous layer and ferrite phase enrichedmore » region underneath are formed. Nanophase particles precipitate from the amorphous layer due to energy minimization and irradiation at larger ion implantation fluence. The morphology of the precipitated nanophase particles changes from circular to dumbbell-like with increasing implantation fluence. The corrosion resistance of stainless steel is enhanced by the formation of amorphous layer and graphitic solid state carbon after carbon ion implantation. - Highlights: • Carbon implantation leads to phase transformation from austenite to ferrite. • The passive film on SS316L becomes thinner after carbon ion implantation. • An amorphous layer is formed by carbon ion implantation. • Nanophase precipitate from amorphous layer at higher ion implantation fluence. • Corrosion resistance of SS316L is improved by carbon implantation.« less

  12. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  13. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-11-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases.

  14. Comparison study of morphology and crystallization behavior of polyethylene and poly(ethylene oxide) on single-walled carbon nanotubes.

    PubMed

    Zheng, Xiaoli; Xu, Qun

    2010-07-29

    In this work, we provided a comparison study of morphology and crystallization behavior of polyethylene (PE) and poly(ethylene oxide) (PEO) on single-walled carbon nanotubes (SWNTs) with assistance of supercritical CO(2). The resulting polymer/SWNT nanohybrids were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide-angle X-ray diffraction, and differential scanning calorimetry. SWNT small bundles were decorated by PE lamellar crystals, forming nanohybrid "shish-kebab" (NHSK) structure, whereas SWNTs were only wrapped by a thin amorphous polymer coating in the case of PEO. The varying morphologies of the nanohybrids were found to depend on the molecular conformation and the interactions between polymer chains and SWNTs. Nonisothermal experiments showed that SWNTs provided heterogeneous nucleation sites for PE crystallization, while the NHSK structure hindered polymer chain diffusion and crystal growth. Also, SWNTs played antinucleation effect on PEO. In addition, the formation mechanism analysis indicated that PE chains preferred to form a homogeneous coating along the tube axis before proceeding to kebab crystal growth. The purpose of this work is to enlarge the area of theoretical understanding of introducing precisely hierarchical structures on carbon nanotubes, which are important for functional design in nanodevice applications.

  15. Atomistic simulation of damage accumulation and amorphization in Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez-Selles, Jose L., E-mail: joseluis.gomezselles@imdea.org; Martin-Bragado, Ignacio; Claverie, Alain

    2015-02-07

    Damage accumulation and amorphization mechanisms by means of ion implantation in Ge are studied using Kinetic Monte Carlo and Binary Collision Approximation techniques. Such mechanisms are investigated through different stages of damage accumulation taking place in the implantation process: from point defect generation and cluster formation up to full amorphization of Ge layers. We propose a damage concentration amorphization threshold for Ge of ∼1.3 × 10{sup 22} cm{sup −3} which is independent on the implantation conditions. Recombination energy barriers depending on amorphous pocket sizes are provided. This leads to an explanation of the reported distinct behavior of the damage generated by different ions.more » We have also observed that the dissolution of clusters plays an important role for relatively high temperatures and fluences. The model is able to explain and predict different damage generation regimes, amount of generated damage, and extension of amorphous layers in Ge for different ions and implantation conditions.« less

  16. Study of Polymer Crystallization by Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jeong, Hyuncheol

    When a polymer is confined under the submicron length scale, confinement size and interfaces can significantly impact the crystallization kinetics and resulting morphology. The ability to tune the morphology of confined polymer systems is of critical importance for the development of high-performance polymer microelectronics. The wisdom from the research on confined crystallization suggests that it would be beneficial to have a processing route in which the crystallization of polymers is driven by interface and temperature effects at a nanometer-scale confinement. In practice, for atomic and small-molecular systems, physical vapor deposition (PVD) has been recognized as the most successful processing route for the precise control of the film structure at surface utilizing confinement effects. While standard PVD technologies are not generally applicable to the deposition of the chemically fragile macromolecules, the development of matrix-assisted pulsed laser evaporation (MAPLE) now enables the non-destructive PVD of high-molecular weight polymers. In this thesis work, we investigated the use of MAPLE for the precise control of the crystallization of polymer films at a molecular level. We also sought to decipher the rules governing the crystallization of confined polymers, by using MAPLE as a tool to form confined polymer systems onto substrates with a controlled temperature. We first explored the early stages of film growth and crystallization of poly(ethylene oxide) (PEO) at the substrate surface formed by MAPLE. The unique mechanism of film formation in MAPLE, the deposition of submicron-sized polymer droplets, allowed for the manifestation of confinement and substrate effects in the crystallization of MAPLE-deposited PEO. Furthermore, we also focused on the property of the amorphous PEO film formed by MAPLE, showing the dependence of polymer crystallization kinetics on the thermal history of the amorphous phase. Lastly, we probed how MAPLE processing affected the semi-crystalline structure in MAPLE-deposited polyethylene (PE) films. Depositing PE at various temperatures remarkably allowed for the tunability of the melting temperature and crystallinity of the PE films, thus manipulating the semi-crystalline structure. By comparing the structure of PE formed by different processing routes, i.e., MAPLE and melt-crystallization, we discussed how processing routes affect the development of semi-crystalline phase in polymer films.

  17. A high performance ceramic-polymer separator for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Kichambare, Padmakar; Rai, Amarendra K.; Bhattacharya, Rabi; Rodrigues, Stanley; Subramanyam, Guru

    2016-01-01

    A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared to regular PE separator, LAGP/PE/LAGP hybrid separator showed: (i) higher liquid electrolyte uptake, (ii) higher ionic conductivity, (iii) lower interfacial resistance with lithium and (iv) lower cell voltage polarization during lithium cycling at high current density of 1.3 mA cm-2 at room temperature. The enhanced performance is attributed to higher liquid uptake, LAGP-assisted faster ion conduction and dendrite prevention. Optimization of density and thickness of LAGP layer on PE or other membranes through manipulation of PVD deposition parameters will enable practical applications of this novel hybrid separator in rechargeable lithium batteries with high energy, high power, longer cycle life, and higher safety level.

  18. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  19. Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-07-09

    A high efficiency amorphous silicon PIN semiconductor device having partially crystallized (microcrystalline) P and N layers is constructed by the sequential sputtering of N, I and P layers and at least one semi-transparent ohmic electrode. The method of construction produces a PIN device, exhibiting enhanced electrical and optical properties, improved physical integrity, and facilitates the preparation in a singular vacuum system and vacuum pump down procedure.

  20. Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    da Silva, D. S.; Côrtes, A. D. S.; Oliveira, M. H.; Motta, E. F.; Viana, G. A.; Mei, P. R.; Marques, F. C.

    2011-08-01

    We report on the investigation of the potential application of different forms of amorphous carbon (a-C and a-C:H) as an antireflective coating for crystalline silicon solar cells. Polymeric-like carbon (PLC) and hydrogenated diamond-like carbon films were deposited by plasma enhanced chemical vapor deposition. Tetrahedral amorphous carbon (ta-C) was deposited by the filtered cathodic vacuum arc technique. Those three different amorphous carbon structures were individually applied as single antireflective coatings on conventional (polished and texturized) p-n junction crystalline silicon solar cells. Due to their optical properties, good results were also obtained for double-layer antireflective coatings based on PLC or ta-C films combined with different materials. The results are compared with a conventional tin dioxide (SnO2) single-layer antireflective coating and zinc sulfide/magnesium fluoride (ZnS/MgF2) double-layer antireflective coatings. An increase of 23.7% in the short-circuit current density, Jsc, was obtained using PLC as an antireflective coating and 31.7% was achieved using a double-layer of PLC with a layer of magnesium fluoride (MgF2). An additional increase of 10.8% was obtained in texturized silicon, representing a total increase (texturization + double-layer) of about 40% in the short-circuit current density. The potential use of these materials are critically addressed considering their refractive index, optical bandgap, absorption coefficient, hardness, chemical inertness, and mechanical stability.

  1. Comparison of talc-Celite and polyelectrolyte 60 in virus recovery from sewage: development of technique and experiments with poliovirus (type 1, Sabin)-contaminated multilitre samples.

    PubMed

    Sattar, S A; Westwood, J C

    1976-11-01

    For virus recovery from sewage, a mixture of talc and Celite was tested as a possible inexpensive substitute for polyelectrolyte 60 (PE 60). After adjustment of pH to 6 and the addition of 45-60 plaque forming units (PFU)/ml of poliovirus type I (Sabin) to the sewage sample under test, 100 ml of it was passed through either a PE 60 (400 mg) or a talc (300 mg)-Celite (100 mg) layer; the layer-adsorbed virus was eluted with 10 ml of 10% fetal calf serum (FCS) in saline (pH 7.2). In these experiments, PE 60 layers recovered 73-80% (mean 76%) of the input virus. In comparison, virus recoveries with the talc-Celite layers were 65-70% (mean 68%). Passage of 5 litres of raw sewage (containing 50 to 1.26 X 10(5) PFU/100 ml of the poliovirus) through the talc (15 g)-Celite (5 g) layers and virus elution with 50 ml of 10% FCS in saline gave virus recoveries of 33-63% (mean 49%). Except for pH adjustment and prefiltration through two layers of gauze to remove large solids, no other sample pretreatment was found to be necessary. Application of this technique to recovery of indigenous viruses from field samples of raw sewage and effluents has been highly satisfactory.

  2. Investigation of embedded perovskite nanoparticles for enhanced capacitor permittivities.

    PubMed

    Krause, Andreas; Weber, Walter M; Pohl, Darius; Rellinghaus, Bernd; Verheijen, Marcel; Mikolajick, Thomas

    2014-11-26

    Growth experiments show significant differences in the crystallization of ultrathin CaTiO3 layers on polycrystalline Pt surfaces. While the deposition of ultrathin layers below crystallization temperature inhibits the full layer crystallization, local epitaxial growth of CaTiO3 crystals on top of specific oriented Pt crystals occurs. The result is a formation of crystals embedded in an amorphous matrix. An epitaxial alignment of the cubic CaTiO3 ⟨111⟩ direction on top of the underlying Pt {111} surface has been observed. A reduced forming energy is attributed to an interplay of surface energies at the {111} interface of both materials and CaTiO3 nanocrystallites facets. The preferential texturing of CaTiO3 layers on top of Pt has been used in the preparation of ultrathin metal-insulator-metal capacitors with 5-30 nm oxide thickness. The effective CaTiO3 permittivity in the capacitor stack increases to 55 compared to capacitors with amorphous layers and a permittivity of 28. The isolated CaTiO3 crystals exhibit a passivation of the CaTiO3 grain surfaces by the surrounding amorphous matrix, which keeps the capacitor leakage current at ideally low values comparable for those of amorphous thin film capacitors.

  3. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon.

    PubMed

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-08-17

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.

  4. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    PubMed Central

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  5. Influences of ultra-thin Ti seed layers on the dewetting phenomenon of Au films deposited on Si oxide substrates

    NASA Astrophysics Data System (ADS)

    Kamiko, Masao; Kim, So-Mang; Jeong, Young-Seok; Ha, Jae-Ho; Koo, Sang-Mo; Ha, Jae-Geun

    2018-05-01

    The influences of a Ti seed layer (1 nm) on the dewetting phenomenon of Au films (5 nm) grown onto amorphous SiO2 substrates have been studied and compared. Atomic force microscopy results indicated that the introduction of Ti between the substrate and Au promoted the dewetting phenomenon. X-ray diffraction measurements suggested that the initial deposition of Ti promoted crystallinity of Au. A series of Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that Ti transformed to a Ti oxide layer by reduction of the amorphous SiO2 substrate surface, and that the Ti seed layer remained on the substrate, without going through the dewetting process during annealing. We concluded that the enhancement of Au dewetting and the improvement in crystallinity of Au by the insertion of Ti could be attributed to the fact that Au location was changed from the surface of the amorphous SiO2 substrate to that of the Ti oxide layer.

  6. The use of ionic salt dyes as amorphous, thermally stable emitting layers in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chondroudis, Konstantinos; Mitzi, David B.

    2000-01-01

    The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.

  7. The bonding of protective films of amorphic diamond to titanium

    NASA Astrophysics Data System (ADS)

    Collins, C. B.; Davanloo, F.; Lee, T. J.; Jander, D. R.; You, J. H.; Park, H.; Pivin, J. C.

    1992-04-01

    Films of amorphic diamond can be deposited from laser plasma ions without the use of catalysts such as hydrogen or fluorine. Prepared without columnar patterns of growth, the layers of this material have been reported to have ``bulk'' values of mechanical properties that have suggested their usage as protective coatings for metals. Described here is a study of the bonding and properties realized in one such example, the deposition of amorphic diamond on titanium. Measurements with Rutherford backscattering spectrometry and transmission electron microscopy showed that the diamond coatings deposited from laser plasmas were chemically bonded to Ti substrates in 100-200-Å-thick interfacial layers containing some crystalline precipitates of TiC. Resistance to wear was estimated with a modified sand blaster and in all cases the coating was worn away without any rupture or deterioration of the bonding layer. Such wear was greatly reduced and lifetimes of the coated samples were increased by a factor of better than 300 with only 2.7 μm of amorphic diamond.

  8. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  9. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  10. A Description of the Framework of the Atmospheric Boundary Layer Environment (ABLE) Model

    DTIC Science & Technology

    2012-09-01

    difference scheme (CDS). For the mass flux through the face e of CV, mUDSe CDS e UDS ee QQQQ )(  . (16) The superscript m again means that...PEPee xr  , zyCUQ EEE   , and the lowercase subscripts represents the advective fluxes at the corresponding faces of control volume...WP wW PE eE WP WP wPwW PE PE eEeP we we xx zyD FC xx zyD

  11. High Temperature Superconducting Thick Films

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi

    2005-08-23

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.

  12. Method of controllong the deposition of hydrogenated amorphous silicon and apparatus therefor

    DOEpatents

    Hanak, Joseph J.

    1985-06-25

    An improved method and apparatus for the controlled deposition of a layer of hydrogenated amorphous silicon on a substrate. Means is provided for the illumination of the coated surface of the substrate and measurement of the resulting photovoltage at the outermost layer of the coating. Means is further provided for admixing amounts of p type and n type dopants to the reactant gas in response to the measured photovoltage to achieve a desired level and type of doping of the deposited layer.

  13. Quality-enhanced In{sub 0.3}Ga{sub 0.7}As film grown on GaAs substrate with an ultrathin amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fangliang; Li, Guoqiang, E-mail: msgli@scut.edu.cn

    2014-01-27

    Using low-temperature molecular beam epitaxy, amorphous In{sub 0.6}Ga{sub 0.4}As layers have been grown on GaAs substrates to act as buffer layers for the subsequent epitaxial growth of In{sub 0.3}Ga{sub 0.7}As films. It is revealed that the crystallinity of as-grown In{sub 0.3}Ga{sub 0.7}As films is strongly affected by the thickness of the large-mismatched amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer. Given an optimized thickness of 2 nm, this amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer can efficiently release the misfit strain between the In{sub 0.3}Ga{sub 0.7}As epi-layer and the GaAs substrate, trap the threading and misfit dislocations from propagating to the following In{sub 0.3}Ga{submore » 0.7}As epi-layer, and reduce the surface fluctuation of the as-grown In{sub 0.3}Ga{sub 0.7}As, leading to a high-quality In{sub 0.3}Ga{sub 0.7}As film with competitive crystallinity to that grown on GaAs substrate using compositionally graded In{sub x}Ga{sub 1-x}As metamorphic buffer layers. Considering the complexity of the application of the conventional In{sub x}Ga{sub 1-x}As graded buffer layers, this work demonstrates a much simpler approach to achieve high-quality In{sub 0.3}Ga{sub 0.7}As film on GaAs substrate and, therefore, is of huge potential for the InGaAs-based high-efficiency photovoltaic industry.« less

  14. Efficient Energy Conversion by Grafting Nanochannels with End-charged Stimuli-responsive Polyelectrolyte Brush

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Das, Siddhartha

    2017-11-01

    Polyelectrolyte (PE) brushes have aroused increasing attention in applications in energy conversion and chemical sensing due to the environmentally-responsive and designable nature. PE brushes are charged polymer chains densely grafted on solid-liquid interfaces. By designing copolymeric systems, one can localize the ionizable sites at the brush tip in order to get end-charged PE brushes. Such brushes demonstrate anomalous shrinking/swelling behaviors with tunable environmental parameters such as pH and salt concentration. In this study, we probe the conformation and electrostatics of such PE brush systems with various size, grafting density and charge distribution, and exploit the electrochemomechanical energy conversion capabilities of nanochannels grafted with such PE brush systems. Our results indicate that the presence of the end-charged PE brush layer can massively enhance the streaming potential mediated energy conversion efficiency, and the improvement is more significant in strongly ionic solution.

  15. Improved Electrochemical Cycling Durability in a Nickel Oxide Double-Layered Film.

    PubMed

    Hou, Shuai; Zhang, Xiang; Tian, Yanlong; Zhao, Jiupeng; Geng, Hongbin; Qu, Huiying; Zhang, Hangchuan; Zhang, Kun; Wang, Binsheng; Gavrilyuk, Alexander; Li, Yao

    2017-11-16

    For the first time, a crystalline-amorphous double-layered NiO x film has been prepared by reactive radio frequency magnetron sputtering. This film has exhibited improved electrochemical cycling durability, whereas other electrochromic parameters have been maintained at the required level, namely, a short coloration/bleaching time (0.8 s/1.1 s) and an enhanced transmittance modulation range (62.2 %) at λ=550 nm. Additionally, the double-layered film has shown better reversibility than that of amorphous and crystalline single-layered films. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Modulation of the operational characteristics of amorphous In-Ga-Zn-O thin-film transistors by In2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Min-Jung; Lee, Tae Il; Park, Jee Ho; Kim, Jung Han; Chae, Gee Sung; Jun, Myung Chul; Hwang, Yong Kee; Baik, Hong Koo; Lee, Woong; Myoung, Jae-Min

    2012-05-01

    The structure of thin-film transistors (TFTs) based on amorphous In-Ga-Zn-O (a-IGZO) was modified by spin coating a suspension of In2O3 nanoparticles on a SiO2/p++ Si layered wafer surface prior to the deposition of IGZO layer by room-temperature sputtering. The number of particles per unit area (surface density) of the In2O3 nanoparticles could be controlled by applying multiple spin coatings of the nanoparticle suspension. During the deposition of IGZO, the In2O3 nanoparticles initially located on the substrate surface migrated to the top of the IGZO layer indicating that they were not embedded within the IGZO layer, but they supplied In to the IGZO layer to increase the In concentration in the channel layer. As a result, the channel characteristics of the a-IGZO TFT were modulated so that the device showed an enhanced performance as compared with the reference device prepared without the nanoparticle treatment. Such an improved device performance is attributed to the nano-scale changes in the structure of (InO)n ordering assisted by increased In concentration in the amorphous channel layer.

  17. Surface-enhanced Raman scattering of amorphous TiO2 thin films by gold nanostructures: Revealing first layer effect with thickness variation

    NASA Astrophysics Data System (ADS)

    Degioanni, S.; Jurdyc, A.-M.; Bessueille, F.; Coulm, J.; Champagnon, B.; Vouagner, D.

    2013-12-01

    In this paper, amorphous titanium dioxide (TiO2) thin films have been deposited on a commercially available Klarite substrate using the sol-gel process to produce surface-enhanced Raman scattering (SERS). The substrate consists of square arrays of micrometer-sized pyramidal pits in silicon with a gold coating. Several thin TiO2 layers have been deposited on the surface to study the influence of film thickness. Ultimately, we obtained information on SERS of an amorphous TiO2 layer by gold nanostructures, whose range is less than a few nanometers. Mechanisms responsible for the enhancement are the product of concomitant chemical and electromagnetic effects with an important contribution from plasmon-induced charge transfer.

  18. Photon Stimulated Ion Desorption.

    DTIC Science & Technology

    1982-03-03

    1978) 1997.(181 T. Shibaguchi, H . Onuki and R. Onaka, J. Phys. Soc. Contract DE.AC04.76-DPO0789. Experiments were Japan 42 (1977) S51. conducted at...University of California and the Naval Weapons Center. Sincerely COPY ovoikoble to DTIC doee 00t pe m i jully legible rep oductC r h Christopher C... H 20 is studied; only hydrogen ions are observed. Desorption of hydrogen ions from amorphous ice 7 is part of an ongoing study of condensed gases

  19. The dependence of the modulation transfer function on the blocking layer thickness in amorphous selenium x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, David M.; Belev, Gueorgi; DeCrescenzo, Giovanni

    2007-08-15

    Blocking layers are used to reduce leakage current in amorphous selenium detectors. The effect of the thickness of the blocking layer on the presampling modulation transfer function (MTF) and on dark current was experimentally determined in prototype single-line CCD-based amorphous selenium (a-Se) x-ray detectors. The sampling pitch of the detectors evaluated was 25 {mu}m and the blocking layer thicknesses varied from 1 to 51 {mu}m. The blocking layers resided on the signal collection electrodes which, in this configuration, were used to collect electrons. The combined thickness of the blocking layer and a-Se bulk in each detector was {approx}200 {mu}m. Asmore » expected, the dark current increased monotonically as the thickness of the blocking layer was decreased. It was found that if the blocking layer thickness was small compared to the sampling pitch, it caused a negligible reduction in MTF. However, the MTF was observed to decrease dramatically at spatial frequencies near the Nyquist frequency as the blocking layer thickness approached or exceeded the electrode sampling pitch. This observed reduction in MTF is shown to be consistent with predictions of an electrostatic model wherein the image charge from the a-Se is trapped at a characteristic depth within the blocking layer, generally near the interface between the blocking layer and the a-Se bulk.« less

  20. Dose dependence of radiation damage in nano-structured amorphous SiOC/crystalline Fe composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2015-10-29

    Here, through examination of radiation tolerance properties of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite to averaged damage levels, from approximately 8 to 30 displacements per atom (dpa), we demonstrated that the Fe/SiOC interface and the Fe/amorphous Fe xSi yO z interface act as efficient defect sinks and promote the recombination of vacancies and interstitials. For thick Fe/SiOC multilayers, a clear Fe/SiOC interface remained and no irradiation-induced mixing was observed even after 32 dpa. For thin Fe/SiOC multilayers, an amorphous Fe xSi yO z intermixed layer was observed to form at 8 dpa, but no further layer growth wasmore » observed for higher dpa levels.« less

  1. Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance.

    PubMed

    Xiong, Ming; Tang, Haolin; Wang, Yadong; Pan, Mu

    2014-01-30

    With the widely use in portable electronic devices and electric vehicles, the safety of lithium-ion battery has raised serious concerns, in which the thermal stability of separator plays an essential role in preventing thermal runaway reactions. The novelty of this work is to coat commercialized polyethylene (PE) separator and trilayer polypropylene/polyethylene/polypropylene (PP/PE/PP) separator with ethylcellulose (EC), a thermally stable and renewable biomass. The formation of the EC layer with high porosity is through a simple dipping and extracting process. The effects of the EC layer on thermal shrinkage, electrolyte wettability and cell performance are investigated. After coating, the thermal shrinkage of PE separator at shutdown and meltdown point is reduced from 20% to 9% and 42% to 23% respectively, while the drop of OCV under increasing temperature is also postponed from 130°C to 160°C. The electrolyte wettability of pristine trilayer PP/PE/PP separator is greatly improved, leading to increased capacity retention from 28% to 99% of the cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Synthesis and characterization of bulk metallic glasses prepared by laser direct deposition

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyang

    Fe-based and Zr-based metallic glasses have attracted extensive interest for structural applications due to their excellent glass forming ability, superior mechanical properties, unique thermal and corrosion properties. In this study, the feasibility of synthesizing metallic glasses with good ductility by laser direct deposition is explored. Both in-situ synthesis with elemental powder mixture and ex-situ synthesis with prealloyed powder are discussed. Microstructure and properties of laser direct deposited metallic glass composites are analyzed. Synthesis of Fe-Cr-Mo-W-Mn-C-Si-B metallic glass composite with a large fraction of amorphous phase was accomplished using laser direct deposition. X-ray diffraction (XRD) and transmission electron microscopy investigations revealed the existence of amorphous structure. Microstructure analyses by optical microscopy and scanning electron microscopy (SEM) indicated the periodically repeated microstructures of amorphous and crystalline phases. Partially crystallized structure brought by laser reheating and remelting during subsequent laser scans aggregated in the overlapping area between each scan. XRD analysis showed that the crystalline particle embedded in the amorphous matrix was Cr 1.07Fe18.93 phase. No significant microstructural differences were found from the first to the last layer. Microhardness of the amorphous phase (HV0.2 1591) showed a much higher value than that of the crystalline phase (HV0.2 947). Macrohardness of the top layer had a value close to the microhardness of the amorphous region. Wear resistance property of deposited layers showed a significant improvement with the increased fraction of amorphous phase. Zr65Al10Ni10Cu15 amorphous composites with a large fraction of amorphous phase were in-situ synthesized by laser direct deposition. X-ray diffraction confirmed the existence of both amorphous and crystalline phases. Laser parameters were optimized in order to increase the fraction of amorphous phase. The microstructure analysis by scanning electron microscopy revealed the deposited structure was composed of periodically repeated amorphous and crystalline phases. Overlapping regions with nanoparticles aggregated were crystallized by laser reheating and remelting processes during subsequent laser scans. Vickers microhardness of the amorphous region showed around 35% higher than that of crystalline region. Average hardness obtained by a Rockwell macrohardness tester was very close to the microhardness of the amorphous region. The compression test showed that the fracture strain of Zr65Al10Ni10Cu15 amorphous composites was enhanced from less than 2% to as high as 5.7%, compared with fully amorphous metallic glass. Differential scanning calorimetry test results further revealed the amorphous structure and glass transition temperature Tg was observed to be around 655K. In 3 mol/L NaCl solution, laser direct deposited amorphous composites exhibited distinctly improved corrosion resistance, compared with fully-crystallized samples.

  3. Rheology at the Interface and the Role of the Interphase in Reactive Functionalized Multilayer Polymers in Coextrusion Process

    NASA Astrophysics Data System (ADS)

    Lamnawar, Khalid; Maazouz, Abderrahim

    2008-07-01

    Coextrusion technologies are commonly used to produce multilayered composite sheets or films for a large range of applications from food packaging to optics. The contrast of rheological properties between layers can lead to interfacial instabilities during flow. Important theoretical and experimental advances regarding the stability of compatible and incompatible polymers have, during the last decades, been made using a mechanical approach. However, few research efforts have been dedicated to the physicochemical affinity between the neighboring layers. The present study deals with the influence of this affinity on interfacial instabilities for functionalized incompatible polymers. Polyamide (PA6)/polyethylene grafted with glycidyl methacrylate (PE-GMA) was used as a reactive system and PE/PA6 as a non reactive one. Two grades of polyamide (PA6) were used in order to change the viscosity and elasticity ratios between PE (or PE-GMA) and PA6. It was experimentally confirmed, in this case, that weak disturbance can be predicted by considering an interphase of non-zero thickness (corresponding to an interdiffusion/reaction zone) instead of a purely geometrical interface between the two reactive layers. According to the rheological investigations from previous work which the interphase effect can be probed, an experimental strategy was here formulated to optimize the process by listing the parameters that controlled the stability of the reactive multilayer flows. Hence, based on this analysis, guidelines for a stable coextrusion of reactive functionalized polymers can be provided coupling the classical parameters (viscosity, elasticity and layer ratios) and the physicochemical affinity at the polymer/polymer interface.

  4. Surface Brillouin scattering study of the surface excitations in amorphous silicon layers produced by ion bombardment

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Comins, J. D.; Every, A. G.; Stoddart, P. R.; Pang, W.; Derry, T. E.

    1998-11-01

    Thin amorphous silicon layers on crystalline silicon substrates have been produced by argon-ion bombardment of (001) silicon surfaces. Thermally induced surface excitations characteristic of this example of a soft-on-hard system have been investigated by surface Brillouin scattering (SBS) as a function of scattering-angle and amorphous-layer thickness. At large scattering angles or for sufficiently large layer thickness, a second peak is present in the SBS spectrum near the low-energy threshold for the continuum of bulk excitations of the system. The measured spectra are analyzed on the basis of surface elastodynamic Green's functions, which successfully simulate their detailed appearance and identify the second peak as either a Sezawa wave (true surface wave) or a pseudo-Sezawa wave (attenuated surface wave) depending on the scattering parameters. The attributes of the pseudo-Sezawa wave are described; these include its asymmetrical line shape and variation in intensity with k∥d (the product of the surface excitation wave vector and the layer thickness), and its emergence as the Sezawa wave from the low-energy side of the Lamb shoulder at a critical value of k∥d. Furthermore, the behavior of a pronounced minimum in the Lamb shoulder near the longitudinal wave threshold observed in the experiments is reported and is found to be in good agreement with the calculated spectra. The elastic constants of the amorphous silicon layer are determined from the velocity dispersion of the Rayleigh surface acoustic wave and the minimum in the Lamb shoulder.

  5. Miscibility of amorphous ZrO2-Al2O3 binary alloy

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Richard, O.; Bender, H.; Caymax, M.; De Gendt, S.; Heyns, M.; Young, E.; Roebben, G.; Van Der Biest, O.; Haukka, S.

    2002-04-01

    Miscibility is a key factor for maintaining the homogeneity of the amorphous structure in a ZrO2-Al2O3 binary alloy high-k dielectric layer. In the present work, a ZrO2/Al2O3 laminate thin layer has been prepared by atomic layer chemical vapor deposition on a Si (100) wafer. This layer, with artificially induced inhomogeneity (lamination), enables one to study the change in homogeneity of the amorphous phase in the ZrO2/Al2O3 system during annealing. High temperature grazing incidence x-ray diffraction (HT-XRD) was used to investigate the change in intensity of the constructive interference peak of the x-ray beams which are reflected from the interfaces of ZrO2/Al2O3 laminae. The HT-XRD spectra show that the intensity of the peak decreases with an increase in the anneal temperature, and at 800 °C, the peak disappears. The same samples were annealed by a rapid thermal process (RTP) at temperatures between 700 and 1000 °C for 60 s. Room temperature XRD of the RTP annealed samples shows a similar decrease in peak intensity. Transmission electronic microscope images confirm that the laminate structure is destroyed by RTP anneals and, just below the crystallization onset temperature, a homogeneous amorphous ZrAlxOy phase forms. The results demonstrate that the two artificially separated phases, ZrO2 and Al2O3 laminae, tend to mix into a homogeneous amorphous phase before crystallization. This observation indicates that the thermal stability of ZrO2-Al2O3 amorphous phase is suitable for high-k applications.

  6. Near single-crystalline, high-carrier-mobility silicon thin film on a polycrystalline/amorphous substrate

    DOEpatents

    Findikoglu, Alp T [Los Alamos, NM; Jia, Quanxi [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM; Matias, Vladimir [Santa Fe, NM; Choi, Woong [Los Alamos, NM

    2009-10-27

    A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.

  7. Rechargeable calcium phosphate orthodontic cement with sustained ion release and re-release

    PubMed Central

    Zhang, Ling; Weir, Michael D.; Chow, Laurence C.; Reynolds, Mark A.; Xu, Hockin H. K.

    2016-01-01

    White spot lesions (WSL) due to enamel demineralization are major complications for orthodontic treatments. Calcium phosphate (CaP) dental resins with Ca and P ion releases are promising for remineralization. However, previous Ca and P releases lasted for only weeks. Experimental orthodontic cements were developed using pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at mass ratio of 1:1 (PE); and PE plus 10% of 2-hydroxyethyl methacrylate (HEMA) and 5% of bisphenol A glycidyl dimethacrylate (BisGMA) (PEHB). Particles of amorphous calcium phosphate (ACP) were incorporated into PE and PEHB at 40% filler level. Specimens were tested for bracket-enamel shear bond strength, water sorption, CaP release, and ion recharge and re-release. PEHB+40ACP had higher bracket-enamel bond strength and ion release and rechargeability than PE+40ACP. ACP incorporation into the novel orthodontic cement did not adversely affect the bracket-enamel bond strength. Ion release and re-release from the novel ACP orthodontic cement indicated favorable release and re-release patterns. The recharged orthodontic cement could release CaP ions continuously for four weeks without further recharge. Novel rechargeable orthodontic cement containing ACP was developed with a high bracket-enamel bond strength and the ability to be repeatedly recharged to maintain long-term high levels of CaP ion releases. PMID:27808251

  8. Measurement of retinal nerve fiber layer thickness in eyes with optic disc swelling by using scanning laser polarimetry and optical coherence tomography.

    PubMed

    Hata, Masayuki; Miyamoto, Kazuaki; Oishi, Akio; Kimura, Yugo; Nakagawa, Satoko; Horii, Takahiro; Yoshimura, Nagahisa

    2014-01-01

    The retinal nerve fiber layer thickness (RNFLT) in patients with optic disc swelling of different etiologies was compared using scanning laser polarimetry (SLP) and spectral-domain optical coherence tomography (OCT). Forty-seven patients with optic disc swelling participated in the cross-sectional study. Both GDx SLP (enhanced corneal compensation) and Spectralis spectral-domain OCT measurements of RNFLT were made in 19 eyes with papilledema (PE), ten eyes with optic neuritis (ON), and 18 eyes with nonarteritic anterior ischemic optic neuropathy (NAION) at the neuro-ophthalmology clinic at Kyoto University Hospital. Differences in SLP (SLP-RNFLT) and OCT (OCT-RNFLT) measurements among different etiologies were investigated. No statistical differences in average OCT-RNFLT among PE, ON, and NAION patients were noted. Average SLP-RNFLT in NAION patients was smaller than in PE (P<0.01) or ON (P=0.02) patients. When RNFLT in each retinal quadrant was compared, no difference among etiologies was noted on OCT, but on SLP, the superior quadrant was thinner in NAION than in PE (P<0.001) or ON (P=0.001) patients. Compared with age-adjusted normative data of SLP-RNFLT, average SLP-RNFLT in PE (P<0.01) and ON (P<0.01) patients was greater. Superior SLP-RNFLT in NAION patients was smaller (P=0.026). The ratio of average SLP-RNFLT to average OCT-RNFLT was smaller in NAION than in PE (P=0.001) patients. In the setting of RNFL thickening, despite increased light retardance in PE and ON eyes, SLP revealed that NAION eyes have less retardance, possibly associated with ischemic axonal loss.

  9. Measurement of retinal nerve fiber layer thickness in eyes with optic disc swelling by using scanning laser polarimetry and optical coherence tomography

    PubMed Central

    Hata, Masayuki; Miyamoto, Kazuaki; Oishi, Akio; Kimura, Yugo; Nakagawa, Satoko; Horii, Takahiro; Yoshimura, Nagahisa

    2014-01-01

    Background The retinal nerve fiber layer thickness (RNFLT) in patients with optic disc swelling of different etiologies was compared using scanning laser polarimetry (SLP) and spectral-domain optical coherence tomography (OCT). Methods Forty-seven patients with optic disc swelling participated in the cross-sectional study. Both GDx SLP (enhanced corneal compensation) and Spectralis spectral-domain OCT measurements of RNFLT were made in 19 eyes with papilledema (PE), ten eyes with optic neuritis (ON), and 18 eyes with nonarteritic anterior ischemic optic neuropathy (NAION) at the neuro-ophthalmology clinic at Kyoto University Hospital. Differences in SLP (SLP-RNFLT) and OCT (OCT-RNFLT) measurements among different etiologies were investigated. Results No statistical differences in average OCT-RNFLT among PE, ON, and NAION patients were noted. Average SLP-RNFLT in NAION patients was smaller than in PE (P<0.01) or ON (P=0.02) patients. When RNFLT in each retinal quadrant was compared, no difference among etiologies was noted on OCT, but on SLP, the superior quadrant was thinner in NAION than in PE (P<0.001) or ON (P=0.001) patients. Compared with age-adjusted normative data of SLP-RNFLT, average SLP-RNFLT in PE (P<0.01) and ON (P<0.01) patients was greater. Superior SLP-RNFLT in NAION patients was smaller (P=0.026). The ratio of average SLP-RNFLT to average OCT-RNFLT was smaller in NAION than in PE (P=0.001) patients. Conclusion In the setting of RNFL thickening, despite increased light retardance in PE and ON eyes, SLP revealed that NAION eyes have less retardance, possibly associated with ischemic axonal loss. PMID:24379653

  10. UV Grafting Modification of Polyethylene Separator for Liion Battery

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoyuan; Li, Hua; Zhang, Zhiqiang; Chang, Hiunam; Jiang, Li; Liu, Hezhou

    Polyethylene (PE) separator was modified by UV grafting methyl acrylate (MA) and nano-SiO2 composite layer. The structure of functional group and morphology of the separator were analyzed by Fourier transform infrared spectrum (FT-IR) and scanning electron microscope (SEM). The wetting behavior and the heat resistance of the separator were also investigated by contact angle test and thermal shrinkage test respectively. The results show that MA/nano-SiO2 composite layer is successfully grafted onto the PE separator, and the addition of the DI water and butanol can make the nano-SiO2 dispersed better and lead to a microporous structure of the grafting layer. The grafted separator has a better wettability and heat resistance than the pristine one.

  11. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.

    PubMed

    Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva

    2008-11-01

    Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.

  12. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    PubMed Central

    2014-01-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101

  13. Ultrathin phase-change coatings on metals for electrothermally tunable colors

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Ayas, Sencer; Saidzoda, Tohir; Celebi, Kemal; Dana, Aykutlu

    2016-08-01

    Metal surfaces coated with ultrathin lossy dielectrics enable color generation through strong interferences in the visible spectrum. Using a phase-change thin film as the coating layer offers tuning the generated color by crystallization or re-amorphization. Here, we study the optical response of surfaces consisting of thin (5-40 nm) phase-changing Ge2Sb2Te5 (GST) films on metal, primarily Al, layers. A color scale ranging from yellow to red to blue that is obtained using different thicknesses of as-deposited amorphous GST layers turns dim gray upon annealing-induced crystallization of the GST. Moreover, when a relatively thick (>100 nm) and lossless dielectric film is introduced between the GST and Al layers, optical cavity modes are observed, offering a rich color gamut at the expense of the angle independent optical response. Finally, a color pixel structure is proposed for ultrahigh resolution (pixel size: 5 × 5 μm2), non-volatile displays, where the metal layer acting like a mirror is used as a heater element. The electrothermal simulations of such a pixel structure suggest that crystallization and re-amorphization of the GST layer using electrical pulses are possible for electrothermal color tuning.

  14. 230% room-temperature magnetoresistance in CoFeB /MgO/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Djayaprawira, David D.; Tsunekawa, Koji; Nagai, Motonobu; Maehara, Hiroki; Yamagata, Shinji; Watanabe, Naoki; Yuasa, Shinji; Suzuki, Yoshishige; Ando, Koji

    2005-02-01

    Magnetoresistance (MR) ratio up to 230% at room temperature (294% at 20 K) has been observed in spin-valve-type magnetic tunnel junctions (MTJs) using MgO tunnel barrier layer fabricated on thermally oxidized Si substrates. We found that such a high MR ratio can be obtained when the MgO barrier layer was sandwiched with amorphous CoFeB ferromagnetic electrodes. Microstructure analysis revealed that the MgO layer with (001) fiber texture was realized when the MgO layer was grown on amorphous CoFeB rather than on polycrystalline CoFe. Since there have been no theoretical studies on the MTJs with a crystalline tunnel barrier and amorphous electrodes, the detailed mechanism of the huge tunneling MR effect observed in this study is not clear at the present stage. Nevertheless, the present work is of paramount importance in realizing high-density magnetoresistive random access memory and read head for ultra high-density hard-disk drives into practical use.

  15. Bioturbation delays attenuation of DDT by clean sediment cap but promotes sequestration by thin-layered activated carbon.

    PubMed

    Lin, Diana; Cho, Yeo-Myoung; Werner, David; Luthy, Richard G

    2014-01-21

    The effects of bioturbation on the performance of attenuation by sediment deposition and activated carbon to reduce risks from DDT-contaminated sediment were assessed for DDT sediment-water flux, biouptake, and passive sampler (PE) uptake in microcosm experiments with a freshwater worm, Lumbriculus variegatus. A thin-layer of clean sediment (0.5 cm) did not reduce the DDT flux when bioturbation was present, while a thin (0.3 cm) AC cap was still capable of reducing the DDT flux by 94%. Bioturbation promoted AC sequestration by reducing the 28-day DDT biouptake (66%) and DDT uptake into PE (>99%) compared to controls. Bioturbation further promoted AC-sediment contact by mixing AC particles into underlying sediment layers, reducing PE uptake (55%) in sediment compared to the AC cap without bioturbation. To account for the observed effects from bioturbation, a mass transfer model together with a biodynamic model were developed to simulate DDT flux and biouptake, respectively, and models confirmed experimental results. Both experimental measurements and modeling predictions imply that thin-layer activated carbon placement on sediment is effective in reducing the risks from contaminated sediments in the presence of bioturbation, while natural attenuation process by clean sediment deposition may be delayed by bioturbation.

  16. Atomic mixing induced by swift heavy ion irradiation of Fe/Zr multilayers

    NASA Astrophysics Data System (ADS)

    Jaouen, C.; Michel, A.; Pacaud, J.; Dufour, C.; Bauer, Ph.; Gervais, B.

    1999-01-01

    The mechanism of ion induced mixing and phase change was studied for Fe/Zr multilayers, and specifically for the case of swift heavy ions giving rise to a very large electronic excitation of the target. The multilayers had a modulation of 7.6 nm and an overall composition Fe 69Zr 31. The Zr layers were amorphous whereas the Fe ones were crystalline (bcc) with a very strong (1 1 0) texture in the growth direction. The phase transformation and the composition changes were analysed using the structural and magnetic properties of the Fe component by means of a detailed analysis of the X-ray diffraction profiles and with the aid of backscattering Mössbauer spectroscopy. A complete mixing was observed at a fluence of 10 13 U/cm 2. Both phenomena, the dose dependence of the ion beam mixed amorphous non-magnetic phase and the quantitative evolution of the crystalline iron layer thickness, suggest that mixing occurs in a two-stage process. At an initial stage, an anisotropic diffusion of iron atoms in the amorphous zirconium layers takes place along the interface, while subsequent ion bombardment leads to a generalised transformation through the whole of the Fe layer. Finally, the implications of these observations are discussed in comparison to the plastic deformation phenomena reported for amorphous alloys.

  17. Impacts of Thermal Atomic Layer-Deposited AlN Passivation Layer on GaN-on-Si High Electron Mobility Transistors.

    PubMed

    Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei

    2016-12-01

    Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.

