Science.gov

Sample records for amorphous polymer solution

  1. Correlation of inhibitory effects of polymers on indomethacin precipitation in solution and amorphous solid crystallization based on molecular interaction.

    PubMed

    Chauhan, Harsh; Kuldipkumar, Anuj; Barder, Timothy; Medek, Ales; Gu, Chong-Hui; Atef, Eman

    2014-02-01

    To correlate the polymer's degree of precipitation inhibition of indomethacin in solution to the amorphous stabilization in solid state. Precipitation of indomethacin (IMC) in presence of polymers was continuously monitored by a UV spectrophotometer. Precipitates were characterized by PXRD, IR and SEM. Solid dispersions with different polymer to drug ratios were prepared using solvent evaporation. Crystallization of the solid dispersion was monitored using PXRD. Modulated differential scanning calorimetry (MDSC), IR, Raman and solid state NMR were used to explore the possible interactions between IMC and polymers. PVP K90, HPMC and Eudragit E100 showed precipitation inhibitory effects in solution whereas Eudragit L100, Eudragit S100 and PEG 8000 showed no effect on IMC precipitation. The rank order of precipitation inhibitory effect on IMC was found to be PVP K90 > Eudragit E100 > HPMC. In the solid state, polymers showing precipitation inhibitory effect also exhibited amorphous stabilization of IMC with the same rank order of effectiveness. IR, Raman and solid state NMR studies showed that rank order of crystallization inhibition correlates with strength of molecular interaction between IMC and polymers. Correlation is observed in the polymers ability to inhibit precipitation in solution and amorphous stabilization in the solid state for IMC and can be explained by the strength of drug polymer interactions.

  2. Aragonite nanorods in calcium carbonate/polymer hybrids formed through self-organization processes from amorphous calcium carbonate solution.

    PubMed

    Kajiyama, Satoshi; Nishimura, Tatsuya; Sakamoto, Takeshi; Kato, Takashi

    2014-04-24

    Nanostructured inorganic/polymer hybrid thin films comprising aragonite nanorods derived from aqueous suspensions of amorphous calcium carbonate (ACC) are prepared. For the formation of calcium carbonate (CaCO₃)/polymer hybrids, spincoated and annealed films of poly(vinyl alcohol) (PVA) that function as polymer matrices are soaked in aqueous colloidal solutions dispersing ACC stabilized by poly(acrylic acid) (PAA). In the initial stage, calcite thin films form on the surface. Subsequently, aragonite crystals start to form inside the PVA matrix that contains PVA crystallites which induce aragonite nucleation. Nanostructured hybrids composed of calcite thin films consisting of nanoparticles and assembled aragonite nanorods are formed in the matrices of PVA.

  3. Polymer solutions

    DOEpatents

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  4. Flocculated amorphous nanoparticles for highly supersaturated solutions.

    PubMed

    Matteucci, Michal E; Paguio, Joseph C; Miller, Maria A; Williams Iii, Robert O; Johnston, Keith P

    2008-11-01

    To recover polymer-stabilized amorphous nanoparticles from aqueous dispersions efficiently by salt flocculation and to show that the particles redisperse and dissolve rapidly to produce highly supersaturated solutions. Nanoparticle dispersions of itraconazole stabilized by nonionic polymers were formed by antisolvent precipitation and immediately flocculated with sodium sulfate, filtered and dried. The size after redispersion in water, crystallinity, and morphology were compared with those for particles produced by spray drying and rapid freezing. Particle drug loading increased to approximately 90% after salt flocculation and removal of excess polymer with the filtrate. The formation of the flocs at constant particle volume fraction led to low fractal dimensions (open flocs), which facilitated redispersion in water to the original primary particle size of approximately 300 nm. Amorphous particles, which were preserved throughout the flocculation-filtration-drying process, dissolved to supersaturation levels of up to 14 in pH 6.8 media. In contrast, both spray dried and rapidly frozen nanoparticle dispersions crystallized and did not produce submicron particle dispersions upon addition to water, nor high supersaturation values. Salt flocculation produces large yields of high surface area amorphous nanoparticle powders that de-aggregate and dissolve rapidly upon redispersion in pH 6.8 media, for supersaturation levels up to 14.

  5. Design Requirements for Amorphous Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Ounaies, Z.; Young, J. A.; Harrison, J. S.

    1999-01-01

    An overview of the piezoelectric activity in amorphous piezoelectric polymers is presented. The criteria required to render a polymer piezoelectric are discussed. Although piezoelectricity is a coupling between mechanical and electrical properties, most research has concentrated on the electrical properties of potentially piezoelectric polymers. In this work, we present comparative mechanical data as a function of temperature and offer a summary of polarization and electromechanical properties for each of the polymers considered.

  6. Amorphous-Amorphous Phase Separation in API/Polymer Formulations.

    PubMed

    Luebbert, Christian; Huxoll, Fabian; Sadowski, Gabriele

    2017-02-15

    The long-term stability of pharmaceutical formulations of poorly-soluble drugs in polymers determines their bioavailability and therapeutic applicability. However, these formulations do not only often tend to crystallize during storage, but also tend to undergo unwanted amorphous-amorphous phase separations (APS). Whereas the crystallization behavior of APIs in polymers has been measured and modeled during the last years, the APS phenomenon is still poorly understood. In this study, the crystallization behavior, APS, and glass-transition temperatures formulations of ibuprofen and felodipine in polymeric PLGA excipients exhibiting different ratios of lactic acid and glycolic acid monomers in the PLGA chain were investigated by means of hot-stage microscopy and DSC. APS and recrystallization was observed in ibuprofen/PLGA formulations, while only recrystallization occurred in felodipine/PLGA formulations. Based on a successful modeling of the crystallization behavior using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT), the occurrence of APS was predicted in agreement with experimental findings.

  7. Magnetoimpedance of cobalt-based amorphous ribbons/polymer composites

    NASA Astrophysics Data System (ADS)

    Semirov, A. V.; Derevyanko, M. S.; Bukreev, D. A.; Moiseev, A. A.; Kudryavtsev, V. O.; Safronov, A. P.

    2016-10-01

    The combined influence of the temperature, the elastic tensile stress and the external magnetic field on the total impedance and impedance components were studied for rapidly quenched amorphous Co75Fe5Si4B16 ribbons. Both as-cast amorphous ribbons and Co75Fe5Si4B16/polymer amorphous ribbon based composites were considered. Following polymer coverings were studied: modified rubber solution in o-xylene, solution of butyl methacrylate and methacrylic acid copolymer in isopropanol and solution of polymethylphenylsiloxane resin in toluene. All selected composites showed very good adhesion of the coverings and allowed to provide temperature measurements from 163 K up to 383 K under the applied deforming tensile force up to 30 N. The dependence of the modulus of the impedance and its components on the external magnetic field was influenced by the elastic tensile stresses and was affected by the temperature of the samples. It was shown that maximal sensitivity of the impedance and its components to the external magnetic field was observed at minimal temperature and maximal deforming force depended on the frequency of an alternating current.

  8. Cyclic behaviors of amorphous shape memory polymers.

    PubMed

    Yu, Kai; Li, Hao; McClung, Amber J W; Tandon, Gyaneshwar P; Baur, Jeffery W; Qi, H Jerry

    2016-04-07

    Cyclic loading conditions are commonly encountered in the applications of shape memory polymers (SMPs), where the cyclic characteristics of the materials determine their performance during the service life, such as deformation resistance, shape recovery speed and shape recovery ratio. Recent studies indicate that in addition to the physical damage or some other irreversible softening effects, the viscoelastic nature could also be another possible reason for the degraded cyclic behavior of SMPs. In this paper, we explore in detail the influence of the viscoelastic properties on the cyclic tension and shape memory (SM) behavior of an epoxy based amorphous thermosetting polymer. Cyclic experiments were conducted first, which show that although the epoxy material does not have any visible damage or irreversible softening effect during deformation, it still exhibits obvious degradation in the cyclic tension and SM behaviors. A linear multi-branched model is utilized to assist in the prediction and understanding of the mechanical responses of amorphous SMPs. Parametric studies based on the applied model suggest that the shape memory performance can be improved by adjusting programming and recovery conditions, such as lowering the loading rate, increasing the programming temperature, and reducing the holding time.

  9. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    PubMed

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems

  10. Molecular modeling of amorphous, non-woven polymer networks.

    PubMed

    Krausse, Constantin A; Milek, Theodor; Zahn, Dirk

    2015-10-01

    We outline a simple and efficient approach to generating molecular models of amorphous polymer networks. Similar to established techniques of preparing woven polymer networks from quenching high-temperature molecular simulation runs, we use a molecular dynamics simulations of a generic melt as starting points. This generic melt is however only used to describe parts of the polymers, namely the cross-linker units which positions are adopted from particle positions of the quenched melt. Specific degrees of network connectivity are tuned by geometric criteria for linker-linker connections and by suitable multi-body interaction potentials applied to the generic melt simulations. Using this technique we demonstrate adjusting fourfold linker coordination in amorphous polymer networks comprising 10-20% under-coordinated linkers. Graphical Abstract Molecular modeling of amorphous, non-woven polymer networks.

  11. Solution Processing - Rodlike Polymers

    DTIC Science & Technology

    1979-08-01

    side it necessary and identify by block number) Para-ordered Polymers High Modulus Fibers and Films Polybenzobisoxazoles Polybenzobisthiazoles 20...considerations important in solution processing are considered, with special emphasis on the dry-jet wet spinning process used to form fibers . Pertinent...Company, Summit, N.J. iii TABLE OF CONTENTS 1. INTRODUCTION ................ .......................... .. 1 2. REMARKS ON DRY-JET WET SPUN FIBER

  12. Formation and structure of amorphous carbon char from polymer materials

    NASA Astrophysics Data System (ADS)

    Lawson, John W.; Srivastava, Deepak

    2008-04-01

    Amorphous carbonaceous char produced from burning polymer solids has insulating properties that make it valuable in thermal protection and fire-retardant systems. A pyrolytic molecular dynamics simulation method is devised to study the transformation of the local microstructure from virgin polymer to a dense, disordered char. Release of polymer hydrogen is found to be critical to allow the system to collapse into a highly coordinated char structure. Mechanisms of the char formation process and the morphology of the resulting structures are elucidated.

  13. Physical stability of l-ascorbic acid amorphous solid dispersions in different polymers: A study of polymer crystallization inhibitor properties.

    PubMed

    Christina, Belinda; Taylor, Lynne S; Mauer, Lisa J

    2015-10-01

    The effects of different polymer types on inhibiting the crystallization of ascorbic acid (VitC) from amorphous solid dispersions at various temperatures and relative humidities (RHs) were studied. Polymer properties (ability to form hydrogen bonds with VitC, hygroscopicity, and glass transition temperature (Tg)) were correlated to their crystallization inhibitor performance. Solid dispersions of VitC with different pectins, polyvinylpyrrolidone (PVP), and polyacrylic acid (PAA) were formed from lyophilized solutions. Crystallinity, VitC-polymer interactions, hygroscopicity, and Tg were determined using X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), moisture sorption isotherm, and differential scanning calorimetry (DSC) methods, respectively. XRPD amorphous VitC could not be formed by lyophilization in the absence of a polymer, nor in PAA dispersions, but could be formed in pectin and PVP dispersions. The VitC-pectin and PVP dispersions remained amorphous when stored at low RHs, but some crystallization occurred within one week at high RHs. Evidence of hydrogen bonding between VitC and both pectins and PVP, but not PAA, was found in FTIR spectra, and correlated better with physical stability than the Tg. The hygroscopicity of the polymer also influenced the stability of the amorphous VitC solid dispersions. A ranking of the polymer crystallization inhibitor properties was: PVP>pectin with lower degree of esterification (DE)>pectin with higher DE >PAA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Amorphization of thiamine chloride hydrochloride: A study of the crystallization inhibitor properties of different polymers in thiamine chloride hydrochloride amorphous solid dispersions.

    PubMed

    Arioglu-Tuncil, Seda; Bhardwaj, Vivekanand; Taylor, Lynne S; Mauer, Lisa J

    2017-09-01

    Amorphous solid dispersions of thiamine chloride hydrochloride (THCl) were created using a variety of polymers with different physicochemical properties in order to investigate how effective the various polymers were as THCl crystallization inhibitors. THCl:polymer dispersions were prepared by lyophilizing solutions of THCl and amorphous polymers (guar gum, pectin, κ-carrageenan, gelatin, and polyvinylpyrrolidone (PVP)). These dispersions were stored at select temperature (25 and 40°C) and relative humidity (0, 23, 32, 54, 75, and 85% RH) conditions and monitored at different time points using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Moisture sorption isotherms of all samples were also obtained. Initially amorphous THCl was produced in the presence of ≥40% w/w pectin, κ-carrageenan, gelatin, and guar gum or ≥60% w/w PVP. Trends in polymer THCl crystallization inhibition (pectin≥κ-carrageenan>gelatin>guar gum≫PVP) were primarily based on the ability of the polymer to interact with THCl via hydrogen bonding and/or ionic interactions. The onset of THCl crystallization from the amorphous dispersions was also related to storage conditions. THCl remained amorphous at low RH conditions (0 and 23% RH) in all 1:1 dispersions except THCl:PVP. THCl crystallized in some dispersions below the glass transition temperature (Tg) but remained amorphous in others at T~Tg. At high RHs (75 and 85% RH), THCl crystallized within one day in all samples. Given the ease of THCl amorphization in the presence of a variety of polymers, even at higher vitamin concentrations than would be found in foods, it is likely that THCl is amorphous in many low moisture foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. High thermal conductivity in electrostatically engineered amorphous polymers

    PubMed Central

    Shanker, Apoorv; Li, Chen; Kim, Gun-Ho; Gidley, David; Pipe, Kevin P.; Kim, Jinsang

    2017-01-01

    High thermal conductivity is critical for many applications of polymers (for example, packaging of light-emitting diodes), in which heat must be dissipated efficiently to maintain the functionality and reliability of a system. Whereas uniaxially extended chain morphology has been shown to significantly enhance thermal conductivity in individual polymer chains and fibers, bulk polymers with coiled and entangled chains have low thermal conductivities (0.1 to 0.4 W m−1 K−1). We demonstrate that systematic ionization of a weak anionic polyelectrolyte, polyacrylic acid (PAA), resulting in extended and stiffened polymer chains with superior packing, can significantly enhance its thermal conductivity. Cross-plane thermal conductivity in spin-cast amorphous films steadily grows with PAA degree of ionization, reaching up to ~1.2 W m−1 K−1, which is on par with that of glass and about six times higher than that of most amorphous polymers, suggesting a new unexplored molecular engineering strategy to achieve high thermal conductivities in amorphous bulk polymers. PMID:28782022

  16. Thermal transitions of the amorphous polymers in wheat straw

    Treesearch

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2011-01-01

    The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under these conditions two transitions arising from the glass transition of lignin...

  17. Formation and structure of amorphous carbon char from polymer materials

    NASA Astrophysics Data System (ADS)

    Lawson, John; Srivastava, Deepak

    2008-03-01

    Amorphous carbonaceous char produced from burning polymer solids has insulating properties that makes it valuable for aerospace thermal protection systems as well as for fire retardants. A pyrolytic molecular dynamics simulation method is devised to study the transformation of the local microstructure from virgin polymer to a dense, disordered char. Release of polymer hydrogen is found to be critical to allow the system to collapse into a highly coordinated structure. Mechanisms of the char formation process and the morphology of the resulting structure are elucidated.

  18. Thermomechanical behavior of amorphous tactic methacrylate polymers

    NASA Technical Reports Server (NTRS)

    Kiran, E.; Gillham, J. K.; Gipstein, E.

    1974-01-01

    Dynamic mechanical spectra of amorphous stereoregular poly(methyl methacrylate)s and poly(t-butyl methacrylate)s with assigned microtacticities are presented and discussed. An intermolecular argument is invoked to account for the higher glass transition temperature of syndiotactic vis a vis isotactic PMMA, in spite of the higher density of the latter at 30 C. An argument is presented to show that the ratio of glassy-region relaxation temperature to glass transition temperature is not only a measure of the degree of coupling of the beta and glass transition processes, but also of the degree to which intermolecular factors influence these processes. The greater extent of the low-temperature irreversibilities observed in the thermomechanical spectra of poly(t-butyl methacrylate)s is attributed to the brittle character induced by the bulky side groups which presumably weaken cohesive forces.

  19. Tandem solar cells made from amorphous silicon and polymer bulk heterojunction sub-cells.

    PubMed

    Park, Sung Heum; Shin, Insoo; Kim, Kwang Ho; Street, Robert; Roy, Anshuman; Heeger, Alan J

    2015-01-14

    A tandem solar cell based on a combination of an amorphous silicon (a-Si) and polymer solar cell (PSC) is demonstrated. As these tandem devices can be readily fabricated by low-cost methods, they require only a minor increase in the total manufacturing cost. Therefore, a combination of a-Si and PSC provides a compelling solution to reduce the cost of electricity produced by photovoltaics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spherulite Similar Structures in Amorphous Polymers,

    DTIC Science & Technology

    1987-10-30

    to PMIF’ solutions as nucleating agents 6.05Y. polyethyleneadipinate, and to the solution of WK we add 0.05. gutta percha . Evaporation of the solvent ...formed super molecular structures can be formed with very slow evaporation of the solvent . For this purpose we used vials with polished stoppers, which...structures indicate the absence of cr.ystalline reflexes. The macro ordering disappears at 170-180 ° and during the action of solvents (acetone

  1. Comparative surface dynamics of amorphous and semicrystalline polymer films

    PubMed Central

    Becker, James S.; Brown, Ryan D.; Killelea, Daniel R.; Yuan, Hanqiu; Sibener, S. J.

    2011-01-01

    The surface dynamics of amorphous and semicrystalline polymer films have been measured using helium atom scattering. Time-of-flight data were collected to resolve the elastic and inelastic scattering components in the diffuse scattering of neutral helium atoms from the surface of a thin poly(ethylene terephthalate) film. Debye–Waller attenuation was observed for both the amorphous and semicrystalline phases of the polymer by recording the decay of elastically scattered helium atoms with increasing surface temperature. Thermal attenuation measurements in the specular scattering geometry yielded perpendicular mean-square displacements of 2.7•10-4 Å2 K-1 and 3.1•10-4 Å2 K-1 for the amorphous and semicrystalline surfaces, respectively. The semicrystalline surface was consistently ∼15% softer than the amorphous across a variety of perpendicular momentum transfers. The Debye–Waller factors were also measured at off-specular angles to characterize the parallel mean-square displacements, which were found to increase by an order of magnitude over the perpendicular mean-square displacements for both surfaces. In contrast to the perpendicular motion, the semicrystalline state was ∼25% stiffer than the amorphous phase in the surface plane. These results were uniquely accessed through low-energy neutral helium atom scattering due to the highly surface-sensitive and nonperturbative nature of these interactions. The goal of tailoring the chemical and physical properties of complex advanced materials requires an improved understanding of interfacial dynamics, information that is obtainable through atomic beam scattering methods. PMID:20713734

  2. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions.

  3. Superior electric storage on an amorphous perfluorinated polymer surface

    PubMed Central

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi

    2016-01-01

    Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the −90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system. PMID:26902953

  4. Superior electric storage on an amorphous perfluorinated polymer surface

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Kuroda, Tomoyuki; Hasegawa, Fumihiko; Sueyoshi, Takashi

    2016-02-01

    Amorphous perfluoroalkenyl vinyl ether polymer devices can store a remarkably powerful electric charge because their surface contains nanometre-sized cavities that are sensitive to the so-called quantum-size effect. With a work function of approximately 10 eV, the devices show a near-vertical line in the Nyquist diagram and a horizontal line near the -90° phase angle in the Bode diagram. Moreover, they have an integrated effect on the surface area for constant current discharging. This effect can be explained by the distributed constant electric circuit with a parallel assembly of nanometre-sized capacitors on a highly insulating polymer. The device can illuminate a red LED light for 3 ms after charging it with 1 mA at 10 V. Further gains might be attained by integrating polymer sheets with a micro-electro mechanical system.

  5. Structure and segmental dynamics in amorphous conjugated polymers

    NASA Astrophysics Data System (ADS)

    Zhan, Pengfei; Maranas, Janna; Gomez, Enrique

    2015-03-01

    Although it is well established that the microstructure strongly affects charge transport in organic semiconductors, the role of fluctuations of the structure on charge mobilities is still not well understood. We have examined the dynamics and structure in amorphous conjugated polymers poly(3-alkylthiophene)s (P3ATs) with neutron and x-ray scattering. We measured the segmental dynamics in amorphous P3ATs with quasi-elastic neutron scattering (QENS). The structure of amorphous P3ATs is measured with small-angle neutron scattering (SANS) and grazing incidence X-ray diffraction (GIXRD). Using SANS, we observe phase separation between the backbone and side-chains in all polymer samples for regiorandom P3ATs. Additionally, the analysis of the QENS data shows that longer side-chains relax faster compared with shorter side-chains and our further analysis of the elastic incoherent structure factor (EISF) suggests that the amplitude of proton motion on the thiophene rings increases by a factor of 3 as the side-chain length increases from 6 to 12, demonstrating that longer side chains lead to enhanced motion of conjugated rings. This work is done under the support of Dow Chemical Company

  6. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix.

    PubMed

    Grabowski, Christopher A; Fillery, Scott P; Westing, Nicholas M; Chi, Changzai; Meth, Jeffrey S; Durstock, Michael F; Vaia, Richard A

    2013-06-26

    The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic-polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure-performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdown-field exclusion and agglomeration-have been mitigated in this experiment to focus on what impact the polymer and polymer-nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5-15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.

  7. Analysis of ageing of amorphous thermoplastic polymers by PVT analysis

    NASA Astrophysics Data System (ADS)

    Greco, Antonio; Maffezzoli, Alfonso; Gennaro, Riccardo; Rizzo, Michele

    2012-07-01

    The aim of this work is the analysis of ageing phenomenon occurring in amorphous thermoplastic polymers below their glass transition temperature by pressure-volume-temperature (PVT) analysis. The ageing behavior of different polymers as a function of the heating and cooling rates has been widespread studied. Also, different works in literature are aimed to study the effect of the applied pressure on the glass transition behavior. Another relevant aspect related to the glass transition behavior is related to the ageing effects, which can also be influenced by the applied pressure. This is a very relevant issue, since most of the polymers, during ageing, are subjected to mechanical loading. PVT analysis was used to study the ageing of amorphous PET copolymer (PETg) at different pressure levels. Specific volume-temperature curves measured during the cooling and the heating steps were used for calculating the relaxed specific volume, showing that ageing effects increase with increasing applied pressure. The evolution of the fictive temperature as a function of time was calculated from experimental data.

  8. Soft confinement for polymer solutions

    NASA Astrophysics Data System (ADS)

    Oya, Yutaka; Kawakatsu, Toshihiro

    2014-07-01

    As a model of soft confinement for polymers, we investigated equilibrium shapes of a flexible vesicle that contains a phase-separating polymer solution. To simulate such a system, we combined the phase field theory (PFT) for the vesicle and the self-consistent field theory (SCFT) for the polymer solution. We observed a transition from a symmetric prolate shape of the vesicle to an asymmetric pear shape induced by the domain structure of the enclosed polymer solution. Moreover, when a non-zero spontaneous curvature of the vesicle is introduced, a re-entrant transition between the prolate and the dumbbell shapes of the vesicle is observed. This re-entrant transition is explained by considering the competition between the loss of conformational entropy and that of translational entropy of polymer chains due to the confinement by the deformable vesicle. This finding is in accordance with the recent experimental result reported by Terasawa et al. (Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 5249).

  9. Void nucleation and disentanglement in glassy amorphous polymers

    NASA Astrophysics Data System (ADS)

    Mahajan, Dhiraj K.; Singh, Bhupinder; Basu, Sumit

    2010-07-01

    Cavitation in glassy polymers is known to result from highly triaxial states of local stress and the presence of impurities. Understanding of cavitation, particularly void nucleation, is important as cavities are precursors to crazes, which in turn lead to fracture. In this work we study the early stages of void nucleation in glassy amorphous polymers by imposing, in well designed molecular dynamics simulations, highly triaxial states of stress on ensembles of entangled linear macromolecular chains and monitoring the evolution of the entanglement network. Our results demonstrate that deformation induced disentanglement and rearrangement of topological constraints along individual chains play an important role in the early stages of void nucleation. Even in the glassy state, deformation causes significant changes in the rheological constraints on a chain though the number of interchain binary contacts may not change much.

  10. Local versus average field failure criterion in amorphous polymers

    NASA Astrophysics Data System (ADS)

    Xie, Yuesong; Mao, Yunzhe; Sun, Lin; Koslowski, Marisol

    2015-03-01

    There is extensive work developing laws that predict yielding in amorphous polymers, ranging from the pioneer experimental work of Sternstein et al (1968 Appl. Polym. Symp. 7 175-99) to the novel molecular dynamics simulations of Jaramillo et al (2012 Phys. Rev. B 85 024114). While atomistic models render damage criteria in terms of local values of the stress and strain fields, experiments provide yield conditions in terms of the average values of these fields. Unfortunately, it is not possible to compare these results due to the differences in time and length scales. Here, we use a micromechanical phase-field damage model with parameters calculated from atomistic simulations to connect atomistic and macroscopic scale experiments. The phase-field damage model is used to study failure in composite materials. We find that the yield criterion should be described in terms of local stress and strains fields and cannot be extended directly from applied stress field values to determine yield conditions.

  11. Triphenylamine-based amorphous polymers for bulk-heterojunction photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Yasuda, Takeshi

    2014-03-01

    In this paper, the recent research progress on triphenylamine (TPA)-based donor-acceptor (D-A) amorphous polymers including our developed polymers is reviewed. TPA has three-dimensional branched structures and can provide D-A polymers containing D and A units in the main chain or side chain. The use of TPA-based amorphous polymers in the fabrication of organic photovoltaics (OPVs) offers great advantages over the use of a polycrystalline film in terms of high reproducibility of the OPV performance. The amorphous polymer design using TPA, therefore, indicates a promising direction for the development of new donor materials in OPVs.

  12. Solution assembly of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Bokel, Felicia A.

    This dissertation focuses on the solution-state polymer assembly of conjugated polymers with specific attention to nano- and molecular-scale morphology. Understanding how to control these structures holds potential for applications in polymer-based electronics. Optimization of conjugated polymer morphology was performed with three objectives: 1) segregation of donor and acceptor materials on the nanometer length-scale, 2) achieving molecular-scale ordering in terms of crystallinity within distinct domains, and 3) maximizing the number and quality of well-defined donor/acceptor interfaces. Chapter 1 introduces the development of a mixed solvent method to create crystalline poly(3-hexyl thiophene) (P3HT) fibrils in solution. Chapter 2 describes fibril purification and approaches to robust and functional fibrils, while chapters 3 and 4 demonstrate the formation of hybrid nanocomposite wires of P3HT and cadmium selenide (CdSe) nanoparticles by two methods: 1) co-crystallization of free and P3HT-grafted CdSe for composite nanowires and 2) direct attachment of CdSe nanoparticles at fibril edges to give superhighway structures. These composite structures show great potential in the application of optoelectronic devices, such as the active layer of solar cells. Finally, ultrafast photophysical characterization of these polymers, using time-resolved photoluminescence and transient absorption, was performed to determine the aggregation types present in suspended fibrils and monitor the formation and decay of charged species in fibrils and donor-acceptor systems.

  13. Self-consistent field model simulations for statistics of amorphous polymer chains in crystalline lamellar structures

    NASA Astrophysics Data System (ADS)

    Uneyama, Takashi; Miyata, Takafumi; Nitta, Koh-hei

    2014-10-01

    We calculate statistical properties of amorphous polymer chains between crystalline lamellae by self-consistent field model simulations. In our model, an amorphous subchain is modelled as a polymer chain of which ends are grafted onto the crystal-amorphous interfaces. The crystal-amorphous interfaces are expressed as impenetrable surfaces. We incorporate the interaction between segments to satisfy the incompressible condition for the segment density field. The simulation results show that amorphous polymer chains feel thin potential layers, which are mainly repulsive, near the crystal-amorphous interfaces. The impenetrable and incompressible conditions affect the statistics of polymer chains and the chain statistics becomes qualitatively different from the ideal Gaussian chain statistics without any constraints. We show the effects of the system size and the graft density to statistical quantities. We also show that the tie subchain statistics obey rather simple statistics.

  14. Impact of polymers on the crystallization and phase transition kinetics of amorphous nifedipine during dissolution in aqueous media.

    PubMed

    Raina, Shweta A; Alonzo, David E; Zhang, Geoff G Z; Gao, Yi; Taylor, Lynne S

    2014-10-06

    The commercial and clinical success of amorphous solid dispersions (ASD) in overcoming the low bioavailability of poorly soluble molecules has generated momentum among pharmaceutical scientists to advance the fundamental understanding of these complex systems. A major limitation of these formulations stems from the propensity of amorphous solids to crystallize upon exposure to aqueous media. This study was specifically focused on developing analytical techniques to evaluate the impact of polymers on the crystallization behavior during dissolution, which is critical in designing effective amorphous formulations. In the study, the crystallization and polymorphic conversions of a model compound, nifedipine, were explored in the absence and presence of polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), and HPMC-acetate succinate (HPMC-AS). A combination of analytical approaches including Raman spectroscopy, polarized light microscopy, and chemometric techniques such as multivariate curve resolution (MCR) were used to evaluate the kinetics of crystallization and polymorphic transitions as well as to identify the primary route of crystallization, i.e., whether crystallization took place in the dissolving solid matrix or from the supersaturated solutions generated during dissolution. Pure amorphous nifedipine, when exposed to aqueous media, was found to crystallize rapidly from the amorphous matrix, even when polymers were present in the dissolution medium. Matrix crystallization was avoided when amorphous solid dispersions were prepared, however, crystallization from the solution phase was rapid. MCR was found to be an excellent data processing technique to deconvolute the complex phase transition behavior of nifedipine.

  15. Monolithic amorphous silicon modules on continuous polymer substrate

    SciTech Connect

    Grimmer, D.P. )

    1992-03-01

    This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

  16. Temperature scanning FTIR analysis of interactions between sugar and polymer additive in amorphous sugar-polymer mixtures.

    PubMed

    Imamura, Koreyoshi; Ohyama, Ken-Ichi; Yokoyama, Toru; Maruyama, Yoshinobu; Imanaka, Hiroyuki; Nakanishi, Kazuhiro

    2008-01-01

    The impact of a polymer additive (polyvinylpyrrolidone, PVP) on hydrogen bonding in amorphous sugar matrices as well as on the glass transition temperature, T(g), were examined by temperature scanning Fourier transform infrared spectroscopy (TS-FTIR). An amorphous sugar matrix containing PVP was prepared by air-drying an aqueous solution of a sugar-PVP mixture. The hydrogen bonds in the sugar-PVP mixture (sugar-PVP and sugar-sugar hydrogen bonds) were analyzed from the IR peak positions corresponding to the stretching vibration of C==O groups of PVP and O--H groups of the sugar and the temperature dependence of the peak position of the O--H stretching vibration band. The addition of PVP to amorphous mono and disaccharides significantly lowered the extent of hydrogen bond formation while interactions between sugars and the PVP tended to prevent the disruption of hydrogen bonds due to increasing temperature, the magnitude of which was larger for larger oligomers. The T(g) value for the amorphous sugar was increased by the addition of PVP in many cases. As the size of sugar molecule became larger, the relative magnitude of the increased T(g) by PVP to the difference between the T(g) values for sugar alone and PVP alone became larger and then reached a certain level; it was slight in the case of glucose. Collectively, these results demonstrate that the magnitude of the impact of PVP on an amorphous sugar matrix strongly vary and are dependent on the types of sugar. (c) 2007 Wiley-Liss, Inc.

  17. Pseudobrush theory of amorphous interphase in semicrystalline polymers.

    NASA Astrophysics Data System (ADS)

    Milner, Scott

    2009-03-01

    The conformation of polymer chains emerging from the face of a crystalline lamella has long been a matter of dispute. Long ago, arguments pitted ``adjacent reentry'' versus the ``switchboard model'' as extreme limits of possible behavior. Later, two theoretical approaches were attempted, but one (the Gambler's Ruin model) did not properly account for the constraint of melt density, and the other (heuristic configuration counting of Flory et al.) did not account for chain connectivity. These shortcomings are resolved by a new ``pseudobrush'' theory of the amorphous interphase, which represents the reentrant chains as a polydisperse brush of loops in a self-consistent hydrostatic pressure field. This theory predicts the fraction of adjacent reentry, shows how the anisotropy of the interphase dies away with distance, and how the Gambler's Ruin model is recovered far from the interface. Extension to the case of a finite slab between two crystal-melt interfaces predicts the frequency of tie chains, a key parameter for nonlinear deformation and ductile failure of semicrystalline polymers.

  18. All solution processible polymer multijunction solar cells

    NASA Astrophysics Data System (ADS)

    Siddiki, Mahbube Khoda

    Conjugated polymer based organic solar cells are a promising alternative to conventional silicon solar cells due to low material and fabrication cost, ease of processability, and mechanical flexibility, while solar cells with a multijunction structure have high potential to achieve enhanced efficiency and cost effectiveness. The goal of this dissertation was to stack narrow band absorbers with efficient interfacial layers in multiple junctions for broad spectrum light harvesting to achieve cost effectiveness. Specific objectives were to develop cost effective interfacial layers, and to design and fabricate solution processible polymer single and multijunction solar cells to achieve 10 % efficiency. A novel recombination layer of Nb2O5-PEDOT:PSS was developed along with single and double junction solar cells using a MDMO-PPV:PC 60BM, P3HT:PC60BM and PSBTBT:PC70BM polymer blend. Simulations showed that the maximum achievable efficiency for single, double, triple, and quadruple junction polymer solar cells were 13 %, 19 %, 22 %, and 24 % respectively, indicating the potential of multijunction devices. XRD reveled that the Nb2O5 used as the recombination layer was amorphous and AFM and KFM microscopic studies showed that the charge transfer barrier from PC60BM to Nb2O5 was only ˜0.2 eV. A MDMO-PPV:PC60BM based double junction solar cell using Nb2O5 electron transport layer exhibited a Voc of 1.30 V, which was close to the sum of the Voc’s of the individual subcells. Simulation results showed that cell efficiency using Nb2O5 as an electron transport layer could be significantly increased by reducing the series resistance (Rse) and matching the current densities of the individual subcells. Nb2O5-PEDOT:PSS was used in a high band gap P3HT and low band gap polymer based double junction solar cell, and the performance obtained was very promising though the PSBTBT:PC 70BM back subcell appeared to be the performance limiting cell with low FF and high series and low shunt

  19. Dynamic measurement of stress optical behavior of three amorphous polymers

    NASA Astrophysics Data System (ADS)

    Min, Inki; Yoon, Kyunghwan

    2012-03-01

    In the present study, rheo-optical and mechanical properties of three amorphous polymers, i.e., PS (polystyrene), PC(polycarbonate) and COC(cyclo olefin copolymer), widely used for optical products have been investigated. Accurate measurement of stress optical coefficients and elastic modulus data across the glass transition region are essential for predicting optical anisotropy in many injection molded optical products like pickup lenses and waveguide in LCD module since the final products have both flow and thermal history from the melt to glass. To obtain stress optical behavior in wide range of frequency and temperature including rubbery, glassy and glass transition regime, frequency sweep tests with extensional bar and shear sandwich tools were undertaken. As a result, glassy and melt extreme values of stress optical coefficient of PS and PC were evaluated as well as master plots in wide frequency region. The sign change of stress optical coefficient was shown clearly for PS as the frequency increased. On the other hand, the sign of stress optical coefficient over the whole frequency region is always positive for PC. For COC's of different composition, even though the glass transition temperature can vary, the stress optical coefficient of COC's with different composition stays almost constant at two extremes.

  20. Crystalline-amorphous interaction in relation to the phase diagrams of binary polymer blends containing a crystalline constituent.

    PubMed

    Rathi, Pankaj; Huang, Tsang-Min; Dayal, Pratyush; Kyu, Thein

    2008-05-22

    The present article describes an equilibrium theory for determining binary phase diagrams of various crystalline-amorphous polymer blends by taking into account the contributions from both liquid-liquid phase separation between the constituents and solid-liquid phase transition of the crystalline component. An analytical expression for determining a crystal-amorphous interaction parameter is deduced based on the solid-liquid transition, involving the solidus and liquidus lines in conjunction with the coexistence curve of an upper critical solution temperature type. Of particular importance is that the crystalline-amorphous interaction parameter can be determined directly from the melting point depression data. The present analysis is therefore different from the conventional Flory-Huggins interaction parameter, which is associated with the liquid-liquid phase separation. The validity of the present theory is tested with the experimental phase diagrams of blends of poly(ethylene oxide)/diacrylate and poly(vinyl alcohol)/cellulose.

  1. Functionalized polymers for binding to solutes in aqueous solutions

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.

    2006-11-21

    A functionalized polymer for binding a dissolved molecule in an aqueous solution is presented. The polymer has a backbone polymer to which one or more functional groups are covalently linked. The backbone polymer can be such polymers as polyethylenimine, polyvinylamine, polyallylamine, and polypropylamine. These polymers are generally water-soluble, but can be insoluble when cross-linked. The functional group can be for example diol derivatives, polyol derivatives, thiol and dithiol derivatives, guest-host groups, affinity groups, beta-diphosphonic acids, and beta-diamides

  2. Drug-polymer solubility and miscibility: Stability consideration and practical challenges in amorphous solid dispersion development.

    PubMed

    Qian, Feng; Huang, Jun; Hussain, Munir A

    2010-07-01

    Drug-polymer solid dispersion has been demonstrated as a feasible approach to formulate poorly water-soluble drugs in the amorphous form, for the enhancement of dissolution rate and bioperformance. The solubility (for crystalline drug) and miscibility (for amorphous drug) in the polymer are directly related to the stabilization of amorphous drug against crystallization. Therefore, it is important for pharmaceutical scientists to rationally assess solubility and miscibility in order to select the optimal formulation (e.g., polymer type, drug loading, etc.) and recommend storage conditions, with respect to maximizing the physical stability. This commentary attempts to discuss the concepts and implications of the drug-polymer solubility and miscibility on the stabilization of solid dispersions, review recent literatures, and propose some practical strategies for the evaluation and development of such systems utilizing a working diagram.

  3. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-Impact of different polymers.

    PubMed

    Wegiel, Lindsay A; Mauer, Lisa J; Edgar, Kevin J; Taylor, Lynne S

    2013-01-01

    The objective of this study was to investigate intermolecular interactions between resveratrol and polymers in amorphous blends and to study the potential correlations between compound-polymer interactions, manufacturability, and stability of the amorphous system to crystallization during storage. Polymers included two grades of poly (vinylpyrrolidone) (PVP), Eudragit E100 (E100), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate, and poly (acrylic acid) (PAA). Amorphous blends ("solid dispersions") were prepared by dissolving both resveratrol and polymer in a solvent followed by rotary evaporation. Crystallinity was evaluated using X-ray powder diffraction and was studied as a function of time. Mid-infrared (IR) spectroscopy was used to investigate resveratrol-polymer interactions. Polymer influence on the crystallization behavior of resveratrol varied and could be correlated to the polymer structure, whereby polymers with good hydrogen bond acceptor groups performed better as crystallization inhibitors. Resveratrol-polymer hydrogen bonding interactions could be inferred from the IR spectra. Somewhat surprisingly, E100 and resveratrol showed evidence of an acid-base reaction, in addition to intermolecular hydrogen bonding interactions. PVP K29/32 appeared to form stronger hydrogen bond interactions with resveratrol relative to HPMC, HPMCAS, and PAA, consistent with acceptor group chemistry. Long-term stability of the systems against crystallization suggested that stability is linked to the type and strength of intermolecular interactions present. whereby resveratrol blended with E100 and PVP K29/32 showed the greatest stability to crystallization. In conclusion, amorphous resveratrol is unstable and difficult to form, requiring the assistance of a polymeric crystallization inhibitor to facilitate the formation of an amorphous solid dispersion. Polymers effective at inhibiting

  4. Foaming behaviour of polymer surfactant solutions

    NASA Astrophysics Data System (ADS)

    Cervantes-Martínez, Alfredo; Maldonado, Amir

    2007-06-01

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions.

  5. Electronic Excited States in Amorphous MEH-PPV Polymers from Large-Scale First Principles Calculations.

    PubMed

    Ma, Haibo; Qin, Ting; Troisi, Alessandro

    2014-03-11

    The electronic excited states of amorphous polymeric semiconductor MEH-PPV are investigated by first principles quantum chemical calculations based on trajectories from classical molecular dynamics simulations. We inferred an average conjugation length of ∼5-7 monomers for lowest vertical excitations of amorphous MEH-PPV at room temperature and verified that the normal definition of a chromophore in a polymer based on purely geometric "conjugation breaks" is not always valid in amorphous polymers and a rigorous definition can be only on the basis of the evaluation of the polymer excited state wave function. The charge transfer character is observed to be nearly invariant for all excited states in low energy window while the exciton delocalization extent is found to increase with energy. The interchain excitonic couplings for amorphous MEH-PPV are shown to be usually smaller than 10 meV suggesting that the transport mechanism across chain can be described by incoherent hopping. All these observations about the energetic and spatial distribution of the excitons in polymer as well as their couplings provide important qualitative insights and useful quantitative information for constructing a realistic model for exciton migration dynamics in amorphous polymer materials.

  6. Drug-polymer-water interaction and its implication for the dissolution performance of amorphous solid dispersions.

    PubMed

    Chen, Yuejie; Liu, Chengyu; Chen, Zhen; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2015-02-02

    The in vitro dissolution mechanism of an amorphous solid dispersion (ASD) remains elusive and highly individualized, yet rational design of ASDs with optimal performance and prediction of their in vitro/in vivo performance are very much desirable in the pharmaceutical industry. To this end, we carried out comprehensive investigation of various ASD systems of griseofulvin, felodipine, and ketoconazole, in PVP-VA or HPMC-AS at different drug loading. Physiochemical properties and processes related to drug-polymer-water interaction, including the drug crystallization tendency in aqueous medium, drug-polymer interaction before and after moisture exposure, supersaturation of drug in the presence of polymer, polymer dissolution kinetics, etc., were characterized and correlated with the dissolution performance of ASDs at different dose and different drug/polymer ratio. It was observed that ketoconazole/HPMC-AS ASD outperformed all other ASDs in various dissolution conditions, which was attributed to the drug's low crystallization tendency, the strong ketoconazole/HPMC-AS interaction and the robustness of this interaction against water disruption, the dissolution rate and the availability of HPMC-AS in solution, and the ability of HPMC-AS in maintaining ketoconazole supersaturation. It was demonstrated that all these properties have implications for the dissolution performance of various ASD systems, and further quantification of them could be used as potential predictors for in vitro dissolution of ASDs. For all ASDs investigated, HPMC-AS systems performed better than, or at least comparably with, their PVP-VA counterparts, regardless of the drug loading or dose. This observation cannot be solely attributed to the ability of HPMC-AS in maintaining drug supersaturation. We also conclude that, for fast crystallizers without strong drug-polymer interaction, the only feasible option to improve dissolution might be to lower the dose and the drug loading in the ASD. In this

  7. Dissolution of Danazol Amorphous Solid Dispersions: Supersaturation and Phase Behavior as a Function of Drug Loading and Polymer Type.

    PubMed

    Jackson, Matthew J; Kestur, Umesh S; Hussain, Munir A; Taylor, Lynne S

    2016-01-04

    Amorphous solid dispersions (ASDs) are of great interest as enabling formulations because of their ability to increase the bioavailability of poorly soluble drugs. However, the dissolution of these formulations under nonsink dissolution conditions results in highly supersaturated drug solutions that can undergo different types of phase transitions. The purpose of this study was to characterize the phase behavior of solutions resulting from the dissolution of model ASDs as well as the degree of supersaturation attained. Danazol was chosen as a poorly water-soluble model drug, and three polymers were used to form the dispersions: polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), and hydroxypropylmethyl cellulose acetate succinate (HPMCAS). Dissolution studies were carried out under nonsink conditions, and solution phase behavior was characterized using several orthogonal techniques. It was found that liquid-liquid phase separation (LLPS) occurred following dissolution and prior to crystallization for most of the dispersions. Using flux measurements, it was further observed that the maximum attainable supersaturation following dissolution was equivalent to the amorphous solubility. The dissolution of the ASDs led to sustained supersaturation, the duration of which varied depending on the drug loading and the type of polymer used in the formulation. The overall supersaturation profile observed thus depended on a complex interplay between dissolution rate, polymer type, drug loading, and the kinetics of crystallization.

  8. Accurate effective pair potentials for polymer solutions

    NASA Astrophysics Data System (ADS)

    Bolhuis, P. G.; Louis, A. A.; Hansen, J. P.; Meijer, E. J.

    2001-03-01

    Dilute or semidilute solutions of nonintersecting self-avoiding walk (SAW) polymer chains are mapped onto a fluid of "soft" particles interacting via an effective pair potential between their centers of mass. This mapping is achieved by inverting the pair distribution function of the centers of mass of the original polymer chains, using integral equation techniques from the theory of simple fluids. The resulting effective pair potential is finite at all distances, has a range of the order of the radius of gyration, and turns out to be only moderately concentration-dependent. The dependence of the effective potential on polymer length is analyzed in an effort to extract the scaling limit. The effective potential is used to derive the osmotic equation of state, which is compared to simulation data for the full SAW segment model, and to the predictions of renormalization group calculations. A similar inversion procedure is used to derive an effective wall-polymer potential from the center of mass density profiles near the wall, obtained from simulations of the full polymer segment model. The resulting wall-polymer potential turns out to depend strongly on bulk polymer concentration when polymer-polymer correlations are taken into account, leading to a considerable enhancement of the effective repulsion with increasing concentration. The effective polymer-polymer and wall-polymer potentials are combined to calculate the depletion interaction induced by SAW polymers between two walls. The calculated depletion interaction agrees well with the "exact" results from much more computer-intensive direct simulation of the full polymer-segment model, and clearly illustrates the inadequacy—in the semidilute regime—of the standard Asakura-Oosawa approximation based on the assumption of noninteracting polymer coils.

  9. Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes.

    PubMed

    Zhou, Nanjia; Buchholz, Donald B; Zhu, Guang; Yu, Xinge; Lin, Hui; Facchetti, Antonio; Marks, Tobin J; Chang, Robert P H

    2014-02-01

    Polymer solar cells are fabricated on highly conductive, transparent amorphous zinc indium tin oxide (a-ZITO) electrodes. For two representative active layer donor polymers, P3HT and PTB7, the power conversion efficiencies (PCEs) are comparable to reference devices using polycrystalline indium tin oxide (ITO) electrodes. Benefitting from the amorphous character of a-ZITO, the new devices are highly flexible and can be repeatedly bent to a radius of 5 mm without significant PCE reduction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Spectroscopic Analysis of Amorphous Structure in Fluorinated Polymers

    NASA Astrophysics Data System (ADS)

    Hsu, Shaw L.; Yang, Yuning; Ramalingam, Suriyakala

    2008-03-01

    High-quality polarized Raman spectra have been obtained for various poly(vinylidene fluoride) (PVDF) structures, crystalline and amorphous. These data encouraged us to revisit the Raman band assignment, especially within the conformational sensitive region (400-1100 cm-1) and use the new understanding to characterize the amorphous region. Vibrational bands have been assigned on the basis of observed polarization characteristics and the calculated potential energy distribution (PED). The simulated results agree well with the experimental polarized Raman study. On the basis of the calculated PED, combined with simulation of different conformational sequences (tttt, tttg, tgtg', tggg, gggg), spectroscopic features (band intensity at 648 cm-1 and the frequency change of the 856 cm-1 band) were associated with the distribution of rotational isomeric states. Two rotational isomeric state (RIS) models were analyzed and compared in the simulation study of the amorphous state. On the basis of the spectroscopic features of experimental and simulated Raman spectra, the conclusion was reached that the model which predicts a higher gauche population more accurately describes the amorphous state. This analysis provides an opportunity to describe the amorphous state in a quantitative manner.