  18. Periodic molybdenum disc array for light trapping in amorphous silicon layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiwei; Deng, Changkai; Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai, 201210 China

    2016-05-15

    We demonstrate the light trapping effect in amorphous silicon (a-Si:H) layer by inserting a layer of periodic molybdenum disc array (MDA) between the a-Si:H layer and the quartz substrate, which forms a three-layer structure of Si/MDA/SiO{sub 2}. The MDA layer was fabricated by a new cost-effective method based on nano-imprint technology. Further light absorption enhancement was realized through altering the topography of MDA by annealing it at 700°C. The mechanism of light absorption enhancement in a-Si:H interfaced with MDA was analyzed, and the electric field distribution and light absorption curve of the different layers in the Si/MDA structure under lightmore » illumination of different wavelengths were simulated by employing numerical finite difference time domain (FDTD) solutions.« less

  19. High mobility, dual layer, c-axis aligned crystalline/amorphous IGZO thin film transistor

    NASA Astrophysics Data System (ADS)

    Chung, Chen-Yang; Zhu, Bin; Greene, Raymond G.; Thompson, Michael O.; Ast, Dieter G.

    2015-11-01

    We demonstrate a dual layer IGZO thin film transistor (TFT) consisting of a 310 °C deposited c-axis aligned crystal (CAAC) 20 nm thick channel layer capped by a second, 30 nm thick, 260 °C deposited amorphous IGZO layer. The TFT exhibits a saturation field-effect mobility of ˜20 cm2/V s, exceeding the mobility of 50 nm thick single layer reference TFTs fabricated with either material. The deposition temperature of the second layer influences the mobility of the underlying transport layer. When the cap layer is deposited at room temperature (RT), the mobility in the 310 °C deposited CAAC layer is initially low (6.7 cm2/V s), but rises continuously with time over 58 days to 20.5 cm2/V s, i.e., to the same value as when the second layer is deposited at 260 °C. This observation indicates that the two layers equilibrate at RT with a time constant on the order of 5 × 106 s. An analysis based on diffusive transport indicates that the room temperature diffusivity must be of the order of 1 × 10-18 cm2 s-1 with an activation enthalpy EA < 0.2 eV for the mobility limiting species. The findings are consistent with a hypothesis that the amorphous layer deposited on top of the CAAC has a higher solubility for impurities and/or structural defects than the underlying nanocrystalline transport layer, and that the equilibration of the mobility limiting species is rate limited by hydrogen diffusion, whose known diffusivity fits these estimates.

  20. Passivation mechanism in silicon heterojunction solar cells with intrinsic hydrogenated amorphous silicon oxide layers

    NASA Astrophysics Data System (ADS)

    Deligiannis, Dimitrios; van Vliet, Jeroen; Vasudevan, Ravi; van Swaaij, René A. C. M. M.; Zeman, Miro

    2017-02-01

    In this work, we use intrinsic hydrogenated amorphous silicon oxide layers (a-SiOx:H) with varying oxygen content (cO) but similar hydrogen content to passivate the crystalline silicon wafers. Using our deposition conditions, we obtain an effective lifetime (τeff) above 5 ms for cO ≤ 6 at. % for passivation layers with a thickness of 36 ± 2 nm. We subsequently reduce the thickness of the layers using an accurate wet etching method to ˜7 nm and deposit p- and n-type doped layers fabricating a device structure. After the deposition of the doped layers, τeff appears to be predominantly determined by the doped layers themselves and is less dependent on the cO of the a-SiOx:H layers. The results suggest that τeff is determined by the field-effect rather than by chemical passivation.

  1. Sputtered pin amorphous silicon semi-conductor device and method therefor

    DOEpatents

    Moustakas, Theodore D.; Friedman, Robert A.

    1983-11-22

    A high efficiency amorphous silicon PIN semi-conductor device is constructed by the sequential sputtering of N, I and P layers of amorphous silicon and at least one semi-transparent ohmic electrode. A method of construction produces a PIN device, exhibiting enhanced physical integrity and facilitates ease of construction in a singular vacuum system and vacuum pump down procedure.

  2. Amorphization of hard crystalline materials by electrosprayed nanodroplet impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamero-Castaño, Manuel, E-mail: mgameroc@uci.edu; Torrents, Anna; Borrajo-Pelaez, Rafael

    2014-11-07

    A beam of electrosprayed nanodroplets impacting on single-crystal silicon amorphizes a thin surface layer of a thickness comparable to the diameter of the drops. The phase transition occurs at projectile velocities exceeding a threshold, and is caused by the quenching of material melted by the impacts. This article demonstrates that the amorphization of silicon is a general phenomenon, as nanodroplets impacting at sufficient velocity also amorphize other covalently bonded crystals. In particular, we bombard single-crystal wafers of Si, Ge, GaAs, GaP, InAs, and SiC in a range of projectile velocities, and characterize the samples via electron backscatter diffraction and transmissionmore » electron microscopy to determine the aggregation state under the surface. InAs requires the lowest projectile velocity to develop an amorphous layer, followed by Ge, Si, GaAs, and GaP. SiC is the only semiconductor that remains fully crystalline, likely due to the relatively low velocities of the beamlets used in this study. The resiliency of each crystal to amorphization correlates well with the specific energy needed to melt it except for Ge, which requires projectile velocities higher than expected.« less

  3. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.

    PubMed

    Reyes Jiménez, Antonia; Klöpsch, Richard; Wagner, Ralf; Rodehorst, Uta C; Kolek, Martin; Nölle, Roman; Winter, Martin; Placke, Tobias

    2017-05-23

    The next generation of lithium ion batteries (LIBs) with increased energy density for large-scale applications, such as electric mobility, and also for small electronic devices, such as microbatteries and on-chip batteries, requires advanced electrode active materials with enhanced specific and volumetric capacities. In this regard, silicon as anode material has attracted much attention due to its high specific capacity. However, the enormous volume changes during lithiation/delithiation are still a main obstacle avoiding the broad commercial use of Si-based electrodes. In this work, Si-based thin film electrodes, prepared by magnetron sputtering, are studied. Herein, we present a sophisticated surface design and electrode structure modification by amorphous carbon layers to increase the mechanical integrity and, thus, the electrochemical performance. Therefore, the influence of amorphous C thin film layers, either deposited on top (C/Si) or incorporated between the amorphous Si thin film layers (Si/C/Si), was characterized according to their physical and electrochemical properties. The thin film electrodes were thoroughly studied by means of electrochemical impedance spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. We can show that the silicon thin film electrodes with an amorphous C layer showed a remarkably improved electrochemical performance in terms of capacity retention and Coulombic efficiency. The C layer is able to mitigate the mechanical stress during lithiation of the Si thin film by buffering the volume changes and to reduce the loss of active lithium during solid electrolyte interphase formation and cycling.

  4. Scanning electron microscopy of the surfaces of ion implanted SiC

    NASA Astrophysics Data System (ADS)

    Malherbe, Johan B.; van der Berg, N. G.; Kuhudzai, R. J.; Hlatshwayo, T. T.; Thabethe, T. T.; Odutemowo, O. S.; Theron, C. C.; Friedland, E.; Botha, A. J.; Wendler, E.

    2015-07-01

    This paper gives a brief review of radiation damage caused by particle (ions and neutrons) bombardment in SiC at different temperatures, and its annealing, with an expanded discussion on the effects occurring on the surface. The surface effects were observed using SEM (scanning electron microscopy) with an in-lens detector and EBSD (electron backscatter diffraction). Two substrates were used, viz. single crystalline 6H-SiC wafers and polycrystalline SiC, where the majority of the crystallites were 3C-SiC. The surface modification of the SiC samples by 360 keV ion bombardment was studied at temperatures below (i.e. room temperature), just at (i.e. 350 °C), or above (i.e. 600 °C) the critical temperature for amorphization of SiC. For bombardment at a temperature at about the critical temperature an extra step, viz. post-bombardment annealing, was needed to ascertain the microstructure of bombarded layer. Another aspect investigated was the effect of annealing of samples with an ion bombardment-induced amorphous layer on a 6H-SiC substrate. SEM could detect that this layer started to crystalize at 900 °C. The resulting topography exhibited a dependence on the ion species. EBSD showed that the crystallites forming in the amorphized layer were 3C-SiC and not 6H-SiC as the substrate. The investigations also pointed out the behaviour of the epitaxial regrowth of the amorphous layer from the 6H-SiC interface.

  5. Amorphous vanadium oxide coating on graphene by atomic layer deposition for stable high energy lithium ion anodes.

    PubMed

    Sun, Xiang; Zhou, Changgong; Xie, Ming; Hu, Tao; Sun, Hongtao; Xin, Guoqing; Wang, Gongkai; George, Steven M; Lian, Jie

    2014-09-21

    Uniform amorphous vanadium oxide films were coated on graphene via atomic layer deposition and the nano-composite displays an exceptional capacity of ~900 mA h g(-1) at 200 mAg(-1) with an excellent capacity retention at 1 A g(-1) after 200 cycles. The capacity contribution (1161 mA h g(-1)) from vanadium oxide only almost reaches its theoretical value.

  6. Amorphous Inorganic Electron-Selective Layers for Efficient Perovskite Solar Cells: Feasible Strategy Towards Room-Temperature Fabrication.

    PubMed

    Wang, Kai; Shi, Yantao; Li, Bo; Zhao, Liang; Wang, Wei; Wang, Xiangyuan; Bai, Xiaogong; Wang, Shufeng; Hao, Ce; Ma, Tingli

    2016-03-02

    Inorganic electron-selective layers (ESLs) are fabricated at extremely low temperatures of 70°C or even 25°C by a simple solution route. This is of great significance because the attained PCEs confirm the feasibility of room-temperature coating of inorganic amorphous ESLs through a solution method for the first time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Surface nanoporosity has a greater influence on osteogenic and bacterial cell adhesion than crystallinity and wettability

    NASA Astrophysics Data System (ADS)

    Rodriguez-Contreras, Alejandra; Guadarrama Bello, Dainelys; Nanci, Antonio

    2018-07-01

    There has been much emphasis on the influence of crystallinity and wettability for modulating cell activity, particularly for bone biomaterials. In this context, we have generated titanium oxide layers with similar mesoporous topography and surface roughness but with amorphous or crystalline oxide layers and differential wettability. We then investigated their influence on the behavior of MC3T3 osteoblastic and bacterial cells. There was no difference in cell adhesion, spreading and growth on amorphous and crystalline surfaces. The number of focal adhesions was similar, however, cells on the amorphous surface exhibited a higher frequency of mature adhesions. The crystallinity of the surface layers also had no bearing on bacterial adhesion. While it cannot be excluded that surface crystallinity, roughness and wettability contribute to some degree to determining cell behavior, our data suggest that physical characteristics of surfaces represent the major determinant.

  8. Amorphous transparent conducting oxides in context: Work function survey, trends, and facile modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, T. C.; Zhu, Q.; Buchholz, D. B.

    2015-03-01

    The work functions of various amorphous and crystalline transparent conducting oxides (TCO5) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCO5, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanismsmore » associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films.« less

  9. Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials.

    PubMed

    Huang, Yin; Shen, Yuecheng; Min, Changjun; Veronis, Georgios

    2017-10-30

    We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge 2 Sb 2 Te 5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices.

  10. Amorphous transparent conducting oxides in context: Work function survey, trends, and facile modification

    NASA Astrophysics Data System (ADS)

    Yeh, T. C.; Zhu, Q.; Buchholz, D. B.; Martinson, A. B.; Chang, R. P. H.; Mason, T. O.

    2015-03-01

    The work functions of various amorphous and crystalline transparent conducting oxides (TCOs) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCOs, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanisms associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films.

  11. Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Sungin; Kim, Jun-Rae; Kim, Seongkyung

    2016-01-15

    It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films preparedmore » by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness.« less

  12. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  13. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  14. Conformal coating of highly structured surfaces

    DOEpatents

    Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas

    2012-12-11

    Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.

  15. Solar cells with gallium phosphide/silicon heterojunction

    NASA Astrophysics Data System (ADS)

    Darnon, Maxime; Varache, Renaud; Descazeaux, Médéric; Quinci, Thomas; Martin, Mickaël; Baron, Thierry; Muñoz, Delfina

    2015-09-01

    One of the limitations of current amorphous silicon/crystalline silicon heterojunction solar cells is electrical and optical losses in the front transparent conductive oxide and amorphous silicon layers that limit the short circuit current. We propose to grow a thin (5 to 20 nm) crystalline Gallium Phosphide (GaP) by epitaxy on silicon to form a more transparent and more conducting emitter in place of the front amorphous silicon layers. We show that a transparent conducting oxide (TCO) is still necessary to laterally collect the current with thin GaP emitter. Larger contact resistance of GaP/TCO increases the series resistance compared to amorphous silicon. With the current process, losses in the IR region associated with silicon degradation during the surface preparation preceding GaP deposition counterbalance the gain from the UV region. A first cell efficiency of 9% has been obtained on ˜5×5 cm2 polished samples.

  16. CO2-Assisted Conversion of Crystal Two-Dimensional Molybdenum Oxide to Amorphism with Plasmon Resonances.

    PubMed

    Liu, Wei; Xu, Qun

    2018-04-20

    Localized surface plasmon resonances (LSPRs) of ultra-thin two-dimensional (2D) nanomaterials opened a new regime in plasmonics in the last several years. 2D plasmonic materials are yet concentrated on the crystal structure, amorphous materials are hardly reported because of their limited preparation methods rather than undesired plasmonic properties. Taking molybdenum oxides as an example, herein, we elaborate the 2D amorphous plasmons prepared with the assistance of supercritical CO2. In brief, we examine the reported characteristic plasmonic properties of molybdenum oxides, and applications of supercritical CO2 in formations of 2D layer materials as well as introduced phase and disorder engineering based on our researchs. Furthermore, we propose our perspective on the development of 2D plasmons, especially for amorphous layer materials in the future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality

    NASA Astrophysics Data System (ADS)

    Descoeudres, A.; Barraud, L.; Bartlome, R.; Choong, G.; De Wolf, Stefaan; Zicarelli, F.; Ballif, C.

    2010-11-01

    In silicon heterojunction solar cells, thin amorphous silicon layers passivate the crystalline silicon wafer surfaces. By using in situ diagnostics during plasma-enhanced chemical vapor deposition (PECVD), the authors report how the passivation quality of such layers directly relate to the plasma conditions. Good interface passivation is obtained from highly depleted silane plasmas. Based upon this finding, layers deposited in a large-area very high frequency (40.68 MHz) PECVD reactor were optimized for heterojunction solar cells, yielding aperture efficiencies up to 20.3% on 4 cm2 cells.

  18. Ab Initio Study of Interfacial Structure Transformation of Amorphous Carbon Catalyzed by Ti, Cr, and W Transition Layers.

    PubMed

    Li, Xiaowei; Li, Lei; Zhang, Dong; Wang, Aiying

    2017-11-29

    Amorphous carbon (a-C) films composited with transition layers exhibit the desirable improvement of adhesion strength between films and substrate, but the further understanding on the interfacial structure transformation of a-C structure induced by transition layers is still lacked. In this paper, using ab initio calculations, we comparatively studied the interfacial structure between Ti, Cr, or W transition layers and a-C film from the atomic scale, and demonstrated that the addition of Ti, Cr, or W catalyzed the graphitic transformation of a-C structure at different levels, which provided the theoretical guidance for designing a multilayer nanocomposite film for renewed application.

  19. Damage Tolerance and Mechanics of Interfaces in Nanostructured Metals

    NASA Astrophysics Data System (ADS)

    Foley, Daniel J.

    The concept of interface driven properties in crystalline metals has been one of the most intensely discussed topics in materials science for decades. Since the 1980s researchers have been exploring the concept of grain boundary engineering as route for tuning properties such as fracture toughness and irradiation resistance. This is especially true in ultra-fine grained and nanocrystalline materials where grain boundary mediated properties become dominant. More recently, materials composed of hierarchical nanostructures, such as amorphous-crystalline nanolaminates, have attracted considerable attention due to their favorable properties, ease of manufacture and highly tunable microstructure. While both grain boundary engineering and hierarchical nanostructures have shown promise there are still questions remaining regarding the role of specific attributes of the microstructure (such as grain boundaries, grain/layer size and inter/intralayer morphology) in determining material properties. This thesis attempts to address these questions by using atomistic simulations to perform deformation and damage loading studies on a series of nanolaminate and bicrystalline structures. During the course of this thesis the roles of layer thickness, interlayer structure and interlayer chemistry on the mechanical properties of Ni-NiX amorphous-crystalline nanolaminates were explored using atomistic simulations. This thesis found that layer thickness/thickness ratio and amorphous layer chemistry play a crucial role in yield strength and Young's modulus. Analysis of the deformation mechanisms at the atomic scale revealed that structures containing single crystalline, crystalline layers undergo plastic deformation when shear transformation zones form in the amorphous layer and impinge on the amorphous-crystalline interface, leading to dislocation emission. However, structures containing nanocrystalline, crystalline layers (both equiaxed and columnar nanocrystalline) undergo plastic deformation through a combination of grain boundary sliding and grain boundary mediated dislocation nucleation. Since grain boundaries were found to play a critical role as sources and sinks for dislocations in amorphous-crystalline nanolaminates a follow-up study on the effect of grain boundary character on damage accumulation/accommodation in copper symmetric tilt grain boundaries was performed. This study found that grain boundaries will become saturated with damage, a state where grain boundary energy and grain boundary free volume oscillate about a plateau during continuous defect loading (vacancy, interstitial and frenkel pair loading were all considered). Further, grain boundary character (specifically equilibrium grain boundary energy) was strongly correlated to the damage accommodation behavior of grain boundaries in copper. Finally, a study that attempted to link grain boundary damage saturation behavior to variations in grain boundary mechanical properties was performed. This study found no direct relationships between grain boundary damage saturation behavior and variations in grain boundary properties. The results of this thesis provide researchers with several strategies for tuning the properties of amorphous-crystalline nanolaminates. These strategies include manipulated bulk attributes such as layer thickness and morphology as well as manipulation of microscale attributes such as grain boundary engineering. Finally, this thesis provides valuable insight into the damage loading/accommodation behavior of FCC symmetric tilt grain boundaries.

  20. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  1. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  2. High conductivity a-C:N thin films prepared by electron gun evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebollo-Plata, B.; Lozada-Morales, R.; Palomino-Merino, R.

    2007-08-15

    By employing electron beam evaporation, amorphous carbon nitride (a-C:N) thin films, with a low nitrogen content ({approx} 1%), were prepared on Si(110) and glass substrates at about 150 deg. C. The source was a graphite target and an ambient of N{sub 2} was introduced into the growing chamber. The source-substrate distance (SSD) was the main parameter that was intentionally varied. Electron dispersion spectroscopy measurements indicate the nitrogen concentration in the layer as {approx} 1%. The dark electrical conductivity ({sigma}) of layers was very sensitive to SSD variation, changing up to six orders of magnitude when this parameter was varied frommore » 10.5 to 23.5 cm. A maximum value of {sigma} = 1 x 10{sup 3} {omega}{sup -1} cm{sup -1} at room temperature was obtained when the SSD was equal to 15.5 cm. We have deduced that, in accordance with the Ferrari-Robertson model (FRM), our samples are localized in the second stage of the amorphization trajectory of FRM. When the SSD increases the C atoms have more probability to collide with N{sub 2} molecules, and the content of nitrogen in the a-C film increases. The amorphization trajectory followed by the films with an SSD increase is from nanocrystalline graphite to amorphous carbon. The changes in the amorphization are due to the nitrogen content in the layers.« less

  3. Improving the photoresponse spectra of BaSi2 layers by capping with hydrogenated amorphous Si layers prepared by radio-frequency hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Xu, Zhihao; Gotoh, Kazuhiro; Deng, Tianguo; Sato, Takuma; Takabe, Ryota; Toko, Kaoru; Usami, Noritaka; Suemasu, Takashi

    2018-05-01

    We studied the surface passivation effect of hydrogenated amorphous silicon (a-Si:H) layers on BaSi2 films. a-Si:H was formed by an electron-beam evaporation of Si, and a supply of atomic hydrogen using radio-frequency plasma. Surface passivation effect was first investigated on a conventional n-Si(111) substrate by capping with 20 nm-thick a-Si:H layers, and next on a 0.5 μm-thick BaSi2 film on Si(111) by molecular beam epitaxy. The internal quantum efficiency distinctly increased by 4 times in a wide wavelength range for sample capped in situ with a 3 nm-thick a-Si:H layer compared to those capped with a pure a-Si layer.

  4. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene.

    PubMed

    Michałowski, Paweł Piotr; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-27

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp 2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 10 14 atoms cm -2 ) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  5. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene

    NASA Astrophysics Data System (ADS)

    Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-01

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  6. Fabrication of nanometer single crystal metallic CoSi2 structures on Si

    NASA Technical Reports Server (NTRS)

    Nieh, Kai-Wei (Inventor); Lin, True-Lon (Inventor); Fathauer, Robert W. (Inventor)

    1991-01-01

    Amorphous Co:Si (1:2 ratio) films are electron gun-evaporated on clean Si(111), such as in a molecular beam epitaxy system. These layers are then crystallized selectively with a focused electron beam to form very small crystalline Co/Si2 regions in an amorphous matrix. Finally, the amorphous regions are etched away selectively using plasma or chemical techniques.

  7. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution

    PubMed Central

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-01-01

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co3+/4+ ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions. PMID:26456525

  8. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution.

    PubMed

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-10-12

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co(3+/4+) ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions.

  9. Tellurium doping effect in avalanche-mode amorphous selenium photoconductive film

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-11-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a long wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.

  10. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions.

    PubMed

    Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi

    2008-04-01

    Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  11. Enhanced Cycleability of Amorphous MnO₂ by Covering on α-MnO₂ Needles in an Electrochemical Capacitor.

    PubMed

    Liu, Quanbing; Ji, Shan; Yang, Juan; Wang, Hui; Pollet, Bruno G; Wang, Rongfang

    2017-08-24

    An allomorph MnO₂@MnO₂ core-shell nanostructure was developed via a two-step aqueous reaction method. The data analysis of Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction and N₂ adsorption-desorption isotherms experiments indicated that this unique architecture consisted of a porous layer of amorphous-MnO₂ nano-sheets which were well grown onto the surface of α-MnO₂ nano-needles. Cyclic voltammetry experiments revealed that the double-layer charging and Faradaic pseudo -capacity of the MnO₂@MnO₂ capacitor electrode contributed to a specific capacitance of 150.3 F·g -1 at a current density of 0.1 A·g -1 . Long cycle life experiments on the as-prepared MnO₂@MnO₂ sample showed nearly a 99.3% retention after 5000 cycles at a current density of 2 A·g -1 . This retention value was found to be significantly higher than those reported for amorphous MnO₂-based capacitor electrodes. It was also found that the remarkable cycleability of the MnO₂@MnO₂ was due to the supporting role of α-MnO₂ nano-needle core and the outer amorphous MnO₂ layer.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasileiadis, Thomas; Department of Materials Science, University of Patras, GR-26504 Rio-Patras; Yannopoulos, Spyros N., E-mail: sny@iceht.forth.gr

    Controlled photo-induced oxidation and amorphization of elemental trigonal tellurium are achieved by laser irradiation at optical wavelengths. These processes are monitored in situ by time-resolved Raman scattering and ex situ by electron microscopies. Ultrathin TeO₂ films form on Te surfaces, as a result of irradiation, with an interface layer of amorphous Te intervening between them. It is shown that irradiation, apart from enabling the controllable transformation of bulk Te to one-dimensional nanostructures, such as Te nanotubes and hybrid core-Te/sheath-TeO₂ nanowires, causes also a series of light-driven (athermal) phase transitions involving the crystallization of the amorphous TeO₂ layers and its transformationmore » to a multiplicity of crystalline phases including the γ-, β-, and α-TeO₂ crystalline phases. The kinetics of the above photo-induced processes is investigated by Raman scattering at various laser fluences revealing exponential and non-exponential kinetics at low and high fluence, respectively. In addition, the formation of ultrathin (less than 10 nm) layers of amorphous TeO₂ offers the possibility to explore structural transitions in 2D glasses by observing changes in the short- and medium-range structural order induced by spatial confinement.« less

  13. Amorphous layer formation in Al86.0Co7.6Ce6.4 glass-forming alloy by large-area electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Li, C. L.; Murray, J. W.; Voisey, K. T.; Clare, A. T.; McCartney, D. G.

    2013-09-01

    Amorphous Al-Co-Ce alloys are of interest because of their resistance to corrosion, but high cooling rates are generally required to suppress the formation of crystalline phases. In this study, the surface of a bulk crystalline Al-Co-Ce alloy of a glass-forming composition was treated using large area electron beam (LAEB) irradiation. Scanning electron microscopy shows that, compared to the microstructure of the original crystalline material, the treated surface exhibits greatly improved microstructural and compositional uniformity. Glancing angle X-ray diffraction conducted on the surface of treated samples indicates the formation of the amorphous phase following 25 and 50 pulses at 35 kV cathode voltage. However, when the samples are treated with 100 and 150 pulses at 35 kV cathode voltage of electron beam irradiation, the treated layer comprises localised crystalline regions in an amorphous matrix. In addition, the formation of cracks in the treated layer is found to be localised around the Al8Co2Ce phase in the bulk material. Overall, crack length per unit area had no clear change with an increase in the number of pulses.

  14. Thermal conductivity measurement of amorphous dielectric multilayers for phase-change memory power reduction

    NASA Astrophysics Data System (ADS)

    Fong, S. W.; Sood, A.; Chen, L.; Kumari, N.; Asheghi, M.; Goodson, K. E.; Gibson, G. A.; Wong, H.-S. P.

    2016-07-01

    In this work, we investigate the temperature-dependent thermal conductivities of few nanometer thick alternating stacks of amorphous dielectrics, specifically SiO2/Al2O3 and SiO2/Si3N4. Experiments using steady-state Joule-heating and electrical thermometry, while using a micro-miniature refrigerator over a wide temperature range (100-500 K), show that amorphous thin-film multilayer SiO2/Si3N4 and SiO2/Al2O3 exhibit through-plane room temperature effective thermal conductivities of about 1.14 and 0.48 W/(m × K), respectively. In the case of SiO2/Al2O3, the reduced conductivity is attributed to lowered film density (7.03 → 5.44 × 1028 m-3 for SiO2 and 10.2 → 8.27 × 1028 m-3 for Al2O3) caused by atomic layer deposition of thin-films as well as a small, finite, and repeating thermal boundary resistance (TBR) of 1.5 m2 K/GW between dielectric layers. Molecular dynamics simulations reveal that vibrational mismatch between amorphous oxide layers is small, and that the TBR between layers is largely due to imperfect interfaces. Finally, the impact of using this multilayer dielectric in a dash-type phase-change memory device is studied using finite-element simulations.

  15. Protecting hydrogenation-generated oxygen vacancies in BiVO4 photoanode for enhanced water oxidation with conformal ultrathin amorphous TiO2 layer

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Zhang, Xintong; Wang, Dan; Wan, Fangxu; Liu, Yichun

    2017-05-01

    Introducing appropriate amount of oxygen vacancies by hydrogenation treatment is a simple and efficient way to improve the photoelectrochemical performance of nanostructured oxide photoanodes. However, the hydrogenation effect is often not durable due to the gradual healing of oxygen vacancies at or close to surface of photoanodes. Herein, we tackled the problem by conformal coating the hydrogenated nanoporous BiVO4 (H-BiVO4) photoanode with an ultrathin layer of amorphous TiO2. Photoelectrochemical measurements showed that a 4 nm-thick TiO2 layer could significantly improve the stability of H-BiVO4 photoanode for repeated working test, with negligible influence on the initial photocurrent compared to the uncoated one. Mott-Schottky and linear sweep voltammetry measurements showed that donor density and photocurrent density of the H-BiVO4 electrode almost decayed to the values of pristine BiVO4 electrode after 3 h test, while the amorphous TiO2-coated electrode only degraded by 6% and 5% of the initial values respectively in the same period. The investigation thus suggested that the amorphous TiO2 layer did protect the oxygen vacancies in H-BiVO4 photoanode by isolating these oxygen vacancies from environmental oxygen, while at the same time not impeding the interfacial charge transfer to water molecules due to its leaky nature.

  16. Method utilizing laser-processing for the growth of epitaxial p-n junctions

    DOEpatents

    Young, R.T.; Narayan, J.; Wood, R.F.

    1979-11-23

    This invention is a new method for the formation of epitaxial p-n junctions in silicon. The method is relatively simple, rapid, and reliable. It produces doped epitaxial layers which are of well-controlled thickness and whose electrical properties are satisfactory. An illustrative form of the method comprises co-depositing a selected dopant and amorphous silicon on a crystalline silicon substrate to form a doped layer of amorphous silicon thereon. This layer then is irradiated with at least one laser pulse to generate a melt front which moves through the layer, into the silicon body to a depth effecting melting of virginal silicon, and back to the surface of the layer. The method may be conducted with dopants (e.g., boron and phosphorus) whose distribution coefficients approximate unity.

  17. Cu(In,Ga)Se2 Solar Cells with Amorphous In2O3-Based Front Contact Layers.

    PubMed

    Koida, Takashi; Ueno, Yuko; Nishinaga, Jiro; Higuchi, Hirohumi; Takahashi, Hideki; Iioka, Masayuki; Shibata, Hajime; Niki, Shigeru

    2017-09-06

    Amorphous (a-) In 2 O 3 -based front contact layers composed of transparent conducting oxide (TCO) and transparent oxide semiconductor (TOS) layers were proved to be effective in enhancing the short-circuit current density (J sc ) of Cu(In,Ga)Se 2 (CIGS) solar cells with a glass/Mo/CIGS/CdS/TOS/TCO structure, while maintaining high fill factor (FF) and open-circuit voltage (V oc ). An n-type a-In-Ga-Zn-O layer was introduced between the CdS and TCO layers. Unlike unintentionally doped ZnO broadly used as TOS layers in CIGS solar cells, the grain-boundary(GB)-free amorphous structure of the a-In-Ga-Zn-O layers allowed high electron mobility with superior control over the carrier density (N). High FF and V oc values were achieved in solar cells containing a-In-Ga-Zn-O layers with N values broadly ranging from 2 × 10 15 to 3 × 10 18 cm -3 . The decrease in FF and V oc produced by the electronic inhomogeneity of solar cells was mitigated by controlling the series resistance within the TOS layer of CIGS solar cells. In addition, a-In 2 O 3 :H and a-In-Zn-O layers exhibited higher electron mobilities than the ZnO:Al layers conventionally used as TCO layers in CIGS solar cells. The In 2 O 3 -based layers exhibited lower free carrier absorption while maintaining similar sheet resistance than ZnO:Al. The TCO and TOS materials and their combinations did not significantly change the V oc of the CIGS solar cells and the mini-modules.

  18. Temperature-Dependent Helium Ion-Beam Mixing in an Amorphous SiOC/Crystalline Fe Composite

    DOE PAGES

    Su, Qing; Price, Lloyd; Shao, Lin; ...

    2016-10-31

    Temperature dependent He-irradiation-induced ion-beam mixing between amorphous silicon oxycarbide (SiOC) and crystalline Fe was examined with a transmission electron microscope (TEM) and via Rutherford backscattering spectrometry (RBS). The Fe marker layer (7.2 ± 0.8 nm) was placed in between two amorphous SiOC layers (200 nm). The amount of ion-beam mixing after 298, 473, 673, 873, and 1073 K irradiation was investigated. Both TEM and RBS results showed no ion-beam mixing between Fe and SiOC after 473 and 673 K irradiation and a very trivial amount of ion-beam mixing (~2 nm) after 298 K irradiation. At irradiation temperatures higher than 873more » K, the Fe marker layer broke down and RBS could no longer be used to quantitatively examine the amount of ion mixing. The results indicate that the Fe/SiOC nanocomposite is thermally stable and tends to demix in the temperature range from 473 to 673 K. For application of this composite structure at temperatures of 873 K or higher, layer stability is a key consideration.« less

  19. Priming effects and enzymatic activity in Israeli soils under treated wastewater and freshwater irrigation

    NASA Astrophysics Data System (ADS)

    Anissimova, Marina; Heinze, Stefanie; Chen, Yona; Tarchitzky, Jorge; Marschner, Bernd

    2014-05-01

    Irrigation of soils with treated wastewater (TWW) directly influences microbial processes of soil. TWW contains easily decomposable organic material, which can stimulate the activity of soil microorganisms and, as a result, lead to the excessive consumption of soil organic carbon pool. We investigated the effects of irrigation with TWW relative to those of irrigation with freshwater (FW) on the microbial parameters in soils with low (7%) and medium (13%) clay content in a lysimeter experiment. The objectives of our study were to (i) determine the impact of water quality on soil respiration and enzymatic activity influenced by clay content and depth, and (ii) work out the changes in the turnover of soil organic matter (PE, priming effects). Samples were taken from three soil depths (0-10, 10-20, and 40-60 cm). Soil respiration and PE were determined in a 21-days incubation experiment after addition of uniformly 14C-labeled fructose. Activity of 10 extracellular enzymes (EEA, from C-, N-, P-, and S-cycle), phenol oxidase and peroxidase activity (PO+PE), and dehydrogenase activity (DHA) were assayed. Microbial Community-Level Physiological Profiles (CLPP) using four substrates, and microbial biomass were determined. The results showed that the clay content acted as the main determinative factor. In the soil with low clay content the water quality had a greater impact: the highest PE (56%) was observed in the upper layer (0-10cm) under FW irrigation; EEA of C-, P-, and S-cycles was significantly higher in the upper soil layer under TWW irrigation. Microbial biomass was higher in the soil under TWW irrigation and decreased with increasing of depth (50 μg/g soil in the upper layer, 15 μg/g soil in the lowest layer). This tendency was also observed for DHA. Contrary to the low clay content, in the soil with medium clay content both irrigation types caused the highest PE in the lowest layer (65% under FW irrigation, 48% under TWW irrigation); the higher substrate mineralization (10%) and the highest phosphatase activity (in the case of FW irrigation) was observed. The PO+PE activity was two to three times higher than in the soil with low clay content and increased clearly with increasing of soil depth. The last tendency was also valid generally for the enzymes of C-, N-, and P-cycles under both types of irrigation. The upper layer in the soil under TWW irrigation was characterized by the highest microbial biomass value (74 μg/g soil). DHA in all soil depths under both types of irrigation was significantly higher than in the corresponding depths of soil with low clay content. CLPP data showed the highest consumption of ascorbic acid and D-glucosamine hydrochloride in comparison to consumption of D-glucose and L-glutamine in both irrigation types.

  20. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  1. Composite microparticles of halloysite clay nanotubes bound by calcium carbonate.

    PubMed

    Jin, Yi; Yendluri, Raghuvara; Chen, Bin; Wang, Jingbo; Lvov, Yuri

    2016-03-15

    Natural halloysite clay nanotubes with 15 nm inner and 75 nm outer diameters have been used as vehicles for sustained release of drugs in composite hollow microparticles "glued" with CaCO3. We used a layer-by layer assembly accomplished alginate binding with Ca(2+) followed by CO2 bubbling to prepare the composite microspheres of CaCO3 and polyelectrolytes (PE) modified halloysite nanotubes (HNTs-PE2/CaCO3) with the diameter of about 5-10 μm. These microparticles have empty spherical structure and abundant pore distributions with maxima at 2.5, 3.9, 6.0 and 13.3 nm, and higher surface area of 82.3 m(2) g(-1) as characterized by SEM and BET test. We loaded drugs in these micro-nano carriers of tight piles of halloysite nanotube with end clogged with CaCO3. The sustained release of Nifedipine drug from HNTs-PE2/CaCO3 composite microspheres was slower than for pristine halloysite nanotubes. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The interplay of plasma treatment and gold coating and ultra-high molecular weight polyethylene: On the cytocompatibility.

    PubMed

    Novotná, Zdenka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdenka; Hubáček, Tomáš; Ruml, Tomáš; Švorčík, Václav

    2017-02-01

    We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample. Copyright © 2016. Published by Elsevier B.V.

  3. Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material

    NASA Astrophysics Data System (ADS)

    Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk

    2011-02-01

    The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.

  4. Field induced polarization and magnetization behaviour of Gd-doped lead magnesium niobate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Adityanarayan, E-mail: apandey@rrcat.gov.in, E-mail: padityanarayan5@gmail.com; Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore – 452013; Gupta, Surya Mohan

    2016-05-23

    Both superparaelectric and superparamagnetic behaviour has been observed in rare earth magnetic ion Gd{sup 3+} doped Lead Magnesium Niobate (Gd-PMN). Field induced polarization and magnetization studies reveal hystresis loss free P-E and M-H loop at 300 K and 5 K, respectively. Temperature dependence of inverse susceptibility plot shows deviation at a temperature “t{sub d}” when fitted with the Curie-Weiss law. This deviation has been attributed to transition from paramagnetic to superparamagnetic behaviour as reported in amorphous Pd-Ni-Fe-P alloys.

  5. Thermal annealing studies of GeTe-Sb2Te3 alloys with multiple interfaces

    NASA Astrophysics Data System (ADS)

    Bragaglia, Valeria; Mio, Antonio M.; Calarco, Raffaella

    2017-08-01

    A high degree of vacancy ordering is obtained by annealing amorphous GeTe-Sb2Te3 (GST) alloys deposited on a crystalline substrate, which acts as a template for the crystallization. Under annealing the material evolves from amorphous to disordered rocksalt, to ordered rocksalt with vacancies arranged into (111) oriented layers, and finally converts into the stable trigonal phase. The role of the interface in respect to the formation of an ordered crystalline phase is studied by comparing the transformation stages of crystalline GST with and without a capping layer. The capping layer offers another crystallization interface, which harms the overall crystalline quality.

  6. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    USDA-ARS?s Scientific Manuscript database

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  7. Detection of mercury (II) ions in water by polyelectrolyte-gold nanoparticles coated long period fiber grating sensor

    NASA Astrophysics Data System (ADS)

    Tan, Shin-Yinn; Lee, Sheng-Chyan; Okazaki, Takuya; Kuramitz, Hideki; Abd-Rahman, Faidz

    2018-07-01

    This paper presents mercury (II) ions detection based on long period fiber grating (LPFG) sensor written on a single mode optical fiber by electrical arc induced technique that is suitable to be used for long term monitoring purpose. In the work, the LPFG was coated with both polyelectrolyte (PE) layers to enhance its sensitivity as well as a layer of gold nanoparticles (AuNP) for reaction to the mercury (II) ions. Experiments were conducted using double-pass configurations with mercury (II) ions concentrations varied between 0.5 ppm to 10 ppm. The results showed that the resonance wavelength of the PE-AuNP coated LPFG notch shifted to the longer wavelength, with a total shift of 1.34 nm and transmission power increment of 1.74 dBm over a period of 5 h. The results were then compared with uncoated as well as PE-only coated LPFGs, where no significant changes in resonance wavelength and transmission power were observed for these LPFGs. A novel PE-AuNP coated LPFG sensor that is suitable to be used for in-situ, long term and remote monitoring has been successfully demonstrated and tested for the detection of mercury (II) ions in water.

  8. Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer

    NASA Astrophysics Data System (ADS)

    Wei, Ying; Yao, Kai; Wang, Xiaofeng; Jiang, Yihua; Liu, Xueyuan; Zhou, Naigen; Li, Fan

    2018-01-01

    In this paper, we demonstrate the high-performance inverted planar heterojunction perovskite solar cells (PeSCs) based on the novel inorganic hole-transporting layer (HTL) of silver (Ag)-doped NiOx (Ag:NiOx). Density-functional theory (DFT) calculation reveals that Ag prefers to occupy the substitutional Ni site (AgNi) and behaves as an acceptor in NiO lattice. Compared with the pristine NiOx films, appropriate Ag doping can increase the optical transparency, work function, electrical conductivity and hole mobility of NiOx films. Moreover, the CH3NH3PbI3 perovskite films grown on Ag:NiOx exhibit better crystallinity, higher coverage and smoother surface with densely packed larger grains than those grown on the pristine NiOx film. Consequently, the Ag:NiOx HTL boosts the efficiency of the inverted planar heterojunction PeSCs from 13.46% (for the pristine NiOx-based device) to 16.86% (for the 2 at.% Ag:NiOx-based device). Furthermore, the environmental stability of PeSCs based on Ag:NiOx HTL is dramatically improved compared to devices based on organic HTLs and pristine NiOx HTLs. This work provides a simple and effective HTL material system for high-efficient and stable PeSCs.

  9. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics

    PubMed Central

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-01-01

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics. PMID:25297473

  10. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics.

    PubMed

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-10-09

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics.

  11. Amorphization and nanocrystallization of silcon under shock compression

    DOE PAGES

    Remington, B. A.; Wehrenberg, C. E.; Zhao, S.; ...

    2015-11-06

    High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energymore » changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. As a result, the nucleation of amorphization is analyzed qualitatively by classical nucleation theory.« less

  12. Effect of organic buffer layer in the electrical properties of amorphous-indium gallium zinc oxide thin film transistor.

    PubMed

    Wang, Jian-Xun; Hyung, Gun Woo; Li, Zhao-Hui; Son, Sung-Yong; Kwon, Sang Jik; Kim, Young Kwan; Cho, Eou Sik

    2012-07-01

    In this research, we reported on the fabrication of top-contact amorphous-indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with an organic buffer layer between inorganic gate dielectric and active layer in order to improve the electrical properties of devices. By inserting an organic buffer layer, it was possible to make an affirmation of the improvements in the electrical characteristics of a-IGZO TFTs such as subthreshold slope (SS), on/off current ratio (I(ON/OFF)), off-state current, and saturation field-effect mobility (muFE). The a-IGZO TFTs with the cross-linked polyvinyl alcohol (c-PVA) buffer layer exhibited the pronounced improvements of the muFE (17.4 cm2/Vs), SS (0.9 V/decade), and I(ON/OFF) (8.9 x 10(6)).

  13. Local Structure Analysis and Interface Layer Effect of Phase-Change Recording Material Using Actual Media

    NASA Astrophysics Data System (ADS)

    Nakai, Tsukasa; Yoshiki, Masahiko; Satoh, Yasuhiro; Ashida, Sumio

    2008-07-01

    The influences of the interface layer on crystal structure, the local atomic arrangement, and the electronic and chemical structure of a GeBiTe (GBT) phase-change recording material have been investigated using X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), and hard X-ray photoelectron spectroscopy (HX-PES) methods using actual rewritable high-speed HD DVD media without special sample processing. XRD results showed that the crystal structure of laser-crystallized GBT alloy in the actual HD DVD media is the same as that of GeSbTe (GST) alloy, which has a NaCl-type structure. No differences between samples with and without interface layers were found. The lattice constant of GBT is larger than that of GST. Bi increases the lattice constant of GST with respect to the Bi substitution ratio of Sb. According to HX-PES, the DOS of in the recording film amorphous state with an interface layer is closer to that of the crystalline state than the recording film without an interface layer. From XAFS results, clear differences between amorphous (Amo.) and crystalline states (Cry.) were observed. The interatomic distance of amorphous recording material is independent of the existence of an interface layer. On the other hand, the coordination number varied slightly due to the presence of the interface layer. Therefore, the electronic state of the recording layer changes because of the interface layer, although the local structure changes only slightly except for the coordination number. Combining these results, we conclude that the interface layer changes the electronic state of the recording layer and promotes crystallization, but only affects the local structure of the atomic arrangement slightly.

  14. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation

    PubMed Central

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan

    2018-01-01

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling. PMID:29642379

  15. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation.

    PubMed

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan; He, Weifeng

    2018-04-06

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.