  11. Low shear viscosity of dilute polymer solutions

    SciTech Connect

    Chiou, C.S.; Gordon, R.J.

    1980-09-01

    A modification of a viscometer originally proposed by Zimm and Crothers is studied, which may be used to measure ultra low shear viscosity for highly dilute polymer solutions. This may provide useful information on polymer coil dimensions and relaxation time. Use of the low shear viscosity data leads to large value of relaxation time induced by polymer addition to a concentration of only 2 to 3 ppM by wt. This finding is consistent with the marked viscoelastic effects exhibited by these solutions.

  12. Modeling the Coupled Chemo-Thermo-Mechanical Behavior of Amorphous Polymer Networks.

    SciTech Connect

    Zimmerman, Jonathan A.; Nguyen, Thao D.; Xiao, Rui

    2015-02-01

    Amorphous polymers exhibit a rich landscape of time-dependent behavior including viscoelasticity, structural relaxation, and viscoplasticity. These time-dependent mechanisms can be exploited to achieve shape-memory behavior, which allows the material to store a programmed deformed shape indefinitely and to recover entirely the undeformed shape in response to specific environmental stimulus. The shape-memory performance of amorphous polymers depends on the coordination of multiple physical mechanisms, and considerable opportunities exist to tailor the polymer structure and shape-memory programming procedure to achieve the desired performance. The goal of this project was to use a combination of theoretical, numerical and experimental methods to investigate the effect of shape memory programming, thermo-mechanical properties, and physical and environmental aging on the shape memory performance. Physical and environmental aging occurs during storage and through exposure to solvents, such as water, and can significantly alter the viscoelastic behavior and shape memory behavior of amorphous polymers. This project – executed primarily by Professor Thao Nguyen and Graduate Student Rui Xiao at Johns Hopkins University in support of a DOE/NNSA Presidential Early Career Award in Science and Engineering (PECASE) – developed a theoretical framework for chemothermo- mechanical behavior of amorphous polymers to model the effects of physical aging and solvent-induced environmental factors on their thermoviscoelastic behavior.

  13. Drug-polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend.

    PubMed

    Huang, Jingjun; Wigent, Rodney J; Schwartz, Joseph B

    2008-01-01

    Using spectroscopic and thermal analysis, this study investigated drug-polymer interaction and its significance on the physical stability of drug amorphous dispersion in microparticles of an ammonio polymethacrylate copolymer (Eudragit RL) (RL) and ethylcellulose (EC) binary blend (RL/EC = 2:1 w/w) prepared for use in controlled release of poorly water-soluble drugs. Solid dispersion of the model drug, nifedipine in the microparticles could be described as an ideal amorphous mixture for drug loadings up to 11% w/w. The antiplasticizing effect of the polymer blend was indicated by a significant increase in the glass transition point from approximately 50 degrees C for the amorphous nifedipine to approximately 115 degrees C for its solid solution. Moreover, shifts in infrared vibration wavenumber of nifedipine carbonyl and amine groups suggested that the hydrogen bonds (H-bonds) originally formed among nifedipine molecules were broken and replaced by those formed between nifedipine and polymers in the microparticles. Further infrared analysis on nifedipine amorphous dispersions with a single polymer, namely RL or EC, confirmed the proposed hydrogen-bonding interactions; and their stability study results suggested that both antiplasticizing effects and hydrogen bonding of EC and RL with nifedipine might be responsible for the physical stability of the microparticles of nifedipine amorphous dispersion with a RL/EC binary blend.

  14. Influence of polymer content on stabilizing milled amorphous salbutamol sulphate.

    PubMed

    Balani, P N; Wong, S Y; Ng, W K; Widjaja, E; Tan, R B H; Chan, S Y

    2010-05-31

    The study investigates the influence of polyvinyl pyrrolidone (PVP) concentration on stabilizing the amorphous form of salbutamol sulphate (SS) before and after storage under ambient and elevated humidity conditions. Different mass ratios of SS and PVP (0-90wt%) were co-milled using a planetary ball mill. X-ray powder diffraction (XRPD), high sensitivity differential scanning calorimetry (HSDSC), dynamic vapor sorption (DVS), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and Raman microscopy (RM) were used to analyze the stability of the co-milled mixtures against heat and humidity treatments as well as storage at different humidity conditions. Prior storage, DSC and DVS analyses revealed that re-crystallization of amorphous SS was suppressed above PVP content of 33 wt%. Probable hydrogen bond interaction between SS and PVP was found in FT-IR analysis. XRPD diffractograms and SEM analysis showed stability against re-crystallization was achieved in the co-milled mixtures with a minimum PVP content of 80 wt% after storage. Homogeneous distribution of SS and PVP from RM analysis showed fine clustering of SS and PVP, suggesting the formation of an amorphous dispersion at molecular level. The results provide insights on the application of thermal and humidity treatments, accelerated stability testing and investigations on drug-excipient interactions to predict the minimum ratio of an excipient for stabilizing the amorphous state of a milled API. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  15. Photo-oxidation of polymer-like amorphous hydrogenated carbon under visible light illumination

    DOE PAGES

    Baxamusa, Salmaan; Laurence, Ted; Worthington, Matthew; ...

    2015-11-10

    Amorphous hydrogenated carbon (a-C:H), a polymer-like network typically synthesized by plasma chemical vapor deposition, has long been understood to exhibit optical absorption of visible light (λ > 400 nm). In this report we explain that this absorption is accompanied by rapid photo-oxidation (within minutes) that behaves in most respects like classic polymer photo-oxidation with the exception that it occurs under visible light illumination rather than ultraviolet illumination.

  16. Photo-oxidation of polymer-like amorphous hydrogenated carbon under visible light illumination

    SciTech Connect

    Baxamusa, Salmaan; Laurence, Ted; Worthington, Matthew; Ehrmann, Paul

    2015-11-10

    Amorphous hydrogenated carbon (a-C:H), a polymer-like network typically synthesized by plasma chemical vapor deposition, has long been understood to exhibit optical absorption of visible light (λ > 400 nm). In this report we explain that this absorption is accompanied by rapid photo-oxidation (within minutes) that behaves in most respects like classic polymer photo-oxidation with the exception that it occurs under visible light illumination rather than ultraviolet illumination.

  17. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    PubMed

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine.

  18. Physical stability of amorphous acetanilide derivatives improved by polymer excipients.

    PubMed

    Miyazaki, Tamaki; Yoshioka, Sumie; Aso, Yukio

    2006-08-01

    Crystallization rates of drug-polymer solid dispersions prepared with acetaminophen (ACA) and p-aminoacetanilide (AAA) as model drugs, and polyvinylpyrrolidone and polyacrylic acid (PAA) as model polymers were measured in order to further examine the significance of drug-polymer interactions. The crystallization of AAA and ACA was inhibited by mixing those polymers. The most effective inhibition was observed with solid dispersions of AAA and PAA. The combination of AAA and PAA showed a markedly longer enthalpy relaxation time relative to drug alone as well as a higher T(g) than predicted by the Gordon-Taylor equation, indicating the existence of a strong interaction between the two components. These observations suggest that crystallization is effectively inhibited by combinations of drug and polymer that show a strong intermolecular interaction due to proton transfer between acidic and basic functional groups.

  19. Swimming of bacteria in polymer solutions

    NASA Astrophysics Data System (ADS)

    Morozov, Alexander; Martinez, Vincent; Schwarz-Linek, Jana; Reufer, Mathias; Wilson, Laurence; Poon, Wilson

    2014-11-01

    The ``standard model'' of bacteria swimming in polymer solutions consists of experimental observations that the swimming speed first increases and then decreases as the function of the polymer concentration. This non-monotonic behaviour is usually explained by either swimming in pores in the polymer solutions or by its viscoelasticity. Using new, high-throughput methods for characterising motility, we have measured the swimming speed and the angular frequency of cell-body rotation of motile Escherichia coli as a function of polymer concentration in polyvinylpyrrolidone (PVP) and Ficoll solutions of different molecular weights. We find that non-monotonic speed-concentration curves are typically due to low-molecular weight impurities and, when cleaned, most molecular weight solutions exhibit Newtonian behaviour. For the highest molecular weight of PVP we observe non-newtonian effects. We present a simple theory that consists of the fast-rotating flagella ``seeing'' a lower viscosity than the cell body but otherwise Newtonian in nature. We show that our theory successfully describes the experimental observations and suggest that flagella can be seen as nano-rheometers for probing the non-newtonian behaviour of high polymer solutions on a molecular scale.

  20. Effect of polymers and media type on extending the dissolution of amorphous pioglitazone and inhibiting the recrystallization from a supersaturated state.

    PubMed

    Shi, Nian-Qiu; Yao, Jing; Wang, Xing-Lin

    2014-08-01

    Amorphous forms of crystalline drug are widely utilized for bioavailability enhancement of low solubility drugs in the pharmaceutical industry. Polymers have been found to be effective crystallization inhibitors for amorphous forms in solid states during storage or in liquid states during dissolution process. The dissolution and crystallization behaviors of these amorphous forms in the presence or absence of polymers are still far from adequately understood especially in different dissolution environments. The objective of this study was to investigate the effects of polymers and media type on extending the dissolution of amorphous pioglitazone and inhibiting the recrystallization from a supersaturated state. Polyvinylpyrrolidone K30 (PVPK30), polyvinylpyrrolidone K90 (PVPK90), polyethylene glycol 6000 (PEG6000), polyethylene-polypropylene glycol 188 (F-68), hydroxypropylmethylcellulose (HPMC) and beta-cyclodextrin (β-CD) were employed to understand these behaviors changes because these polymers were used widely. Three solutions including neutral water and phosphate buffer solutions (PBS, pH6.8 and pH7.4) were adopted as dissolution media to determine the behaviors changes comprehensively. In the presence of polymers, dissolution and solubility were extended to different degrees in three media. Polymers can delay the crystallization routes dependently of the medium type. Buffer salts in media reduced the dissolution and accelerated the crystallization process. Crystallization inhibition of these polymers was strongly dependent on the type and pH of media. HPMC displayed the strongest crystallization inhibition effects, resulting in the greatest degree of maintaining a supersaturated state that can sustain most effectively for biologically relevant timeframes.

  1. Photodeposition of amorphous polydiacetylene films from monomer solutions onto transparent substrates

    NASA Technical Reports Server (NTRS)

    Paley, M. S.; Frazier, D. O.; Abdeldeyem, H.; Armstrong, S.; McManus, S. P.

    1995-01-01

    Polydiacetylenes are a very promising class of polymers for both photonic and electronic applications because of their highly conjugated structures. For these applications, high-quality thin polydiacetylene films are required. We have discovered a novel technique for obtaining such films of a polydiacetylene derivative of 2-methyl-4-nitroaniline using photodeposition from monomer solutions onto UV transparent substrates. This heretofore unreported process yields amorphous polydiacetylene films with thicknesses on the order of I micron that have optical quality superior to that of films grown by standard crystal growth techniques. Furthermore, these films exhibit good third-order nonlinear optical susceptibilities; degenerate four-wave mixing experiments give x(3) values on the order of 10(exp -8) - 10(exp -7) esu. We have conducted masking experiments which demonstrate that photodeposition occurs only where the substrate is directly irradiated, clearly indicating that the reaction occurs at the surface. Additionally, we have also been able to carry out photodeposition using lasers to form thin polymer circuits. In this work, we discuss the photodeposition of polydiacetylene thin films from solution, perform chemical characterization of these films, investigate the role of the substrate, speculate on the mechanism of the reaction, and make a preliminary determination of the third-order optical nonlinearity of the films. This simple, straightforward technique may ultimately make feasible the production of polydiacetylene thin films for technological applications.

  2. Amorphous In-Si-O Films Fabricated via Solution Processing

    NASA Astrophysics Data System (ADS)

    Jan, Hani Esmael; Hoang, Ha; Nakamura, Tsubasa; Koga, Tomoaki; Ina, Toshiaki; Uruga, Tomoya; Kizu, Takio; Tsukagoshi, Kazuhito; Nabatame, Toshihide; Fujiwara, Akihiko

    2017-06-01

    We report the characteristics of an amorphous oxide semiconductor In-Si-O fabricated via solution processing. In-Si-O thin films with nominal silicon concentration of 0 at.%, 1 at.%, 3 at.%, 5 at.%, 9 at.%, 50 at.%, and 100 at.% were fabricated via spin coating. The films were characterized via thermal desorption spectroscopy (TDS), x-ray reflectivity, x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS), and electrical resistance measurements. TDS analysis suggested that organic residues, such as organic functional groups from raw materials and solvents, were almost completely desorbed from the films at approximately 400°C. The XRD and EXAFS analyses confirmed that pure In2O3 crystallizes at approximately 350°C and that the crystallization temperature increases with the silicon concentration. In-Si-O films with silicon concentration above 3 at.% exhibited high electrical resistance, indicating that films fabricated via spin coating contain few oxygen vacancies. These results suggest that In-Si-O thin films have significant potential for use as channels in field-effect transistors designed for next-generation flat-panel displays.

  3. Flagellated bacterial motility in polymer solutions.

    PubMed

    Martinez, Vincent A; Schwarz-Linek, Jana; Reufer, Mathias; Wilson, Laurence G; Morozov, Alexander N; Poon, Wilson C K

    2014-12-16

    It is widely believed that the swimming speed, v, of many flagellated bacteria is a nonmonotonic function of the concentration, c, of high-molecular-weight linear polymers in aqueous solution, showing peaked v(c) curves. Pores in the polymer solution were suggested as the explanation. Quantifying this picture led to a theory that predicted peaked v(c) curves. Using high-throughput methods for characterizing motility, we measured v and the angular frequency of cell body rotation, Ω, of motile Escherichia coli as a function of polymer concentration in polyvinylpyrrolidone (PVP) and Ficoll solutions of different molecular weights. We find that nonmonotonic v(c) curves are typically due to low-molecular-weight impurities. After purification by dialysis, the measured v(c) and Ω(c) relations for all but the highest-molecular-weight PVP can be described in detail by Newtonian hydrodynamics. There is clear evidence for non-Newtonian effects in the highest-molecular-weight PVP solution. Calculations suggest that this is due to the fast-rotating flagella seeing a lower viscosity than the cell body, so that flagella can be seen as nano-rheometers for probing the non-Newtonian behavior of high polymer solutions on a molecular scale.

  4. Flagellated bacterial motility in polymer solutions

    PubMed Central

    Martinez, Vincent A.; Schwarz-Linek, Jana; Reufer, Mathias; Wilson, Laurence G.; Morozov, Alexander N.; Poon, Wilson C. K.

    2014-01-01

    It is widely believed that the swimming speed, v, of many flagellated bacteria is a nonmonotonic function of the concentration, c, of high-molecular-weight linear polymers in aqueous solution, showing peaked v(c) curves. Pores in the polymer solution were suggested as the explanation. Quantifying this picture led to a theory that predicted peaked v(c) curves. Using high-throughput methods for characterizing motility, we measured v and the angular frequency of cell body rotation, Ω, of motile Escherichia coli as a function of polymer concentration in polyvinylpyrrolidone (PVP) and Ficoll solutions of different molecular weights. We find that nonmonotonic v(c) curves are typically due to low-molecular-weight impurities. After purification by dialysis, the measured v(c) and Ω(c) relations for all but the highest-molecular-weight PVP can be described in detail by Newtonian hydrodynamics. There is clear evidence for non-Newtonian effects in the highest-molecular-weight PVP solution. Calculations suggest that this is due to the fast-rotating flagella seeing a lower viscosity than the cell body, so that flagella can be seen as nano-rheometers for probing the non-Newtonian behavior of high polymer solutions on a molecular scale. PMID:25468981

  5. Microstructure of an immiscible polymer blend and its stabilization effect on amorphous solid dispersions.

    PubMed

    Yang, Ziyi; Nollenberger, Kathrin; Albers, Jessica; Craig, Duncan; Qi, Sheng

    2013-07-01

    This study proposes use of the phase separation of immiscible polymer blends as a formulation approach to improve the stabilization and solubilization of amorphous molecular dispersions of poorly soluble drugs. This approach uses the phase separation and different drug solubilization properties of the two immiscible polymers in the blend to optimize drug loading and stabilization. The model system tested in this study is a EUDRAGIT E PO-PVP-VA 50/50 (w/w) blend loaded with felodipine via hot melt extrusion. The phase separation behavior of the polymer blend and drug loaded polymer blend formulations were characterized using a range of thermal (MTDSC), spectroscopic (ATR-FTIR), and imaging (AFM and thermal transition mapping) techniques. The polymer blend formulations demonstrated superior performance in drug release as well as stabilization against stressed temperature, stressed humidity, and mechanical milling in comparison to the drug-polymer binary systems. This is attributed to the configuration of the phase separated microstructure of the polymer blend formulations where the hydrophilic polymer domains host high concentrations of molecularly dispersed drug which are protected from moisture induced recrystallization on aging by the hydrophobic polymer domains. Additionally drug incorporation as a molecular dispersion in different polymer phases reduces the drug recrystallization tendency on aging under high temperatures and during milling.

  6. Holographic Grating Relaxation Studies of Probe Diffusion in Amorphous Polymers

    DTIC Science & Technology

    1994-06-15

    Relaxation, Chromophore Diffusion in PS, PMMA, PVAc, Polybutadiene, Polyethylmethacryla ;% PRICE cooE Effects of Glass Transition, chain branching. 17...properties such as molecular weight, glass transition temperature (Tg) and chain conformation on the probe diffusion coefficient, and effects of polymer...crosslinking and plasticising on the same process are also studied. Page 4 Experimental Matels • Camphorquinone (CQ), thymorquinone (TM) and diacetyl (DA

  7. Adjustable flow rate controller for polymer solutions

    DOEpatents

    Jackson, Kenneth M.

    1981-01-01

    An adjustable device for controlling the flow rate of polymer solutions which results in only little shearing of the polymer molecules, said device comprising an inlet manifold, an outlet manifold, a plurality of tubes capable of providing communication between said inlet and outlet manifolds, said tubes each having an internal diameter that is smaller than that of the inlet manifold and large enough to insure that viscosity of the polymer solution passing through each said tube will not be reduced more than about 25 percent, and a valve associated with each tube, said valve being capable of opening or closing communication in that tube between the inlet and outlet manifolds, each said valve when fully open having a diameter that is substantially at least as great as that of the tube with which it is associated.

  8. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations.

    PubMed

    Démuth, B; Nagy, Z K; Balogh, A; Vigh, T; Marosi, G; Verreck, G; Van Assche, I; Brewster, M E

    2015-01-01

    Application of amorphous solid dispersions (ASDs) is considered one of the most promising approaches to increase the dissolution rate and extent of bioavailability of poorly water soluble drugs. Such intervention is often required for new drug candidates in that enablement, bioavailability is not sufficient to generate a useful product. Importantly, tableting of ASDs is often complicated by a number of pharmaceutical and technological challenges including poor flowability and compressibility of the powders, compression-induced phase changes or phase separation and slow disintegration due to the formation of a gelling polymer network (GPN). The design principles of an ASD-based system include its ability to generate supersaturated systems of the drug of interest during dissolution. These metastable solutions can be prone to precipitation and crystallization reducing the biopharmaceutical performance of the dosage form. The main aim of the research in this area is to maintain the supersaturated state and optimally enhance bioavailability, meaning that crystallization should be delayed or inhibited during dissolution, as well as in solid phase (e.g., during manufacturing and storage). Based on the expanding use of ASD technology as well as their downstream processing, there is an acute need to summarize the results achieved to this point to better understand progress and future risks. The aim of this review is to focus on the conversion of ASDs into tablets highlighting results from various viewpoints.

  9. Bubble Dynamics in Polymer Solutions Undergoing Shear.

    DTIC Science & Technology

    1985-04-01

    20D 23 REYNOLDS NUMBER *10’ FIGURE 1-1. The effect of dilute polymer solutes on hydraulic cavitation inception (Ellis &Ting, 1974). (a) ( b ) FIGURE 1-2...Comparison of cavitation appearance in (a) water and ( b ) dilute aqueous Polyox solution (Ting, 1978). 3 cavitation is significantly altered (Figure...research fall into two distinct (but related) areas. These are (a) Newtonian (or viscous) flow-induced cavitation bubble deformation and ( b ) non

  10. Microstructure and Crystal-Amorphous Interphases in Melt-Miscible Semicrystalline Polymer Blends. Ph.D. Thesis

    SciTech Connect

    Barron, C.A.

    1994-01-01

    Small-angle x ray scattering, differential scanning calorimetry, dielectric spectroscopy and dynamic mechanical thermal analysis were performed to study the microstructure of the semicrystalline polymers poly(etylene oxide) (PEO) and poly (epsilon-caprolactone) (PCL) as well as several melt miscible blends. Four amorphous polymers were blended with PEO: two which interact weakly with PEO poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) and two which are considered strongly interacting due to the formation of hydrogen bonds with PEO (two random copolymers, one containing 50% styrene and 50% hydroxystyrene (50/50 ScHS) and another of ethylene with 55% methacrylic acid (EMA55)). Further, one of the weakly interacting amorphous polymers and one of the strongly interacting polymers was selected based on its relatively high T(sub g)s. The other amorphous polymers have relatively low T(sub g)s (i.e., at or below the crystallization temperature). The solid state microstructure of miscible blends containing a semicrystalline and an amorphous polymer is shown to be critically dependent on two factors: (1) the strength of interactions between the two copolymers; and (2) the mobility of the amorphous material at the crystallization temperature. The influence of interaction strength on the region of partial order at the crystal surface (the crystal-amorphous interphase) is demonstrated. The results are consistent with theoretical predictions that this region changes from pure crystallizable material to a mixture containing both the crystalizable and the amorphous components as chi becomes more favorable. In the blends which contain a high T(sub g) amorphous polymer and in those with strong intermolecular interactions, there were no observed changes in the microstructure with crystallization temperature. Apparently, in the high T(sub g) systems, the amorphous polymer is unable to escape the interlamellar zone since it has insufficient mobility.

  11. A Polymer "Pollution Solution" Classroom Activity.

    ERIC Educational Resources Information Center

    Helser, Terry L.

    1996-01-01

    Explains an approach to presenting polymer chemistry to nonmajors that employs polystyrene foam, foam peanuts made from water soluble starch, and water soluble plastic bags. Students are presented with a pollution scenario and are guided to the discovery of solutions. (DDR)

  12. Extensional properties of mobile polymer solutions

    NASA Astrophysics Data System (ADS)

    Tirel, Christophe; Renoult, Marie-Charlotte; Dumouchel, Christophe; Crumeyrolle, Olivier; Lisiecki, Denis; Mutabazi, Innocent

    2016-11-01

    A deep understanding of the influence of viscoelasticity on the dynamics of liquid flows remains a challenge in the non-Newtonian fluid mechanics field. Previous work has revealed that the addition of minute amount (2.5 part per million) of high molecular weight polymer to water, forming a viscoelastic solution with strong extensional properties, modifies the fission process during droplet snap off with spectacular effects: inhibition of the singularity observed in the reference Newtonian case and formation of a long-lived (milli-second) filament. The measurement of the extensional properties for such mobile polymer solutions is one of the most pressing problem. Here, a global measurement technique, based on the multi-scale analysis of the capillary instability of a free falling jet of a mobile polymer solution, is introduced. The method of analysis allows the characterisation of the jet breakup mechanism from which the relaxation time of the polymer solution can be extracted. One of the advantages of the technique is the simple experiment it requires.

  13. A Polymer "Pollution Solution" Classroom Activity.

    ERIC Educational Resources Information Center

    Helser, Terry L.

    1996-01-01

    Explains an approach to presenting polymer chemistry to nonmajors that employs polystyrene foam, foam peanuts made from water soluble starch, and water soluble plastic bags. Students are presented with a pollution scenario and are guided to the discovery of solutions. (DDR)

  14. Hydrogenated amorphous silicon solar cell on organic polymer substrate

    NASA Astrophysics Data System (ADS)

    Okaniwa, H.; Nakatani, K.; Asano, M.; Suzuki, K.; Yano, M.; Hirasaka, M.; Hamakawa, Y.

    1983-01-01

    The basic properties of a solar cell based on an organic polymer film are reported and the characteristics peculiar to the organic polymer substrate are discussed. The electrical conductivity and activation energy of doped a-Si:H deposited on glass substrate at various temperatures and under various RF powers are shown. The open circuit voltage, short circuit current, fill factor, and conversion efficiency of solar cells on polyimide film and SUS plate in sunlight of 92.5 mW/sq cm are given, as are relative characteristic values of solar cells fabricated simultaneously on various substrates under that illumination. Compositional profiles of p-i-n structure solar cells on sp-SUS over SUS plate and SUS plate substrates are shown along with surface morphology of SUS plate, SUS/sp-SUS, and polyimide/sp-SUS substrates.

  15. Temperature-induced crystallization and compactibility of spray dried composite particles composed of amorphous lactose and various types of water-soluble polymer.

    PubMed

    Takeuchi, H; Yasuji, T; Yamamoto, H; Kawashima, Y

    2000-04-01

    The purpose of this study was to investigate the temperature-induced crystallization and the compactibility of the composite particles containing amorphous lactose and various types of polymers. The composite particles were prepared by spray-drying an aqueous solution of lactose and various types of gel forming water-soluble polymers at various formulating ratios. The stabilizing effect of hydroxypropylcellulose (HPC) and polyvinyl pyrrolidone (PVP) on amorphous lactose in the composite particles was smaller than that of sodium alginate in comparing at the same formulating ratios. The difference in the stability of amorphous lactose in the composite particles was attributed to the difference in the glass transition temperature (Tg) of the composite particles caused by the polymers formulated. The tensile strength of compacted spray-dried composite particles containing the polymers was higher than commercial lactose for direct tabletting (DCL21). The tensile strength of the composite particles was increased with an increase in water content in the particles. The difference in compactibility of the composite particles containing the different amount of polymer and water could be explained by the difference in Tg of the particles.

  16. Dilational surface rheology of polymer solutions

    NASA Astrophysics Data System (ADS)

    Noskov, B. A.; Bykov, A. G.

    2015-06-01

    The review concerns main achievements in dilational rheology of polymer adsorption films at the gas/liquid interfaces reported in the last fifteen years. The theoretical foundations of methods of surface rheology and the key results obtained in studies of solutions of amphiphilic nonionic polymers, polyelectrolytes, proteins and their complexes with low-molecular-mass surfactants are discussed. Interest in the surface dilational rheology is mainly caused by a small number of available experimental methods for investigation of the surface of liquids, by the fact that traditional methods of measurement of the surface tension that are widely used in studies of solutions of low-molecular-mass surfactants provide little information when applied to polymer solutions owing to very slow establishment of equilibrium as well as by weak dependence of the surface tension on the polymer concentration. Progress in the surface rheology is driven by the recent studies of the stability of foams and emulsions that demonstrated a key role of the dilational surface rheological properties in the dynamics of liquid-phase disperse systems. The bibliography includes 191 references.

  17. Amorphization within the tablet: Using microwave irradiation to form a glass solution in situ.

    PubMed

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A; Grohganz, Holger; Holm, René; Lopez de Diego, Heidi; Rades, Thomas; Löbmann, Korbinian

    2017-03-15

    In situ amorphization is a concept that allows to amorphize a given drug in its final dosage form right before administration. Hence, this approach can potentially be used to circumvent recrystallization issues that other amorphous formulation approaches are facing during storage. In this study, the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements revealed that with increasing microwaving power and time, the fractions of crystalline IND and amorphous PVP reduced, whereas the amount of in situ formed IND-PVP glass solution increased. Intrinsic dissolution showed that the dissolution rate of the microwaved solid dispersion was similar to that of a quench cooled, fully amorphous glass solution even though the microwaved samples contained residual crystalline IND. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Photoreversible optical data recording in films of amorphous azo dye-containing polymers

    SciTech Connect

    Simonov, A N; Uraev, D V; Shibaev, Valerii P; Kostromin, S G

    2002-02-28

    The photoreversible properties of films of amorphous azo-containing polymers (AAPs) are studied theoretically and experimentally. The control of the sign of a photoinduced addition {Delta}n{sup ind} to the refractive index of the polymer by changing polarisation of the incident light is demonstrated. A theoretical model of photoinduced processes in AAP films is proposed, which takes into account the orientation diffusion of trans-isomers of azo dyes, and simplified analytic approaches describing the photoorientation dynamics in AAPs are considered. The theoretical results are in good agreement with our experimental data. (laser applications and other topics in quantum electronics)

  19. Amorphous Silk Nanofiber Solutions for Fabricating Silk-Based Functional Materials.

    PubMed

    Dong, Xiaodan; Zhao, Qun; Xiao, Liying; Lu, Qiang; Kaplan, David L

    2016-09-12

    As a functional material, silk has been widely used in tissue engineering, drug release, and tissue regeneration. Increasing subtle control of silk hierarchical structures and thus specific functional performance is required for these applications but remains a challenge. Here, we report a novel silk nanofiber solution achieved through tuning solvent systems used to generate the material. Unlike the β-sheet rich silk nanofibers reported previously, these new silk nanofibers are mainly composed of amorphous structures and maintain a solution state in aqueous environments. The amorphous silk nanofibers are stable enough for storage and also metastable, making them easy to use in the further fabrication of materials through various processes. Silk scaffolds, hydrogels, and films were prepared from these silk nanofiber solutions. These silk materials from amorphous nanofiber solutions show different properties and tunable performance features. Therefore, these amorphous silk nanofibers are suitable units or building blocks for designing silk-based materials.

  20. Light-emitting nanocomposites and novel amorphous polymers for optical applications

    NASA Astrophysics Data System (ADS)

    Gipson, Kyle Garrod

    Polymeric optical materials generally are comprised of amorphous polymers that are transparent in at visible wavelengths but exhibit strong absorption bands in the near-infrared making them less useful for many optical applications. Attenuation, which is the absorption per unit length, largely results from the high vibrational energy associated with carbon-hydrogen bonds contained in the polymer backbone. Attenuation can be mitigated by optical amplification utilizing light emitting additives. Investigated in this dissertation are synthesis techniques for the fabrication of light-emitting polymer nanocomposites and their resultant thermal and rheological characteristics for potential use as polymer optical fibers or films. Inorganic nanocrystals doped with optically active rare-earth ions (Tb 3+:LaF3) treated with organic ligands were synthesized in water and methanol in order to produce polymethyl methacrylate (PMMA) light-emitting nanocomposites. Two different aromatic ligands (acetylsalicylic acid, ASA and 2-picolinic acid, PA) were employed to functionalize the surface of Tb 3+:LaF3 nanocrystals. We have used infrared spectroscopy, thermal analysis, elemental analysis, dynamic light scattering, rheological measurements and optical spectroscopy to investigate the nanoparticle structure and composition response of ligand-capped nanocrystals under various synthesis parameters. A theoretical interpretation of particle-to-particle interactions also was conducted which supported our study of the potential of agglomeration within the nanoparticle suspensions. Novel amorphous polymers (e.g. perfluorocyclobutyl aryl ethers, PFCB), which do not exhibit strong C-H vibrations, have been reported to possess excellent optical properties. Little is known of the intrinsic properties of PFCBs (e.g. biphenylvinyl ether, BPVE and hexafluoroisopropylidene vinyl ether, 6F) as well as the behavior of the polymer melt during extrusion. We preformed empirical and experimental thermal

  1. Embrittlement of Metal by Solute Segregation-Induced Amorphization

    SciTech Connect

    Chen, H.-P.; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya; Yuan, Zaoshi; Kaxiras, Efthimios; Lu, Gang; Duin, Adri C. T. van

    2010-04-16

    Impurities segregated to grain boundaries of a material essentially alter its fracture behavior. A prime example is sulfur segregation-induced embrittlement of nickel, where an observed relation between sulfur-induced amorphization of grain boundaries and embrittlement remains unexplained. Here, 48x10{sup 6}-atom reactive-force-field molecular dynamics simulations provide the missing link. Namely, an order-of-magnitude reduction of grain-boundary shear strength due to amorphization, combined with tensile-strength reduction, allows the crack tip to always find an easy propagation path.

  2. Fourier transform Raman spectroscopic study of the interaction of water vapor with amorphous polymers.

    PubMed

    Taylor, L S; Langkilde, F W; Zografi, G

    2001-07-01

    Water associated with amorphous polymers is known to affect their chemical and physical properties. The purpose of this study was to investigate the nature of water-polymer interactions for some polymers of pharmaceutical interest. Using Raman spectroscopy, polymer-water hydrogen bond interactions were probed for two molecular weight grades of poly(vinylpyrrolidone), namely PVP K90 and PVP K12, and also for poly(vinylacetate) and poly(vinyl pyrrolidone-co-vinyl acetate). Water vapor absorption isotherms were obtained for the polymers, and the effect of the absorbed water on the glass transition temperature was determined. A knowledge of the water content and physical state of the polymer was used to aid interpretation of Raman spectral changes. The strength of the hydrogen bond formed with water was found to depend on the chemistry of the polymer, with the pyrrolidone group interacting more strongly than the acetate group. However, minor differences were also observed between the degree of interaction of water and polymer for PVP K12 and PVP K90 at some water contents. This result is attributed to differences in the structural relaxation changes accompanying plasticization by water for the two molecular weight grades. Using principal components analysis of the spectral data, it was also possible to differentiate between samples in the rubbery state and samples in the glassy state. In conclusion, water sorbed into polymers causes changes in the polymer Raman spectra not only because of hydrogen bonding, but also as a result of the plasticizing effect of water on polymer mobility.

  3. Configuration diffusion in glassy, amorphous polymers: Effects of polymer structure and dynamics on permeation via molecular simulation

    NASA Astrophysics Data System (ADS)

    Boshoff, Jan H. D.

    The goals of this dissertation are to provide a basis for understanding the fundamental mechanisms of, and the effects of nano-confinement on, diffusion in glassy, amorphous polymers. These polymers are extensively used as membranes in numerous separation applications such as drug delivery devices, air separation and water desalination. Molecular simulation is used to elucidate the effects of the structure and dynamics of glassy polymers on small molecule permeation. Particularly, the effects of thermal fluctuations on the diffusion mechanism and anomalous diffusion regime is shown for small gas diffusion in atactic polypropylene. Furthermore, polymer backbone conformational statistics of three different polypropylene models show that the united atom approximation favors gauche conformations in the polymer backbone, leading to artificially high values for Cinfinity for stereo-regular polypropylene. Diffusion results of He and CH4 in the refined model is presented using a force-decomposed/replicated data parallel molecular dynamics algorithm on a pseudo-explicit atom model proposed in literature. Excellent agreement with experimental values of the diffusivity is obtained. These results constitute the most accurate a priori prediction of small molecule diffusion in atactic polypropylene to date. Finally, the effects of nano-confinement on the polymer structure and dynamics, and consequently the permeation and selectivity was probed by He and CH4 permeation in aPP "adsorbed" in idealized pores of size smaller than the radius of gyration of the polymer. The extent of polymer structural changes is found to be closely correlated with the local correlation length xi of the polymer. Within xi from the pore surface, the polymer has a lower density, aligns with the pore direction and is found to pack in layers, while the polymer structure is identical to the bulk further than xi from the pore surface. These changes in polymer structure lead to substantial increases (up to

  4. Dynamic scaling of dilute polymer solutions

    SciTech Connect

    Marqusee, J.A.; Deutch, J.M.

    1981-04-15

    Dynamic scaling relations are presented for the diffusion coefficient and intrinsic viscosity of dilute polymer solutions in D dimensions. The functional integration description of Adler and Freed is used with the correct D-dimensional hydrodynamic interaction and assumptions of power law dependence to obtain the scaling relations. Recursion relations for the exponents are determined in the asymptotic region of large N by an interdimensional scaling argument. 19 references.

  5. Photochemical Crosslinking of Preformed Glassy and Amorphous Polymers Through bis-Benzophenone Mediated Covalent Bridging

    NASA Astrophysics Data System (ADS)

    Carbone, Nicholas; Dickson, Mary; Lancaster, Jeffrey; Carroll, Greg; Koberstein, Jeffrey

    2009-03-01

    We show that bis-benzophenone (bis-BP) is an effective method to photochemically crosslink essentially any solvent-free glassy or amorphous preformed polymer system that contains abstractable hydrogen atoms. When bis-BP is mixed into a polymer and exposed to UV radiation, it abstracts hydrogen atoms from any chains in proximity, thereby initiating a cascade of free radical reactions that include several mechanisms that can lead to covalent polymer crosslinking. Herein we study the early stages of branching reactions that precede gelation by following molecular weight changes in bis-BP modified glassy polystyrene (PS) and amorphous poly(n-butyl acrylate) (PnBA) thin films on silicon wafers by Gel Permeation Chromatography. Quantitative molecular weight changes in PS:bis-BP and PnBA:bis-BP thin films are studied as a function of irradiation time, polymer:bis-BP molar ratio, and film height. Increases in molecular weight and polydispersity are quantified and model equations are developed.

  6. Role of Chain Morphology and Stiffness in Thermal Conductivity of Amorphous Polymers.

    PubMed

    Zhang, Teng; Luo, Tengfei

    2016-02-04

    Designing thermally conductive polymer is of scientific interest and practical importance for applications like thermal interface materials, electronics packing, and plastic heat exchangers. In this work, we study the fundamental relationship between the molecular morphology and thermal conductivity in bulk amorphous polymers. We use polyethylene as a model system and performed systematic parametric study in molecular dynamics simulations. We find that the thermal conductivity is a strong function of the radius of gyration of the molecular chains, which is further correlated to persistence length, an intrinsic property of the molecule that characterizes molecular stiffness. Larger persistence length can lead to more extended chain morphology and thus higher thermal conductivity. Further thermal conductivity decomposition analysis shows that thermal transport through covalent bonds dominates the effective thermal conductivity over other contributions from nonbonded interactions (van der Waals) and translation of molecules disregarding the morphology. As a result, the more extended chains due to larger persistence length provide longer spatial paths for heat to transfer efficiently and thus lead to higher thermal conductivity. In addition, rigid rod-like polymers with very large persistence length tend to spontaneously crystallize and form orientated chains, leading to a thermal conductivity increase by more than 1 order of magnitude. Our results will provide important insights into the design of thermally conductive amorphous polymers.

  7. Kinetics of oxidation of azobenzene nitrene with molecular oxygen in amorphous polymers

    SciTech Connect

    Kondratenko, E.V.; Bolshakov, B.V.; Tolkatchev, V.A.

    1996-12-31

    Kinetics of disappearance of azobenzene nitrene at 115-120 K in polymethyl methacrylate, poly styrene, polycarbonate and polysulfone films saturated with oxygen has been studied. For condition of oxygen excess the disappearance of nitrous is shown to be a result only of the reaction with the dissolved gas. Kinetics of the process is identical to that of the oxidation of macro radicals in the same polymer. The nonexponential character of kinetic curves is shown to be related with the existence of the rate constant distribution. The values of the width of distribution range in the narrow interval being practically the same for various polymers. The data about the width of the distribution function for the oxidation of macro radicals in amorphous polymers known from literature also fit into this interval. All the particles participating in the reaction with the experimental accuracy have the same dependence of the rate constant on temperature. The activation energies of reactions in various amorphous polymers have very close values.

  8. Formation, Structure and Properties of Amorphous Carbon Char from Polymer Materials in Extreme Atmospheric Reentry Environments

    NASA Technical Reports Server (NTRS)

    Lawson, John W.

    2010-01-01

    Amorphous carbonaceous char produced from the pyrolysis of polymer solids has many desirable properties for ablative heat shields for space vehicles. Molecular dynamics simulations are presented to study the transformation of the local atomic structure from virgin polymer to a dense, disordered char [1]. Release of polymer hydrogen is found to be critical to allow the system to collapse into a highly coordinated char structure. Mechanisms of the char formation process and the morphology of the resulting structures are elucidated. Thermal conductivity and mechanical response of the resulting char are evaluated [2]. During reenty, the optical response and oxidative reactivity of char are also important properties. Results of ab initio computations of char optical functions [3] and char reactivity [4] are also presented.

  9. Solution-processed amorphous silicon surface passivation layers

    SciTech Connect

    Mews, Mathias Sontheimer, Tobias; Korte, Lars; Rech, Bernd; Mader, Christoph; Traut, Stephan; Wunnicke, Odo

    2014-09-22

    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120 meV and 200 meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37 ms at an injection level of 10{sup 15}/cm{sup 3} enabling an implied open circuit voltage of 724 mV was achieved, demonstrating excellent silicon surface passivation.

  10. Oil recovery process using a treated polymer solution

    SciTech Connect

    Luetzelschwab, W.E.

    1989-09-19

    This patent describes a process for recovering oil from a subterranean oil-bearing formation. It comprises the sequential steps of: contacting an aqueous acrylamide polymer-free liquid with an oxygenating agent, wherein the aqueous acrylamide polymer-free liquid initially contains hydrogen sulfide in a sufficient concentration to substantially degrade an acrylamide polymer; reducing the initial hydrogen sulfide concentration of the aqueous acrylamide polymer-free liquid; mixing the aqueous liquid with the acrylamide polymer to form an aqueous acrylamide polymer solution; injecting the aqueous acrylamide polymer solution into the subterranean oil-bearing formation; and recovering oil from the formation.

  11. Inverted polymer solar cells with amorphous indium zinc oxide as the electron-collecting electrode

    SciTech Connect

    Cheun, Hyeunseok; Kim, Jungbae; Zhou, Yinhua; Fang, Yunnan; Dindar, Amir; Shim, Jae Won; Fuentes-Hernandez, Canek; Sandhage, Kenneth H.; Kippelen, Bernard

    2010-09-17

    We report on the fabrication and performance of polymer-based inverted solar cells utilizing amorphous indium zinc oxide (a-IZO) as the electron-collecting electrode. Amorphous IZO films of 200 nm thickness were deposited by room temperature sputtering in a high-purity argon atmosphere. The films possessed a high optical transmittance in the visible region (≥ 80%), a low resistivity (3.3 × 10-4 Ωcm), a low surface roughness (root mean square = 0.68 nm), and a low work function (4.46 ± 0.02 eV). Inverted solar cells with the structure a-IZO/P3HT: PCBM/PEDOT:PSS/Ag exhibited a power conversion efficiency of 3% estimated for AM 1.5G, 100 mW/cm2 illumination.

  12. Pressure-induced amorphization of a dense coordination polymer and its impact on proton conductivity

    SciTech Connect

    Umeyama, Daiki; Hagi, Keisuke; Ogiwara, Naoki; Horike, Satoshi E-mail: kitagawa@icems.kyoto-u.ac.jp; Tassel, Cedric; Kageyama, Hiroshi; Higo, Yuji; Kitagawa, Susumu E-mail: kitagawa@icems.kyoto-u.ac.jp

    2014-12-01

    The proton conductivity of a dense coordination polymer (CP) was investigated under high-pressure conditions. Impedance measurements under high pressures revealed that the proton conductivity of the CP decreased more than 1000-fold at pressures of 3–7 GPa and that the activation energy for proton conduction almost doubled compared with that at ambient pressure. A synchrotron X-ray study under high pressure identified the amorphization process of the CP during compression, which rationally explains the decrease in conductivity and increase in activation energy. This phenomenon is categorized as reversible pressure-induced amorphization of a dense CP and is regarded as a demonstration of the coupling of the mechanical and electrical properties of a CP.

  13. Stabilizing the viscosity of an aqueous solution of polysaccharide polymer

    SciTech Connect

    Wellington, S.L.

    1980-08-19

    In an oil recovery process in which an aqueous solution thickened with a water-soluble anionic polysaccharide polymer (Xanthan gum polymer) is injected into a subterranean reservoir, the stability of the solution viscosity is improved by deoxygenating the aqueous liquid and then adding a sulfurcontaining antioxidant, a readily oxidizable water-soluble alcohol or glycol and the xanthan gum polymer.

  14. Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys

    NASA Technical Reports Server (NTRS)

    Aning, A. O.; Wang, Z.; Courtney, T. H.

    1993-01-01

    The kinetics of solution of W, and the subsequent amorphization of Ni, in mechanically alloyed Ni-W alloys has been investigated. As W is a highly abrasive material in the energy intensive devices used for mechanical alloying, we studied the above reactions in different mills. One used hardened steel balls as the grinding media, and the other Al2O3. Abrasion is common to both mills, but Fe wear debris from the hardened steel enters into solution in the Ni rich phases whereas Al2O3 debris is present as small dispersoids. The kinetics of W solution and those of subsequent amorphization do not appear strongly affected by the Fe in solution or the Al2O3 dispersoid. Tungsten dissolves in crystalline Ni in amounts in excess of the equilibrium solubility during alloying. Amorphization of the Ni phase occurs if the W content in this phase exceeds ca. 28 at. pct.

  15. Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys

    NASA Technical Reports Server (NTRS)

    Aning, A. O.; Wang, Z.; Courtney, T. H.

    1993-01-01

    The kinetics of solution of W, and the subsequent amorphization of Ni, in mechanically alloyed Ni-W alloys has been investigated. As W is a highly abrasive material in the energy intensive devices used for mechanical alloying, we studied the above reactions in different mills. One used hardened steel balls as the grinding media, and the other Al2O3. Abrasion is common to both mills, but Fe wear debris from the hardened steel enters into solution in the Ni rich phases whereas Al2O3 debris is present as small dispersoids. The kinetics of W solution and those of subsequent amorphization do not appear strongly affected by the Fe in solution or the Al2O3 dispersoid. Tungsten dissolves in crystalline Ni in amounts in excess of the equilibrium solubility during alloying. Amorphization of the Ni phase occurs if the W content in this phase exceeds ca. 28 at. pct.

  16. Deviations of the glass transition temperature in amorphous conjugated polymer thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Osuna Orozco, Rodrigo; Wang, Tao

    2013-08-01

    The deviations of the glass transition temperature (Tg) in thin films of an amorphous conjugated polymer poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB) are reported. Monotonic and nonmonotonic Tg deviations are observed in TFB thin films supported on Si-SiOx and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), respectively. A three-layer model is developed to fit both monotonic and nonmonotonic Tg deviations in these films. A 5-nm PEDOT:PSS capping layer was not found to be effective to remove the free-surface effect in Si-SiOx supported TFB films.

  17. Stereocomplexed poly(limonene carbonate): a unique example of the cocrystallization of amorphous enantiomeric polymers.

    PubMed

    Auriemma, Finizia; De Rosa, Claudio; Di Caprio, Maria Rosaria; Di Girolamo, Rocco; Ellis, W Chadwick; Coates, Geoffrey W

    2015-01-19

    We report the cocrystallization of the regio- and stereoregular chiral copolymer poly(limonene carbonate). To the best of our knowledge, this marks the first example of an amorphous, enantiomerically pure polymer that becomes crystalline upon stereocomplexation with its complementary enantiomer. By analyzing X-ray powder diffraction data, we propose a packing model in which sheets of enantiopure chains interdigitate with layers of the opposite enantiomer, forming a "steric zipper". © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solution-state polymer assemblies influence BCS class II drug dissolution and supersaturation maintenance.

    PubMed

    Dalsin, Molly C; Tale, Swapnil; Reineke, Theresa M

    2014-02-10

    Spray dried dispersions (SDDs), solid dispersions of polymer excipients and active pharmaceuticals, are important to the field of oral drug delivery for improving active stability, bioavailability, and efficacy. Herein, we examine the influence of solution-state polymer assemblies on amorphous spray-dried dispersion (SDD) performance with two BCS II model drugs, phenytoin and probucol. These drugs were spray dried with 4 model polymer excipients consisting of poly(ethylene-alt-propylene) (PEP), N,N,-dimethylacrylamide (DMA), or 2-methacrylamido glucopyranose (MAG): amphiphilic diblock ter- and copolymers, PEP-P(DMA-grad-MAG) and PEP-PDMA, and their respective hydrophilic analogues, P(DMA-grad-MAG) and PDMA. Selective and nonselective solvents for the hydrophilic block of the diblock ter- and copolymers were used to induce or repress solution-state assemblies prior to spray drying. Prespray dried solution-state assemblies of these four polymers were probed with dynamic light scattering (DLS) and showed differences in solution assembly size and structure (free polymer versus aggregates versus micelles). Solid-state structures of spray dried dispersions (SDDs) showed a single glass transition event implying a homogeneous mixture of drug/polymer. Crystallization temperatures and enthalpies indicated that the drugs interact mostly with the DMA-containing portions of the polymers. Scanning electron microscopy was used to determine SDD particle size and morphology for the various polymer-drug pairings. In vitro dissolution tests showed excellent performance for one system, spray-dried PEP-PDMA micelles with probucol. Dissolution structures were investigated through DLS to determine drug-polymer aggregates that lead to enhanced SDD performance. Forced aggregation of the polymer into regular micelle structures was found to be a critical factor to increase the dissolution rate and supersaturation maintenance of SDDs, and may be an attractive platform to exploit in excipient

  19. X-ray reflectivity on perfluoropolyether polymer molecules on amorphous carbon

    NASA Astrophysics Data System (ADS)

    Toney, Michael F.; Thompson, Carol

    1990-03-01

    The mass density profile from thin (˜25 Å) layers of polymer molecules adsorbed on amorphous carbon thin films is determined from measurements of the specular reflectivity of x rays. Important information on the conformation of the polymer molecules is obtained from the density profile (average density as a function of position above the surface). The polymer is a perfluoropolyether (PFPE) with piperonyl end groups and has a molecular weight of 2000-3000 Daltons. Three samples are measured: a nonbonded sample with an approximately 25 Å layer applied by dipping, a bonded sample with the layer applied by dipping but followed by a process to attach the molecule to the carbon, and a cleaned sample which is the nonbonded sample after the polymer had been removed. The density profile of the nonbonded polymer shows that the density within 10 Å of the carbon surface is ˜1.6 gm/cc, which is smaller than the density in the region between 10 and 25 Å (˜1.8 gm/cc). This indicates that the less dense piperonyl end groups are preferentially adsorbed near the carbon surface, which provides a possible explanation of the observation that the addition of the piperonyl end group to PFPE improves adhesion of the polymer to surfaces. The bulk-like density in the region between 10 and 25 Å and the compactness of the layer suggest that the preponderance of molecules have both end groups preferentially adsorbed; consequently, the PFPE chains remain close to the surface. The data from the bonded and nonbonded polymer layers are essentially the same, which indicates the molecular conformation is not strongly affected by the bonding treatment.

  20. Experimental and modelling studies of the shape memory properties of amorphous polymer network composites

    NASA Astrophysics Data System (ADS)

    Arrieta, J. S.; Diani, J.; Gilormini, P.

    2014-09-01

    Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP.

  1. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    PubMed

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-09

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.

  2. Amorphous material from the rapid evaporation of basalt weathering solutions: Implications for Amazonian alteration

    NASA Astrophysics Data System (ADS)

    Smith, R.; Horgan, B. H. N.; Christensen, P. R.

    2016-12-01

    Amorphous silicates of ambiguous origin are detected on the Martian surface through orbiter and rover measurements. Secondary amorphous silicates might precipitate from rapidly evaporating weathering solutions under Amazonian ( 3 BYA - present) surface conditions. Yet, such phases are poorly understood and are underrepresented in infrared spectral libraries. Amazonian weathering was simulated by dissolving two basaltic tephra compositions in DI water under two different atmospheres (1: oxidizing and 2: simulated Martian). The resulting weathering solutions were rapidly evaporated into sample cups. Precipitate mineralogy was studied using visible and near-infrared (VNIR) and thermal-infrared (TIR) spectroscopy and x-ray diffraction (XRD). Solution compositions were analyzed using Ion Chromatography (IC) and Inductively Coupled Plasma Mass-Spectroscopy (ICP-MS). All experiments formed hydrated amorphous silicates and nanophase iron-oxides, but precipitates from solutions formed under a simulated Martian atmosphere also contain crystalline carbonate and sulfate minerals. The oxidizing atmosphere precipitates are also S-bearing, based on solution chemistry, but no crystalline sulfates were unambiguously detected. The TIR spectra of all samples exhibit a spectral feature at 460 cm-1 that was previously only known to be present in the spectra of basaltic glass and some terrestrial palagonitized basalt samples, indicating that the precipitates are new to spectral libraries. Ongoing characterization will help determine the composition and structure of the amorphous phases. TIR spectral and XRD instruments on the Spirit and Mars Science Laboratory (MSL) rovers both indicate high abundances of basaltic glass in rock and soil samples, despite chemical evidence for aqueous alteration. Our results suggest that these measurements are consistent with secondary amorphous silicates formed through the rapid evaporation of basalt weathering solutions. Thus, transient water

  3. Characterization of physicochemical properties of naproxen systems with amorphous beta-cyclodextrin-epichlorohydrin polymers.

    PubMed

    Mura, P; Faucci, M T; Maestrelli, F; Furlanetto, S; Pinzauti, S

    2002-08-01

    Ground mixtures of naproxen with amorphous beta-cyclodextrin-epichlorohydrin soluble (betaCd-EPS) or insoluble cross-linked (betaCd-EPI) polymers were investigated for both solid phase characterization (Differential Scanning Calorimetry, powder X-ray Diffractometry) and dissolution properties (dispersed amount method). The effect of different grinding conditions and of drug-to-carrier ratio was also evaluated. Co-grinding induced a decrease in drug crystallinity to an extent which depended on the grinding time, and was most pronounced for the cross-linked insoluble polymer, particularly in combinations at the lowest drug content. Both cyclodextrin polymers were more effective in improving the naproxen dissolution properties, not only than the parent betaCd but also than hydroxyalkyl-derivatives, and their performance was almost comparable to that of methyl-derivatives, previously found as the best carriers for naproxen. Dissolution efficiencies of naproxen from physical mixtures with betaCd-EPS, thanks to the high water solubility of this Cd-derivative, were up to three times higher than those from the corresponding products with betaCd-EPI. However this difference in their performance became much less evident in co-ground products and tended to progressively diminish with increasing the polymer content in the mixture, according to the better amorphizing power shown by betaCd-EPI during the co-grinding process. The 10/90 (w/w) drug-carrier co-ground products exhibited the best dissolution properties, giving dissolution efficiencies about 30 times higher than that of naproxen alone.

  4. Constitutive modeling of large inelastic deformation of amorphous polymers: Free volume and shear transformation zone dynamics

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Samadi-Dooki, Aref

    2016-06-01

    Due to the lack of the long-range order in their molecular structure, amorphous polymers possess a considerable free volume content in their inter-molecular space. During finite deformation, these free volume holes serve as the potential sites for localized permanent plastic deformation inclusions which are called shear transformation zones (STZs). While the free volume content has been experimentally shown to increase during the course of plastic straining in glassy polymers, thermal analysis of stored energy due to the deformation shows that the STZ nucleation energy decreases at large plastic strains. The evolution of the free volume, and the STZs number density and nucleation energy during the finite straining are formulated in this paper in order to investigate the uniaxial post-yield softening-hardening behavior of the glassy polymers. This study shows that the reduction of the STZ nucleation energy, which is correlated with the free volume increase, brings about the post-yield primary softening of the amorphous polymers up to the steady-state strain value; and the secondary hardening is a result of the increased number density of the STZs, which is required for large plastic strains, while their nucleation energy is stabilized beyond the steady-state strain. The evolutions of the free volume content and STZ nucleation energy are also used to demonstrate the effect of the strain rate, temperature, and thermal history of the sample on its post-yield behavior. The obtained results from the model are compared with the experimental observations on poly(methyl methacrylate) which show a satisfactory consonance.

  5. On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics.

    PubMed

    Sen, Sabyasachi; Widgeon, Scarlett

    2015-03-17

    The intermediate-range packing of SiNxC4-x (0 ≤ x ≤ 4) tetrahedra in polysilycarbodiimide and polysilazane-derived amorphous SiCN ceramics is investigated using (29)Si spin-lattice relaxation nuclear magnetic resonance (SLR NMR) spectroscopy. The SiCN network in the polysilylcarbodiimide-derived ceramic consists predominantly of SiN₄ tetrahedra that are characterized by a 3-dimensional spatial distribution signifying compact packing of such units to form amorphous Si₃N₄ clusters. On the other hand, the SiCN network of the polysilazane-derived ceramic is characterized by mixed bonded SiNxC4-x tetrahedra that are inefficiently packed with a mass fractal dimension of Df ~2.5 that is significantly lower than the embedding Euclidean dimension (D = 3). This result unequivocally confirms the hypothesis that the presence of dissimilar atoms, namely, 4-coordinated C and 3-coordinated N, in the nearest neighbor environment of Si along with some exclusion in connectivity between SiCxN4-x tetrahedra with widely different N:C ratios and the absence of bonding between C and N result in steric hindrance to an efficient packing of these structural units. It is noted that similar inefficiencies in packing are observed in polymer-derived amorphous SiOC ceramics as well as in proteins and binary hard sphere systems.

  6. On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics

    PubMed Central

    Sen, Sabyasachi; Widgeon, Scarlett

    2015-01-01

    The intermediate-range packing of SiNxC4−x (0 ≤ x ≤ 4) tetrahedra in polysilycarbodiimide and polysilazane-derived amorphous SiCN ceramics is investigated using 29Si spin-lattice relaxation nuclear magnetic resonance (SLR NMR) spectroscopy. The SiCN network in the polysilylcarbodiimide-derived ceramic consists predominantly of SiN4 tetrahedra that are characterized by a 3-dimensional spatial distribution signifying compact packing of such units to form amorphous Si3N4 clusters. On the other hand, the SiCN network of the polysilazane-derived ceramic is characterized by mixed bonded SiNxC4−x tetrahedra that are inefficiently packed with a mass fractal dimension of Df ~2.5 that is significantly lower than the embedding Euclidean dimension (D = 3). This result unequivocally confirms the hypothesis that the presence of dissimilar atoms, namely, 4-coordinated C and 3-coordinated N, in the nearest neighbor environment of Si along with some exclusion in connectivity between SiCxN4−x tetrahedra with widely different N:C ratios and the absence of bonding between C and N result in steric hindrance to an efficient packing of these structural units. It is noted that similar inefficiencies in packing are observed in polymer-derived amorphous SiOC ceramics as well as in proteins and binary hard sphere systems.

  7. Electronic properties and microstructures of amorphous silicon carbonitrides ceramics derived from polymer precursors

    NASA Astrophysics Data System (ADS)

    Jiang, Tao

    2009-12-01

    Polymer-derived ceramics (PDCs) are a new class of high-temperature materials synthesized by thermal decomposition of polymeric precursors. These materials possess many unique features as compared with conventional ceramics synthesized by powder metallurgy based processing. For example, PDCs are neither amorphous nor crystalline. Instead, they possess nano-domain structures. Due to the direct chemical-to-ceramic processing, PDCs can be used for making components and devices with complex shapes. Thus, understanding the properties and structures of these materials are of both fundamental and practical interest. In this work, the structures and electronic behavior of polymer-derived amorphous silicon carbonitrides (SiCNs) were investigated. The materials were synthesized by pyrolysis of a commercially available liquid precursor. Ceramic materials with varied structures/properties were successfully synthesized by modifying the precursor and using different pyrolysis temperatures. The structures of the obtained materials were studied using XRD, solid state NMR, EPR, FTIR and Raman Spectroscope. The electronic behavior of the materials was investigated by measuring I-V curves, Hall effects, temperature dependent conductivity. The experiments were also performed to measure UV-Visible absorption and dielectric properties of the materials. This work leads to the following significant progresses: (i) developed quantitative technique for measuring free carbon concentration; (ii) achieved better understanding of the electronic conduction mechanisms and measured electronic structures of the materials for the first time; and (iii) demonstrated that these materials possess unusual dielectric behavior and provide qualitative explanations.

  8. Molecular modeling of temperature dependence of solubility parameters for amorphous polymers.

    PubMed

    Chen, Xianping; Yuan, Cadmus; Wong, Cell K Y; Zhang, Guoqi

    2012-06-01

    A molecular modeling strategy is proposed to describe the temperature (T) dependence of solubility parameter (δ) for the amorphous polymers which exhibit glass-rubber transition behavior. The commercial forcefield "COMPASS" is used to support the atomistic simulations of the polymer. The temperature dependence behavior of δ for the polymer is modeled by running molecular dynamics (MD) simulation at temperatures ranging from 250 up to 650 K. Comparing the MD predicted δ value at 298 K and the glass transition temperature (T(g)) of the polymer determined from δ-T curve with the experimental value confirm the accuracy of our method. The MD modeled relationship between δ and T agrees well with the previous theoretical works. We also observe the specific volume (v), cohesive energy (U(coh)), cohesive energy density (E(CED)) and δ shows a similar temperature dependence characteristics and a drastic change around the T(g). Meanwhile, the applications of δ and its temperature dependence property are addressed and discussed.

  9. Retardation of the orientation relaxation of azo-dye doped amorphous polymers upon photoinduced isomerization

    NASA Astrophysics Data System (ADS)

    Chan, S. W.; Quatela, A.; Casalboni, M.; Nunzi, J.-M.

    2006-08-01

    The orientation relaxation upon photo-induced isomerization of azo-dyes was studied. All-optical poling (AOP) and photo-induced birefringence, which are based on the mechanism of angular selective photo-isomerization, were employed to manipulate the angular distribution of azo-dyes (Disperse-red 1) doped in three different amorphous polymers: (poly(methyl methacrylate) PMMA, poly(carbonate) PC and poly(sulfone) PSU), with different glass transition temperature (T g). In the case of AOP, quasi-permanent macroscopic second-order nonlinear optical susceptibility χ (2) was inscribed in the dye-doped centro-symmetric polymer systems, while in the case of photo-induced birefringence, quasi-permanent birefringence Δn was inscribed in the dye-doped isotropic polymer systems. Relaxation of χ (2) and Δn were monitored upon different duration of AOP and photo-induced birefringence preparation. Experimental results show that azo-dye orientation relaxation follows the duration of the photo-nduced isomerization process: the longer the photo-induced isomerization process, the slower the relaxation of the inscribed χ (2) and Δn. In addition, retardation of the orientation relaxation does not follow a simple relation with hardness (T g) of the polymer host. Causes of the orientation relaxation retardation are discussed.

  10. Effects of the Terminal Structure, Purity, and Molecular Weight of an Amorphous Conjugated Polymer on Its Photovoltaic Characteristics.

    PubMed

    Kuwabara, Junpei; Yasuda, Takeshi; Takase, Naoto; Kanbara, Takaki

    2016-01-27

    The photovoltaic characteristics of an amorphous polymer containing EDOT and fluorene units were investigated. In particular, the effects of the terminal structure, residual amount of Pd, and molecular weight were systematically investigated. Direct arylation polycondensation of EDOT followed by an established purification method readily afforded polymers with different terminal structures, Pd contents, and molecular weights. Of these factors, the terminal structure of the polymer was a crucial factor affecting the photovoltaic characteristics. For example, the polymer with a Br terminal had a PCE of 2.9% in bulk-heterojunction organic photovoltaics (BHJ OPVs) with a fullerene derivative, whereas the polymer without a Br terminal had a PCE of 4.6% in the same cell configuration. The decreased Pd residues and high molecular weights of the polymers increased the long-term stability of the devices. Moreover, BHJ OPVs containing the high-molecular-weight polymer could be fabricated with an environmentally friendly nonhalogenated solvent.

  11. Optimising Drug Solubilisation in Amorphous Polymer Dispersions: Rational Selection of Hot-melt Extrusion Processing Parameters.

    PubMed

    Li, Shu; Tian, Yiwei; Jones, David S; Andrews, Gavin P

    2016-02-01

    The aim of this article was to construct a T-ϕ phase diagram for a model drug (FD) and amorphous polymer (Eudragit® EPO) and to use this information to understand the impact of how temperature-composition coordinates influenced the final properties of the extrudate. Defining process boundaries and understanding drug solubility in polymeric carriers is of utmost importance and will help in the successful manufacture of new delivery platforms for BCS class II drugs. Physically mixed felodipine (FD)-Eudragit(®) EPO (EPO) binary mixtures with pre-determined weight fractions were analysed using DSC to measure the endset of melting and glass transition temperature. Extrudates of 10 wt% FD-EPO were processed using temperatures (110°C, 126°C, 140°C and 150°C) selected from the temperature-composition (T-ϕ) phase diagrams and processing screw speed of 20, 100 and 200rpm. Extrudates were characterised using powder X-ray diffraction (PXRD), optical, polarised light and Raman microscopy. To ensure formation of a binary amorphous drug dispersion (ADD) at a specific composition, HME processing temperatures should at least be equal to, or exceed, the corresponding temperature value on the liquid-solid curve in a F-H T-ϕ phase diagram. If extruded between the spinodal and liquid-solid curve, the lack of thermodynamic forces to attain complete drug amorphisation may be compensated for through the use of an increased screw speed. Constructing F-H T-ϕ phase diagrams are valuable not only in the understanding drug-polymer miscibility behaviour but also in rationalising the selection of important processing parameters for HME to ensure miscibility of drug and polymer.

  12. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    SciTech Connect

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev; Hong, Kunlun; Bonnesen, Peter V.; Sumpter, Bobby G.; Smith, Gregory Scott; Ivanov, Ilia N.; Do, Changwoo

    2015-07-17

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution, we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.

  13. Room temperature phosphorescence of metal-free organic materials in amorphous polymer matrices.

    PubMed

    Lee, Dongwook; Bolton, Onas; Kim, Byoung Choul; Youk, Ji Ho; Takayama, Shuichi; Kim, Jinsang

    2013-04-24

    Developing metal-free organic phosphorescent materials is promising but challenging because achieving emissive triplet relaxation that outcompetes the vibrational loss of triplets, a key process to achieving phosphorescence, is difficult without heavy metal atoms. While recent studies reveal that bright room temperature phosphorescence can be realized in purely organic crystalline materials through directed halogen bonding, these organic phosphors still have limitations to practical applications due to the stringent requirement of high quality crystal formation. Here we report bright room temperature phosphorescence by embedding a purely organic phosphor into an amorphous glassy polymer matrix. Our study implies that the reduced beta (β)-relaxation of isotactic PMMA most efficiently suppresses vibrational triplet decay and allows the embedded organic phosphors to achieve a bright 7.5% phosphorescence quantum yield. We also demonstrate a microfluidic device integrated with a novel temperature sensor based on the metal-free purely organic phosphors in the temperature-sensitive polymer matrix. This unique system has many advantages: (i) simple device structures without feeding additional temperature sensing agents, (ii) bright phosphorescence emission, (iii) a reversible thermal response, and (iv) tunable temperature sensing ranges by using different polymers.

  14. Gelation in Physically Associating Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Kumar, Sanat

    2001-03-01

    Macromolecules, which possess moieties capable of physical association, commonly form reversible gels when dissolved in solvents. This unusual state of matter, which displays weakly elastic character at short times, is ubiquitous in contexts ranging from foods, viscosity modifiers and the cytoskeleton of living organisms. Gel formation in these systems is currently modeled by assuming that the ``sticker" pairing times are long, thus suggesting a connection to percolation concepts developed in the 1940's. We have performed computer simulations on solutions of chains with ``weak" stickers, i.e., in a realistic limit where sticker pairing energies are comparable to thermal energy, and find that gelation is not synonymous with percolation. Rather, as the temperature is lowered below a threshold value, the stickers cluster into multiplets, thus dramatically slowing the relaxation processes in these materials. The similarity of polymer physical gelation to vitrification suggests that reversible gelation and the glass transition should be describable by a common language. This view accords with recent suggestions that gelation in colloid solutions is a nonergodicity transition, comparable to the glass transition.

  15. The tracking of interfacial interaction of amorphous solid dispersions formed by water-soluble polymer and nitrendipine

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fan, Na; Li, Chang; Wang, Jian; Li, Sanming; He, Zhonggui

    2017-10-01

    Herein, interfacial interactions of amorphous solid dispersion formed by nitrendipine (TDP) and two types of water-soluble polymers (polyvinyl pyrrolidone K30 (PVP) and polyethylene glycol 6000 (PEG)) were tracked mainly concerning with interaction forces and wetting process. Infrared spectroscopy (IR), raman spectroscopy and contact angle instrument were mainly used through the study. Hydrogen bonding forces were formed between drug and excipient in TDP-PVP and TDP-PEG. The red raman shift of TDP-PVP and TDP-PEG confirmed the hydrogen bonding forces between TDP and the two polymers. Both TDP-PVP and TDP-PEG showed higher drug release and TDP-PVP accomplished TDP release faster due to its better drug amorphous state. It is believed that the track of interfacial interactions will certainly become powerful tools to provide valuable instruction for designing and evaluating amorphous solid dispersions.

  16. Effect of polymer type and drug dose on the in vitro and in vivo behavior of amorphous solid dispersions.

    PubMed

    Knopp, Matthias Manne; Chourak, Nabil; Khan, Fauzan; Wendelboe, Johan; Langguth, Peter; Rades, Thomas; Holm, René

    2016-08-01

    This study investigated the non-sink in vitro dissolution behavior and in vivo performance in rats of celecoxib (CCX) amorphous solid dispersions with polyvinyl acetate (PVA), polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) at different drug doses. Both in vitro and in vivo, the amorphous solid dispersions with the hydrophilic polymers PVP and HPMC led to higher areas under both, the in vitro dissolution and the plasma concentration-time curves (AUC) compared to crystalline and amorphous CCX for all doses. In contrast, the amorphous solid dispersion with the hydrophobic polymer PVA showed a lower AUC both in vitro and in vivo than crystalline CCX. For crystalline CCX and CCX:PVA, the in vitro AUC was limited by the low solubility of the drug and the slow release of the drug from the hydrophobic polymer, respectively. For the supersaturating formulations, amorphous CCX, CCX:PVP and CCX:HPMC, the in vitro performance was mainly dependent on the dissolution rate and precipitation/crystallization inhibition of the polymer. As expected, the crystallization tendency increased with increasing dose, and therefore the in vitro AUCs did not increase proportionally with dose. Even though the in vivo AUC for all formulations increased with increasing dose, the relative bioavailability decreased significantly, indicating that the supersaturating formulations also crystallized in vivo and that the absorption of CCX was solubility-limited. These findings underline the importance of evaluating relevant in vitro doses, in order to rationally assess the performance of amorphous solid dispersions and avoid confusion in early in vivo studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The peculiar behavior of the glass transition temperature of amorphous drug-polymer films coated on inert sugar spheres.

    PubMed

    Dereymaker, Aswin; Van Den Mooter, Guy

    2015-05-01

    Fluid bed coating has been proposed in the past as an alternative technology for manufacturing of drug-polymer amorphous solid dispersions, or so-called glass solutions. It has the advantage of being a one-step process, and thus omitting separate drying steps, addition of excipients, or manipulation of the dosage form. In search of an adequate sample preparation method for modulated differential scanning calorimetry analysis of beads coated with glass solutions, glass transition broadening and decrease of the glass transition temperature (Tg ) were observed with increasing particle size of crushed coated beads and crushed isolated films of indomethacin (INDO) and polyvinylpyrrolidone (PVP). Substituting INDO with naproxen gave comparable results. When ketoconazole was probed or the solvent in INDO-PVP films was switched to dichloromethane (DCM) or a methanol-DCM mixture, two distinct Tg regions were observed. Small particle sizes had a glass transition in the high Tg region, and large particle sizes had a glass transition in the low Tg region. This particle size-dependent glass transition was ascribed to different residual solvent amounts in the bulk and at the surface of the particles. A correlation was observed between the deviation of the Tg from that calculated from the Gordon-Taylor equation and the amount of residual solvent at the Tg of particles with different sizes. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Stretchable and Conductive Polymer Films Prepared by Solution Blending.

    PubMed

    Li, Pengcheng; Sun, Kuan; Ouyang, Jianyong

    2015-08-26

    Stretchable and conductive materials can have important application in many areas, such as wearable electronics and healthcare devices. Conducting polymers have very limited elasticity because of their rigid conjugated backbone. In this work, highly stretchable and conductive polymer films are prepared by coating or casting aqueous solution of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate ( PSS) and a soft polymer, including poly(ethylene glycol), poly(ethylene oxide), or poly(vinyl alcohol). The soft polymers can greatly improve the stretchability and the conductivity of PSS. The elongation at break can be increased from 2% up to 55%. The soft polymers can also enhance the conductivity of PSS from 0.2 up to 75 S cm(-1). The conductivity is further enhanced by adding dimethyl sulfoxide (DMSO) or ethylene glycol (EG) into the aqueous solutions of the polymer blends. Polymer blends with an elongation at break of close to 50% and a conductivity of 172 S cm(-1) are attained.

  19. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: role of molecular mobility.

    PubMed

    Bhardwaj, Sunny P; Arora, Kapildev K; Kwong, Elizabeth; Templeton, Allen; Clas, Sophie-Dorothee; Suryanarayanan, Raj

    2014-11-03

    Physical instability of amorphous solid dispersions can be a major impediment to their widespread use. We characterized the molecular mobility in amorphous solid dispersions of itraconazole (ITZ) with each polyvinylpyrrolidone (PVP) and hydroxypropylmethylcellulose acetate succinate (HPMCAS) with the goal of investigating the correlation between molecular mobility and physical stability. Dielectric spectra showed two mobility modes: α-relaxation at temperatures above the glass transition temperature (Tg) and β-relaxation in the sub-Tg range. HPMCAS substantially increased the α-relaxation time, with an attendant increase in crystallization onset time and a decrease in crystallization rate constant, demonstrating the correlation between α-relaxation and stability. The inhibitory effect on α-relaxation as well as stability was temperature dependent and diminished as the temperature was increased above Tg. PVP, on the other hand, affected neither the α-relaxation time nor the crystallization onset time, further establishing the link between α-relaxation and crystallization onset in solid dispersions. However, it inhibited the crystallization rate, an effect attributed to factors other than mobility. Interestingly, both of the polymers acted as plasticizers of β-relaxation, ruling out the latter's involvement in physical stability.

  20. Porous polymers: enabling solutions for energy applications.

    PubMed

    Thomas, Arne; Kuhn, Pierre; Weber, Jens; Titirici, Maria-Magdalena; Antonietti, Markus

    2009-02-18

    A new generation of porous polymers was made for various energy-related applications, e.g., as fuel cell membranes, as electrode materials for batteries, for gas storage, partly from renewable resources. This review intends to catch this emerging field by reporting on a variety of different approaches to make high performing polymers porous. This includes template techniques, polymers with inherent microporosity, polymer frameworks by ionothermal polymerization, and the polymerization of carbon from appropriate precursors and by hydrothermal polymerization. In this process, we try to not only identify the current status of the field, but also point to open question and tasks to identify the potentially relevant progress.

  1. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide

    NASA Astrophysics Data System (ADS)

    Tran, Phong D.; Tran, Thu V.; Orio, Maylis; Torelli, Stephane; Truong, Quang Duc; Nayuki, Keiichiro; Sasaki, Yoshikazu; Chiam, Sing Yang; Yi, Ren; Honma, Itaru; Barber, James; Artero, Vincent

    2016-06-01

    Molybdenum sulfides are very attractive noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) from water. The atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx), which exhibits significantly higher HER activity compared to its crystalline counterpart. Here we show that HER-active a-MoSx, prepared either as nanoparticles or as films, is a molecular-based coordination polymer consisting of discrete [Mo3S13]2- building blocks. Of the three terminal disulfide (S22-) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimization of this HER electrocatalyst as an alternative to platinum.

  2. 10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Kim, Jeehwan; Hong, Ziruo; Li, Gang; Song, Tze-Bin; Chey, Jay; Lee, Yun Seog; You, Jingbi; Chen, Chun-Chao; Sadana, Devendra K.; Yang, Yang

    2015-03-01

    Thin-film solar cells made with amorphous silicon (a-Si:H) or organic semiconductors are considered as promising renewable energy sources due to their low manufacturing cost and light weight. However, the efficiency of single-junction a-Si:H or organic solar cells is typically <10%, insufficient for achieving grid parity. Here we demonstrate an efficient double-junction photovoltaic cell by employing an a-Si:H film as a front sub-cell and a low band gap polymer:fullerene blend film as a back cell on planar glass substrates. Monolithic integration of 6.0% efficienct a-Si:H and 7.5% efficient polymer:fullerene blend solar cells results in a power conversion efficiency of 10.5%. Such high-efficiency thin-film tandem cells can be achieved by optical management and interface engineering of fully optimized high-performance front and back cells without sacrificing photovoltaic performance in both cells.

  3. 10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell.

    PubMed

    Kim, Jeehwan; Hong, Ziruo; Li, Gang; Song, Tze-bin; Chey, Jay; Lee, Yun Seog; You, Jingbi; Chen, Chun-Chao; Sadana, Devendra K; Yang, Yang

    2015-03-04

    Thin-film solar cells made with amorphous silicon (a-Si:H) or organic semiconductors are considered as promising renewable energy sources due to their low manufacturing cost and light weight. However, the efficiency of single-junction a-Si:H or organic solar cells is typically <10%, insufficient for achieving grid parity. Here we demonstrate an efficient double-junction photovoltaic cell by employing an a-Si:H film as a front sub-cell and a low band gap polymer:fullerene blend film as a back cell on planar glass substrates. Monolithic integration of 6.0% efficienct a-Si:H and 7.5% efficient polymer:fullerene blend solar cells results in a power conversion efficiency of 10.5%. Such high-efficiency thin-film tandem cells can be achieved by optical management and interface engineering of fully optimized high-performance front and back cells without sacrificing photovoltaic performance in both cells.

  4. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide

    PubMed Central

    Tran, Phong D.; Tran, Thu V.; Orio, Maylis; Torelli, Stephane; Truong, Quang Duc; Nayuki, Keiichiro; Sasaki, Yoshikazu; Chiam, Sing Yang; Yi, Ren; Honma, Itaru; Barber, James; Artero, Vincent

    2017-01-01

    Molybdenum sulfides are very attractive noble-metal free electrocatalysts for the hydrogen evolution reaction (HER) from water. Atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx) which displays significantly higher HER activity compared to its crystalline counterpart. Here we show that HER–active a-MoSx, prepared either as nanoparticles or as films, is a molecular–based coordination polymer consisting of discrete [Mo3S13]2– building blocks. Of the three terminal disulfide (S22–) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimisation of this HER electrocatalyst as an alternative to platinum. PMID:26974410

  5. Electron paramagnetic resonance method for the determination of orientation in the amorphous regions of polymers

    SciTech Connect

    Shimada, S.; Williams, F.

    1980-11-01

    An elongated film of polyethylene was cut into narrow strips which were stacked together and placed in sample tubes. Samples were prepared with the stretching of the film stack being either parallel or perpendicular to the axis of the sample tube. Tetrafluoroethylene (C/sub 2/F/sub 4/) was condensed into the tube at -196/sup 0/C from a storage bulb. The amount of C/sub 2/F/sub 4/ transferred into the tube was ca 10 mol% of the ethylene units in the polyethylene sample, generating a pressure of ca 5 atm in the sealed tube at room temperature. The samples were stored for 1 week at ambient temperature, then irradiated at -196/sup 0/C with /sup 60/Co gamma rays for a total dose of 1 Mrd. Electron spin resonance measurements were conducted on the irradiated samples at 80K and higher temperatures. The spectra indicate that the preferred orientation of the C-C symmetry axis of C/sub 2/F/sub 4//sup -/ is perpendicular to the stretching direction in the polymer and, therefore, perpendicular to the polymer main chain. The anisotropy shown can be considered to reflect the degree of order in the amorphous regions. Results for computer simulated spectra show correlation with experimental values. 10 references, 3 figures.

  6. Modelling multi-scale deformation of amorphous glassy polymers with experimentally motivated evolution of the microstructure

    NASA Astrophysics Data System (ADS)

    Engqvist, Jonas; Wallin, Mathias; Ristinmaa, Matti; Hall, Stephen A.; Plivelic, Tomás S.

    2016-11-01

    Novel experimental data, obtained recently using advanced multi-scale experiments, have been used to develop a micro-mechanically motivated constitutive model for amorphous glassy polymers. Taking advantage of the experiments, the model makes use of a microstructural deformation gradient to incorporate the experimentally obtained deformation of the microstructure, as well as its evolving orientation. By comparing results from the model to experimental data, it is shown that the proposed approach is able to accurately predict glassy polymer deformation over a wide range of length-scales, from the macroscopic response (mm range) down to the deformation of the microstructure (nm range). The proposed model is evaluated by comparing the numerical response to experimental results on multiple scales from an inhomogeneous cold drawing experiment of glassy polycarbonate. Besides the macroscopic force-displacement response, a qualitative comparison of the deformation field at the surface of the specimen is performed. Furthermore, the predicted evolution of the fabric orientation is compared to experimental results obtained from X-ray scattering experiments. The model shows very good agreement with the experimental data over a wide range of length scales.

  7. A bifunctional amorphous polymer exhibiting equal linear and circular photoinduced birefringences.

    PubMed

    Royes, Jorge; Provenzano, Clementina; Pagliusi, Pasquale; Tejedor, Rosa M; Piñol, Milagros; Oriol, Luis

    2014-11-01

    The large and reversible photoinduced linear and circular birefringences in azo-compounds are at the basis of the interest in these materials, which are potentially useful for several applications. Since the onset of the linear and circular anisotropies relies on orientational processes, which typically occur on the molecular and supramolecular length scale, respectively, a circular birefringence at least one order of magnitude lower than the linear one is usually observed. Here, the synthesis and characterization of an amorphous polymer with a dimeric repeating unit containing a cyanoazobenzene and a cyanobiphenyl moiety are reported, in which identical optical linear and circular birefringences are induced for proper light dose and ellipticity. A pump-probe technique and an analytical method based on the Stokes-Mueller formalism are used to investigate the photoinduced effects and to evaluate the anisotropies. The peculiar photoresponse of the polymer makes it a good candidate for applications in smart functional devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Drag reduction in electro-osmosis of polymer solutions

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Tsao, Heng-Kwong

    2007-05-01

    Electro-osmosis is the preferred transport mechanism in microfluidic systems. Drag reduction in electro-osmosis of polymer solutions is observed due to polymer depletion in the electric double layer (EDL). The well-known Helmholtz-Smoluchowski (HS) equation indicates that the electro-osmosis mobility is inversely proportional to the solution viscosity. For low molecular weight the polymer size (R) is smaller than the EDL thickness (λ) and the HS equation is valid. For high molecular weight (R>λ) the chains in the EDL are partially sheared and the effective viscosity is smaller than the solution viscosity. Salt addition reduces λ and can enhance drag reduction substantially.

  9. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks.

    PubMed

    Smith, Brian J; Overholts, Anna C; Hwang, Nicky; Dichtel, William R

    2016-03-04

    We explore the crystallization of a high surface area imine-linked two-dimensional covalent organic framework (2D COF). The growth process reveals rapid initial formation of an amorphous network that subsequently crystallizes into the layered 2D network. The metastable amorphous polymer may be isolated and resubjected to growth conditions to form the COF. These experiments provide the first mechanistic insight into the mechanism of imine-linked 2D COF formation, which is distinct from that of boronate-ester linked COFs.

  10. Investigation of Phase Mixing in Amorphous Solid Dispersions of AMG 517 in HPMC-AS Using DSC, Solid-State NMR, and Solution Calorimetry.

    PubMed

    Calahan, Julie L; Azali, Stephanie C; Munson, Eric J; Nagapudi, Karthik

    2015-11-02

    Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1ρ), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD.

  11. Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions

    DOE PAGES

    Pollng-Skutvik, Ryan; Mongcopa, Katrina Irene S.; Faraone, Antonio; ...

    2016-08-17

    We investigate the structure and dynamics of silica nanoparticles and polymer chains in semidilute solutions of high molecular weight polystyrene in 2-butanone to determine the effect of long-range interparticle interactions on the coupling between particle and polymer dynamics. Particles at concentrations of 1–10 wt % are well dispersed in the semidilute polymer solutions and exhibit long-range electrostatic repulsions between particles. Because the particles are comparably sized to the radius of gyration of the polymer, the particle dynamics is predicted to couple to that of the polymer. We verify that the polymer structure and dynamics are not significantly affected by themore » particles, indicating that the particle–polymer coupling does not change with increasing particle loading. We find that the coupling between the dynamics of comparably sized particles and polymer results in subdiffusive particle dynamics, as expected. Over the interparticle distance, however, the particle dynamics is hindered and not fully described by the relaxation of the surrounding polymer chains. Instead, the particle dynamics is inversely related to the structure factor, suggesting that physical particle–polymer coupling on short length scales and interparticle interactions on long length scales both present energetic barriers to particle motion that lead to subdiffusive dynamics and de Gennes narrowing, respectively.« less

  12. Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions

    SciTech Connect

    Pollng-Skutvik, Ryan; Mongcopa, Katrina Irene S.; Faraone, Antonio; Narayanan, Suresh; Conrad, Jacinta C.; Krishnamoorti, Ramanan

    2016-08-17

    We investigate the structure and dynamics of silica nanoparticles and polymer chains in semidilute solutions of high molecular weight polystyrene in 2-butanone to determine the effect of long-range interparticle interactions on the coupling between particle and polymer dynamics. Particles at concentrations of 1–10 wt % are well dispersed in the semidilute polymer solutions and exhibit long-range electrostatic repulsions between particles. Because the particles are comparably sized to the radius of gyration of the polymer, the particle dynamics is predicted to couple to that of the polymer. We verify that the polymer structure and dynamics are not significantly affected by the particles, indicating that the particle–polymer coupling does not change with increasing particle loading. We find that the coupling between the dynamics of comparably sized particles and polymer results in subdiffusive particle dynamics, as expected. Over the interparticle distance, however, the particle dynamics is hindered and not fully described by the relaxation of the surrounding polymer chains. Instead, the particle dynamics is inversely related to the structure factor, suggesting that physical particle–polymer coupling on short length scales and interparticle interactions on long length scales both present energetic barriers to particle motion that lead to subdiffusive dynamics and de Gennes narrowing, respectively.

  13. Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions

    SciTech Connect

    Pollng-Skutvik, Ryan; Mongcopa, Katrina Irene S.; Faraone, Antonio; Narayanan, Suresh; Conrad, Jacinta C.; Krishnamoorti, Ramanan

    2016-08-17

    We investigate the structure and dynamics of silica nanoparticles and polymer chains in semidilute solutions of high molecular weight polystyrene in 2-butanone to determine the effect of long-range interparticle interactions on the coupling between particle and polymer dynamics. Particles at concentrations of 1–10 wt % are well dispersed in the semidilute polymer solutions and exhibit long-range electrostatic repulsions between particles. Because the particles are comparably sized to the radius of gyration of the polymer, the particle dynamics is predicted to couple to that of the polymer. We verify that the polymer structure and dynamics are not significantly affected by the particles, indicating that the particle–polymer coupling does not change with increasing particle loading. We find that the coupling between the dynamics of comparably sized particles and polymer results in subdiffusive particle dynamics, as expected. Over the interparticle distance, however, the particle dynamics is hindered and not fully described by the relaxation of the surrounding polymer chains. Instead, the particle dynamics is inversely related to the structure factor, suggesting that physical particle–polymer coupling on short length scales and interparticle interactions on long length scales both present energetic barriers to particle motion that lead to subdiffusive dynamics and de Gennes narrowing, respectively.

  14. Investigation and correlation of drug polymer miscibility and molecular interactions by various approaches for the preparation of amorphous solid dispersions.

    PubMed

    Meng, Fan; Trivino, Anne; Prasad, Dev; Chauhan, Harsh

    2015-04-25

    Curcumin (CUR) was used as a poorly soluble drug whereas polyvinyl pyrrolidone K90 (PVP), Eudragit EPO (EPO), hydroxypropyl methylcellulose E5 (HPMC) and polyethylene glycol 8000 (PEG) were used as hydrophilic polymers. CUR polymer miscibility was evaluated by solubility parameter, melting point depression and glass transition temperature (Tg) measurements. Molecular interactions between CUR and polymers were determined by Fourier-transform infrared spectroscopy (FTIR) and Raman. Amorphous solid dispersions were prepared with CUR-polymer ratio of 70:30 (w/w) by solvent evaporation technique and were evaluated for dissolution enhancement using USP II method. Physical states of solid dispersions were characterized by X-ray diffraction (XRD) whereas thermal behaviors were investigated using modulated differential scanning calorimetry (MDSC). CUR-EPO system showed good miscibility through all the approaches, whereas immiscibility was found in other CUR-polymer systems. CUR-EPO and CUR-HPMC systems showed significant molecular interactions whereas CUR-PVP and CUR-PEG showed no molecular interactions. All solid dispersions showed significant dissolution enhancement with CUR-EPO showing highest dissolution rate during first 1h whereas CUR-HPMC was effective in maintaining high CUR concentrations for 6h. The study highlights the importance of investigating and correlating drug polymer miscibility and molecular interactions by various approaches for successful formulation of amorphous solid dispersions.

  15. Instanton solutions on the polymer harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Austrich-Olivares, Joan A.; Garcia-Chung, Angel; Vergara, J. David

    2017-06-01

    We have computed, using instanton methods, the first allowed energy band for the polymer harmonic oscillator. The eigenvalues within the band are labelled by a discrete parameter λ which results from the non-separability of the polymer Hilbert space. It is shown throughout the article the role played by λ in the full quantization of the polymer harmonic oscillator. The result is consistent with the band structure of the standard quantum pendulum but with pure point spectrum. Consequently, an effective infinite degeneracy emerges in the formal limit μ/l0 \\to 0 where l 0 is the characteristic length of the vacuum eigenfunction of a quantum harmonic oscillator.

  16. Polymer fullerene solution phase behaviour and film formation pathways.

    PubMed

    Dattani, Rajeev; Cabral, João T

    2015-04-28

    We report the phase behaviour of polymer/fullerene/solvent ternary mixtures and its consequence for the morphology of the resulting composite thin films. We focus particularly on solutions of polystyrene (PS), C60 fullerene and toluene, which are examined by static and dynamic light scattering, and films obtained from various solution ages and thermal annealing conditions, using atomic force and light microscopy. Unexpectedly, the solution phase behaviour below the polymer overlap concentration, c*, is found to be described by a simple excluded volume argument (occupied by the polymer chains) and the neat C60/solvent miscibility. Scaling consistent with full exclusion is found when the miscibility of the fullerene in the solvent is much lower than that of the polymer, giving way to partial exclusion with more soluble fullerenes (phenyl-C61-butyric acid methyl ester, PCBM) and a less asymmetric solvent (chlorobenzene), employed in photovoltaic devices. Spun cast and drop cast films were prepared from PS/C60/toluene solutions across the phase diagram to yield an identical PS/C60 composition and film thickness, resulting in qualitatively different morphologies in agreement with our measured solution phase boundaries. Our findings are relevant to the solution processing of polymer/fullerene composites (including organic photovoltaic devices), which generally require effective solubilisation of fullerene derivatives and polymer pairs in this concentration range, and the design of well-defined thin film morphologies.

  17. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  18. Extensional instability in electro-osmotic microflows of polymer solutions

    NASA Astrophysics Data System (ADS)

    Bryce, R. M.; Freeman, M. R.

    2010-03-01

    Fluid transport in microfluidic systems typically is laminar due to the low Reynolds number characteristic of the flow. The inclusion of suspended polymers imparts elasticity to fluids, allowing instabilities to be excited when substantial polymer stretching occurs. For high molecular weight polymer chains we find that flow velocities achievable by standard electro-osmotic pumping are sufficient to excite extensional instabilities in dilute polymer solutions. We observe a dependence in measured fluctuations on polymer concentration which plateaus at a threshold corresponding to the onset of significant molecular crowding in macromolecular solutions; plateauing occurs well below the overlap concentration. Our results show that electro-osmotic flows of complex fluids are disturbed from the steady regime, suggesting potential for enhanced mixing and requiring care in modeling the flow of complex liquids such as biopolymer suspensions.

  19. Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm2/Vs.

    PubMed

    Smith, Jeremy; Zhang, Weimin; Sougrat, Rachid; Zhao, Kui; Li, Ruipeng; Cha, Dongkyu; Amassian, Aram; Heeney, Martin; McCulloch, Iain; Anthopoulos, Thomas D

    2012-05-08

    Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm(2) /Vs, current on/off ratio ≥10(6) and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film.

  20. P-type conductive amorphous oxides of transition metals from solution processing

    NASA Astrophysics Data System (ADS)

    Li, Jinwang; Kaneda, Toshihiko; Tokumitsu, Eisuke; Koyano, Mikio; Mitani, Tadaoki; Shimoda, Tatsuya

    2012-07-01

    We report a series of solution-processed p-type conductive amorphous Ln-M-O (a-Ln-M-O, where M = Ru, Ir, and Ln is a lanthanide element except Ce) having low resistivities (10-3 to 10-2 Ω cm). These oxides are thermally stable to a high degree, being amorphous up to 800 °C, and processable below 400 °C. Their film surfaces are smooth on the atomic scale, and the process allows patterning simply by direct imprinting without distortion of the pattern after annealing. These properties have high potential for use in printed electronics. The electron configurations of these oxides are apparently different from existing p-type oxides.

  1. Nanostructure investigation of polymer solutions, polymer gels, and polymer thin films

    NASA Astrophysics Data System (ADS)

    Lee, Wonjoo

    This thesis discusses two systems. One is structured hydrogels which are hydrogel systems based on crosslinked poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) containing micelles which form nanoscale pores within the PDMAEMA hydrogel. The other is nanoporous block copolymer thin films where solvent selectivity is exploited to create nanopores in PS-b-P4VP thin films. Both of these are multicomponent polymer systems which have nanoscale porous structures. 1. Small angle neutron scattering of micellization of anionic surfactants in water, polymer solutions and hydrogels. Nanoporous materials have been broadly investigated due to the potential for a wide range of applications, including nano-reactors, low-K materials, and membranes. Among those, molecularly imprinted polymers (MIP) have attracted a large amount of interest because these materials resemble the "lock and key" paradigm of enzymes. MIPs are created by crosslinking either polymers or monomers in the presence of template molecules, usually in water. Initially, functional groups on the polymer or the monomer are bound either covalently or noncovalently to the template, and crosslinking results in a highly crosslinked hydrogel. The MIPs containing templates are immersed in a solvent (usually water), and the large difference in the osmotic pressure between the hydrogel and solvent removes the template molecules from the MIP, leaving pores in the polymer network containing functionalized groups. A broad range of different templates have been used ranging from molecules to nanoscale structures inclucing stereoisomers, virus, and micelles. When micelles are used as templates, the size and shape before and after crosslinking is an important variable as micelles are thermodynamic objects whose structure depends on the surfactant concentration of the solution, temperature, electrolyte concentration and polymer concentration. In our research, the first goal is to understand the micellization of anionic

  2. Coordination polymers built from 1,4-bis(imidazol-1-ylmethyl)benzene: from crystalline to amorphous.

    PubMed

    Adarsh, N N; Novio, Fernando; Ruiz-Molina, Daniel

    2016-07-28

    The supramolecular chemistry of the bis-imidazole ligand 1,4-bis(imidazol-1-ylmethyl)benzene, popularly known as bix, has been explored by various researchers in order to synthesize functional coordination polymers (CPs). The flexibility of the bix ligand, its unpredictable conformation and its coordination behaviour with transition metal ions have resulted in a huge number of structurally diverse and functionally intriguing CPs. In this perspective review we discuss the progress in CPs of bix between 1997 and today. More precisely, this review emphasizes the developments in functional supramolecular coordination polymers built from the bix ligand, from crystalline materials to amorphous nanomaterials.

  3. Micron and sub-micron feature replication of amorphous polymers at elevated mold temperature without externally applied pressure

    NASA Astrophysics Data System (ADS)

    Mosaddegh, Peiman; Angstadt, David C.

    2008-03-01

    The focus of this study is on the ability of amorphous polymers to replicate micron and sub-micron features when molded at an elevated mold temperature without externally applied pressure. Molding was performed using three different types of amorphous polymers: cyclo-olefin copolymer (COC), polystyrene (PS) and poly (methyl methacrylate) (PMMA) on a silicon mold containing surface features as small as 700 nm in depth and aspect ratios ranging from 5 to 0.02. In this study, processing temperatures were selected in order to match the viscosity for all polymers used. Polymer viscosity was characterized via cone and plate rheometry and wettability was characterized via contact angle analysis to quantify interfacial effects. Feature replication was assessed using scanning electron microscopy (SEM) and atomic force microscopy (AFM) to compare the molded feature depth ratio. It was observed that for the features with an aspect ratio (depth/width) bigger than 2 the depth ratio of the molded parts decreases. PS shows the best replication because of high wettability behavior. PMMA shows the intermediate replication because of dipole-dipole interaction and its lower diffusion coefficient than PS. COC has the worse replication especially in low aspect ratio because of sticking to the silicon oxide layer. PS has the best surface roughness among all polymers.