  16. GENERALISATION OF RADIATOR DESIGN TECHNIQUES FOR PERSONAL NEUTRON DOSEMETERS BY UNFOLDING METHOD.

    PubMed

    Oda, K; Nakayama, T; Umetani, K; Kajihara, M; Yamauchi, T

    2016-09-01

    A novel technique for designing a radiator suitable for personal neutron dosemeter based on plastic track detector was discussed. A multi-layer structure has been proposed in the previous report, where the thicknesses of plural polyethylene (PE) layers and insensitive ones were determined by iterative calculations of double integral. In order to arrange this procedure and make it more systematic, unfolding calculation has been employed to estimate an ideal radiator containing an arbitrary hydrogen concentration. In the second step, realistic materials replaced it with consideration of minimisation of the layer number and commercial availability. A radiator consisting of three layers of PE, Upilex and Kapton sheets was finally designed, for which a deviation in the energy dependence between 0.1 and 20 MeV could be controlled within 18 %. An applicability of fluorescent nuclear track detector element has also been discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage.

    PubMed

    Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan

    2017-12-01

    Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Amorphous oxides as electron transport layers in Cu(In,Ga)Se 2 superstrate devices: Amorphous oxides in Cu(In,Ga)Se 2 superstrate devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; van Hest, M. F. A. M.; Contreras, M.

    Cu(In,Ga)Se2 (CIGS) solar cells in superstrate configuration promise improved light management and higher stability compared to substrate devices, but they have yet to deliver comparable power conversion efficiencies (PCEs). Chemical reactions between the CIGS layer and the front contact were shown in the past to deteriorate the p-n junction in superstrate devices, which led to lower efficiencies compared to the substrate-type devices. This work aims to solve this problem by identifying a buffer layer between the CIGS layer and the front contact, acting as the electron transport layer, with an optimized electron affinity, doping density and chemical stability. Using combinatorialmore » material exploration we identified amorphous gallium oxide (a-GaOx) as a potentially suitable buffer layer material. The best results were obtained for a-GaOx with an electron affinity that was found to be comparable to that of CIGS. Based on the results of device simulations, it is assumed that detrimental interfacial acceptor states are present at the interface between CIGS and a-GaOx. However, these initial experiments indicate the potential of a-GaOx in this application, and how to reach performance parity with substrate devices, by further increase of its n-type doping density.« less

  19. Optimization of Al2O3/TiO2/Al 2O3 Multilayer Antireflection Coating With X-Ray Scattering Techniques

    NASA Astrophysics Data System (ADS)

    Li, Chao

    Broadband multilayer antireflection coatings (ARCs) are keys to improving solar cell efficiencies. The goal of this dissertation is to optimize the multilayer Al2O3/TiO2/Al2O 3 ARC designed for a III-V space multi-junction solar cell with understanding influences of post-annealing and varying deposition parameters on the optical properties. Accurately measuring optical properties is important in accessing optical performances of ARCs. The multilayer Al2O3/TiO 2/Al2O3 ARC and individual Al2O 3 and TiO2 layers were characterized by a novel X-ray reflectivity (XRR) method and a combined method of grazing-incidence small angle X-ray scattering (GISAXS), atomic force microscopy (AFM), and XRR developed in this study. The novel XRR method combining an enhanced Fourier analysis with specular XRR simulation effectively determines layer thicknesses and surface and interface roughnesses and/or grading with sub-nanometer precision, and densities less than three percent uncertainty. Also, the combined method of GISAXS, AFM, and XRR characterizes the distribution of pore size with one-nanometer uncertainty. Unique to this method, the diffuse scattering from surface and interface roughnesses is estimated with surface parameters (root mean square roughness sigma, lateral correlation length ξ, and Hurst parameter h) obtained from AFM, and layer densities, surface grading and interface roughness/grading obtained from specular XRR. It is then separated from pore scattering. These X-ray scattering techniques obtained consistent results and were validated by other techniques including optical reflectance, spectroscopic ellipsometry (SE), glancing incidence X-ray diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy. The ARCs were deposited by atomic layer deposition with standard parameters at 200 °C. The as-deposited individual Al2O3 layer on Si is porous and amorphous as indicated by the combined methods of GISAXS, AFM, and XRR. Both post-annealing at 400 °C for 40 min in air and varying ALD parameters can eliminate pores, and lead to consistent increases in density and refractive index determined by the XRR method, SE, and optical reflectance measurements. After annealing, the layer remains amorphous. On the other hand, the as-deposited TiO 2 layer is non-porous and amorphous. It is densified and crystallized after annealing at 400 °C for 10 min in air. The multilayer Al2O 3/TiO2/Al2O3 ARC deposited on Si has surface and interface roughnesses and/or grading on the order of one nanometer. Annealing at 400 °C for 10 min in air induces densification and crystallization of the amorphous TiO2 layer as well as possible chemical reactions between TiO2 and Si diffusing from the substrate. On the other hand, Al2O3 layers remain amorphous after annealing. The thickness of the top Al2O3 layer decreases - likely due to interdiffusion between the top two layers and loss of hydrogen from hydroxyl groups initially present in the ALD layers. The thickness of the bottom Al2O3 layer increases, probably due to the diffusion of Si atoms into the bottom layer. In addition, the multilayer Al 2O3/TiO2/Al2O3 ARC was deposited on AlInP (30nm) / GaInP (100nm) / GaAs that includes the topmost layers of III-V multi-junction solar cells. Reflectance below 5 % is achieved within nearly the whole wavelength range of the current-limiting sub-cell. Also, internal scattering occurs in the TiO2 layer possibly associated with the initiated crystallization in the TiO2 layer while absent in the amorphous Al2O3 layers.

  20. Molecular dynamics simulations of Li transport between cathode crystals

    NASA Astrophysics Data System (ADS)

    Garofalini, S. H.

    The molecular dynamics (MD) computer simulation technique has been used to study the effect of an amorphous intergranular film (IGF) present in a polycrystalline cathode on Li transport. The solid electrolyte is a model lithium silicate glass while the cathode is a nanocrystalline vanadia with an amorphous V 2O 5 IGF separating the crystals. Thin (˜1 to a few nanometer thick) IGFs are known to be present in most polycrystalline oxide materials. However, the role of such a film on Li transport in oxide cathodes has not been addressed. Current scanning probe microscopy (SPM) studies have shown that the orientation of the layered nanocrystalline vanadia crystals near the cathode/solid electrolyte interface is not optimized for Li ion transport. While the precise structure of the material between the crystals has not been identified, initially it can be initially considered as likely to be a thin non-crystalline (amorphous) film. This is based on the ubiquitous presence of such a structure in other polycrystalline oxides. Also, and with more relevance to the materials used in thin film batteries, an amorphous film can be expected to form between nanocrystals that crystallized from an amorphous matrix, as would be the case in a deposited thin film cathode. Consistent with simulations of Li transport in amorphous vanadia, the current simulations show that Li ions diffuse more rapidly into the amorphous intergranular thin film than into the layered vanadia with the (0 0 1) planes parallel to the cathode/electrolyte interface.

  1. Addressing the amorphous content issue in quantitative phase analysis: the certification of NIST standard reference material 676a.

    PubMed

    Cline, James P; Von Dreele, Robert B; Winburn, Ryan; Stephens, Peter W; Filliben, James J

    2011-07-01

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum (α-Al(2)O(3)) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Under the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% ± 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.

  2. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switchingmore » using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.« less

  3. A modified spectroscopic method for the determination of the transbilayer distribution of phosphatidylethanolamine in soya-bean asolectin small unilamellar vesicles.

    PubMed Central

    Sarti, P; Molinari, A; Arancia, G; Meloni, A; Citro, G

    1995-01-01

    A spectroscopic kinetic approach for determining the relative concentrations of phosphatidylethanolamine (PE) exposed on the external and internal layers of small unilamellar vesicles (SUVs) used as a model system and prepared by sonication of purified soya-bean asolectin is proposed, based on the use of 2,4,6-trinitrobenzenesulphonic acid (TNBS) and N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP). The known reactions between PE and TNBS and/or SDPD were used, separately or in combination, to derivatize PE in preformed vesicles. We have observed that mixing SUVs with excess TNBS results in a biphasic time course. Kinetic analysis of the data supports the conclusion that external PE is rapidly derivatized (fast phase) with a half-time of 2 min. In the next (slow) phase (half-time 70 min), TNBS permeates the vesicle membrane and also reacts with PE molecules facing the internal liposomal compartment. Under the experimental conditions chosen, SPDP reacted with only the external PE molecules. The reaction of SUVs first derivatized with SPDP and then with TNBS further demonstrates that the two phases, observed with TNBS, are due to modification of external and internal PE. Approx. 30% of PE was found to be facing the external bulk phase, thus confirming the asymmetric distribution of the molecules in SUVs. The maximum number of thiol arms covalently linked by means of SPDP modification of PE on the surface of a single liposome was estimated at about 10(2). Images Figure 1 PMID:8526881

  4. A study of the polyethylene membrane used in diffusion chambers for radon gas concentration measurements

    NASA Astrophysics Data System (ADS)

    Leung, S. Y. Y.; Nikezic, D.; Leung, J. K. C.; Yu, K. N.

    2007-10-01

    Solid-state nuclear track detectors (SSNTDs) in diffusion chambers have been routinely used for long-term measurements of radon gas concentrations. In usual practice, a filter is added across the top of the diffusion chamber to stop the progeny from entering. Thoron can also be deterred from entering the diffusion chamber by using a polyethylene (PE) membrane. However, the thickness of the PE membrane is rarely specified in the literature. In this paper, we will present our experimental results for a radon exposure that the number of alpha-particle tracks registered by the LR 115 SSNTD in a Karlsruhe diffusion chamber covered with one layer of PE membrane is actually enhanced. This is explained by enhanced deposition of radon progeny on the outside surface of the PE membrane and the insufficient thickness of the PE membrane to stop the alpha particles emitted from these deposited radon progeny to reach the SSNTD. We will present the PE thickness which can stop the alpha particles emitted from the deposited radon or thoron progeny. For the "twin diffusion chambers method", one of the diffusion chambers is covered with PE membranes. The optimal number of thickness of PE membranes will be determined, which allows the largest amount of radon gas to diffuse into the diffusion chamber while at the same time screening out the largest amount of thoron gas.

  5. Study of interaction in silica glass via model potential approach

    NASA Astrophysics Data System (ADS)

    Mann, Sarita; Rani, Pooja

    2016-05-01

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.

  6. Enhanced Cycleability of Amorphous MnO2 by Covering on α-MnO2 Needles in an Electrochemical Capacitor

    PubMed Central

    Liu, Quanbing; Yang, Juan; Wang, Hui; Pollet, Bruno G.; Wang, Rongfang

    2017-01-01

    An allomorph MnO2@MnO2 core-shell nanostructure was developed via a two-step aqueous reaction method. The data analysis of Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction and N2 adsorption-desorption isotherms experiments indicated that this unique architecture consisted of a porous layer of amorphous-MnO2 nano-sheets which were well grown onto the surface of α-MnO2 nano-needles. Cyclic voltammetry experiments revealed that the double-layer charging and Faradaic pseudo-capacity of the MnO2@MnO2 capacitor electrode contributed to a specific capacitance of 150.3 F·g−1 at a current density of 0.1 A·g−1. Long cycle life experiments on the as-prepared MnO2@MnO2 sample showed nearly a 99.3% retention after 5000 cycles at a current density of 2 A·g−1. This retention value was found to be significantly higher than those reported for amorphous MnO2-based capacitor electrodes. It was also found that the remarkable cycleability of the MnO2@MnO2 was due to the supporting role of α-MnO2 nano-needle core and the outer amorphous MnO2 layer. PMID:28837099

  7. Graphene as a transparent electrode for amorphous silicon-based solar cells

    NASA Astrophysics Data System (ADS)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-06-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  8. Lag and light-transfer characteristics of amorphous selenium photoconductive film with tellurium-doped layer

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2016-07-01

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current-voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current-voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.

  9. Diffuse Reflectance Spectroscopy of Hidden Objects. Part II: Recovery of a Target Spectrum.

    PubMed

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    In this study, we consider the reconstruction of a diffuse reflectance near-infrared spectrum of an object (target spectrum) in case the object is covered by an interfering absorbing and scattering layer. Recovery is performed using a new empirical method, which was developed in our previous study. We focus on a system, which consists of several layers of polyethylene (PE) film and underlayer objects with different spectral features. The spectral contribution of the interfering layer is modeled by a three-component two-parameter multivariate curve resolution (MCR) model, which was built and calibrated using spectrally flat objects. We show that this model is applicable to real objects with non-uniform spectra. Ultimately, the target spectrum can be reconstructed from a single spectrum of the covered target. With calculation methods, we are able to recover quite accurately the spectrum of a target even when the object is covered by 0.7 mm of PE.

  10. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    PubMed

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Low-Temperature Growth of Amorphous Silicon Films and Direct Fabrication of Solar Cells on Flexible Polyimide and Photo-Paper Substrates

    NASA Astrophysics Data System (ADS)

    Madaka, Ramakrishna; Kanneboina, Venkanna; Agarwal, Pratima

    2018-05-01

    Direct deposition of hydrogenated amorphous silicon (a-Si:H) thin films and fabrication of solar cells on polyimide (PI) and photo-paper (PP) substrates using a rf-plasma-enhanced chemical vapor deposition technique is reported. Intrinsic amorphous silicon films were deposited on PI and PP substrates by varying the substrate temperature (T s) over 70-150°C to optimize the deposition parameters for best quality films. The films deposited on both PI and PP substrates at a temperature as low as 70°C showed a photosensitivity (σ ph/σ d) of nearly 4 orders of magnitude which increased to 5-6 orders of magnitude when the substrate temperature was increased to 130-150°C. The increase in σ ph/σ d is due to the presence of a few nanometer-sized crystallites embedded in the film. Solar cells (n-i-p) were fabricated directly on PI, PP and Corning 1737 glass (Corning) at 150°C for different thicknesses of an intrinsic amorphous silicon layer (i-layer). With the increase in i-layer thickness from 330 nm to 700 nm, the solar cell efficiency was found to increase from 3.81% to 5.02% on the Corning substrate whereas on the flexible PI substrate an increase from 3.38% to 4.38% was observed. On the other hand, in the case of cells on PP, the i-layer thickness was varied from 200 nm to 700 nm and the best cell efficiency 1.54% was obtained for the 200-nm-thick i-layer. The fabrication of a-Si (n-i-p) solar cells on photo-paper is presented for the first time.

  12. Improving corn silage quality in the top layer of farm bunker silos through the use of a next-generation barrier film with high impermeability to oxygen.

    PubMed

    Borreani, G; Tabacco, E

    2014-01-01

    This study examined the effect on the fermentation, chemical, and microbiological quality of corn silage covered with a new-generation high oxygen barrier film (HOB) made with a special grade of ethylene-vinyl alcohol (EVOH) compared with a standard polyethylene film (PE). Two bunkers (farms 1 and 2) were divided into 2 parts lengthwise so that half of the silo would be covered with PE film and the other with HOB film. Plastic net bags with fresh chopped corn were buried in the upper layer (close to and far from the wall) and in the central part of the bunkers. During spring-summer consumption, the bags were unloaded, weighed, and subsampled to analyze the dry matter (DM) content, neutral detergent fiber and starch contents, pH, lactic and monocarboxylic acids, yeast and mold counts, aerobic and anaerobic spore-former counts, and aerobic stability. We also determined the economic benefit of applying the novel covering. The top layer of silage conserved under the HOB film had a higher lactic acid content and lower pH; lower counts of yeasts, molds, and aerobic and anaerobic spore-formers; higher aerobic stability; and lower DM losses than the silage conserved under the PE film. The use of the HOB film prevented almost all of the silage in the upper layer from spoiling; only 2 out of 32 samples had a mold count >6log10 cfu/g. This led to a net economic gain when the HOB film was used on both farms due to the increased DM recovery and reduced labor time required to clean the upper layer, even though the HOB film cost about 2.3 times more than the PE film. Furthermore, use of the HOB film, which ensures a longer shelf life of silage during consumption, reduced the detrimental effect of yeasts, molds, and aerobic and anaerobic spore-formers on the nutritional and microbiological quality of the unloaded silage. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melánová, Klára, E-mail: klara.melanova@upce.cz; Beneš, Ludvík; Trchová, Miroslava

    2013-06-15

    A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparationmore » of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate. - Graphical abstract: Ester and amide derivatives of layered titanium carboxymethylphosphonate were prepared by solvothermal treatment of amorphous solid with alkanol or alkylamine. - Highlights: • Ester and amide derivatives of titanium carboxymethylphosphonate. • Solvothermal treatment of amorphous solid with alkanol or alkylamine. • Ester and amide formation confirmed by IR spectroscopy.« less

  14. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode.

    PubMed

    Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin

    2017-02-24

    We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films.

  15. Broadband wavelength conversion in hydrogenated amorphous silicon waveguide with silicon nitride layer

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun

    2018-01-01

    Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.

  16. Electrical and structural characterization of IZO (indium oxide-zinc oxide) thin films for device applications

    NASA Astrophysics Data System (ADS)

    Yaglioglu, Burag

    Materials for oxide-based transparent electronics have been recently reported in the literature. These materials include various amorphous and crystalline compounds based on multi-component oxides and many of them offer useful combinations of transparency, controllable carrier concentrations, and reasonable n-carrier mobility. In this thesis, the properties of amorphous and crystalline In2O3-10wt%ZnO, IZO, thin films were investigated for their potential use in oxide electronics. The room temperature deposition of this material using DC magnetron sputtering results in the formation of amorphous films. Annealing amorphous IZO films at 500°C in air produces a previously unknown crystalline compound. Using electron diffraction experiments, it is reported that the crystal structure of this compound is based on the high-pressure rhombohedral phase of In2O3. Electrical properties of different phases of IZO were explored and it was concluded that amorphous films offer most promising characteristics for device applications. Therefore, thin film transistors (TFT) were fabricated based on amorphous IZO films where both the channel and metallization layers were deposited from the same target. The carrier densities in the channel and source-drain layers were adjusted by changing the oxygen content in the sputter chamber during deposition. The resulting transistors operate as depletion mode n-channel field effect devices with high saturation mobilities.

  17. Wide-angle light-trapping electrode for photovoltaic cells.

    PubMed

    Omelyanovich, Mikhail M; Simovski, Constantin R

    2017-10-01

    In this Letter, we experimentally show that a submicron layer of a transparent conducting oxide that may serve a top electrode of a photovoltaic cell based on amorphous silicon when properly patterned by notches becomes an efficient light-trapping structure. This is so for amorphous silicon thin-film solar cells with properly chosen thicknesses of the active layers (p-i-n structure with optimal thicknesses of intrinsic and doped layers). The nanopatterned layer of transparent conducting oxide reduces both the light reflectance from the photovoltaic cell and transmittance through the photovoltaic layers for normal incidence and for all incidence angles. We explain the physical mechanism of our light-trapping effect, prove that this mechanism is realized in our structure, and show that the nanopatterning is achievable in a rather easy and affordable way that makes our method of solar cell enhancement attractive for industrial adaptations.

  18. Photoluminescence enhancement through vertical stacking of defect-engineered Ge on Si quantum dots

    NASA Astrophysics Data System (ADS)

    Groiss, Heiko; Spindlberger, Lukas; Oberhumer, Peter; Schäffler, Friedrich; Fromherz, Thomas; Grydlik, Martyna; Brehm, Moritz

    2017-02-01

    In this work, we show that the room-temperature photoluminescence intensity from Ge ion-bombarded (GIB) epitaxial Ge on Si quantum dots (QD) can be improved by their vertical stacking. We stress that the growth of GIB-QD multilayers is more demanding compared to all-crystalline epitaxial QDs, as a consequence of local amorphous regions within the GIB-QDs required during their genesis. We show that in spite of those amorphous regions, for accurately chosen growth temperatures of the Si spacer layers separating the GIB-QD layers, multiple GIB-QD layers can be stacked without detrimental break-down of epitaxial growth. Compared to a single GIB-QD layer, we observe a 650% increase in PL intensity for an eleven-layer GIB-QD stack, indicating that such multilayers are promising candidates as gain material for all-group-IV nano-photonic lasers.

  19. Improved Mobility and Bias Stability of Thin Film Transistors Using the Double-Layer a-InGaZnO/a-InGaZnO:N Channel.

    PubMed

    Yu, H; Zhang, L; Li, X H; Xu, H Y; Liu, Y C

    2016-04-01

    The amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) were demonstrated based on a double-layer channel structure, where the channel is composed of an ultrathin nitro-genated a-IGZO (a-IGZO:N) layer and an undoped a-IGZO layer. The double-layer channel device showed higher saturation mobility and lower threshold-voltage shift (5.74 cm2/Vs, 2.6 V) compared to its single-layer counterpart (0.17 cm2/Vs, 7.23 V). The improvement can be attributed to three aspects: (1) improved carrier transport properties of the channel by the a-IGZO:N layer with high carrier mobility and the a-IGZO layer with high carrier concentration, (2) reduced interfacial trap density between the active channel and the gate insulator, and (3) higher surface flatness of the double-layer channel. Our study reveals key insights into double-layer channel, involving selecting more suitable electrical property for back-channel layer and more suitable interface modification for active layer. Meanwhile, room temperature fabrication amorphous TFTs offer certain advantages on better flexibility and higher uniformity over a large area.

  20. Diffusion barrier properties of single- and multilayered quasi-amorphous tantalum nitride thin films against copper penetration

    NASA Astrophysics Data System (ADS)

    Chen, G. S.; Chen, S. T.

    2000-06-01

    Tantalum-related thin films containing different amounts of nitrogen are sputter deposited at different argon-to-nitrogen flow rate ratios on (100) silicon substrates. Using x-ray diffractometry, transmission electron microscopy, composition and resistivity analyses, and bending-beam stress measurement technique, this work examines the impact of varying the nitrogen flow rate, particularly on the crystal structure, composition, resistivity, and residual intrinsic stress of the deposited Ta2N thin films. With an adequate amount of controlled, reactive nitrogen in the sputtering gas, thin films of the tantalum nitride of nominal formula Ta2N are predominantly amorphous and can exist over a range of nitrogen concentrations slightly deviated from stoichiometry. The single-layered quasi-amorphous Ta2N (a-Ta2N) thin films yield intrinsic compressive stresses in the range 3-5 GPa. In addition, the use of the 40-nm-thick a-Ta2N thin films with different nitrogen atomic concentrations (33% and 36%) and layering designs as diffusion barriers between silicon and copper are also evaluated. When subjected to high-temperature annealing, the single-layered a-Ta2N barrier layers degrade primarily by an amorphous-to-crystalline transition of the barrier layers. Crystallization of the single-layered stoichiometric a-Ta2N (Ta67N33) diffusion barriers occurs at temperatures as low as 450 °C. Doing so allows copper to preferentially penetrate through the grain boundaries or thermal-induced microcracks of the crystallized barriers and react with silicon, sequentially forming {111}-facetted pyramidal Cu3Si precipitates and TaSi2 Overdoping nitrogen into the amorphous matrix can dramatically increase the crystallization temperature to 600 °C. This temperature increase slows down the inward diffusion of copper and delays the formation of both silicides. The nitrogen overdoped Ta2N (Ta64N36) diffusion barriers can thus be significantly enhanced so as to yield a failure temperature 100 °C greater than that of the Ta67N33 diffusion barriers. Moreover, multilayered films, formed by alternately stacking the Ta67N33 and Ta64N36 layers with an optimized bilayer thickness (λ) of 10 nm, can dramatically reduce the intrinsic compressive stress to only 0.7 GPa and undergo high-temperature annealing without crystallization. Therefore, the Ta67N33/Ta64N36 multilayered films exhibit a much better barrier performance than the highly crystallization-resistant Ta64N36 single-layered films.

  1. Recalibration of the Palaeocene-Eocene boundary (P-E) using high precision U-Pb and Ar-Ar isotopic dating

    NASA Astrophysics Data System (ADS)

    Chambers, L.; Pringle, M.; Fitton, G.; Larsen, L. M.; Pedersen, A. K.; Parrish, R.

    2003-04-01

    In the current time scales (Cande and Kent, 95; Berggren et al, 95) the P-E Boundary is positioned at 55 Ma based primarily on the age of the -17 ash layer in Denmark. In the absence of a global stratigraphic section and point the boundary is an interval of 1 m.y. from 55.5 to 54.5 Ma that includes all of the different means of calibrating the boundary tie point, including the NP9/NP10 calcareous nannofossil zonal boundary, the planktonic foraminiferal P5/P6a zonal boundary, preliminary ages for the -17 and +19 ash layers (unpub.), the base of the London Clay Formation, and the δ13C spike. Here we present new Ar-Ar ages for the -17 and +19 ash layers in Denmark and combine this study with a calibration of the Ar-Ar with the U-Pb method. As Ar-Ar ages are relative to the known age of a standard or monitor, U-Pb ages on zircons from the same rocks from the British Tertiary Igneous Province provide an absolute age calibration for all of our Ar-Ar ages (including the monitors). An additional complication arises because the time scale is currently being revised (J. Ogg, Pers. Comm.). In the new time scale the P-E boundary will stay at 55 Ma and the K-T boundary will move by 0.5 m.y. to 65.5 Ma. Our results have a direct impact on the positioning of the P-E Boundary relative to the K-T boundary as definitive K-T tektite is used as one of our Ar-Ar standards. Ar-Ar ages and U-Pb ages for the same sample from the BTIP are indistinguishable when the ages used for the Ar-Ar monitor minerals are those recommended in Renne et al (98). This means that the K-T tektite is 65.78 ± 0.03 Ma, the -17 ash is 54.52 ± 0.05Ma, and the +19 ash is 54.04 ± 0.14 Ma. If the P-E boundary is taken to be between the -17 and +19 ash layers, as in DSDP Hole 550 (the ashes bracket the planktonic foraminiferal P5/P6a zonal boundary) then the current position at 55 Ma is too old. We therefore suggest that if the K-T boundary moves to 65.5 Ma, then the P-E boundary should not stay at 55 Ma, but move to 54.5 Ma (extending the Palaeocene by 1 m.y.). If the K-T boundary does not move by 0.5 m.y. then the P-E boundary would still have to move from its current position at 55 Ma and the ages used for the argon monitor minerals revised.

  2. High Infrared Blocking Cellulose Film Based on Amorphous to Anatase Transition of TiO2 via Atomic Layer Deposition.

    PubMed

    Li, Wenbin; Li, Linfeng; Wu, Xi; Li, Junyu; Jiang, Lang; Yang, Hongjun; Ke, Guizhen; Cao, Genyang; Deng, Bo; Xu, Weilin

    2018-06-27

    A high IR-blocking cellulose film was designed based on an amorphous to anatase transition of TiO 2 using atomic layer deposition (ALD). This transition was realized at 250 °C, at which the cellulose is thermal stable. Optimized ALD condition of 250 °C and 1200 cycles give us an excellent heat insulator, which could significantly reduce the enclosed space temperature from 59.2 to 51.9 °C after exposure to IR lamp for 5 min.

  3. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  4. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    USDA-ARS?s Scientific Manuscript database

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  5. Alternating current electroosmotic flow in polyelectrolyte-grafted nanochannel.

    PubMed

    Li, Fengqin; Jian, Yongjun; Chang, Long; Zhao, Guangpu; Yang, Liangui

    2016-11-01

    In this work, we investigate the time periodic electroosmotic flow (EOF) of an electrolyte solution through a slit polyelectrolyte-grafted (PE-grafted) nanochannel under applied alternating current (AC) electrical field. The PE-grafted nanochannel is represented by a rigid surface covered by a polyelectrolyte layer (PEL) in a brush-like configuration. Under Debye-Hückel approximation, we obtain analytical solutions of electrical potential in decoupled regime of PE-grafted nanochannel, where the thickness of PEL is independent of the electrostatic effects triggered by polyelectrolyte charges. Based upon the electrical potential obtained above, we calculate EOF velocities with uniform and non-uniform drag coefficients for PE-grafted nanochannel and compare their results. The effects of pertinent dimensionless parameters on EOF velocity amplitude are discussed in detail. Moreover, the amplitude of EOF velocity in a PE-grafted nanochannel is compared with that in a rigid one. It is shown that larger EOF velocity and volume flow rate are found for a PE-grafted nanochannel. In addition, AC EOF velocity is further investigated. The oscillation of velocity reduces and is restricted within the region near the PEL-electrolyte interface for higher oscillating Reynolds number Re. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Helmholtz and parabolic equation solutions to a benchmark problem in ocean acoustics.

    PubMed

    Larsson, Elisabeth; Abrahamsson, Leif

    2003-05-01

    The Helmholtz equation (HE) describes wave propagation in applications such as acoustics and electromagnetics. For realistic problems, solving the HE is often too expensive. Instead, approximations like the parabolic wave equation (PE) are used. For low-frequency shallow-water environments, one persistent problem is to assess the accuracy of the PE model. In this work, a recently developed HE solver that can handle a smoothly varying bathymetry, variable material properties, and layered materials, is used for an investigation of the errors in PE solutions. In the HE solver, a preconditioned Krylov subspace method is applied to the discretized equations. The preconditioner combines domain decomposition and fast transform techniques. A benchmark problem with upslope-downslope propagation over a penetrable lossy seamount is solved. The numerical experiments show that, for the same bathymetry, a soft and slow bottom gives very similar HE and PE solutions, whereas the PE model is far from accurate for a hard and fast bottom. A first attempt to estimate the error is made by computing the relative deviation from the energy balance for the PE solution. This measure gives an indication of the magnitude of the error, but cannot be used as a strict error bound.

  7. Direct-patterned optical waveguides on amorphous silicon films

    DOEpatents

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  8. Impact ejecta at the Paleocene-Eocene boundary.

    PubMed

    Schaller, Morgan F; Fung, Megan K; Wright, James D; Katz, Miriam E; Kent, Dennis V

    2016-10-14

    Extraterrestrial impacts have left a substantial imprint on the climate and evolutionary history of Earth. A rapid carbon cycle perturbation and global warming event about 56 million years ago at the Paleocene-Eocene (P-E) boundary (the Paleocene-Eocene Thermal Maximum) was accompanied by rapid expansions of mammals and terrestrial plants and extinctions of deep-sea benthic organisms. Here, we report the discovery of silicate glass spherules in a discrete stratigraphic layer from three marine P-E boundary sections on the Atlantic margin. Distinct characteristics identify the spherules as microtektites and microkrystites, indicating that an extraterrestrial impact occurred during the carbon isotope excursion at the P-E boundary. Copyright © 2016, American Association for the Advancement of Science.

  9. Atomistic modeling of crystal-to-amorphous transition and associated kinetics in the Ni-Nb system by molecular dynamics simulations.

    PubMed

    Dai, X D; Li, J H; Liu, B X

    2005-03-17

    With the aid of ab initio calculations, an n-body potential of the Ni-Nb system is constructed under the Finnis-Sinclair formalism and the constructed potential is capable of not only reproducing some static physical properties but also revealing the atomistic mechanism of crystal-to-amorphous transition and associated kinetics. With application of the constructed potential, molecular dynamics simulations using the solid solution models reveal that the physical origin of crystal-to-amorphous transition is the crystalline lattice collapsing while the solute atoms are exceeding the critical solid solubilities, which are determined to be 19 atom % Ni and 13 atom % Nb for the Nb- and Ni-based solid solutions, respectively. It follows that an intrinsic glass-forming ability of the Ni-Nb system is within 19-87 atom % Ni, which matches well with that observed in ion beam mixing/solid-state reaction experiments. Simulations using the Nb/Ni/Nb (Ni/Nb/Ni) sandwich models indicate that the amorphous layer at the interfaces grows in a layer-by-layer mode and that, upon dissolving solute atoms, the Ni lattice approaches and exceeds its critical solid solubility faster than the Nb lattice, revealing an asymmetric behavior in growth kinetics. Moreover, an energy diagram is obtained by computing the energetic sequence of the Ni(x)Nb(100)(-)(x) alloy in fcc, bcc, and amorphous structures, respectively, over the entire composition range, and the diagram could serve as a guide for predicting the metastable alloy formation in the Ni-Nb system.

  10. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  11. Effect of hydrogen on the device performance and stability characteristics of amorphous InGaZnO thin-film transistors with a SiO2/SiNx/SiO2 buffer

    NASA Astrophysics Data System (ADS)

    Han, Ki-Lim; Ok, Kyung-Chul; Cho, Hyeon-Su; Oh, Saeroonter; Park, Jin-Seong

    2017-08-01

    We investigate the influence of the multi-layered buffer consisting of SiO2/SiNx/SiO2 on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). The multi-layered buffer inhibits permeation of water from flexible plastic substrates and prevents degradation of overlying organic layers. The a-IGZO TFTs with a multi-layered buffer suffer less positive bias temperature stress instability compared to the device with a single SiO2 buffer layer after annealing at 250 °C. Hydrogen from the SiNx layer diffuses into the active layer and reduces electron trapping at loosely bound oxygen defects near the SiO2/a-IGZO interface. Quantitative analysis shows that a hydrogen density of 1.85 × 1021 cm-3 is beneficial to reliability. However, the multi-layered buffer device annealed at 350 °C resulted in conductive characteristics due to the excess carrier concentration from the higher hydrogen density of 2.12 × 1021 cm-3.

  12. Flower-like ZnO nanorod arrays grown on HF-etched Si (111): constraining relation between ZnO seed layer and Si (111)

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Liu, C.-W.; Huang, R.-J.; Chang, S.-J.; Lo, K.-Y.

    2015-11-01

    We demonstrate the formation of self-assembled homogenous flower-like ZnO nanorods over a ZnO seed layer deposited on a HF-etched Si (111) substrate. The typical flower-like morphology of ZnO nanorod arrays is ascribed to the formation of the island-like seed layer which is deposited by the drop method followed by annealing at 300 °C. The island-like ZnO seed layer consists of larger ZnO grains, and is built by constraining of the Si (111) surface due to pattern matching. Pattern matching of Si with ZnO determines the shape and size of the seed layer and this controls the final morphology of ZnO nanorods to be either flower like or vertically aligned. The high quality of the island-like ZnO seed layer enhances the diameter and length of ZnO nanorods. Besides, while the amorphous layer formed during the annealing process would influence the strained ZnO grain, that subsequent amorphous layer will not block the constraining between the ZnO grain and the substrate.

  13. Development of Pinhole-Free Amorphous Aluminum Oxide Protective Layers for Biomedical Device Applications

    PubMed Central

    Litvinov, Julia; Wang, Yi-Ju; George, Jinnie; Chinwangso, Pawilai; Brankovic, Stanko; Willson, Richard C.; Litvinov, Dmitri

    2013-01-01

    This paper describes synthesis of ultrathin pinhole-free insulating aluminum oxide layers for electronic device protection in corrosive liquid environments, such as phosphate buffered saline (PBS) or clinical fluids, to enable emerging biomedical applications such as biomolecular sensors. A pinhole-free 25-nm thick amorphous aluminum oxide layer has been achieved using ultra-high vacuum DC magnetron reactive sputtering of aluminum in oxygen/argon plasma followed by oxygen plasma post-processing. Deposition parameters were optimized to achieve the best corrosion protection of lithographically defined device structures. Electrochemical deposition of copper through the aluminum oxide layers was used to detect the presence (or absence) of pinholes. FTIR, XPS, and spectroscopic ellipsometry were used to characterize the material properties of the protective layers. Electrical resistance of the copper device structures protected by the aluminum oxide layers and exposed to a PBS solution was used as a metric to evaluate the long-term stability of these device structures. PMID:23682201

  14. Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kizu, Takio, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Tsukagoshi, Kazuhito, E-mail: KIZU.Takio@nims.go.jp, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya

    We fabricated homogeneous double-layer amorphous Si-doped indium oxide (ISO) thin-film transistors (TFTs) with an insulating ISO cap layer on top of a semiconducting ISO bottom channel layer. The homogeneously stacked ISO TFT exhibited high mobility (19.6 cm{sup 2}/V s) and normally-off characteristics after annealing in air. It exhibited normally-off characteristics because the ISO insulator suppressed oxygen desorption, which suppressed the formation of oxygen vacancies (V{sub O}) in the semiconducting ISO. Furthermore, we investigated the recovery of the double-layer ISO TFT, after a large negative shift in turn-on voltage caused by hydrogen annealing, by treating it with annealing in ozone. The recoverymore » in turn-on voltage indicates that the dense V{sub O} in the semiconducting ISO can be partially filled through the insulator ISO. Controlling molecule penetration in the homogeneous double layer is useful for adjusting the properties of TFTs in advanced oxide electronics.« less

  15. Addressing the amorphous content issue in quantitative phase analysis : the certification of NIST SRM 676a.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cline, J. P.; Von Dreele, R. B.; Winburn, R.

    2011-07-01

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum ({alpha}-Al{sub 2}O{sub 3}) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Undermore » the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% {+-} 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.« less

  16. Addressing the Amorphous Content Issue in Quantitative Phase Analysis: The Certification of NIST Standard Reference Material 676a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Cline; R Von Dreele; R Winburn

    2011-12-31

    A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum ({alpha}-Al{sub 2}O{sub 3}) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Undermore » the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% {+-} 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.« less

  17. Annealing induced structural changes in amorphous Co{sub 23}Fe{sub 60}B{sub 17} film on Mo buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, Jagrati, E-mail: jdwivedi.phy@gmail.com; Mishra, Ashutosh; Gupta, Ranjeeta

    2016-05-23

    Structural changes occurring in a thin amorphous Co{sub 23}Fe{sub 60}B{sub 17} film sandwiched between two Mo layers, as a function of thermal annealing has been studied. Thermal stability of the Co{sub 23}Fe{sub 60}B{sub 17} film is found to be significantly lower than the bulk ribbons. SIMS measurements show that during crystallization, boron which is expelled out of the crystallites, has a tendency to move towards the surface. No significant diffusion of boron in Mo buffer layer is observed. This result is in contrast with some earlier studies where it was proposed that the role of buffer layer of refractory metalmore » is to absorb boron which is expelled out of the bcc FeCo phase during crystallization.« less

  18. An approach to tune the amplitude of surface ripple patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Tanuj; Kanjilal, D.; Kumar, Ashish

    An approach is presented to tune the amplitude of ripple patterns using ion beam. By varying the depth location of amorphous/crystalline interface, ripple patterns of different amplitude with similar wavelength were grown on the surface of Si (100) using 50 keV Ar{sup +} beam irradiation. Atomic force microscopy study demonstrates the tuning of amplitude of ripples patterns for wide range. Rutherford backscattering channeling measurement was performed to measure the depth location of amorphous/crystalline interface. It is postulated that the ion beam stimulated solid flow inside the amorphous layer controls the wavelength, whereas mass rearrangement at amorphous/crystalline interface controls the amplitude.

  19. Layered CU-based electrode for high-dielectric constant oxide thin film-based devices

    DOEpatents

    Auciello, Orlando

    2010-05-11

    A layered device including a substrate; an adhering layer thereon. An electrical conducting layer such as copper is deposited on the adhering layer and then a barrier layer of an amorphous oxide of TiAl followed by a high dielectric layer are deposited to form one or more of an electrical device such as a capacitor or a transistor or MEMS and/or a magnetic device.

  20. Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors.

    PubMed

    Cho, Kyung-Sang; Heo, Keun; Baik, Chan-Wook; Choi, Jun Young; Jeong, Heejeong; Hwang, Sungwoo; Lee, Sang Yeol

    2017-10-10

    We report color-selective photodetection from intermediate, monolayered, quantum dots buried in between amorphous-oxide semiconductors. The proposed active channel in phototransistors is a hybrid configuration of oxide-quantum dot-oxide layers, where the gate-tunable electrical property of silicon-doped, indium-zinc-oxide layers is incorporated with the color-selective properties of quantum dots. A remarkably high detectivity (8.1 × 10 13 Jones) is obtained, along with three major findings: fast charge separation in monolayered quantum dots; efficient charge transport through high-mobility oxide layers (20 cm 2  V -1  s -1 ); and gate-tunable drain-current modulation. Particularly, the fast charge separation rate of 3.3 ns -1 measured with time-resolved photoluminescence is attributed to the intermediate quantum dots buried in oxide layers. These results facilitate the realization of efficient color-selective detection exhibiting a photoconductive gain of 10 7 , obtained using a room-temperature deposition of oxide layers and a solution process of quantum dots. This work offers promising opportunities in emerging applications for color detection with sensitivity, transparency, and flexibility.The development of highly sensitive photodetectors is important for image sensing and optical communication applications. Cho et al., report ultra-sensitive photodetectors based on monolayered quantum dots buried in between amorphous-oxide semiconductors and demonstrate color-detecting logic gates.

  1. Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors

    PubMed Central

    Ning, Honglong; Chen, Jianqiu; Fang, Zhiqiang; Tao, Ruiqiang; Cai, Wei; Yao, Rihui; Hu, Shiben; Zhu, Zhennan; Zhou, Yicong; Yang, Caigui; Peng, Junbiao

    2017-01-01

    Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium–gallium–zinc–oxide (a-IGZO) TFTs with good electrical performance. In this paper, silver (Ag) source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm2·V−1·s−1 and an on/off current ratio of over 105. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance. PMID:28772410

  2. Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors.

    PubMed

    Ning, Honglong; Chen, Jianqiu; Fang, Zhiqiang; Tao, Ruiqiang; Cai, Wei; Yao, Rihui; Hu, Shiben; Zhu, Zhennan; Zhou, Yicong; Yang, Caigui; Peng, Junbiao

    2017-01-10

    Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs with good electrical performance. In this paper, silver (Ag) source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm²·V -1 ·s -1 and an on/off current ratio of over 10⁵. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance.

  3. Amorphous silicon as high index photonic material

    NASA Astrophysics Data System (ADS)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  4. Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes.

    PubMed

    Zeng, Zhenping; Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2015-10-28

    Inspired by nature, functionalized nanopores with biomimetic structures have attracted growing interests in using them as novel platforms for applications of regulating ion and nanoparticle transport. To improve these emerging applications, we study theoretically for the first time the ion transport and selectivity in short nanopores functionalized with pH tunable, zwitterionic polyelectrolyte (PE) brushes. In addition to background salt ions, the study takes into account the presence of H(+) and OH(-) ions along with the chemistry reactions between functional groups on PE chains and protons. Due to ion concentration polarization, the charge density of PE layers is not homogeneously distributed and depends significantly on the background salt concentration, pH, grafting density of PE chains, and applied voltage bias, thereby resulting in many interesting and unexpected ion transport phenomena in the nanopore. For example, the ion selectivity of the biomimetic nanopore can be regulated from anion-selective (cation-selective) to cation-selective (anion-selective) by diminishing (raising) the solution pH when a sufficiently small grafting density of PE chains, large voltage bias, and low background salt concentration are applied.

  5. Partial to complete wetting transitions in immiscible ternary blends with PLA: the influence of interfacial confinement.