  4. Hydrophilization and hydrophobic recovery in polymers obtained by casting of polymer solutions on water surface.

    PubMed

    Bormashenko, Edward; Chaniel, Gilad; Gendelman, Oleg

    2014-12-01

    We demonstrate the possibility of hydrophilization of polymer films in situ under the process of their preparation. The polymer surface is hydrophilized when the polymer solution is spread on the water surface and the solvent is evaporated. Essential hydrophilization of the polymer surface is achieved under this process. We relate the observed hydrophilization of polymer films to the dipole-dipole interaction of the polar moieties of polymer chains with highly polar water molecules. The dipole-dipole interaction between water molecules and polar groups of polymer chains, orienting the polar groups of a polymer, may prevail over the London dispersion forces. The process, reported in the paper, allows to manufacture the films in which the hydrophilic moieties of the polymer molecule are oriented toward the polymer/air interface. It is demonstrated that even such traditionally extremely hydrophobic polymers as polydimethylsiloxane can be markedly hydrophilized. This hydrophilization, however, does not persist forever. After removal from the water surface, hydrophobic recovery was observed, i.e. polymer films restored their hydrophobicity with time. The characteristic time of the hydrophobic recovery is on the order of magnitude of hours.

  5. Electrical analysis of amorphous corn starch-based polymer electrolyte membranes doped with LiI

    NASA Astrophysics Data System (ADS)

    Shukur, M. F.; Ibrahim, F. M.; Majid, N. A.; Ithnin, R.; Kadir, M. F. Z.

    2013-08-01

    In this work, polymer electrolytes have been prepared by doping starch with lithium iodide (LiI). The incorporation of 30 wt% LiI optimizes the room temperature conductivity of the electrolyte at (1.83 ± 0.47) × 10-4 S cm-1. Further conductivity enhancement to (9.56 ± 1.19) × 10-4 S cm-1 is obtained with the addition of 30 wt% glycerol. X-ray diffraction analysis indicates that the conductivity enhancement is due to the increase in amorphous content. The activation energy, Ea, of 70 wt% starch-30 wt% LiI electrolyte is 0.26 eV, while 49 wt% starch-21 wt% LiI-30 wt% glycerol electrolyte exhibits an Ea of 0.16 eV. Dielectric studies show that all the electrolytes obey non-Debye behavior. The power law exponent s is obtained from the variation of dielectric loss, ɛi, with frequency at different temperatures. The conduction mechanism of 70 wt% starch-30 wt% LiI electrolyte can be explained by the correlated barrier hopping model, while the conduction mechanism for 49 wt% starch-21 wt% LiI-30 wt% glycerol electrolyte can be represented by the quantum mechanical tunneling model.

  6. Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend

    PubMed Central

    Kurpiers, Jona; Neher, Dieter

    2016-01-01

    Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions. PMID:27225584

  7. Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend

    NASA Astrophysics Data System (ADS)

    Kurpiers, Jona; Neher, Dieter

    2016-05-01

    Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions.

  8. Surface dynamics of amorphous polymers used for high-voltage insulators.

    PubMed

    Shemella, Philip T; Laino, Teodoro; Fritz, Oliver; Curioni, Alessandro

    2011-11-24

    Amorphous siloxane polymers are the backbone of high-voltage insulation materials. The natural hydrophobicity of their surface is a necessary property for avoiding leakage currents and dielectric breakdown. As these surfaces are exposed to the environment, electrical discharges or strong mechanical impact can temporarily destroy their water-repellent properties. After such events, however, a self-healing process sets in and restores the original hydrophobicity within some hours. In the present study, we investigate possible mechanisms of this restoration process. Using large-scale, all-atom molecular dynamics simulations, we show that molecules on the material surface have augmented motion that allows them to rearrange with a net polarization. The overall surface region has a net orientation that contributes to hydrophobicity, and charged groups that are placed at the surface migrate inward, away from the vacuum interface and into the bulk-like region. Our simulations provide insight into the mechanisms for hydrophobic self-recovery that repair material strength and functionality and suggest material compositions for future high-voltage insulators.

  9. Sedimentation of Colloidal Particles through a Polymer Solution

    NASA Astrophysics Data System (ADS)

    Tong, Penger; Ye, Xi; Ackerson, Bruce J.

    1997-03-01

    We report recent sedimentation measurements of colloidal particles through a polymer solution. The colloidal particles used were sterically stabilized CaCO3 suspended in decane and the polymer was hydrogenated polyisoprene. Our previous light and neutron scattering measurements have shown that the polymer chains do not adsorb onto the colloidal surfaces. Using a commercial ultracentrifuge, we measured the sedimentation rate of the colloidal particles, from which the microscopic viscosity experienced by the particles was obtained at different polymer concentration C_p. The experiment reveals that at low colloid concentration φ_c, the particles feel the single-chain viscosity when their size Rh is smaller than the correlation length ξ of the polymer solution. The particles experience the macroscopic viscosity of the polymer solution when Rh >> ξ. The transition for the particles to feel the macroscopic viscosity is well described by a switch function f_c(C_p)=exp[-(C_0/C_p)^α], which can be written as a function of R_h/ξ. It is found that f_c(C_p) is independent of the polymer molecular weight. As φc increases, the colloidal particles feel more and more depletion attraction and their settling velocity increases with increasing C_p.

  10. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    DOE PAGES

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev; ...

    2015-07-17

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less

  11. Solution behavior of PEO : the ultimate biocompatible polymer.

    SciTech Connect

    Curro, John G.; Frischknecht, Amalie Lucile

    2004-11-01

    Poly(ethylene oxide) (PEO) is the quintessential biocompatible polymer. Due to its ability to form hydrogen bonds, it is soluble in water, and yet is uncharged and relatively inert. It is being investigated for use in a wide range of biomedical and biotechnical applications, including the prevention of protein adhesion (biofouling), controlled drug delivery, and tissue scaffolds. PEO has also been proposed for use in novel polymer hydrogel nanocomposites with superior mechanical properties. However, the phase behavior of PEO in water is highly anomalous and is not addressed by current theories of polymer solutions. The effective interactions between PEO and water are very concentration dependent, unlike other polymer/solvent systems, due to water-water and water-PEO hydrogen bonds. An understanding of this anomalous behavior requires a careful examination of PEO liquids and solutions on the molecular level. We performed massively parallel molecular dynamics simulations and self-consistent Polymer Reference Interaction Site Model (PRISM) calculations on PEO liquids. We also initiated MD studies on PEO/water solutions with and without an applied electric field. This work is summarized in three parts devoted to: (1) A comparison of MD simulations, theory and experiment on PEO liquids; (2) The implementation of water potentials into the LAMMPS MD code; and (3) A theoretical analysis of the effect of an applied electric field on the phase diagram of polymer solutions.

  12. Amorphous RE–Fe–B–Na colloidal nanoparticles: High temperature solution synthesis and magnetic properties

    SciTech Connect

    Jia, Li-Ping; Yan, Bing

    2015-04-15

    Graphical abstract: RE–Fe–B–Na (RE = Nd–Er) colloidal nanoparticles by high-temperature solution synthesis are ultra-small monodisperse and air-stable amorphous, whose size and magnetic dependence are studied. - Highlights: • RE–Fe–B–Na nanoparticles are obtained by high-temperature solution synthesis. • These colloidal nanoparticles are monodisperse and size controlled. • The magnetism dependence and possible magnetic coupling mechanism are studied. - Abstract: RE–Fe–B–Na (RE = Nd–Er) colloidal nanoparticles are prepared by high-temperature solution synthesis. These nanoparticles are ultra-small monodisperse, air-stable and amorphous, whose particle size and magnetic property are characterized by transmission electron microscope and superconducting quantum interference device. Taking Nd–Fe–B–Na nanoparticle as an example, it is found that the particle size can be controlled in less than 7 nm. Besides, the magnetic properties of RE–Fe–B–Na colloidal nanoparticles can be compared for different rare earth elements. Based on the bulk ferromagnetic coupling, other possible magnetic coupling mechanism is discussed.

  13. Asymptotic analysis of tracer diffusivity in nonadsorbing polymer solutions

    NASA Astrophysics Data System (ADS)

    Fan, Tai-Hsi; Xie, Bin; Tuinier, Remco

    2007-11-01

    We present an asymptotic and scaling analysis of the long-time self-diffusivity of a Brownian spherical particle in dilute polymer solutions with nonadsorbing chains. The polymer depletion zone near the particle surface is described by a continuous polymer density profile. Hydrodynamics formulated by the modified Stokes equation with nonuniform viscosity is solved by a regular perturbation approximation using the Green function method. The asymptotes predict how polymer depletion alters the friction a spherical particle experiences during translational and rotational motion within a quiescent fluid. The analysis agrees very well with full numerical computation, which enables us to investigate the scaling law for the polymer-mediated retardation effect using a stretched exponential form that is commonly applied by experimentalists. The scaling exponents revealed are consistent with the nominal values from collected experiment observations.

  14. Dynamic self-assembly of coordination polymers in aqueous solution.

    PubMed

    Li, Wen; Kim, Yongju; Li, Jingfang; Lee, Myongsoo

    2014-08-07

    The construction of supramolecular polymers has been intensively pursued because the nanostructures formed through weak non-covalent interactions can be triggered by external stimuli leading to smart materials and sensors. Self-assemblies of coordination polymers consisting of metal ions and organic ligands in aqueous solution also provide particular contributions in this area. The main motivation for developing those coordination polymers originates from the value-added combination between metal ions and ligands. This review highlights the recent progress of the dynamic self-assembly of coordination polymers that result from the sophisticated molecular design, towards fabricating stimuli-responsive systems and bio-related materials. Dynamic structural changes and switchable physical properties triggered by various stimuli are summarized. Finally, the outlook for aqueous nanostructures originated from the dynamic self-assembly of coordination polymers is also presented.

  15. Versatile solution for growing thin films of conducting polymers

    PubMed Central

    D’Arcy, Julio M.; Tran, Henry D.; Tung, Vincent C.; Tucker-Schwartz, Alexander K.; Wong, Rain P.; Yang, Yang; Kaner, Richard B.

    2010-01-01

    The method employed for depositing nanostructures of conducting polymers dictates potential uses in a variety of applications such as organic solar cells, light-emitting diodes, electrochromics, and sensors. A simple and scalable film fabrication technique that allows reproducible control of thickness, and morphological homogeneity at the nanoscale, is an attractive option for industrial applications. Here we demonstrate that under the proper conditions of volume, doping, and polymer concentration, films consisting of monolayers of conducting polymer nanofibers such as polyaniline, polythiophene, and poly(3-hexylthiophene) can be produced in a matter of seconds. A thermodynamically driven solution-based process leads to the growth of transparent thin films of interfacially adsorbed nanofibers. High quality transparent thin films are deposited at ambient conditions on virtually any substrate. This inexpensive process uses solutions that are recyclable and affords a new technique in the field of conducting polymers for coating large substrate areas. PMID:21041676

  16. Polymer retention and adsorption in the flow of polymer solutions through porous media

    SciTech Connect

    Cohen, Y.; Christ, F.R.

    1986-03-01

    A new experimental technique based on a surface treatment process was developed for determining mobility reduction as a result of polymer adsorption in flow of polymer solutions through porous media. The experimental method also allowed the direct determination of adsorptive and nonadsorptive polymer retention from flow experiments. The adsorptive mobility reduction for the flow of polyacrylamide (J333) mobility control polymer through silica sand was found to be as high as 14% at the lowest experimental stress level of 3.75 dynes/cm/sup 2/ (0.375 Pa). This corresponded to an effective hydrodynamic thickness (EHT) of the adsorbed polymer layer of 0.57 ..mu..m. Both the mobility reduction and the EHT decreased with an increase in shear stress. The amount of adsorptive retention accounted for about 35.2% of the total retained polymer.

  17. Growth and ripening of silica polymers in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Crerar, David A.; Axtmann, Ellen V.; Axtmann, Robert C.

    1981-08-01

    The molecular weights and number densities of polymers formed in neutral solutions of silicicacid, at the low concentrations that are typical of hydrothermal waters, were determined by gel filtration chromatography. The polymers exhibit Ostwald ripening that is characteristic of growth limited by a first order reaction of monomer at the surfaces of growing particles. Three divalent inorganic salts at 0.1 M are more effective at promoting polymer growth than is sodium chloride at the same concentration. The results support a recent theoretical model of the silica polymerization reaction but also identify ways in which the model might be improved.

  18. Submicron flow of polymer solutions: slippage reduction due to confinement.

    PubMed

    Cuenca, Amandine; Bodiguel, Hugues

    2013-03-08

    Pressure-driven flows of high molecular weight polyacrylamide solutions are examined in nanoslits using fluorescence photobleaching. The effective viscosity of polymer solutions decreases when the channel height decreases below the micron scale. In addition, the apparent slippage of the solutions is characterized macroscopically on similar surfaces. Though slippage can explain qualitatively the effective viscosity reduction, a quantitative comparison shows that the slip length is greatly reduced below the micron scale. This result indicates that chain migration is suppressed in confined geometries.

  19. External field-assisted solution synthesis and selectively catalytic properties of amorphous iron nanoplatelets

    SciTech Connect

    Guan, Jianguo; Yan, Gongqin; Wang, Wei; Liu, Jun

    2012-03-07

    This work describes an easy and flexible approach for the synthesis of 2D nanostructures by external composite field-induced self-assembly. Amorphous iron nanoplatelets with a large aspect ratio were prepared by reducing a concentrated FeSO4 solution with NaBH4 without any templates or surfactants under a magnetic field and a shear field, and characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Based on the morphological dependence of the resultant iron nanostructures on the kinetic parameters such as reactant concentration, reaction temperature, external fields as well as reaction time, etc., a novel conceivable formation mechanism of the iron nanoplatelets was substantiated to be a self-assembly of concentrated iron nuclei induced by the synergistic effect of both a magnetic field and a shear field. Due to the amorphous nature and shape anisotropy, the as-synthesized iron nanoplatelets exhibit quite different magnetic properties with an enhanced coercivity of >220 Oe from isotropic iron nanoparticles. In the oxidation of cyclohexane with hydrogen peroxide as a 'green' oxidant, the as-obtained amorphous iron nanoplatelets show a conversion more than 84% and a complete selectivity for cyclohexanol and cyclohexanone due to the unique structure. Moreover, their catalytic performances are strongly influenced by their morphology, and the iron atoms located on the faces tend to catalyze the formation of cyclohexanol while those on the sides tend to catalyze the formation of cyclohexanone. The external composite field-induced solution synthesis reported here can be readily explored for fabricating other 2D magnetic nanoplatelets, and the resulting iron nanoplatelets are promising for a number of applications such as high efficient selective catalysis, energy, environment fields and so forth.

  20. Affordable WDM components: the polymer solution

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Yin, Shing; Norwood, Robert A.; Yardley, James T.

    1998-02-01

    An advanced polymeric waveguide technology was developed for affordable WDM components that address the needs of both the Telecom and the Datacom industries. We engineered high- performance organic polymers that can be readily made into both multimode and single-mode optical waveguide structures of controlled numerical aperture and geometry. These materials are formed from highly-crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, toughness, loss, and environmental stability. These monomers are intermiscible, providing for precise adjustment of the refractive index from 1.3 to 1.6. In polymer form, they exhibit state-of-the-art loss values, high thermal stability, high humidity resistance, low dispersion and low birefringence. Waveguides are formed photolithographically, with the liquid monomer mixture polymerizing upon illumination in the UV via either mask exposure or laser direct writing. A wide range of rigid and flexible substrates can be used, including glass, quartz, oxidized silicon, glass-filled epoxy printed circuit board substrate, and flexible polyimide film. Waveguiding structures measuring tens of inches in length can be produced on computer boards, and guides that are meters long can be printed on rolls of plastic. We describe the fabrication of both Bragg gratings and waveguide grating routes in our polymers for filtering and demultiplexing applications in Telecom WDM systems. In Datacom, we describe polymeric components that we produced for aerospace WDM sensor systems. The importance of CAD tools in designing WDM devices is emphasized in this work. We further discuss the low-cost manufacturing of WDM components in an industrial environment.

  1. A phenomenological model for the chemo-responsive shape memory effect in amorphous polymers undergoing viscoelastic transition

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Huang, Wei Min

    2013-11-01

    We present a phenomenological approach to study the viscoelastic transition and working mechanism of the chemo-responsive shape memory effect (SME) in amorphous shape memory polymers (SMPs). Both the copolymerization viscosity model and Doolittle equation are initially applied to quantitatively identify the influential factors behind the chemo-responsive SME in the SMPs exposure to a right solvent. After this, the Williams-Landel-Ferry (WLF) equation is employed to couple the viscosity (η), time-temperature shift factor (ατ) and glass transition temperature (Tg) in amorphous polymers. By means of combining the WLF and Arrhenius equations together, the inductively decreased transition temperature is confirmed as the driving force for the chemo-responsive SME. Finally, a phenomenological viscoelastic model is proposed and then verified by the available experimental data reported in the literature and then compared with the simulation results of a semi-empirical model. This phenomenological model is expected to provide a powerful simulation tool for theoretical prediction and experimental substantiation of the chemo-responsive SME in amorphous SMPs by viscoelastic transition.

  2. Precipitation of Co(2+) carbonates from aqueous solution: insights on the amorphous to crystalline transformation.

    NASA Astrophysics Data System (ADS)

    González-López, Jorge; Fernández-González, Ángeles; Jiménez, Amalia

    2016-04-01

    Cobalt is toxic metal that is present only as a trace in the Earth crust. However, Co might concentrate on specific areas due to both natural and anthropogenic factors and thus, soils and groundwater can be contaminated. It is from this perspective that we are interested in the precipitation of cobalt carbonates, since co-precipitation with minerals phases is a well-known method for metal immobilization in the environment. In particular, the carbonates are widely used due to its reactivity and natural abundance. In order to evaluate the cobalt carbonate precipitation at room temperature, a simple experimental work was carried out in this work. The precipitation occurred via reaction of two common salts: 0.05M of CoCl2 and 0.05M of Na2CO3 in aqueous solution. After reaction, the precipitated solid was kept in the remaining water at 25 oC and under constant stirring for different aging times of 5 min, 1 and 5 hours, 1, 2, 4, 7, 30 and 60 days. In addition to the aging and precipitation experiments, we carried out experiments to determine the solubility of the solids. In these experiments each precipitate was dissolved in Milli-Q water until equilibrium was reached and then the aqueous solution was analyzed regarding Co2+ and total alkalinity. Furthermore, acid solution calorimetry of the products were attained. Finally, we modeled the results using the PHREEQC code. Solid and aqueous phase identification and characterization have been extensively reported in a previous work (González-López et al., 2015). The main results of our investigation were the initial precipitation of an amorphous cobalt carbonate that evolve towards a poorly crystalline cobalt hydroxide carbonate with aging treatment. Solubility of both phases have been calculated under two different approaches: precipitation and dissolution. Values of solubility from each approach were obtained with a general error due to differences in experiment conditions, for instance, ionic strength, temperature and

  3. Visibly transparent polymer solar cells produced by solution processing.

    PubMed

    Chen, Chun-Chao; Dou, Letian; Zhu, Rui; Chung, Choong-Heui; Song, Tze-Bin; Zheng, Yue Bing; Hawks, Steve; Li, Gang; Weiss, Paul S; Yang, Yang

    2012-08-28

    Visibly transparent photovoltaic devices can open photovoltaic applications in many areas, such as building-integrated photovoltaics or integrated photovoltaic chargers for portable electronics. We demonstrate high-performance, visibly transparent polymer solar cells fabricated via solution processing. The photoactive layer of these visibly transparent polymer solar cells harvests solar energy from the near-infrared region while being less sensitive to visible photons. The top transparent electrode employs a highly transparent silver nanowire-metal oxide composite conducting film, which is coated through mild solution processes. With this combination, we have achieved 4% power-conversion efficiency for solution-processed and visibly transparent polymer solar cells. The optimized devices have a maximum transparency of 66% at 550 nm.

  4. Phase behaviors of polymer solutions using molecular simulation technique.

    PubMed

    Yang, Jung Ho; Bae, Young Chan

    2008-08-14

    Phase behaviors of polymer solutions are estimated using a combination of thermodynamic models and molecular simulation technique. In general, many parameters of binary systems are determined by fitting a thermodynamic model with experimental data. In this study, we obtained all parameters using molecular simulation. To take the specific interaction into account, we assume that it only occurs between a solvent molecule and a specific group. Our results show that the theoretical treatment accounting for the specific interaction gives more accurate predictions than those without consideration of specific interaction. Also, our approach describes the phase equilibria of various polymer solutions over the entire concentration remarkably well.

  5. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    SciTech Connect

    Lai, Hsin-Cheng; Pei, Zingway; Jian, Jyun-Ruri; Tzeng, Bo-Jie

    2014-07-21

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology is suitable for use in flexible displays.

  6. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Cheng; Pei, Zingway; Jian, Jyun-Ruri; Tzeng, Bo-Jie

    2014-07-01

    In this study, the Al2O3 nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm2/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology is suitable for use in flexible displays.

  7. Structure Formation in Semi-Dilute Polymer Solution during Electrospinning

    NASA Astrophysics Data System (ADS)

    Zussman, Eyal; Paley, Yakov; Arinstein, Arkadii; Shuster, Kim

    2012-02-01

    In our recent work it was shown that longitudinal stretching of electrospun highly entangled semi-dilute polymer solution caused by jet hydrodynamic forces, transforms the topological network to an almost fully-stretched state within less than 1 mm from the jet start (PRE, 2011). Further evolution of the polymer network is related to a disentanglement of polymer chains and transformation of the topological network structure. As was sown by Malkin et al., (Rheol. Acta, 2011) high deformation rate of a topological polymer network, results in reptations of macromolecules caused by uncompensated local forces, whereas Brownian motion effect is negligible. Based on this conclusion, we examine the disentanglement process, using a mechanical pulley-block system assembled from multiple pulleys suspended by elastic springs, and taut string connecting two blocks. Each pulley corresponds to a topological knot; the taut string corresponds to a reptated chain; the springs correspond to surrounded polymer chains; and the blocks correspond to local deformation force. It turned out that the system is sensitive to system parameters. The pulleys can approach each other and the string stops to move. Such a behavior corresponds to formation of bundle of knots of entangled chains. In other conditions, the string continuously moves while the pulleys did not approach each other which corresponds to disentanglement of polymer chains. These experiments clarify the disentanglement kinetics in rapid-deformed polymer system.

  8. Efficient field-theoretic simulation of polymer solutions.

    PubMed

    Villet, Michael C; Fredrickson, Glenn H

    2014-12-14

    We present several developments that facilitate the efficient field-theoretic simulation of polymers by complex Langevin sampling. A regularization scheme using finite Gaussian excluded volume interactions is used to derive a polymer solution model that appears free of ultraviolet divergences and hence is well-suited for lattice-discretized field theoretic simulation. We show that such models can exhibit ultraviolet sensitivity, a numerical pathology that dramatically increases sampling error in the continuum lattice limit, and further show that this pathology can be eliminated by appropriate model reformulation by variable transformation. We present an exponential time differencing algorithm for integrating complex Langevin equations for field theoretic simulation, and show that the algorithm exhibits excellent accuracy and stability properties for our regularized polymer model. These developments collectively enable substantially more efficient field-theoretic simulation of polymers, and illustrate the importance of simultaneously addressing analytical and numerical pathologies when implementing such computations.

  9. Efficient field-theoretic simulation of polymer solutions

    SciTech Connect

    Villet, Michael C.; Fredrickson, Glenn H.

    2014-12-14

    We present several developments that facilitate the efficient field-theoretic simulation of polymers by complex Langevin sampling. A regularization scheme using finite Gaussian excluded volume interactions is used to derive a polymer solution model that appears free of ultraviolet divergences and hence is well-suited for lattice-discretized field theoretic simulation. We show that such models can exhibit ultraviolet sensitivity, a numerical pathology that dramatically increases sampling error in the continuum lattice limit, and further show that this pathology can be eliminated by appropriate model reformulation by variable transformation. We present an exponential time differencing algorithm for integrating complex Langevin equations for field theoretic simulation, and show that the algorithm exhibits excellent accuracy and stability properties for our regularized polymer model. These developments collectively enable substantially more efficient field-theoretic simulation of polymers, and illustrate the importance of simultaneously addressing analytical and numerical pathologies when implementing such computations.

  10. Ultra-Flexible, Invisible Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends

    DTIC Science & Technology

    2015-02-25

    2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2390 wileyonlinelibrary.com C O M M U N IC A TI O N Ultra-Flexible, “ Invisible ” Thin-Film...enable fully trans- parent thin-fi lm transistors (TFTs), which are essential for the fabrication of “ invisible ” circuits and to increase the...4. TITLE AND SUBTITLE Ultra-Flexible, ’ Invisible ’ Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends 5a. CONTRACT

  11. Enhancement of flagellated bacterial motility in polymer solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyu; Sha, Sha; Pelcovits, Robert; Tang, Jay

    2015-11-01

    Measurements of the swimming speed of many species of flagellated bacteria in polymer solutions have shown that with the addition of high molecular weight polymers, the speed initially increases as a function of the kinematic viscosity. It peaks at around 1.5-2 cP with typically 10-30% higher values than in cell media without added polymers (~ 1 cP). Past the peak, the average speed gradually decreases as the solution becomes more viscous. Swimming motility persists until solution viscosity reaches 5-10 cP. Models have been proposed to account for this behavior, and the magnitude of the peak becomes a crucial test of theoretical predictions. The status of the field is complicated in light of a recent report (Martinez et al., PNAS, 2014), stressing that low-molecular weight impurities account for the peaked speed-viscosity curves in some cases. We measured the swimming speed of a uni-flagellated bacterium, caulobacter crescentus, in solutions of a number of polymers of several different sizes. Our findings confirm the peaked speed-viscosity curve, only as the molecular weight of the flexible polymers used surpassed ~ 50,000 da. The threshold molecular weight required to augment swimming speed varies somewhat with the polymer species, but it generally corresponds to radius of gyration over tens of nanometers. This general feature is consistent with the model of Powers et al. (Physics of Fluid, 2009), predicting that nonlinear viscoelasticity of the fluid enhances swimming motility. Work Supported by the NSF Fluid Physics Program (Award number CBET 1438033).

  12. A study of shear banding in polymer solutions

    NASA Astrophysics Data System (ADS)

    Cromer, Michael; Fredrickson, Glenn H.; Leal, L. Gary

    2014-06-01

    In a recent letter [M. Cromer, M. C. Villet, G. H. Fredrickson, and L. G. Leal, "Shear banding in polymer solutions," Phys. Fluids 25, 051703 (2013)], we showed the existence of a steady shear-banded velocity profile for a model polymer solution with an underlying monotonic constitutive curve. The driving mechanism is the coupling of the polymer stress to an inhomogeneous concentration profile. To further understand this phenomenon, in this paper we investigate the underlying linear instability as well as probe the model parameters and their effect on transient and steady state solutions. The linear stability analysis of the steady, base homogeneous model shows that, in opposition to diffusion, the polymer concentration moves up stress gradients in a shear flow creating a critical balance such that, for a range of parameters, an instability occurs that drives the system away from homogeneity. The simulation of the full nonlinear equations in planar one-dimensional shear reveals a window within which the linear instability manifests itself as a shear-banded flow. Unlike the case for a nonmonotonic constitutive curve for which two bands are predicted, there is no apparent selection process for a monotonic curve that sets the number of bands in planar shear. Thus, we find the possibility of greater than two bands, the number of which is determined by the ratio of the polymer correlation length to the channel width. In addition to steady shear banding, transient phenomena are also probed revealing a complicated band transition (i.e., number of bands changing in time) as well as elastic recoil in a Taylor-Couette cell, each of which have been observed in experiment. Finally, as we showed in our letter, a nonlinear subcritical instability exists resulting in multiple steady states depending upon the wall ramp speed. Here, we show that this phenomenon can occur for realistic parameter values, in particular those obtained for a particular polymer solution that has shown

  13. Heterogeneous polymer modification: Polyolefin maleation in supercritical carbon dioxide and amorphous fluoropolymer surface modification

    NASA Astrophysics Data System (ADS)

    Hayes, Heather J.

    1999-11-01

    Three distinct heterogeneous polymer modification reactions are explored in this work. The first is a bulk reaction commonly conducted on polyolefins---the free radical addition of maleic anhydride. This reaction was run using supercritical carbon dioxide (SC CO2) as the solvent. The second was the chemical surface modification of an amorphous fluorocopolymer of tetrafluoroethylene and a perfluorodioxole monomer (Teflon AF). Several reactions were explored to reduce the surface of the fluorocopolymer for the enhancement of wettability. The last modification was also on Teflon AF and involved the physical modification of the surface through the transport polymerization of xylylene in order to synthesize a novel bilayer membrane. The bulk maleation of poly-4-methyl-1-pentene (PMP) was the focus of the first project. SC CO2 was utilized as both solvent and swelling agent to promote this heterogeneous reaction and led to successful grafting of anhydride groups on both PMP and linear low density polyethylene. Varying the reaction conditions and reagent concentrations allowed optimization of the reaction. The grafted anhydride units were found to exist as single maleic and succinic grafts, and the PMP became crosslinked upon maleation. The surface of a fluoropolymer can be difficult to alter. An examination of three reactions was made to determine the reactivity of Teflon AF: sodium naphthalenide treatment (Na-Nap), aluminum metal modification through deposition and dissolution, and mercury/ammonia photosensitization. The fluorocopolymer with the lower perfluorodioxole percentage was found to be more reactive towards modification with the Na-Nap treatment. The other modification reactions appeared to be nearly equally reactive toward both fluorocopolymers. The functionality of the Na-Nap-treated surface was examined in detail with the use of several derivatization reactions. In the final project, an asymmetric gas separation membrane was synthesized using Teflon AF as

  14. Cake Filtration in Viscoelastic Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Surý, Alexander; Machač, Ivan

    2009-07-01

    In this contribution, the filtration equations for a cake filtration in viscoelastic fluids are presented. They are based on a capillary hybrid model for the flow of a power law fluid. In order to express the elastic pressure drop excess in the flow of viscoelastic filtrate through the filter cake and filter screen, modified Deborah number correction functions are included into these equations. Their validity was examined experimentally. Filtration experiments with suspensions of hardened polystyrene particles (Krasten) in viscoelastic aqueous solutions of polyacryl amides (0.4% and 0.6%wt. Kerafloc) were carried out at a constant pressure on a cylindrical filtration unit using filter screens of different resistance.

  15. A Comprehensive study of the Effects of Chain Morphology on the Transport Properties of Amorphous Polymer Films

    PubMed Central

    Mendels, Dan; Tessler, Nir

    2016-01-01

    Organic semiconductors constitute one of the main components underlying present-day paradigm shifting optoelectronic applications. Among them, polymer based semiconductors are deemed particularly favorable due to their natural compatibility with low-cost device fabrication techniques. In light of recent advances in the syntheses of these classes of materials, yielding systems exhibiting charge mobilities comparable with those found in organic crystals, a comprehensive study of their charge transport properties is presented. Among a plethora of effects arising from these systems morphological and non morphological attributes, it is shown that a favorable presence of several of these attributes, including that of rapid on-chain carrier propagation and the presence of elongated conjugation segments, can lead to an enhancement of the system’s mobility by more than 5 orders of magnitude with respect to ‘standard’ amorphous organic semiconductors. New insight for the formulation of new engineering strategies for next generation polymer based semiconductors is thus gathered. PMID:27405103

  16. A Comprehensive study of the Effects of Chain Morphology on the Transport Properties of Amorphous Polymer Films

    NASA Astrophysics Data System (ADS)

    Mendels, Dan; Tessler, Nir

    2016-07-01

    Organic semiconductors constitute one of the main components underlying present-day paradigm shifting optoelectronic applications. Among them, polymer based semiconductors are deemed particularly favorable due to their natural compatibility with low-cost device fabrication techniques. In light of recent advances in the syntheses of these classes of materials, yielding systems exhibiting charge mobilities comparable with those found in organic crystals, a comprehensive study of their charge transport properties is presented. Among a plethora of effects arising from these systems morphological and non morphological attributes, it is shown that a favorable presence of several of these attributes, including that of rapid on-chain carrier propagation and the presence of elongated conjugation segments, can lead to an enhancement of the system’s mobility by more than 5 orders of magnitude with respect to ‘standard’ amorphous organic semiconductors. New insight for the formulation of new engineering strategies for next generation polymer based semiconductors is thus gathered.

  17. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, Robert; Loomis, Gary E.; Thomas, Ian M.

    1999-01-01

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.

  18. Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer

    DOEpatents

    Chow, R.; Loomis, G.E.; Thomas, I.M.

    1999-03-16

    Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.

  19. Optical limiter with an organic solution sandwiched between a polymer slab and a polymer grating

    SciTech Connect

    Chen Ming; Li Chunfei; Zhang Yundong; Xu Mai; Ma Shaojie; Wang Weibiao; Xia Yuxue

    2005-08-10

    An optical limiter was designed and fabricated. The device consists of an organic solution sandwiched between a polymer slab and a transparent relief polymer grating with a triangular groove. At low power the device has a high transmittance because the refractive index of the solution is matched with those of the slab and the grating materials and because the grating does not diffract. However, high power makes the organic solution thermally vaporize and makes the indices of the solution, slab, and grating materials become mismatched, which causes the grating to appear. The incident light is strongly absorbed, scattered, and self-defocused by the organic solution, and the grating suppresses the zero-order diffraction. Thus the transmitted light energy becomes lower than the damage threshold of human eyes or optical sensors. The device is an effective protection for human eyes or optical sensors against broadband pulsed-laser damage.

  20. Nonequilibrium thermodynamics of dilute polymer solutions in flow

    SciTech Connect

    Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M.

    2014-11-07

    Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.

  1. Nonequilibrium thermodynamics of dilute polymer solutions in flow.

    PubMed

    Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M

    2014-11-07

    Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.

  2. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs.

    PubMed

    Ozaki, Shunsuke; Kushida, Ikuo; Yamashita, Taro; Hasebe, Takashi; Shirai, Osamu; Kano, Kenji

    2013-07-01

    The impact of water-soluble polymers on drug supersaturation behavior was investigated to elucidate the role of water-soluble polymers in enhancing the supersaturation levels of amorphous pharmaceuticals. Hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP), and Eudragit L-100 (Eudragit) were used as representative polymers, and griseofulvin and danazol were used as model drugs. Supersaturation profiles of amorphous drugs were measured in biorelevant dissolution tests. Crystal growth rate was measured from the decrease in dissolved drug concentration in the presence of seed crystals. Nucleation kinetics was evaluated by measuring the induction time for nucleation. All experiments were performed in the presence and absence of polymers. The degree of supersaturation of the amorphous model drugs increased with an increase in the inhibitory efficiency of polymers against crystal nucleation and growth (HPMC > PVP > Eudragit). In the presence of HPMC, the addition of seed crystals diminished the supersaturation ratio dramatically for griseofulvin and moderately for danazol. The results demonstrated that the polymers contributed to drug supersaturation by inhibiting both nucleation and growth. The effect of the polymers was drug dependent. The detailed characterization of polymers would allow selection of appropriate crystallization inhibitors and a planned quality control strategy for the development of supersaturable formulations. Copyright © 2013 Wiley Periodicals, Inc.

  3. Highly conductive p-type amorphous oxides from low-temperature solution processing

    SciTech Connect

    Li Jinwang; Tokumitsu, Eisuke; Koyano, Mikio; Mitani, Tadaoki; Shimoda, Tatsuya

    2012-09-24

    We report solution-processed, highly conductive (resistivity 1.3-3.8 m{Omega} cm), p-type amorphous A-B-O (A = Bi, Pb; B = Ru, Ir), processable at temperatures (down to 240 Degree-Sign C) that are compatible with plastic substrates. The film surfaces are smooth on the atomic scale. Bi-Ru-O was analyzed in detail. A small optical bandgap (0.2 eV) with a valence band maximum (VBM) below but very close to the Fermi level (binding energy E{sub VBM} = 0.04 eV) explains the high conductivity and suggests that they are degenerated semiconductors. The conductivity changes from three-dimensional to two-dimensional with decreasing temperature across 25 K.

  4. Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Koehler, Birgit G.; Middlebrook, Ann M.; Tolbert, Margaret A.; Jordon, Joseph

    1994-01-01

    We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.

  5. Nanoscale Infrared, Thermal, and Mechanical Characterization of Telaprevir-Polymer Miscibility in Amorphous Solid Dispersions Prepared by Solvent Evaporation.

    PubMed

    Li, Na; Taylor, Lynne S

    2016-03-07

    Miscibility is of great interest for pharmaceutical systems, in particular, for amorphous solid dispersions, as phase separation can lead to a higher tendency to crystallize, resulting in a loss in solubility, decreased dissolution rate, and compromised bioavailability. The purpose of this study was to investigate the miscibility behavior of a model poorly water-soluble drug, telaprevir (TPV), with three different polymers using atomic force microscopy-based infrared, thermal, and mechanical analysis. Standard atomic force microscopy (AFM) imaging together with nanoscale infrared spectroscopy (AFM-IR), nanoscale thermal analysis (nanoTA), and Lorentz contact resonance (LCR) measurements were used to evaluate the miscibility behavior of TPV with three polymers, hydroxypropyl methylcellulose (HPMC), HPMC acetate succinate (HPMCAS), and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA), at different drug to polymer ratios. Phase separation was observed with HPMC and PVPVA at drug loadings above 10%. For HPMCAS, a smaller miscibility gap was observed, with phase separation being observed at drug loadings higher than ∼30-40%. The domain size of phase-separated regions varied from below 50 nm to a few hundred nanometers. Localized infrared spectra, nano-TA measurements, images from AFM-based IR, and LCR measurements showed clear contrast between the continuous and discrete domains for these phase-separated systems, whereby the discrete domains were drug-rich. Fluorescence microscopy provided additional evidence for phase separation. These methods appear to be promising to evaluate miscibility in drug-polymer systems with similar Tgs and submicron domain sizes. Furthermore, such findings are of obvious importance in the context of contributing to a mechanistic understanding of amorphous solid dispersion phase behavior.

  6. Generation of inkjet droplet of suspension in polymer solution

    NASA Astrophysics Data System (ADS)

    Yoo, Hansol; Kim, Chongyoup

    2015-05-01

    In the present study the generation of inkjet drops of suspensions of spherical particles in polyvinylpyrrolidone (PVP) solution in 1-heptanol is investigated experimentally. The particle size was 2 µm and the particle volume fraction was in the range of 0-0.18. The molecular weight of PVP was 1,300 kg/mol and the concentration was 0-4,000 ppm. The diffusive wave spectroscopy measurement shows that the PVP solution has a weak elasticity. The extensional viscosity measurement reveals that both the polymer solution and the suspension show strain hardening behavior. The jetting experiments show that the drop velocity of the suspension is larger than that of the polymer solution without particles. The difference in drop velocity is ascribed to the combined effect of the extensional viscosity and shear viscosity. The drop size of the suspension is larger than the drop size of the polymer solution without particles at the same driving voltage even though the viscosity of the suspension is larger. This difference is ascribed to the change in the free surface shape near the nozzle exit due to the viscosity difference and the increased inertial term due to the density increase by the addition of particles. Because the surface tensions of the fluids tested here are the same, the effect of surface tension force cannot be examined even though the force analysis shows that the surface tension force is larger than the other forces such as extensional and convective forces.

  7. Magnetic particle dispersion in polymer solution

    NASA Astrophysics Data System (ADS)

    Jeon, Kwang Seoung

    Magnetic particle dispersions were prepared in order to observe the effect of particle surface properties, concentration and functional group of binder, milling time, and solvent on dispersion properties. Rheology and transverse susceptibility measurements were used to characterize the dispersion quality of the magnetic paints macroscopically and microscopically, respectively. In this study, by applying the acid-base concept, methods to optimize magnetic dispersions were established. Initially, interaction between acid-base sites on particles and binder was investigated by poisoning the sites with chemicals, then quantifying each type of adsorption (hydrogen and chemical adsorption) using thermogravimetric analysis. With this fundamental information, effects of typical dispersion parameters were investigated. The acid base interaction between binder solution and particles was related to the magnetic and rheological properties of magnetic inks. The results have significant implications for high density particulate media where dispersion will become increasingly important.

  8. Monte Carlo simulations of single crystals from polymer solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianing; Muthukumar, M.

    2007-06-01

    A novel "anisotropic aggregation" model is proposed to simulate nucleation and growth of polymer single crystals as functions of temperature and polymer concentration in dilute solutions. Prefolded chains in a dilute solution are assumed to aggregate at a seed nucleus with an anisotropic interaction by a reversible adsorption/desorption mechanism, with temperature, concentration, and seed size being the control variables. The Monte Carlo results of this model resolve the long-standing dilemma regarding the kinetic and thermal roughenings, by producing a rough-flat-rough transition in the crystal morphology with increasing temperature. It is found that the crystal growth rate varies nonlinearly with temperature and concentration without any marked transitions among any regimes of polymer crystallization kinetics. The induction time increases with decreasing the seed nucleus size, increasing temperature, or decreasing concentration. The apparent critical nucleus size is found to increase exponentially with increasing temperature or decreasing concentration, leading to a critical nucleus diagram composed in the temperature-concentration plane with three regions of different nucleation barriers: no growth, nucleation and growth, and spontaneous growth. Melting temperatures as functions of the crystal size, heating rate, and concentration are also reported. The present model, falling in the same category of small molecular crystallization with anisotropic interactions, captures most of the phenomenology of polymer crystallization in dilute solutions.

  9. Entanglement-Controlled Subdiffusion of Nanoparticles within Concentrated Polymer Solutions

    SciTech Connect

    Guo, Hongyu; Bourret, Gilles; Lennox, R. Bruce; Sutton, Mark; Harden, James L.; Leheny, Robert L.

    2012-10-23

    We describe x-ray photon correlation spectroscopy (XPCS) experiments tracking the motion of gold nanoparticles within solutions of high-molecular-weight polystyrene. Over displacements from nanometers to tens of nanometers, the particles undergo subdiffusive motion that is dictated by the temporal evolution of the entangled polymer mesh in the immediate vicinity of the particles. The results thus provide a novel microscopic dynamical characterization of this key structural property of polymers and more broadly demonstrate the capability of XPCS-based microrheology to interrogate heterogeneous mechanical environments in nanostructured soft materials.

  10. Effect of hydrophilic additives on the dissolution and pharmacokinetic properties of itraconazole-enteric polymer hot-melt extruded amorphous solid dispersions.

    PubMed

    Lang, Bo; Liu, Sha; McGinity, James W; Williams, Robert O

    2016-01-01

    Hot-melt extrusion technology has been widely reported for producing amorphous solid dispersions of poorly water-soluble compounds. A number of studies revealed that enteric polymers containing ionizable groups are able to improve the physical stability and maintain drug supersaturation, thereby enhancing oral bioavailability. However, our previous studies found that itraconazole (ITZ)-enteric polymer amorphous solid dispersions are hydrophobic and poorly wettable. Moreover, drug release in an acidic environment (i.e. stomach) is very limited, indicating a narrow absorption window. In the present study, we investigated the effect of hydrophilic additives on the in vitro and in vivo performance of ITZ-enteric polymer amorphous solid dispersions. Incorporating Vitamin E TPGS into ITZ-HPMCAS amorphous solid dispersions significantly improved drug release in the acidic media. Surprisingly, a low concentration of Vitamin E TPGS also enhanced the degree of drug supersaturation in neutral pH media, which is unique as compared with other tested hydrophilic additives. This effect is not due to the solubilization of the surfactant. We further formulated the amorphous solid dispersions into tablet dosage forms and evaluated their performance in a bio-relevant dissolution media. Our optimized formulations exhibited drastically enhanced dissolution profiles as compared with the commercial ITZ product and ITZ amorphous solid dispersion without hydrophilic additive. In vivo study showed that Vitamin E TPGS induced rapid drug absorption after oral administration. Moreover, the elimination half-life of ITZ was prolonged due to the enzyme inhibition effect of Vitamin E TPGS.

  11. Dilute-solution Structure of Charged Arborescent Graft Polymer

    SciTech Connect

    Yun, Seok; Briber, R M; Kee, R. Andrew; Gauthier, Mario

    2006-01-01

    The solutions of charged G1 arborescent polystyrene-graft-poly(2-vinylpyridine) copolymers in methanol-d4 and D{sub 2}O were investigated over a dilute concentration range {phi} = 0.005-0.05 ({phi}: mass fraction) using small-angle neutron scattering (SANS). Upon addition of acid (HCl) arborescent graft polymers became charged and a peak appeared in SANS data. The interparticle distance (d{sub exp}) calculated from a peak position corresponded to the expected value (d{sub uni}) for a uniform particle distribution. This indicates the formation of liquid-like ordering due to long-range Coulombic repulsions. The smaller dielectric constant of methanol-d4 resulted in long-range electrostatic repulsions persisting to lower polymer concentration than in D{sub 2}O. The slow mode scattering was observed by dynamic light scattering measurements for the same polymer solutions, indicating the presence of structural inhomogeneity in the solutions. Both the peak and slow mode disappeared by addition of NaCl or excess HCl into the solutions due to the screening of electrostatic interactions. The G1 polymer grafted with longer P2VP chains (M{sub w} {approx} 30,000 versus 5000 g mol) formed a gel on addition of HCl. This result reveals that molecular expansion is more significant for arborescent polymers with longer (M{sub w} {approx} 30,000) linear polyelectrolyte branches, resulting in gelation for {phi} > 0.01. Upon addition of NaCl or excess HCl a gel transformed back to a liquid resulted from the screening of electrostatic interactions.

  12. Chain conformation-dependent thermal conductivity of amorphous polymer blends: the impact of inter- and intra-chain interactions.

    PubMed

    Wei, Xingfei; Zhang, Teng; Luo, Tengfei

    2016-11-30

    Polymers with high thermal conductivities are of great interest for both scientific research and industrial applications. In this study, model amorphous polymer blends are studied using molecular dynamics simulations. We have examined the effects of inter- and intra-chain interactions on the molecular-level conformations of the blends, which in turn impact their thermal conductivity. It is found that the thermal conductivity of polymer blends is strongly related to the molecular conformation, especially the spatial extent of the molecular chains indicated by their radius of gyration. Tuning the intra-chain van der Waals (vdW) interaction leads to different molecular structures of the minor component in the binary blend, but the thermal conductivity is not changed. However, increasing the inter-chain vdW interactions between the major and the minor components will increase the thermal conductivity of the blend, which is due to the conformation change in the major component that leads to enhanced thermal transport along the chain backbone through the intra-chain bonding interactions. The fundamental structure-property relationship from this study may provide useful guidance for designing and synthesizing polymer blends with desirable thermal conductivity.

  13. Anomalous Fluctuations of Nematic Order in Solutions of Semiflexible Polymers

    NASA Astrophysics Data System (ADS)

    Egorov, Sergei A.; Milchev, Andrey; Binder, Kurt

    2016-05-01

    The nematic ordering in semiflexible polymers with contour length L exceeding their persistence length ℓp is described by a confinement of the polymers in a cylinder of radius reff much larger than the radius rρ expected from the respective concentration of the solution. Large-scale molecular dynamics simulations combined with density functional theory are used to locate the isotropic-nematic (I -N ) transition and to validate this cylindrical confinement. Anomalous fluctuations due to chain deflections from neighboring chains in the nematic phase are proposed. Considering deflections as collective excitations in the nematically ordered phase of semiflexible polymers elucidates the origins of shortcomings in the description of the I -N transition by existing theories.

  14. Role of Polymer Segment-Particle Surface Interactions in Controlling Nanoparticle Dispersions in Concentrated Polymer Solutions

    SciTech Connect

    Kim, So Youn; Zukoski, Charles F.

    2014-09-24

    The microstructure of particles suspended in concentrated polymer solutions is examined with small-angle X-ray scattering and small-angle neutron scattering. Of interest are changes to long wavelength particle density fluctuations in ternary mixtures of silica nanoparticles suspended in concentrated solutions of poly(ethylene glycol). The results are understood in terms of application of the pseudo-two-component polymer reference interaction site model (PRISM) theory modified to account for solvent addition via effective contact strength of interfacial attraction, εpc, in an implicit manner. The combined experimental-theoretical study emphasizes the complex interactions between solvent, polymer, and particle surface that control particle miscibility but also demonstrate that these factors can all be understood in terms of variations of εpc.

  15. Gel and free solution electrophoresis of variably charged polymers.

    PubMed

    Hoagland, D A; Smisek, D L; Chen, D Y

    1996-06-01

    To assess the role of charge density on polyelectrolyte mobility, both gel and free solution electrophoresis experiments are performed on poly(acrylic acid) and acrylic acid/acrylamide copolymers. Control of charge density for poly-(acrylic acid) is achieved through solution pH, while control for acrylic acid/ acrylamide copolymers is obtained through chain composition. In either approach, the effective fraction of charged repeat units can be varied from 0 to 100% without a major interruption of solvent quality. Polyelectrolyte mobility in the presence of a monovalent counterion is observed to rise linearly with charge density when this density is low. A transition to charge density independence then occurs over a surprisingly narrow window of charge density. For vinyl polymers of the sort examined here, the transition occurs when 35-40% of the repeat units are charged. These observations are qualitatively consistent with the free solution electrophoresis model proposed by Manning and several previous data sets. An unexpected overlap of normalized gel and free solution data reveals that the charge density exerts a comparable influence in either environment. Results from the present study help define the experimental conditions in which electrophoresis can provide polymer separation by charge density and those in which the method can provide polymer separation by molecular weight.

  16. Birefringence of Polymer Solutions in Time-Dependent Flows.

    NASA Astrophysics Data System (ADS)

    Geffroy-Aguilar, Enrique

    1990-01-01

    This is a study of changes of conformation of macromolecules in polymeric solutions which are subjected to time-dependent extensional flows generated by a two -roll mill flow device. The flows produced by the two-roll mill are linear, and two-dimensional. It has a stagnation point at the center of the flow field where the magnitudes of the strain-rates are greater than the vorticity. This study of conformational changes is based on data around the vicinity of the stagnation point, I for steady state flows, and several transient flow histories such as start -up, cessation, and double-step flows. We also present an analytical solution for the creeping flow generated by an infinitely long two-roll mill embedded in an unbounded fluid. This solution is used as a benchmark to compare the behavior of the polymer solutions when subjected to flows with different values for the ratio of rate-of-strain to vorticity. The conformational changes are determined experimentally using the Two-color Flow-Birefringence which provides an instantaneous and point-wise measure of the anisotropy of the fluid, together with the relative orientation of the anisotropy with respect to the principal axes of the flow field. Based on relaxation of the fluid anisotropy the characteristic time-scales of the polymer have been evaluated as a function of the flow field properties and the degree of conformational change of the macromolecules. Data for two polymeric solutions is presented. The first polymer system is the so-called test-fluid M1. This polymeric solution is shown to degrade significantly, even for small values of the velocity gradient, as measured by the changes in the macroscopic relaxation time-scales. The second solution is a concentrated polystyrene solution that presents overshoots and undershoots of the polymer conformation dependent of the ratio of vorticity to rate-of-strain. When subjected to large deformations, this polystyrene solution shows not only the possibility of a

  17. Porous polymer nanostructures fabricated by the surface-induced phase separation of polymer solutions in anodic aluminum oxide templates.

    PubMed

    Wei, Tzu-Hui; Chi, Mu-Huan; Tsai, Chia-Chan; Ko, Hao-Wen; Chen, Jiun-Tai

    2013-08-13

    We study the formation of porous polymer nanostructures fabricated by the surface-induced phase separation of polymer solutions in anodic aluminum oxide (AAO) templates. Poly(methyl methacrylate) (PMMA) and tetrahydrofuran (THF) are used to investigate the evolution process of the surface-induced phase separation. With the longer immersion time of the AAO template in the polymer solution, the size of the solvent-rich droplet is increased by the coarsening process, resulting in the formation of porous polymer nanostructures. The coarsening mechanism is further evaluated by changing the experimental parameters including the immersion time, the polymer concentration, the polymer molecular weight, and the solvent quality. Under conditions in which polymer solutions have higher viscosities, the coarsening process is slowed down and the formation of the porous nanostructures is prohibited. The prevention of the porous nanostructures can also be realized by adding water to the PMMA/THF solution before the immersion process.

  18. Vapor-liquid equilibria for solutions of dendritic polymers

    SciTech Connect

    Mio, C.; Kiritsov, S.; Thio, Y.; Brafman, R.; Prausnitz, J. |; Hawker, C.; Malmstroem, E.E.

    1998-07-01

    Vapor-liquid equilibrium data were obtained for dendritic polymer solutions using a classic isothermal gravimetric-sorption method; the amount of solvent absorbed by the dendrimer was measured at increasing solvent activity. The polymers were polyamidoamine (PAMAM) dendrimers of generations 1, 2, and 4 and benzyl ether dendrimers with different end groups (aromatic rings, dodecyl chains, methyl ester groups, perfluoroalkyl chains) of generations 2 to 6, and two series of benzyl ether linear polymers that are analogues of the dendrimers. Solvents were acetone, acetonitrile, chloroform, cyclohexane, methanol, n-pentane, n-propylamine, tetrahydrofuran, and toluene. The temperature range was 35 to 89 C. The amount of solvent absorbed by the dendrimers depends, sometimes strongly, on the kind of dendrimer end groups. The relation between solvent absorption and dendrimer generation number, or molecular weight, depends on the solvent-dendrimer system and on temperature. Solvent absorption in linear polymers is below that for corresponding dendrimers, all or in part owing to crystallinity in the linear polymers.

  19. Dynamic contact angles in oil-aqueous polymer solutions.

    PubMed

    Al-Shareef, Amer; Neogi, P; Bai, Baojun

    2017-01-25

    Polymer flooding is an important process in enhanced oil recovery. The displacement front is unstable when low viscosity brine displaces the heavy crude oil in the reservoir. Water-soluble polymers are added to the brine to increase its viscosity which stabilizes the displacement process. To analyze the displacement process at the micro-level, we have investigated the dynamic contact angles in silicone oil-polymer (polyethylene oxide) solution and for the first time. The dynamic contact angle is the apparent contact angle at the three-phase contact line which governs the capillary pressure, and thus is important for the displacement process. The data show no obvious signs of either shear thinning or elastic behavior, although for some systems with highest elastic effects some unexplained effects on dynamic contact angles are observed that correlate with elastic effects. Overall, dynamic contact angles are explained well using existing models for two Newtonian fluids, when the zero shear viscosity is used for the polymer solution.

  20. The Dynamics of Nanoparticles in Polymer Solutions and Melts

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ashis; Alam, Sharmine; Kohli, Indermeet

    2014-03-01

    Polymer nanocomposites (PNCs) has received a lot of attention in the recent years because of their potential applications in fabricating materials with novel mechanical, electrical, and photonic properties. The mobility of nanoparticles (NPs) play crucial role in determining various properties of PNC systems. Computer simulations and recent experiments have suggested that properties such as the toughness of a composite depend upon particle mobility. Even nanocomposites with ``self-healing'' properties that can restore strength in damaged regions have been proposed and some early work of their feasibility has been demonstrated. In this talk I will present some of our experimental work on the diffusion of nano-sized gold particles in polymer solutions and melt. Unusually fast diffusion of NPs when their size is smaller than the tube diameter in an entangled polymer was observed. Comparison with current theories and simulations will be shown. If time permits, our recent results on gold nanorod diffusion in polymer solution using polarized fluorescence correlation spectroscopy will be presented. Acknowledgements are made to the Donors of the American Chemical Society Petroleum Research fund (PRF # 51694-ND10) for support of this research.

  1. Thermodynamics of star polymer solutions: A coarse-grained study

    NASA Astrophysics Data System (ADS)

    Menichetti, Roberto; Pelissetto, Andrea; Randisi, Ferdinando

    2017-06-01

    We consider a coarse-grained (CG) model with pairwise interactions, suitable to describe low-density solutions of star-branched polymers of functionality f. Each macromolecule is represented by a CG molecule with (f + 1) interaction sites, which captures the star topology. Potentials are obtained by requiring the CG model to reproduce a set of distribution functions computed in the microscopic model in the zero-density limit. Explicit results are given for f = 6, 12, and 40. We use the CG model to compute the osmotic equation of state of the solution for concentrations c such that Φp=c /c*≲1 , where c* is the overlap concentration. We also investigate in detail the phase diagram for f = 40, identifying the boundaries of the solid intermediate phase. Finally, we investigate how the polymer size changes with c. For Φp≲0.3 , polymers become harder as f increases at fixed reduced concentration c /c*. On the other hand, for Φp≳0.3 , polymers show the opposite behavior: At fixed Φp, the larger the value of f, the larger their size reduction is.

  2. Instabilities in stagnation point flows of polymer solutions

    NASA Astrophysics Data System (ADS)

    Haward, S. J.; McKinley, G. H.

    2013-08-01

    A recently developed microfluidic device, the optimized shape cross-slot extensional rheometer or OSCER [S. J. Haward, M. S. N. Oliveira, M. A. Alves, and G. H. McKinley, "Optimized cross-slot flow geometry for microfluidic extensional rheometry," Phys. Rev. Lett. 109, 128301 (2012), 10.1103/PhysRevLett.109.128301], is used to investigate the stability of viscoelastic polymer solutions in an idealized planar stagnation point flow. Aqueous polymer solutions, consisting of poly(ethylene oxide) and of hyaluronic acid with various molecular weights and concentrations, are formulated in order to provide fluids with a wide range of rheological properties. Semi-dilute solutions of high molecular weight polymers provide highly viscoelastic fluids with long relaxation times, which achieve a high Weissenberg number (Wi) at flow rates for which the Reynolds number (Re) remains low; hence the elasticity number El = Wi/Re is high. Lower concentration solutions of moderate molecular weight polymers provide only weakly viscoelastic fluids in which inertia remains important and El is relatively low. Flow birefringence observations are used to visualize the nature of flow instabilities in the fluids as the volumetric flow rate through the OSCER device is steadily incremented. At low Wi and Re, all of the fluids display a steady, symmetric, and uniform "birefringent strand" of highly oriented polymer molecules aligned along the outflowing symmetry axis of the test geometry, indicating the stability of the flow field under such conditions. In fluids of El > 1, we observe steady elastic flow asymmetries beyond a critical Weissenberg number,Wicrit, that are similar in character to those already reported in standard cross-slot geometries [e.g., P. E. Arratia, C. C. Thomas, J. Diorio, and J. P. Gollub, "Elastic instabilities of polymer solutions in cross-channel flow," Phys. Rev. Lett. 96, 144502 (2006), 10.1103/PhysRevLett.96.144502]. However, in fluids with El < 1 we observe a sequence

  3. Influence of Polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition.

    PubMed

    Schram, Caitlin J; Taylor, Lynne S; Beaudoin, Stephen P

    2015-10-20

    The bioavailability of orally administered drugs that exhibit poor aqueous solubility can be enhanced with the use of supersaturating dosage forms. Stabilization of these forms by preventing or inhibiting crystallization in solution is an important area of study. Polymers can be used to stabilize supersaturated systems; however, the properties that impact their effectiveness as crystal growth rate inhibitors are not yet fully understood. In this study, the impact of various polymers on the crystal growth rate of felodipine and the conformation of these polymers adsorbed to crystalline felodipine was investigated in order to gain a mechanistic understanding of crystal growth inhibition. It was determined that polymer hydrophobicity impacted polymer adsorption as well as adsorbed polymer conformation. Polymer conformation impacts its surface coverage, which was shown to directly correlate to the polymer's effectiveness as a growth rate inhibitor. By modeling this correlation, it is possible to predict polymer effectiveness given the surface coverage of the polymer.

  4. Membrane transport of hydrocortisone acetate from supersaturated solutions; the role of polymers.

    PubMed

    Raghavan, S L; Kiepfer, B; Davis, A F; Kazarian, S G; Hadgraft, J

    2001-06-19

    Permeation of hydrocortisone acetate (HA) from supersaturated solutions was studied across a model silicone membrane. Supersaturated solutions were prepared using the cosolvent technique with propylene glycol and water (or aqueous polymer solutions) as the cosolvents. In the absence of the polymer, the flux of HA was similar at all degrees of saturation and was not significantly different from the value obtained for a saturated solution. Flux enhancement, as a result of supersaturation, was observed with all the polymers. The flux increased with increasing polymer concentration, reached a maximum and decreased at higher polymer percentages. The amount of polymer required for maximum enhancement differed for each polymer. The decrease of flux at high polymer concentrations is attributed to changes in microviscosity and a marginal increase in solubility. The infrared spectroscopic and differential scanning calorimetry data suggest that HA-polymer interactions occurred through hydrogen bonding thus explaining the proposed mechanism of the anti-nucleant properties of the polymers.

  5. Novel cellulose-based amorphous solid dispersions enhance quercetin solution concentrations in vitro.

    PubMed

    Gilley, Andrew D; Arca, Hale Cigdem; Nichols, Brittany L B; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J; Neilson, Andrew P

    2017-02-10

    Quercetin (Q) is a bioactive flavonol with potential to benefit human health. However, Q bioavailability is relatively low, due to its poor aqueous solubility and extensive phase-II metabolism. Strategies to increase solution concentrations in the small intestinal lumen have the potential to substantially increase Q bioavailability, and by extension, efficacy. We aimed to achieve this by incorporating Q into amorphous solid dispersions (ASDs) with cellulose derivatives. Q was dispersed in matrices of cellulose esters including 6-carboxycellulose acetate butyrate (CCAB), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and cellulose acetate suberate (CASub) to afford ASDs that provided stability against crystallization, and pH-triggered release. Blends of CASub and CCAB with the hydrophilic polyvinylpyrrolidone (PVP) further enhanced dissolution. The ASD 10% Q:20% PVP:70% CASub most significantly enhanced Q solution concentration under intestinal pH conditions, increasing area under the concentration/time curve (AUC) 18-fold compared to Q alone. This novel ASD method promises to enhance Q bioavailability in vivo.

  6. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing

    NASA Astrophysics Data System (ADS)

    Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A.; Henkelman, Graeme; Milliron, Delia J.

    2016-12-01

    Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and `nanocrystal-in-glass’ composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.

  7. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing.

    PubMed

    Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A; Henkelman, Graeme; Milliron, Delia J

    2016-12-01

    Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and 'nanocrystal-in-glass' composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.

  8. Nucleate boiling in drag-reducing polymer solutions

    SciTech Connect

    Jeun, G.

    1986-01-01

    Two types of experiment have been done to study the effects of polymer additives in nucleate boiling for plates and wires. Here, boiling on a flat surface is simulated by placing a flat unheated surface immediately underneath an electrically heated platinum wire. Saturated nucleate pool boiling curves were measured for water and solutions of six different polymers at various concentrations. For a bare wire and a simulated flat surface, the nucleate boiling curves are qualitatively similar. For equal heat fluxes, the temperature difference increases as the relative viscosity increases, although the temperature difference for the simulated flat surface is less than that for the bare wire. The observed changes in the nucleate boiling curves for polymer solutions are in qualitative agreement with those predicted using the Rohsenow correlation to account for change in the solution viscosity. These results show that for both wires and simulated flat surfaces, drag-reducing additives will reduce the heat transfer rate in nucleate boiling. Bubble dynamics on the heated wire and simulated flat surface were also measured using a high speed movie camera for water and Separan AP-30 at a relative viscosity of 1.16. The data were used to determine the relative contribution to the boiling heat flux of latent heat transport by bubbles, natural convection heat transfer, and enhanced convection heat transfer.

  9. Polymer Encapsulation of an Amorphous Pharmaceutical by initiated Chemical Vapor Deposition for Enhanced Stability

    PubMed Central

    2016-01-01

    The usage of amorphous solids in practical applications, such as in medication, is commonly limited by the poor long-term stability of this state, because unwanted crystalline transitions occur. In this study, three different polymeric coatings are investigated for their ability to stabilize amorphous films of the model drug clotrimazole and to protect against thermally induced transitions. For this, drop cast films of clotrimazole are encapsulated by initiated chemical vapor deposition (iCVD), using perfluorodecyl acrylate (PFDA), hydroxyethyl methacrylate (HEMA), and methacrylic acid (MAA). The iCVD technique operates under solvent-free conditions at low temperatures, thus leaving the solid state of the encapsulated layer unaffected. Optical microscopy and X-ray diffraction data reveal that at ambient conditions of about 22 °C, any of these iCVD layers extends the lifetime of the amorphous state significantly. At higher temperatures (50 or 70 °C), the p-PFDA coating is unable to provide protection, while the p-HEMA and p-MAA strongly reduce the crystallization rate. Furthermore, p-HEMA and p-MAA selectively facilitate a preferential alignment of clotrimazole and, interestingly, even suppress crystallization upon a temporary, rapid temperature increase (3 °C/min, up to 150 °C). The results of this study demonstrate how a polymeric coating, synthesized directly on top of an amorphous phase, can act as a stabilizing agent against crystalline transitions, which makes this approach interesting for a variety of applications. PMID:27467099

  10. Concentration dependence of rheological properties of telechelic associative polymer solutions

    NASA Astrophysics Data System (ADS)

    Uneyama, Takashi; Suzuki, Shinya; Watanabe, Hiroshi

    2012-09-01

    We consider concentration dependence of rheological properties of associative telechelic polymer solutions. Experimental results for model telechelic polymer solutions show rather strong concentration dependence of rheological properties. For solutions with relatively high concentrations, linear viscoelasticity deviates from the single Maxwell behavior. The concentration dependence of characteristic relaxation time and moduli is different in high- and low-concentration cases. These results suggest that there are two different concentration regimes. We expect that densely connected (well percolated) networks are formed in high-concentration solutions, whereas sparsely connected (weakly percolated) networks are formed in low-concentration solutions. We propose single chain type transient network models to explain experimental results. Our models incorporate the spatial correlation effect of micellar cores and average number of elastically active chains per micellar core (the network functionality). Our models can reproduce nonsingle Maxwellian relaxation and nonlinear rheological behavior such as the shear thickening and thinning. They are qualitatively consistent with experimental results. In our models, the linear rheological behavior is mainly attributable to the difference of network structures (functionalities). The nonlinear rheological behavior is attributable to the nonlinear flow rate dependence of the spatial correlation of micellar core positions.

  11. Electron Irradiation Induced Phase Transition of an Amorphous Phase and Face-Centered Cubic Solid Solutions in Zr66.7Pd33.3 Metallic Glass

    NASA Astrophysics Data System (ADS)

    Nagase, Takeshi; Hosokawa, Takashi; Umakoshi, Yukichi

    2007-02-01

    Both amorphization and crystallization were observed in Zr66.7Pd33.3 metallic glass under electron irradiation. The melt-spun amorphous phase was not stable under 2.0 MV electron irradiation and two kinds of fcc-solid solution were precipitated through electron irradiation induced crystallization at 103 and 298 K. The fcc-solid solution obtained by electron irradiation induced crystallization at 298 K transformed to an amorphous phase during irradiation at 103 K. Electron irradiation induced phase transformation behavior in Zr66.7Pd33.3 metallic glass can be explained by phase stability of an amorphous phase and crystalline phases against electron irradiation.

  12. Influence of polymer molecular weight on in vitro dissolution behavior and in vivo performance of celecoxib:PVP amorphous solid dispersions.

    PubMed

    Knopp, Matthias Manne; Nguyen, Julia Hoang; Becker, Christian; Francke, Nadine Monika; Jørgensen, Erling B; Holm, Per; Holm, René; Mu, Huiling; Rades, Thomas; Langguth, Peter

    2016-04-01

    In this study, the influence of the molecular weight of polyvinylpyrrolidone (PVP) on the non-sink in vitro dissolution and in vivo performance of celecoxib (CCX):PVP amorphous solid dispersions were investigated. The dissolution rate of CCX from the amorphous solid dispersions increased with decreasing PVP molecular weight and crystallization inhibition was increased with increasing molecular weight of PVP, but reached a maximum for PVP K30. This suggested that the crystallization inhibition was not proportional with molecular weight of the polymer, but rather there was an optimal molecular weight where the crystallization inhibition was strongest. Consistent with the findings from the non-sink in vitro dissolution tests, the amorphous solid dispersions with the highest molecular weight PVPs (K30 and K60) resulted in significantly higher in vivo bioavailability (AUC0-24h) compared with pure amorphous and crystalline CCX. A linear relationship between the in vitro and in vivo parameter AUC0-24h indicated that the simple non-sink in vitro dissolution method used in this study could be used to predict the in vivo performance of amorphous solid dispersion with good precision, which enabled a ranking between the different formulations. In conclusion, the findings of this study demonstrated that the in vitro and in vivo performance of CCX:PVP amorphous solid dispersions were significantly controlled by the molecular weight of the polymer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Solvent properties governing solute partitioning in polymer/polymer aqueous two-phase systems: nonionic compounds.

    PubMed

    Madeira, Pedro P; Reis, Celso A; Rodrigues, Alírio E; Mikheeva, Larissa M; Zaslavsky, Boris Y

    2010-01-14

    The solvatochromic solvent parameters characterizing the solvent polarity (pi*), solvent hydrogen-bond donor acidity (alpha), and solvent hydrogen-bond acceptor basicity (beta) of aqueous media were measured in the coexisting phases of nine different aqueous polymer/polymer two-phase systems (ATPS), containing 0.15 M NaCl in 0.01 M phosphate buffer, pH 7.4. Partitioning coefficients of six neutral compounds were measured in the nine ATPS at particular polymer concentrations. The solvatochromic equation was used to describe the partitioning of each compound. Three descriptors of the solvent properties of the phases could describe adequately the partitioning of the solutes in all the ATPS employed.

  14. Transport properties of polymer solutions. A comparative approach.

    PubMed Central

    Foster, K R; Cheever, E; Leonard, J B; Blum, F D

    1984-01-01

    A variety of transport properties have been measured for solutions of the water soluble polymer poly(ethylene oxide)(PEO) with molecular weights ranging from 200 to 14,000, and volume fractions ranging from 0-80%. The transport properties are thermal conductivity, electrical conductivity at audio frequencies (in solutions containing dilute electrolyte), and water self-diffusion. These data, together with dielectric relaxation data previously reported, are amenable to analysis by the same mixture theory. The ionic conductivity and water self-diffusion coefficient, but not the thermal conductivity, are substantially smaller than predicted by the Maxwell and Hanai mixture relations, calculated using the known transport properties of pure liquid water. A 25% (by volume) solution of PEO exhibits an average dielectric relaxation frequency of the suspending water of one half that of pure water, with clear evidence of a distribution of relaxation times present. The limits of the cumulative distribution of dielectric relaxation times that are consistent with the data are obtained using a linear programming technique. The application of simple mixture theory, under appropriate limiting conditions, yields hydration values for the more dilute polymer solutions that are somewhat larger than values obtained from thermodynamic measurements. PMID:6733244

  15. Surface chemistry mediated assembly of polymer-grafted nanorods in solution and polymer matrices

    NASA Astrophysics Data System (ADS)

    Ferrier, Robert Charles, Jr.

    In the dissertation, I investigate ways to assemble nanorods, typically made of gold, in solution and polymer matrices by controlling surface chemistry. Gold nanorods were anisotropically functionalized with polymer on the side and alkane dithiol on the end causing the gold nanorods to spontaneously assemble in solution. The assembly could be tuned by controlling the incubation time which affected the solution absorbance due to plasmon coupling. Linked gold nanorods were cast in polymer thin films and their optical properties were imparted to the film. This anisotropic functionalization method was utilized to placed DNA or peptides on the ends of the gold nanorods allowing for reversibly assembly. In the case of DNA, assembly was reversed upon heating and could be tuned by controlling the concentration of the complimentary DNA strand. In the case of the peptide, assembly was triggered by the presence of Zn 2+ ions and could be reversed by adding in a chelater. Anisotropic modification of the nanorods could also be used to assemble organic semiconductors around the nanorods at specific facets. Here, organic semiconductors rhodamine-B, 5(6)-carboxyfluorescein, and cyanine-3 were assembled onto the surface of gold nanorods. By tuning the surface chemistry the organic semiconductors would assemble around the nanorods in different ways which resulted in unique optical properties. The dispersion of PMMA-grafted mesoscopic iron-oxide rods in polymer matrices was studied by varying the PMMA brush molecular weight (N) polymer matrix molecular weight (P), and polymer matrix type. Here, we found that the ratio of P/N and matrix type had little effect on dispersion of iron-oxide mesorods. N was found to be the main factor that determined dispersion, which is attributed to the large size of the mesorods. Long PS and short PMMA brushes were grafted to gold nanorod surfaces and the dispersion of this system in PS and PMMA was investigated by controlling matrix molecular weight

  16. Predicting morphologies of solution processed polymer:fullerene blends.

    PubMed

    Kouijzer, Sandra; Michels, Jasper J; van den Berg, Mauricio; Gevaerts, Veronique S; Turbiez, Mathieu; Wienk, Martijn M; Janssen, René A J

    2013-08-14

    The performance of solution processed polymer:fullerene thin film photovoltaic cells is largely determined by the nanoscopic and mesoscopic morphology of these blends that is formed during the drying of the layer. Although blend morphologies have been studied in detail using a variety of microscopic, spectroscopic, and scattering techniques and a large degree of control has been obtained, the current understanding of the processes involved is limited. Hence, predicting the optimized processing conditions and the corresponding device performance remains a challenge. We present an experimental and modeling study on blends of a small band gap diketopyrrolopyrrole-quinquethiophene alternating copolymer (PDPP5T) and [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) cast from chloroform solution. The model uses the homogeneous Flory-Huggins free energy of the multicomponent blend and accounts for interfacial interactions between (locally) separated phases, based on physical properties of the polymer, fullerene, and solvent. We show that the spinodal liquid-liquid demixing that occurs during drying is responsible for the observed morphologies. The model predicts an increasing feature size and decreasing fullerene concentration in the polymer matrix with increasing drying time in accordance with experimental observations and device performance. The results represent a first step toward a predictive model for morphology formation.

  17. Nanoparticle dispersions: A colloid and polymer solution perspective

    NASA Astrophysics Data System (ADS)

    van der Schoot, Paul

    For most solid nanoparticles there are no true solvents in the sense that a powder or crystal of these nanoparticles would spontaneously dissolve when immersed in them. There are exceptions but these typically involve unusual solvents such as super acids or chemical modification of the particles to make particles and solvent compatible. Conventional fluids, including water, are generally poor solvents or dispersants and in them the nanoparticles need to be stabilised against aggregation. Indeed, nanoparticles dispersed or dissolved in a liquid behave very much like polymers and colloidal particles do. The properties of such dispersions can thus be understood in terms of what is known about the behaviour of colloids and polymer solutions. Important aspects are Van der Waals and Coulomb interactions, steric interactions, the impact of depletion agents, phase separation and the tendency of elongated colloidal particles and stiff polymers to form nematic and other types of liquid-crystalline phase. For this book a question of particular interest is how the nanoparticles behave if they are present in a liquid crystalline host fluid, and what kind of medium-induced interaction operates between these particles. However, most types of interaction are also present in isotropic host uids, so the attention of this chapter will primarily be directed towards conventional dispersions. I shall give an overview of the physico-chemical principles most relevant to understanding the behaviour of fluid dispersions and solutions of nanoparticles, using spherical, cylindrical and at, plate-like nanoparticles as illustrative examples.

  18. General solutions for the oxidation kinetics of polymers

    SciTech Connect

    Gillen, K.T.; Clough, R.L.; Wise, J.

    1996-08-01

    The simplest general kinetic schemes applicable to the oxidation of polymers are presented, discussed and analyzed in terms of the underlying kinetic assumptions. For the classic basic autoxidation scheme (BAS), which involves three bimolecular termination steps and is applicable mainly to unstabilized polymers, typical assumptions used singly or in groups include (1) long kinetic chain length, (2) a specific ratio of the termination rate constants and (3) insensitivity to the oxygen concentration (e.g., domination by a single termination step). Steady-state solutions for the rate of oxidation are given in terms of one, two, three, or four parameters, corresponding respectively to three, two, one, or zero kinetic assumptions. The recently derived four-parameter solution predicts conditions yielding unusual dependencies of the oxidation rate on oxygen concentration and on initiation rate, as well as conditions leading to some unusual diffusion-limited oxidation profile shapes. For stabilized polymers, unimolecular termination schemes are typically more appropriate than bimolecular. Kinetics incorporating unimolecular termination reactions are shown to result in very simple oxidation expressions which have been experimentally verified for both radiation-initiated oxidation of an EPDM and thermoxidative degradation of nitrile and chloroprene elastomers.

  19. A phenomenological formulation for the shape/temperature memory effect in amorphous polymers with multi-stress components

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Wang, Xiaodong; Yu, Kai; Huang, Wei Min; Yao, Yongtao; Leng, Jinsong

    2017-09-01

    By means of combining the influence of temperature and strain rate, and based on the cooperative Eyring model, a phenomenological formulation for the shape memory effect and temperature memory effect of an amorphous shape memory polymer (SMP) is proposed. The internal stress and stored mechanical energy are correlated to shape/temperature memory behaviours below and above the glass transition temperature. The working mechanism and fundamentals for the chemo-responsive shape memory behaviour in SMPs are further investigated in terms of the activation enthalpy parameter for inductive depression. Simulation using the proposed model is compared with the experimental results reported in the literature. Predictions are also made using the proposed model. This phenomenological framework is expected to provide a powerful tool for investigating the underlying thermomechanics that originate in the movement of cooperative segments and segmental relaxations in SMPs.

  20. An approach to predict the shape-memory behavior of amorphous polymers from Dynamic Mechanical Analysis (DMA) data

    NASA Astrophysics Data System (ADS)

    Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor

    2015-02-01

    The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.

  1. Hot melt extrusion for amorphous solid dispersions: temperature and moisture activated drug-polymer interactions for enhanced stability.

    PubMed

    Sarode, Ashish L; Sandhu, Harpreet; Shah, Navnit; Malick, Waseem; Zia, Hossein

    2013-10-07

    Hot melt extrudates (HMEs) of indomethacin (IND) with Eudragit EPO and Kollidon VA 64 and those of itraconazole (ITZ) with HPMCAS-LF and Kollidon VA 64 were manufactured using a Leistritz twin screw extruder. The milled HMEs were stored at controlled temperature and humidity conditions. The samples were collected after specified time periods for 3 months. The stability of amorphous HMEs was assessed using moisture analysis, thermal evaluation, powder X-ray diffraction, FTIR, HPLC, and dissolution study. In general, the moisture content increased with time, temperature, and humidity levels. Amorphous ITZ was physically unstable at very high temperature and humidity levels, and its recrystallization was detected in the HMEs manufactured using Kollidon VA 64. Although physical stability of IND was better sustained by both Eudragit EPO and Kollidon VA 64, chemical degradation of the drug was identified in the stability samples of HMEs with Eudragit EPO stored at 50 °C. The dissolution rates and the supersaturation levels were significantly decreased for the stability samples in which crystallization was detected. Interestingly, the supersaturation was improved for the stability samples of IND:Eudragit EPO and ITZ:HPMCAS-LF, in which no physical or chemical instability was observed. This enhancement in supersaturation was attributed to the temperature and moisture activated electrostatic interactions between the drugs and their counterionic polymers.

  2. On the thermodynamically stable amorphous phase of polymer-derived silicon oxycarbide

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Raj, Rishi

    2015-09-01

    A model for the thermodynamic stability of amorphous silicon oxycarbide (SiCO) is presented. It builds upon the reasonably accepted model of SiCO which is conceived as a nanodomain network of graphene. The domains are expected to be filled with SiO2 molecules, while the interface with graphene is visualized to contain mixed bonds described as Si bonded to C as well as to O atoms. Normally these SiCO compositions would be expected to crystallize. Instead, calorimetric measurements have shown that the amorphous phase is thermodynamically stable. In this article we employ first-principles calculations to estimate how the interfacial energy of the graphene networks is favorably influenced by having mixed bonds attached to them. We analyze the ways in which this reduction in interfacial energy can stabilize the amorphous phase. The approach highlights how density functional theory computations can be combined with the classical analysis of phase transformations to explain the behavior of a complex material. In addition we discover a two-dimensional lattice structure, with the composition Si2C4O3 that is constructed from a single layer of graphene congruent with silicon and oxygen bonds on either side.

  3. High-pressure high-temperature behavior of polymer derived amorphous B-C-N

    NASA Astrophysics Data System (ADS)

    Bhat, S.; Lauterbach, S.; Dzivenko, D.; Kleebe, H.; Riedel, R.; Lathe, C.; Bayarjargal, L.; Winkler, B.; Schwarz, M.; Kroke, E.

    2013-06-01

    Dense diamond-like BCN compounds are of interest due to their extreme hardness and predicted exceptional thermal and chemical stability superior to diamond and c-BN. Here, we report on high-pressure high-temperature (HP-HT) behavior of amorphous BC2N and BC4N - potential precursors for HP-HT synthesis of diamond-like BCN. Prepared via hydroboration reaction of piperazine borane and pyridine borane, respectively, amorphous BC2N and BC4N are characterized by well-mixed B-N, C-C and C-N bonds, confirmed by XPS analysis. These BCN compositions were subjected to pressures between 5-24 GPa and temperatures up to 2000°C using multi anvil press, toroid press and laser-heated diamond anvil cell (LH-DAC). In- and ex-situ X-ray diffraction reveals decomposition of BC4N to graphite and h-BN between 5 to 12 GPa above 700°C, in contrast to BC2N which remains amorphous up to 1600°C. Examination of the recovered LH-DAC samples using HR-TEM, EELS and EDS, indicates a tendency of BC2N to transform into a mixture of c-BN (micron size) and nanocrystalline diamond between 20-24 GPa and 1500-2000°C. Financially supported by the DFG within SPP 1236.

  4. High-pressure high-temperature behavior of polymer derived amorphous B-C-N

    NASA Astrophysics Data System (ADS)

    Bhat, Shrikant; Lauterbach, Stefan; Dzivenko, Dmytro; Lathe, Christian; Bayarjargal, Lkhamsuren; Schwarz, Marcus; Kleebe, Hans-Joachim; Kroke, Edwin; Winkler, Björn; Riedel, Ralf

    2014-05-01

    Abstract: Dense diamond-like BCN compounds are of interest due to their extreme hardness and predicted excellent thermal and chemical stability, which are superior to those of diamond and c-BN. Here, we report on the high-pressure high-temperature (HP-HT) behavior of amorphous BC2N and BC4N -as potential precursors for HP-HT synthesis of diamond-like BCN. Prepared via hydroboration reaction of piperazine borane and pyridine borane, respectively, amorphous BC2N and BC4N are characterized by well-mixed B-N, C-C and C-N bonds, confirmed by XPS analysis. These BCN compositions were subjected to pressures between 5-12 GPa and temperatures up to 1700 °C using multi-anvil apparatus and toroid-type press. In- and ex-situ X-ray diffraction reveals the decomposition of BC4N to graphite and h-BN between 5 and 12 GPa above 500 °C, in contrast to BC2N which remains amorphous up to 1600 °C.

  5. On the thermodynamically stable amorphous phase of polymer-derived silicon oxycarbide

    PubMed Central

    Yu, Liping; Raj, Rishi

    2015-01-01

    A model for the thermodynamic stability of amorphous silicon oxycarbide (SiCO) is presented. It builds upon the reasonably accepted model of SiCO which is conceived as a nanodomain network of graphene. The domains are expected to be filled with SiO2 molecules, while the interface with graphene is visualized to contain mixed bonds described as Si bonded to C as well as to O atoms. Normally these SiCO compositions would be expected to crystallize. Instead, calorimetric measurements have shown that the amorphous phase is thermodynamically stable. In this article we employ first-principles calculations to estimate how the interfacial energy of the graphene networks is favorably influenced by having mixed bonds attached to them. We analyze the ways in which this reduction in interfacial energy can stabilize the amorphous phase. The approach highlights how density functional theory computations can be combined with the classical analysis of phase transformations to explain the behavior of a complex material. In addition we discover a two-dimensional lattice structure, with the composition Si2C4O3 that is constructed from a single layer of graphene congruent with silicon and oxygen bonds on either side. PMID:26419962

  6. Nonphotochemical hole burning of organic dyes and rare earth ions in polymers and glasses: a probe of the amorphous state

    SciTech Connect

    Fearey, B.L.

    1986-01-01

    New and in depth studies of amorphous materials (e.g., glasses and polymers) probed via the low temperature optical technique of nonphotochemical hole burning (NPHB) are presented. An extensive review of the phenomena itself, along with selected topics involving the use of persistent hole burning techniques, is given. In addition, a semi-complete tabulation of essentially all hole burning systems to date is included. The deuteration dependence in an amorphous host is examined for the system of tetracene in an ethanol/methanol mixture. The results illustrate the importance of hydrogen bonding in the hole burning process. The discovery of a highly efficient (or facile) class of hole burning systems, i.e., ionic dyes in hydroxylated polymers (i.e., poly(vinyl alcohol) (PVOH) and poly(acrylic acid) (PAA)), is presented and discussed. Ultrafast relaxation processes (i.e., dephasing) are studied for the system of cresyl violet perchlorate (CV) in PVOH. Further, for the first time, NPHB of rare earth ions, specifically Pr/sup +3/ and Nd/sup +3/, in a soft organic glass (i.e., PVOH) is discussed briefly. Detailed experimental results of two related phenomena, spontaneous hole filling (SPHF) and laser induced hole filling (LIHF), are presented and discussed for several systems: rhodamine 560 perchlorate (R560), rhodamine 640 perchlorate (R640), CV, Pr/sup +3/ and Nd..mu../sup 3/ in either PVOH or PAA. A theoretical model is developed for SPHF. The model invokes a correlated feedback mechanism from the anti-hole, which is able to account for the fact that no line broadening is observed. A tentative model is also presented for the phenomenon of LIHF.

  7. Numerical solutions of thin-film equations for polymer flows.

    PubMed

    Salez, Thomas; McGraw, Joshua D; Cormier, Sara L; Bäumchen, Oliver; Dalnoki-Veress, Kari; Raphaël, Elie

    2012-11-01

    We report on the numerical implementation of thin-film equations that describe the capillary-driven evolution of viscous films, in two-dimensional configurations. After recalling the general forms and features of these equations, we focus on two particular cases inspired by experiments: the leveling of a step at the free surface of a polymer film, and the leveling of a polymer droplet over an identical film. In each case, we first discuss the long-term self-similar regime reached by the numerical solution before comparing it to the experimental profile. The agreement between theory and experiment is excellent, thus providing a versatile probe for nanorheology of viscous liquids in thin-film geometries.

  8. Tuning the critical solution temperature of polymers by copolymerization

    SciTech Connect

    Schulz, Bernhard; Chudoba, Richard; Dzubiella, Joachim; Heyda, Jan

    2015-12-28

    We study statistical copolymerization effects on the upper critical solution temperature (CST) of generic homopolymers by means of coarse-grained Langevin dynamics computer simulations and mean-field theory. Our systematic investigation reveals that the CST can change monotonically or non-monotonically with copolymerization, as observed in experimental studies, depending on the degree of non-additivity of the monomer (A-B) cross-interactions. The simulation findings are confirmed and qualitatively explained by a combination of a two-component Flory-de Gennes model for polymer collapse and a simple thermodynamic expansion approach. Our findings provide some rationale behind the effects of copolymerization and may be helpful for tuning CST behavior of polymers in soft material design.

  9. Demixing kinetics of phase separated polymer solutions in microgravity

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.; Bamberger, S. B.; Harris, J. M.; Vanalstine, J.; Snyder, R. S.

    1988-01-01

    Phase separated solutions of two neutral polymers in buffer provide a useful and versatile medium for the partition separation of biological cells. However, the efficiency of such separations is orders of magnitude lower than the thermodynamic limit. To test the hypothesis that this inefficiency is at least partially due to the convection and sedimentation that occur during the gravity driven demixing that follows introduction of cells to the systems, a series of experiments were begun aimed at performing cell partition in a low g environment. Demixing of isopycnic three polymer solvent systems was studied, experiments were performed on KC-135 aircraft and one shuttle middeck experiment was completed. Analysis of the results of these experiments and comparisons with the predictions of scaling relations for the dependence of phase domain size on time, derived for a number of possible demixing mechanisms, are presented.

  10. Hot Melt Extruded Amorphous Solid Dispersion of Posaconazole with Improved Bioavailability: Investigating Drug-Polymer Miscibility with Advanced Characterisation

    PubMed Central

    Amin, Purnima

    2014-01-01

    Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD) with immediate release and improved bioavailability was prepared using Soluplus (Sol) as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal) fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0–72) and Cmax of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0–72) and Cmax higher than those with the commercial capsule (Noxafil). Molecular dynamic (MD) simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension. PMID:25143935

  11. Hot melt extruded amorphous solid dispersion of posaconazole with improved bioavailability: investigating drug-polymer miscibility with advanced characterisation.

    PubMed

    Fule, Ritesh; Amin, Purnima

    2014-01-01

    Invasive antifungal infections are reasons for morbidity and mortality in immunogenic patients worldwide. Posaconazole is a most promising antifungal agent against all types of invasive infections with high % of cure rate. The marketed suspension formulation has low bioavailability and is needed to be taken with food. In this paper, PCZ hot melt extruded amorphous solid dispersion (SD) with immediate release and improved bioavailability was prepared using Soluplus (Sol) as primary carrier for solubilization. Surfactants such as PEG 400, Lutrol F27, Lutrol F68, and TPGS are also used in combination with Soluplus to improve the physicochemical performance of the formulation when it comes in contact with GI (gastrointestinal) fluid. Drug-polymer miscibility of SD was investigated using advanced techniques. In the in vivo study, the AUC(0-72) and C(max) of PCZ/Soluplus were 11.5 and 11.74 time higher than those of pure PCZ. The formulation of the extrudate SD had an AUC(0-72) and C(max) higher than those with the commercial capsule (Noxafil). Molecular dynamic (MD) simulation studies were carried out using in silico molecular modelling to understand the drug-polymer intermolecular behaviour. The results of this research ensure enhanced dissolution and bioavailability of the solid dispersion of PCZ prepared by HME compared with the PCZ suspension.

  12. Polymer Dynamics Effects on Solute Transport in Hairy Nanoparticle Membranes

    NASA Astrophysics Data System (ADS)

    Buenning, Eileen; Bilchak, Connor; Durning, Christopher; Benicewicz, Brian; Sokolov, Alexei; Kumar, Sanat

    Molecular transport measurements in matrix-free grafted nanoparticle (MFGNP) films have shown remarkable enhancement of permeability and ideal selectivity of small condensable molecules and simple gases over the neat polymer melts and conventional, dispersed nanoparticle composites. Films comprised of covalently-attached poly(methyl acrylate) PMA chains to the surface of 14nm silica particles self-assemble into ordered arrays, and we postulate this structure plays an important role in regulating solute transport. This self-assembly creates interstitial spaces between the nanoparticle cores, which the polymer chains can only fill by stretching. Here we use small-angle neutron scattering (SANS), broadband dielectric spectroscopy (BDS), rheology and temperature-modulated differential scanning calorimetry (TMDSC) to probe polymer chain and segmental dynamics and investigate this hypothesis of chain stretching in MFGNP materials. We found that grafting slows both chain and segmental relaxation, and increases fragility, indicating that the chains are more ``frustrated'' in the grafted systems. We propose that the effects of the chain/surface interactions on chain dynamics leads to an increase in available free volume and thus enhances transport properties in MFGNP systems. Special thanks to the NSF GRFP and the DOE SCGSR programs.

  13. Low-bandgap conjugated polymers enabling solution-processable tandem solar cells

    NASA Astrophysics Data System (ADS)

    Li, Gang; Chang, Wei-Hsuan; Yang, Yang

    2017-08-01

    The technology of polymer-based organic photovoltaic (OPV) cells has made great progress in the past decade, with the power conversion efficiency increasing from just a few per cent to around 12%, and the stability increasing from hours to years. One of the important milestones in this progress has been the invention of infrared-absorbing low-bandgap polymers, which allows the OPV cells to form effective tandem structures for harvesting near-infrared energy from the solar spectrum. In this Review, we focus on the progress in low-bandgap conjugated polymers and several tandem OPV cells enabled by these low-bandgap polymers. Specifically, we cover polymer-based tandem solar cells; hybrid tandem solar cells combining polymers with hydrogenated amorphous silicon; and unconventional solar cells. For each of these technologies, we address the challenges and offer our perspectives for future development.

  14. Wetting and spreading of long-chain ZDOL polymer nanodroplet on graphene-coated amorphous carbon

    NASA Astrophysics Data System (ADS)

    Sorkin, V.; Zhang, Y. W.

    2014-12-01

    Wetting transparency/translucency/opacity of graphene recently has attracted great interest. The underlying mechanisms and physics for simple liquid droplets containing small molecules on graphene coated crystalline substrates have been studied extensively. However, the behavior of more complicated polymeric droplets on graphene coated amorphous substrates has not been explored. In this work, we perform molecular dynamics simulations to examine the wetting of long-chain ZDOL polymeric droplet on graphene coated amorphous hydrogenated diamond-like carbon or DLCH. We find that at room temperature, the droplet adopts a nearly spherical cap shape with no protruding foot on bare DLCH, and a complex multi-layered structure is formed at the droplet-substrate interface. With addition of graphene layers, externally, the height of the droplet decreases and the protruding foot at the droplet edge appears and grows in size; while internally, the complex multi-layered structure near the droplet-substrate interface remains, but the density distribution for the formed layers becomes increasingly non-uniform. A steady state of the droplet is attained when the number of graphene layers reaches three. These changes can be explained by the interactions between the droplet and substrate across the number of graphene layers. Therefore, it is concluded that the graphene monolayer and bilayer are translucent, while trilayer and above are opaque from the wetting point of view.

  15. Novel technique for phosphorus recovery from aqueous solutions using amorphous calcium silicate hydrates (A-CSHs).

    PubMed

    Okano, Kenji; Uemoto, Masahide; Kagami, Jumpei; Miura, Keiichi; Aketo, Tsuyoshi; Toda, Masaya; Honda, Kohsuke; Ohtake, Hisao

    2013-05-01

    A novel technique for phosphorus (P) recovery from aqueous solutions was developed using amorphous calcium silicate hydrates (A-CSHs). A-CSHs, which have a high Ca/Si molar ratio of 2.0 or greater, could be synthesized using unlimitedly available, inexpensive materials such as siliceous shale and calcium hydroxide. A-CSHs showed high performance for P recovery from an anaerobic sludge digestion liquor (ASDL) and the synthetic model liquor (s-ASDL) containing 89 mg PO4-P/L. After 20 min mixing, 1.5 g/L A-CSHs could remove approximately 69 and 73% PO4-P from ASDL and s-ASDL, respectively. By contrast, autoclaved lightweight concrete particles, which contained crystalline calcium silicate hydrates as a principal component, removed only 10 and 6% PO4-P from ASDL and s-ASDL, respectively, under the same experimental conditions. When A-CSHs were washed with deionized water to remove free Ca(OH)2, P removability was significantly improved (up to 82%) despite the reduction in the amount of Ca(2+) released. Unlike in the case of Ca(OH)2, no significant carbonate inhibition was observed with P removal by A-CSHs. Moreover, P removed by A-CSHs showed better settleability, filterability, and dewaterability than P precipitated with conventional CaCl2 and Ca(OH)2. The present study demonstrated that A-CSHs have great potential as a novel, beneficial material for P recovery and recycling.