    PubMed

    Zolali, Ali M; Favis, Basil D

    2017-04-12

    In this study it is shown that the three different intermediate phases in melt blended ternary PLA/PHBV/PBS, PLA/PBAT/PE and PLA/PE/PBAT systems all demonstrate partial wetting, but have very different wetting behaviors as a function of composition and annealing. The interfacial tension of the various components, their spreading coefficients and the contact angles of the confined partially wet droplets at the interface are examined in detail. A wetting transition from partially wet droplets to a complete layer at the interface is observed for both PHBV and PBAT by increasing the concentration and also by annealing. In contrast, in PLA/PE/PBAT, the partially wet droplets of PE at the interface of PLA/PBAT coalesce and grow in size, but remain partially wet even at a high PE concentration of 20% and after 30 min of quiescent annealing. The dewetting speed of the intermediate phase is found to be the principal factor controlling these wetting transitions. This work shows the significant potential for controlled wetting and structuring in ternary polymer systems.

  6. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor-liquid-solid technique

    NASA Astrophysics Data System (ADS)

    LeBoeuf, J. L.; Brodusch, N.; Gauvin, R.; Quitoriano, N. J.

    2014-12-01

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor-liquid-solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the {1 0 0} surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.

  7. Barrier coated drug layered particles for enhanced performance of amorphous solid dispersion dosage form.

    PubMed

    Puri, Vibha; Dantuluri, Ajay K; Bansal, Arvind K

    2012-01-01

    Amorphous solid dispersions (ASDs) may entail tailor-made dosage form design to exploit their solubility advantage. Surface phenomena dominated the performance of amorphous celecoxib solid dispersion (ACSD) comprising of amorphous celecoxib (A-CLB), polyvinylpyrrolidone, and meglumine (7:2:1, w/w). ACSD cohesive interfacial interactions hindered its capsule dosage form dissolution (Puri V, Dhantuluri AK, Bansal AK 2011. J Pharm Sci 100:2460-2468). Furthermore, ACSD underwent significant devitrification under environmental stress. In the present study, enthalpy relaxation studies revealed its free surface to contribute to molecular mobility. Based on all these observations, barrier coated amorphous CLB solid dispersion layered particles (ADLP) were developed by Wurster process, using microcrystalline cellulose as substrate and polyvinyl alcohol (PVA), inulin, and polyvinyl acetate phthalate (PVAP) as coating excipients. Capsule formulations of barrier coated-ADLP could achieve rapid dispersibility and high drug release. Evaluation under varying temperature and RH conditions suggested the crystallization inhibitory efficiency in order of inulin < PVA ≈ PVAP; however, under only temperature treatment, crystallization inhibition increased with increase in T(g) of the coating material. Simulated studies using DSC evidenced drug-polymer mixing at the interface as a potential mechanism for surface stabilization. In conclusion, surface modification yielded a fast dispersing robust high drug load ASD based dosage form. Copyright © 2011 Wiley-Liss, Inc.

  8. Oxygen deficiency and Sn doping of amorphous Ga{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinemann, M. D.; Unold, T.; Berry, J.

    2016-01-11

    The potential of effectively n-type doping Ga{sub 2}O{sub 3} considering its large band gap has made it an attractive target for integration into transistors and solar cells. As a result amorphous GaO{sub x} is now attracting interest as an electron transport layer in solar cells despite little information on its opto-electrical properties. Here we present the opto-electronic properties, including optical band gap, electron affinity, and charge carrier density, for amorphous GaO{sub x} thin films deposited by pulsed laser deposition. These properties are strongly dependent on the deposition temperature during the deposition process. The deposition temperature has no significant influence onmore » the general structural properties but produces significant changes in the oxygen stoichiometry of the films. The density of the oxygen vacancies is found to be related to the optical band gap of the GaO{sub x} layer. It is proposed that the oxygen deficiency leads to defect band below the conduction band minimum that increases the electron affinity. These properties facilitate the use of amorphous GaO{sub x} as an electron transport layer in Cu(In,Ga)Se{sub 2} and in Cu{sub 2}O solar cells. Further it is shown that at low deposition temperatures, extrinsic doping with Sn is effective at low Sn concentrations.« less

  9. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    PubMed

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  10. An investigation on morphology and mechanical properties of HDPE/nanoclay/nanoCaCO{sub 3} ternary nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garmabi, Hamid, E-mail: garmabi@aut.ac.ir; Tabari, Seyed Emad Alavi; Javadi, Azizeh

    Ternary Nanocomposites of high-density polyethylene (HDPE) containing two types of nano particles, a layered organoclay (Closite 15A) and a spherical nano Calcium Carbonate (CaCO{sub 3}), with various compositions were prepared using melt mixing. Maleic anhydride grafted polyethylene (MA-g-PE) was used to enhance the dispersion of nanofillers and better interface adhesion. Three different levels of nanoclay (1, 3, 5 wt. %), CaCO{sub 3} (6, 8, 10 wt. %) and MA-g-PE (3, 6, 9 wt. %) were used. The mixing was done in two steps: First a concentrated masterbatch of nanoparticles in HPDE and MA-g-PE was prepared using an internal mixer andmore » then melt-mixing of nanocomposites was done in a lab scale co-rotating twin screw extruder. The morphology of samples was studied using Scanning Electron Microscopy (SEM) and mechanical properties were evaluated using tensile and impact tests. According to the SEM micrographs, nanofillers were well dispersed in the HDPE matrix and XRD patterns showed the intercalation of nanoclay layers too. Generally using the layered nanoclay can enhance the tensile modulus while the use of spherical nano CaCO{sub 3} results into improved toughness. It was found that co-incorporation of these two types of nanofillers, leads to improve the stiffness and minimize the reduction of impact strength, simultaneously.« less

  11. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    PubMed

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  12. The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer.

    PubMed

    Shin, Yeonwoo; Kim, Sang Tae; Kim, Kuntae; Kim, Mi Young; Oh, Saeroonter; Jeong, Jae Kyeong

    2017-09-07

    High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600 °C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO back-channel occurs with annealing at 300 °C, while complete crystallization of the active layer occurs at 400 °C. The field-effect mobility is significantly boosted to 54.0 cm 2 /V·s for the IGZO device with a metal-induced polycrystalline channel formed at 300 °C compared to 18.1 cm 2 /V·s for an amorphous IGZO TFT without a catalytic layer. This work proposes a facile and effective route to enhance device performance by crystallizing the IGZO layer with standard annealing temperatures, without the introduction of expensive laser irradiation processes.

  13. Ultrasonic isolation of buried pipes

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2016-02-01

    Long-range guided wave testing (GWT) is used routinely for the monitoring and detection of corrosion defects in above ground pipelines. The GWT test range in buried, coated pipelines is greatly reduced compared to above ground configurations due to energy leakage into the embedding soil. In this paper, the effect of pipe coatings on the guided wave attenuation is investigated with the aim of increasing test ranges for buried pipelines. The attenuation of the T(0,1) and L(0,2) guided wave modes is measured using a full-scale experimental apparatus in a fusion-bonded epoxy (FBE)-coated 8 in. pipe, buried in loose and compacted sand. Tests are performed over a frequency range typically used in GWT of 10-35 kHz and compared with model predictions. It is shown that the application of a low impedance coating between the FBE layer and the sand effectively decouples the influence of the sand on the ultrasound leakage from the buried pipe. Ultrasonic isolation of a buried pipe is demonstrated by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both the pipe and sand, and has the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is found to be substantially reduced, in the range of 0.3-1.2 dB m-1 for loose and compacted sand conditions, compared to measured attenuation of 1.7-4.7 dB m-1 in the buried FBE-coated pipe without the PE-foam. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry and incorporated into model predictions of guided wave propagation in buried coated pipe. Good agreement is found between the experimental measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges; such coatings would be attractive for new pipeline installations.

  14. An NMR Study of Biomimetic Fluorapatite – Gelatine Mesocrystals

    PubMed Central

    Vyalikh, Anastasia; Simon, Paul; Rosseeva, Elena; Buder, Jana; Scheler, Ulrich; Kniep, Rüdiger

    2015-01-01

    The mesocrystal system fluoroapatite—gelatine grown by double-diffusion is characterized by hierarchical composite structure on a mesoscale. In the present work we apply solid state NMR to characterize its structure on the molecular level and provide a link between the structural organisation on the mesoscale and atomistic computer simulations. Thus, we find that the individual nanocrystals are composed of crystalline fluorapatite domains covered by a thin boundary apatite-like layer. The latter is in contact with an amorphous layer, which fills the interparticle space. The amorphous layer is comprised of the organic matrix impregnated by isolated phosphate groups, Ca3F motifs and water molecules. Our NMR data provide clear evidence for the existence of precursor complexes in the gelatine phase, which were not involved in the formation of apatite crystals, proving hence theoretical predictions on the structural pre-treatment of gelatine by ion impregnation. The interfacial interactions, which may be described as the glue holding the composite materials together, comprise hydrogen bond interactions with the apatite PO43− groups. The reported results are in a good agreement with molecular dynamics simulations, which address the mechanisms of a growth control by collagen fibers, and with experimental observations of an amorphous cover layer in biominerals. PMID:26515127

  15. Development of the α-IGZO/Ag/α-IGZO Triple-Layer Structure Films for the Application of Transparent Electrode

    PubMed Central

    Chen, Kun-Neng; Yang, Cheng-Fu; Wu, Chia-Ching; Chen, Yu-Hsin

    2017-01-01

    We investigated the structural, optical, and electrical properties of amorphous IGZO/silver/amorphous IGZO (α-IGZO/Ag/α-IGZO) triple-layer structures that were deposited at room temperature on Eagle XG glass and flexible polyethylene terephthalate substrates through the sputtering method. Thin Ag layers with different thicknesses were inserted between two IGZO layers to form a triple-layer structure. Ag was used because of its lower absorption and resistivity. Field emission scanning electron microscopy measurements of the triple-layer structures revealed that the thicknesses of the Ag layers ranged from 13 to 41 nm. The thickness of the Ag layer had a large effect on the electrical and optical properties of the electrodes. The optimum thickness of the Ag metal thin film could be evaluated according to the optical transmittance, electrical conductivity, and figure of merit of the electrode. This study demonstrates that the α-IGZO/Ag/α-IGZO triple-layer transparent electrode can be fabricated with low sheet resistance (4.2 Ω/□) and high optical transmittance (88.1%) at room temperature without postannealing processing on the deposited thin films. PMID:28772586

  16. Measurement and Modeling of Ecosystem Risk and Recovery for In Situ Treatment of Contaminated Sediments. Phase 3

    DTIC Science & Technology

    2015-08-01

    boundary layer and xPE is the PE thickness (cm). For passive samplers deployed in the sediment bed , the HOC uptake kinetics is also a function of...in sediment beds using performance reference compounds (PRCs) (Adams, Lohmann et al. 2007, Tomaszewski and Luthy 2008, Fernandez, MacFarlane et al...version program was tested for user-friendliness as well as performance. Any reported bugs were fixed, and suggestions on the user-friendliness were

  17. Methodology Investigation of AI(Artificial Intelligence) Test Officer Support Tool. Volume 2

    DTIC Science & Technology

    1989-03-01

    a mathematical representation of a PE and its connections. This representation describes the " neurodynamics " of a PE. A sigmoid transfer function is...Element(i) Neurodynamics : Summation Function: Wo*XO + W,*X + W*X "X 0 0 1 1 2 W~fn Transfer Function: F(k) = (1 + e k) Output: x. - F(I) Figure 2-4...simplifies the description of the network operations. Thus, one or more PEs grouped together, with the same neurodynamics , is a layer [reference 5]. A

  18. Photocatalytic C60-amorphous TiO2 composites prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Justh, Nóra; Firkala, Tamás; László, Krisztina; Lábár, János; Szilágyi, Imre Miklós

    2017-10-01

    Nanocomposites of TiO2 and single fullerene (C60) molecule are prepared by atomic layer deposition (ALD). To create nucleation sites for the ALD reaction, the bare fullerene is functionalized by H2SO4/HNO3 treatment, which results in C60-SO3H. After a NaOH washing step the intermediate hydrolyzes into C60sbnd OH. This process and the consecutive ALD growth of TiO2 are monitored with FTIR, TG/DTA-MS, EDX, Raman, FTIR, XRD, and TEM measurements. Although the TiO2 grown by ALD at 80 and 160 °C onto fullerol is amorphous it enhances the decomposition of methyl orange under UV exposure. This study proves that amorphous TiO2 grown by low temperature ALD has photocatalytic activity, and it can be used e.g. as self-cleaning coatings also on heat sensitive substrates.

  19. Amorphous/crystalline silicon interface passivation: Ambient-temperature dependence and implications for solar cell performance

    DOE PAGES

    Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; ...

    2015-03-02

    Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devicesmore » with high Voc values at 25°C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.« less

  20. Stratification during evaporative assembly of multicomponent nanoparticle films

    DOE PAGES

    Liu, Xiao; Liu, Weiping; Carr, Amanda J.; ...

    2018-01-03

    Multicomponent coatings with layers comprising different functionalities are of interest for a variety of applications, including electronic devices, energy storage, and biomaterials. Rather than creating such a film using multiple deposition steps, we explore a single-step method to create such films by varying the particle Peclet numbers, Pe. Our hypothesis, based on recent theoretical descriptions of the stratification process, is that by varying particle size and evaporation rate such that Pe of large and small particles are above and below unity, we can create stratified films of polymeric and inorganic particles. In this paper, we present AFM on the surfacemore » composition of films comprising poly(styrene) nanoparticles (diameter 25–90 nm) and silica nanoparticles (diameter 8–14 nm). Previous studies on films containing both inorganic and polymeric particles correspond to large Pe values (e.g., 120–460), while we utilize Pe ~ 0.3–4, enabling us to test theories that have been developed for different regimes of Pe. We demonstrate evidence of stratification and effect of the Pe ratio, although our results agree only qualitatively with theory. Finally, our results also provide validation of recent theoretical descriptions of the film drying process that predict different regimes for large-on-top and small-on-top stratification.« less

  1. Stratification during evaporative assembly of multicomponent nanoparticle films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao; Liu, Weiping; Carr, Amanda J.

    Multicomponent coatings with layers comprising different functionalities are of interest for a variety of applications, including electronic devices, energy storage, and biomaterials. Rather than creating such a film using multiple deposition steps, we explore a single-step method to create such films by varying the particle Peclet numbers, Pe. Our hypothesis, based on recent theoretical descriptions of the stratification process, is that by varying particle size and evaporation rate such that Pe of large and small particles are above and below unity, we can create stratified films of polymeric and inorganic particles. In this paper, we present AFM on the surfacemore » composition of films comprising poly(styrene) nanoparticles (diameter 25–90 nm) and silica nanoparticles (diameter 8–14 nm). Previous studies on films containing both inorganic and polymeric particles correspond to large Pe values (e.g., 120–460), while we utilize Pe ~ 0.3–4, enabling us to test theories that have been developed for different regimes of Pe. We demonstrate evidence of stratification and effect of the Pe ratio, although our results agree only qualitatively with theory. Finally, our results also provide validation of recent theoretical descriptions of the film drying process that predict different regimes for large-on-top and small-on-top stratification.« less

  2. Does cyclic stress and accelerated ageing influence the wear behavior of highly crosslinked polyethylene?

    PubMed

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-06-01

    First-generation (irradiated and remelted or annealed) and second-generation (irradiated and vitamin E blended or doped) highly crosslinked polyethylenes were introduced in the last decade to solve the problems of wear and osteolysis. In this study, the influence of the Vitamin-E addition on crosslinked polyethylene (XLPE_VE) was evaluated by comparing the in vitro wear behavior of crosslinked polyethylene (XLPE) versus Vitamin-E blended polyethylene XLPE and conventional ultra-high molecular weight polyethylene (STD_PE) acetabular cups, after accelerated ageing according to ASTM F2003-02 (70.0±0.1°C, pure oxygen at 5bar for 14 days). The test was performed using a hip joint simulator run for two millions cycles, under bovine calf serum as lubricant. Mass loss was found to decrease along the series XLPE_VE>STD_PE>XLPE, although no statistically significant differences were found between the mass losses of the three sets of cups. Micro-Raman spectroscopy was used to investigate at a molecular level the morphology changes induced by wear. The spectroscopic analyses showed that the accelerated ageing determined different wear mechanisms and molecular rearrangements during testing with regards to the changes in both the chain orientation and the distribution of the all-trans sequences within the orthorhombic, amorphous and third phases. The results of the present study showed that the addition of vitamin E was not effective to improve the gravimetric wear of PE after accelerated ageing. However, from a molecular point of view, the XLPE_VE acetabular cups tested after accelerated ageing appeared definitely less damaged than the STD_PE ones and comparable to XLPE samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fabrication of amorphous IGZO thin film transistor using self-aligned imprint lithography with a sacrificial layer

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin; Kim, Hyung Tae; Choi, Jong Hoon; Chung, Ho Kyoon; Cho, Sung Min

    2018-04-01

    An amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFT) was fabricated by a self-aligned imprint lithography (SAIL) method with a sacrificial photoresist layer. The SAIL is a top-down method to fabricate a TFT using a three-dimensional multilayer etch mask having all pattern information for the TFT. The sacrificial layer was applied in the SAIL process for the purpose of removing the resin residues that were inevitably left when the etch mask was thinned by plasma etching. This work demonstrated that the a-IGZO TFT could be fabricated by the SAIL process with the sacrificial layer. Specifically, the simple fabrication process utilized in this study can be utilized for the TFT with a plasma-sensitive semiconductor such as the a-IGZO and further extended for the roll-to-roll TFT fabrication.

  4. Simulations of carbon sputtering in fusion reactor divertor plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marian, J; Zepeda-Ruiz, L A; Gilmer, G H

    2005-10-03

    The interaction of edge plasma with material surfaces raises key issues for the viability of the International Thermonuclear Reactor (ITER) and future fusion reactors, including heat-flux limits, net material erosion, and impurity production. After exposure of the graphite divertor plate to the plasma in a fusion device, an amorphous C/H layer forms. This layer contains 20-30 atomic percent D/T bonded to C. Subsequent D/T impingement on this layer produces a variety of hydrocarbons that are sputtered back into the sheath region. We present molecular dynamics (MD) simulations of D/T impacts on amorphous carbon layer as a function of ion energymore » and orientation, using the AIREBO potential. In particular, energies are varied between 10 and 150 eV to transition from chemical to physical sputtering. These results are used to quantify yield, hydrocarbon composition and eventual plasma contamination.« less

  5. Dark current in multilayer stabilized amorphous selenium based photoconductive x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frey, Joel B.; Belev, George; Kasap, Safa O.

    2012-07-01

    We report on experimental results which show that the dark current in n-i-p structured, amorphous selenium films is independent of i-layer thickness in samples with consistently thick blocking layers. We have observed, however, a strong dependence on the n-layer thickness and positive contact metal chosen. These results indicate that the dominant source of the dark current is carrier injection from the contacts and any contribution from carriers thermally generated in the bulk of the photoconductive layer is negligible. This conclusion is supported by a description of the dark current transients at different applied fields by a model which assumes onlymore » carrier emission over a Schottky barrier. This model also predicts that while hole injection is initially dominant, some time after the application of the bias, electron injection may become the dominant source of dark current.« less

  6. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films

    PubMed Central

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Repouskou, Eftychia; Kroll, Kevin; Kolvenbach, Boris; Corvini, Philippe F-X; Fava, Fabio

    2017-01-01

    This study investigated the potential of bacterial-mediated polyethylene (PE) degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE) as the sole carbon source. At the end of phase I the developed biofilm was harvested and re-inoculated with naturally weathered PE films. Bacteria from both treatments were able to establish an active population on the PE surfaces as the biofilm community developed in a time dependent way. Moreover, a convergence in the composition of these communities was observed towards an efficient PE degrading microbial network, comprising of indigenous species. In acclimated communities, genera affiliated with synthetic (PE) and natural (cellulose) polymer degraders as well as hydrocarbon degrading bacteria were enriched. The acclimated consortia (indigenous and bioaugmented) reduced more efficiently the weight of PE films in comparison to non-acclimated bacteria. The SEM images revealed a dense and compact biofilm layer and signs of bio-erosion on the surface of the films. Rheological results suggest that the polymers after microbial treatment had wider molecular mass distribution and a marginally smaller average molar mass suggesting biodegradation as opposed to abiotic degradation. Modifications on the surface chemistry were observed throughout phase II while the FTIR profiles of microbially treated films at month 6 were similar to the profiles of virgin PE. Taking into account the results, we can suggest that the tailored indigenous marine community represents an efficient consortium for degrading weathered PE plastics. PMID:28841722

  7. An investigation of passivity and breakdown of amorphous chromium-bromine thin films for surface modification of metallic biomaterials

    NASA Astrophysics Data System (ADS)

    Cormier, Lyne Mercedes

    1998-12-01

    The objectives of this investigation of amorphous Cr-B thin films as prospective coatings for biomaterials applications were to (i) produce and characterize an amorphous Cr-B thin film coating by magnetron sputtering, (ii) evaluate its corrosion resistance in physiologically relevant electrolytes, and (iii) propose a mechanism for the formation/dissolution of the passive film formed on amorphous Cr-B in chloride-containing near-neutral salt electrolytes. Dense (zone T) amorphous Cr75B25 thin films produced by DC magnetron sputtering were found to be better corrosion barriers than nanoczystalline or porous (zone 1) amorphous Cr75B25 thin films. The growth morphology and microstructure were a function of the sputtering pressure and substrate temperature, in agreement with the structure zone model of Thornton. The passivity/loss of passivity of amorphous Cr 75B25 in near-neutral salt solutions was explained using a modified bipolar layer model. The chromate ions identified by X-Ray Photoelectron Spectroscopy (XPS) in the outer layer of the passive film were found to play a determinant role in the passive behaviour of amorphous Cr75B 25 thin films in salt solutions. In near-neutral salt solutions of pH = 5 to 7, a decrease in pH combined with an increase in chloride concentration resulted in less dissolution of the Cr75B25 thin films. The apparent breakdown potential at 240 mV (SCE) obtained by Cyclic Potentiodynamic Anodic Polarization (CPAP) was associated with oxidation of species within the passive film, but not to dissolution leading to immediate loss of passivity. Pit Propagation Rate (PPR) testing evaluated the stable pitting potential to be between 600 and 650 mV. Amorphous Cr75B25 thin films ranked the best among other Cr-based materials such as 316L stainless steel, CrB2 and Cr investigated in this study for general corrosion behaviour in NaCl and Hanks solutions by CPAP testing. In terms of corrosion resistance, amorphous Cr75B25 thin films were recognized as a promising material for surface modification of biomaterials.

  8. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  9. Polarization fatigue of BiFeO3 films with ferromagnetic metallic electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Wang, Ji; Li, Chen; Wen, Zheng; Xu, Qingyu; Du, Jun

    2017-05-01

    BiFeO3 (BFO) thin films were epitaxially grown on (001) SrTiO3 substrates using LaNiO3 as bottom electrode by pulsed laser deposition. The ferroelectric properties of BFO layer with ferromagnetic Ni21Fe79 (NiFe) or non-magnetic Pt electrode are investigated. Well saturated polarization-electric field (P-E) hysteresis loops are observed. Significant fatigue and associated drastic decrease in switchable polarization have been observed with cycling number exceeds 106, which can be explained by the domain wall pinning due to the oxygen vacancies trapping. With increasing cycle number to above 107, the polarization is rejuvenated. The polarization for BFO layer with NiFe electrode recovers to the initial value, while only about 75% of initial polarization is recovered for BFO layer with Pt electrode. Furthermore, the imprint is alleviated and the P-E hysteresis loops become more symmetric after the polarization recovery. The difference can be understood by the different interface state of NiFe/BFO and Pt/BFO.

  10. Diamond Composite Films for Protective Coatings on Metals and Method of Formation

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    Composite films consisting of diamond crystallites and hard amorphous films such as diamond-like carbon, titanium nitride, and titanium oxide are provided as protective coatings for metal substrates against extremely harsh environments. A composite layer having diamond crystallites and a hard amorphous film is affixed to a metal substrate via an interlayer including a bottom metal silicide film and a top silicon carbide film. The interlayer is formed either by depositing metal silicide and silicon carbide directly onto the metal substrate, or by first depositing an amorphous silicon film, then allowing top and bottom portions of the amorphous silicon to react during deposition of the diamond crystallites, to yield the desired interlayer structure.

  11. Redshifted and blueshifted photoluminescence emission of InAs/InP quantum dots upon amorphization of phase change material.

    PubMed

    Humam, Nurrul Syafawati Binti; Sato, Yu; Takahashi, Motoki; Kanazawa, Shohei; Tsumori, Nobuhiro; Regreny, Philippe; Gendry, Michel; Saiki, Toshiharu

    2014-06-16

    We present the mechanisms underlying the redshifted and blueshifted photoluminescence (PL) of quantum dots (QDs) upon amorphization of phase change material (PCM). We calculated the stress and energy shift distribution induced by volume expansion using finite element method. Simulation result reveals that redshift is obtained beneath the flat part of amorphous mark, while blueshift is obtained beneath the edge region of amorphous mark. Simulation result is accompanied by two experimental studies; two-dimensional PL intensity mapping of InAs/InP QD sample deposited by a layer of PCM, and an analysis on the relationship between PL intensity ratio and energy shift were performed.

  12. Effects of gas flow rate on the etch characteristics of a low- k sicoh film with an amorphous carbon mask in dual-frequency CF4/C4F8/Ar capacitively-coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kwon, Bong-Soo; Lee, Hea-Lim; Lee, Nae-Eung; Kim, Chang-Young; Choi, Chi Kyu

    2013-01-01

    Highly selective nanoscale etching of a low-dielectric constant (low- k) organosilicate (SiCOH) layer using a mask pattern of chemical-vapor-deposited (CVD) amorphous carbon layer (ACL) was carried out in CF4/C4F8/Ar dual-frequency superimposed capacitively-coupled plasmas. The etching characteristics of the SiCOH layers, such as the etch rate, etch selectivity, critical dimension (CD), and line edge roughness (LER) during the plasma etching, were investigated by varying the C4F8 flow rate. The C4F8 gas flow rate primarily was found to control the degree of polymerization and to cause variations in the selectivity, CD and LER of the patterned SiCOH layer. Process windows for ultra-high etch selectivity of the SiCOH layer to the CVD ACL are formed due to the disproportionate degrees of polymerization on the SiCOH and the ACL surfaces.

  13. Irradiation behavior of the interaction product of U-Mo fuel particle dispersion in an Al matrix

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, G. L.

    2012-06-01

    Irradiation performance of U-Mo fuel particles dispersed in Al matrix is stable in terms of fuel swelling and is suitable for the conversion of research and test reactors from highly enriched uranium (HEU) to low enriched uranium (LEU). However, tests of the fuel at high temperatures and high burnups revealed obstacles caused by the interaction layers forming between the fuel particle and matrix. In some cases, fission gas filled pores grow and interconnect in the interdiffusion layer resulting in fuel plate failure. Postirradiation observations are made to examine the behavior of the interdiffusion layers. The interdiffusion layers show a fluid-like behavior characteristic of amorphous materials. In the amorphous interdiffusion layers, fission gas diffusivity is high and the material viscosity is low so that the fission gas pores readily form and grow. Based on the observations, a pore formation mechanism is proposed and potential remedies to suppress the pore growth are also introduced.

  14. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process.

    PubMed

    Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae

    2017-11-24

    We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

  15. Optimisation of readout performance of phase-change probe memory in terms of capping layer and probe tip

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wright, C. David; Aziz, Mustafa. M.; Yang, Ci Hui; Yang, Guo Wei

    2014-11-01

    The capping layer and the probe tip that serve as the protective layer and the recording tool, respectively, for phase-change probe memory play an important role on the writing performance of phase-change probe memory, thus receiving considerable attention. On the other hand, their influence on the readout performance of phasechange probe memory has rarely been reported before. A three-dimensional parametric study based on the Laplace equation was therefore conducted to investigate the effect of the capping layer and the probe tip on the resulting reading contrast for the two cases of reading a crystalline bit from an amorphous matrix and reading an amorphous bit from a crystalline matrix. The results indicated that a capping layer with a thickness of 2 nm and an electrical conductivity of 50 Ω-1m-1 is able to provide an appropriate reading contrast for both the cases, while satisfying the previous writing requirement, particularly with the assistance of a platinum silicide probe tip.

  16. Optical switching system and method

    DOEpatents

    Ranganathan, Radha; Gal, Michael; Taylor, P. Craig

    1992-01-01

    An optically bistable device is disclosed. The device includes a uniformly thick layer of amorphous silicon to constitute a Fabry-Perot chamber positioned to provide a target area for a probe beam. The probe beam has a maximum energy less than the energy band gap of the amorphous semiconductor. In a preferred embodiment, a multilayer dielectric mirror is positioned on the Fabry-Perot chamber to increase the finesse of switching of the device. The index of refraction of the amorphous material is thermally altered to alter the transmission of the probe beam.

  17. Integrative Properties of the Pe1 Neuron, a Unique Mushroom Body Output Neuron

    PubMed Central

    Rybak, Jürgen; Menzel, Randolf

    1998-01-01

    A mushroom body extrinsic neuron, the Pe1 neuron, connects the peduncle of the mushroom body (MB) with two areas of the protocerebrum in the honeybee brain, the lateral protocerebral lobe (LPL) and the ring neuropil around the α-lobe. Each side of the bee brain contains only one Pe1 neuron. Using a combination of intracellular recording and neuroanatomical techniques we analyzed its properties of integrative processing of the different sensory modalities. The Pe1 neuron responds to visual, mechanosensory, and olfactory stimuli. The responses are broadly tuned, consisting of a sustained increase of spike frequency to the onset and offset of light flashes, to horizontal and vertical movements of extended objects, to mechanical stimuli applied to the antennae or mouth parts, and to all olfactory stimuli tested (29 chemicals). These multisensory properties are reflected in its dendritic organization. Serial reconstructions of intracellularly stained Pe1 neurons using confocal microscopy reveal that the Pe1 neuron arborizes throughout all layers of MB peduncle with finger-like, vertically oriented dendrites. The peduncle of the MB is formed by the axons of Kenyon cells, whose dendritic inputs are organized in modality-specific subcompartments of the calyx region. The peduncular arborization indicates that the Pe1 neuron receives input from Kenyon cells of all calycal subcompartments. Because the Pe1 neuron changes its odor responses transiently as a consequence of olfactory learning, we hypothesize that the multimodal response properties might have a role in memory consolidation and help to establish contextual references in the long-term trace. PMID:10454378

  18. Magnetically controllable Pickering emulsion prepared by a reduced graphene oxide-iron oxide composite.

    PubMed

    Lin, Kun-Yi Andrew; Yang, Hongta; Petit, Camille; Lee, Wei-der

    2015-01-15

    Pickering emulsions stabilized by graphene oxide (GO) have attracted much attention owing to the unique 2-D structure and amphiphilic surface properties of GO. On the other hand, investigations on reduced GO (RGO) to prepare Pickering emulsions are still limited, especially for water-in-oil (W/O) emulsions. Considering growing interests for directing Pickering emulsions to a specific location, it is necessary to embed Pickering emulsions with responsiveness upon external driving forces such as magnetic fields. To that end, we developed magnetically responsive RGO (denoted as "MRGO") and used MRGO to prepare W/O Pickering emulsions. MRGO was synthesized by decorating iron oxide nanoparticles on the surface of RGO and characterized by SEM, EDS, TEM, FT-IR, Raman, XRD and SQUID. MRGO Pickering emulsion (MRGO-PE) was prepared by suspending MRGO sheets in dodecane and mixing with water vigorously. The amount of MRGO added to prepare MRGO-PE is related to the size distribution of the droplets of MRGO-PE and the relationship can be well-described using a mass balance model. The motion of droplets of MRGO-PE under an external magnetic field is demonstrated. We also investigated the adsorptive property of MRGO-PE by evaluating the removal of Nile Red dye from dodecane. The results shows that the dye removal by MRGO-PE is not just achieved by MRGO layer of MRGO-PE but also by water encapsulated by MRGO. Owing to their magnetic property, MRGO-PE can be utilized as a magnetically-controlled carrier which can preserve and transport to specific locations certain compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  20. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  1. Quaternary Chalcogenide-Based Misfit Nanotubes LnS(Se)-TaS(Se)2 (Ln = La, Ce, Nd, and Ho): Synthesis and Atomic Structural Studies.

    PubMed

    Lajaunie, Luc; Radovsky, Gal; Tenne, Reshef; Arenal, Raul

    2018-01-16

    We have synthesized quaternary chalcogenide-based misfit nanotubes LnS(Se)-TaS 2 (Se) (Ln = La, Ce, Nd, and Ho). None of the compounds described here were reported in the literature as a bulk compound. The characterization of these nanotubes, at the atomic level, has been developed via different transmission electron microscopy techniques, including high-resolution scanning transmission electron microscopy, electron diffraction, and electron energy-loss spectroscopy. In particular, quantification at sub-nanometer scale was achieved by acquiring high-quality electron energy-loss spectra at high energy (∼between 1000 and 2500 eV). Remarkably, the sulfur was found to reside primarily in the distorted rocksalt LnS lattice, while the Se is associated with the hexagonal TaSe 2 site. Consequently, these quaternary misfit layered compounds in the form of nanostructures possess a double superstructure of La/Ta and S/Se with the same periodicity. In addition, the interlayer spacing between the layers and the interatomic distances within the layer vary systematically in the nanotubes, showing clear reduction when going from the lightest (La atom) to the heaviest (Ho) atom. Amorphous layers, of different nature, were observed at the surface of the nanotubes. For La-based NTs, the thin external amorphous layer (inferior to 10 nm) can be ascribed to a Se deficiency. Contrarily, for Ho-based NTs, the thick amorphous layer (between 10 and 20 nm) is clearly ascribed to oxidation. All of these findings helped us to understand the atomic structure of these new compounds and nanotubes thereof.

  2. Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties

    NASA Astrophysics Data System (ADS)

    Raghavan, R.; Bechelany, M.; Parlinska, M.; Frey, D.; Mook, W. M.; Beyer, A.; Michler, J.; Utke, I.

    2012-05-01

    We report on a comprehensive structural and nanoindentation study of nanolaminates of Al2O3 and ZnO synthesized by atomic layer deposition (ALD). By reducing the bilayer thickness from 50 nm to below 1 nm, the nanocrystal size could be controlled in the nanolaminate structure. The softer and more compliant response of the multilayers as compared to the single layers of Al2O3 and ZnO is attributed to the structural change from nanocrystalline to amorphous at smaller bilayer thicknesses. It is also shown that ALD is a unique technique for studying the inverse Hall-Petch softening mechanism (E. Voce and D. Tabor, J. Inst. Metals 79(12), 465 (1951)) related to grain size effects in nanomaterials.

  3. Study of the recrystallization in coated pellets - effect of coating on API crystallinity.

    PubMed

    Nikowitz, Krisztina; Pintye-Hódi, Klára; Regdon, Géza

    2013-02-14

    Coated diltiazem hydrochloride-containing pellets were prepared using the solution layering technique. Unusual thermal behavior was detected with differential scanning calorimetry (DSC) and its source was determined using thermogravimetry (TG), X-ray powder diffraction (XRPD) and hot-stage microscopy. The coated pellets contained diltiazem hydrochloride both in crystalline and amorphous form. Crystallization occurs on heat treatment causing an exothermic peak on the DSC curves that only appears in pellets containing both diltiazem hydrochloride and the coating. Results indicate that the amorphous fraction is situated in the coating layer. The migration of drugs into the coating layer can cause changes in its degree of crystallinity. Polymeric coating materials should therefore be investigated as possible crystallization inhibitors. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Communication: Distinguishing between bulk and interface-enhanced crystallization in nanoscale films of amorphous solid water.

    PubMed

    Yuan, Chunqing; Smith, R Scott; Kay, Bruce D

    2017-01-21

    The crystallization of amorphous solid water (ASW) nanoscale films was investigated using reflection absorption infrared spectroscopy. Two ASW film configurations were studied. In one case the ASW film was deposited on top of and capped with a decane layer ("sandwich" configuration). In the other case, the ASW film was deposited on top of a decane layer and not capped ("no cap" configuration). Crystallization of ASW films in the "sandwich" configuration is about eight times slower than in the "no cap." Selective placement of an isotopic layer (5% D 2 O in H 2 O) at various positions in an ASW (H 2 O) film was used to determine the crystallization mechanism. In the "sandwich" configuration, the crystallization kinetics were independent of the isotopic layer placement whereas in the "no cap" configuration the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These results are consistent with a mechanism whereby the decane overlayer suppresses surface nucleation and provide evidence that the observed ASW crystallization in "sandwich" films is the result of uniform bulk nucleation.

  5. Fabrication mechanism of friction-induced selective etching on Si(100) surface

    PubMed Central

    2012-01-01

    As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems. PMID:22356699

  6. Fabrication mechanism of friction-induced selective etching on Si(100) surface.

    PubMed

    Guo, Jian; Song, Chenfei; Li, Xiaoying; Yu, Bingjun; Dong, Hanshan; Qian, Linmao; Zhou, Zhongrong

    2012-02-23

    As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems.

  7. Growth and optical property characterization of textured barium titanate thin films for photonic applications

    NASA Astrophysics Data System (ADS)

    Dicken, Matthew J.; Diest, Kenneth; Park, Young-Bae; Atwater, Harry A.

    2007-03-01

    We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300 W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers.

  8. Thermal Management in Nanofiber-Based Face Mask

    DOE PAGES

    Yang, Ankun; Cai, Lili; Zhang, Rufan; ...

    2017-05-15

    Face masks are widely used to filter airborne pollutants, especially when particulate matter (PM) pollution has become a serious concern to public health. Here in this paper, the concept of thermal management is introduced into face masks for the first time to enhance the thermal comfort of the user. A system of nanofiber on nanoporous polyethylene (fiber/nanoPE) is developed where the nanofibers with strong PM adhesion ensure high PM capture efficiency (99.6% for PM 2.5) with low pressure drop and the nanoPE substrate with high-infrared (IR) transparency (92.1%, weighted based on human body radiation) results in effective radiative cooling. Wemore » further demonstrate that by coating nanoPE with a layer of Ag, the fiber/Ag/nanoPE mask shows a high IR reflectance (87.0%) and can be used for warming purposes. These multifunctional face mask designs can be explored for both outdoor and indoor applications to protect people from PM pollutants and simultaneously achieve personal thermal comfort.« less

  9. Thermal Management in Nanofiber-Based Face Mask.

    PubMed

    Yang, Ankun; Cai, Lili; Zhang, Rufan; Wang, Jiangyan; Hsu, Po-Chun; Wang, Hongxia; Zhou, Guangmin; Xu, Jinwei; Cui, Yi

    2017-06-14

    Face masks are widely used to filter airborne pollutants, especially when particulate matter (PM) pollution has become a serious concern to public health. Here, the concept of thermal management is introduced into face masks for the first time to enhance the thermal comfort of the user. A system of nanofiber on nanoporous polyethylene (fiber/nanoPE) is developed where the nanofibers with strong PM adhesion ensure high PM capture efficiency (99.6% for PM 2.5 ) with low pressure drop and the nanoPE substrate with high-infrared (IR) transparency (92.1%, weighted based on human body radiation) results in effective radiative cooling. We further demonstrate that by coating nanoPE with a layer of Ag, the fiber/Ag/nanoPE mask shows a high IR reflectance (87.0%) and can be used for warming purposes. These multifunctional face mask designs can be explored for both outdoor and indoor applications to protect people from PM pollutants and simultaneously achieve personal thermal comfort.

  10. Green perovskite light emitting diodes based on the ITO/Al2O3/CsPbBr3 heterojunction structure

    NASA Astrophysics Data System (ADS)

    Zhuang, Shiwei; Ma, Xue; Hu, Daqiang; Dong, Xin; Zhang, Yuantao; Zhang, Baolin

    2018-03-01

    Perovskite light emitting diodes (PeLEDs) now emerge as a promising new optoelectronic application field for these amazing semiconductors. For the purpose of investigating the device structures and light emission mechanisms of PeLEDs, we have fabricated green PeLEDs based on the ITO/Al2O3/CsPbBr3 heterojunction structure. The emission layer inorganic perovskite CsPbBr3 film with small grain sizes (∼28.9 nm) was prepared using a two-step method. The device exhibits a typical rectification behavior with turn-on voltage of ∼6 V. The EL emission band is narrow with the FWHM of ∼25 nm. The peak EQE of the device was ∼0.09%. The working mechanism of the device is also discussed. The result of the present work provides a feasible innovation idea of PeLEDs fabrication and great potentials for the development of perovskite based LEDs.

  11. Thermal Management in Nanofiber-Based Face Mask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ankun; Cai, Lili; Zhang, Rufan

    Face masks are widely used to filter airborne pollutants, especially when particulate matter (PM) pollution has become a serious concern to public health. Here in this paper, the concept of thermal management is introduced into face masks for the first time to enhance the thermal comfort of the user. A system of nanofiber on nanoporous polyethylene (fiber/nanoPE) is developed where the nanofibers with strong PM adhesion ensure high PM capture efficiency (99.6% for PM 2.5) with low pressure drop and the nanoPE substrate with high-infrared (IR) transparency (92.1%, weighted based on human body radiation) results in effective radiative cooling. Wemore » further demonstrate that by coating nanoPE with a layer of Ag, the fiber/Ag/nanoPE mask shows a high IR reflectance (87.0%) and can be used for warming purposes. These multifunctional face mask designs can be explored for both outdoor and indoor applications to protect people from PM pollutants and simultaneously achieve personal thermal comfort.« less

  12. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor–liquid–solid technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBoeuf, J. L., E-mail: jerome.leboeuf@mail.mcgill.ca; Brodusch, N.; Gauvin, R.

    2014-12-28

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30%more » single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the (1 0 0) surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.« less

  13. Toward Adequate Operation of Amorphous Oxide Thin-Film Transistors for Low-Concentration Gas Detection.

    PubMed

    Kim, Kyung Su; Ahn, Cheol Hyoun; Jung, Sung Hyeon; Cho, Sung Woon; Cho, Hyung Koun

    2018-03-28

    We suggest the use of a thin-film transistor (TFT) composed of amorphous InGaZnO (a-IGZO) as a channel and a sensing layer for low-concentration NO 2 gas detection. Although amorphous oxide layers have a restricted surface area when reacting with NO 2 gas, such TFT sensors have incomparable advantages in the aspects of electrical stability, large-scale uniformity, and the possibility of miniaturization. The a-IGZO thin films do not possess typical reactive sites and grain boundaries, so that the variation in drain current of the TFTs strictly originates from oxidation reaction between channel surface and NO 2 gas. Especially, the sensing data obtained from the variation rate of drain current makes it possible to monitor efficiently and quickly the variation of the NO 2 concentration. Interestingly, we found that enhancement-mode TFT (EM-TFT) allows discrimination of the drain current variation rate at NO 2 concentrations ≤10 ppm, whereas a depletion-mode TFT is adequate for discriminating NO 2 concentrations ≥10 ppm. This discrepancy is attributed to the ratio of charge carriers contributing to gas capture with respect to total carriers. This capacity for the excellent detection of low-concentration NO 2 gas can be realized through (i) three-terminal TFT gas sensors using amorphous oxide, (ii) measurement of the drain current variation rate for high selectivity, and (iii) an EM mode driven by tuning the electrical conductivity of channel layers.

  14. The magnetic properties of a magnetic detector using oxidized amorphous Co 95- xFe 5(BSi) x alloys

    NASA Astrophysics Data System (ADS)

    Ahn, S. J.; Kim, C. K.; Kim, S. J.; Choi, D. K.; O'Handley, R. C.

    2000-07-01

    A comparative oxidation study of several amorphous Co 75- xFe 5(BSi) 20+ x alloys was carried out. Reentrant magnetization behavior and field-induced anisotropy which are of a critical importance for a magnetic detector were obtained after oxidation of the amorphous Co-rich ribbons. During this oxidation, the ribbons develop surface oxides which are primarily nonmagnetic borosilicate or a combination of borosilicate and magnetic oxides such CoO or FeO. Beneath this lies a 100-1000 Å thick Co-rich magnetic alloy which may be either HCP or FCC in its crystal structure. The thickness of the Co-crystallized layer is determined by the type of the surface oxides. The oxidation products such as appear to affect the reentrant magnetization behavior of Co-rich amorphous alloys significantly. We have determined the amount of metalloids (a critical concentration of B and Si) which is necessary to form a continuous layer of the most thermodynamically stable oxide, in our case borosilicate, on the surface. We also observed that there is a good correlation between reentrant magnetization and the thickness of Co layer. The best reentrant M- H loop for the magnetic detector was obtained in ribbons with a surface borate-rich borosilicate since it ensures conditions such as (1) metalloid depletion in the substrate and (2) formation of oxygen impurity faults in Co grains that are required for strong reentrant magnetization behavior.

  15. Anti-proliferative and pro-apoptotic activities of Alpinia oxyphylla on HepG2 cells through ROS-mediated signaling pathway.

    PubMed

    Zhang, Qiao; Cui, Can; Chen, Cong-Qin; Hu, Xiao-Long; Liu, Ya-Hui; Fan, Yan-Hua; Meng, Wei-Hong; Zhao, Qing-Chun

    2015-07-01

    Fructus Alpiniae oxyphyllae (A. oxyphylla) is a traditional herb which is widely used in East Asian for the treatment of dyspepsia, diarrhea, abdominal pain, poor memory, inflammatory conditions and cancer. The cytotoxic activities of ethanol extract (EE) and five extract layers including petroleum ether (PE), dichloromethane (DCLM), acetoacetate (EtOAc), n-Butanol (n-Bu) and water fractions (WF) of A. oxyphylla were tested on HepG2, SW480, MCF-7, K562 and HUVEC cell lines using MTT assay and LDH release assay. The component analysis was performed on HPLC with gradient elution. Hoechst 33342 staining, DCFH-DA fluorescence microscopy, flow cytometry analysis, western blot and migration assays were carried out to determine the anti-cancer mechanisms of PE. MTT analysis showed that EE, PE and DCLM could inhibit cell proliferation on HepG2, SW480, MCF-7, K562 and HUVEC cell lines, especially PE fraction. HPLC analysis pointed out five main components which may contribute to the anti-proliferative activity of PE. Further study showed that PE increased LDH release, induced apoptosis, disrupted mitochondrial membrane potential and elevated intracellular reactive oxygen species (ROS) in HepG2 cells, whereas the antioxidant N-acetyl-l-cysteine (NAC) prevented PE-induced ROS generation. The results of western blot revealed that PE induced apoptosis in HepG2 cells by enhancing Bax/Bcl-2 ratio, increasing cytochrome c in cytosol and activating caspase-3/9. Meanwhile, high levels of ROS could induce DNA damage-mediated protein expression, AKT, ERK inactivation and SAPKs activation. Furthermore, PE conspicuously blocked the migration of HUVEC cells. The present results demonstrated that PE induced apoptosis in HepG2 cells may be via a ROS-mediated signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.

    PubMed

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-16

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.

  17. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries.

    PubMed

    Mattelaer, Felix; Geryl, Kobe; Rampelberg, Geert; Dendooven, Jolien; Detavernier, Christophe

    2017-04-19

    Flexible wearable electronics and on-chip energy storage for wireless sensors drive rechargeable batteries toward thin-film lithium ion batteries. To enable more charge storage on a given surface, higher energy density materials are required, while faster energy storage and release can be obtained by going to thinner films. Vanadium oxides have been examined as cathodes in classical and thin-film lithium ion batteries for decades, but amorphous vanadium oxide thin films have been mostly discarded. Here, we investigate the use of atomic layer deposition, which enables electrode deposition on complex three-dimensional (3D) battery architectures, to obtain both amorphous and crystalline VO 2 and V 2 O 5 , and we evaluate their thin-film cathode performance. Very high volumetric capacities are found, alongside excellent kinetics and good cycling stability. Better kinetics and higher volumetric capacities were observed for the amorphous vanadium oxides compared to their crystalline counterparts. The conformal deposition of these vanadium oxides on silicon micropillar structures is demonstrated. This study shows the promising potential of these atomic layer deposited vanadium oxides as cathodes for 3D all-solid-state thin-film lithium ion batteries.

  18. Amorphous lead oxide (a-PbO): suppression of signal lag via engineering of the layer structure.

    PubMed

    Semeniuk, O; Grynko, O; Juska, G; Reznik, A

    2017-10-16

    Presence of a signal lag is a bottle neck of performance for many non-crystalline materials, considered for dynamic radiation sensing. Due to inadequate lag-related temporal performance, polycrystalline layers of CdZnTe, PbI 2 , HgI 2 and PbO are not practically utilized, despite their superior X-ray sensitivity and low production cost (even for large area detectors). In the current manuscript, we show that a technological step to replace nonhomogeneous disorder in polycrystalline PbO with homogeneous amorphous PbO structure suppresses signal lag and improves time response to X-ray irradiation. In addition, the newly developed amorphous lead oxide (a-PbO) possesses superior X-ray sensitivity in terms of electron-hole pair creation energy [Formula: see text] in comparison with amorphous selenium - currently the only photoconductor used as an X-ray-to-charge transducer in the state-of-the-art direct conversion X-ray medical imaging systems. The proposed advances of the deposition process are low cost, easy to implement and with certain customization might potentially be applied to other materials, thus paving the way to their wide-range commercial use.

  19. Laser-induced amorphization of silicon during pulsed-laser irradiation of TiN/Ti/polycrystalline silicon/SiO2/silicon

    NASA Astrophysics Data System (ADS)

    Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.

    2002-11-01

    In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.

  20. Effects of Gravity on Ignition and Combustion Characteristics of Externally Heated Polyethylene Film

    NASA Astrophysics Data System (ADS)

    Ikeda, Mitsumasa

    2018-04-01

    The objective of this research is to investigate the effects of gravity on the ignition and the combustion characteristics of the Polyethylene (PE) film by outer heating. Combustion experiments of PE film were carried out in a normal gravity field and the microgravity field. In the microgravity experiments, it was carried out in 50 m-class drop facility. Here it can be realized 10- 4G microgravity field in about 2.5-3.0 second. The PE film is heated by the inserted high-temperature chamber. In the experiments, the PE was used film type. The chamber temperature was fixed at 900 K and 1000 K. In the case of microgravity field, the ignition delay period has become about 50 percent shorter than that in the case of the normal gravitational field. In the normal gravity field, since the PE surface layer is cooled by natural convection, the ignition delay period is considered to be longer than that in the microgravity field. The combustion time in the normal gravity was about 0.8 sec. In the microgravity field, the combustion time was more than 2 sec, and it could not be measured during the free fall period.

  1. Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling

    NASA Astrophysics Data System (ADS)

    Yang, Yun Mo; Loka, Chadrasekhar; Kim, Dong Phil; Joo, Sin Yong; Moon, Sung Whan; Choi, Yi Sik; Park, Jung Han; Lee, Kee-Sun

    2017-05-01

    High capacity retention Silicon-based nanocomposite anode materials have been extensively explored for use in lithium-ion rechargeable batteries. Here we report the preparation of Si-FeSi2/C nanocomposite through scalable a two-stage high-energy mechanical milling process, in which nano-scale Si-FeSi2 powders are besieged by the carbon (graphite/amorphous phase) layer; and investigation of their structure, morphology and electrochemical performance. Raman analysis revealed that the carbon layer structure comprised of graphitic and amorphous phase rather than a single amorphous phase. Anodes fabricated with the Si-FeSi2/C showed excellent electrochemical behavior such as a first discharge capacity of 1082 mAh g-1 and a high capacity retention until the 30th cycle. A remarkable coulombic efficiency of 99.5% was achieved within a few cycles. Differential capacity plots of the Si-FeSi2/C anodes revealed a stable lithium reaction with Si for lithiation/delithiation. The enhanced electrochemical properties of the Si-FeSi2/C nanocomposite are mainly attributed to the nano-size Si and stable solid electrolyte interface formation and highly conductive path driven by the carbon layer.

  2. Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition.

    PubMed

    Sheng, Jiazhen; Lee, Hwan-Jae; Oh, Saeroonter; Park, Jin-Seong

    2016-12-14

    Amorphous indium zinc oxide (IZO) thin films were deposited at different temperatures, by atomic layer deposition (ALD) using [1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]indium (INCA-1) as the indium precursor, diethlzinc (DEZ) as the zinc precursor, and hydrogen peroxide (H 2 O 2 ) as the reactant. The ALD process of IZO deposition was carried by repeated supercycles, including one cycle of indium oxide (In 2 O 3 ) and one cycle of zinc oxide (ZnO). The IZO growth rate deviates from the sum of the respective In 2 O 3 and ZnO growth rates at ALD growth temperatures of 150, 175, and 200 °C. We propose growth temperature-dependent surface reactions during the In 2 O 3 cycle that correspond with the growth-rate results. Thin-film transistors (TFTs) were fabricated with the ALD-grown IZO thin films as the active layer. The amorphous IZO TFTs exhibited high mobility of 42.1 cm 2 V -1 s -1 and good positive bias temperature stress stability. Finally, flexible IZO TFT was successfully fabricated on a polyimide substrate without performance degradation, showing the great potential of ALD-grown TFTs for flexible display applications.

  3. Effect of annealing time and NH3 flow on GaN films deposited on amorphous SiO2 by MOCVD

    NASA Astrophysics Data System (ADS)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Xu, Bingshe

    2018-05-01

    GaN polycrystalline films were successfully grown on amorphous SiO2 by metal-organic chemical vapour deposition to fabricate transferable devices using inorganic films. Field-emission scanning electron microscopy images show that by prolonging the annealing time, re-evaporation is enhanced, which reduced the uniformity of the nucleation layer and GaN films. X-ray diffraction patterns indicate that the decomposition rate of the nucleation layer increases when the annealing flow rate of NH3 is 500 sccm, which makes the unstable plane and amorphous domains decompose rapidly, thereby improving the crystallinity of the GaN films. Photoluminescence spectra also indicate the presence of fewer defects when the annealing flow rate of NH3 is 500 sccm. The excellent crystal structure of the GaN films grown under optimized conditions was revealed by transmission electron microscopy analysis. More importantly, the crystal structure and orientation of GaN grown on SiO2 are the same as that of GaN grown on conventional sapphire substrate when a buffer layer is used. This work can aid in the development of transferable devices using GaN films.

  4. Photovoltaic Device Including A Boron Doping Profile In An I-Type Layer

    DOEpatents

    Yang, Liyou

    1993-10-26

    A photovoltaic cell for use in a single junction or multijunction photovoltaic device, which includes a p-type layer of a semiconductor compound including silicon, an i-type layer of an amorphous semiconductor compound including silicon, and an n-type layer of a semiconductor compound including silicon formed on the i-type layer. The i-type layer including an undoped first sublayer formed on the p-type layer, and a boron-doped second sublayer formed on the first sublayer.

  5. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    PubMed

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  6. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    PubMed Central

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075

  7. Thin films with disordered nanohole patterns for solar radiation absorbers

    NASA Astrophysics Data System (ADS)

    Fang, Xing; Lou, Minhan; Bao, Hua; Zhao, C. Y.

    2015-06-01

    The radiation absorption in thin films with three disordered nanohole patterns, i.e., random position, non-uniform radius, and amorphous pattern, are numerically investigated by finite-difference time-domain (FDTD) simulations. Disorder can alter the absorption spectra and has an impact on the broadband absorption performance. Compared to random position and non-uniform radius nanoholes, amorphous pattern can induce a much better integrated absorption. The power density spectra indicate that amorphous pattern nanoholes reduce the symmetry and provide more resonance modes that are desired for the broadband absorption. The application condition for amorphous pattern nanoholes shows that they are much more appropriate in absorption enhancement for weak absorption materials. Amorphous silicon thin films with disordered nanohole patterns are applied in solar radiation absorbers. Four configurations of thin films with different nanohole patterns show that interference between layers in absorbers will change the absorption performance. Therefore, it is necessary to optimize the whole radiation absorbers although single thin film with amorphous pattern nanohole has reached optimal absorption.

  8. Interfacial engineering with ultrathin poly (9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) layer for high efficient perovskite light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lin, Chunyan; Chen, Ping; Xiong, ZiYang; Liu, Debei; Wang, Gang; Meng, Yan; Song, Qunliang

    2018-02-01

    Organic-inorganic hybrid perovskites have attracted great attention in the field of lighting and display due to their very high color purity and low-cost solution-process. Researchers have done a lot of work in realizing high performance electroluminescent devices. However, the current efficiency (CE) of methyl-ammonium lead halide perovskite light-emitting diodes (PeLEDs) still needs to be improved. Herein, we demonstrate the enhanced performance of PeLEDs through introducing an ultrathin poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) buffer layer between poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and CH3NH3PbBr3 perovskite. Compared to the reference device without PFO, the optimal device luminous intensity, the maximum CE, and the maximum external quantum efficiency increases from 8139 cd m-2 to 30 150 cd m-2, from 7.20 cd A-1 (at 6.8 V) to 10.05 cd A-1 (at 6.6 V), and from 1.73% to 2.44%, respectively. The ultrathin PFO layer not only reduces the exciton quenching at the interface between the hole-transport layer and emission layer, but also passivates the shallow-trap ensure increasing hole injection, as well as increases the coverage of perovskite film.

  9. Lateral amorphous selenium metal-insulator-semiconductor-insulator-metal photodetectors using ultrathin dielectric blocking layers for dark current suppression

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Yi; Pan, Fu-Ming; Lin, Jian-Siang; Yu, Tung-Yuan; Li, Yi-Ming; Chen, Chieh-Yang

    2016-12-01

    We fabricated amorphous selenium (a-Se) photodetectors with a lateral metal-insulator-semiconductor-insulator-metal (MISIM) device structure. Thermal aluminum oxide, plasma-enhanced chemical vapor deposited silicon nitride, and thermal atomic layer deposited (ALD) aluminum oxide and hafnium oxide (ALD-HfO2) were used as the electron and hole blocking layers of the MISIM photodetectors for dark current suppression. A reduction in the dark current by three orders of magnitude can be achieved at electric fields between 10 and 30 V/μm. The effective dark current suppression is primarily ascribed to electric field lowering in the dielectric layers as a result of charge trapping in deep levels. Photogenerated carriers in the a-Se layer can be transported across the blocking layers to the Al electrodes via Fowler-Nordheim tunneling because a high electric field develops in the ultrathin dielectric layers under illumination. Since the a-Se MISIM photodetectors have a very low dark current without significant degradation in the photoresponse, the signal contrast is greatly improved. The MISIM photodetector with the ALD-HfO2 blocking layer has an optimal signal contrast more than 500 times the contrast of the photodetector without a blocking layer at 15 V/μm.

  10. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari

    2018-06-01

    We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.

  11. He+ ion irradiation response of Fe–TiO2 multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderoglu, O.; Zhou, M. J.; Zhang, J.

    2013-04-01

    The accumulation of radiation-induced defect clusters and He bubble formation in He+ ion irradiated nanocrystalline TiO2 and Fe–TiO2 multilayer thin films were investigated using transmission electron microscopy (TEM). Prior to ion irradiation it was found that the crystallinity of TiO2 layers depends on the individual layer thickness: While all TiO2 layers are amorphous at 5 nm individual layer thickness, at 100 nm they are crystalline with a rutile polymorph. After He+ irradiation up to ~6 dpa at room temperature, amorphization of TiO2 layers was not observed in both nanocrystalline TiO2 single layers and Fe–TiO2 multilayers. The suppression of radiation-induced amorphizationmore » in TiO2 is interpreted in terms of a high density of defect sinks in these nano-composites in the form of Fe–TiO2 interphase boundaries and columnar grains within each layer with nano-scale intercolumnar porosity. In addition, a high concentration of He is believed to be trapped at these interfaces in the form of sub-nanometer-scale clusters retarding the formation of relatively larger He bubbles that can be resolved in TEM.« less

  12. PEG-PE/clay composite carriers for doxorubicin: Effect of composite structure on release, cell interaction and cytotoxicity.

    PubMed

    Kohay, Hagay; Sarisozen, Can; Sawant, Rupa; Jhaveri, Aditi; Torchilin, Vladimir P; Mishael, Yael G

    2017-06-01

    A novel drug delivery system for doxorubicin (DOX), based on organic-inorganic composites was developed. DOX was incorporated in micelles (M-DOX) of polyethylene glycol-phosphatidylethanolamine (PEG-PE) which in turn were adsorbed by the clay, montmorillonite (MMT). The nano-structures of the PEG-PE/MMT composites of LOW and HIGH polymer loadings were characterized by XRD, TGA, FTIR, size (DLS) and zeta measurements. These measurements suggest that for the LOW composite a single layer of polymer intercalates in the clay platelets and the polymer only partially covers the external surface, while for the HIGH composite two layers of polymer intercalate and a bilayer may form on the external surface. These nanostructures have a direct effect on formulation stability and on the rate of DOX release. The release rate was reversely correlated with the degree of DOX interaction with the clay and followed the sequence: M-DOX>HIGH formulation>LOW formulation>DOX/MMT. Despite the slower release from the HIGH formulation, its cytotoxicity effect on sensitive cells was as high as the "free" DOX. Surprisingly, the LOW formulation, with the slowest release, demonstrated the highest cytotoxicity in the case of Adriamycin (ADR) resistant cells. Confocal microscopy images and association tests provided an insight into the contribution of formulation-cell interactions vs. the contribution of DOX release rate. Internalization of the formulations was suggested as a mechanism that increases DOX efficiency, particularly in the ADR resistant cell line. The employment of organic-inorganic hybrid materials as drug delivery systems, has not reached its full potential, however, its functionality as an efficient tunable release system was demonstrated. DOX PEG-PE/clay formulations were design as an efficient drug delivery system. The main aim was to develop PEG-PE/clay formulations of different structures based on various PEG-PE/clay ratios in order to achieve tunable release rates, to control the external surface characteristics and formulation stability. The formulations showed significantly higher toxicity in comparison to "free" DOX, explained by formulation internalization. For each cell line tested, sensitive and ADR resistant, a different formulation structure was found most efficient. The potential of PEG-PE/clay-DOX formulations to improve DOX administration efficacy was demonstrated and should be further explored and implemented for other cancer drugs and cells. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Low operation voltage and high thermal stability of a WSi2 nanocrystal memory device using an Al2O3/HfO2/Al2O3 tunnel layer

    NASA Astrophysics Data System (ADS)

    Uk Lee, Dong; Jun Lee, Hyo; Kyu Kim, Eun; You, Hee-Wook; Cho, Won-Ju

    2012-02-01

    A WSi2 nanocrystal nonvolatile memory device was fabricated with an Al2O3/HfO2/Al2O3 (AHA) tunnel layer and its electrical characteristics were evaluated at 25, 50, 70, 100, and 125 °C. The program/erase (P/E) speed at 125 °C was approximately 500 μs under threshold voltage shifts of 1 V during voltage sweeping of 8 V/-8 V. When the applied pulse voltage was ±9 V for 1 s for the P/E conditions, the memory window at 125 °C was approximately 1.25 V after 105 s. The activation energies for the charge losses of 5%, 10%, 15%, 20%, 25%, 30%, and 35% were approximately 0.05, 0.11, 0.17, 0.21, 0.23, 0.23, and 0.23 eV, respectively. The charge loss mechanisms were direct tunneling and Pool-Frenkel emission between the WSi2 nanocrystals and the AHA barrier engineered tunneling layer. The WSi2 nanocrystal memory device with multi-stacked high-K tunnel layers showed strong potential for applications in nonvolatile memory devices.

  14. Intracellularly Biodegradable Polyelectrolyte/Silica Composite Microcapsules as Carriers for Small Molecules.

    PubMed

    Gao, Hui; Goriacheva, Olga A; Tarakina, Nadezda V; Sukhorukov, Gleb B

    2016-04-20

    Microcapsules that can be efficiently loaded with small molecules and effectively released at the target area through the degradation of the capsule shells hold great potential for treating diseases. Traditional biodegradable polyelectrolyte (PE) capsules can be degraded by cells and eliminated from the body but fail to encapsulate drugs with small molecular weight. Here, we report a poly-l-arginine hydrochloride (PARG)/dextran sulfate sodium salt (DEXS)/silica (SiO2) composite capsule that can be destructed in cells and of which the in situ formed inorganic SiO2 enables loading of small model molecules, Rhodamine B (Rh-B). The composite capsules were fabricated based on the layer-by-layer (LbL) technique and the hydrolysis of tetraethoxysilane (TEOS). Capsules composed of nondegradable PEs and SiO2, polyllamine hydrochloride (PAH)/poly(sodium 4-styrenesulfonate) (PSS)/silica (the control sample), were prepared and briefly compared with the degradable composite capsules. An intracellular degradation study of both types of composite capsules revealed that PARG/DEXS/silica capsules were degraded into fragments and lead to the release of model molecules in a relatively short time (2 h), while the structure of PAH/PSS/silica capsules remained intact even after 3 days incubation with B50 cells. Such results indicated that the polymer components played a significant role in the degradability of the SiO2. Specifically, PAH/PSS scaffolds blocked the degradation of SiO2. For PARG/DEXS/silica capsules, we proposed the effects of both hydrolytic degradation of amorphous silica and enzymatic degradation of PARG/DEXS polymers as a cell degradation mechanism. All the results demonstrated a new type of functional composite microcapsule with low permeability, good biocompatibility, and biodegradability for potential medical applications.

  15. Decorative power generating panels creating angle insensitive transmissive colors

    PubMed Central

    Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L. Jay

    2014-01-01

    We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to ±70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications. PMID:24577075

  16. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, Robert; Loomis, Gary E.; Thomas, Ian M.

    1999-01-01

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.

  17. Decorative power generating panels creating angle insensitive transmissive colors

    NASA Astrophysics Data System (ADS)

    Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L. Jay

    2014-02-01

    We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to +/-70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications.

  18. Decorative power generating panels creating angle insensitive transmissive colors.

    PubMed

    Lee, Jae Yong; Lee, Kyu-Tae; Seo, Sungyong; Guo, L Jay

    2014-02-28

    We present ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell structure, which can transmit desired color of light. The transmitted colors show great angular tolerance due to the negligible optical phase associated with light propagating in ultra-thin amorphous silicon (a-Si) layers. We achieved the power conversion efficiency of the hybrid cells up to 2 %; and demonstrated that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges due to the suppressed electron-hole recombination in the ultra-thin a-Si layer. We also show the resonance is invariant with respect to the angle of incidence up to ± 70° regardless of the polarization of the incident light. Our exploration provides a design to realize energy harvesting colored photovoltaic panels for innovative applications.

  19. Study for new hardmask process scheme

    NASA Astrophysics Data System (ADS)

    Lee, Daeyoup; Tatti, Phillip; Lee, Richard; Chang, Jack; Cho, Winston; Bae, Sanggil

    2017-03-01

    Hardmask processes are a key technique to enable low-k semiconductors, but they can have an impact on patterning control, influencing defectivity, alignment, and overlay. Specifically, amorphous carbon layer (ACL) hardmask schemes can negatively affect overlay by creating distorted alignment signals. A new scheme needs to be developed that can be inserted where amorphous carbon is used but provide better alignment performance. Typical spin-on carbon (SOC) materials used in other hardmask schemes have issues with DCD-FCD skew. In this paper we will evaluate new spin-on carbon material with a higher carbon content that could be a candidate to replace amorphous carbon.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, C.S.

    The future of the photovoltaic industry is discussed. The success of a small New Jersey high technology solar firm, Chronar, is described. The company started a modern, efficient commercial facility for the manufacture of 1 megawatt capacity amorphous silicon solar cells. The hatch manufacturing process consists of the deposition of the amorphous silicon layers in a machine called a 6 pack named for the six identical glow discharge chambers operated simultaneously by a mini-computer.

  1. Atypical water lattices and their possible relevance to the amorphous ices: A density functional study

    NASA Astrophysics Data System (ADS)

    Anick, David J.

    2013-04-01

    Of the fifteen known crystalline forms of ice, eleven consist of a single topologically connected hydrogen bond network with four H-bonds at every O. The other four, Ices VI-VIII and XV, consist of two topologically connected networks, each with four H-bonds at every O. The networks interpenetrate but do not share H-bonds. This article presents two new periodic water lattice families whose topological connectivity is "atypical": they consist of many two-dimensional layers that share no H-bonds. Layers are held together only by dispersion forces. Within each layer there are still four H-bonds at each O. Called "Hexagonal Bilayer Water" (HBW) and "Pleated Sheet Water" (PSW), they have computed densities of about 1.1 g/mL and 1.3 g/mL respectively, and nearest neighbor O-coordination is 4.5 to 5.5 and 6 to 8 respectively. Using density functional theory (BLYP-D/TZVP), various proton ordered forms of HBW and PSW are optimized and categorized. There are simple pathways connecting Ice-Ih to HBW and HBW to PSW. Their computed properties suggest similarities to the high density and very high density amorphous ices (HDA and VHDA) respectively. It is unknown whether HDA, VHDA, and Low Density Amorphous Ice (LDA) are fully disordered glasses down to the molecular level, or whether there is some short-range local order. Based on estimated radial distribution functions (RDFs), one proton ordered form of HBW matches HDA best. The idea is explored that HDA could contain islands with this underlying structure, and likewise, that VHDA could contain regions of PSW. A "microlattice model version 1" (MLM1) is presented as a device to compare key experimental data on the amorphous ices with these atypical structures and with a microlattice form of Ice-XI for LDA. Resemblances are found with the amorphs' RDFs, densities, Raman spectra, and transition behaviors. There is not enough information in the static models to assign either a microlattice structure or a partial microlattice structure to any amorphous ice phase.

  2. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers

    PubMed Central

    2014-01-01

    Si quantum dots (Si QDs)/SiC multilayers were fabricated by annealing hydrogenated amorphous Si/SiC multilayers prepared in a plasma-enhanced chemical vapor deposition system. The thickness of amorphous Si layer was designed to be 4 nm, and the thickness of amorphous SiC layer was kept at 2 nm. Transmission electron microscopy observation revealed the formation of Si QDs after 900°C annealing. The optical properties of the Si QDs/SiC multilayers were studied, and the optical band gap deduced from the optical absorption coefficient result is 1.48 eV. Moreover, the p-i-n structure with n-a-Si/i-(Si QDs/SiC multilayers)/p-Si was fabricated, and the carrier transportation mechanism was investigated. The p-i-n structure was used in a solar cell device. The cell had the open circuit voltage of 532 mV and the power conversion efficiency (PCE) of 6.28%. PACS 81.07.Ta; 78.67.Pt; 88.40.jj PMID:25489285

  3. Co3 O4 Nanowire Arrays toward Superior Water Oxidation Electrocatalysis in Alkaline Media by Surface Amorphization.

    PubMed

    Zhou, Dan; He, Liangbo; Zhang, Rong; Hao, Shuai; Hou, Xiandeng; Liu, Zhiang; Du, Gu; Asiri, Abdullah M; Zheng, Chengbin; Sun, Xuping

    2017-11-07

    It is highly desirable to develop a simple, fast and straightforward method to boost the alkaline water oxidation of metal oxide catalysts. In this communication, we report our recent finding that the generation of amorphous Co-borate layer on Co 3 O 4 nanowire arrays supported on Ti mesh (Co 3 O 4 @Co-Bi NA/TM) leads to significantly boosted OER activity. The as-prepared Co 3 O 4 @Co-Bi NA/TM demands overpotential of 304 mV to drive a geometrical current density of 20 mA cm -2 in 1.0 M KOH, which is 109 mV less than that for Co 3 O 4 NA/TM, with its catalytic activity being preserved for at least 20 h. It suggests that the existence of amorphous Co-Bi layer promotes more CoO x (OH) y generation on Co 3 O 4 surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electron irradiation induced amorphous SiO2 formation at metal oxide/Si interface at room temperature; electron beam writing on interfaces.

    PubMed

    Gurbán, S; Petrik, P; Serényi, M; Sulyok, A; Menyhárd, M; Baradács, E; Parditka, B; Cserháti, C; Langer, G A; Erdélyi, Z

    2018-02-01

    Al 2 O 3 (5 nm)/Si (bulk) sample was subjected to irradiation of 5 keV electrons at room temperature, in a vacuum chamber (pressure 1 × 10 -9 mbar) and formation of amorphous SiO 2 around the interface was observed. The oxygen for the silicon dioxide growth was provided by the electron bombardment induced bond breaking in Al 2 O 3 and the subsequent production of neutral and/or charged oxygen. The amorphous SiO 2 rich layer has grown into the Al 2 O 3 layer showing that oxygen as well as silicon transport occurred during irradiation at room temperature. We propose that both transports are mediated by local electric field and charged and/or uncharged defects created by the electron irradiation. The direct modification of metal oxide/silicon interface by electron-beam irradiation is a promising method of accomplishing direct write electron-beam lithography at buried interfaces.

  5. Magnetic Properties and the Giant Magnetoimpedance of Amorphous Co-Based Wires with a Carbon Coating

    NASA Astrophysics Data System (ADS)

    Golubeva, E. V.; Stepanova, E. A.; Balymov, K. G.; Volchkov, S. O.; Kurlyandskaya, G. V.

    2018-04-01

    A comparative analysis of the magnetic properties and specific features of the giant magnetoimpedance has been carried out for amorphous rapidly quenched wires with a composition of (Co0.94Fe0.06)72.5Si12.5B15 in the initial state and after the deposition of a carbon coating. The deposition of the defective graphene-like carbon layer was carried out under normal conditions during the exposure in toluene (methylbenzene). The method of the energy-dispersive X-ray spectroscopy made it possible to reliably show that after the modification in toluene, the carbon content on the surface significantly exceeds the natural amount of carbon. The deposition of the carbon coating induced changes in the distribution of the initial quenching stresses in the near-surface layer of amorphous wires. A comparative analysis of the magnetic and magnetoimpedance properties of the samples before and after exposure in the aromatic solvent confirms the occurrence of changes in the effective magnetic anisotropy as a result of this surface treatment.

  6. Conducting interface in oxide homojunction: Understanding of superior properties in black TiO 2

    DOE PAGES

    Lu, Xujie; Chen, Aiping; Luo, Yongkang; ...

    2016-09-14

    Black TiO 2 nanoparticles with a crystalline core and amorphous-shell structure exhibit superior optoelectronic properties in comparison with pristine TiO 2. The fundamental mechanisms underlying these enhancements, however, remain unclear, largely due to the inherent complexities and limitations of powder materials. Here, we fabricate TiO 2 homojunction films consisting of an oxygen-deficient amorphous layer on top of a highly crystalline layer, to simulate the structural/functional configuration of black TiO 2 nanoparticles. Metallic conduction is achieved at the crystalline–amorphous homointerface via electronic interface reconstruction, which we show to be the main reason for the enhanced electron transport of black TiO 2.more » As a result, this work not only achieves an unprecedented understanding of black TiO 2 but also provides a new perspective for investigating carrier generation and transport behavior at oxide interfaces, which are of tremendous fundamental and technological interest.« less

  7. Mechanical properties and structure evolution of single-crystalline silicon irradiated by 1 MeV Au+ and Cu+ ions

    NASA Astrophysics Data System (ADS)

    Liang, Wei; Zhu, Fei; Ling, Yunhan; Liu, Kezhao; Hu, Yin; Pan, Qifa; Chen, Limin; Zhang, Zhengjun

    2018-05-01

    Mechanical and structural evolutions of single-crystalline silicon irradiated by a series of doses 1 MeV Au+ ions and Cu+ ions are characterized by Surface laser-acoustic wave spectroscopy by (LA wave), Rutherford backscattering spectrometry and channeling (RBS/C) and transmission electron microscopy (TEM). The behavior of implanted Au+ and Cu+ ions was also simulated by using Stopping and range of ions in matter (SRIM) software package, respectively. It is demonstrated that LA wave and RBS could be applied for accurate evaluation of the TEM observed amorphous layer's thickness. The modified mechanical properties depend on the species and the dose of implantation. For 1 MeV Au+ ions, the threshold dose of completely amorphous is 5 × 1014 atoms/cm2, while the one for Cu+ ions is 5 × 1015 atoms/cm2. Upon completely amorphous, the young's modulus and layer density decreased significantly while saturated with the dose increasing sequentially.

  8. Fabrication of hierarchical porous hollow carbon spheres with few-layer graphene framework and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Hong, Min; Chen, Jiafu; Hu, Tianzhao; Xu, Qun

    2018-06-01

    Porous amorphous carbons with large number of defects and dangling bonds indicate great potential application in energy storage due to high specific surface area and strong adsorption properties, but poor conductivity and pore connection limit their practical application. Here few-layer graphene framework with high electrical conductivity is embedded and meanwhile hierarchical porous structure is constructed in amorphous hollow carbon spheres (HCSs) by catalysis of Fe clusters of angstrom scale, which are loaded in the interior of crosslinked polystyrene via a novel method. These unique HCSs effectively integrate the inherent properties from two-dimensional sp2-hybridized carbon, porous amorphous carbon, hierarchical pore structure and thin shell, leading to high specific capacitance up to 561 F g-1 at a current density of 0.5 A g-1 as an electrode of supercapacitor with excellent recyclability, which is much higher than those of other reported porous carbon materials up to present.

  9. Sputtered boron indium oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Stewart, Kevin A.; Gouliouk, Vasily; Keszler, Douglas A.; Wager, John F.

    2017-11-01

    Boron indium oxide (BIO) is studied for thin-film transistor (TFT) channel layer applications. Sputtered BIO thin films exhibit an amorphous phase over a wide range of B2O3/In2O3 ratios and remain amorphous up to 500 °C. The band gap decreases linearly with decreasing boron content, whereas device performance generally improves with decreasing boron content. The best amorphous BIO TFT exhibits a field-effect mobility of 10 cm2 V-1 s-1, turn-on voltage of 2.5 V, and sub-threshold swing of 0.72 V/dec. Decreasing the boron content to 12.5% leads to a polycrystalline phase, but further increases the mobility up to 20-40 cm2 V-1 s-1. TCAD simulation results suggest that the reason for higher performance after increasing the anneal temperature from 200 to 400 °C is due to a lower defect density in the sub-bandgap region of the BIO channel layer.

  10. Atomic Layer Deposition of Titanium Oxide on Single-Layer Graphene: An Atomic-Scale Study toward Understanding Nucleation and Growth

    PubMed Central

    2017-01-01

    Controlled synthesis of a hybrid nanomaterial based on titanium oxide and single-layer graphene (SLG) using atomic layer deposition (ALD) is reported here. The morphology and crystallinity of the oxide layer on SLG can be tuned mainly with the deposition temperature, achieving either a uniform amorphous layer at 60 °C or ∼2 nm individual nanocrystals on the SLG at 200 °C after only 20 ALD cycles. A continuous and uniform amorphous layer formed on the SLG after 180 cycles at 60 °C can be converted to a polycrystalline layer containing domains of anatase TiO2 after a postdeposition annealing at 400 °C under vacuum. Using aberration-corrected transmission electron microscopy (AC-TEM), characterization of the structure and chemistry was performed on an atomic scale and provided insight into understanding the nucleation and growth. AC-TEM imaging and electron energy loss spectroscopy revealed that rocksalt TiO nanocrystals were occasionally formed at the early stage of nucleation after only 20 ALD cycles. Understanding and controlling nucleation and growth of the hybrid nanomaterial are crucial to achieving novel properties and enhanced performance for a wide range of applications that exploit the synergetic functionalities of the ensemble. PMID:28356613

  11. Low-Temperature Growth of Hydrogenated Amorphous Silicon Carbide Solar Cell by Inductively Coupled Plasma Deposition Toward High Conversion Efficiency in Indoor Lighting.

    PubMed

    Kao, Ming-Hsuan; Shen, Chang-Hong; Yu, Pei-Chen; Huang, Wen-Hsien; Chueh, Yu-Lun; Shieh, Jia-Min

    2017-10-05

    A p-a-SiC:H window layer was used in amorphous Si thin film solar cells to boost the conversion efficiency in an indoor lighting of 500 lx. The p-a-SiC:H window layer/p-a-Si:H buffer layer scheme moderates the abrupt band bending across the p/i interface for the enhancement of V OC , J SC and FF in the solar spectra of short wavelengths. The optimized thickness of i-a-Si:H absorber layer is 400 nm to achieve the conversion efficiency of ~9.58% in an AM1.5 G solar spectrum. However, the optimized thickness of the absorber layer can be changed from 400 to 600 nm in the indoor lighting of 500 lx, exhibiting the maximum output power of 25.56 μW/cm 2 . Furthermore, various durability tests with excellent performance were investigated, which are significantly beneficial to harvest the indoor lights for applications in the self-powered internet of thing (IoT).

  12. On the Discontinuity of Polycrystalline Silicon Thin Films Realized by Aluminum-Induced Crystallization of PECVD-Deposited Amorphous Si

    NASA Astrophysics Data System (ADS)

    Pan, Qingtao; Wang, Tao; Yan, Hui; Zhang, Ming; Mai, Yaohua

    2017-04-01

    Crystallization of glass/Aluminum (50, 100, 200 nm) /hydrogenated amorphous silicon (a-Si:H) (50, 100, 200 nm) samples by Aluminum-induced crystallization (AIC) is investigated in this article. After annealing and wet etching, we found that the continuity of the polycrystalline silicon (poly-Si) thin films was strongly dependent on the double layer thicknesses. Increasing the a-Si:H/Al layer thickness ratio would improve the film microcosmic continuity. However, too thick Si layer might cause convex or peeling off during annealing. Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) are introduced to analyze the process of the peeling off. When the thickness ratio of a-Si:H/Al layer is around 1 to 1.5 and a-Si:H layer is less than 200 nm, the poly-Si film has a good continuity. Hall measurements are introduced to determine the electrical properties. Raman spectroscopy and X-ray diffraction (XRD) results show that the poly-Si film is completely crystallized and has a preferential (111) orientation.

  13. Amorphous TiO 2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics

    DOE PAGES

    Kim, In Soo; Haasch, Richard T.; Cao, Duyen H.; ...

    2016-09-06

    A low temperature (< 120 °C) route to pinhole-free amorphous TiO 2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultra-thin (12 nm) compact TiO 2 underlayers for planar halide perovskite PV. While device performance with as-deposited TiO 2 films is poor, we identify room temperature UV-O 3 treatment as a route to device efficiency comparable to crystalline TiO 2 thin films synthesized by higher temperature methods. Here, we further explore the chemical, physical, and interfacial properties 2more » that might explain the improved performance through x-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and x-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.« less

  14. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Cremona, M.; Achete, C. A.

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq3) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq3/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  15. Physical criteria for the interface passivation layer in hydrogenated amorphous/crystalline silicon heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Wang, Guanghong; Diao, Hongwei; Wang, Wenjing

    2018-01-01

    AFORS-HET (automat for simulation of heterostructures) simulation was utilized to explore the physical criteria for the passivation layer in hydrogenated amorphous/crystalline silicon heterojunction (SHJ) solar cells, by systematically investigating the solar cell current density-voltage (J-V) performance as a function of the interface defect density (D it) at the passivation layer/c-Si hetero-interface, the thickness (t) of the passivation layer, the bandgap (E g) of the passivation layer, and the density of dangling bond states (D db)/band tail states (D bt) in the band gap of the passivation layer. The corresponding impact regulations were presented clearly. Except for D it, the impacts of D db, D bt and E g are strongly dependent on the passivation layer thickness t. While t is smaller than 4-5 nm, the solar cell performance is less sensitive to the variation of D db, D bt and E g. Low D it at the a-Si:H/c-Si interface and small thickness t are the critical criteria for the passivation layer in such a case. However, if t has to be relatively larger, the microstructure, i.e. the material quality, including D db, D bt and E g, of the passivation layer should be controlled carefully. The mechanisms involved were analyzed and some applicable methods to prepare the passivation layer were proposed.

  16. Low Altitude Near-the-Horizon Propagation: A Comparison Between RPO and M-Layer

    DTIC Science & Technology

    1993-12-01

    scaling based on the assumption that a single mode contributes to the complete field strength (Ref. 31, output from M-Layer [Ref. 4, 5] in the over-the...PE. The parabolic equation approximation to the Maxwell wave equations is developed under the optical assumption that the operating frequency is so...profile data are specified (an array) capm zim profile data (modified index of refraction; an array) (a) RPO: from I to n/evs; M-Layer from 0 to nzlayr

  17. Effect of the Crystal Structure on the Electrical Properties of Thin-Film PZT Structures

    NASA Astrophysics Data System (ADS)

    Delimova, L. A.; Gushchina, E. V.; Zaitseva, N. V.; Seregin, D. S.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    A new method of two-stage crystallization of lead zirconate-titanate (PZT) films using a seed sublayer with a low excess lead content has been proposed and realized. A seed layer with a strong texture of perovskite Pe(111) grains is formed from a solution with a lead excess of 0-5 wt %; the fast growth of the grains is provided by the deposition of the main film from a solution with high lead content. As a result, a strong Pe(111) texture with complete suppression of the Pe(100) orientation forms. An analysis of current-voltage dependences of the transient currents and the distributions of the local conductivity measured by the contact AFM method reveals two various mechanisms of current percolation that are determined by traps in the bulk and at the perovskite grain interfaces.