  16. Ice nucleation and supercooling behavior of polymer aqueous solutions.

    PubMed

    Kimizuka, Norihito; Viriyarattanasak, Chotika; Suzuki, Toru

    2008-02-01

    We determined the homogeneous nucleation temperature depression, DeltaT(f,hom), the equilibrium melting point depression, DeltaT(m), and the value lambda, which can be obtained from the linear relationship DeltaT(f,hom)=lambdaDeltaT(m), for aqueous solutions of PEG (200-20,000 g mol(-1)), PVP (10,000, 35,000, 40,000 g mol(-1)), and dextran (10,000 g mol(-1)) in the concentration range 0-40 wt% using the emulsion method. The molecular weight dependence of T(f,hom), T(m), and lambda in PEG aqueous solutions was found to change in the vicinity of Mw 600-1540 at all concentrations. In addition, it was confirmed that for all of the polymers studied, there was a good linear relationship between lambda and the logarithmic value of the self-diffusion coefficient D(0) of the solute molecule. These results indicate that the parameters that describe non-equilibrium freezing, such as T(f,hom) and lambda, are dependent on solution properties such as viscosity and self-diffusion of solute molecules.

  17. Molecular degradation, injectivity, and elastic properties of polymer solutions

    SciTech Connect

    Southwick, J.G.; Manke, C.W.

    1986-01-01

    New features of polymer rheology in porous media were observed when hydrolyzed polyacrylamide (HPAM) solutions were flowed through sandstone, gravel packs, and glass bead packs at high rates. Independent measurement of elongational viscosity (eta,/sub e/) with a ductless siphon technique demonstrates that the enhanced resistance seen at high flow rates is not directly proportional to eta/sub e/. Furthermore, permeability trends in resistance factor and mechanical degradation when plotted against strain rate are discussed. When these results are translated to field flow rates and geometries they indicate that HPAM solutions can be injected at reasonable injection pressures with minimal viscosity losses provided that perforated completions are designed with either sufficient perforation density or perforation size.

  18. Perovskite/polymer solar cells prepared using solution process

    NASA Astrophysics Data System (ADS)

    Rosa, E. S.; Shobih; Nursam, N. M.; Saputri, D. G.

    2016-11-01

    We report a simple solution-based process to fabricate a perovskite/polymer tandem solar cell using inorganic CH3NH3PM3 as an absorber and organic PCBM (6,6 phenyl C61- butyric acid methyl ester) as an electron transport layer. The absorber solution was prepared by mixing the CH3NH3I (methyl ammonium iodide) with PbI2 (lead iodide) in DMF (N,N- dimethyl formamide) solvent. The absorber and electron transport layer were deposited by spin coating method. The electrical characteristics generated from the cell under 50 mW/cm2 at 25 °C comprised of an open circuit voltage of 0.31 V, a short circuit current density of 2.53 mA/cm2, and a power conversion efficiency of 0.42%.

  19. Mechanical behavior of linear amorphous polymers: comparison between molecular dynamics and finite-element simulations.

    PubMed

    Solar, Mathieu; Meyer, Hendrik; Gauthier, Christian; Fond, Christophe; Benzerara, Olivier; Schirrer, Robert; Baschnagel, Jörg

    2012-02-01

    This paper studies the rheology of weakly entangled polymer melts and films in the glassy domain and near the rubbery domain using two different methods: molecular dynamics (MD) and finite element (FE) simulations. In a first step, the uniaxial mechanical behavior of a bulk polymer sample is studied by means of particle-based MD simulations. The results are in good agreement with experimental data, and mechanical properties may be computed from the simulations. This uniaxial mechanical behavior is then implemented in FE simulations using an elasto-viscoelasto-viscoplastic constitutive law in a continuum mechanics (CM) approach. In a second step, the mechanical response of a polymer film during an indentation test is modeled with the MD method and with the FE simulations using the same constitutive law. Good agreement is found between the MD and CM results. This work provides evidence in favor of using MD simulations to investigate the local physics of contact mechanics, since the volume elements studied are representative and thus contain enough information about the microstructure of the polymer model, while surface phenomena (adhesion and surface tension) are naturally included in the MD approach.

  20. Understanding Interfacial Alignment in Solution Coated Conjugated Polymer Thin Films

    DOE PAGES

    Qu, Ge; Zhao, Xikang; Newbloom, Gregory M.; ...

    2017-08-01

    Domain alignment in conjugated polymer thin films can significantly enhance charge carrier mobility. However, the alignment mechanism during meniscus-guided solution coating remains unclear. Furthermore, interfacial alignment has been rarely studied despite its direct relevance and critical importance to charge transport. In this study, we uncover a significantly higher degree of alignment at the top interface of solution coated thin films, using a donor–acceptor conjugated polymer, poly(diketopyrrolopyrrole-co-thiopheneco- thieno[3,2-b]thiophene-co-thiophene) (DPP2T-TT), as the model system. At the molecular level, we observe in-plane π–π stacking anisotropy of up to 4.8 near the top interface with the polymer backbone aligned parallel to the coating direction.more » The bulk of the film is only weakly aligned with the backbone oriented transverse to coating. At the mesoscale, we observe a well-defined fibril-like morphology at the top interface with the fibril long axis pointing toward the coating direction. Significantly smaller fibrils with poor orientational order are found on the bottom interface, weakly aligned orthogonal to the fibrils on the top interface. The high degree of alignment at the top interface leads to a charge transport anisotropy of up to 5.4 compared to an anisotropy close to 1 on the bottom interface. We attribute the formation of distinct interfacial morphology to the skin-layer formation associated with high Peclet number, which promotes crystallization on the top interface while suppressing it in the bulk. As a result, we further infer that the interfacial fibril alignment is driven by the extensional flow on the top interface arisen from increasing solvent evaporation rate closer to the meniscus front.« less

  1. A thermodynamic study of shear banding in polymer solutions

    SciTech Connect

    Hooshyar, Soroush; Germann, Natalie

    2016-06-15

    Although shear banding is a ubiquitous phenomenon observed in soft materials, the mechanisms that give rise to shear-band formation are not always the same. In this work, we develop a new two-fluid model for semi-dilute entangled polymer solutions using the generalized bracket approach of nonequilibrium thermodynamics. The model is based on the hypothesis that the direct coupling between polymer stress and concentration is the driving mechanism of steady shear-band formation. To obtain smooth banded profiles in the two-fluid framework, a new stress-diffusive term is added to the time evolution equation for the conformation tensor. The advantage of the new model is that the differential velocity is treated as a state variable. This allows a straightforward implementation of the additional boundary conditions arising from the derivative diffusive terms with respect to this new state variable. To capture the overshoot of the shear stress during the start of a simple shear flow, we utilize a nonlinear Giesekus relaxation. Moreover, we include an additional relaxation term that resembles the term used in the Rouse linear entangled polymer model to account for convective constraint release and chain stretch to generate the upturn of the flow curve at large shear rates. Numerical calculations performed for cylindrical Couette flow confirm the independency of the solution from the deformation history and initial conditions. Furthermore, we find that stress-induced migration is the responsible diffusive term for steady-state shear banding. Because of its simplicity, the new model is an ideal candidate for the use in the simulation of more complex flows.

  2. Impact of drops of polymer solutions on small targets

    NASA Astrophysics Data System (ADS)

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2003-07-01

    The collision of drops of polymer solutions with small targets was studied experimentally. The tested liquids were aqueous solutions of polyethylene oxide (MW=4 000 000) at concentrations of 10, 100, 1000 wt ppm. The drop impact velocity was about 3.5 m/s, and the drop diameters were in the range of 2.6-3.8 mm. The target was a stainless steel disk of 3.9 mm diameter. The collision was monitored by means of high-speed photography technique. As in the case of pure water, a circular liquid lamella was formed, and then it retracted with formation of outwards-directed secondary jets. There was no significant difference between the values of the maximum diameter and the retraction velocity of the lamella in the cases of water and polymeric liquids. On the contrary, the polymeric additives drastically changed the character of the lamella retraction. The secondary jets were transformed into thinning filaments submitted to elastic stresses with an attached droplet. Then, depending on the polymer concentration, the filaments ruptured and the attached droplets escaped, or the liquid filaments pulled the attached droplets back and the whole liquid returned to the target. A splashing threshold has been derived for polymeric liquids based on the liquid relaxation time and the impact conditions.

  3. Method of solution preparation of polyolefin class polymers for electrospinning processing included

    NASA Technical Reports Server (NTRS)

    Rabolt, John F. (Inventor); Lee, Keun-Hyung (Inventor); Givens, Steven R. (Inventor)

    2011-01-01

    A process to make a polyolefin fiber which has the following steps: mixing at least one polyolefin into a solution at room temperature or a slightly elevated temperature to form a polymer solution and electrospinning at room temperature said polymer solution to form a fiber.

  4. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites

    NASA Astrophysics Data System (ADS)

    Cadek, M.; Coleman, J. N.; Barron, V.; Hedicke, K.; Blau, W. J.

    2002-12-01

    In this work, multiwalled carbon nanotubes were investigated as potential mechanical reinforcement agents in two hosts, polyvinyl alcohol (PVA) and poly(9-vinyl carbazole) (PVK). It was found that, by adding various concentrations of nanotubes, both Young's modulus and hardness increased by factors of 1.8 and 1.6 at 1 wt % in PVA and 2.8 and 2.0 at 8 wt % in PVK, in reasonable agreement with the Halpin-Tsai theory. Furthermore, the presence of the nanotubes was found to nucleate crystallization of the PVA. This crystal growth is thought to enhance matrix-nanotube stress transfer. In addition, microscopy studies suggest extremely strong interfacial bonding in the PVA-based composite. This is manifested by the fracture of the polymer rather that the polymer-nanotube interface.

  5. Improvement of impact strength in linear low density polyethylene (LLDPE) by blending with amorphous polymers

    SciTech Connect

    Mirabella, F.M. Jr.

    1996-12-31

    The objective of the current work was to improve the film impact strength of commercial linear low density polyethylene (LLDPE) resins, while maintaining or improving other desirable properties. The approach used was to blend rubber-like (i.e. essentially noncrystalline) polymer resins with the base resin LLDPE. The choice of the rubber-like components was largely dictated by their commercial availability. The rubber-like polymers chosen were poly (ethylene-vinyl acetate) [EVA], poly (ethylene-n-butyl acrylate) [EnBA], and poly (ethylene-propylene) rubber [EPR]. The weight percent range of addition of the rubber-like component was restricted to 5% - 20%. The preferred range was only up to 10%. The structure of the base LLDPE resin, rubber-like components and the blends thereof was characterized. The physical and mechanical properties of the blown films of the resin blends were measured and correlations between structure and properties were determined.

  6. Synthesis of ruthenium particles by photoreduction in polymer solutions.

    PubMed

    Harada, Masafumi; Takahashi, Saki

    2008-09-01

    Colloidal dispersions of poly(N-vinyl-2-pyrrolidone)-protected ruthenium (Ru) particles have been synthesized by the photoreduction of Ru(III) ionic solutions in the presence of photo-activator such as benzophenone and benzoin. The size and the structure of the synthesized particles have been extensively investigated by UV-vis, transmission electron micrograph (TEM) and extended X-ray absorption fine structure (EXAFS). Metallic Ru particles with an average diameter of 1.3 nm were successfully synthesized in the presence of benzophenone, although mixtures of partly oxidized Ru particles and metallic Ru particles were synthesized in the presence of benzoin. Photoreduction of Ru(III) ionic precursors to Ru atoms was promoted by ketyl radicals, which is more efficiently generated by the photoirradiation of benzophenone than by that of benzoin. The photoirradiation of benzophenone in the Ru(III) ionic solutions is an efficient and convenient method to produce metallic Ru particles in polymer solutions rather than the refluxing and the hydrothermal method of ionic solutions of Ru.

  7. Phosphorylcholine substituted polyolefins: New syntheses, solution assemblies, and polymer vesicles

    NASA Astrophysics Data System (ADS)

    Kratz, Katrina A.

    This thesis describes the synthesis and applications of a new series of amphiphilic homopolymers and copolymers consisting of hydrophobic polyolefin backbone and hydrophilic phosphorylcholine (PC) pendant groups. These polymers are synthesized by ring opening metathesis polymerization (ROMP) of a novel PC- cyclooctene monomer, and copolymerization of various functionalized cyclooctene comonomers. Incorporation of different comonomers into the PC-polyolefin backbone affords copolymers with different functionalities, including crosslinkers, fluorophores, and other reactive groups, that tune the range of applications of these polymers, and their hydrophobic/hydrophilic balance. The amphiphilic nature of PC-polyolefins was exploited in oil-water interfacial assembly, providing robust polymer capsules to encapsulate and deliver nanoparticles to damaged regions of a substrate in a project termed `repair-and-go.' In repair-and-go, a flexible microcapsule filled with a solution of nanoparticles probes an imperfection-riddled substrate as it rolls over the surface. The thin capsule wall allows the nanoparticles to escape the capsules and enter into the cracks, driven in part by favorable interactions between the nanoparticle ligands and the cracked surface (i.e., hydrophobic-hydrophobic interactions). The capsules then continue their transport along the surface, filling more cracks and depositing particles into them. The amphiphilic nature of PC-polyolefins was also exploited in aqueous assembly, forming novel polymer vesicles in water. PC-polyolefin vesicles ranged in size from 50 nm to 30 µm. The mechanical properties of PC-polyolefin vesicles were measured by micropipette aspiration techniques, and found to be more robust than conventional liposomes or polymersomes prepared from block copolymers. PC-polyolefin vesicles have potential use in drug delivery; it was found that the cancer drug doxorubicin could be encapsulated efficiently in PC-polyolefin vesicles. In

  8. A systematic procedure to build a relaxed dense-phase atomistic representation of a complex amorphous polymer using a coarse-grained modeling approach.

    PubMed

    Li, Xianfeng; Latour, Robert A

    2009-07-31

    A systematic procedure has been developed to construct a relaxed dense-phase atomistic structure of a complex amorphous polymer. The numerical procedure consists of (1) coarse graining the atomistic model of the polymer into a mesoscopic model based on an iterative algorithm for potential inversion from distribution functions of the atomistic model, (2) relaxation of the coarse grained chain using a molecular dynamics scheme, and (3) recovery of the atomistic structure by reverse mapping based on the superposition of atomistic counterparts on the corresponding coarse grained coordinates. These methods are demonstrated by their application to construct a relaxed, dense-phase model of poly(DTB succinate), which is an amorphous tyrosine-derived biodegradable polymer that is being developed for biomedical applications. Both static and dynamic properties from the coarse-grained and atomistic simulations are analyzed and compared. The coarse-grained model, which contains the essential features of the DTB succinate structure, successfully described both local and global structural properties of the atomistic chain. The effective speedup compared to the corresponding atomistic simulation is substantially above 10(2), thus enabling simulation times to reach well into the characteristic experimental regime. The computational approach for reversibly bridging between coarse-grained and atomistic models provides an efficient method to produce relaxed dense-phase all-atom molecular models of complex amorphous polymers that can subsequently be used to study and predict the atomistic-level behavior of the polymer under different environmental conditions in order to optimally design polymers for targeted applications.

  9. Comparison of acidic polymers for the removal of cobalt from water solutions by polymer assisted ultrafiltration.

    PubMed

    Dambies, Laurent; Jaworska, Agnieszka; Zakrzewska-Trznadel, Grazyna; Sartowska, Bozena

    2010-06-15

    In this study, three sulfonated water-soluble polymers based on poly(vinyl alcohol) of different molecular weights (10,000, 50,000 and 100,000 Da) were prepared and tested against commercially available poly(acrylic acid) for the removal of cobalt using polymer assisted ultrafiltration. High rejection rates were obtained between pH 3 and 6 with sulfonated poly(vinyl alcohol) (PVA 10,000 and 50,000 Da) whereas poly(acrylic acid) (PAA) of similar molecular weights performed rather poorly in this pH range. Sulfonation improved significantly sorption capability of PVA. Sulfonated PVA 10,000 was the best complexing agent with rejection rate above 95% between pH 3 and 6. For unmodified PVA the rejection rate was only 30-45% at pH 6 and there was no rejection at pH 3 at all. PAA rejection rate was above 90% at pH 6 and only about 10% at pH 3. Large scale experiment in cross-flow, continuous apparatus conducted by using PVA-SO(3)H 10,000 Da to remove (60)Co radioisotope from water solutions showed excellent results demonstrating the potential of this polymer to purify acidic radioactive wastes containing cobalt radioisotopes.

  10. On the origin of the Vogel-Fulcher-Tammann law in the thermo-responsive shape memory effect of amorphous polymers

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Huang, Wei Min

    2013-10-01

    All amorphous shape memory polymers (SMPs) are featured by their relaxation behavior above and below the switching transition temperature (TSW). Above TSW, the glass transition and secondary transition merge together, resulting in the cooperative (α) movement in polymer macromolecules. Below TSW, movement is non-cooperative (β). In this study, three thermodynamic constitutive frameworks for the shape recovery behavior in amorphous SMPs are proposed based on the Arrhenius, Vogel-Fulcher-Tammann (VFT) and Bässler laws, respectively, and incorporated with parameters (stress, strain and relaxation time) as functions of temperature. The relaxation times of α and β movements satisfy the VFT and Arrhenius laws, respectively. The simulation is compared with the available experimental results reported in the literature for verification. The VFT law is found to be better than the other models, and is able to provide an accurate prediction for the temperature dependent relaxation behavior, from the Arrhenius behavior below, to the Williams-Landel-Ferry behavior above TSW.

  11. Chemical metallization of KMPR photoresist polymer in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zeb, Gul; Duong, Xuan Truong; Vu, Ngoc Pi; Phan, Quang The; Nguyen, Duc Tuong; Ly, Viet Anh; Salimy, Siamak; Le, Xuan Tuan

    2017-06-01

    While conventional methods for preparing thin films of metals and metallic alloys on insulating substrates in the field of microelectromechanical systems (MEMS) include vapor deposition techniques, we demonstrate here that electroless deposition can be considered as an alternate efficient approach to metallize the surface of insulating substrates, such as KMPR epoxy photoresist polymer. In comparison with the physical and chemical vapor deposition methods, which are well-established for metallization of photoresist polymers, our electroless nickel plating requires only immersing the substrates into aqueous solutions in open air at low temperatures. Thin films of nickel alloy have been deposited electrolessly on KMPR surface, through a cost-effective and environmental chromium-free process, mediated through direct grafting of amine palladium complexes in aqueous medium. This covalent organic coating provides excellent adhesion between KMPR and the nickel film and allows better control of the palladium catalyst content. Covalent grafting and characterization of the deposited nickel film have been carried out by means of Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy techniques.

  12. Elasticity and Extensibility Determine Printability and Spinnability of Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Nallely Jimenez, Leidy; Mei, Vicky; Zhang, Yiran; Sharma, Vivek

    2015-03-01

    Many advanced manufacturing technologies like inkjet printing, 3D printing, nano-fiber spinning, gravure printing and nanoimprint lithography involve complex free-surface flows, where both shear and extensional rheology affect processability. In applications that involve progressive thinning and break-up of a fluid column or sheet into drops, the dominant flow within the filament is extensional in nature. Polymeric fluids exhibit a much larger resistance to flow in an elongational flow field than Newtonian fluids with same shear viscosity. Characterizing the filament thinning and break-up kinetics in jetting, dripping and stretching liquid bridge provides invaluable insight into the interplay of elastic, viscous, capillary and inertial stresses relevant for these applications. In this talk, we elucidate how polymer composition, flexibility and molecular weight determine the kinetics of capillary-driven thinning and pinch-off in our experiments. Both effective relaxation time and transient extensional viscosity are found to be strongly concentration dependent even for dilute solutions. Further, we show how finite extensibility of polymers dramatically changes the kinematics from elastocapillary to viscocapillary under strong extensional flow fields that can lead to coil-stretch transition.

  13. Characterization of Hyaluronan-Protein Microstructures and Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Curtis, J. E.; McLane, L.; Bedoya, M.; Beatty, R.; Kramer, A.; Boehm, H.; Scrimgeour, J.

    2010-03-01

    Evidence is mounting that mechanical and topographical features of biomaterials can be as critical for cellular behavior as chemical properties. A case in point is hyaluronan (HA), a large polysaccharide with unique mechanical and hydrodynamic properties, found in many tissues and bodily fluids. Thanks to a large variety of accessible conformations and aggregation states, this remarkable polymer can impart on its biological environment a diverse range of structural and viscoelastic properties with far-reaching consequences for cell physiology (migration, inflammation, cancer). Supramolecular assembly of HA is typically mediated by HA-binding proteins. These specialized molecules are known to assist the formation of organized structures, such as cross-linked bundles, gels, or the all-important pericellular coat, a polymer network anchored to many cell surfaces. Precisely how the material properties of HA-rich matrices and aggregates are modified by the associated proteins, however, is largely a matter of speculation. We will present new insights concerning the cell coat and HA-protein solutions characterized using passive microrheology, fluorescence recovery after photobleaching (FRAP), and optical force probe microscopy.

  14. Phase separation in polymer solutions near the critical point

    NASA Astrophysics Data System (ADS)

    Cherayil, Binny J.

    1991-08-01

    The Edwards path-integral description of chain statistics is used to derive an effective φ4 field theory of polymer solutions that is applicable near the temperature of critical phase separation Tc. The present formalism, an extension of the mean-field approach discussed in paper I [R. E. Goldstein and B. J. Cherayil, J. Chem. Phys. 90, 7448 (1989)], makes use of standard results from the theory of continuous phase transitions to account for the effects of previously neglected density fluctuations, and to obtain thereby, among other results, estimates for the temperature and molecular weight-scaling exponents of the coexistence curve in the vicinity of Tc. The critical monomer volume fraction ρc of the solution is shown to scale as the osmotic second virial coefficient below the theta point, providing a rigorous approach to the calculation of the molecular weight dependence of ρc. Experimental data on the phase separation of solutions of polystyrene in methylcyclohexane are shown to lie on a single universal curve when expressed in terms of the scaling variables suggested by the present analysis.

  15. Triple-Junction Hybrid Tandem Solar Cells with Amorphous Silicon and Polymer-Fullerene Blends

    PubMed Central

    Kim, Taehee; Kim, Hyeok; Park, Jinjoo; Kim, Hyungchae; Yoon, Youngwoon; Kim, Sung-Min; Shin, Chonghoon; Jung, Heesuk; Kim, Inho; Jeong, Doo Seok; Kim, Honggon; Kim, Jin Young; Kim, BongSoo; Ko, Min Jae; Son, Hae Jung; Kim, Changsoon; Yi, Junsin; Han, Seunghee; Lee, Doh-Kwon

    2014-01-01

    Organic-inorganic hybrid tandem solar cells attract a considerable amount of attention due to their potential for realizing high efficiency photovoltaic devices at a low cost. Here, highly efficient triple-junction (TJ) hybrid tandem solar cells consisting of a double-junction (DJ) amorphous silicon (a-Si) cell and an organic photovoltaic (OPV) rear cell were developed. In order to design the TJ device in a logical manner, a simulation was carried out based on optical absorption and internal quantum efficiency. In the TJ architecture, the high-energy photons were utilized in a more efficient way than in the previously reported a-Si/OPV DJ devices, leading to a significant improvement in the overall efficiency by means of a voltage gain. The interface engineering such as tin-doped In2O3 deposition as an interlayer and its UV-ozone treatment resulted in the further improvement in the performance of the TJ solar cells. As a result, a power conversion efficiency of 7.81% was achieved with an open-circuit voltage of 2.35 V. The wavelength-resolved absorption profile provides deeper insight into the detailed optical response of the TJ hybrid solar cells. PMID:25412648

  16. Improvement of small-area, amorphous-silicon thin-film photovoltaics on polymer substrate

    SciTech Connect

    Weber, M.F. . Applied Technologies Lab.)

    1990-02-01

    This report describes a contract to produce, using roll-to-roll deposition on polyamide substrate, a small-area amorphous-silicon p-i-n photovoltaic (PV) cell with an energy conversion efficiency of 10% under air mass 1.5 insolation. Three improvements were attempted to achieve this goal: (1) zinc oxide, a transparent conducting oxide, was used as a top contact; the zinc oxide conductivity was improved to 8--9 ohms/square sheet resistance with less than 8% average optical absorption. (2) The red light response was improved with dielectric enhanced metal reflecting electrodes, which increased the short-circuit current density by more than 1 mA/Cm{sup 2}; a three-layer dielectric mirror coating was also designed that can increase the current density by another 1 mA/cm{sup 2}. (3) Improving the fill factor of the n-i-p (reverse structured) devices was also achieved in a multichamber deposition system. The overall energy conversion efficiency of the PV cell was 8.36%. Major obstacles to higher efficiencies are (1) controlling the thin-film defects that cause electrical shunts in devices fabricated on enhanced reflection electrodes, and (2) controlling impurities and introducing dopant profiles near the p/i interface in a continuous web deposition system.

  17. Improvement of small-area, amorphous-silicon thin-film photovoltaics on polymer substrate

    NASA Astrophysics Data System (ADS)

    Weber, Michael F.

    1990-02-01

    This report describes a contract to produce, using roll-to-roll deposition on polyamide substrate, a small-area amorphous-silicon p-i-n photovoltaic (PV) cell with an energy conversion efficiency of 10 percent under air mass 1.5 insolation. Three improvements were attempted to achieve this goal: (1) zinc oxide, a transparent conducting oxide, was used as a top contact; the zinc oxide conductivity was improved to 8 to 9 ohms/square sheet resistance with less than 8 percent average optical absorption, (2) the red light response was improved with dielectric enhanced metal reflecting electrodes, which increased the short-circuit current density by more than 1 mA/sq cm; a three-layer dielectric mirror coating was also designed that can increase the current density by another 1 mA/sq cm, and (3) improving the fill factor of the n-i-p (reverse structured) devices was also achieved in a multichamber deposition system. The overall energy conversion efficiency of the PV cell was 8.36 percent. Major obstacles to higher efficiencies are: (1) controlling the thin-film defects that cause electrical shunts in devices fabricated on enhanced reflection electrodes, and (2) controlling impurities and introducing dopant profiles near the p/i interface in a continuous web deposition system.

  18. Solvent-shift strategy to identify suitable polymers to inhibit humidity-induced solid-state crystallization of lacidipine amorphous solid dispersions.

    PubMed

    Sun, Mengchi; Wu, Chunnuan; Fu, Qiang; Di, Donghua; Kuang, Xiao; Wang, Chao; He, Zhonggui; Wang, Jian; Sun, Jin

    2016-04-30

    The solvent-shift strategy was used to identify appropriate polymers that inhibit humidity-induced solid-state crystallization of amorphous solid dispersions (ASDs). Lacidipine with the polymers, PVP-K30, HPMC-E5 or Soluplus, were combined to form amorphous solid dispersions prepared by solvent evaporation. The formulations were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FT-IR) and were subjected to in vitro dissolution testing. The moisture had a significant impact on the amount dissolved for the solid dispersions. Molecular docking studies established that hydrogen bonding was critical for the stabilization of the solid dispersions. The rank order of the binding energy of the drug-polymer association was Soluplus (-6.21 kcal/mol)>HPMC-E5 (-3.21 kcal/mol)>PVP-K30 (-2.31 kcal/mol). PVP-K30 had the highest water uptake among the polymers, as did ASD system of lacidipine-PVP-K30 ASDs. In the Soluplus ASDs, with its strong drug-polymer interactions and low water uptake, moisture-induced solid-state crystallization was not observed.

  19. The effects of polymer carrier, hot melt extrusion process and downstream processing parameters on the moisture sorption properties of amorphous solid dispersions.

    PubMed

    Feng, Xin; Vo, Anh; Patil, Hemlata; Tiwari, Roshan V; Alshetaili, Abdullah S; Pimparade, Manjeet B; Repka, Michael A

    2016-05-01

    The aim of this study was to evaluate the effect of polymer carrier, hot melt extrusion and downstream processing parameters on the water uptake properties of amorphous solid dispersions. Three polymers and a model drug were used to prepare amorphous solid dispersions utilizing the hot melt extrusion technology. The sorption-desorption isotherms of solid dispersions and their physical mixtures were measured by the dynamic vapour sorption system, and the effects of polymer hydrophobicity, hygroscopicity, molecular weight and the hot melt extrusion process were investigated. Fourier transform infrared (FTIR) imaging was performed to understand the phase separation driven by the moisture. Solid dispersions with polymeric carriers with lower hydrophilicity, hygroscopicity and higher molecular weight could sorb less moisture under the high relative humidity (RH) conditions. The water uptake ability of polymer-drug solid dispersion systems were decreased compared with the physical mixture after hot melt extrusion, which might be due to the decreased surface area and porosity. The FTIR imaging indicated that the homogeneity of the drug molecularly dispersed within the polymer matrix was changed after exposure to high RH. Understanding the effect of formulation and processing on the moisture sorption properties of solid dispersions is essential for the development of drug products with desired physical and chemical stability. © 2015 Royal Pharmaceutical Society.

  20. Flow induced/ refined solution crystallization of a semiconducting polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different

  1. Tension dynamics in semiflexible polymers. II. Scaling solutions and applications.

    PubMed

    Hallatschek, Oskar; Frey, Erwin; Kroy, Klaus

    2007-03-01

    In part I [O. Hallatschek, preceding paper, Phys. Rev. E 75, 031905 (2007)] of this contribution, a systematic coarse-grained description of the dynamics of a weakly bending semiflexible polymer was developed. Here, we discuss analytical solutions of the established deterministic partial integro-differential equation for the spatiotemporal relaxation of the backbone tension. For prototypal experimental situations, such as the sudden application or release of a strong external pulling force, it is demonstrated that the tensile dynamics reflects the self-affine conformational fluctuation spectrum in a variety of intermediate asymptotic power laws. Detailed and explicit analytical predictions for the tension propagation and relaxation and corresponding results for common observables, such as the end-to-end distance, are obtained.

  2. Unified approach to ion transport and structural relaxation in amorphous polymers and glasses.

    PubMed

    Ingram, Malcolm D; Imrie, Corrie T; Ledru, Jacques; Hutchinson, John M

    2008-01-24

    Kinetic data for structural relaxation in silver iodomolybdates at the glass transition temperature (Tg) are obtained by high-pressure differential scanning calorimetry (HP-DSC) and are compared with activation energies (EA) and volumes (VA) obtained earlier from conductivities below Tg. The results are fitted to an empirical equation, EA = MVA, and displayed in the form of a master plot of EA versus VA, an approach previously applied to strongly coupled systems, including polymer electrolytes and molten salts above their glass transition temperatures. The parameter M emerges as a localized modulus, expressive of interatomic forces within the medium, linking together EA,sigma, VA,sigma and EA,s, VA,s, the "apparent" activation parameters for ionic conductivity and structural relaxation, respectively. The VA and EA values for ion transport are much smaller than the corresponding values for structural relaxation. However, remarkably close agreement emerges between the "process parameters", Ms and Msigma, both close to 8 GPa, thus establishing a quantitative link between ion transport and structural relaxation in this highly decoupled system. A new EA versus VA master plot is constructed, which points the way to a unified approach to ion transport in polymers and glasses.

  3. Engineering solutions for polymer composites solar water heaters production

    NASA Astrophysics Data System (ADS)

    Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.

    2016-06-01

    Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.

  4. Evaluation of drug load and polymer by using a 96-well plate vacuum dry system for amorphous solid dispersion drug delivery.

    PubMed

    Chiang, Po-Chang; Ran, Yingqing; Chou, Kang-Jye; Cui, Yong; Sambrone, Amy; Chan, Connie; Hart, Ryan

    2012-06-01

    It is well recognized that poor dissolution rate and solubility of drug candidates are key limiting factors for oral bioavailability. While numerous technologies have been developed to enhance solubility of the drug candidates, poor water solubility continuously remains a challenge for drug delivery. Among those technologies, amorphous solid dispersions (SD) have been successfully employed to enhance both dissolution rate and solubility of poorly water-soluble drugs. This research reports a high-throughput screening technology developed by utilizing a 96-well plate system to identify optimal drug load and polymer using a solvent casting approach. A minimal amount of drug was required to evaluate optimal drug load in three different polymers with respect to solubility improvement and solid-state stability of the amorphous drug-polymer system. Validation of this method was demonstrated with three marketed drugs as well as with one internal compound. Scale up of the internal compound SD by spray drying further confirmed the validity of this method, and its quality was comparable to a larger scale process. Here, we demonstrate that our system is highly efficient, cost-effective, and robust to evaluate the feasibility of spray drying technology to produce amorphous solid dispersions.

  5. Improving battery safety by reducing the formation of Li dendrites with the use of amorphous silicon polymer anodes

    PubMed Central

    Maruyama, Hitoshi; Nakano, Hideyuki; Ogawa, Masahiro; Nakamoto, Masaaki; Ohta, Toshiaki; Sekiguchi, Akira

    2015-01-01

    To provide safe lithium-ion batteries (LIBs) at low cost, battery materials which lead to reduced Li dendrite formation are needed. The currently used anode materials have low redox voltages that are very close to the redox potential for the formation of Li metal, which leads to severe short circuiting. Herein, we report that when the three-dimensional amorphous silicon polymers poly(methylsilyne) and poly(phenylsilyne) are used as anode materials, dendritic Li formation on the anode surface is avoided up to a practical current density of 10 mA·g−1 at 5 °C. Equally as significant, poly(methylsilyne) and poly(phenylsilyne) are capable of reacting with 0.45 and 0.9 Li atoms per formula unit, respectively, at an average voltage of approximately 1.0 V, affording reversible capacities of 244 mAh·g−1 and 180 mAh·g−1. Moreover, noteworthy is the fact that polysilynes are suitable for practical applications because they can be prepared through a simple and low-cost process and are easy to handle. PMID:26249325

  6. Improving battery safety by reducing the formation of Li dendrites with the use of amorphous silicon polymer anodes.

    PubMed

    Maruyama, Hitoshi; Nakano, Hideyuki; Ogawa, Masahiro; Nakamoto, Masaaki; Ohta, Toshiaki; Sekiguchi, Akira

    2015-08-07

    To provide safe lithium-ion batteries (LIBs) at low cost, battery materials which lead to reduced Li dendrite formation are needed. The currently used anode materials have low redox voltages that are very close to the redox potential for the formation of Li metal, which leads to severe short circuiting. Herein, we report that when the three-dimensional amorphous silicon polymers poly(methylsilyne) and poly(phenylsilyne) are used as anode materials, dendritic Li formation on the anode surface is avoided up to a practical current density of 10 mA·g(-1) at 5 °C. Equally as significant, poly(methylsilyne) and poly(phenylsilyne) are capable of reacting with 0.45 and 0.9 Li atoms per formula unit, respectively, at an average voltage of approximately 1.0 V, affording reversible capacities of 244 mAh·g(-1) and 180 mAh·g(-1). Moreover, noteworthy is the fact that polysilynes are suitable for practical applications because they can be prepared through a simple and low-cost process and are easy to handle.

  7. Intrachain exciton dynamics in conjugated polymer chains in solution.

    PubMed

    Tozer, Oliver Robert; Barford, William

    2015-08-28

    We investigate exciton dynamics on a polymer chain in solution induced by the Brownian rotational motion of the monomers. Poly(para-phenylene) is chosen as the model system and excitons are modeled via the Frenkel exciton Hamiltonian. The Brownian fluctuations of the torsional modes were modeled via the Langevin equation. The rotation of monomers in polymer chains in solution has a number of important consequences for the excited state properties. First, the dihedral angles assume a thermal equilibrium which causes off-diagonal disorder in the Frenkel Hamiltonian. This disorder Anderson localizes the Frenkel exciton center-of-mass wavefunctions into super-localized local exciton ground states (LEGSs) and higher-energy more delocalized quasi-extended exciton states (QEESs). LEGSs correspond to chromophores on polymer chains. The second consequence of rotations-that are low-frequency-is that their coupling to the exciton wavefunction causes local planarization and the formation of an exciton-polaron. This torsional relaxation causes additional self-localization. Finally, and crucially, the torsional dynamics cause the Frenkel Hamiltonian to be time-dependent, leading to exciton dynamics. We identify two distinct types of dynamics. At low temperatures, the torsional fluctuations act as a perturbation on the polaronic nature of the exciton state. Thus, the exciton dynamics at low temperatures is a small-displacement diffusive adiabatic motion of the exciton-polaron as a whole. The temperature dependence of the diffusion constant has a linear dependence, indicating an activationless process. As the temperature increases, however, the diffusion constant increases at a faster than linear rate, indicating a second non-adiabatic dynamics mechanism begins to dominate. Excitons are thermally activated into higher energy more delocalized exciton states (i.e., LEGSs and QEESs). These states are not self-localized by local torsional planarization. During the exciton's temporary

  8. Toward an Understanding of Thin-Film Transistor Performance in Solution-Processed Amorphous Zinc Tin Oxide (ZTO) Thin Films.

    PubMed

    Sanctis, Shawn; Koslowski, Nico; Hoffmann, Rudolf; Guhl, Conrad; Erdem, Emre; Weber, Stefan; Schneider, Jörg J

    2017-06-28

    Amorphous zinc tin oxide (ZTO) thin films are accessible by a molecular precursor approach using mononuclear zinc(II) and tin(II) compounds with methoxyiminopropionic acid ligands. Solution processing of two precursor solutions containing a mixture of zinc and tin(II)-methoxyiminopropinato complexes results in the formation of smooth homogeneous thin films, which upon calcination are converted into the desired semiconducting amorphous ZTO thin films. ZTO films integrated within a field-effect transistor (FET) device exhibit an active semiconducting behavior in the temperature range between 250 and 400 °C, giving an increased performance, with mobility values between μ = 0.03 and 5.5 cm(2)/V s, with on/off ratios increasing from 10(5) to 10(8) when going from 250 to 400 °C. Herein, our main emphasis, however, was on an improved understanding of the material transformation pathway from weak to high performance of the semiconductor in a solution-processed FET as a function of the processing temperature. We have correlated this with the chemical composition and defects states within the microstructure of the obtained ZTO thin film via photoelectron spectroscopy (X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy), Auger electron spectroscopy, electron paramagnetic resonance spectroscopy, atomic force microscopy, and photoluminescence investigations. The critical factor observed for the improved performance within this ZTO material could be attributed to a higher tin concentration, wherein the contributions of point defects arising from the tin oxide within the final amorphous ZTO material play the dominant role in governing the transistor performance.

  9. Solution behavior of PVP-VA and HPMC-AS-based amorphous solid dispersions and their bioavailability implications.

    PubMed

    Qian, Feng; Wang, Jennifer; Hartley, Ruiling; Tao, Jing; Haddadin, Raja; Mathias, Neil; Hussain, Munir

    2012-10-01

    To identify the mechanism behind the unexpected bio-performance of two amorphous solid dispersions: BMS-A/PVP-VA and BMS-A/HPMC-AS. Solubility of crystalline BMS-A in PVP-VA and HPMC-AS was measured by DSC. Drug-polymer interaction parameters were obtained by Flory-Huggins model fitting. Drug dissolution kinetics of spray-dried dispersions were studied under sink and non-sink conditions. BMS-A supersaturation was studied in the presence of pre-dissolved PVP-VA and HPMC-AS. Potency and crystallinity of undissolved solid dispersions were determined by HPLC and DSC. Polymer dissolution kinetics were obtained by mass balance calculation. Bioavailability of solid dispersions was assessed in dogs. In solid state, both polymers are miscible with BMS-A, while PVP-VA solublizes the drug better. BMS-A dissolves similarly from both solid dispersions in vitro regardless of dissolution method, while the HPMC-AS dispersion performed much better in vivo. At the same concentration, HPMC-AS is more effective in prolonging BMS-A supersaturation; this effect was negated by the slow dissolution rate of HPMC-AS. Further study revealed that fast PVP-VA dissolution resulted in elevated drug loading in undissolved dispersions and facilitated drug recrystallization before complete release. In contrast, the hydrophobicity and slower HPMC-AS dissolution prevented BMS-A recrystallization within the HPMC-AS matrix for >24 h. The lower bioavailability of PVP-VA dispersion was attributed to BMS-A recrystallization within the undissolved dispersion, due to hydrophilicity and fast PVP-VA dissolution rate. Polymer selection for solid dispersion development has significant impact on in vivo performance besides physical stability.

  10. Long Range Bond-Bond Correlations in Dense Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Wittmer, J. P.; Meyer, H.; Baschnagel, J.; Johner, A.; Obukhov, S.; Mattioni, L.; Müller, M.; Semenov, A. N.

    2004-09-01

    The scaling of the bond-bond correlation function P1(s) along linear polymer chains is investigated with respect to the curvilinear distance s along the flexible chain and the monomer density ρ via Monte Carlo and molecular dynamics simulations. Surprisingly, the correlations in dense three-dimensional solutions are found to decay with a power law P1(s)˜s-ω with ω=3/2 and the exponential behavior commonly assumed is clearly ruled out for long chains. In semidilute solutions, the density dependent scaling of P1(s)≈g-ω0(s/g)-ω with ω0=2-2ν=0.824 (ν=0.588 being Flory's exponent) is set by the number of monomers g(ρ) in an excluded volume blob. Our computational findings compare well with simple scaling arguments and perturbation calculation. The power-law behavior is due to self-interactions of chains caused by the chain connectivity and the incompressibility of the melt.

  11. Electrostatics of polymer translocation events in electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  12. Electrostatics of polymer translocation events in electrolyte solutions.

    PubMed

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-07

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  13. Microfluidics Meets Dilute Solution Viscometry: An Undergraduate Laboratory to Determine Polymer Molecular Weight Using a Microviscometer

    ERIC Educational Resources Information Center

    Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.

    2011-01-01

    This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…

  14. Microfluidics Meets Dilute Solution Viscometry: An Undergraduate Laboratory to Determine Polymer Molecular Weight Using a Microviscometer

    ERIC Educational Resources Information Center

    Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.

    2011-01-01

    This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…

  15. CO2 switchable dual responsive polymers as draw solutes for forward osmosis desalination.

    PubMed

    Cai, Yufeng; Shen, Wenming; Wang, Rong; Krantz, William B; Fane, Anthony G; Hu, Xiao

    2013-09-28

    Low molecular weight dual responsive polymers, after purging with CO2, become polyelectrolytes with high osmolality, which can be used as draw solutes for seawater desalination. These polymers precipitate above their Lower Critical Solution Temperature (LCST) after removal of CO2 via purging with inert gas for ease of recovery and reuse.

  16. Characterization of nanoscale spatial distribution of small molecules in amorphous polymer matrices

    NASA Astrophysics Data System (ADS)

    Ricarte, Ralm; Hillmyer, Marc; Lodge, Timothy

    Hydroxypropyl methylcellulose acetate succinate (HPMCAS) can significantly enhance the efficacy of active pharmaceutical ingredients (APIs). Yet, the interactions between species in HPMCAS-API blends are not understood. Elucidating these interactions is difficult because the spatial distributions of HPMCAS and API in the blends are ambiguous; the polymer and drug may be molecularly mixed or the species may form phase separated domains. As these phase separated domains may be less than 100 nm in size, traditional characterization techniques may not accurately evaluate the spatial distribution. To address this challenge, we explore the use of electron energy-loss spectroscopy (EELS) for detecting the model API phenytoin in an HPMCAS-phenytoin blend. Using EELS, we directly measured with high accuracy and precision the phenytoin concentrations in several blends. We present evidence that suggests phase separation occurs in blends that have a phenytoin loading of approximately 50 wt percent. Finally, we demonstrate that this technique achieves a sub-100 nm spatial resolution and can detect several other APIs.

  17. Role of Molecular Interactions for Synergistic Precipitation Inhibition of Poorly Soluble Drug in Supersaturated Drug-Polymer-Polymer Ternary Solution.

    PubMed

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2016-03-07

    We are reporting a synergistic effect of combined Eudragit E100 and PVP K90 in precipitation inhibition of indomethacin (IND) in solutions at low polymer concentration, a phenomenon that has significant implications on the usefulness of developing novel ternary solid dispersion of poorly soluble drugs. The IND supersaturation was created by cosolvent technique, and the precipitation studies were performed in the absence and the presence of individual and combined PVP K90 and Eudragit E100. The studies were also done with PEG 8000 as a noninteracting control polymer. A continuous UV recording of the IND absorption was used to observe changes in the drug concentration over time. The polymorphic form and morphology of precipitated IND were characterized by Raman spectroscopy and scanning electron microscopy. The change in the chemical shift in solution (1)H NMR was used as novel approach to probe IND-polymer interactions. Molecular modeling was used for calculating binding energy between IND-polymer as another indication of IND-polymer interaction. Spontaneous IND precipitation was observed in the absence of polymers. Eudragit E100 showed significant inhibitory effect on nuclei formation due to stronger interaction as reflected in higher binding energy and greater change in chemical shift by NMR. PVP K90 led to significant crystal growth inhibition due to adsorption on growing IND crystals as confirmed by modified crystal habit of precipitate in the presence of PVP K90. Combination of polymers resulted in a synergistic precipitation inhibition and extended supersaturation. The NMR confirmed interaction between IND-Eudragit E100 and IND-PVP K90 in solution. The combination of polymers showed similar peak shift albeit using lower polymer concentration indicating stronger interactions. The results established the significant synergistic precipitation inhibition effect upon combining Eudragit E100 and PVP K90 due to drug-polymer interaction.

  18. Understanding API-polymer proximities in amorphous stabilized composite drug products using fluorine-carbon 2D HETCOR solid-state NMR.

    PubMed

    Abraham, Anuji; Crull, George

    2014-10-06

    A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.

  19. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs.

    PubMed

    Sarode, Ashish L; Wang, Peng; Obara, Sakae; Worthen, David R

    2014-04-01

    The influence of polymers on the dissolution, supersaturation, crystallization, and partitioning of poorly water soluble compounds in biphasic media was evaluated. Amorphous solid dispersions (ASDs) containing felodipine (FLD) and itraconazole (ITZ) were prepared by hot melt mixing (HMM) using various polymers. The ASDs were analyzed using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and HPLC. Amorphous drug conversion was confirmed using DSC and PXRD, and drug stability by HPLC. Single- and biphasic dissolution studies of the ASDs with concurrent dynamic light scattering (DLS) and polarized light microscopic (PLM) analysis of precipitated drugs were performed. HPLC revealed no HMM-induced drug degradation. Maximum partitioning into the organic phase was dependent upon the degree of supersaturation. Although the highest supersaturation of FLD was attained using Eudragit® EPO and AQOAT® AS-LF with better nucleation and crystal growth inhibition using the latter, higher partitioning of the drug into the organic phase was achieved using Pharmacoat® 603 and Kollidon® VA-64 by maintaining supersaturation below critical nucleation. Critical supersaturation for ITZ was surpassed using all of the polymers, and partitioning was dependent upon nucleation and crystal growth inhibition in the order of Pharmacoat® 603>Eudragit® L-100-55>AQOAT® AS-LF. HMM drug-polymer systems that prevent drug nucleation by staying below critical supersaturation are more effective for partitioning than those that achieve the highest supersaturation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Hydro-gel environment and solution additives modify calcite growth mechanism to an accretion process of amorphous nanospheres

    NASA Astrophysics Data System (ADS)

    Gal, A.; Kahil, K.; Habraken, W.; Gur, D.; Fratzl, P.; Addadi, L.; Weiner, S.

    2013-12-01

    Various biominerals form via the transformation of a transient amorphous precursor phase into a mature crystalline phase. The mature biominerals usually exhibit morphology reminiscent of aggregated nanoparticles. Although these observations suggest an accretion-based growth process consisting on nanoparticles, the key factors that control the accretion process are unknown. We investigated the transformation of solid amorphous calcium carbonate (ACC) into calcite. When plant cystoliths, a biogenic stable ACC phase, are transformed into calcite in vitro by immersion in water, calcite crystals grow in two distinct steps (Gal et al., Angewandte Chemie, 2013). First, rhombohedral crystals grow that show flat facets as expected from ion-by-ion growth. These crystals then grow by the aggregation and crystallization of the original ACC nanospheres leading to a surface morphology dominated by aggregated spheres. The transformation process occurs within an organic hydro-gel that originates from inside the cystoliths. We tested the importance of the gel phase to the transformation process by transforming synthetic ACC into calcite inside various gels. In all the investigated systems: in gelatin, agarose, and pectin gels, calcite crystals grew that showed the nanosphere aggregation morphology. In additional experiments we demonstrated that also other additives, such as phosphate ions and biogenic macromolecules, that slow down ACC dissolution and calcite precipitation from ions can induce the accretion process dominance (see figure attached). These experiments show that although in solution the dominant process is dissolution to ions of the ACC and crystal growth by ion-by-ion mechanism, the presence of an additive that slows the ion-mediated processes makes the ACC nanospheres stable long enough to interact with the crystal surface. As a result, the metastable ACC nanospheres undergo secondary nucleation on the crystal surface without dissolving. These experiments highlight

  1. Structure and interaction in the polymer-dependent reentrant phase behavior of a charged nanoparticle solution.

    PubMed

    Kumar, Sugam; Ray, D; Aswal, V K; Kohlbrecher, J

    2014-10-01

    Small-angle neutron scattering (SANS) studies have been carried out to examine the evolution of interaction and structure in a nanoparticle (silica)-polymer (polyethylene glycol) system. The nanoparticle-polymer solution interestingly shows a reentrant phase behavior where the one-phase charged stabilized nanoparticles go through a two-phase system (nanoparticle aggregation) and back to one-phase as a function of polymer concentration. Such phase behavior arises because of the nonadsorption of polymer on nanoparticles and is governed by the interplay of polymer-induced attractive depletion with repulsive nanoparticle-nanoparticle electrostatic and polymer-polymer interactions in different polymer concentration regimes. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. However, the increase in polymer concentration enhances the depletion attraction to give rise to the nanoparticle aggregation in the two-phase system. Further, the polymer-polymer repulsion at high polymer concentrations is believed to be responsible for the reentrance to one-phase behavior. The SANS data in polymer contrast-matched conditions have been modeled by a two-Yukawa potential accounting for both repulsive and attractive parts of total interaction potential between nanoparticles. Both of these interactions (repulsive and attractive) are found to be long range. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the depletion interaction leading to reentrant phase behavior. The nanoparticle clusters in the two-phase system are characterized by the surface fractal with simple cubic packing of nanoparticles within the clusters. The effect of varying ionic strength and polymer size in tuning the interaction has also been examined.

  2. Inhibiting the transport of hazardous spores using polymer-based solutions.

    PubMed

    Krauter, Paula A; Hoffman, D Mark; Vu, Alexander K; Keating, Garrett A; Zalk, David M

    2007-11-01

    A series of polymer solutions were developed for the purpose of immobilizing aerosolized 1-10 mu m sized hazardous biological particles. The polymer solutions were designed as tools for emergency response and remediation personnel. The inhibition of secondary aerosolization and migration of biothreat particles has important implications for public health protection and contamination cleanup. Limiting further dispersion of particles such as Bacillus anthracis spores may reduce inhalation hazards and enhance remediation efficiencies. This study evaluated film-forming polymers that have multiple functional groups capable of attracting and binding particles; these included acrylates, cellulosics, vinyl polymers, and polyurethanes. The selected polymers were combined with appropriate solvents to design solutions that met specific performance objectives. The polymer solutions were then evaluated for key characteristics, such as high adhesion, high elasticity, low density, short drying time, low viscosity, and low surface tension. These solutions were also evaluated for their adhesion to biothreat agent in a series of wind tunnel experiments using highly refined aerosolized Bacillus atrophaeus spores (a simulant for anthrax, 1-3 mu m). Results demonstrated that a polymer solution, an amphoteric acrylate identified as NS-2, was the best candidate for attaching to spores and inhibiting reaerosolization. This polymer solution was anionic, thus providing the electrostatic (coulombic) attraction to cationic spores, had low surface tension, and performed well in wind tunnel tests.

  3. Effect of solvent quality on the dispersibility of polymer-grafted spherical nanoparticles in polymer solutions

    NASA Astrophysics Data System (ADS)

    Egorov, S. A.; Binder, K.

    2012-09-01

    In this work, lattice-based self consistent field theory is used to study the structural properties of individual polymer-grafted spherical nanopartices and particle-particle interactions in polymer melts and solutions under variable solvent conditions. Our study has focused on the depth of the minimum in the potential of mean force between the two brush-coated nanoparticles, if such a minimum occurs, and we have also addressed the corresponding radial density profiles of free and grafted chains around a single nanoparticle, in an attempt to clarify the extent of correlation between the depth of the minimum, Wmin, and the parameter δ characterizing the interpenetration between the profiles of free and grafted chains. Although one cannot establish a simple one-to-one correspondence between Wmin and δ, we do find common trends, in particular, if the solvent conditions for free and grafted chains differ: varying the volume fraction of the free chains, δ typically exhibits a broad minimum, corresponding to a region where the magnitude of Wmin exceeds thermal energy kBT, leading to particle aggregation.

  4. Enhanced cell surface polymer grafting in concentrated and nonreactive aqueous polymer solutions.

    PubMed

    Rossi, Nicholas A A; Constantinescu, Iren; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran N

    2010-03-17

    Macromolecular cell surface modification techniques have shown tremendous utility in various biomedical applications. However, a major drawback concerns inefficient cell surface modification caused by the poor association of hydrophilic macromolecules with cell surfaces. Here, a novel, highly efficient, and universal strategy in which nonreactive "additive" macromolecules are used to modulate the grafting efficiency of cell surface reactive, hydrophilic macromolecules is described. Unprecedented enhanced cell surface modifications by up to 10-fold were observed when various concentrations of a suitable "additive" polymer was present with a constant and low concentration of a "reactive" macromolecule. The importance of this increased efficiency and the possible mechanisms involved are discussed. The cell compatible technique is demonstrated in the case of four different cell types--red blood cells (RBC), leukocytes, platelets, and Jurkat cells. A practical application of grafting macromolecules to cell surfaces in concentrated polymer solutions is demonstrated by the enhanced camouflage of RBC surface antigens for the development of RhD null RBC. In principle, the technique can be adapted to various macromolecular systems and cell types, with significant potential for biomedical applications such as live cell based technologies.

  5. The Construction and Validation of All-Atom Bulk-Phase Models of Amorphous Polymers Using the TIGER2/TIGER3 Empirical Sampling Method.

    PubMed

    Li, Xianfeng; Murthy, Sanjeeva; Latour, Robert A

    2011-07-12

    A new empirical sampling method termed "temperature intervals with global exchange of replicas and reduced radii" (TIGER3) is presented and demonstrated to efficiently equilibrate entangled long-chain molecular systems such as amorphous polymers. The TIGER3 algorithm is a replica exchange method in which simulations are run in parallel over a range of temperature levels at and above a designated baseline temperature. The replicas sampled at temperature levels above the baseline are run through a series of cycles with each cycle containing four stages - heating, sampling, quenching, and temperature level reassignment. The method allows chain segments to pass through one another at elevated temperature levels during the sampling stage by reducing the van der Waals radii of the atoms, thus eliminating chain entanglement problems. Atomic radii are then returned to their regular values and re-equilibrated at elevated temperature prior to quenching to the baseline temperature. Following quenching, replicas are compared using a Metropolis Monte Carlo exchange process for the construction of an approximate Boltzmann-weighted ensemble of states and then reassigned to the elevated temperature levels for additional sampling. Further system equilibration is performed by periodic implementation of the previously developed TIGER2 algorithm between cycles of TIGER3, which applies thermal cycling without radii reduction. When coupled with a coarse-grained modeling approach, the combined TIGER2/TIGER3 algorithm yields fast equilibration of bulk-phase models of amorphous polymer, even for polymers with complex, highly branched structures. The developed method was tested by modeling the polyethylene melt. The calculated properties of chain conformation and chain segment packing agreed well with published data. The method was also applied to generate equilibrated structural models of three increasingly complex amorphous polymer systems: poly(methyl methacrylate), poly

  6. Fabrication and Optical Properties of Electrospun Conductive Polymer Nanofibers from Blended Polymer Solution

    NASA Astrophysics Data System (ADS)

    Chuangchote, Surawut; Sagawa, Takashi; Yoshikawa, Susumu

    2008-01-01

    Ultrafine poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV)/poly(vinyl pyrrolidone) (PVP) composite fibers with the average diameters ranging from 43 nm to 1.7 µm were prepared by electrospinning of blended polymer solutions in mixed solvent of chlorobenzene and methanol. The average diameter of the as-spun fibers was found to decrease into nanometer scale with decreasing the PVP concentration and/or addition of a volatile organic salt, pyridinium formate (PF). PVP was easily removed from MEH-PPV/PVP fibers by the Soxhlet extraction, and after the removal, pure MEH-PPV fibers were obtained as a ribbon-like structure aligned with wrinkled surface in fiber direction. Comparison with the cast film, as-spun fibers showed relatively higher crystallinity, higher conjugation length, and there was a remarkable blue shift of photoluminescence (PL) peak.

  7. Shock wave emission from laser-induced cavitation bubbles in polymer solutions.

    PubMed

    Brujan, Emil-Alexandru

    2008-09-01

    The role of extensional viscosity on the acoustic emission from laser-induced cavitation bubbles in polymer solutions and near a rigid boundary is investigated by acoustic measurements. The polymer solutions consist of a 0.5% polyacrylamide (PAM) aqueous solution with a strong elastic component and a 0.5% carboxymethylcellulose (CMC) aqueous solution with a weak elastic component. A reduction of the maximum amplitude of the shock wave pressure and a prolongation of the oscillation period of the bubble were found in the elastic PAM solution. It might be caused by an increased resistance to extensional flow which is conferred upon the liquid by the polymer additive. In both polymer solutions, however, the shock pressure decays proportionally to r(-1) with increasing distance r from the emission centre.

  8. Polynuclear iron(II)-aminotriazole spincrossover complexes (polymers) in solution.

    PubMed

    Bräunlich, Irene; Sánchez-Ferrer, Antoni; Bauer, Matthias; Schepper, Rahel; Knüsel, Philippe; Dshemuchadse, Julia; Mezzenga, Raffaele; Caseri, Walter

    2014-04-07

    Polynuclear spincrossover (SCO) complexes prepared by the combination of [Fe(DMF)6](2+) and NH2trz (NH2trz = 4-amino-1,2,4-triazole) were studied (2ns(-) = counterion 2-naphthalenesulfonate). It is demonstrated that these [Fe(NH2trz)3](2ns)2 complexes can be dissolved-contrary to common reported experience-in N,N-dimethylformamide (DMF) and, therefore, can be conveniently processed by simple means. The resulting solutions were examined with UV/vis and X-ray absorption spectroscopy (XANES and EXAFS) as well as with small-angle X-ray scattering (SAXS). At a molar NH2trz/Fe(2+) ratio of 3/1, corresponding to the stoichiometric ratio of the ideal coordination compound, [Fe(NH2trz)3](2+) in the low-spin state was found to be in equilibrium with polynuclear species in the high-spin state. The equilibrium can be shifted virtually completely to the side of low-spin Fe(2+) by an excess of the ligand. The polymer therewith formed contains 100 or more Fe(2+) ions and is of a pronounced rigid-rod structure, with Fe-Fe distances around 3.32 Å (in comparison to 3.94 Å of the polynuclear species in the high-spin state). Reversible spin crossover takes place in solution upon a temperature increase to around 60 °C; this process is associated with a shift in equilibrium toward species shorter than the initial polynuclear species.

  9. Elastic instabilities in planar elongational flow of monodisperse polymer solutions

    PubMed Central

    Haward, Simon J.; McKinley, Gareth H.; Shen, Amy Q.

    2016-01-01

    We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric and rheological scaling parameters. The criterion yields maximum values of M which compare well with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude that the same mechanism of tension acting along curved streamlines governs the onset of elastic instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows. PMID:27616181

  10. Elasticity and Extensibility Determine Printability and Spinnability of Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Jimenez, Leidy; Sharma, Vivek

    Many advanced manufacturing technologies like inkjet and 3D printing, nano-fiber spinning involve complex free-surface flows, and the formation of columnar necks that undergo spontaneous capillary-driven thinning and pinch-off. The progressive self-thinning of neck is often characterized by self-similar profiles and scaling laws that depend on the relative magnitude of capillary, inertial and viscous stresses for simple (Newtonian and inelastic) fluids. Stream-wise velocity gradients that arise within the thinning columnar neck create an extensional flow field that can orient and stretch macromolecules, contributing extra elastic stresses and extensional viscosity that change thinning and pinch-off dynamics for polymeric complex fluids. Characterizing the filament thinning and break-up kinetics in jetting, dripping and stretching liquid bridge provides invaluable insight into the interplay of elastic, viscous, capillary and inertial stresses relevant for these applications. We elucidate how polymer composition, flexibility and molecular weight determine the thinning and pinch-off kinetics in our experiments. Both effective relaxation time and transient extensional viscosity are found to be strongly concentration dependent even for dilute solutions.

  11. Elastic instabilities in planar elongational flow of monodisperse polymer solutions.

    PubMed

    Haward, Simon J; McKinley, Gareth H; Shen, Amy Q

    2016-09-12

    We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric and rheological scaling parameters. The criterion yields maximum values of M which compare well with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude that the same mechanism of tension acting along curved streamlines governs the onset of elastic instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows.

  12. Elastic instabilities in planar elongational flow of monodisperse polymer solutions

    NASA Astrophysics Data System (ADS)

    Haward, Simon J.; McKinley, Gareth H.; Shen, Amy Q.

    2016-09-01

    We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric and rheological scaling parameters. The criterion yields maximum values of M which compare well with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude that the same mechanism of tension acting along curved streamlines governs the onset of elastic instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows.

  13. Effect of polymers in solution culture on growth and mineral composition of tomatoes. [Lycopersicon esculentum

    SciTech Connect

    Wallace, A.

    1986-05-01

    Tomato (Lycopersicon esculentum Mill. cv. Tropic) plants were grown for 26 days from transplanting in full nutrient solution with and without polymers in nutrient solution at two different pH values. An aninoic polyacrylamide and a polysaccharide (from guar bean) each at 100 mg L/sup -1/ in solution slightly improved yields at both pH values. A cationic polymer at the same concentration decreased yields. There were no apparent nutritional reasons for the effects. 1 table.

  14. Understanding looping kinetics of a long polymer molecule in solution. Exact solution for delta function sink model

    NASA Astrophysics Data System (ADS)

    Ganguly, Moumita; Chakraborty, Aniruddha

    2017-10-01

    A diffusion theory for intramolecular reactions of polymer chain in dilute solution is formulated. We give a detailed analytical expression for calculation of rate of polymer looping in solution. The physical problem of looping can be modeled mathematically with the use of a Smoluchowski-like equation with a Dirac delta function sink of finite strength. The solution of this equation is expressed in terms of Laplace Transform of the Green's function for end-to-end motion of the polymer in absence of the sink. We have defined two different rate constants, the long term rate constant and the average rate constant. The average rate constant and long term rate constant varies with several parameters such as length of the polymer (N), bond length (b) and the relaxation time τR. The long term rate constant is independent of the initial probability distribution.

  15. Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state.

    PubMed

    Jablan, Jasna; Szalontai, Gábor; Jug, Mario

    2012-12-01

    The aim of this work was to investigate the potential synergistic effect of water-soluble polymers (hypromellose, HPMC and polyvinylpyrrolidone, PVP) on zaleplon (ZAL) complexation with parent β-cyclodextrin (βCD) and its randomly methylated derivative (RAMEB) in solution and in solid state. The addition of HPMC to the complexation medium improved ZAL complexation and solubilization with RAMEB (K(ZAL/RAMEB)=156±5M(-1) and K(ZAL/RAMEB/HPMC)=189±8M(-1); p<0.01), while such effect was not observed for βCD (K(ZAL/βCD)=112±2M(-1) and K(ZAL/βCD/HPMC)=119±8M(-1); p>0.05). Although PVP increased the ZAL aqueous solubility from 0.22 to 0.27mg/mL, it did not show any synergistic effects on ZAL solubilization with the cyclodextrins tested. Binary and ternary systems of ZAL with βCD, RAMEB and HPMC were prepared by spray-drying. Differential scanning calorimetry, X-ray powder diffraction and scanning electron microscopy demonstrated a partial ZAL amorphization in spray-dried binary and ternary systems with βCD, while the drug was completely amorphous in all samples with RAMEB. Furthermore, inclusion complex formation in all systems prepared was confirmed by solid-state NMR spectroscopy. The in vitro dissolution rate followed the rank order ZAL/RAMEB/HPMC>ZAL/RAMEB=ZAL/βCD/HPMC>ZAL/βCD≫ZAL, clearly demonstrating the superior performance of RAMEB on ZAL complexation in the solid state and its synergistic effect with HPMC on drug solubility. Surprisingly, when loaded into tablets made with insoluble microcrystalline cellulose, RAMEB complexes had no positive effect on drug dissolution, because HPMC and RAMEB acted as a binders inside the tablets, prolonging their disintegration. Oppositely, the formulation with mannitol, a soluble excipient, containing a ternary RAMEB system, released the complete drug-dose in only 5min, clearly demonstrating its suitability for the development of immediate-release oral formulation of ZAL.

  16. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    PubMed

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations.

  17. Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process.

    PubMed

    Shah, Navnit; Iyer, Raman M; Mair, Hans-Juergen; Choi, Duk Soon; Tian, Hung; Diodone, Ralph; Fähnrich, Karsten; Pabst-Ravot, Anni; Tang, Kin; Scheubel, Emmanuel; Grippo, Joseph F; Moreira, Sebastian A; Go, Zenaida; Mouskountakis, James; Louie, Theresa; Ibrahim, Prabha N; Sandhu, Harpreet; Rubia, Linda; Chokshi, Hitesh; Singhal, Dharmendra; Malick, Waseem

    2013-03-01

    The present work deals with improving the solubility of vemurafenib, a practically insoluble drug, by converting it into an amorphous-solid dispersion using a solvent-controlled precipitation process. The dispersion containing vemurafenib and hypromellose acetate succinate (HPMCAS), an enteric polymer, is termed microprecipitated bulk powder (MBP), in which the drug is uniformly dispersed within the polymeric substrate. HPMCAS was found to be the most suitable polymer for vemurafenib MBP, among a series of enteric polymers based on superior physical stability and drug-release characteristics of the MBP. The MBP provided a greater rate and extent of dissolution than crystalline drug, reaching an apparent drug concentration of 28-35 µg/mL, almost 30-fold higher than solubility of crystalline drug at 1 µg/mL. The supersaturation was also maintained for more than 4 h. Upon exposure to high temperature and humidity, the MBP was destabilized, resulting in crystallization and lower dissolution rate. The control of moisture and temperature is essential to maintain the stability of the MBP. In a relative human bioavailability study, vemurafenib MBP provided a four- to fivefold increase in exposure compared with crystalline drug. Improving solubility with an amorphous-solid dispersion is a viable strategy for the development of practically insoluble compounds.

  18. Toward a Mesoscale Model for the Dynamics of Polymer Solutions

    SciTech Connect

    Miller, G H; Trebotich, D

    2006-10-02

    To model entire microfluidic systems containing solvated polymers we argue that it is necessary to have a numerical stability constraint governed only by the advective CFL condition. Advancements in the treatment of Kramers bead-rod polymer models are presented to enable tightly-coupled fluid-particle algorithms in the context of system-level modeling.

  19. Boiling characteristics of dilute polymer solutions and implications for the suppression of vapor explosions

    SciTech Connect

    Bang, K.H.; Kim, M.H.

    1995-09-01

    Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2mm and 9.5mm-diameter were tested in the polymer solutions of various concentrations at 30{degrees}C. Minimum film boiling temperature ({Delta}T{sub MFB}) in this highly-subcooled liquid rapidly decreased from over 700{degrees}c for pure water to about 150{degrees}C as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 350{degrees}C for 9.5mm sphere. This rapid reduction of minimum film boiling temperature in the PEO aqueous solutions can explain its ability of the suppression of spontaneous vapor explosions. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25{degrees}C. It was observed that in 50ppm solutions more mass fragmented than in pure water, but produced weaker explosion pressures. The explosion was completely suppressed in 300ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7mm were shown almost identical regardless of the polymer concentrations.

  20. The effect of ultrasonic waves in conducting polymer solution.

    PubMed

    de Azevedo, W M; de Oliveira Luna, A J H; Silva, E F V B N; Silva, R O

    2006-07-01

    The effects of ultrasonic wave on the conducting polymer polyaniline dissolved in DMSO were observed. The UV-visible, infrared and NMR analysis show that the polymer undergo a redox and doping transition when the ultrasound wave interacts with the polymer dissolved into the solvent. The proposed mechanism to explain these effects is based on the solvent's hygroscopicity properties. The interaction with the ultrasonic wave, homolitically dissociates the water molecule producing radical species, and these species interact with the dissolved conducting polymer changing its oxidation and doped state. The resulting effects of that interaction are the modification of oxidation state of the conducting polymer and the decrease of the amount of water molecule in the solvent. From those results, we have proposed one straightforward method to eliminate water contamination in the solvent DMSO using ultrasonic waves.

  1. Salting-in and salting-out of water-soluble polymers in aqueous salt solutions.

    PubMed

    Sadeghi, Rahmat; Jahani, Farahnaz

    2012-05-03

    To obtain further experimental evidence for the mechanisms of the salting effect produced by the addition of salting-out or sating-in inducing electrolytes to aqueous solutions of water-soluble polymers, systematic studies on the vapor-liquid equilibria and liquid-liquid equilibria of aqueous solutions of several polymers are performed in the presence of a large series of electrolytes. Polymers are polyethylene glycol 400 (PEG400), polyethylene glycol dimethyl ether 250 (PEGDME250), polyethylene glycol dimethyl ether 2000 (PEGDME2000), and polypropylene glycol 400 (PPG400), and the investigated electrolytes are KCl, NH(4)Cl, MgCl(2), (CH(3))(4)NCl, NaCl, NaNO(3), Na(2)CO(3), Na(2)SO(4), and Na(3)Cit (tri-sodium citrate). Aqueous solutions of PPG400 form aqueous two-phase systems with all the investigated salts; however, other investigated polymers form aqueous two-phase systems only with Na(2)CO(3), Na(2)SO(4), and Na(3)Cit. A relation was found between the salting-out or sating-in effects of electrolyte on the polymer aqueous solutions and the slopes of the constant water activity lines of ternary polymer-salt aqueous solutions, so that, in the case of the salting-out effect, the constant water activity lines had a concave slope, but in the case of the salting-in effects, the constant water activity lines had a convex slope. The effect of temperature, anion of electrolyte, cation of electrolyte, and type and molar mass of polymers were studied and the results interpreted in terms of the solute-water and solute-solute interactions. The salting-out effect results from the formation of ion (specially anion)-water hydration complexes, which, in turn, decreases hydration, and hence, the solubility of the polymer and the salting-in effect results from a direct binding of the cations to the ether oxygens of the polymers.

  2. Changes in the Solution Behavior of Conjugated Polymers with Light Absorption

    NASA Astrophysics Data System (ADS)

    Dadmun, Mark; Morgan, Brian

    2015-03-01

    Conjugated polymers are well established as functional materials in a broad range of applications including organic photovoltaics, chemical sensors, and organic light emitting diodes. This functionality is mainly derived from their ability to create electron-hole pair excitons through photoexcitation. The presence of these entities on the polymer chains may alter the chain conformation, solution behavior, and ultimately macroscopic morphology, of the conjugated polymer. Previous studies have shown significant changes in properties such as viscosity and photoluminescence upon exposure of select conjugated polymer films to white light. In order to expand upon these preliminary findings, we have performed small angle neutron scattering experiments on solutions of several semiconducting, conjugated polymers in both the presence and absence of incident light. Substantial differences are observed between the light vs dark samples, the magnitude of which are dependent on polymer dispersion, solvent choice, and solution concentration. Analysis of the neutron curves shows real difference in Kuhn lengths and radius of gyration of the polymer, suggesting possible rearrangement of polymer chain conformation or alteration of polymer chain-solvent interactions.

  3. Fabrication of gold nanoparticle-polymer composite particles with raspberry, core-shell and amorphous morphologies at room temperature via electrostatic interactions and diffusion.

    PubMed

    Kanahara, Masaaki; Shimomura, Masatsugu; Yabu, Hiroshi

    2014-01-14

    Composite particles with varying morphologies composed of gold nanoparticles (Au NPs) and polymers were fabricated based on a combination of electrostatic interactions between the polymer particles and Au NPs and diffusion processes. The positively charged polymer particles were prepared from amino-terminated polystyrene (PS-NH2) and amino-terminated 1,2-polybutadiene (PB-NH2). Adsorption of citrate-stabilized Au NPs resulted in three different distribution states of Au NPs in the polymer particles, depending on the glass transition temperature (Tg) and molecular weight of the polymer. The adsorption of Au NPs onto PS-NH2 particles produced raspberry-like composite particle morphologies, while the NPs instead diffused into the PB-NH2 particles, since the Tg of PB-NH2 is below room temperature. The diffusion of Au NPs could be controlled by varying the molecular weight of the PB-NH2 and the diameter of the NPs, and both core-shell and amorphous distributions were successfully achieved.

  4. A Transition to a Compact Form of DNA in Polymer Solutions

    PubMed Central

    Lerman, L. S.

    1971-01-01

    In the presence of over-threshold concentrations of simple neutral polymers and salts, DNA undergoes a cooperative change in its solution structure. Sedimentation studies at low DNA concentrations show that phage DNA molecules collapse into particles approaching the compactness of the contents of phage heads. The interaction between DNA and polymers is thought to be nonspecifically replusive. PMID:5288774

  5. Sorption of Ochratoxin A from aqueous solutions using beta-cyclodextrin-polyurethane polymer

    USDA-ARS?s Scientific Manuscript database

    The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions, including wine, was examined by batch rebinding assays and equilibrium sorption isotherms. The results were fit to two parameter models. Freundlich analysis of the sorption isotherm indicates the polyme...

  6. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions.

    PubMed

    Wu, Yefan; Chen, Miaomiao; Fang, Yun; Zhu, Meng

    2017-03-17

    It was inferred from aqueous solution behavior of nonionic polymers and anionic surfactants that the formation of charged polymer-bound surfactant micelle above critical aggregation concentration (cac) and the formation of free surfactant micelle beyond polymer saturation point (psp), but there was still a lack of direct experimental evidence for the considered equilibrium chemical species. Three modes of capillary electrophoresis are applied in this paper to study the complexation between nonionic polymers, polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), and sodium dodecylbenzenesulfonate (SDBS) by successfully distinguishing the imaginary charged polymer-bound SDBS micelle from nonionic polymer and SDBS molecule. Perhaps even more important, it is the action of SDBS as both a main surfactant and a UV probe that makes the free surfactant micelle emerged in electropherogram beyond psp, and thus makes it possible for the first time to provide the equilibrium relationship of the polymer-related and the surfactant-related species in the concentration regions divided into by cac and psp. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Morphology of crystalline-amorphous olefin block copolymers in solution characterized by small-angle neutron scattering and microscopy.

    PubMed

    Radulescu, Aurel; Goerigk, Günter; Fetters, Lewis; Richter, Dieter

    2015-12-01

    The single-chain properties and self-assembly behavior in dilute solution of olefin block copolymers obtained by chain-shuttling technology and consisting of alternating crystallizable and amorphous ethylene/1-octene blocks were investigated by pinhole and focusing small-angle neutron scattering techniques, optical microscopy in bright-field and crossed-polarizer modes, and differential scanning calorimetry. The complex hydrocarbon soluble (precipitant free) macro-aggregates formed with decreasing temperature are characterized by spherulitic textures. The spherulites yield, on one hand, a morphology that depends on the chain structure properties and, on the other hand, multiple structural levels with a hierarchical organization that ranges from 10 Å up to tens of micrometres. This morphology displays peculiarities dictated by the polydisperse character of these materials.

  8. Morphology of crystalline–amorphous olefin block copolymers in solution characterized by small-angle neutron scattering and microscopy

    PubMed Central

    Radulescu, Aurel; Goerigk, Günter; Fetters, Lewis; Richter, Dieter

    2015-01-01

    The single-chain properties and self-assembly behavior in dilute solution of olefin block copolymers obtained by chain-shuttling technology and consisting of alternating crystallizable and amorphous ethylene/1-octene blocks were investigated by pinhole and focusing small-angle neutron scattering techniques, optical microscopy in bright-field and crossed-polarizer modes, and differential scanning calorimetry. The complex hydrocarbon soluble (precipitant free) macro-aggregates formed with decreasing temperature are characterized by spherulitic textures. The spherulites yield, on one hand, a morphology that depends on the chain structure properties and, on the other hand, multiple structural levels with a hierarchical organization that ranges from 10 Å up to tens of micrometres. This morphology displays peculiarities dictated by the polydisperse character of these materials. PMID:26664344

  9. Sub-100 °C solution processed amorphous titania nanowire thin films for high-performance perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Chen, Dehong; Huang, Fuzhi; Cheng, Yi-Bing; Caruso, Rachel A.

    2016-10-01

    The present work demonstrates a facile one-step process to fabricate thin films of amorphous titania nanowires on transparent conducting oxide substrates via hydrolysis of potassium titanium oxide oxalate in an aqueous solution at 90 °C. The resultant titania nanowire thin films (that have not undergone further annealing) are efficient electron transport layers in CH3NH3PbI3 perovskite solar cells, yielding full sun solar-to-electricity conversion efficiencies of up to 14.67% and a stabilized efficiency of 14.00% under AM 1.5G one sun illumination, comparable to high temperature sintered TiO2 counterparts. The high photovoltaic performance is attributed to the porous nanowire network that facilitates perovskite infiltration, its unique 1D geometry and excellent surface coverage for efficient electron transport, as well as suppressed charge recombination between FTO and perovskite.

  10. Quasi-Immiscible Spreading of Aqueous Surfactant Solutions on Entangled Aqueous Polymer Solution Subphases

    PubMed Central

    Sharma, Ramankur; Corcoran, Timothy E.; Garoff, Stephen; Przybycien, Todd M.; Swanson, Ellen R.; Tilton, Robert D.

    2014-01-01

    Motivated by the possibility of enhancing aerosol drug delivery to mucus-obstructed lungs, the spreading of a drop of aqueous surfactant solution on a physically entangled aqueous poly(acrylamide) solution subphase that mimics lung airway surface liquid was investigated. Sodium dodecyl sulfate was used as the surfactant. To visualize spreading of the drop and mimic the inclusion of a drug substance, fluorescein, a hydrophilic and non-surface active dye, was added to the surfactant solution. The spreading progresses through a series of events. Marangoni stresses initiate the convective spreading of the drop. Simultaneously, surfactant escapes across the drop’s contact line within a second of deposition and causes a change in subphase surface tension outside the drop on the order of 1 mN/m. Convective spreading of the drop ends within 2–3 seconds of drop deposition, when a new interfacial tension balance is achieved. Surfactant escape depletes the drop of surfactant and the residual drop takes the form of a static lens of non-zero contact angle. On longer time scales, the surfactant dissolves into the subphase. The lens formed by the water in the deposited drop persists for as long as 3 minutes after the convective spreading process ends due to the long diffusional timescales associated with the underlying entangled polymer solution. The persistence of the lens suggests that the drop phase behaves as if it were immiscible with the subphase during this time period. Whereas surfactant escapes the spreading drop and advances on the subphase/vapor interface, hydrophilic dye molecules in the drop do not escape, but remain with the drop throughout the convective spreading. The quasi-immiscible nature of the spreading event suggests that the chemical properties of the surfactant and subphase are much less important than their physical properties, consistent with prior qualitative studies of spreading of different types of surfactants on entangled polymer subphases: the

  11. Quasi-immiscible spreading of aqueous surfactant solutions on entangled aqueous polymer solution subphases.

    PubMed

    Sharma, Ramankur; Corcoran, Timothy E; Garoff, Stephen; Przybycien, Todd M; Swanson, Ellen R; Tilton, Robert D

    2013-06-26

    Motivated by the possibility of enhancing aerosol drug delivery to mucus-obstructed lungs, the spreading of a drop of aqueous surfactant solution on a physically entangled aqueous poly(acrylamide) solution subphase that mimics lung airway surface liquid was investigated. Sodium dodecyl sulfate was used as the surfactant. To visualize spreading of the drop and mimic the inclusion of a drug substance, fluorescein, a hydrophilic and non-surface-active dye, was added to the surfactant solution. The spreading progresses through a series of events. Marangoni stresses initiate the convective spreading of the drop. Simultaneously, surfactant escapes across the drop's contact line within a second of deposition and causes a change in subphase surface tension outside the drop on the order of 1 mN/m. Convective spreading of the drop ends within 2-3 s of drop deposition, when a new interfacial tension balance is achieved. Surfactant escape depletes the drop of surfactant, and the residual drop takes the form of a static lens of nonzero contact angle. On longer time scales, the surfactant dissolves into the subphase. The lens formed by the water in the deposited drop persists for as long as 3 min after the convective spreading process ends due to the long diffusional time scales associated with the underlying entangled polymer solution. The persistence of the lens suggests that the drop phase behaves as if it were immiscible with the subphase during this time period. Whereas surfactant escapes the spreading drop and advances on the subphase/vapor interface, hydrophilic dye molecules in the drop do not escape but remain with the drop throughout the convective spreading. The quasi-immiscible nature of the spreading event suggests that the chemical properties of the surfactant and subphase are much less important than their physical properties, consistent with prior qualitative studies of spreading of different types of surfactants on entangled polymer subphases: the selection of

  12. The study of amorphous phase separation in a model polymer phase-separating system using Raman microscopy and a low-temperature stage: effect of cooling rate and nucleation temperature.

    PubMed

    Padilla, Adora M; Chou, Shin G; Luthra, Sumit; Pikal, Michael J

    2011-04-01

    The freezing process is a source of product instability in many freeze-dried pharmaceuticals. During freezing, the solute is concentrated in the interstitial spaces between ice crystals, and phase separation may occur, with likely negative stability implications. Phase separation may involve crystallization but may also occur in completely amorphous systems even though there is little direct evidence to support this speculation in protein formulation applications. Previous work in our laboratory focused on the application of a novel Raman mapping technique to the study of amorphous phase separation in freeze-dried polymer systems. We report here the application of a similar Raman mapping technique to frozen systems, using a low-temperature stage. We study the impact of nucleation temperature and thermal history on phase separation using a model 1:1 polyvinylpyrrolidone:dextran phase separating system. Although cooling rate and nucleation temperature had a small effect on the extent of phase separation, it was clear that the large latent heat of crystallization controls the thermal history and propensity for phase separation in practical applications. The results suggest that phase separation can be somewhat controlled by minimizing fill depth and controlling nucleation temperature. Copyright © 2010 Wiley-Liss, Inc.

  13. Synthesis and Evaluation of Cyclodextrin-based Polymers for Patulin Extraction from Aqueous Solutions

    USDA-ARS?s Scientific Manuscript database

    Patulin is a mycotoxin produced by fungi that contaminate fruits, juices, and other agricultural commodities. Sorption properties of polyurethane-beta-cyclodextrin polymers were evaluated for the ability to remove patulin from solutions, including apple juice. Freundlich isotherm analysis determin...

  14. Effect of added polymer in free jets of a dilute polymer solution

    NASA Astrophysics Data System (ADS)

    Renoult, Marie-Charlotte; Charpentier, Jean-Baptiste; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    The instability of a free viscoelastic jet is experimentally investigated by extruding an aqueous solution containing five parts per million of Poly(ethylene oxide) into air from a sixty micrometers orifice at relative low speeds. A method of image analysis was developed to quantify the effect of the added polymer on the morphology and the stability of the jet breakup. Three main representations were considered: the area versus perimeter relation for all liquid objects detected on the images, i.e. jets and jet fragments, the equivalent diameter distribution of jet fragments and the standard deviation curve of jets profiles. The former two provide information on the morphology of jet fragments: distinction of two classes, products and residues, and existence of coalescence. The latter gives information on the jet breakup stability: measurement of the growth rate and initial amplitude of the jet instability and detection of beads-on-a-string structures in the jet interface deformation. Experimental results will be presented and compared to theory.

  15. Elastic Energy Transfer in Turbulence of Dilute Polymer Solution

    NASA Astrophysics Data System (ADS)

    Xi, Heng-Dong; Bodenschatz, Eberhard; Xu, Haitao

    2012-11-01

    We present an experimental study of the energy transfer in the bulk of a turbulent flow with small amount long-chain polymer additives. By varying the Reynolds numbers Rλ, Wissenberg number Wi and polymer concentration φ. We test quantitively the elastic theory proposed by de Gennes and Tabor (Europhys. Lett., 1986; Physica A, 1986). The rate of energy transfer by polymer elasticity as inferred from the theory is consistent with that measured from the second order Eulerian structure functions. The unknown parameter n in the theory, which represents the flow topology of the stretching field, is found to be nearly 1. Based on energy transfer rate balance, We propose an elastic length scale, rɛ, which describes the effect of polymer elasticity on turbulence energy cascade and captures the scale dependence of the elastic energy transfer rate. We are grateful to the Max Planck Society, the Alexander von Humboldt Foundation and the Deutsche Forschungsgemeinschaft for their support.

  16. Crystallization and Corrosion Resistance in Different Aqueous Solutions of Zr50.7Ni28Cu9Al12.3 Amorphous Alloy and Its Crystallization Counterparts

    NASA Astrophysics Data System (ADS)

    Ge, Wenjuan; Li, Boyu; Axinte, Eugen; Zhang, Zitang; Shang, Caiyun; Wang, Yan

    2017-02-01

    The Zr50.7Ni28Cu9Al12.3 amorphous alloy and its crystallization counterparts have been prepared using a melt spinning technique and proper annealing treatment. The as-annealed products at 768 K are amorphous composites consisting of a main amorphous phase and a few ZrO2 nanocrystals. The corrosion behaviors have been investigated in 0.5-M NaCl, 1-M HCl, and 0.5-M H2SO4 solutions. The results show that amorphous composites present the enhanced corrosion resistance in Cl- containing solutions due to the formation of compact passive films, which are promoted by an appropriate quantity of ZrO2 nanocrystals. Nevertheless, the relaxed samples possess good corrosion resistance in H2SO4 solution, which is attributed to the existence of Zr(Al, Ni)-rich protective film induced by the depletion of Cu. In addition, corrosion resistance of the tested alloys is relatively superior in H2SO4 solution, especially for pitting corrosion resistance, and inferior in HCl solution.

  17. Crystallization and Corrosion Resistance in Different Aqueous Solutions of Zr50.7Ni28Cu9Al12.3 Amorphous Alloy and Its Crystallization Counterparts

    NASA Astrophysics Data System (ADS)

    Ge, Wenjuan; Li, Boyu; Axinte, Eugen; Zhang, Zitang; Shang, Caiyun; Wang, Yan

    2017-04-01

    The Zr50.7Ni28Cu9Al12.3 amorphous alloy and its crystallization counterparts have been prepared using a melt spinning technique and proper annealing treatment. The as-annealed products at 768 K are amorphous composites consisting of a main amorphous phase and a few ZrO2 nanocrystals. The corrosion behaviors have been investigated in 0.5-M NaCl, 1-M HCl, and 0.5-M H2SO4 solutions. The results show that amorphous composites present the enhanced corrosion resistance in Cl- containing solutions due to the formation of compact passive films, which are promoted by an appropriate quantity of ZrO2 nanocrystals. Nevertheless, the relaxed samples possess good corrosion resistance in H2SO4 solution, which is attributed to the existence of Zr(Al, Ni)-rich protective film induced by the depletion of Cu. In addition, corrosion resistance of the tested alloys is relatively superior in H2SO4 solution, especially for pitting corrosion resistance, and inferior in HCl solution.

  18. The Influence of Polymer Solution on the Properties of Electrospun 3D Nanostructures

    NASA Astrophysics Data System (ADS)

    Amariei, N.; Manea, L. R.; Bertea, A. P.; Bertea, A.; Popa, A.

    2017-06-01

    The remarkable versatility of electrospinning is the result of the fact that many factors influence the process results. The characteristics of the electrospun nanofibres depend crucially, besides technological parameters, on the nature of the polymer solution. In the present article it is overviewed the way the properties of the polymer solution, such as concentration, viscosity, conductivity, surface tension, volatility characteristics of the used solvent, influence the main features of the obtained nanofibres.

  19. Mathematical modeling of methoxyanabasine C11H16N2O polymer solution ultrafiltration

    NASA Astrophysics Data System (ADS)

    Satayev, Marat; Shakirov, Birzhan; Mutaliyeva, Botagoz; Satayeva, Lazzat; Altynbekov, Rustem; Baiysbay, Omirbek; Alibekov, Ravshanbek

    2012-06-01

    This work covers the mathematical modeling of ultrafiltration with immobile membranes for physiologically-active of methoxyanabasine C11H16N2O polymer solution. Methoxyanabasine is used as low toxic antineoplastic drug. On the basis of theoretical and experimental analysis of mass transfer and hydrodynamics, it is offered the mathematical model of permeability of membranes at an ultrafiltration of polymer solutions. Further the formulas for determination of factor of concentration polarization and ultrafiltration selectivity are calculated.

  20. Physical stability of the amorphous state of loperamide and two fragment molecules in solid dispersions with the polymers PVP-K30 and PVP-VA64.

    PubMed

    Weuts, Ilse; Kempen, Dieter; Decorte, Annelies; Verreck, Geert; Peeters, Jef; Brewster, Marcus; Van den Mooter, Guy

    2005-06-01

    The purpose of the present study was to investigate the impact of intermolecular forces on the stability of the amorphous state of loperamide and two of its fragment molecules (4-dimethylamino-N,N-dimethyl-2,2-diphenyl-butyramide (F1) and 4-(4-chlorophenyl)-4-piperidinol (F2)) in solid dispersions with PVP-K30 and PVP-VA64. The stability of originally homogeneous and amorphous dispersions was investigated under different storage conditions. The chemical stability of the compounds was evaluated with HPLC. TGA-analysis was used in order to assess the amount of water in the samples, whereas MT-DSC-measurements were performed to investigate changes in the physical state of the compounds caused by the storage procedure. TGA-analysis reveals a higher uptake of water in humid conditions of the dispersions with PVP-K30 in comparison to those with PVP-VA64, hereby reflecting the more hydrophilic nature of the former polymer. This water acts as a plasticizing agent resulting in an increased mobility and decreased glass transition temperature. Since the degree of supersaturation and the molecular mobility have an influence on the stability of the amourphous state, both parameters were assessed. With respect to the degree of supersaturation of the compounds in the dispersions, the materials seem to be very much alike. Therefore it was postulated that the induction of crystallization in the F1/polymer dispersions stored at high RH (52%) is due to higher molecular mobility of this compound in the dispersions in comparison to F2. The hydrogen bonds that are being formed between F2 and the polymers reduce its mobility and secure this compound from crystallization upon storage, thus indicating the importance of specific interactions with respect to stability issues of solid dispersions. No hydrogen bonds are formed between F1 and the polymers. As a result, the stability of the amorphous state of the compound is being compromised and crystallization takes place. Loperamide, that

  1. Tribocorrosion Behavior of Fe-Based Amorphous Composite Coating Reinforced by Al2O3 in 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Yasir, Muhammad; Zhang, Cheng; Wang, Wei; Zhang, Zhi-Wei; Liu, Lin

    2016-12-01

    Although corrosion and friction/wear behavior of Fe-based amorphous coatings and their composites has been extensively studied during the past decade, there is very limited work related to tribocorrosion behavior. In this paper, the tribocorrosion behavior of a Fe-based amorphous composite coating reinforced with 20 wt.% Al2O3 particles was investigated in a 3.5% NaCl solution on a ball-on-disk tester and was compared to the monolithic amorphous coating and 316L stainless steel (SS). The results showed that the amorphous composite coating exhibited the highest tribocorrosion resistance among the three materials tested, as evidenced by the lowest coefficient of friction ( 0.3) and tribocorrosion wear rate ( 1.2 × 10-5 mm3/N·m). In addition, potentiodynamic polarization measurements before and during tribocorrosion testing demonstrated that corrosion resistance of the amorphous composite coating was not influenced so much by mechanical loading compared to the amorphous coating and the 316L SS. Observations on the worn surface revealed a corrosion-wear- and oxidational-wear-dominated tribocorrosion mechanism for the composite coatings. The excellent tribocorrosion resistance of the composite coating results from the effect of chemically stable Al2O3 phase which resists oxidation and delamination during sliding, along with poor wettability with corrosive NaCl droplets.

  2. Electrodeposition of amorphous MnO x films on Fe–Ni substrates from aqueous sulfate solution

    NASA Astrophysics Data System (ADS)

    Pires, Manoel J. M.; Fernandes, Lucas S.

    2017-09-01

    Manganese oxides have a number of promising applications from new magnetic phases to high electrical capacitance systems. A common way of producing these materials is by electrochemical deposition using, for instance, baths with manganous acetate or chloride. As an alternative to acetate or chloride, we have used a solution with MnSO4 for the deposition of MnO x films on a magnetic alloy. Fe–Ni sheets with composition around the Invar point were used as substrates showing the practicability of this kind of growth of the Fe–Ni/MnO x system. The films were characterized by cyclic voltammetry, chronoamperometry, x-ray diffraction, optical and scanning electron microscopies. The obtained films are predominantly amorphous oxides with compositions tending to MnO2, and the most homogeneous samples were deposited from a solution with MnSO4 and H3BO3. Solutions with Na2SO4 and (NH4)2SO4 were also tested, but the resulting films were rather heterogeneous and presented poor adhesion to the Fe–Ni substrates. Direct deposition at constant electric potential as well as deposition by cycling the applied potential were analyzed, and the films prepared by both methods are very similar each other respect to morphology, composition and structure.

  3. Improvement of Physico-mechanical Properties of Partially Amorphous Acetaminophen Developed from Hydroalcoholic Solution Using Spray Drying Technique

    PubMed Central

    Sadeghi, Fatemeh; Torab, Mansour; Khattab, Mostafa; Homayouni, Alireza; Afrasiabi Garekani, Hadi

    2013-01-01

    Objective(s): This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen. Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water) of acetaminophen (5% w/v) in the presence of small amounts of polyninylpyrrolidone K30 (PVP) (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight) was carried out. The properties of spray dried particles namely morphology, surface characteristics, particle size, crystallinity, dissolution rate and compactibility were evaluated. Results: Spray drying process significantly changed the morphology of acetaminophen crystals from acicular (rod shape) to spherical microparticle. Differential scanning calorimetery (DSC) and x-ray powder diffraction (XRPD) studies ruled out any polymorphism in spray dried samples, however, a major reduction in crystallinity up to 65%, especially for those containing 5% w/w PVP was observed. Spray dried acetaminophen particles especially those obtained in the presence of PVP exhibited an obvious improvement of the dissolution and compaction properties. Tablets produced from spray dried samples exhibited excellent crushing strengths and no tendency to cap. Conclusions: The findings of this study revealed that spray drying of acetaminophen from hydroalcoholic solution in the presence of small amount of PVP produced partially amorphous particles with improved dissolution and excellent compaction properties. PMID:24379968

  4. A viscosity self-oscillation of polymer solution induced by the Belousov-Zhabotinsky reaction under acid-free condition.

    PubMed

    Hara, Yusuke; Yoshida, Ryo

    2008-06-14

    We succeeded in measuring a viscosity self-oscillation induced by the Belousov-Zhabotinsky (BZ) reaction for a polymer solution on the constant temperature condition under acid-free condition. The polymer chain is consisted of N-isopropylacrylamide, ruthenium complex as a catalyst of the BZ reaction, and an acrylamide-2-methylpropanesulfonic acid (AMPS) as a pH and the solubility control site. The viscosity self-oscillation for the AMPS-containing polymer solution was attributed to the difference between viscosities for the polymer solution in the reduced and oxidized states. The effects of the polymer concentration and the temperature of the polymer solution on the viscosity self-oscillation were investigated. As a result, the viscosity self-oscillating behavior significantly depended on the polymer concentration and the temperature of the polymer solution. The period of the viscosity self-oscillation decreased with increasing temperature in accordance with the Arrenius equation.

  5. Structural Properties and Phase Behavior of Crosslinked Networks in Polymer Solutions.

    PubMed

    Benmouna, Farida; Zemmour, Samira; Benmouna, Mustapha

    2016-03-03

    Structural properties and phase behavior of crosslinked networks embedded in polymer solutions are theoretically investigated. The partial structure factor of the network is calculated using a matrix formulation of the random phase approximation and the forward scattering limit is correlated with the phase behavior. Swelling and deswelling processes are analyzed in terms of the polymer concentration, the mismatch of solvent quality with respect to polymer and network, the polymers incompatibility and their characteristic sizes. Most studies reported so far in the literature have focussed on the swelling of crosslinked networks and gels in pure solvents but the correlation of the structural properties with the phase behavior in the presence of high molecular weight polymers in solution has not been given sufficient attention. The present work is intended to fill this gap in view of the current efforts to develop novel drug encapsulating and targeted delivery devices.