  18. Polymer Encapsulation of an Amorphous Pharmaceutical by initiated Chemical Vapor Deposition for Enhanced Stability

    PubMed Central

    2016-01-01

    The usage of amorphous solids in practical applications, such as in medication, is commonly limited by the poor long-term stability of this state, because unwanted crystalline transitions occur. In this study, three different polymeric coatings are investigated for their ability to stabilize amorphous films of the model drug clotrimazole and to protect against thermally induced transitions. For this, drop cast films of clotrimazole are encapsulated by initiated chemical vapor deposition (iCVD), using perfluorodecyl acrylate (PFDA), hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA). The iCVD technique operates under solvent-free conditions at low temperatures, thus leaving the solid state of the encapsulated layer unaffected. Optical microscopy and X-ray diffraction data reveal that at ambient conditions of about 22 °C, any of these iCVD layers extends the lifetime of the amorphous state significantly. At higher temperatures (50 or 70 °C), the p-PFDA coating is unable to provide protection, while the p-HEMA and p-MAA strongly reduce the crystallization rate. Furthermore, p-HEMA and p-MAA selectively facilitate a preferential alignment of clotrimazole and, interestingly, even suppress crystallization upon a temporary, rapid temperature increase (3 °C/min, up to 150 °C). The results of this study demonstrate how a polymeric coating, synthesized directly on top of an amorphous phase, can act as a stabilizing agent against crystalline transitions, which makes this approach interesting for a variety of applications. PMID:27467099

  19. Polymer Encapsulation of an Amorphous Pharmaceutical by initiated Chemical Vapor Deposition for Enhanced Stability.

    PubMed

    Christian, Paul; Ehmann, Heike M A; Coclite, Anna Maria; Werzer, Oliver

    2016-08-24

    The usage of amorphous solids in practical applications, such as in medication, is commonly limited by the poor long-term stability of this state, because unwanted crystalline transitions occur. In this study, three different polymeric coatings are investigated for their ability to stabilize amorphous films of the model drug clotrimazole and to protect against thermally induced transitions. For this, drop cast films of clotrimazole are encapsulated by initiated chemical vapor deposition (iCVD), using perfluorodecyl acrylate (PFDA), hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA). The iCVD technique operates under solvent-free conditions at low temperatures, thus leaving the solid state of the encapsulated layer unaffected. Optical microscopy and X-ray diffraction data reveal that at ambient conditions of about 22 °C, any of these iCVD layers extends the lifetime of the amorphous state significantly. At higher temperatures (50 or 70 °C), the p-PFDA coating is unable to provide protection, while the p-HEMA and p-MAA strongly reduce the crystallization rate. Furthermore, p-HEMA and p-MAA selectively facilitate a preferential alignment of clotrimazole and, interestingly, even suppress crystallization upon a temporary, rapid temperature increase (3 °C/min, up to 150 °C). The results of this study demonstrate how a polymeric coating, synthesized directly on top of an amorphous phase, can act as a stabilizing agent against crystalline transitions, which makes this approach interesting for a variety of applications.

  20. Preparation of anatase TiO2 thin film by low temperature annealing as an electron transport layer in inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Noh, Hongche; Oh, Seong-Geun; Im, Seung Soon

    2015-04-01

    To prepare the anatase TiO2 thin films on ITO glass, amorphous TiO2 colloidal solution was synthesized through the simple sol-gel method by using titanium (IV) isopropoxide as a precursor. This amorphous TiO2 colloidal solution was spread on ITO glass by spin-coating, then treated at 450 °C to obtain anatase TiO2 film (for device A). For other TiO2 films, amorphous TiO2 colloidal solution was treated through solvothermal process at 180 °C to obtain anatase TiO2 colloidal solution. This anatase TiO2 colloidal solution was spread on ITO glass by spin coating, and then annealed at 200 °C (for device B) and 130 °C (for device C), respectively. The average particle size of amorphous TiO2 colloidal solution was about 1.0 nm and that of anatase TiO2 colloidal solution was 10 nm. The thickness of TiO2 films was about 15 nm for all cases. When inverted polymer solar cells were fabricated by using these TiO2 films as an electron transport layer, the device C showed the highest PCE (2.6%) due to the lack of defect, uniformness and high light absorbance of TiO2 films. The result of this study can be applied for the preparation of inverted polymer solar cell using TiO2 films as a buffer layer at low temperature on plastic substrate by roll-to roll process.

  1. Accuracy of Diagnostic Imaging Modalities for Classifying Pediatric Eyes as Papilledema Versus Pseudopapilledema.

    PubMed

    Chang, Melinda Y; Velez, Federico G; Demer, Joseph L; Bonelli, Laura; Quiros, Peter A; Arnold, Anthony C; Sadun, Alfredo A; Pineles, Stacy L

    2017-12-01

    To identify the most accurate diagnostic imaging modality for classifying pediatric eyes as papilledema (PE) or pseudopapilledema (PPE). Prospective observational study. Nineteen children between the ages of 5 and 18 years were recruited. Five children (10 eyes) with PE, 11 children (19 eyes) with PPE owing to suspected buried optic disc drusen (ODD), and 3 children (6 eyes) with PPE owing to superficial ODD were included. All subjects underwent imaging with B-scan ultrasonography, fundus photography, autofluorescence, fluorescein angiography (FA), optical coherence tomography (OCT) of the retinal nerve fiber layer (RNFL), and volumetric OCT scans through the optic nerve head with standard spectral-domain (SD OCT) and enhanced depth imaging (EDI OCT) settings. Images were read by 3 masked neuro-ophthalmologists, and the final image interpretation was based on 2 of 3 reads. Image interpretations were compared with clinical diagnosis to calculate accuracy and misinterpretation rates of each imaging modality. Accuracy of each imaging technique for classifying eyes as PE or PPE, and misinterpretation rates of each imaging modality for PE and PPE. Fluorescein angiography had the highest accuracy (97%, 34 of 35 eyes, 95% confidence interval 92%-100%) for classifying an eye as PE or PPE. FA of eyes with PE showed leakage of the optic nerve, whereas eyes with suspected buried ODD demonstrated no hyperfluorescence, and eyes with superficial ODD showed nodular staining. Other modalities had substantial likelihood (30%-70%) of misinterpretation of PE as PPE. The best imaging technique for correctly classifying pediatric eyes as PPE or PE is FA. Other imaging modalities, if used in isolation, are more likely to lead to misinterpretation of PE as PPE, which could potentially result in failure to identify a life-threatening disorder causing elevated intracranial pressure and papilledema. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  2. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  3. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE PAGES

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; ...

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  4. Method of produce ultra-low friction carbon films

    DOEpatents

    Erdemir, Ali; Fenske, George R.; Eryilmaz, Osman Levent; Lee, Richard H.

    2003-04-15

    A method and article of manufacture of amorphous diamond-like carbon. The method involves providing a substrate in a chamber, providing a mixture of a carbon containing gas and hydrogen gas with the mixture adjusted such that the atomic molar ratio of carbon to hydrogen is less than 0.3, including all carbon atoms and all hydrogen atoms in the mixture. A plasma is formed of the mixture and the amorphous diamond-like carbon film is deposited on the substrate. To achieve optimum bonding an intervening bonding layer, such as Si or SiO.sub.2, can be formed from SiH.sub.4 with or without oxidation of the layer formed.

  5. Investigation of an anomalous hump phenomenon in via-type amorphous In-Ga-Zn-O thin-film transistors under positive bias temperature stress

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen; Liao, Po-Yung; Chang, Ting-Chang; Chen, Bo-Wei; Huang, Hui-Chun; Su, Wan-Ching; Chiang, Hsiao-Cheng; Zhang, Qun

    2017-04-01

    Amorphous InGaZnO thin film transistors (a-IGZO TFTs) with an etching-stop layer (ESL) exhibit an anomalous negative shift of threshold voltage (Vth) under positive bias temperature stress. TFTs with wider and shorter channels show a clear hump phenomenon, resulting from the existence of both main channels and parasitic channels. The electrons trapped in the gate insulator are responsible for the positive shift in the main channel characteristics. The electrons trapped near the IGZO edges and the holes injected into the ESL layer above InGaZnO (IGZO) jointly determine the shift of the parasitic TFT performance.

  6. Thermocapillary convection of melts and its role in laser-plasma synthesis and laser-induced amorphism

    NASA Astrophysics Data System (ADS)

    Uglov, A. A.; Smurov, I. Iu.; Gus'kov, A. G.; Semakhin, S. A.

    1987-06-01

    The role of thermocapillary convection in mass transfer processes in melts is investigated analytically and experimentally using vacuum-arc melted Ni63-Ta37 and Cu50-Zr50 alloys. It is shown that thermocapillary convection not only leads to the transfer of alloying components to the deeper layers of the melt but also may produce, in certain cases, a significant temperature redistribution in the liquid phase. Convective transfer dominates over conduction when the product of Re and Pr is greater than 1. In the experiments, the structure of the amorphous and crystalline layers in the solidified alloys is found to be in qualitative agreement with the structure of a thermocapillary vortex.

  7. A new three-tier architecture design for multi-sphere neutron spectrometer with the FLUKA code

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Yang, Jian-Bo; Tuo, Xian-Guo; Liu, Zhi; Wang, Qi-Biao; Wang, Xu

    2016-07-01

    The current commercially, available Bonner sphere neutron spectrometer (BSS) has high sensitivity to neutrons below 20 MeV, which causes it to be poorly placed to measure neutrons ranging from a few MeV to 100 MeV. The paper added moderator layers and the auxiliary material layer upon 3He proportional counters with FLUKA code, with a view to improve. The results showed that the responsive peaks to neutrons below 20 MeV gradually shift to higher energy region and decrease slightly with the increasing moderator thickness. On the contrary, the response for neutrons above 20 MeV was always very low until we embed auxiliary materials such as copper (Cu), lead (Pb), tungsten (W) into moderator layers. This paper chose the most suitable auxiliary material Pb to design a three-tier architecture multi-sphere neutron spectrometer (NBSS). Through calculating and comparing, the NBSS was advantageous in terms of response for 5-100 MeV and the highest response was 35.2 times the response of polyethylene (PE) ball with the same PE thickness.

  8. Guided wave attenuation in coated pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J. S.

    2016-02-01

    Long-range guided wave testing (GWT) is routinely used for the monitoring and detection of corrosion defects in above ground pipelines in various industries. The GWT test range in buried, coated pipelines is greatly reduced compared to aboveground pipelines due to energy leakage into the embedding soil. In this study, we aim to increase test ranges for buried pipelines. The effect of pipe coatings on the T(0,1) and L(0,2) guided wave attenuation is investigated using a full-scale experimental apparatus and model predictions. Tests are performed on a fusion-bonded epoxy (FBE)-coated 8" pipe, buried in loose and compacted sand over a frequency range of 10-35 kHz. The application of a low impedance coating is shown to effectively decouple the influence of the sand on the ultrasound leakage from the buried pipe. We demonstrate ultrasonic isolation of a buried pipe by coating the pipe with a Polyethylene (PE)-foam layer that has a smaller impedance than both pipe and sand and the ability to withstand the overburden load from the sand. The measured attenuation in the buried PE-foam-FBE-coated pipe is substantially reduced, in the range of 0.3-1.2 dBm-1 for loose and compacted sand conditions, compared to buried FBE-coated pipe without the PE-foam, where the measured attenuation is in the range of 1.7-4.7 dBm-1. The acoustic properties of the PE-foam are measured independently using ultrasonic interferometry technique and used in model predictions of guided wave propagation in a buried coated pipe. Good agreement is found between the attenuation measurements and model predictions. The attenuation exhibits periodic peaks in the frequency domain corresponding to the through-thickness resonance frequencies of the coating layer. The large reduction in guided wave attenuation for PE-coated pipes would lead to greatly increased GWT test ranges, so such coatings would be attractive for new pipeline installations.

  9. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  10. Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Legnani, C.; Ribeiro Pinto, P. M.; Cremona, M.; de Araújo, P. J. G.; Achete, C. A.

    2003-06-01

    White-blue electroluminescent emission with a voltage bias less than 10 V was achieved in rf sputter-deposited amorphous carbon nitride (a-CN) and amorphous silicon carbon nitride (a-SiCN) thin-film-based devices. The heterojunction structures of these devices consist of: Indium tin oxide (ITO), used as a transparent anode; amorphous carbon film as an emission layer, and aluminum as a cathode. The thickness of the carbon films was about 250 Å. In all of the produced diodes, a stable visible emission peaked around 475 nm is observed at room temperature and the emission intensity increases with the current density. For an applied voltage of 14 V, the luminance was about 3 mCd/m2. The electroluminescent properties of the two devices are discussed and compared.

  11. Self-Functionalization Behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells.

    PubMed

    Ciro, John; Ramírez, Daniel; Mejía Escobar, Mario Alejandro; Montoya, Juan Felipe; Mesa, Santiago; Betancur, Rafael; Jaramillo, Franklin

    2017-04-12

    Fabrication of solution-processed perovskite solar cells (PSCs) requires the deposition of high quality films from precursor inks. Frequently, buffer layers of PSCs are formed from dispersions of metal oxide nanoparticles (NPs). Therefore, the development of trustable methods for the preparation of stable colloidal NPs dispersions is crucial. In this work, a novel approach to form very compact semiconducting buffer layers with suitable optoelectronic properties is presented through a self-functionalization process of the nanocrystalline particles by their own amorphous phase and without adding any other inorganic or organic functionalization component or surfactant. Such interconnecting amorphous phase composed by residual nitrate, hydroxide, and sodium ions, proved to be fundamental to reach stable colloidal dispersions and contribute to assemble the separate crystalline nickel oxide NPs in the final film, resulting in a very homogeneous and compact layer. A proposed mechanism behind the great stabilization of the nanoparticles is exposed. At the end, the self-functionalized nickel oxide layer exhibited high optoelectronic properties enabling perovskite p-i-n solar cells as efficient as 16.6% demonstrating the pertinence of the presented strategy to obtain high quality buffer layers processed in solution at room temperature.

  12. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine

    Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  13. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE PAGES

    Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine; ...

    2016-08-01

    Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  14. Plasma-enhanced atomic layer deposition of titanium oxynitrides films: A comparative spectroscopic and electrical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowińska, Małgorzata, E-mail: malgorzata.sowinska@b-tu.de; Henkel, Karsten; Schmeißer, Dieter

    2016-01-15

    The process parameters' impact of the plasma-enhanced atomic layer deposition (PE-ALD) method on the oxygen to nitrogen (O/N) ratio in titanium oxynitride (TiO{sub x}N{sub y}) films was studied. Titanium(IV)isopropoxide in combination with NH{sub 3} plasma and tetrakis(dimethylamino)titanium by applying N{sub 2} plasma processes were investigated. Samples were characterized by the in situ spectroscopic ellipsometry, x-ray photoelectron spectroscopy, and electrical characterization (current–voltage: I-V and capacitance–voltage: C-V) methods. The O/N ratio in the TiO{sub x}N{sub y} films is found to be very sensitive for their electric properties such as conductivity, dielectric breakdown, and permittivity. Our results indicate that these PE-ALD film propertiesmore » can be tuned, via the O/N ratio, by the selection of the process parameters and precursor/coreactant combination.« less

  15. Understanding the Structure of Amorphous Thin Film Hafnia - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Andre

    2015-08-27

    Hafnium Oxide (HfO 2) amorphous thin films are being used as gate oxides in transistors because of their high dielectric constant (κ) over Silicon Dioxide. The present study looks to find the atomic structure of HfO 2 thin films which hasn’t been done with the technique of this study. In this study, two HfO 2 samples were studied. One sample was made with thermal atomic layer deposition (ALD) on top of a Chromium and Gold layer on a silicon wafer. The second sample was made with plasma ALD on top of a Chromium and Gold layer on a Silicon wafer.more » Both films were deposited at a thickness of 50nm. To obtain atomic structure information, Grazing Incidence X-ray diffraction (GIXRD) was carried out on the HfO 2 samples. Because of this, absorption, footprint, polarization, and dead time corrections were applied to the scattering intensity data collected. The scattering curves displayed a difference in structure between the ALD processes. The plasma ALD sample showed the broad peak characteristic of an amorphous structure whereas the thermal ALD sample showed an amorphous structure with characteristics of crystalline materials. This appears to suggest that the thermal process results in a mostly amorphous material with crystallites within. Further, the scattering intensity data was used to calculate a pair distribution function (PDF) to show more atomic structure. The PDF showed atom distances in the plasma ALD sample had structure up to 10 Å, while the thermal ALD sample showed the same structure below 10 Å. This structure that shows up below 10 Å matches the bond distances of HfO 2 published in literature. The PDF for the thermal ALD sample also showed peaks up to 20 Å, suggesting repeating atomic spacing outside the HfO 2 molecule in the sample. This appears to suggest that there is some crystalline structure within the thermal ALD sample.« less

  16. Two-step electrodeposition construction of flower-on-sheet hierarchical cobalt hydroxide nano-forest for high-capacitance supercapacitors.

    PubMed

    Yang, Wanlu; Gao, Zan; Ma, Jing; Wang, Jun; Zhang, Xingming; Liu, Lianhe

    2013-11-28

    A novel flower-on-sheet hierarchical morphology of α-Co(OH)2 nanostructures was achieved via an easy two-step synthesis strategy. The method is based on first a galvanostatic electrodeposition (GE) of vertically aligned interconnected Co(OH)2 nanosheets to form a branch layer and second a potentiostatic electrodeposition (PE) of Co(OH)2 microflowers on the obtained branch layer from the secondary growth of their sheet-like precursors. The formation mechanism of this special PE time-dependent nanostructure was proposed and their morphology-dependent supercapacitor properties were also investigated. For a given areas mass loading, high specific capacitances of 1822 F g(-1) have been achieved for the electrode obtained after 200 s GE followed by a 300 s PE in a three-electrode configuration, and it maintained 91% of its initial capacity after 1000 constant-current charge/discharge cycles. Even when the discharge current density was increased from 1 to 50 mA cm(-2), the capacitance was still as high as 1499 F g(-1), indicating an excellent rate performance of the fabricated electrodes. The high performances of the electrodes are attributed to the special porous structure, 3D hierarchical morphology, vertical aligned orientation, and low contact resistance between active material and charge collector.

  17. Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles.

    PubMed

    Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping

    2018-04-27

    Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr 3 ) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr 3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr 3 PeLEDs realized an improvement in maximum luminescence ranging from ∼2348 to ∼7660 cd m -2 (∼226% enhancement) and current efficiency from 1.65 to 3.08 cd A -1 (∼86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr 3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.

  18. Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping

    2018-04-01

    Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr3) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr3 PeLEDs realized an improvement in maximum luminescence ranging from ˜2348 to ˜7660 cd m-2 (˜226% enhancement) and current efficiency from 1.65 to 3.08 cd A-1 (˜86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.

  19. Amorphous GeOx-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries.

    PubMed

    Choi, Seung Ho; Jung, Kyeong Youl; Kang, Yun Chan

    2015-07-01

    Amorphous GeOx-coated reduced graphene oxide (rGO) balls with sandwich structure are prepared via a spray-pyrolysis process using polystyrene (PS) nanobeads as sacrificial templates. This sandwich structure is formed by uniformly coating the exterior and interior of few-layer rGO with amorphous GeOx layers. X-ray photoelectron spectroscopy analysis reveals a Ge:O stoichiometry ratio of 1:1.7. The amorphous GeOx-coated rGO balls with sandwich structure have low charge-transfer resistance and fast Li(+)-ion diffusion rate. For example, at a current density of 2 A g(-1), the GeOx-coated rGO balls with sandwich and filled structures and the commercial GeO2 powders exhibit initial charge capacities of 795, 651, and 634 mA h g(-1), respectively; the corresponding 700th-cycle charge capacities are 758, 579, and 361 mA h g(-1). In addition, at a current density of 5 A g(-1), the rGO balls with sandwich structure have a 1600th-cycle reversible charge capacity of 629 mA h g(-1) and a corresponding capacity retention of 90.7%, as measured from the maximum reversible capacity at the 100th cycle.

  20. The "neutron channel design"—A method for gaining the desired neutrons

    NASA Astrophysics Data System (ADS)

    Hu, G.; Hu, H. S.; Wang, S.; Pan, Z. H.; Jia, Q. G.; Yan, M. F.

    2016-12-01

    The neutrons with desired parameters can be obtained after initial neutrons penetrating various structure and component of the material. A novel method, the "neutron channel design", is proposed in this investigation for gaining the desired neutrons. It is established by employing genetic algorithm (GA) combining with Monte Carlo software. This method is verified by obtaining 0.01eV to 1.0eV neutrons from the Compact Accelerator-driven Neutron Source (CANS). One layer polyethylene (PE) moderator was designed and installed behind the beryllium target in CANS. The simulations and the experiment for detection the neutrons were carried out. The neutron spectrum at 500cm from the PE moderator was simulated by MCNP and PHITS software. The counts of 0.01eV to 1.0eV neutrons were simulated by MCNP and detected by the thermal neutron detector in the experiment. These data were compared and analyzed. Then this method is researched on designing the complex structure of PE and the composite material consisting of PE, lead and zirconium dioxide.

  1. Ultrastructural studies on the boundary tissue of the seminiferous tubules of different mammals.

    PubMed

    Cieciura, L; Jaszczuk-Jarosz, B; Pietrzkowska, K

    1988-01-01

    The aims of our studies were to compare the ultrastructure of the boundary tissue of seminiferous tubules of various mammals (rat, mouse, hamster, guinea pig, rabbit, ram, bull and man). Visual analysis of electron micrographs revealed the similarity of structure of all layers at investigated animals. The boundary tissue consists of 4 layers: 1) amorphous inner lamina, 2) cellular inner lamina, 3) amorphous outer lamina, 4) cellular outer lamina. The outer lamina of boundary tissue of rat, mouse and hamster revealed in histochemical reactions meshes resembling honey-combs. The wall of seminiferous canalicules of bull and ram consists of more bigger and different structure than one at the other laboratory animals. The most different structure of boundary tissue in man was observed. The capillary vessels penetrate in the myofibroblastic layer, when comparted to that found in other mammals on the surface of the wall.

  2. Ultrathin IBAD MgO films for epitaxial growth on amorphous substrates and sub-50 nm membranes

    DOE PAGES

    Wang, Siming; Antonakos, C.; Bordel, C.; ...

    2016-11-07

    Here, a fabrication process has been developed for high energy ion beam assisted deposition (IBAD) biaxial texturing of ultrathin (~1 nm) MgO films, using a high ion-to-atom ratio and post-deposition annealing instead of a homoepitaxial MgO layer. These films serve as the seed layer for epitaxial growth of materials on amorphous substrates such as electron/X-ray transparent membranes or nanocalorimetry devices. Stress measurements and atomic force microscopy of the MgO films reveal decreased stress and surface roughness, while X-ray diffraction of epitaxial overlayers demonstrates the improved crystal quality of films grown epitaxially on IBAD MgO. The process simplifies the synthesis ofmore » IBAD MgO, fundamentally solves the “wrinkle” issue induced by the homoepitaxial layer on sub-50 nm membranes, and enables studies of epitaxial materials in electron/X-ray transmission and nanocalorimetry.« less

  3. Raman studies on molecular and ionic forms in solid layers of nitrogen dioxide - Temperature and light induced effects

    NASA Astrophysics Data System (ADS)

    Givan, A.; Loewenschuss, A.

    1990-12-01

    Raman spectra of zero-pressure-formed N2O4 solid layers are reported. Sample composition is extremely dependent upon deposition conditions. For ordered and pure solid N2O4(D2h), produced by slow NO2 deposition, temperature cycling over the range in which the solid is stable shows no significant spectral changes and does not result in autoionization, as argued in a previous Raman study. Fast and low temperature deposited layers are amorphous and multicomponent, showing bands of disordered and isomeric molecular N2O4 and of ionic NO + NO3, nitrosonium nitrate. For nitrosonium nitrate, three solid modifications can be characterized spectroscopically. In the amorphous phase, a light induced, temperature dependent, reversible transition between molecular and ionic nitrogen tetroxide is observed below 150 K. The paths leading to nitrosonium nitrate formation are examined.

  4. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, R.; Loomis, G.E.; Thomas, I.M.

    1999-03-16

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.

  5. Scanning electron microscopy, x-ray diffraction, and electron microprobe analysis of calcific deposits on intrauterine contraceptive devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, S.R.; Wilkinson, E.J.

    Deposits found on intrauterine contraceptive devices (IUDs) were studied by scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray microanalysis. All seven devices, including five plastic and two copper IUDs, were coated with a crust containing cellular, acellular, and fibrillar material. The cellular material was composed of erythrocytes, leukocytes, cells of epithelial origin, sperm, and bacteria. Some of the bacteria were filamentous, with acute-angle branching. The fibrillar material appeared to be fibrin. Most of the acellular material was amorphous; calcite was identified by x-ray diffraction, and x-ray microanalysis showed only calcium. Some of the acellular material, particularly that on themore » IUD side of the crust, was organized in spherulitic crystals and was identified as calcium phosphate by x-ray microanalysis. The crust was joined to the IUD surface by a layer of fibrillar and amorphous material. It is suggested that the initial event in the formation of calcific deposits on IUD surfaces is the deposition of an amorphous and fibrillar layer. Various types of cells present in the endometrial environment adhere to this layer and then calcify. Thus, the deposition of calcific material on the IUDs is a calcification phenomenon, not unlike the formation of plaque on teeth.« less

  6. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    NASA Astrophysics Data System (ADS)

    Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian

    2015-03-01

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality ( 0002 ) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by ( 0002 ) oriented wurtzite GaN and { 111 } oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H2 into Ar and/or N2 during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H2 into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted { 3 3 ¯ 02 } orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H2 into N2 due to the complex reaction between H2 and N2.

  7. Functional Multi-Nanolayer Coatings of Amorphous Carbon/Tungsten Carbide with Exceptional Mechanical Durability and Corrosion Resistance.

    PubMed

    Nemati, Narguess; Bozorg, Mansoor; Penkov, Oleksiy V; Shin, Dong-Gap; Sadighzadeh, Asghar; Kim, Dae-Eun

    2017-09-06

    A novel functional multilayer coating with periodically stacked nanolayers of amorphous carbon (a:C)/tungsten carbide (WC) and an adhesion layer of chromium (Cr) was deposited on 304 stainless steel using a dual magnetron sputtering technique. Through process optimization, highly densified coatings with high elasticity and shear modulus, excellent wear resistance, and minimal susceptibility to corrosive and caustic media could be acquired. The structural and mechanical properties of the optimized coatings were studied in detail using a variety of analytical techniques. Furthermore, finite element method simulations indicated that the stress generated due to contact against a steel ball was distributed well within the coating, which allowed the stresses to be lower than the yield threshold of the coating. Thus, an ultralow wear rate of ∼10 -12 mm 3 /N mm could be achieved in dry sliding conditions under relatively high Hertzian contact pressures of ∼0.4-0.9 GPa. The amorphous and pinhole-free structure of the individual layers, sufficient number of pairs, and the relatively dense stacked layers resulted in significant polarization resistance (Z″ = 5.5 × 10 6 Ω cm 2 ) and increased the corrosion resistance of the coating by 10-fold compared to that of recently reported corrosion-resistant coatings.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: girs@ispms.tsc.ru; Meisner, L. L., E-mail: lm@ispms.tsc.ru

    The effect of the Ta-ion beam implantation on the micro- and nanostructures of the surface layers of NiTi alloy was investigated using transmission electron microscopy and Auger spectroscopy. It is found that the elements are distributed non-uniformly with depth, so that the sublayers differ significantly in structure. The modified surface layer was found to consist of two sublayers, i.e. the upper oxide layer and the lower-lying amorphous layer that contains a maximum of Ta atoms.

  9. Fabrication of Organic Thin Film Transistors Using Layer-By-Layer Assembly (Preprint)

    DTIC Science & Technology

    2007-03-01

    thin-film transistors ( TFTs ) have received considerable attention as a low- cost, light-weight, flexible alternative to traditional amorphous silicon...Previous studies have investigated the use of a number of materials for both the active layer and the gate dielectric in various TFT architectures. These...performance. Conjugated small molecules, such as pentacene, or polymers, such as poly(3- hexylthiophene), are commonly used as the active layer in organic TFT

  10. Development of a Solar Cell Back Sheet with Excellent UV Durability and Thermal Conductivity.

    PubMed

    Kang, Seong-Hwan; Choi, Jaeho; Lee, Sung-Ho; Song, Young-Hoon; Park, Jong-Se; Jung, In-Sung; Jung, Jin-Su; Kim, Chong-Yeal; Yang, O-Bong

    2018-09-01

    The back sheet is one of the most important materials in photovoltaic (PV) modules. It plays an important role in protecting the solar cell from the environment by preventing moisture penetration. In the back sheet, the outermost layer is composed of a polyester (PET) film to protect the PV module from moisture, and the opposite layer is composed of a TiO2 + PE material. Nowadays, PV modules are installed in the desert. Therefore, methods to improve the power generation efficiency of PV modules need to be investigated as the efficiency is affected by temperature resulting from the heat radiation effect. Using a back sheet with a high thermal conductivity, the module output efficiency can be increased as heat is efficiently dissipated. In this study, a thermally conductive film was fabricated by mixing a reference film (TiO2 + PE) and a non-metallic material, MgO, with high thermal conductivity. UV irradiation tests of the film were conducted. The thermally conductive film (TiO2 + PE + MgO) showed higher conductivity than a reference film. No visible cracks and low yellowing degree were found in thermally conductive film, confirming its excellent UV durability characteristics. The sample film was bonded to a PET layer, and a back sheet was fabricated. The yellowing of the back sheet was also analyzed after UV irradiation. In addition, mini modules with four solar cell were fabricated using the developed back sheet, and a comparative outdoor test was conducted. The results showed that power generation improved by 1.38%.

  11. Spin transport and spin accumulation signals in Si studied in tunnel junctions with a Fe/Mg ferromagnetic multilayer and an amorphous SiOxNy tunnel barrier

    NASA Astrophysics Data System (ADS)

    Nakane, Ryosho; Hada, Takato; Sato, Shoichi; Tanaka, Masaaki

    2018-04-01

    We studied the spin accumulation signals in phosphorus-doped n+-Si (8 × 1019 cm-3) by measuring the spin transport in three-terminal vertical devices with Fe(3 nm)/Mg(0 and 1 nm)/SiOxNy(1 nm)/n+-Si(001) tunnel junctions, where the amorphous SiOxNy layer was formed by oxnitridation of the Si substrate with radio frequency plasma. Obvious spin accumulation signals were observed at 4-300 K in the spin extraction geometry when the thickness of the Mg insertion layer was 1 nm. We found that by inserting a thin (1 nm) Mg layer, intermixing of Fe and SiOxNy is suppressed, leading to the appearance of the spin accumulation signals, and this result is consistent with the dead layer model recently proposed by our group [S. Sato et al., Appl. Phys. Lett. 107, 032407 (2015)]. We obtained relatively high spin polarization (PS) of electrons tunneling through the junction and long spin lifetime (τS): PS = 16% and τS = 5.6 ns at 4 K and PS = 7.5% and τS = 2.7 ns at 300 K. Tunnel junctions with an amorphous SiOxNy tunnel barrier are very promising for Si-based spintronic devices, since they can be formed by the method compatible with the silicon complementary metal-oxide-semiconductor technology.

  12. Microstructure and Electrochemical Behavior of Fe-Based Amorphous Metallic Coatings Fabricated by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Wang, L.; He, D. Y.; Wang, F. C.; Liu, Y. B.

    2011-01-01

    A Fe48Cr15Mo14C15B6Y2 alloy with high glass forming ability (GFA) was selected to prepare amorphous metallic coatings by atmospheric plasma spraying (APS). The as-deposited coatings present a dense layered structure and low porosity. Microstructural studies show that some nanocrystals and a fraction of yttrium oxides formed during spraying, which induced the amorphous fraction of the coatings decreasing to 69% compared with amorphous alloy ribbons of the same component. High thermal stability enables the amorphous coatings to work below 910 K without crystallization. The results of electrochemical measurement show that the coatings exhibit extremely wide passive region and relatively low passive current density in 3.5% NaCl and 1 mol/L HCl solutions, which illustrate their superior ability to resist localized corrosion. Moreover, the corrosion behavior of the amorphous coatings in 1 mol/L H2SO4 solution is similar to their performance under conditions containing chloride ions, which manifests their flexible and extensive ability to withstand aggressive environments.

  13. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  14. Formation of amorphous materials

    DOEpatents

    Johnson, William L.; Schwarz, Ricardo B.

    1986-01-01

    Metastable amorphous or fine crystalline materials are formed by solid state reactions by diffusion of a metallic component into a solid compound or by diffusion of a gas into an intermetallic compound. The invention can be practiced on layers of metals deposited on an amorphous substrate or by intermixing powders with nucleating seed granules. All that is required is that the diffusion of the first component into the second component be much faster than the self-diffusion of the first component. The method is practiced at a temperature below the temperature at which the amorphous phase transforms into one or more crystalline phases and near or below the temperature at which the ratio of the rate of diffusion of the first component to the rate of self-diffusion is at least 10.sup.4. This anomalous diffusion criteria is found in many binary, tertiary and higher ordered systems of alloys and appears to be found in all alloy systems that form amorphous materials by rapid quenching. The method of the invention can totally convert much larger dimensional materials to amorphous materials in practical periods of several hours or less.

  15. Eddy-current effect on resonant magnetoelectric coupling in magnetostrictive-piezoelectric laminated composites

    NASA Astrophysics Data System (ADS)

    Liu, Guoxi; Zhang, Chunli; Chen, Weiqiu; Dong, Shuxiang

    2013-07-01

    An analytical model of resonant magnetoelectric (ME) coupling in magnetostrictive (MS)-piezoelectric (PE) laminated composites in consideration of eddy-current effect in MS layer using equivalent circuit method is presented. Numerical calculations show that: (1) the eddy-current has a strong effect on ME coupling in MS-PE laminated composites at resonant frequency; and (2) the resonant ME coupling is then significantly dependent on the sizes of ME laminated composites, which were neglected in most previous theoretical analyses. The achieved results provide a theoretical guidance for the practice engineering design, manufacture, and application of ME laminated composites and devices.

  16. Ancient microbial activity recorded in fracture fillings from granitic rocks (Äspö Hard Rock Laboratory, Sweden).

    PubMed

    Heim, C; Lausmaa, J; Sjövall, P; Toporski, J; Dieing, T; Simon, K; Hansen, B T; Kronz, A; Arp, G; Reitner, J; Thiel, V

    2012-07-01

    Fracture minerals within the 1.8-Ga-old Äspö Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Äspö Hard Rock Laboratory. This approach included polarization microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The fracture mineral succession, consisting of fluorite and low-temperature calcite, showed a thin (20-100 μm), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF-SIMS imaging revealed abundant, partly functionalized organic moieties, for example, C(x)H(y)⁺, C(x)H(y)N⁺, C(x)H(y)O⁺. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C-C, C-N and C-O bonds. According to its organic nature and the abundance of relatively unstable N- and O- heterocompounds, the organic-rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, δ¹³C, δ¹⁸O and ⁸⁷Sr/⁸⁶Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past. © 2012 Blackwell Publishing Ltd.

  17. The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass

    NASA Astrophysics Data System (ADS)

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Berthon, Claude; Wang, Zhaoying; Mitroshkov, Alexandre; Zhu, Zihua; Ryan, Joseph V.

    2015-02-01

    International Simple Glass - a six oxide borosilicate glass selected by the international nuclear glass community to improve the understanding of glass corrosion mechanisms and kinetics - was altered at 90 °C in a solution initially saturated with respect to amorphous 29SiO2. The pH90°C, was fixed at 9 at the start of the experiment and raised to 11.5 after 209 d by the addition of KOH. Isotope sensitive analytical techniques were used to analyze the solution and altered glass samples, helping to understand the driving forces and rate limiting processes controlling long-term glass alteration. At pH 9, the corrosion rate continuously drops and the glass slowly transforms into a uniform, homogeneous amorphous alteration layer. The mechanisms responsible for this transformation are water penetration through the growing alteration layer and ion exchange. We demonstrate that this amorphous alteration layer is not a precipitate resulting from the hydrolysis of the silicate network; it is mostly inherited from the glass structure from which the most weakly bonded cations (Na, Ca and B) have been released. At pH 11.5, the alteration process is very different: the high solubility of glass network formers (Si, Al, Zr) triggers the rapid and complete dissolution of the glass (dissolution becomes congruent) and precipitation of amorphous and crystalline phases. Unlike at pH 9 where glass corrosion rate decreased by 3 orders of magnitude likely due to the retroaction of the alteration layer on water dynamics/reactivity at the reaction front, the rate at pH 11.5 is maintained at a value close to the forward rate due to both the hydrolysis of the silicate network promoted by OH- and the precipitation of CSH and zeolites. This study provides key information for a unified model for glass dissolution.

  18. Derivation of the stress-strain behavior of the constituents of bio-inspired layered TiO2/PE-nanocomposites by inverse modeling based on FE-simulations of nanoindentation test.

    PubMed

    Lasko, G; Schäfer, I; Burghard, Z; Bill, J; Schmauder, S; Weber, U; Galler, D

    2013-03-01

    Owing to the apparent simple morphology and peculiar properties, nacre, an iridescent layer, coating of the inner part of mollusk shells, has attracted considerable attention of biologists, material scientists and engineers. The basic structural motif in nacre is the assembly of oriented plate-like aragonite crystals with a 'brick' (CaCO3 crystals) and 'mortar' (macromolecular components like proteins) organization. Many scientific researchers recognize that such structures are associated with the excellent mechanical properties of nacre and biomimetic strategies have been proposed to produce new layered nanocomposites. During the past years, increasing efforts have been devoted towards exploiting nacre's structural design principle in the synthesis of novel nanocomposites. However, the direct transfer of nacre's architecture to an artificial inorganic material has not been achieved yet. In the present contribution we report on laminated architecture, composed of the inorganic oxide (TiO2) and organic polyelectrolyte (PE) layers which fulfill this task. To get a better insight and understanding concerning the mechanical behaviour of bio-inspired layered materials consisting of oxide ceramics and organic layers, the elastic-plastic properties of titanium dioxide and organic polyelectrolyte phase are determined via FE-modelling of the nanoindentation process. With the use of inverse modeling and based on numerical models which are applied on the microscopic scale, the material properties of the constituents are derived.

  19. Hafnium oxide films for application as gate dielectrics

    NASA Astrophysics Data System (ADS)

    Hsu, Shuo-Lin

    The deposition and characterization of HfO2 films for potential application as a high-kappa gate dielectric in MOS devices has been investigated. DC magnetron reactive sputtering was utilized to prepare the HfO2 films. Structural, chemical, and electrical analyses were performed to characterize the various physical, chemical and electrical properties of the sputtered HfO2 films. The sputtered HfO2 films were annealed to simulate the dopant activation process used in semiconductor processing, and to study the thermal stability of the high-kappa, films. The changes in the film properties due to the annealing are also discussed in this work. Glancing angle XRD was used to analyse the atomic scale structure of the films. The as deposited films exhibit an amorphous, regardless of the film thickness. During post-deposition annealing, the thicker films crystallized at lower temperature (< 600°C), and ultra-thin (5.8 nm) film crystallized at higher temperature (600--720°C). The crystalline phase which formed depended on the thickness of the films. The low temperature phase (monoclinic) formed in the 10--20 nm annealed films, and high temperature phase (tetragonal) formed in the ultra-thin annealed HfO2 film. TEM cross-section studies of as deposited samples show that an interfacial layer (< 1nm) exists between HfO2/Si for all film thicknesses. The interfacial layer grows thicker during heat treatment, and grows more rapidly when grain boundaries are present. XPS surface analysis shows the as deposited films are fully oxidized with an excess of oxygen. Interfacial chemistry analysis indicated that the interfacial layer is a silicon-rich silicate layer, which tends to transform to silica-like layer during heat treatment. I-V measurements show the leakage current density of the Al/as deposited-HfO 2/Si MOS diode is of the order of 10-3 A/cm 2, two orders of magnitude lower than that of a ZrO2 film with similar physical thickness. Carrier transport is dominated by Schottky emission at lower electric fields, and by Frenkel-Poole emission in the higher electric field region. After annealing, the leakage current density decreases significantly as the structure remains amorphous structure. It is suggested that this decrease is assorted with the densification and defect healing which accures when the porous as-deposited amorphous structure is annealed. The leakage current density increases of the HfO2 layer crystallizes on annealing, which is attributed to the presence of grain boundaries. C-V measurements of the as deposited film shows typical C-V characteristics, with negligible hystersis, a small flat band voltage shift, but great frequency dispersion. The relative permittivity of HfO2/interfacial layer stack obtained from the capacitance at accumulation is 15, which corresponds to an EOT (equivalent oxide thickness) = 1.66 nm. After annealing, the frequency dispersion is greatly enhanced, and the C-V curve is shifted toward the negative voltage. Reliability tests show that the HfO2 films which remain amorphous after annealing possess superior resistance to constant voltage stress and ambient aging. This study concluded that the sputtered HfO 2 films exhibit an amorphous as deposited. Postdeposition annealing alters the crystallinity, interfacial properties, and electrical characteristics. The HfO2 films which remain amorphous structure after annealing possess the best electrical properties.

  20. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  1. Peculiarities of the photochemical processing of relief-phase holograms registered in a thin layer of silver halide emulsion

    NASA Astrophysics Data System (ADS)

    Brui, E. B.; Galashkina, I. A.

    1993-12-01

    Peculiarities of the photo-chemical processing of the relief-phase holograms, registered in the layers of argentum-halogenide emulsion PE-2 with the thickness 1 micrometers , are presented in the paper. It was found that in the case of such thickness the tanning processing does not provide the improvement of the maximal relief depth in comparison with the non-tanning process.

  2. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Suharto, Yustian; Lee, Yongho; Yu, Ji-Sang; Choi, Wonchang; Kim, Ki Jae

    2018-02-01

    Finding an alternative to glass fiber (GF) separators is a crucial factor for the fast commercialization of sodium-ion batteries (SIBs), because GF separators are too thick for use in SIBs, thereby decreasing the volumetric and gravimetric energy density. Here we propose a microporous composite separator prepared by introducing a polymeric coating layer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP co-polymer) with ZrO2 nanoparticles to a polyethylene (PE) separator. The coated separator efficiently enhances the cell performance of SIBs. The ZrO2 nanoparticles, finely dispersed on the polymeric coating layer, induce the formation of many micropores on the polymeric coating layer, suggesting that micropore formation on the coating layer renders the composite separator more open in structure. An ethylene carbonate/propylene carbonate liquid electrolyte for SIBs is not absorbed by PE separators even after 1 h of electrolyte droplet testing, while the proposed separator with many micropores is completely wetted by the electrolyte. Sodium ion migration across the composite separator is therefore effectively enhanced by the formation of ion transfer pathways, which improve ionic conductivity. As a result, the microporous composite separator affords stable cycle performances and excellent specific capacity retention (95.8%) after 50 cycles, comparable to those offered by a SIB with a GF separator.

  3. Fast Li-Ion Transport in Amorphous Li 2Si 2O 5: An Ab Initio Molecular Dynamics Simulation

    DOE PAGES

    Lei, Xueling; Wang, Jie; Huang, Kevin

    2016-05-03

    The present study reports an ab-initio molecular dynamics (AIMD) simulation of ionic diffusion in the amorphous Li 2Si 2O 5 in a temperature range of 573–823 K. The results show that the amorphous Li 2Si 2O 5 is primarily a Li + conductor with negligible O 2- and Si 4+ contributions. The obtained activation energy of 0.47 eV for Li + diffusion is higher than Na + in the analogue amorphous Na 2Si 2O 5, but close to other types of Li + conductors. The predicted Li + conductivity is on the order of 10 -2 S·cm -1 at 623–823more » K. Our simulations also reveal that Li + in the amorphous Li 2Si 2O 5 diffuses via a hopping mechanism between the nearest sites in the channels formed by two adjacent SiO 4 layers.« less

  4. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    PubMed Central

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  5. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    PubMed

    Marrs, Michael A; Raupp, Gregory B

    2016-07-26

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  6. Anomalous electron transport in metal/carbon multijunction devices by engineering of the carbon thickness and selecting metal layer

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Dhand, Chetna; Rawal, Ishpal; Kumar, Sushil; Malik, Hitendra K.; Lakshminarayanan, Rajamani

    2017-06-01

    A longstanding concern in the research of amorphous carbon films is their poor electrical conductivity at room temperature which constitutes a major barrier for the development of cost effective electronic and optoelectronic devices. Here, we propose metal/carbon hybrid multijunction devices as a promising facile way to overcome room temperature electron transport issues in amorphous carbon films. By the tuning of carbon thickness and swapping metal layers, we observe giant (upto ˜7 orders) reduction of electrical resistance in metal/carbon multijunction devices with respect to monolithic amorphous carbon device. We engineer the maximum current (electrical resistance) from about 10-7 to 10-3 A (˜107 to 103 Ω) in metal (Cu or Ti)/carbon hybrid multijunction devices with a total number of 10 junctions. The introduction of thin metal layers breaks the continuity of relatively higher resistance carbon layer as well as promotes the nanostructuring of carbon. These contribute to low electrical resistance of metal/carbon hybrid multijunction devices, with respect to monolithic carbon device, which is further reduced by decreasing the thickness of carbon layers. We also propose and discuss equivalent circuit model to explain electrical resistance in monolithic carbon and metal/carbon multijunction devices. Cu/carbon multijunction devices display relatively better electrical transport than Ti/carbon devices owing to low affinity of Cu with carbon that restricts carbide formation. We also observe that in metal/carbon multijunction devices, the transport mechanism changes from Poole-Frenkel/Schottky model to the hopping model with a decrease in carbon thickness. Our approach opens a new route to develop carbon-based inexpensive electronic and optoelectronic devices.

  7. High voltage series connected tandem junction solar battery

    DOEpatents

    Hanak, Joseph J.

    1982-01-01

    A high voltage series connected tandem junction solar battery which comprises a plurality of strips of tandem junction solar cells of hydrogenated amorphous silicon having one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon, arranged in a tandem configuration, can have the same bandgap or differing bandgaps. The tandem junction strip solar cells are series connected to produce a solar battery of any desired voltage.

  8. Structure and dynamics of shear bands in amorphous–crystalline nanolaminates

    DOE PAGES

    Guo, Wei; Gan, Bin; Molina-Aldareguia, Jon M.; ...

    2015-08-03

    In this paper, the velocities of shear bands in amorphous CuZr/crystalline Cu nanolaminates were quantified as a function of strain rate and crystalline volume fraction. A rate-dependent transition in flow response was found in a 100 nm CuZr/10 nm Cu nanolaminates. When increasing the Cu layer thickness from 10 nm to 100 nm, the instantaneous velocity of the shear band in these nanolaminates decreases from 11.2 μm/s to <~500 nm/s. Finally, atom probe tomography and transmission election microcopy observation revealed that in post-deformed pillars both grain rotation in the crystalline portion and non-diffusive crystallization in the amorphous layer affect themore » viscosity of shear bands.« less

  9. Amorphous indium-gallium-zinc-oxide thin-film transistors using organic-inorganic hybrid films deposited by low-temperature plasma-enhanced chemical vapor deposition for all dielectric layers

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Jui; Chang, Ching-Hsiang; Chang, Kuei-Ming; Wu, Chung-Chih

    2017-01-01

    We investigated the deposition of high-performance organic-inorganic hybrid dielectric films by low-temperature (close to room temperature) inductively coupled plasma chemical vapor deposition (ICP-CVD) with hexamethyldisiloxane (HMDSO)/O2 precursor gas. The hybrid films exhibited low leakage currents and high breakdown fields, suitable for thin-film transistor (TFT) applications. They were successfully integrated into the gate insulator, the etch-stop layer, and the passivation layer for bottom-gate staggered amorphous In-Ga-Zn-O (a-IGZO) TFTs having the etch-stop configuration. With the double-active-layer configuration having a buffer a-IGZO back-channel layer grown in oxygen-rich atmosphere for better immunity against plasma damage, the etch-stop-type bottom-gate staggered a-IGZO TFTs with good TFT characteristics were successfully demonstrated. The TFTs showed good field-effect mobility (μFE), threshold voltage (V th), subthreshold swing (SS), and on/off ratio (I on/off) of 7.5 cm2 V-1 s-1, 2.38 V, 0.38 V/decade, and 2.2 × 108, respectively, manifesting their usefulness for a-IGZO TFTs.

  10. High-quality multilayer graphene on an insulator formed by diffusion controlled Ni-induced layer exchange

    NASA Astrophysics Data System (ADS)

    Murata, H.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.; Toko, K.

    2017-12-01

    The Ni-induced layer-exchange growth of amorphous carbon is a unique method used to fabricate uniform multilayer graphene (MLG) directly on an insulator. To improve the crystal quality of MLG, we prepare AlOx or SiO2 interlayers between amorphous C and Ni layers, which control the extent of diffusion of C atoms into the Ni layer. The growth morphology and Raman spectra observed from MLG formed by layer exchange strongly depend on the material type and thickness of the interlayers; a 1-nm-thick AlOx interlayer is found to be ideal for use in experiments. Transmission electron microscopy and electron energy-loss spectra reveal that the crystal quality of the resulting MLG is much higher than that of a sample without an interlayer. The grain size reaches a few μm, leading to an electrical conductivity of 1290 S/cm. The grain size and the electrical conductivity are the highest among MLG synthesized using a solid-phase reaction including metal-induced crystallization. The direct synthesis of uniform, high-quality MLG on arbitrary substrates will pave the way for advanced electronic devices integrated with carbon materials.

  11. Nucleation and growth kinetics during metal-induced layer exchange crystallization of Ge thin films at low temperatures

    NASA Astrophysics Data System (ADS)

    Hu, Shu; McIntyre, Paul C.

    2012-02-01

    The kinetics of Al-catalyzed layer exchange crystallization of amorphous germanium (Ge) thin films at low temperatures is reported. Observation of Ge mass transport from an underlying amorphous Ge layer to the Al film surface through an interposed sub-nanometer GeOx interfacial layer allows independent measurement of the areal density and average area of crystalline Ge islands formed on the film surface. We show that bias-voltage stressing of the interfacial layer can be used to control the areal density of nucleated Ge islands. Based on experimental observations, the Johnson-Mehl-Avrami-Kolmogorov phase transformation theory is used to model nanoscale nucleation and growth of Ge islands in two dimensions. Ge island nucleation kinetics follows an exponentially decaying nucleation rate with time. Ge island growth kinetics switches from linear growth at a constant growth velocity to diffusion-limited growth as the growth front advances. The transition point between these two regimes depends on the Ge nucleation site density and the annealing temperature. Knowledge of the kinetics of low-temperature crystallization is important in achieving textured polycrystalline Ge thin films with large grains for applications in large-area electronics and solar energy conversion.

  12. Chain Confinement in Electrospun Nanocomposites: using Thermal Analysis to Investigate Polymer-Filler Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Q Ma; B Mao; P Cebe

    2011-12-31

    We investigate the interaction of the polymer matrix and filler in electrospun nanofibers using advanced thermal analysis methods. In particular, we study the ability of silicon dioxide nanoparticles to affect the phase structure of poly(ethylene terephthalate), PET. SiO{sub 2} nanoparticles (either unmodified or modified with silane) ranging from 0 to 2.0 wt% in PET were electrospun from hexafluoro-2-propanol solutions. The morphologies of both the electrospun (ES) nanofibers and the SiO{sub 2} powders were observed by scanning and transmission electron microscopy, while the amorphous or crystalline nature of the fibers was determined by real-time wide-angle X-ray scattering. The fractions of themore » crystal, mobile amorphous, and rigid amorphous phases of the non-woven, nanofibrous composite mats were quantified by using heat capacity measurements. The amount of the immobilized polymer layer, the rigid amorphous fraction, was obtained from the specific reversing heat capacity for both as-spun amorphous fibers and isothermally crystallized fibers. Existence of the rigid amorphous phase in the absence of crystallinity was verified in nanocomposite fibers, and two origins for confinement of the rigid amorphous fraction are proposed. Thermal analysis of electrospun fibers, including quasi-isothermal methods, provides new insights to quantitatively characterize the polymer matrix phase structure and thermal transitions, such as devitrification of the rigid amorphous fraction.« less

  13. Reaction of amorphous/crystalline SiOC/Fe interfaces by thermal annealing

    DOE PAGES

    Su, Qing; Zhernenkov, Mikhail; Ding, Hepeng; ...

    2017-06-12

    The development of revolutionary new alloys and composites is crucial to meeting materials requirements for next generation nuclear reactors. The newly developed amorphous silicon oxycarbide (SiOC) and crystalline Fe composite system has shown radiation tolerance over a wide range of temperatures. To advance understanding of this new composite, we investigate the structure and thermal stability of the interface between amorphous SiOC and crystalline Fe by combining various experimental techniques and simulation methods. We show that the SiOC/Fe interface is thermally stable up to at least 400 °C. When the annealing temperature reaches 600 °C, an intermixed region forms at thismore » interface. This region appears to be a crystalline phase that forms an incoherent interface with the Fe layer. Density functional theory (DFT) Molecular dynamics (MD) is performed on the homogeneous SiFeOC phase to study the early stages of 2 formation of the intermixed layer. Both experimental and simulation results suggest this phase has the fayalite crystal structure. As a result, the physical processes involved in the formation of the intermixed region are discussed.« less

  14. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  15. Absorption Amelioration of Amorphous Si Film by Introducing Metal Silicide Nanoparticles.

    PubMed

    Sun, Hui; Wu, Hsuan-Chung; Chen, Sheng-Chi; Ma Lee, Che-Wei; Wang, Xin

    2017-12-01

    Amorphous Si (a-Si) films with metal silicide are expected to enhance the absorption ability of pure a-Si films. In this present study, NiSi (20 nm)/Si (40 nm) and AlSi (20 nm)/Si (40 nm) bilayer thin films are deposited through radio frequency (RF) sputtering at room temperature. The influence of the film's composition and the annealing temperature on the film's optical absorption is investigated. The results show that all the NiSi/Si films and AlSi/Si films possess higher absorption ability compared to a pure a-Si film (60 nm). After annealing from 400 to 600 °C under vacuum for 1 h, the Si layer remains amorphous in both NiSi/Si films and AlSi/Si films, while the NiSi layer crystallizes into NiSi 2 phase, whereas Al atoms diffuse through the whole film during the annealing process. Consequently, with increasing the annealing temperature, the optical absorption of NiSi/Si films increases, while that of AlSi/Si films obviously degrades.

  16. Tandem junction amorphous semiconductor photovoltaic cell

    DOEpatents

    Dalal, V.L.

    1983-06-07

    A photovoltaic stack comprising at least two p[sup +]i n[sup +] cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p[sup +]i n[sup +] cells. 3 figs.

  17. Tandem junction amorphous semiconductor photovoltaic cell

    DOEpatents

    Dalal, Vikram L.

    1983-01-01

    A photovoltaic stack comprising at least two p.sup.+ i n.sup.+ cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p.sup.+ i n.sup.+ cells.

  18. Evaluation of stress stabilities in amorphous In-Ga-Zn-O thin-film transistors: Effect of passivation with Si-based resin

    NASA Astrophysics Data System (ADS)

    Ochi, Mototaka; Hino, Aya; Goto, Hiroshi; Hayashi, Kazushi; Fujii, Mami N.; Uraoka, Yukiharu; Kugimiya, Toshihiro

    2018-02-01

    Fabrication process conditions of a passivation (PV) layer correlated with stress stabilities of amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). In etch-stop layer (ESL)-TFTs, by inserting a Si-based resin between SiN x and SiO x PV layers, the peak intensity in the photoinduced transient spectroscopy (PITS) spectrum was notably reduced. This suggested the suppression of hydrogen incorporation into a-IGZO, which led to the improvement of stability under negative bias thermal illumination stress (NBTIS). In contrast, the hydrogen-related defects in the a-IGZO were easily formed by the back-channel etch (BCE) process. Furthermore, it was found that, under NBTIS, the transfer curves of the BCE-TFTs shifted in parallel owing to the positive fixed charge located in the back channel of the a-IGZO TFTs. The hump-shaped shift increased with stress time. This is because hydrogen atoms located at the back-channel surfaces of the a-IGZO and/or PV layers were incorporated into the channel region of the BCE-TFTs and induced the hydrogen-related defects.

  19. Inverse bilayer magnetoelectric thin film sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarar, E.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de

    2016-07-11

    Prior investigations on magnetoelectric (ME) thin film sensors using amorphous FeCoSiB as a magnetostrictive layer and AlN as a piezoelectric layer revealed a limit of detection (LOD) in the range of a few pT/Hz{sup 1/2} in the mechanical resonance. These sensors are comprised of a Si/SiO{sub 2}/Pt/AlN/FeCoSiB layer stack, as dictated by the temperatures required for the deposition of the layers. A low temperature deposition route of very high quality AlN allows the reversal of the deposition sequence, thus allowing the amorphous FeCoSiB to be deposited on the very smooth Si substrate. As a consequence, the LOD could be enhancedmore » by almost an order of magnitude reaching 400 fT/Hz{sup 1/2} at the mechanical resonance of the sensor. Giant ME coefficients (α{sub ME}) as high as 5 kV/cm Oe were measured. Transmission electron microscopy investigations revealed highly c-axis oriented growth of the AlN starting from the Pt-AlN interface with local epitaxy.« less

  20. Preparation of nanocrystalline TiN coated cubic boron nitride powders by a sol-gel process.

    PubMed

    Park, Hee S; Umer, M Adeel; Ryu, Ho J; Hong, Soon H

    2011-01-01

    Cubic boron nitride (cBN) particles coated with 20 wt% nanocrystalline TiN were prepared by coating the surface of cBN particles with TiO2, followed by nitridation with NH3 gas at 900 degrees C. Coating of TiO2 on cBN powders was accomplished by a sol-gel process from a solution of titanium (IV) isopropoxide and anhydrous ethanol. An amorphous TiO(x) layer of 50 nm thickness was homogenously formed on the surface of the cBN particles by the sol-gel process. The amorphous layer was then crystallized to an anatase TiO2 phase through calcination in air at 400 degrees C. The crystallized TiO2 layer was 50 nm in thickness, and the size of TiO2 particles comprising the layer was nearly 10 nm. The TiO2 on cBN surfaces was completely converted into nanocrystalline TiN of uniform particles 20 nm in size on cBN particles by nitridation under flowing NH3 gas.

  1. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    PubMed Central

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-01-01

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor–inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437

  2. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    DOE PAGES

    Zhou, Nanjia; Kim, Myung -Gil; Loser, Stephen; ...

    2015-06-15

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor– inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactivemore » materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Lastly, continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.« less

  3. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    PubMed

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  4. Acid attack on hydrated cement — Effect of mineral acids on the degradation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutberlet, T.; Hilbig, H.; Beddoe, R.E., E-mail: robin.beddoe@tum.de

    During acid attack on concrete structural components, a degraded layer develops whose properties as a protective barrier are decisive for durability. {sup 29}Si NMR spectroscopy and {sup 27}Al NMR spectroscopy were used with XRD to investigate the degraded layer on hardened cement paste exposed to HCl and H{sub 2}SO{sub 4}. The layer comprises an amorphous silica gel with framework silicates, geminate and single silanol groups in which Si is substituted by Al. Amorphous Al(OH){sub 3} and Fe(OH){sub 3} are present. The gel forms by polycondensation and cross-linking of C-A-S-H chains at AlO{sub 4} bridging tetrahedra. In the transition zone betweenmore » the degraded layer and the undamaged material, portlandite dissolves and Ca is removed from the C-A-S-H phases maintaining their polymer structure at first. With HCl, monosulphate in the transition zone is converted into Friedel's salt and ettringite. With H{sub 2}SO{sub 4}, gypsum precipitates near the degradation front reducing the thickness of the transition zone and the rate of degradation.« less

  5. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    PubMed

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  6. Mechanical intermixing of components in (CoMoNi)-based systems and the formation of (CoMoNi)/WC nanocomposite layers on Ti sheets under ball collisions

    NASA Astrophysics Data System (ADS)

    Romankov, S.; Park, Y. C.; Shchetinin, I. V.

    2017-11-01

    Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Wug-Dong; Tanioka, Kenkichi

    Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a longmore » wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.« less

  8. Water-mediated solid-state transformation of a polymorphic drug during aqueous-based drug-layer coating of pellets.

    PubMed

    Lust, Andres; Lakio, Satu; Vintsevits, Julia; Kozlova, Jekaterina; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin

    2013-11-01

    During aqueous drug-layer coating, drug substance(s) are exposed to water and elevated temperatures which can lead to water-mediated process induced transformations (PITs). The effects of aqueous drug-layer coating of pellets (Cellets(®)) on the anhydrous piroxicam, PRX, were investigated in the miniaturized coating equipment and with free films. Hydroxypropyl methylcellulose (HPMC) was used as a carrier coating polymer. Free films were prepared by using an in-house small-scale rotating plate system equipped with an atomization air nozzle. Raman spectroscopy, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were used to characterize the solid-state properties and surface morphology of the pellets and free films. The results showed that anhydrous PRX form I (AH) and monohydrate (MH) were stable during drug-layer coating, but amorphous PRX in solid dispersion (SD) crystallized as MH already after 10 min of coating. Furthermore, the increase in a dissolution rate was achieved from the drug-layer coated inert pellets compared to powder forms. In conclusion, water-mediated solid-state PITs of amorphous PRX is evident during aqueous-based drug-layer coating of pellets, and solid-state change can be verified using Raman spectroscopy. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Role of mechanical stress in the resistance drift of Ge2Sb2Te5 films and phase change memories

    NASA Astrophysics Data System (ADS)

    Rizzi, M.; Spessot, A.; Fantini, P.; Ielmini, D.

    2011-11-01

    In a phase change memory (PCM), the device resistance increases slowly with time after the formation of the amorphous phase, thus affecting the stability of stored data. This work investigates the resistance drift in thin films of amorphous Ge2Sb2Te5 and in PCMs, demonstrating a common kinetic of drift in stressed/unstressed films and in the nanometer-size active volume of a PCM with different stress levels developed via stressor layers. It is concluded that stress is not the root cause of PCM drift, which is instead attributed to intrinsic structural relaxation due to the disordered, metastable nature of the amorphous chalcogenide phase.

  10. Performance and Transient Behavior of Vertically Integrated Thin-film Silicon Sensors

    PubMed Central

    Wyrsch, Nicolas; Choong, Gregory; Miazza, Clément; Ballif, Christophe

    2008-01-01

    Vertical integration of amorphous hydrogenated silicon diodes on CMOS readout chips offers several advantages compared to standard CMOS imagers in terms of sensitivity, dynamic range and dark current while at the same time introducing some undesired transient effects leading to image lag. Performance of such sensors is here reported and their transient behaviour is analysed and compared to the one of corresponding amorphous silicon test diodes deposited on glass. The measurements are further compared to simulations for a deeper investigation. The long time constant observed in dark or photocurrent decay is found to be rather independent of the density of defects present in the intrinsic layer of the amorphous silicon diode. PMID:27873778

  11. Multijunction photovoltaic device and fabrication method

    DOEpatents

    Arya, Rajeewa R.; Catalano, Anthony W.

    1993-09-21

    A multijunction photovoltaic device includes first and second amorphous silicon PIN photovoltaic cells in a stacked arrangement. An interface layer, composed of a doped silicon compound, is disposed between the two cells and has a lower bandgap than the respective n- and p-type adjacent layers of the first and second cells. The interface layer forms an ohmic contact with the one or the adjacent cell layers of the same conductivity type, and a tunnel junction with the other of the adjacent cell layers. The disclosed device is fabricated by a glow discharge process.

  12. Method of enhancing the electronic properties of an undoped and/or N-type hydrogenated amorphous silicon film

    DOEpatents

    Carlson, David E.

    1980-01-01

    The dark conductivity and photoconductivity of an N-type and/or undoped hydrogenated amorphous silicon layer fabricated by an AC or DC proximity glow discharge in silane can be increased through the incorporation of argon in an amount from 10 to about 90 percent by volume of the glow discharge atmosphere which contains a silicon-hydrogen containing compound in an amount of from about 90 to about 10 volume percent.

  13. Phonon-interface scattering in multilayer graphene on an amorphous support

    PubMed Central

    Sadeghi, Mir Mohammad; Jo, Insun; Shi, Li

    2013-01-01

    The recent studies of thermal transport in suspended, supported, and encased graphene just began to uncover the richness of two-dimensional phonon physics, which is relevant to the performance and reliability of graphene-based functional materials and devices. Among the outstanding questions are the exact causes of the suppressed basal-plane thermal conductivity measured in graphene in contact with an amorphous material, and the layer thickness needed for supported or embedded multilayer graphene (MLG) to recover the high thermal conductivity of graphite. Here we use sensitive in-plane thermal transport measurements of graphene samples on amorphous silicon dioxide to show that full recovery to the thermal conductivity of the natural graphite source has yet to occur even after the MLG thickness is increased to 34 layers, considerably thicker than previously thought. This seemingly surprising finding is explained by long intrinsic scattering mean free paths of phonons in graphite along both basal-plane and cross-plane directions, as well as partially diffuse scattering of MLG phonons by the MLG-amorphous support interface, which is treated by an interface scattering model developed for highly anisotropic materials. Based on the phonon transmission coefficient calculated from reported experimental thermal interface conductance results, phonons emerging from the interface consist of a large component that is scattered across the interface, making rational choice of the support materials a potential approach to increasing the thermal conductivity of supported MLG. PMID:24067656

  14. Domain epitaxy for thin film growth

    DOEpatents

    Narayan, Jagdish

    2005-10-18

    A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature T.sub.growth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature T.sub.anneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness h.sub.c. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.

  15. Low-stress PECVD amorphous silicon carbide (α-SiC) layers for biomedical application

    NASA Astrophysics Data System (ADS)

    Wei, Jiashen; Chen, Bangtao; Poenar, Daniel P.; Lee, Yong Yeow; Iliescu, Ciprian

    2008-12-01

    A detailed characterization of PECVD to produce low stress amorphous silicon carbide (α-SiC) layers at high deposition rate has been done and the biomedical applications of α-SiC layers are reported in this paper. By investigating different working principles in high-frequency mode (13.56MHz) and in low frequency mode (380KHz), it is found that deposition in high-frequency mode can achieve low stress layers at high deposition rates due to the structural rearrangement from high HF power, rather than the ion bombardment effect from high LF power which results in high compressive stress for α-SiC layers. Furthermore, the effects of deposition temperature, pressure and reactant gas ratios are also investigated and then an optimal process is achieved to produce low stress α-SiC layers with high deposition rates. To characterize the PECVD α-SiC layers from optimized process, a series of wet etching experiments in KOH and HF solutions have been completed. The very low etching rates of PECVD α-SiC layers in these two solutions show the good chemical inertness and suitability for masking layers in micromachining. Moreover, cell culture tests by seeding fibroblast NIH3T3 cells on the monocrystalline SiC, low-stress PECVD α-SiC released membranes and non-released PECVD α-SiC films on silicon substrates have been done to check the feasibility of PECVD α-SiC layers as substrate materials for biomedical applications. The results indicate that PECVD α-SiC layers are good for cell culturing, especially after treated in NH4F.

  16. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    PubMed

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes.

    PubMed

    Ling, Yichuan; Tian, Yu; Wang, Xi; Wang, Jamie C; Knox, Javon M; Perez-Orive, Fernando; Du, Yijun; Tan, Lei; Hanson, Kenneth; Ma, Biwu; Gao, Hanwei

    2016-10-01

    Highly bright light-emitting diodes based on solution-processed all-inorganic perovskite thin film are demonstrated. The cesium lead bromide (CsPbBr 3 ) created using a new poly(ethylene oxide)-additive spin-coating method exhibits photoluminescence quantum yield up to 60% and excellent uniformity of electrical current distribution. Using the smooth CsPbBr 3 films as emitting layers, green perovskite-based light-emitting diodes (PeLEDs) exhibit electroluminescent brightness and efficiency above 53 000 cd m -2 and 4%: a new benchmark of device performance for all-inorganic PeLEDs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Characterization of porcine eyes based on autofluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2015-03-01

    Multiphoton microscopy is a non-invasive imaging technique with ideal characteristics for biological applications. In this study, we propose to characterize three major structures of the porcine eye, the cornea, crystalline lens, and retina using two-photon excitation fluorescence lifetime imaging microscopy (2PE-FLIM). Samples were imaged using a laser-scanning microscope, consisting of a broadband sub-15 femtosecond (fs) near-infrared laser. Signal detection was performed using a 16-channel photomultiplier tube (PMT) detector (PML-16PMT). Therefore, spectral analysis of the fluorescence lifetime data was possible. To ensure a correct spectral analysis of the autofluorescence lifetime data, the spectra of the individual endogenous fluorophores were acquired with the 16-channel PMT and with a spectrometer. All experiments were performed within 12h of the porcine eye enucleation. We were able to image the cornea, crystalline lens, and retina at multiple depths. Discrimination of each structure based on their autofluorescence intensity and lifetimes was possible. Furthermore, discrimination between different layers of the same structure was also possible. To the best of our knowledge, this was the first time that 2PE-FLIM was used for porcine lens imaging and layer discrimination. With this study we further demonstrated the feasibility of 2PE-FLIM to image and differentiate three of the main components of the eye and its potential as an ophthalmologic technique.

  19. Reynolds stress scaling in pipe flow turbulence—first results from CICLoPE

    PubMed Central

    Fiorini, T.; Bellani, G.; Talamelli, A.

    2017-01-01

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×104 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend–Perry constant of A2≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend–Perry constant, i.e. A2,w≈A2/2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167586

  20. Heteroepitaxial Growth of Germanium-on-Silicon Using Ultrahigh-Vacuum Chemical Vapor Deposition with RF Plasma Enhancement

    NASA Astrophysics Data System (ADS)

    Alharthi, Bader; Grant, Joshua M.; Dou, Wei; Grant, Perry C.; Mosleh, Aboozar; Du, Wei; Mortazavi, Mansour; Li, Baohua; Naseem, Hameed; Yu, Shui-Qing

    2018-05-01

    Germanium (Ge) films have been grown on silicon (Si) substrate by ultrahigh-vacuum chemical vapor deposition with plasma enhancement (PE). Argon plasma was generated using high-power radiofrequency (50 W) to assist in germane decomposition at low temperature. The growth temperature was varied in the low range of 250°C to 450°C to make this growth process compatible with complementary metal-oxide-semiconductor technology. The material and optical properties of the grown Ge films were investigated. The material quality was determined by Raman and x-ray diffraction techniques, revealing growth of crystalline films in the temperature range of 350°C to 450°C. Photoluminescence spectra revealed improved optical quality at growth temperatures of 400°C and 450°C. Furthermore, material quality study using transmission electron microscopy revealed existence of defects in the Ge layer grown at 400°C. Based on the etch pit density, the average threading dislocation density in the Ge layer obtained at this growth temperature was measured to be 4.5 × 108 cm-2. This result was achieved without any material improvement steps such as use of graded buffer or thermal annealing. Comparison between PE and non-plasma-enhanced growth, in the same machine at otherwise the same growth conditions, indicated increased growth rate and improved material and optical qualities for PE growth.

  1. A shear localization mechanism for lubricity of amorphous carbon materials

    PubMed Central

    Ma, Tian-Bao; Wang, Lin-Feng; Hu, Yuan-Zhong; Li, Xin; Wang, Hui

    2014-01-01

    Amorphous carbon is one of the most lubricious materials known, but the mechanism is not well understood. It is counterintuitive that such a strong covalent solid could exhibit exceptional lubricity. A prevailing view is that lubricity of amorphous carbon results from chemical passivation of dangling bonds on surfaces. Here we show instead that lubricity arises from shear induced strain localization, which, instead of homogeneous deformation, dominates the shearing process. Shear localization is characterized by covalent bond reorientation, phase transformation and structural ordering preferentially in a localized region, namely tribolayer, resulting in shear weakening. We further demonstrate an anomalous pressure induced transition from stick-slip friction to continuous sliding with ultralow friction, due to gradual clustering and layering of graphitic sheets in the tribolayer. The proposed shear localization mechanism sheds light on the mechanism of superlubricity, and would enrich our understanding of lubrication mechanism of a wide variety of amorphous materials. PMID:24412998

  2. On the effect of Ti on the stability of amorphous indium zinc oxide used in thin film transistor applications

    NASA Astrophysics Data System (ADS)

    Lee, Sunghwan; Paine, David C.

    2011-06-01

    In2O3-based amorphous oxide channel materials are of increasing interest for thin film transisitor applications due, in part, to the remarkable stability of this class of materials amorphous structure and electronic properties. We report that this stability is degraded in the presence of Ti, which is widely used as a contact and/or adhesion layer. A cross-sectional transmission electron microscopy analysis, supported by glancing incident angle x-ray and selected area diffraction examination, shows that amorphous indium zinc oxide in contact with Ti undergoes crystallization to the bixbyite phase and reacts to form the rutile phase of TiO2 at a temperature of 200 °C. A basic thermodynamic analysis is presented and forms the basis of a model that describes both the crystallization and the resistivity decrease.

  3. Long-term oxidization and phase transition of InN nanotextures

    PubMed Central

    2011-01-01

    The long-term (6 months) oxidization of hcp-InN (wurtzite, InN-w) nanostructures (crystalline/amorphous) synthesized on Si [100] substrates is analyzed. The densely packed layers of InN-w nanostructures (5-40 nm) are shown to be oxidized by atmospheric oxygen via the formation of an intermediate amorphous In-Ox-Ny (indium oxynitride) phase to a final bi-phase hcp-InN/bcc-In2O3 nanotexture. High-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and selected area electron diffraction are used to identify amorphous In-Ox-Ny oxynitride phase. When the oxidized area exceeds the critical size of 5 nm, the amorphous In-Ox-Ny phase eventually undergoes phase transition via a slow chemical reaction of atomic oxygen with the indium atoms, forming a single bcc In2O3 phase. PMID:21711908

  4. Osmotic pellet system comprising osmotic core and in-process amorphized drug in polymer-surfactant layer for controlled delivery of poorly water-soluble drug.

    PubMed

    Saindane, Nilesh; Vavia, Pradeep

    2012-09-01

    The aim of the present investigation was to develop controlled porosity osmotic system for poorly water-soluble drug based on drug in polymer-surfactant layer technology. A poorly water-soluble drug, glipizide (GZ), was selected as the model drug. The technology involved core of the pellets containing osmotic agent coated with drug dispersed in polymer and surfactant layer, finally coated with release-retardant layer with pore former. The optimized drug-layer-coated pellets were evaluated for solubility of GZ at different pH conditions and characterized for amorphous nature of the drug by differential scanning calorimetry and X-ray powder diffractometry. The optimized release-retardant layer pellets were evaluated for in vitro drug release at different pH, hydrodynamic, and osmolality conditions. The optimized drug layer showed improvement in solubility (10 times in pH 1.2, 11 times in pH 4.5, and 21 times in pH 6.8), whereas pellets coated with cellulose acetate (15.0%, w/w, weight gain) with pore former triethyl citrate (10.0%, w/w, of polymer) demonstrated zero-order drug release for 24 h at different pH conditions; moreover, retardation of drug release was observed with increment of osmolality. This system could be a platform technology for controlled delivery of poorly water-soluble drugs. Copyright © 2012 Wiley Periodicals, Inc.

  5. Nanoconstricted structure for current-confined path in current-perpendicular-to-plane spin valves with high magnetoresistance

    NASA Astrophysics Data System (ADS)

    Fukuzawa, H.; Yuasa, H.; Koi, K.; Iwasaki, H.; Tanaka, Y.; Takahashi, Y. K.; Hono, K.

    2005-05-01

    We have successfully observed a nanoconstricted structure for current-confined-path (CCP) effect in current-perpendicular-to-plane-giant-magnetoresistance (CPP-GMR) spin valves. By inserting an AlCu nano-oxide layer (NOL) formed by ion-assisted oxidation (IAO) between a pinned layer and a free layer, the MR ratio was increased while maintaining a small area resistance product (RA). The cross-sectional high-resolution transmission electron microscopy image of the sample with RA =380mΩμm2, ΔRA =16mΩμm2, and MR ratio=4.3% showed that an amorphous oxide layer is a main part of the NOL that blocks the electron conduction perpendicular to plane. Some parts of the NOL are punched through crystalline, metallic channels having a diameter of a few nanometers, which are thought to work as nanoconstricted electron conduction paths between the pinned layer and the free layer. Nano-energy-dispersive-x-ray-spectrum analysis also showed that Cu is enriched in the metallic channels, whereas Al is enriched in the amorphous oxide region, indicating that the metallic channel is made of Cu and the oxide is made of Al2O3. The nanoconstricted structure with good segregation between the metallic channel and the oxide layer enables us to realize a large MR ratio in CCP-CPP spin valves.

  6. Dimethylaluminum hydride for atomic layer deposition of Al2O3 passivation for amorphous InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Corsino, Dianne C.; Bermundo, Juan Paolo S.; Fujii, Mami N.; Takahashi, Kiyoshi; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2018-06-01

    Atomic layer deposition (ALD) of Al2O3 using dimethylaluminum hydride (DMAH) was demonstrated as an effective passivation for amorphous InGaZnO thin-film transistors (TFTs). Compared with the most commonly used precursor, trimethylaluminum, TFTs fabricated with DMAH showed improved stability, resulting from the lower amount of oxygen vacancies, and hence fewer trap sites, as shown by X-ray photoelectron spectroscopy (XPS) depth profiling analysis. We found that prolonged plasma exposure during ALD can eliminate the hump phenomenon, which is only present for DMAH. The higher Al2O3 deposition rate when using DMAH is in line with the requirements of emerging techniques, such as spatial ALD, for improving fabrication throughput.

  7. High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors

    DOEpatents

    Deligianni, Hariklia; Gallagher, William J.; Mason, Maurice; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang

    2017-03-07

    An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magnetic material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: llm@ispms.tsc.ru; Meisner, L. L., E-mail: girs@ispms.tsc.ru

    The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.

  9. Doubled heterogeneous crystal nucleation in sediments of hard sphere binary-mass mixtures

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut; Allahyarov, Elshad

    2011-10-01

    Crystallization during the sedimentation process of a binary colloidal hard spheres mixture is explored by Brownian dynamics computer simulations. The two species are different in buoyant mass but have the same interaction diameter. Starting from a completely mixed system in a finite container, gravity is suddenly turned on, and the crystallization process in the sample is monitored. If the Peclet numbers of the two species are both not too large, crystalline layers are formed at the bottom of the cell. The composition of lighter particles in the sedimented crystal is non-monotonic in the altitude: it is first increasing, then decreasing, and then increasing again. If one Peclet number is large and the other is small, we observe the occurrence of a doubled heterogeneous crystal nucleation process. First, crystalline layers are formed at the bottom container wall which are separated from an amorphous sediment. At the amorphous-fluid interface, a secondary crystal nucleation of layers is identified. This doubled heterogeneous nucleation can be verified in real-space experiments on colloidal mixtures.

  10. Amorphous SiC as a structural layer in microbridge-based RF MEMS switches for use in software-defined radio

    NASA Astrophysics Data System (ADS)

    Parro, Rocco J.; Scardelletti, Maximilian C.; Varaljay, Nicholas C.; Zimmerman, Sloan; Zorman, Christian A.

    2008-10-01

    This paper reports an effort to develop amorphous silicon carbide (a-SiC) films for use in shunt capacitor RF MEMS microbridge-based switches. The films were deposited using methane and silane as the precursor gases. Switches were fabricated using 500 nm and 300 nm-thick a-SiC films to form the microbridges. Switches made from metallized 500 nm-thick SiC films exhibited favorable mechanical performance but poor RF performance. In contrast, switches made from metallized 300 nm-thick SiC films exhibited excellent RF performance but poor mechanical performance. Load-deflection testing of unmetallized and metallized bulk micromachined SiC membranes indicates that the metal layers have a small effect on the Young's modulus of the 500 nm and 300 nm-thick SiC MEMS. As for residual stress, the metal layers have a modest effect on the 500 nm-thick structures, but a significant affect on the residual stress in the 300 nm-thick structures.

  11. Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection.

    PubMed

    Kang, Byung Ha; Kim, Won-Gi; Chung, Jusung; Lee, Jin Hyeok; Kim, Hyun Jae

    2018-02-28

    A homojunction-structured amorphous indium gallium zinc oxide (a-IGZO) phototransistor that can detect visible light is reported. The key element of this technology is an absorption layer composed of hydrogen-doped a-IGZO. This absorption layer is fabricated by simple hydrogen plasma doping, and subgap states are induced by increasing the amount of hydrogen impurities. These subgap states, which lead to a higher number of photoexcited carriers and aggravate the instability under negative bias illumination stress, enabled the detection of a wide range of visible light (400-700 nm). The optimal condition of the hydrogen-doped absorption layer (HAL) is fabricated at a hydrogen partial pressure ratio of 2%. As a result, the optimized a-IGZO phototransistor with the HAL exhibits a high photoresponsivity of 1932.6 A/W, a photosensitivity of 3.85 × 10 6 , and a detectivity of 6.93 × 10 11 Jones under 635 nm light illumination.

  12. Organic Field Effect Transistor Using Amorphous Fluoropolymer as Gate Insulating Film

    NASA Astrophysics Data System (ADS)

    Kitajima, Yosuke; Kojima, Kenzo; Mizutani, Teruyoshi; Ochiai, Shizuyasu

    Organic field effect transistors are fabricated by the active layer of Regioregular poly (3-hexylthiophene-2,5-diy)(P3HT) thin film. CYTOP thin film made from Amorphous Fluoropolymer and fabricated by spin-coating is adopted to a gate dielectric layer on Polyethylenenaphthalate (PEN) thin film that is the substrate of an organic field effect transistor. The surface morphology and molecular orientation of P3HT thin films is observed by atomic force microscope (AFM) and X-Ray diffractometer (XRD). Grains are observed on the CYTOP thin film via an AFM image and the P3HT molecule is oriented perpendicularly on the CYTOP thin film. Based on the performance of the organic field effect transistor, the carrier mobility is 0.092 cm2/Vs, the ON/OFF ratio is 7, and the threshold voltage is -12 V. The ON/OFF ratio is relatively low and to improve On/Off ratio, the CYTOP/Polyimide double gate insulating layer is adopted to OFET.

  13. Imaging of Crystalline and Amorphous Surface Regions Using Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): Application to Pharmaceutical Materials.

    PubMed

    Iuraş, Andreea; Scurr, David J; Boissier, Catherine; Nicholas, Mark L; Roberts, Clive J; Alexander, Morgan R

    2016-04-05

    The structure of a material, in particular the extremes of crystalline and amorphous forms, significantly impacts material performance in numerous sectors such as semiconductors, energy storage, and pharmaceutical products, which are investigated in this paper. To characterize the spatial distribution for crystalline-amorphous forms at the uppermost molecular surface layer, we performed time-of-flight secondary-ion mass spectroscopy (ToF-SIMS) measurements for quench-cooled amorphous and recrystallized samples of the drugs indomethacin, felodipine, and acetaminophen. Polarized light microscopy was used to localize crystallinity induced in the samples under controlled conditions. Principal component analysis was used to identify the subtle changes in the ToF-SIMS spectra indicative of the amorphous and crystalline forms for each drug. The indicators of amorphous and crystalline surfaces were common in type across the three drugs, and could be explained in general terms of crystal packing and intermolecular bonding, leading to intramolecular bond scission in the formation of secondary ions. Less intramolecular scission occurred in the amorphous form, resulting in a greater intensity of molecular and dimer secondary ions. To test the generality of amorphous-crystalline differentiation using ToF-SIMS, a different recrystallization method was investigated where acetaminophen single crystals were recrystallized from supersaturated solutions. The findings indicated that the ability to assign the crystalline/amorphous state of the sample using ToF-SIMS was insensitive to the recrystallization method. This demonstrates that ToF-SIMS is capable of detecting and mapping ordered crystalline and disordered amorphous molecular materials forms at micron spatial resolution in the uppermost surface of a material.

  14. Aluminum induced crystallization of amorphous Ge thin films on insulating substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Ch. Kishan, E-mail: kisn@igcar.gov.in; Tah, T.; Sunitha, D. T.

    2016-05-23

    Aluminium (metal) induced crystallization of amorphous Ge in bilayer and multilayer Ge/Al thin films deposited on quartz substrate at temperature well below the crystallization temperature of bulk Ge is reported. The crystallization of poly-Ge proceeds via formations of dendritic crystalline Ge grains in the Al matrix. The observed phases were characterized by Raman spectroscopy and X-ray diffraction. The microstructure of Al thin film layer was found to have a profound influence on such crystallization process and formation of dendritic grains.

  15. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  16. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, Paul T.; Fisher, Robert W.; Hosking, Floyd M.; Zanner, Frank J.

    1996-01-01

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  17. Long-term stability enhancement of Brillouin measurement in polymer optical fibers using amorphous fluoropolymer

    NASA Astrophysics Data System (ADS)

    Matsutani, Natsuki; Lee, Heeyoung; Mizuno, Yosuke; Nakamura, Kentaro

    2018-01-01

    For Brillouin-sensing applications, we develop a method for mitigating the Fresnel reflection at the perfluorinated-polymer-optical-fiber ends by covering them with an amorphous fluoropolymer (CYTOP, fiber core material) dissolved in a volatile solvent. Unlike the conventional method using water, even after solvent evaporation, the CYTOP layer remains, resulting in long-term Fresnel reduction. In addition, the high viscosity of the CYTOP solution is a practical advantage. The effectiveness of this method is experimentally proved by Brillouin measurement.

  18. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    PubMed

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

  19. Al2O3/SiON stack layers for effective surface passivation and anti-reflection of high efficiency n-type c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Thi Thanh Nguyen, Huong; Balaji, Nagarajan; Park, Cheolmin; Triet, Nguyen Minh; Le, Anh Huy Tuan; Lee, Seunghwan; Jeon, Minhan; Oh, Donhyun; Dao, Vinh Ai; Yi, Junsin

    2017-02-01

    Excellent surface passivation and anti-reflection properties of double-stack layers is a prerequisite for high efficiency of n-type c-Si solar cells. The high positive fixed charge (Q f) density of N-rich hydrogenated amorphous silicon nitride (a-SiNx:H) films plays a poor role in boron emitter passivation. The more the refractive index ( n ) of a-SiNx:H is decreased, the more the positive Q f of a-SiNx:H is increased. Hydrogenated amorphous silicon oxynitride (SiON) films possess the properties of amorphous silicon oxide (a-SiOx) and a-SiNx:H with variable n and less positive Q f compared with a-SiNx:H. In this study, we investigated the passivation and anti-reflection properties of Al2O3/SiON stacks. Initially, a SiON layer was deposited by plasma enhanced chemical vapor deposition with variable n and its chemical composition was analyzed by Fourier transform infrared spectroscopy. Then, the SiON layer was deposited as a capping layer on a 10 nm thick Al2O3 layer, and the electrical and optical properties were analyzed. The SiON capping layer with n = 1.47 and a thickness of 70 nm resulted in an interface trap density of 4.74 = 1010 cm-2 eV-1 and Q f of -2.59 = 1012 cm-2 with a substantial improvement in lifetime of 1.52 ms after industrial firing. The incorporation of an Al2O3/SiON stack on the front side of the n-type solar cells results in an energy conversion efficiency of 18.34% compared to the one with Al2O3/a-SiNx:H showing 17.55% efficiency. The short circuit current density and open circuit voltage increase by up to 0.83 mA cm-2 and 12 mV, respectively, compared to the Al2O3/a-SiNx:H stack on the front side of the n-type solar cells due to the good anti-reflection and front side surface passivation.

  20. Electric measurements of PV heterojunction structures a-SiC/c-Si

    NASA Astrophysics Data System (ADS)

    Perný, Milan; Šály, Vladimír; Janíček, František; Mikolášek, Miroslav; Váry, Michal; Huran, Jozef

    2018-01-01

    Due to the particular advantages of amorphous silicon or its alloys with carbon in comparison to conventional crystalline materials makes such a material still interesting for study. The amorphous silicon carbide may be used in a number of micro-mechanical and micro-electronics applications and also for photovoltaic energy conversion devices. Boron doped thin layers of amorphous silicon carbide, presented in this paper, were prepared due to the optimization process for preparation of heterojunction solar cell structure. DC and AC measurement and subsequent evaluation were carried out in order to comprehensively assess the electrical transport processes in the prepared a-SiC/c-Si structures. We have investigated the influence of methane content in deposition gas mixture and different electrode configuration.

  1. Synthesis and electrochemical performances of amorphous carbon-coated Sn Sb particles as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Tian, Wenhuai; Liu, Xiaohe; Yang, Rong; Li, Xingguo

    2007-12-01

    The amorphous carbon coating on the Sn-Sb particles was prepared from aqueous glucose solutions using a hydrothermal method. Because the outer layer carbon of composite materials is loose cotton-like and porous-like, it can accommodate the expansion and contraction of active materials to maintain the stability of the structure, and hinder effectively the aggregation of nano-sized alloy particles. The as-prepared composite materials show much improved electrochemical performances as anode materials for lithium-ion batteries compared with Sn-Sb alloy and carbon alone. This amorphous carbon-coated Sn-Sb particle is extremely promising anode materials for lithium secondary batteries and has a high potentiality in the future use.

  2. Thin film solar cell including a spatially modulated intrinsic layer

    DOEpatents

    Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.

    1989-03-28

    One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

  3. Influence of coating steps of perovskite on low-temperature amorphous compact TiO x upon the morphology, crystallinity, and photovoltaic property correlation in planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shahiduzzaman, Md.; Furumoto, Yoshikazu; Yamamoto, Kohei; Yonezawa, Kyosuke; Azuma, Yosuke; Kitamura, Michinori; Matsuzaki, Hiroyuki; Karakawa, Makoto; Kuwabara, Takayuki; Takahashi, Kohshin; Taima, Tetsuya

    2018-03-01

    The fabrication of high-efficiency solution-processable perovskite solar cells has been achieved using mesostructured films and compact titanium dioxide (TiO2) layers in a process that involves high temperatures and cost. Here, we present an efficient approach for fabricating chemical-bath-deposited, low-temperature, and low-cost amorphous compact TiO x -based planar heterojunction perovskite solar cells by one-step and two-step coatings of the perovskite layer. We also investigate the effect of the number of perovskite coating steps on the compact TiO x layer. The grazing incidence wide-angle X-ray scattering technique is used to clarify the relationship between morphology, crystallinity, and photovoltaic properties of the resulting devices. Analysis of the films revealed that one-step spin-coating of perovskite exhibited an enhancement of film quality and crystallization that correlates to photovoltaic performance 1.5 times higher than that of a two-step-coated device. Our findings show that the resulting morphology, crystallinity, and device performances are strongly dependent on the number of coating steps of the perovskite thin layer on the compact TiO x layer. This result is useful knowledge for the low-cost production of planar perovskite solar cells.

  4. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer.

    PubMed

    Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2014-07-23

    Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.

  5. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 1: Electrodeposition and growth mechanism, composition, morphology, roughness and structure

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the cathodic current density. The composition, surface morphology, roughness, layers growth pattern as well as the phase structure of deposits were extensively studied via SEM, EDS, AFM and XRD analysis. Effects of bath ingredients on the electrodeposition behavior were analyzed through cathodic linear sweep voltammetry. Although the concentration of Zn2+ in bath was 13 times higher than Ni2+, the Zn-Ni deposition potential was much nearer to Ni deposition potential rather than that of Zn. Addition of NaH2PO2 to the Ni deposition bath considerably raised the current density and shifted the crystallization potential of Ni to more nobble values. Codeposition of P with Zn-Ni alloy lead to crack formation in the monolayer that was deposited in 60 mA/cm2. However, the cracks were not observed in the Zn-Ni layers of multilayers. Zn-Ni layers in CMMCs exhibited a three-dimensional pattern of growth while that of Ni-P layers was two-dimensional. Also, the Ni-P deposits tends to fill the discontinuities in Zn-Ni layers and performed leveling properties and lowered the surface roughness of Zn-Ni layers and CMMCs. Structural analysis demonstrated that Ni-P layers were amorphous and the Zn-Ni layers exhibited crystallite phase of Zn11Ni2. Thus, the Ni-P/Zn-Ni CMMCs comprised of alternate layers of amorphous Ni-P and nanocrystalline Zn Ni.

  6. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1998-01-01

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.

  7. Photodetector with enhanced light absorption

    DOEpatents

    Kane, James

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  8. Orientation dependences of atomic structures in chemically heterogeneous Cu{sub 50}Ta{sub 50}/Ta glass-crystal interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guiqin; Gao, Xiaoze; Li, Jinfu

    2015-01-07

    Molecular dynamics simulations based on an angular-dependent potential were performed to examine the structural properties of chemically heterogeneous interfaces between amorphous Cu{sub 50}Ta{sub 50} and crystalline Ta. Several phenomena, namely, layering, crystallization, intermixing, and composition segregation, were observed in the Cu{sub 50}Ta{sub 50} region adjacent to the Ta layers. These interfacial behaviors are found to depend on the orientation of the underlying Ta substrate: Layering induced by Ta(110) extends the farthest into Cu{sub 50}Ta{sub 50}, crystallization in the Cu{sub 50}Ta{sub 50} region is most significant for interface against Ta(100), while inter-diffusion is most pronounced for Ta(111). It turns out thatmore » the induced layering behavior is dominated by the interlayer distances of the underlying Ta layers, while the degree of inter-diffusion is governed by the openness of the Ta crystalline layers. In addition, composition segregations are observed in all interface models, corresponding to the immiscible nature of the Cu-Ta system. Furthermore, Voronoi polyhedra 〈0,5,2,6〉 and 〈0,4,4,6〉 are found to be abundant in the vicinity of the interfaces for all models, whose presence is believed to facilitate the structural transition between amorphous and body centered cubic.« less

  9. A modified shark-fin test simulating the single-step/double-mix technique: A comparison of three groups of elastomers.

    PubMed

    Huettig, Fabian; Chekhani, Usama; Klink, Andrea; Said, Fadi; Rupp, Frank

    2018-06-08

    The shark-fin test was modified to convey the clinical application of a single-step/double-mix technique assessing the behavior of two viscosities applied at one point in time. A medium and light body polyether (PE), a medium and light body polyvinylsiloxane (PVS), and a medium as well as heavy and light body vinyl polyether silicone (PVXE) impression material were analyzed solely, and in a layered mixture of 1:1 and 3:1 at working times of 50, 80, and 120 s. The fin heights were measured with a digital ruler. The wettability was measured 50 and 80 s after mixing by drop shape analysis. The results showed a synergistic effect of the medium and light body PE. This was not observed in PVXE and PVS. Interestingly, PVXE showed an antagonistic flow behavior in 3:1 mixture with medium body. PVXE was more hydrophilic than PE and PVS. Future rheological studies should clarify the detected flow effects.

  10. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    PubMed

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Low temperature electrodeposition of silicon layers

    NASA Astrophysics Data System (ADS)

    Pauporté, Thierry; Qi, Shuo; Viana, Bruno

    2018-02-01

    The electrodeposition of silicon at room temperature in 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and N-Propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids containing SiCl4 salt is shown. The electrodeposition window has been determined by cyclic voltammetry. Layers have been deposited in a three electrode cell placed in an inert atmosphere and at constant applied potential. The characterizations by x-ray diffraction and Raman spectroscopy showed the formation of a layer made of amorphous silicon. The scanning electron microscopy examination revealed that the layers were featureless and well-covering.

  12. Characterization of an Irradiated RERTR-7 Fuel Plate Using Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Gan; D. D. Keiser, Jr.; B. D. Miller

    2010-03-01

    Transmission electron microscopy (TEM) has been used to characterize an irradiated fuel plate with Al-2Si matrix from the RERTR-7 experiment that was irradiated under moderate reactor conditions. The results of this work showed the presence of a bubble superlattice within the U-7Mo grains that accommodated fission gases (e.g., Xe). The presence of this structure helps the U-7Mo exhibit a stable swelling behaviour during irradiation. Furthermore, TEM analysis showed that the Si-rich interaction layers that develop around the fuel particles at the U-7Mo/matrix interface during fuel plate fabrication and irradiation become amorphous during irradiation, and in regions of the interaction layermore » that have relatively high Si concentrations the fission gas bubbles remain small and contained within the layer but in areas with lower Si concentrations the bubbles grow in size. An important question that remains to be answered about the irradiation behaviour of U-Mo dispersion fuels, is how do more aggressive irradiation conditions affect the behaviour of fission gases within the U-7Mo fuel particles and in the amorphous interaction layers on the microstructural scale that can be characterized using TEM? This paper discusses the results of TEM analysis that was performed on a sample taken from an irradiated RERTR-7 fuel plate with Al-2Si matrix. This plate was exposed to more aggressive irradiation conditions than was the sample taken from the RERTR-6 plate. The microstructural features present within the U-7Mo and the amorphous interaction layers will be discussed. The results of this analysis will be compared to what was observed in the earlier RERTR-6 fuel plate characterization.« less

  13. Microscopic structure and electrical transport property of sputter-deposited amorphous indium-gallium-zinc oxide semiconductor films

    NASA Astrophysics Data System (ADS)

    Yabuta, H.; Kaji, N.; Shimada, M.; Aiba, T.; Takada, K.; Omura, H.; Mukaide, T.; Hirosawa, I.; Koganezawa, T.; Kumomi, H.

    2014-06-01

    We report on microscopic structures and electrical and optical properties of sputter-deposited amorphous indium-gallium-zinc oxide (a-IGZO) films. From electron microscopy observations and an x-ray small angle scattering analysis, it has been confirmed that the sputtered a-IGZO films consist of a columnar structure. However, krypton gas adsorption measurement revealed that boundaries of the columnar grains are not open-pores. The conductivity of the sputter-deposited a-IGZO films shows a change as large as seven orders of magnitude depending on post-annealing atmosphere; it is increased by N2-annealing and decreased by O2-annealing reversibly, at a temperature as low as 300°C. This large variation in conductivity is attributed to thermionic emission of carrier electrons through potential barriers at the grain boundaries, because temperature dependences of the carrier density and the Hall mobility exhibit thermal activation behaviours. The optical band-gap energy of the a-IGZO films changes between before and after annealing, but is independent of the annealing atmosphere, in contrast to the noticeable dependence of conductivity described above. For exploring other possibilities of a-IGZO, we formed multilayer films with an artificial periodic lattice structure consisting of amorphous InO, GaO, and ZnO layers, as an imitation of the layer-structured InGaZnO4 homologous phase. The hall mobility of the multilayer films was almost constant for thicknesses of the constituent layer between 1 and 6 Å, suggesting rather small contribution of lateral two-dimensional conduction It increased with increasing the thickness in the range from 6 to 15 Å, perhaps owing to an enhancement of two-dimensional conduction in InO layers.

  14. Recyclability assessment of nano-reinforced plastic packaging.

    PubMed

    Sánchez, C; Hortal, M; Aliaga, C; Devis, A; Cloquell-Ballester, V A

    2014-12-01

    Packaging is expected to become the leading application for nano-composites by 2020 due to the great advantages on mechanical and active properties achieved with these substances. As novel materials, and although there are some current applications in the market, there is still unknown areas under development. One key issue to be addressed is to know more about the implications of the nano-composite packaging materials once they become waste. The present study evaluates the extrusion process of four nanomaterials (Layered silicate modified nanoclay (Nanoclay1), Calcium Carbonate (CaCO3), Silver (Ag) and Zinc Oxide (ZnO) as part of different virgin polymer matrices of polyethylene (PE), Polypropylene (PP) and Polyethyleneterephtalate (PET). Thus, the following film plastic materials: (PE-Nanoclay1, PE-CaCO3, PP-Ag, PET-ZnO, PET-Ag, PET-Nanoclay1) have been processed considering different recycling scenarios. Results on recyclability show that for PE and PP, in general terms and except for some minor variations in yellowness index, tensile modulus, tensile strength and tear strength (PE with Nanoclay1, PP with Ag), the introduction of nanomaterial in the recycling streams for plastic films does not affect the final recycled plastic material in terms of mechanical properties and material quality compared to conventional recycled plastic. Regarding PET, results show that the increasing addition of nanomaterial into the recycled PET matrix (especially PET-Ag) could influence important properties of the recycled material, due to a slight degradation of the polymer, such as increasing pinholes, degradation fumes and elongation at break. Moreover, it should be noted that colour deviations were visible in most of the samples (PE, PP and PET) in levels higher than 0.3 units (limit perceivable by the human eye). The acceptance of these changes in the properties of recycled PE, PP and PET will depend on the specific applications considered (e.g. packaging applications are more strict in material quality that urban furniture or construction products). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Micromechanical models for the stiffness and strength of UHMWPE macrofibrils

    NASA Astrophysics Data System (ADS)

    Dong, Hai; Wang, Zheliang; O'Connor, Thomas C.; Azoug, Aurelie; Robbins, Mark O.; Nguyen, Thao D.

    2018-07-01

    Ultrahigh molecular weight polyethylene (UHMWPE) fibers have a complex hierarchical structure that at the micron-scale is composed of oriented chain crystals, lamellar crystals, and amorphous domains organized into macrofibrils. We developed a computational micromechanical modeling study of the effects of the morphological structure and constituent material properties on the deformation mechanisms, stiffness and strength of the UHMWPE macrofibrils. Specifically, we developed four representative volume elements, which differed in the arrangement and orientation of the lamellar crystals, to describe the various macrofibrillar microstructures observed in recent experiments. The stiffness and strength of the crystals were determined from molecular dynamic simulations of a pure PE crystal. A finite deformation crystal plasticity model was used to describe the crystals and an isotropic viscoplastic model was used for the amorphous phase. The results show that yielding in UHMWPE macrofibrils under axial tension is dominated by the slip in the oriented crystals, while yielding under transverse compression and shear is dominated by slips in both the oriented and lamellar crystals. The results also show that the axial modulus and strength are mainly determined by the volume fraction of the oriented crystals and are insensitive to the arrangements of the lamellar crystals when the modulus of the amorphous phase is significantly smaller than that of the crystals. In contrast, the arrangement and size of the lamellar crystals have a significant effect on the stiffness and strength under transverse compression and shear. These findings can provide a guide for new materials and processing design to improve the properties of UHMWPE fibers by controlling the macrofibrillar morphologies.

  16. Polarization engineered enhancement mode GaN HEMT: Design and investigation

    NASA Astrophysics Data System (ADS)

    Verma, Sumit; Loan, Sajad A.; Alharbi, Abdullah G.

    2018-07-01

    In this paper, we propose and perform the experimentally calibrated simulation of a novel structure of a GaN/AlGaN high electron mobility transistor (HEMT). The novelty of the structure is the realization of enhancement mode operation by employing polarization engineering approach. In the proposed polarization engineered HEMT (PE-HEMT) a buried Aluminum Nitride (AlN) box is employed in the GaN layer just below the gate. The AlN box creates a two-dimensional hole gas (2DHG) at the GaN/AlN interface, which creates a conduction band barrier in the path of the already existing two-dimensional electron gas (2DEG) at GaN/AlGaN. Therefore, there is no direct path between the source and drain regions at zero gate voltage due to the barrier created by AIN and the device is initially OFF, an enhancement mode operation. A two dimensional (2D) calibrated simulation study of proposed PE-HEMT shows that the device has a threshold voltage (Vth) of 2.3 V. The PE-HEMT also reduces the electron spillover and thus improves the breakdown voltage by 108% as compared to conventional HEMT. The thermal analysis of the GaN PE-HEMT shows that a hot zone occurs on the drain side gate edge. It has been observed that the drain current in the PE-HEMT structure can be improved by 157% by using AlN heat sink.

  17. A Strategy for Architecture Design of Crystalline Perovskite Light-Emitting Diodes with High Performance.

    PubMed

    Shi, Yifei; Wu, Wen; Dong, Hua; Li, Guangru; Xi, Kai; Divitini, Giorgio; Ran, Chenxin; Yuan, Fang; Zhang, Min; Jiao, Bo; Hou, Xun; Wu, Zhaoxin

    2018-06-01

    All present designs of perovskite light-emitting diodes (PeLEDs) stem from polymer light-emitting diodes (PLEDs) or perovskite solar cells. The optimal structure of PeLEDs can be predicted to differ from PLEDs due to the different fluorescence dynamics and crystallization between perovskite and polymer. Herein, a new design strategy and conception is introduced, "insulator-perovskite-insulator" (IPI) architecture tailored to PeLEDs. As examples of FAPbBr 3 and MAPbBr 3 , it is experimentally shown that the IPI structure effectively induces charge carriers into perovskite crystals, blocks leakage currents via pinholes in the perovskite film, and avoids exciton quenching simultaneously. Consequently, as for FAPbBr 3 , a 30-fold enhancement in the current efficiency of IPI-structured PeLEDs compared to a control device with poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) as hole-injection layer is achieved-from 0.64 to 20.3 cd A -1 -while the external quantum efficiency is increased from 0.174% to 5.53%. As the example of CsPbBr 3 , compared with the control device, both current efficiency and lifetime of IPI-structured PeLEDs are improved from 1.42 and 4 h to 9.86 cd A -1 and 96 h. This IPI architecture represents a novel strategy for the design of light-emitting didoes based on various perovskites with high efficiencies and stabilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pulsed laser deposited GeTe-rich GeTe-Sb2Te3 thin films

    PubMed Central

    Bouška, M.; Pechev, S.; Simon, Q.; Boidin, R.; Nazabal, V.; Gutwirth, J.; Baudet, E.; Němec, P.

    2016-01-01

    Pulsed laser deposition technique was used for the fabrication of Ge-Te rich GeTe-Sb2Te3 (Ge6Sb2Te9, Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15) amorphous thin films. To evaluate the influence of GeTe content in the deposited films on physico-chemical properties of the GST materials, scanning electron microscopy with energy-dispersive X-ray analysis, X-ray diffraction and reflectometry, atomic force microscopy, Raman scattering spectroscopy, optical reflectivity, and sheet resistance temperature dependences as well as variable angle spectroscopic ellipsometry measurements were used to characterize as-deposited (amorphous) and annealed (crystalline) layers. Upon crystallization, optical functions and electrical resistance of the films change drastically, leading to large optical and electrical contrast between amorphous and crystalline phases. Large changes of optical/electrical properties are accompanied by the variations of thickness, density, and roughness of the films due to crystallization. Reflectivity contrast as high as ~0.21 at 405 nm was calculated for Ge8Sb2Te11, Ge10Sb2Te13, and Ge12Sb2Te15 layers. PMID:27199107

  19. Self-catalyzed growth of S layers via an amorphous-to-crystalline transition limited by folding kinetics.

    PubMed

    Chung, Sungwook; Shin, Seong-Ho; Bertozzi, Carolyn R; De Yoreo, James J

    2010-09-21

    The importance of nonclassical, multistage crystallization pathways is increasingly evident from theoretical studies on colloidal systems and experimental investigations of proteins and biomineral phases. Although theoretical predictions suggest that proteins follow these pathways as a result of fluctuations that create unstable dense-liquid states, microscopic studies indicate these states are long-lived. Using in situ atomic force microscopy to follow 2D assembly of S-layer proteins on supported lipid bilayers, we have obtained a molecular-scale picture of multistage protein crystallization that reveals the importance of conformational transformations in directing the pathway of assembly. We find that monomers with an extended conformation first form a mobile adsorbed phase, from which they condense into amorphous clusters. These clusters undergo a phase transition through S-layer folding into crystalline clusters composed of compact tetramers. Growth then proceeds by formation of new tetramers exclusively at cluster edges, implying tetramer formation is autocatalytic. Analysis of the growth kinetics leads to a quantitative model in which tetramer creation is rate limiting. However, the estimated barrier is much smaller than expected for folding of isolated S-layer proteins, suggesting an energetic rationale for this multistage pathway.

  20. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seif, Johannes Peter, E-mail: johannes.seif@alumni.epfl.ch; Ballif, Christophe; De Wolf, Stefaan

    Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation ofmore » such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  1. Passive PE Sampling in Support of In Situ Remediation of Contaminated Sediments: Standard Operating Procedure for PED Deployment

    DTIC Science & Technology

    2012-12-01

    mineral and organic materials situated beneath an aqueous layer. PEDs assembled, installed, and retrieved following these procedures will be suitable...at a minimum, wearing adequate protective equipment, flotation devices, and making use of lifelines. 8.0 References Massachusetts Institute of

  2. Impacts of amorphous and crystalline cobalt ferrite layers on the giant magneto-impedance response of a soft ferromagnetic amorphous ribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, D.; Devkota, J.; Ruiz, A.

    2014-09-28

    A systematic study of the effect of depositing CoFe₂O₄ (CFO) films of various thicknesses (d = 0–600 nm) on the giant magneto-impedance (GMI) response of a soft ferromagnetic amorphous ribbon Co₆₅Fe₄Ni₂Si₁₅B₁₄ has been performed. The CFO films were grown on the amorphous ribbons by the pulsed laser deposition technique. X-ray diffraction and transmission electron microscopy revealed a structural variation of the CFO film from amorphous to polycrystalline as the thickness of the CFO film exceeded a critical value of 300 nm. Atomic force microscopy evidenced the increase in surface roughness of the CFO film as the thickness of the CFOmore » film was increased. These changes in the crystallinity and morphology of the CFO film were found to have a distinct impact on the GMI response of the ribbon. Relative to the bare ribbon, coating of amorphous CFO films significantly enhanced the GMI response of the ribbon, while polycrystalline CFO films decreased it considerably. The maximum GMI response was achieved near the onset of the structural transition of the CFO film. These findings are of practical importance in developing high-sensitivity magnetic sensors.« less

  3. Charge transport model in solid-state avalanche amorphous selenium and defect suppression design

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Miranda, Yesenia; Liu, Hongyu; Zhao, Wei

    2016-01-01

    Avalanche amorphous selenium (a-Se) in a layer of High Gain Avalanche Rushing Photoconductor (HARP) is being investigated for its use in large area medical imagers. Avalanche multiplication of photogenerated charge requires electric fields greater than 70 V μm-1. For a-Se to withstand this high electric field, blocking layers are used to prevent the injection of charge carriers from the electrodes. Blocking layers must have a high injection barrier and deep trapping states to reduce the electric field at the interface. In the presence of a defect in the blocking layer, a distributed resistive layer (DRL) must be included into the structure to build up space charge and reduce the electric field in a-Se and the defect. A numerical charge transport model has been developed to optimize the properties of blocking layers used in various HARP structures. The model shows the incorporation of a DRL functionality into the p-layer can reduce dark current at a point defect by two orders of magnitude by reducing the field in a-Se to the avalanche threshold. Hole mobility in a DRL of ˜10-8 cm2 V-1 s-1 at 100 V μm-1 as demonstrated by the model can be achieved experimentally by varying the hole mobility of p-type organic or inorganic semiconductors through doping, e.g., using Poly(9-vinylcarbozole) doped with 1%-3% (by weight) of poly(3-hexylthiopene).

  4. A neural network based computational model to predict the output power of different types of photovoltaic cells.

    PubMed

    Xiao, WenBo; Nazario, Gina; Wu, HuaMing; Zhang, HuaMing; Cheng, Feng

    2017-01-01

    In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.

  5. High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deligianni, Hariklia; Gallagher, William J.; Mason, Maurice

    An on-chip magnetic structure includes a palladium activated seed layer and a substantially amorphous magnetic material disposed onto the palladium activated seed layer. The substantially amorphous magnetic material includes nickel in a range from about 50 to about 80 atomic % (at. %) based on the total number of atoms of the magnetic material, iron in a range from about 10 to about 50 at. % based on the total number of atoms of the magnetic material, and phosphorous in a range from about 0.1 to about 30 at. % based on the total number of atoms of the magneticmore » material. The magnetic material can include boron in a range from about 0.1 to about 5 at. % based on the total number of atoms of the magnetic material.« less

  6. Investigation on Explosive Welding of Zr53Cu35Al12 Bulk Metallic Glass with Crystalline Copper

    NASA Astrophysics Data System (ADS)

    Feng, Jianrui; Chen, Pengwan; Zhou, Qiang

    2018-05-01

    A Zr53Cu35Al12 bulk metallic glass (BMG) was welded to a crystalline Cu using explosive welding technique. The morphology and the composition of the composite were characterized using optical microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy and transmission electron microscopy. The investigation indicated that the BMG and Cu were tightly joined together without visible defects, and a thin diffusion layer appeared at the interface. The captured jet at the end of the welding region mostly comes from the Cu side. Amorphous and partially crystallized structures have been observed within the diffusion layer, but the BMG in close proximity to the interface still retains its amorphous state. Nanoindentation tests reveal that the interface exhibits an increment in hardness compared with the matrix on both sides.

  7. Growth model for arc-deposited fullerene-like CNx nanoparticles.

    PubMed

    Veisz, Bernadett; Radnóczi, György

    2005-06-01

    Multiwall CNx nanotubes, nanoonions, and amorphous nanoballs were formed by carbon DC arc evaporation in a nitrogen atmosphere. The samples were investigated by conventional and high-resolution transmission electron microscopy. We propose a fragment-by-fragment growth mechanism for the formation of the nanoparticles. Accordingly, particles and aggregates of particles form in the vacuum ambient by the collisions between atomic species and small fragments. This growth model is supported by the discontinuous inner shells and disordered surface layers composed from graphene fragments. Image simulations confirm the detectability of dangling and back-folding surface layers in the experimental images. Further, the simulated images also confirm that the growth of nanoonions starts from a single fullerene-like seed. The amorphous nanoballs form when ordering of the building blocks during growth is hindered by the cross-linking nitrogen bonds. Copyright (c) 2005 Wiley-Liss, Inc.

  8. Spectroscopic Ellipsometry Studies of n-i-p Hydrogenated Amorphous Silicon Based Photovoltaic Devices

    PubMed Central

    Karki Gautam, Laxmi; Junda, Maxwell M.; Haneef, Hamna F.; Collins, Robert W.; Podraza, Nikolas J.

    2016-01-01

    Optimization of thin film photovoltaics (PV) relies on characterizing the optoelectronic and structural properties of each layer and correlating these properties with device performance. Growth evolution diagrams have been used to guide production of materials with good optoelectronic properties in the full hydrogenated amorphous silicon (a-Si:H) PV device configuration. The nucleation and evolution of crystallites forming from the amorphous phase were studied using in situ near-infrared to ultraviolet spectroscopic ellipsometry during growth of films prepared as a function of hydrogen to reactive gas flow ratio R = [H2]/[SiH4]. In conjunction with higher photon energy measurements, the presence and relative absorption strength of silicon-hydrogen infrared modes were measured by infrared extended ellipsometry measurements to gain insight into chemical bonding. Structural and optical models have been developed for the back reflector (BR) structure consisting of sputtered undoped zinc oxide (ZnO) on top of silver (Ag) coated glass substrates. Characterization of the free-carrier absorption properties in Ag and the ZnO + Ag interface as well as phonon modes in ZnO were also studied by spectroscopic ellipsometry. Measurements ranging from 0.04 to 5 eV were used to extract layer thicknesses, composition, and optical response in the form of complex dielectric function spectra (ε = ε1 + iε2) for Ag, ZnO, the ZnO + Ag interface, and undoped a-Si:H layer in a substrate n-i-p a-Si:H based PV device structure. PMID:28773255

  9. Solid-state flat panel imager with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  10. Deposition and properties of cobalt- and ruthenium-based ultra-thin films

    NASA Astrophysics Data System (ADS)

    Henderson, Lucas Benjamin

    Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt(0), yields cobalt-phosphorus films without any co-reactant. However, the molecule does not contain sufficient amounts of amorphizing agents to fully eliminate grain boundaries, and the resulting film is nanocrystalline.

  11. Effects of B{sub 18}H{sub x}{sup +} and B{sub 18}H{sub x} dimer ion implantations on crystallinity and retained B dose in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Yoji; Shibahara, Kentaro; Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8527

    2012-01-15

    The effects of B{sub 18}H{sub x}{sup +} and B{sub 18}H{sub x} dimer ion (B{sub 36}H{sub y}{sup +}) implantations on Si crystallinity and the retained B dose in Si were investigated using B{sub 18}H{sub x} bombardment and compared with the effects of B{sup +} implantation. Crystallinity was estimated for the implantation dose using molecular dynamic simulations (MDSs) and was quantified using the optical thickness obtained from spectroscopic ellipsometry. The authors focused on the crystallinity at a low B dose and compared the amorphized zones predicted by MDS for B{sub 18}H{sub x}{sup +} implantation with those measured using transmission electron microscopy; themore » predicted and measured results were in reasonable agreement. The authors then used their understanding of B{sub 18}H{sub x} bombardment to discuss the process for the generation of larger amorphized zones and thicker amorphized layers, as observed in B{sub 36}H{sub y}{sup +} implantation. The retained B dose and the sputtering were examined with secondary ion mass spectroscopy, focusing on a comparison of the retained B and the sputtering of Si and SiO{sub 2} surfaces. The retained B dose was lower for B{sub 18}H{sub x}{sup +} and B{sub 36}H{sub y}{sup +} implantations, with and without surface SiO{sub 2}, than for B{sup +} implantation, although no sputtering was observed. The reduction of the retained B dose was more severe in the samples with SiO{sub 2}. The origin of the differences between Si and SiO{sub 2} surfaces was considered to be Si melting; this was predicted by the MDSs, and observed indirectly as flat B profiles in the Si region. To examine the effects of both crystallinity and retained B dose on the electrical characteristics, the sheet resistance (R{sub S}) was measured. The R{sub S} for B{sub 18}H{sub x}{sup +} implantation was lower than that for B{sup +} implantation at both B doses studied. Additionally, the B{sub 36}H{sub y}{sup +} implantation under conditions that produced a thicker amorphized layer led to lower R{sub S} than B{sub 18}H{sub x}{sup +} implantation. These results indicate that both the amorphized layer and the amorphized zone contribute to the activation of more B atoms.« less

  12. Not so deserted…paleoecology and human subsistence in Central Iberia (Guadalajara, Spain) around the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Yravedra, José; Julien, Marie-Anne; Alcaraz-Castaño, Manuel; Estaca-Gómez, Verónica; Alcolea-González, Javier; de Balbín-Behrmann, Rodrigo; Lécuyer, Christophe; Marcel, Claude Hillaire; Burke, Ariane

    2016-05-01

    In contrast to the coastal areas of the Iberian Peninsula, the Upper Palaeolithic settlement of central Iberia, dominated by the Spanish plateau, is poorly known. Traditional models assume a total or virtual depopulation of the interior of the Iberian Peninsula during the Last Glacial. In this paper we present a detailed investigation of human-environment interactions through the first zooarchaeological, taphonomic and isotopic study of the key site of Peña Capón, a rock shelter located in the south-eastern foothills of the Central System range that contains a multi-layered deposit dated to marine isotope stage 2 (MIS 2). Analyses of the faunal assemblages of the Proto-Solutrean (3) and Middle Solutrean (2) layers show that human preferentially hunted horse, deer and iberian ibex living in the vicinity of the rock shelter. Isotope geochemistry of the animal remains of Peña Capón provides us with the first detailed intra-tooth multi-proxy analysis for this time period in south-western Europe, providing estimates of climatic conditions, seasonal flucturation of diet, as well as patterns of seasonal mobility. Our results indicate that human presence at Peña Capón was apparently restricted to relatively warm intervals around the LGM or reflects the presence of an ecological refuge, and provide us with evidence of recurrent human presence in the Iberian interior during the Upper Paleolithic prior to the Magdalenian.

  13. Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.

    PubMed

    Örlü, R; Fiorini, T; Segalini, A; Bellani, G; Talamelli, A; Alfredsson, P H

    2017-03-13

    This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×10 4 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A 2 ≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A 2,w ≈A 2 /2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  14. Interface charge trapping induced flatband voltage shift during plasma-enhanced atomic layer deposition in through silicon via

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Suhard, Samuel; Van Huylenbroeck, Stefaan; Meersschaut, Johan; Van Besien, Els; Stucchi, Michele; Croes, Kristof; Beyer, Gerald; Beyne, Eric

    2017-12-01

    A Through Silicon Via (TSV) is a key component for 3D integrated circuit stacking technology, and the diameter of a TSV keeps scaling down to reduce the footprint in silicon. The TSV aspect ratio, defined as the TSV depth/diameter, tends to increase consequently. Starting from the aspect ratio of 10, to improve the TSV sidewall coverage and reduce the process thermal budget, the TSV dielectric liner deposition process has evolved from sub-atmospheric chemical vapour deposition to plasma-enhanced atomic layer deposition (PE-ALD). However, with this change, a strong negative shift in the flatband voltage is observed in the capacitance-voltage characteristic of the vertical metal-oxide-semiconductor (MOS) parasitic capacitor formed between the TSV copper metal and the p-Si substrate. And, no shift is present in planar MOS capacitors manufactured with the same PE-ALD oxide. By comparing the integration process of these two MOS capacitor structures, and by using Elastic Recoil Detection to study the elemental composition of our films, it is found that the origin of the negative flatband voltage shift is the positive charge trapping at the Si/SiO2 interface, due to the positive PE-ALD reactants confined to the narrow cavity of high aspect ratio TSVs. This interface charge trapping effect can be effectively mitigated by high temperature annealing. However, this is limited in the real process due to the high thermal budget. Further investigation on liner oxide process optimization is needed.

  15. Modeling the transport of organic chemicals between polyethylene passive samplers and water in finite and infinite bath conditions.

    PubMed

    Tcaciuc, A Patricia; Apell, Jennifer N; Gschwend, Philip M

    2015-12-01

    Understanding the transfer of chemicals between passive samplers and water is essential for their use as monitoring devices of organic contaminants in surface waters. By applying Fick's second law to diffusion through the polymer and an aqueous boundary layer, the authors derived a mathematical model for the uptake of chemicals into a passive sampler from water, in finite and infinite bath conditions. The finite bath model performed well when applied to laboratory observations of sorption into polyethylene (PE) sheets for various chemicals (polycyclic aromatic hydrocarbons, polychlorinated biphenyls [PCBs], and dichlorodiphenyltrichloroethane [DDT]) and at varying turbulence levels. The authors used the infinite bath model to infer fractional equilibration of PCB and DDT analytes in field-deployed PE, and the results were nearly identical to those obtained using the sampling rate model. However, further comparison of the model and the sampling rate model revealed that the exchange of chemicals was inconsistent with the sampling rate model for partially or fully membrane-controlled transfer, which would be expected in turbulent conditions or when targeting compounds with small polymer diffusivities and small partition coefficients (e.g., phenols, some pesticides, and others). The model can be applied to other polymers besides PE as well as other chemicals and in any transfer regime (membrane, mixed, or water boundary layer-controlled). Lastly, the authors illustrate practical applications of this model such as improving passive sampler design and understanding the kinetics of passive dosing experiments. © 2015 SETAC.

  16. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base.

    PubMed

    Rokita, M

    2011-08-15

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Effect of active-layer composition and structure on device performance of coplanar top-gate amorphous oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Yue, Lan; Meng, Fanxin; Chen, Jiarong

    2018-01-01

    The thin-film transistors (TFTs) with amorphous aluminum-indium-zinc-oxide (a-AIZO) active layer were prepared by dip coating method. The dependence of properties of TFTs on the active-layer composition and structure was investigated. The results indicate that Al atoms acted as a carrier suppressor in IZO films. Meanwhile, it was found that the on/off current ratio (I on/off) of TFT was improved by embedding a high-resistivity AIZO layer between the low-resistivity AIZO layer and gate insulator. The improvement in I on/off was attributed to the decrease in off-state current of double-active-layer TFT due to an increase in the active-layer resistance and the contact resistance between active layer and source/drain electrode. Moreover, on-state current and threshold voltage (V th) can be mainly controlled through thickness and Al content of the low-resistivity AIZO layer. In addition, the saturation mobility (μ sat) of TFTs was improved with reducing the size of channel width or/and length, which was attributed to the decrease in trap states in the semiconductor and at the semiconductor/gate-insulator interface with the smaller channel width or/and shorter channel length. Thus, we can demonstrate excellent TFTs via the design of active-layer composition and structure by utilizing a low cost solution-processed method. The resulting TFT, operating in enhancement mode, has a high μ sat of 14.16 cm2 V-1 s-1, a small SS of 0.40 V/decade, a close-to-zero V th of 0.50 V, and I on/off of more than 105.

  18. The comparison of phosphate-titanate-silicate layers on the titanium and Ti6Al4V alloy base

    NASA Astrophysics Data System (ADS)

    Rokita, M.

    2011-08-01

    The studied layers were composed of two parts: titanate-silicate underlayer for better adhesion and titanate-phosphate-silicate layers for potential bioparameters. The layers with different amounts of hydroxyapatite were deposited on titanium and Ti6Al4V alloy substrates using dipping sol-gel method and electrophoresis. The selection of sol/suspension composition, deposition time and heat treatment conditions have the decisive influence on the layers parameters. The obtained layers should be very thin and almost amorphous. The specific nature of ceramic layers on the metal substrates excludes the use of some measurements methods or makes it difficult to interpret the measurement results. All the obtained samples were compared using XRD analysis data (GID technique), SEM with EDX measurements and FTIR spectroscopy (transmission and reflection techniques) before and after soaking in simulated body fluid. FTIR spectroscopy with mathematical treatment of the spectra (BIO-RAD Win-IR program, Arithmetic-subtract function) was used to detect the increase or decrease of any phosphate phases during SBF soaking. Based on the FTIR results the processes of hydroxyapatite (HAp) growth or layer dissolution were estimated. The layers deposited on titanium substrate are more crystalline then the ones deposited on Ti6Al4V. During SBF soaking process the growth of small amount of microcrystalline carbonate hydroxyapatite was observed on titanium substrate. The layer on Ti6Al4V base contained amorphous carbonate apatite. During heating treatment above about 870-920 K this apatite transforms into carbonate hydroxyapatite. The Ti6Al4V substrate seems to be more advantageous in context of potentially bioactive materials obtaining.

  19. Microchemical and Structural Evidence for Space Weathering in Soils from Asteroid Itokawa

    NASA Technical Reports Server (NTRS)

    Thompson, M. S.; Christoffersen, R.; Zega, T. J.

    2013-01-01

    The chemistry, microstructure and optical properties of grains on the surfaces of airless bodies are continu-ously modified due to their interactions predominantly with solar energetic ions and micrometeorite impacts. Collectively known as space weathering, this phenomenon results in a discrepancy between remotely sensed spectra from asteroids and those ac-quired directly from meteorites. The return of pristine samples from the asteroid Itokawa provides insight into surface processes on airless bodies and will help in correlating remote sensing data with laboratory analysis of meteorites. Samples and Methods: We examined Itokawa samples RA-QD02-0042-01 and RA-QD-02-0042-02, ultramicrotomed sec-tions of a singular grain prepared by the Hayabusa sample cura-tion team. We analyzed these slices using a 200 keV JEOL 2010F transmission electron microscope (TEM) at Arizona State Uni-versity and a 200 keV JEOL 2500SE TEM at NASA JSC. Both field emission TEMs are equipped with energy-dispersive X-ray spectrometers (EDS) and scanning TEM (STEM) detectors. Results and Discussion: TEM observations reveal that the sectioned grain predominantly consists of a single crystal of low-Ca orthopyroxene, with subsidiary smaller regions of olivine, Fe-Ni sulfide, and Fe-Ni metal. EDS-spectrum imaging and high-resolution TEM (HRTEM) show local, nanocrystalline regions of the outermost 2 to 5 nm of the pyroxene are composed of an Fe-Mg-S-rich and Si- and O-depleted layer that is underlain by a 2- to 5-nm thick amorphous zone enriched in Si. These layers occur in multiple microtome slices and have uniform thicknesses. We also observe localized 'islands' of material on the surface of the pyroxene which HRTEM imaging indicates are amorphous and EDS measurements show are compositionally heterogeneous. A 10- to 60-nm thick partially amorphous zone occurs below the compositionally distinct rim. While this this zone is associated with the compositionally heterogeneous outer layer, it also occurs as a local stand-alone feature on the exterior rim of the grain. Ar-eas of the pyroxene grain rim also exhibit a vesicular texture. The TEM data indicate a complex history of space weather-ing for samples RA-QD02-0042-01 and -02. The outermost layer of nanocrystalline material with varied composition is consistent with previously suggested [3-4] chemical and structural pro-cessing by solar wind ions, with a possible additional role for im-pact vapor deposition [3-4]. The amorphous and compositionally distinct islands on the surface of this grain, similar to lunar glasses, suggest formation through vapor deposition via micrometeor-ite impact events. In comparison, the amorphization and vesicula-tion textures are likely a product of radiation damage from the solar wind. The depth and degree of amorphization, in conjunction with model calculations, will help provide an upper limit on exposure time for these particles.

  20. A dual-mode textile for human body radiative heating and cooling

    DOE PAGES

    Hsu, Po -Chun; Liu, Chong; Song, Alex Y.; ...

    2017-11-10

    Maintaining human body temperature is one of the most basic needs for living, which often consumes a huge amount of energy to keep the ambient temperature constant. To expand the ambient temperature range while maintaining human thermal comfort, the concept of personal thermal management has been recently demonstrated in heating and cooling textiles separately through human body infrared radiation control. Realizing these two opposite functions within the same textile would represent an exciting scientific challenge and a significant technological advancement. We demonstrate a dual-mode textile that can perform both passive radiative heating and cooling using the same piece of textilemore » without any energy input. The dual-mode textile is composed of a bilayer emitter embedded inside an infrared-transparent nanoporous polyethylene (nanoPE) layer. We demonstrate that the asymmetrical characteristics of both emissivity and nanoPE thickness can result in two different heat transfer coefficients and achieve heating when the low-emissivity layer is facing outside and cooling by wearing the textile inside out when the high-emissivity layer is facing outside. This can expand the thermal comfort zone by 6.5°C. As a result, numerical fitting of the data further predicts 14.7°C of comfort zone expansion for dual-mode textiles with large emissivity contrast.« less

Top