  6. Structural Properties and Phase Behavior of Crosslinked Networks in Polymer Solutions

    PubMed Central

    Benmouna, Farida; Zemmour, Samira; Benmouna, Mustapha

    2016-01-01

    ABSTRACT Structural properties and phase behavior of crosslinked networks embedded in polymer solutions are theoretically investigated. The partial structure factor of the network is calculated using a matrix formulation of the random phase approximation and the forward scattering limit is correlated with the phase behavior. Swelling and deswelling processes are analyzed in terms of the polymer concentration, the mismatch of solvent quality with respect to polymer and network, the polymers incompatibility and their characteristic sizes. Most studies reported so far in the literature have focussed on the swelling of crosslinked networks and gels in pure solvents but the correlation of the structural properties with the phase behavior in the presence of high molecular weight polymers in solution has not been given sufficient attention. The present work is intended to fill this gap in view of the current efforts to develop novel drug encapsulating and targeted delivery devices. PMID:27134310

  7. Effect of Associative Polymers on the Foaming Properties of Surfactant Solutions

    NASA Astrophysics Data System (ADS)

    Cervantes, Alfredo; Robles, Emmanuel; Acuña, Heriberto; Gamez, Rogelio; Maldonado, Amir

    2006-03-01

    Aqueous foams are materials which have many industrial applications. Their stability is affected by three mechanisms: bubble coalescence (film rupture), coarsening (gas diffusion) and drainage (gravity-driven liquid flow). The aim of this work is to obtain some insight into the effect of associative polymers on the foamability, foam stability and drainage of surfactant solutions. The foams were produced by air bubbling and by the turbulent mixing method. The surfactant is SDS and the associative polymers studied are HEUR and POE-Stearate. We studied the effect of polymer concentration for each macromolecule. The results show that two opposite effects are present when the polymer concentration is increased: for low polymer concentrations, foamability and foam stability is higher than for high concentrations. Results are discussed in terms of the properties of the solution: surface tension, electrical conductivity, bulk viscosity, etc.

  8. Phases of polymer systems in solution studied via molecular dynamics

    SciTech Connect

    Anderson, Joshua Allen

    2009-05-01

    Polymers are amazingly versatile molecules with a tremendous range of applications. Our lives would be very different without them. There would be no multitudes of plastic encased electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers as two of the most essential types of molecules central to cellular life, Proteins and DNA, are both polymers! [1] With their wide range of application to a variety of uses, polymers are still a very active field in basic research. Of particular current interest is the idea of combining polymers with inorganic particles to form novel composite materials. [2] As computers are becoming faster, they are becoming all the more powerful tools for modeling and simulating real systems. With recent advances in computing on graphics processing units (GPUs) [3–7], questions can now be answered via simulation that could not even be asked before. This thesis focuses on the use of computer simulations to model novel polymerinorganic composite systems in order to predict what possible phases can form and under what conditions. The goal is to provide some direction for future experiments and to gain a deeper understanding of the fundamental physics involved. Along the way, there are some interesting and essential side-tracks in the areas of equilibrating complicated phases and accelerating the available computer power with GPU computing, both of which are necessary steps to enable the study of polymer nanocomposites.

  9. Impact of sodium polyacrylate on the amorphous calcium carbonate formation from supersaturated solution.

    PubMed

    Liu, J; Pancera, S; Boyko, V; Gummel, J; Nayuk, R; Huber, K

    2012-02-21

    A detailed in situ scattering study has been carried out on the formation of amorphous calcium carbonate (ACC) particles modulated by the presence of small amounts of sodium polyacrylate chains. The work is aiming at an insight into the modulation of ACC formation by means of two polyacrylate samples differing in their molecular weight by a factor of 50. The ACC formation process was initiated by an in situ generation of CO(3)(2-) ions via hydrolysis of 10 mM dimethylcarbonate in the presence of 10 mM CaCl(2). Analysis of the formation process by means of time-resolved small-angle X-ray and light scattering in the absence of any additives provided evidence for a monomer addition mechanism for the growth of ACC particles. ACC formation under these conditions sets in after a lag-period of some 350 s. In the presence of sodium polyacrylate chains, calcium polyacrylate aggregates are formed during the lag-period, succeeded by a modulated ACC growth in a second step. The presence of anionic polyacrylate chains changed the shape of the growing particles toward loose and less homogeneous entities. In the case of low amounts (1.5-7.5 mg/L) of the long chain additive with 97 kDa, the size of the aggregates is comparable to the size of the successively formed hybrid particles. No variation of the lag-period has been observed in this case. Use of the short chain additive with 2 kDa enabled increase of the additive concentration up to 100 mg/L and resulted in a significant increase of the lag-period. This fact, together with the finding that the resulting hybrid particles remained stable in the latter case, identified short chain sodium polyacrylates as more efficient modulators than long chain polyacrylates.

  10. On the origin of Gaussian network theory in the thermo/chemo-responsive shape memory effect of amorphous polymers undergoing photo-elastic transition

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Huang, Wei Min; Leng, Jinsong

    2016-06-01

    Amorphous polymers are normally isotropic in their physical properties, however, upon stress their structural randomness is disturbed and they become anisotropic. There is a close connection between the optical anisotropy and the elastic (or mechanical) anisotropy, since both are related to the type of symmetry exhibited by the molecular structure. On the origin of Gaussian network theory, a phenomenological constitutive framework was proposed to study the photo-elastic transition and working mechanism of the thermo-/chemo-responsive shape-memory effect (SME) in amorphous shape memory polymers (SMPs). Optically refractive index was initially employed to couple the stress, strain and the anisotropy of the random link in macromolecule chain. Based on the Arrhenius law, a constitutive framework was then applied for the temperature dependence of optical (or elastic or mechanical) anisotropy according to the fictive temperature parameter. Finally, the phenomenological photo-elastic model was proposed to quantitatively identify the influential factors behind the thermo-/chemo-responsive SME in SMPs, of which the shape recovery behavior is predicted and verified by the available experimental data reported in the literature.

  11. Sonochemical precipitation of amorphous uranium phosphates from trialkyl phosphate solutions and their thermal conversion to UP2O7.

    PubMed

    Doroshenko, Iaroslav; Zurkova, Jana; Moravec, Zdenek; Bezdicka, Petr; Pinkas, Jiri

    2015-09-01

    Insoluble amorphous precipitates containing uranyl and phosphate ions are obtained by sonication of solutions of three uranyl precursors, UO2(X)2, X=NO3, CH3COO, CH3C(O)CHC(O)CH3 (acetylacetonate, acac), in triesters of phosphoric acid, OP(OR)3, R=Me (trimethyl phosphate, TMP), Et (triethyl phosphate, TEP). TMP and TEP are used as high-boiling solvents and they serve also as a source of phosphate anions. Sonolysis experiments were carried out under flow of Ar at 40°C on a Sonics and Materials VXC 500W system (f=20 kHz, Pac=0.49 W cm(-3)). Powder X-ray diffraction (PXRD) reveals amorphous character of all obtained precipitates. The presence of uranyl and phosphate is evidenced by IR spectroscopy and ICP-OES analysis reveals the content of both U (38.6-43.4 wt%) and P (11.0-13.6 wt%). The thermal behavior of the substances was studied by TG/DSC analysis, which shows weight losses in the range of 19.21-24.08%. On heating the amorphous precipitates to 1000°C, crystalline uranium diphosphate UP2O7 is obtained in all cases as the only crystalline phase. Uranyl(VI) is reduced during thermolysis to U(IV) as there is no characteristic vibration of UO2(2+) in the IR spectra of solid UP2O7 products. The ICP-OES analysis of U and P content in precipitates allowed us to calculate the efficiency of precipitation of uranium from mother liquor and to compare it with the efficiency calculated from the data received by the PXRD and TG/DSC analyses. The efficiency of the uranium removal attained by our sonoprecipitation procedure was typically 30-35%. These sonochemical precipitation reactions providing insoluble uranium phosphates may be potentially interesting models for the description of behavior of uranium-containing waste or reprocessing streams. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dissipative particle dynamics simulation of depletion layer and polymer migration in micro- and nanochannels for dilute polymer solutions.

    PubMed

    Fedosov, Dmitry A; Em Karniadakis, George; Caswell, Bruce

    2008-04-14

    The flows of dilute polymer solutions in micro- and nanoscale channels are of both fundamental and practical importance in variety of applications in which the channel gap is of the same order as the size of the suspended particles or macromolecules. In such systems depletion layers are observed near solid-fluid interfaces, even in equilibrium, and the imposition of flow results in further cross-stream migration of the particles. In this work we employ dissipative particle dynamics to study depletion and migration in dilute polymer solutions in channels several times larger than the radius of gyration (Rg) of bead-spring chains. We compare depletion layers for different chain models and levels of chain representation, solvent quality, and relative wall-solvent-polymer interactions. By suitable scaling the simulated depletion layers compare well with the asymptotic lattice theory solution of depletion near a repulsive wall. In Poiseuille flow, polymer migration across the streamlines increases with the Peclet and the Reynolds number until the center-of-mass distribution develops two symmetric off-center peaks which identify the preferred chain positions across the channel. These appear to be governed by the balance of wall-chain repulsive interactions and an off-center driving force of the type known as the Segre-Silberberg effect.

  13. Functionalized Polymers-Emerging Versatile Tools for Solution-Phase Chemistry and Automated Parallel Synthesis.

    PubMed

    Kirschning, Andreas; Monenschein, Holger; Wittenberg, Rüdiger

    2001-02-16

    As part of the dramatic changes associated with the need for preparing compound libraries in pharmaceutical and agrochemical research laboratories, industry searches for new technologies that allow for the automation of synthetic processes. Since the pioneering work by Merrifield polymeric supports have been identified to play a key role in this field however, polymer-assisted solution-phase synthesis which utilizes immobilized reagents and catalysts has only recently begun to flourish. Polymer-assisted solution-phase synthesis has various advantages over conventional solution-phase chemistry, such as the ease of separation of the supported species from a reaction mixture by filtration and washing, the opportunity to use an excess of the reagent to force the reaction to completion without causing workup problems, and the adaptability to continuous-flow processes. Various strategies for employing functionalized polymers stoichiometrically have been developed. Apart from reagents that are covalently or ionically attached to the polymeric backbone and which are released into solution in the presence of a suitable substrate, scavenger reagents play an increasingly important role in purifying reaction mixtures. Employing functionalized polymers in solution-phase synthesis has been shown to be extremely useful in automated parallel synthesis and multistep sequences. So far, compound libraries containing as many as 88 members have been generated by using several polymer-bound reagents one after another. Furthermore, it has been demonstrated that complex natural products like the alkaloids (+/-)-oxomaritidine and (+/-)-epimaritidine can be prepared by a sequence of five and six consecutive polymer-assisted steps, respectively, and the potent analgesic compound (+/-)-epibatidine in twelve linear steps ten of which are based on functionalized polymers. These developments reveal the great future prospects of polymer-assisted solution-phase synthesis.

  14. Inert gas annealing effect in solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Seungwoon; Jeong, Jaewook

    2017-08-01

    In this paper, the annealing effect of solution-processed amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs), under ambient He (He-device), is systematically analyzed by comparison with those under ambient O2 (O2-device) and N2 (N2-device), respectively. The He-device shows high field-effect mobility and low subthreshold slope owing to the minimization of the ambient effect. The degradation of the O2- and N2-device performances originate from their respective deep acceptor-like and shallow donor-like characteristics, which can be verified by comparison with the He-device. However, the three devices show similar threshold voltage instability under prolonged positive bias stress due to the effect of excess oxygen. Therefore, annealing in ambient He is the most suitable method for the fabrication of reference TFTs to study the various effects of the ambient during the annealing process in solution-processed a-IGZO TFTs.

  15. Communication: Polarizable polymer chain under external electric field in a dilute polymer solution

    SciTech Connect

    Budkov, Yu. A.; Kolesnikov, A. L.; Kiselev, M. G.

    2015-11-28

    We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such “field-induced” globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.

  16. Regular branched Macromolecules: Structure of Bottlebrush Polymers in Solution

    NASA Astrophysics Data System (ADS)

    Pakula, T.; Rathgeber, S.; Matyjaszewski, K.

    2001-03-01

    The shape and internal structure of bottlebrush (comb) macromolecules under good solvent conditions have been studied using small angle neutron scattering and computer simulations. The form factor S(Q) was measured at low concentrations in toluene for comb polymers consisting of a p(BPEM) backbone with p(nBA) side chains. The following intramolecular parameters were varied: (1) backbone length, (2) grafting density and (3) length of the side chains. Using models which have been successfully applied to other regular branched polymers we derive the range of the hydrodynamic interaction within the polymer and the particle dimension from which we can conclude on the overall shape of the macromolecular brush. In addition we determined the radius of the gyration of the backbone R_g^bb and of the side chains R_g^sc. These parameters give information about the stiffness of the polymer. Experimental findings are compared with computer simulation results performed for a single bottlebrush macromolecule using the cooperative motion algorithm. The simulation gives direct access to R_g^bb and R_g^sc and allows an independent determination of S(Q). Good agreement between experiment and simulation has been found.

  17. Reduction of the viscosity of solutions viscosified with xanthan gum polymers

    SciTech Connect

    Bridges, K.L.; Kalinski, K.L.

    1991-10-08

    This patent describes a process for reducing the viscosity of a drilling fluid containing Xanthan gum polymer solution. It comprises: contacting the drilling fluid with hydrogen peroxide and adjusting the pH of the solution to a level of at least about between 8 and 10.

  18. Effect of hydrodynamic correlations on the dynamics of polymers in dilute solution

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Gompper, Gerhard; Winkler, Roland G.

    2013-04-01

    We analyze the effect of time-dependent hydrodynamic interactions on the dynamics of flexible polymers in dilute solution. In analytical calculations, the fluctuating hydrodynamics approach is adopted to describe the fluid, and a Gaussian model to represented the polymer. Simulations are performed exploiting the multiparticle collision dynamics approach, a mesoscale hydrodynamic simulation technique, to explicitly describe the fluid. Polymer center-of-mass velocity correlation functions are calculated for various polymer lengths. Similarly, segment mean square displacements are discussed and polymer diffusion coefficients are determined. Particular attention is paid to the influence of sound propagation on the various properties. The simulations reveal a strong effect of hydrodynamic interactions. Specifically, the time dependence of the center-of-mass velocity correlation functions is determined by polymer properties over a length-dependent time window, but are asymptotically solely governed by fluid correlations, with a long-time tail decaying as t-3/2. The correlation functions are heavily influenced by sound modes for short polymers, an effect which gradually disappears with increasing polymer length. We find excellent agreement between analytical and simulation results. This allows us to provide a theory-based asymptotic value for the polymer diffusion coefficient in the limit of large system sizes, which is based on a single finite-system-size simulation.

  19. Ultrasonic study of solid-phase amorphization and polyamorphism in an H2O-D2O (1: 1) solid solution

    NASA Astrophysics Data System (ADS)

    Gromnitskaya, E. L.; Lyapin, A. G.; Stalgorova, O. V.; Danilov, I. V.; Brazhkin, V. V.

    2013-02-01

    The elastic moduli and volume of H2O-D2O (1: 1) isotopically mixed ice (solid solution) have been studied at the solid-phase amorphization of normal 1 h ice under compression at a temperature of 77 K and at the transition from high-density amorphous ice to low-density amorphous ice with subsequent successive crystallization to cubic (1 c) and hexagonal (1 h) ice at isobaric (0.05 GPa) heating. Comparison of the results with the respective data for H2O and D2O ices indicates that the observed concentration (in the isotopic composition) dependences of the elastic moduli and their derivatives for different phases of ice at isotopic hydrogen substitution in the H2O, H2O-D2O (1: 1), and D2O chain can be both monotonic and significantly nonmonotonic.

  20. Morphological-evolution pathway during phase separation in polymer solutions with highly asymmetrical miscibility gap

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Yang, Tao; Yang, Sen; Wang, Yunzhi

    2017-09-01

    Microstructural evolution during thermally induced phase separation in a polymer solution with a highly asymmetrical miscibility gap is analyzed using Flory-Huggins thermodynamics and nonlinear Cahn-Hilliard kinetics. Computer simulation results demonstrate that, in contrast to systems with symmetric miscibility gaps, interesting morphological-evolution pathways (MEPs) including cluster-to-percolation and percolation-to-cluster transitions are identified. These MEPs are rationalized according to asynchronous evolution of the two product phases. For a highly asymmetric polymer system, the initial solution composition is also found to play a critical role in determining the MEPs. According to the simulation results a map of MEPs in terms of initial solution composition and aging time of phase separation is established to guide future microstructural design in asymmetrical polymer solutions.

  1. Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles

    NASA Astrophysics Data System (ADS)

    Shin, Jaeoh; Cherstvy, Andrey G.; Kim, Won Kyu; Metzler, Ralf

    2015-11-01

    We study the dynamics of polymer chains in a bath of self-propelled particles (SPP) by extensive Langevin dynamics simulations in a two-dimensional model system. Specifically, we analyse the polymer looping properties versus the SPP activity and investigate how the presence of the active particles alters the chain conformational statistics. We find that SPPs tend to extend flexible polymer chains, while they rather compactify stiffer semiflexible polymers, in agreement with previous results. Here we show that higher activities of SPPs yield a higher effective temperature of the bath and thus facilitate the looping kinetics of a passive polymer chain. We explicitly compute the looping probability and looping time in a wide range of the model parameters. We also analyse the motion of a monomeric tracer particle and the polymer’s centre of mass in the presence of the active particles in terms of the time averaged mean squared displacement, revealing a giant diffusivity enhancement for the polymer chain via SPP pooling. Our results are applicable to rationalising the dimensions and looping kinetics of biopolymers at constantly fluctuating and often actively driven conditions inside biological cells or in suspensions of active colloidal particles or bacteria cells.

  2. Secondary ion mass spectrometry depth profiling of amorphous polymer multilayers using O{sub 2}{sup +} and Cs{sup +} ion bombardment with a magnetic sector instrument

    SciTech Connect

    Harton, S.E.; Stevie, F.A.; Ade, H.

    2006-03-15

    Thin planar polymer films are model systems in a number of fields, including nano- and biotechnology. In contrast to reciprocal space techniques such as reflectivity or diffraction, secondary ion mass spectrometry (SIMS) can provide depth profiles of tracer labeled polymers in real space directly with sufficient depth resolution to characterize many important aspects in these systems. Yet, continued improvements in characterization methods are highly desirable in order to optimize the trade-offs between depth resolution, mass resolution, detection sensitivity, data acquisition time, and artifacts. In this context, the utility of a magnetic sector SIMS instrument for amorphous polymer film analysis was evaluated using model polymer bilayer systems of polystyrene (PS) with poly(methyl methacrylate) (PMMA), PS with poly(2-vinylpyridine), and poly(cyclohexyl methacrylate) (PCHMA) with PMMA. Deuterium-labeled polystyrene embedded in PS or PCHMA at concentrations ranging from 5% to 20%(v/v) was used as tracer polymer. Analysis conditions for a magnetic sector SIMS instrument (CAMECA IMS-6f) were varied to achieve a depth resolution of {approx}10 nm, high signal/noise ratios, and high sensitivity, while minimizing matrix effects and sample charging. Use of Cs{sup +} and O{sub 2}{sup +} primary ions with detection of negative and positive secondary ions, respectively, has been explored. Primary beam impact energy and primary ion species have been shown to affect matrix secondary ion yields. Sputtering rates have been determined for PS and PMMA using both primary ion species and referenced to values for intrinsic (100) silicon (Si) under identical analysis conditions.

  3. Thermal analysis of frozen solutions: multiple glass transitions in amorphous systems.

    PubMed

    Sacha, Gregory A; Nail, Steven L

    2009-09-01

    Frozen aqueous solutions of sucrose exhibit two "glass transition-like" thermal events below the melting endotherm of ice when examined by DSC, but the physical basis of these events has been a source of some disagreement. In this study, a series of sugars, including sucrose, lactose, trehalose, maltose, fructose, galactose, fucose, mannose, and glucose were studied by modulated DSC and freeze-dry microscopy in order to better understand whether sucrose is unique in any way with respect to this behavior, as well as to explore the physical basis, and the pharmaceutical significance of these multiple transitions. Double transitions were found to be a common feature of all sugars examined. The results are consistent with both thermal events being glass transitions in that (1) both events have second-order characteristics that appear in the reversing signals, (2) annealing experiments reveal that enthalpy recovery is associated with each transition, and (3) Lissajous plots indicate that no detectable latent heat of melting is associated with either transition. The data in this study are consistent with the idea that the lower temperature transition arises from a metastable glassy mixture containing more water than that in the maximally freeze-concentrated solute. Freeze-dry microscopy observations show that for all of the sugars examined, it is the higher temperature transition that is associated with structural collapse during freeze-drying. There is no apparent pharmaceutical significance associated with the lower-temperature transition.

  4. Single-molecule manipulation measurements of polymer/solution interactions

    NASA Astrophysics Data System (ADS)

    Dittmore, Andrew N.

    Because the properties of soft materials emerge from the physics of the constituent polymers, we are motivated to characterize chain molecules at a fundamental level. We build upon the magnetic tweezers single-molecule manipulation technique, which involves measuring the distance between the ends of a polymer in real time and with nanometer precision while applying stable magnetic stretching forces in the piconewton range. Here we demonstrate new applications of this technique, specifically by measuring the interactions between a polymer and the surrounding solvent. First, through low-force elastic measurements, we determine a range of fundamental parameters that quantify solvent quality and chain structure. We present a force-solvent phase diagram to summarize these parameters and our experimental data, and discuss where PEG, DNA, RNA, and proteins fit into the diagram. The unstructured and structured states of a biomolecule reside at opposite ends of the diagram, indicating that folding is accompanied by a change in the character of the solvent. We therefore chose to investigate the local solvent change that occurs when a charged biomolecule folds. We present a thermodynamic framework for measuring the uptake of counterions that accompanies nucleic acid folding. Our measurements of a simple DNA hairpin identify potential shortcomings in thermodynamic parameters of MFOLD, the most widely used predictive software for nucleic acids. Finally, we present a variety of polymer immobilization schemes, achieve low-noise measurements with a strong magnet design, identify new assays, and provide technical guidance that may be useful to those interested in pursuing future magnetic tweezers experiments.

  5. Dynamic structure factor of a stiff polymer in a glassy solution.

    PubMed

    Glaser, J; Hallatschek, O; Kroy, K

    2008-01-01

    We provide a comprehensive overview of the current theoretical understanding of the dynamic structure factor of stiff polymers in semidilute solution based on the wormlike chain (WLC) model. We extend previous work by computing exact numerical coefficients and an expression for the dynamic mean square displacement (MSD) of a free polymer and compare various common approximations for the hydrodynamic interactions, which need to be treated accurately if one wants to extract quantitative estimates for model parameters from experimental data. A recent controversy about the initial slope of the dynamic structure factor is thereby resolved. To account for the interactions of the polymer with a surrounding (sticky) polymer solution, we analyze an extension of the WLC model, the glassy wormlike chain (GWLC), which predicts near power law and logarithmic long-time tails in the dynamic structure factor.

  6. Apparatus for and method of producing monodisperse submicron polymer powders from solution

    DOEpatents

    Noid, Donald W.; Otaigbe, Joshua U.; Barnes, Michael D.; Sumpter, Bobby G.; Kung, Chung-Yi

    2002-01-01

    This invention describes a method of producing polymer powders from solution in a compatible solvent using a new device referred to as a microdroplets on demand generator (MODG). The embodiment of this invention is the MODG apparatus and its relevance as a method to extensive application in materials science and technology. Proof of concept is demonstrated using poly(ethylene) glycol polymer microparticles generated with the MODG and captured in a microparticle levitation device.

  7. Controlling the Surface Organization of Conjugated Donor-Acceptor Polymers by their Aggregation in Solution.

    PubMed

    Li, Mengmeng; An, Cunbin; Marszalek, Tomasz; Baumgarten, Martin; Yan, He; Müllen, Klaus; Pisula, Wojciech

    2016-11-01

    The aggregation of conjugated polymers is found to have a significant influence on the surface organization of deposited films. Difluorobenzothiadiazole-based polymers show a strong pre-aggregation in solution, but the addition of 1,2,4-trichlorobenzene efficiently reduces such aggregates, leading to the transition of the surface organization from edge- to face-on orientation in deposited films. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Visualizing phase transition behavior of dilute stimuli responsive polymer solutions via Mueller matrix polarimetry.

    PubMed

    Narayanan, Amal; Chandel, Shubham; Ghosh, Nirmalya; De, Priyadarsi

    2015-09-15

    Probing volume phase transition behavior of superdiluted polymer solutions both micro- and macroscopically still persists as an outstanding challenge. In this regard, we have explored 4 × 4 spectral Mueller matrix measurement and its inverse analysis for excavating the microarchitectural facts about stimuli responsiveness of "smart" polymers. Phase separation behavior of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and pH responsive poly(N,N-(dimethylamino)ethyl methacrylate) (PDMAEMA) and their copolymers were analyzed in terms of Mueller matrix derived polarization parameters, namely, depolarization (Δ), diattenuation (d), and linear retardance (δ). The Δ, d, and δ parameters provided useful information on both macro- and microstructural alterations during the phase separation. Additionally, the two step action ((i) breakage of polymer-water hydrogen bonding and (ii) polymer-polymer aggregation) at the molecular microenvironment during the cloud point generation was successfully probed via these parameters. It is demonstrated that, in comparison to the present techniques available for assessing the hydrophobic-hydrophilic switch over of simple stimuli-responsive polymers, Mueller matrix polarimetry offers an important advantage requiring a few hundred times dilute polymer solution (0.01 mg/mL, 1.1-1.4 μM) at a low-volume format.

  9. Liquid filament instability due to stretch-induced phase separation in polymer solutions

    NASA Astrophysics Data System (ADS)

    Arinstein, Arkadii; Kulichikhin, Valery; Malkin, Alexander; Technion-Israel Institute of Technology Collaboration; Institute of Petrochemical Synthesis, Russian Academy of Sciences Team

    2015-03-01

    The instability in a jet of a viscoelastic semi-dilute entangled polymer solution under high stretching is discussed. Initially, the variation in osmotic pressure can compensate for decrease in the capillary force, and the jet is stable. The further evolution of the polymer solution along the jet results in formation of a filament in the jet center and of a near-surface solvent layer. Such a redistribution of polymer seems like a ``phase separation'', but it is related to stretching of the jet. The viscous liquid shell demonstrates Raleigh-type instability resulting in the formation of individual droplets on the oriented filament. Experimental observations showed that this separation is starting during few first seconds, and continues of about 10 -15 seconds. The modeling shows that a jet stretching results in a radial gradient in the polymer distribution: the polymer is concentrated in the jet center, whereas the solvent is remaining near the surface. The key point of this model is that a large longitudinal stretching of a polymer network results in its lateral contraction, so a solvent is pressed out of this polymer network because of the decrease in its volume. V.K. and A.M. acknowledge the financial support of the Russian Scientific Foundation (Grant 4-23-00003).

  10. Making molecular balloons in laser-induced explosive boiling of polymer solutions.

    PubMed

    Leveugle, Elodie; Sellinger, Aaron; Fitz-Gerald, James M; Zhigilei, Leonid V

    2007-05-25

    The effect of the dynamic molecular rearrangements leading to compositional segregation is revealed in coarse-grained molecular dynamics simulations of short pulse laser interaction with a polymer solution in a volatile matrix. An internal release of matrix vapor at the onset of the explosive boiling of the overheated liquid is capable of pushing polymer molecules to the outskirts of a transient bubble, forming a polymer-rich surface layer enclosing the volatile matrix material. The results explain unexpected "deflated balloon" structures observed in films deposited by the matrix-assisted pulsed laser evaporation technique.

  11. Low-Temperature and Solution-Processed Amorphous WO(x) as Electron-Selective Layer for Perovskite Solar Cells.

    PubMed

    Wang, Kai; Shi, Yantao; Dong, Qingshun; Li, Yu; Wang, Shufeng; Yu, Xufeng; Wu, Mengyao; Ma, Tingli

    2015-03-05

    The electron-selective layer (ESL) is an indispensable component of perovskite solar cells (PSCs) and is responsible for the collection of photogenerated electrons. Preparing ESL at a low temperature is significant for future fabrication of flexible PSCs. In this work, solution-processed amorphous WO(x) thin film was prepared facilely at low temperature and used as ESL in PSCs. Results indicated that a large quantity of nanocaves were observed in the WO(x) thin film. In comparison with the conventional TiO2 ESL, the WO(x) ESL exhibited comparable light transmittance but higher electrical conductivity. Compared with the TiO2-based PSCs, PSCs that use WO(x) ESL exhibited comparable photoelectric conversion efficiency, larger short-circuit current density, but lower open-circuit voltage. Electrochemical characterization indicated that the unsatisfied open-circuit voltage and fill factor were caused by the inherent charge recombination. This study demonstrated that this material is an excellent candidate for ESL.

  12. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors.

    PubMed

    Nayak, Pradipta K; Hedhili, Mohamed N; Cha, Dongkyu; Alshareef, H N

    2013-05-01

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a decrease in zinc tin oxide film thickness, and (ii) an increase in oxygen vacancy concentration. The devices prepared without soft annealing exhibited inferior transistor performances, in comparison to devices in which the active channel layer (zinc tin oxide) was subjected to soft annealing. The highest saturation field-effect mobility-5.6 cm(2) V(-1) s(-1) with a drain-to-source on-off current ratio (Ion/Ioff) of 2 × 10(8)-was achieved in the case of devices with 10-min soft-annealed zinc tin oxide thin films as the channel layer. The findings of this work identify soft annealing as a critical parameter for the processing of chemically derived thin-film transistors, and it correlates device performance to the changes in material structure induced by soft annealing.

  13. Effect of plating temperature on electroless amorphous Ni-P film on Si wafers in an alkaline bath solution

    NASA Astrophysics Data System (ADS)

    Wu, Wang-ping; Jiang, Jin-jin

    2017-08-01

    Nickel-phosphorus (Ni-P) film was deposited by electroless process on the surface of p-type polycrystalline silicon at the temperature of 60-80 °C and pH value of 10.0. The effect of plating temperature on morphology, crystallographic structure, chemical composition and deposition rate of Ni-P film was studied. Microstructure and morphology of surface and cross section of the film were examined by a scanning electron microscopy and optical microscopy. The crystallographic structure and chemical composition of the film were determined by X-ray diffraction and energy dispersive spectroscopy, respectively. The results show that electroless Ni-P films were composed of the amorphous phase. The stable value P-content of the film was maintained at about 12 wt% with increasing bath temperature. The film surface was dense, and no cracking was found at 60 and 80 °C. However, the film deposited at 70 and 80 °C had a poor adherence to the substrate with evidence of delamination. The deposition rate of the film was increased with increasing plating temperature. At the same time, the deposition mechanism of the film on silicon substrate in the alkaline bath solution was addressed.

  14. Investigation of the required length for fully developed pipe flow with drag-reducing polymer solutions

    NASA Astrophysics Data System (ADS)

    Farsiani, Yasaman; Elbing, Brian

    2015-11-01

    Adding trace amounts of long chain polymers into a liquid flow is known to reduce skin friction drag by up to 80%. While polymer drag reduction (PDR) has been successfully implemented in internal flows, diffusion and degradation have limited its external flow applications. A weakness in many previous PDR studies is that there was no characterization of the polymer being injected into the turbulent boundary layer, which can be accomplished by testing a sample in a pressure-drop tube. An implicit assumption in polymer characterization is that the flow is fully developed at the differential pressure measurement. While available data in the literature shows that the entry length to achieve fully developed flow increases with polymeric solutions, it is unclear how long is required to achieve fully developed flow for non-Newtonian turbulent flows. In the present study, the pressure-drop is measured across a 1.05 meter length section of a 1.04 cm inner diameter pipe. Differential pressure is measured with a pressure transducer for different entry lengths, flow and polymer solution properties. This presentation will present preliminary data on the required entrance length as well as characterization of polymer solution an estimate of the mean molecular weight.

  15. Interactions between ring polymers in dilute solution studied by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Suzuki, Jiro; Takano, Atsushi; Matsushita, Yushu

    2015-01-01

    The second virial coefficient, A2, for trivial-ring polymers in dilute condition was estimated from a Metropolis Monte Carlo (MC) simulation, and the temperature dependence of A2 has been discussed with their Flory's scaling exponent, ν, in Rg ∝ Nν, where Rg is radius of gyration of a polymer molecule. A limited but not too small number of polymer molecules were employed in the simulation, and the A2 values at various temperatures were calculated from the molecular density fluctuation in the solution. In the simulation, the topology of ring polymers was kept, since chain crossing was prohibited. The excluded volume effects can be screened by the attractive force between segments, which depends on the temperature, Tα, defined in the Metropolis MC method. Linear and trivial-ring polymers have the ν value of 1/2 at Tα = 10.605 and 10.504. At Tα = 10.504, the excluded volume effects are screened by the attractive force generated between segments in a ring polymer, but the A2 value for ring polymers is positive. Thus, the temperature at A2 = 0 for a ring polymer is lower than that at ν = 1/2, and this fact can be explained with the following two reasons. (a) Rg value for a ring polymer is much smaller than that for a linear polymer at the same temperature and molecular weight, where interpenetration of a ring polymer chain into neighboring chains is apparently less than a linear chain. (b) The conformation of trivial rings can be statistically described as a closed random walk at ν = 1/2, but their topologies are kept, being produced topological constraints, which strongly relate not only to the long-distance interaction between segments in a molecule but also the inter-molecular interaction.

  16. Electric field-mediated processing of polymer blend solutions

    NASA Technical Reports Server (NTRS)

    Wnek, G. E.; Krause, S.

    1993-01-01

    Multiphase polymer blends in which the minor phases are oriented in a desired direction may demonstrate unique optical, electrical, and mechanical properties. While morphology development in shear fields was studied extensively, little work has focused on effects of electric fields on phase structure. The use of electric fields for blend morphology modulation with particular attention given to solvent casting of blends in d.c. fields was explored. Both homopolymer blends (average phase sizes of several microns) and diblock copolymer/homopolymer blends (average phase sizes of hundreds of Angstroms) were investigated. Summarized are important observations and conclusions.

  17. Laser Deposition of Polymer Micro- and Nanoassembly from Solution Using Focused Near-Infrared Laser Beam

    NASA Astrophysics Data System (ADS)

    Nabetani, Yu; Yoshikawa, Hiroyuki; Grimsdale, Andrew C.; Müllen, Klaus; Masuhara, Hiroshi

    2007-01-01

    We have demonstrated the laser deposition of polymer micro- and nanoassemblies from a solution onto a glass substrate. The size and shape of the deposited dot-like assembly can be controlled by the laser power (P) and the concentration of the solution (C). For an example, a nanoassembly of a π-conjugated polymer, whose width and height are 280 and 23 nm, respectively, is deposited at the conditions of C=1.0× 10-5 mg/ml and P=700 mW. This laser deposition can be attributed to the optical trapping and the surface deformation of the solution layer using a focused laser beam. It is also demonstrated that the molecular orientation in the assembly can be aligned in the direction of the laser polarization. The present laser deposition is applicable to the micropatterning of various polymers dissolved in an organic solvent.

  18. Sorption of Ochratoxin A from Aqueous Solutions Using β-Cyclodextrin-Polyurethane Polymer

    PubMed Central

    Appell, Michael; Jackson, Michael A.

    2012-01-01

    The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions was examined by batch rebinding assays. The results from the aqueous binding studies were fit to two parameter models to gain insight into the interaction of ochratoxin A with the nanosponge material. The ochratoxin A sorption data fit well to the heterogeneous Freundlich isotherm model. The polymer was less effective at binding ochratoxin A in high pH buffer (9.5) under conditions where ochratoxin A exists predominantly in the dianionic state. Batch rebinding assays in red wine indicate the polymer is able to remove significant levels of ochratoxin A from spiked solutions between 1–10 μg·L−1. These results suggest cyclodextrin nanosponge materials are suitable to reduce levels of ochratoxin A from spiked aqueous solutions and red wine samples. PMID:22474569

  19. Sorption of ochratoxin A from aqueous solutions using β-cyclodextrin-polyurethane polymer.

    PubMed

    Appell, Michael; Jackson, Michael A

    2012-02-01

    The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions was examined by batch rebinding assays. The results from the aqueous binding studies were fit to two parameter models to gain insight into the interaction of ochratoxin A with the nanosponge material. The ochratoxin A sorption data fit well to the heterogeneous Freundlich isotherm model. The polymer was less effective at binding ochratoxin A in high pH buffer (9.5) under conditions where ochratoxin A exists predominantly in the dianionic state. Batch rebinding assays in red wine indicate the polymer is able to remove significant levels of ochratoxin A from spiked solutions between 1-10 μg·L(-1). These results suggest cyclodextrin nanosponge materials are suitable to reduce levels of ochratoxin A from spiked aqueous solutions and red wine samples.

  20. Spectroscopic and calorimetric investigation of short and intermediate-range structures and energetics of amorphous SiCO, SiCN, and SiBCN polymer-derived ceramics

    NASA Astrophysics Data System (ADS)

    Widgeon, Scarlett J.

    Polymer-derived ceramics (PDCs) are a new class of amorphous ceramics in the Si-B-C-N system that are synthesized by the pyrolysis of silicon-based organic polymers. PDCs are lightweight and are resistant to creep, crystallization, and oxidation at temperatures near 1800 K making them ideal for a variety of high temperature applications. In spite of being X-ray amorphous, these materials display structural heterogeneity at the nanometer length scale. Their structure and resulting properties can be drastically altered by the utilization of preceramic polymers with differing chemistry and architectures. Fundamental understanding of the atomic structure is critical in deciphering the structure-property relationships and ultimately in controlling their properties for specific engineering applications. The short-range atomic structure has been extensively investigated using a variety of techniques, however, the structures at length scales beyond next-nearest neighbors remained highly controversial. Here we report the results of a spectroscopic and calorimetric study of short and intermediate -range structure and energetic of SiOC and SiBCN PDCs derived from a wide variety of precursors. SiOC PDCs with different carbon contents were synthesized from polysiloxane precurors and their structures were studied using high-resolution 13C and 29Si nuclear magnetic resonance (NMR) spectroscopy. The results suggest that these PDCs consists of a continuous mass fractal backbone of corner-shared SiC xO4-x tetrahedral units with "voids" occupied by sp 2-hybridized graphitic carbon. The oxygen-rich SiCxO 4-x units are located at the interior of this backbone with a mass fractal dimension of ~ 2.5, while the carbon-rich units occupy the two-dimensional interface between the backbone and the free carbon nanodomains. Such fractal topology is expected to give rise to unusual mechanical and transport properties characteristic of fractal percolation networks. For example, elastic moduli and

  1. Comparison of viscous fingering patterns in polymer and newtonian solutions

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Masami; Makino, Kyoko; Kato, Tadaya

    1997-02-01

    Viscous fingering patterns of aqueous glycerol and hydroxypropyl methyl cellulose (HPMC) solutions pushed by air in the Hele-Shaw cell were observed as a function of isopropyl alcohol. An increase in isopropyl alcohol led to a decrease in surface tension as well as an increase in viscosity of the respective solutions. For the glycerol solutions, namely Newtonian fluids, only the tip splitting pattern was observed, where the fingers were indeed narrower and the number of the fingers increased with increasing isopropyl alcohol content. These morphological changes in the patterns for the glycerol solutions were in agreement with the computer simulations based on the diffusion limited aggregation model. The finger tip velocity is proportional to the ratio of the injection pressure to viscosity according to Darcy's law prediction. In contrast, for HPMC solutions, which show shear-thinning, highly branched pattern only appeared when the injection pressure was changed. When isopropyl alcohol was added to HPMC solutions, a morphological transition from highly branched pattern to tip splitting one was observed. The transition in the pattern would be related to changes in both elastic properties and surface tension. The finger tip velocity of HPMC solutions is scaled with 1.5 power of the ratio of injection pressure to viscosity.

  2. Binding affinity of a small molecule to an amorphous polymer in a solvent. Part 2: preferential binding to local sites on a surface.

    PubMed

    Chunsrivirot, Surasak; Santiso, Erik; Trout, Bernhardt L

    2011-10-18

    Crystallization, a separation and purification process, is commonly used to produce a wide range of materials in various industries, and it usually begins with heterogeneous nucleation on a foreign surface in industrial practice and most other circumstances. Recent studies show that amorphous polymeric substrates are useful in controlling crystallization and selectively producing pharmaceutical polymorphs. In our previous publication, we investigated the possible correlation of the binding affinity of one molecule to key binding sites (local binding), and the possibility of using this binding affinity to guide the selection of polymers promoting heterogeneous nucleation. The studied systems were aspirin binding to four nonporous cross-linked polymers in ethanol-water 38 v% mixture. Cross-linked with divinylbenzene (DVB), these polymers were poly(4-acryloylmorpholine) (PAM), poly(2-carboxyethyl acrylate) (PCEA), poly(4-hydroxylbutyl acrylate) (PHBA), and polystyrene (PS). We discovered that the trend of the magnitudes of the average free energies of binding to the best sites is very similar to that of heterogeneous nucleation activities. This Article aims to investigate whether or not local binding to key sites is the important variable to describe heterogeneous nucleation as opposed to the overall/average binding affinity of molecules to a surface, and to investigate the possibility of using the overall binding affinity to guide the selection of polymers. We used the polymer surfaces generated from our previous study to calculate the overall binding affinity of aspirin molecules to the surface as measured by the preferential interaction coefficients of aspirin (1 m) to these polymers. We discovered that the trend of the average preferential interaction coefficients does not correlate as well to that of heterogeneous nucleation activities as the free energies of binding to the best sites. We also computed the average numbers of aspirin molecules associated with the

  3. Capillary electrophoretic separation of DNA restriction fragments using dilute polymer solutions

    SciTech Connect

    Braun, B.; Blanch, W.; Prausnitz, J.M.

    1997-02-01

    Because the mechanism of DNA separation in capillary electrophoresis is not well understood, selection of polymers is a {open_quotes}trial-and-error{close_quotes} procedure. We investigated dilute-solution DNA separations by capillary electrophoresis using solutions of four polymers that differ in size, shape and stiffness. Hydroxyethylcellulose of high molecular weight provides excellent separation of large DNA fragments (2027 bp - 23130 bp). Polyvinylpyrrolidone separates DNA from 72 bp to 23 kbp and star-(polyethylene oxide), like linear poly (ethylene oxide), provides separation of fragments up to 1353 bp.

  4. The influence of the amorphous polymer on conductivity, morphologies and thermal properties of polyether-based blends with addition of inorganic salt

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Sim, L. H.; Kammer, H. W.; Tan, W.

    2012-06-01

    Thermodynamic control of the dispersion of lithium (Li) salt in different phases of semicrystalline/amorphous polymer blends is elucidated in this study. Solid polymer electrolytes of poly(ethylene oxide) (PEO), epoxidized natural rubber (ENR), random copolymer of poly(acrylate) (PAc) and as well as polymer blends of PEO with ENR and PAc doped with various concentrations of Li salt were studied. The salt concentrations (CLi) of solid polymer electrolytes vary between CLi = 0.02 and 0.15. The influence of the ENR or PAc on the properties of PEO after addition of Li salt is discussed. Blends of PEO/ENR and PEO/PAc are immiscible by elucidation of the glass transition temperature (Tg) as well as the morphological analyses. PEO, ENR and PAc possess oxygen in their respective chemical structures, which may be able to coordinate with the Li salt added. Non uniformity of Li salt concentration in different phases of the blends is highlighted for both systems. The conductivity of PEO/ENR and PEO/PAc blends doped with Li salt is primarily governed by PEO. The results for Tg suggest that higher solubility of Li salt in PEO as compared to ENR in the former case and restricted ion transport in the glassy PAc (with Tg≈30°C after addition of Li salt in the latter system. These may be the attributing factors for the enhancement of conductivity of the doped-PEO/ENR blends as compared to that of the doped-PEO/PAc blends. This suggests that PEO exhibits greater extent of complexation with LiClO4 as compared to that of the ENR and PAc as supported by Fourier-transform infra-red (FTIR) studies.

  5. Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution

    PubMed Central

    2013-01-01

    Graphene/polyvinylidene fluoride (PVDF) composites were prepared using in-situ solvothermal reduction of graphene oxide in the PVDF solution. The electrical conductivity of the composites was greatly improved by doping with graphene sheets. The percolation threshold of such composite was determined to be 0.31 vol.%, being much smaller than that of the composites prepared via blending reduced graphene sheets with polymer matrix. This is attributed to the large aspect ratio of the SRG sheets and their uniform dispersion in the polymer matrix. The dielectric constant of PVDF showed a marked increase from 7 to about 105 with only 0.5 vol.% loading of SRG content. Like the other conductor-insulator systems, the AC conductivity of the system also obeyed the universal dynamic response. In addition, the SRG/PVDF composite shows a much stronger nonlinear conduction behavior than carbon nanotube/nanofiber based polymer composite, owing to intense Zener tunneling between the SRG sheets. The strong electrical nonlinearity provides further support for a homogeneous dispersion of SRG sheets in the polymer matrix. PMID:23522102

  6. Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution.

    PubMed

    He, Linxiang; Tjong, Sie Chin

    2013-03-22

    Graphene/polyvinylidene fluoride (PVDF) composites were prepared using in-situ solvothermal reduction of graphene oxide in the PVDF solution. The electrical conductivity of the composites was greatly improved by doping with graphene sheets. The percolation threshold of such composite was determined to be 0.31 vol.%, being much smaller than that of the composites prepared via blending reduced graphene sheets with polymer matrix. This is attributed to the large aspect ratio of the SRG sheets and their uniform dispersion in the polymer matrix. The dielectric constant of PVDF showed a marked increase from 7 to about 105 with only 0.5 vol.% loading of SRG content. Like the other conductor-insulator systems, the AC conductivity of the system also obeyed the universal dynamic response. In addition, the SRG/PVDF composite shows a much stronger nonlinear conduction behavior than carbon nanotube/nanofiber based polymer composite, owing to intense Zener tunneling between the SRG sheets. The strong electrical nonlinearity provides further support for a homogeneous dispersion of SRG sheets in the polymer matrix.

  7. How the World Changes By Going from One- to Two-Dimensional Polymers in Solution.

    PubMed

    Schlüter, A Dieter; Payamyar, Payam; Öttinger, Hans Christian

    2016-10-01

    Scaling behavior of one-dimensional (1D) and two-dimensional (2D) polymers in dilute solution is discussed with the goal of stimulating experimental work by chemists, physicists, and material scientists in the emerging field of 2D polymers. The arguments are based on renormalization-group theory, which is explained for a general audience. Many ideas and methods successfully applied to 1D polymers are found not to work if one goes to 2D polymers. The role of the various states exhibiting universal behavior is turned upside down. It is expected that solubility will be a serious challenge for 2D polymers. Therefore, given the crucial importance of solutions in characterization and processing, synthetic concepts are proposed that allow the local bending rigidity and the molar mass to be tuned and the long-range interactions to be engineered, all with the goal of preventing the polymer from falling into flat or compact states. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Small scale dynamics of a shearless turbulent/non-turbulent interface in dilute polymer solutions

    NASA Astrophysics Data System (ADS)

    Cocconi, G.; De Angelis, E.; Frohnapfel, B.; Baevsky, M.; Liberzon, A.

    2017-07-01

    We study the physics of the turbulent/non-turbulent interface (TNTI) of an isolated turbulent region in dilute polymer solutions and Newtonian fluids. We designed an experimental setup of a turbulent patch growing in water/dilute polymer solutions, without mean shear and far from the walls. The observations from the experiments are complemented and expanded by simulations performed using a localised homogeneous forcing to generate the turbulent front and the Finitely Extensible Elastic model with the Peterlin closure model for the polymer stress. The comparison, which shows that when Newtonian and viscoelastic TNTIs are fed by the same energy they behave in similar manner both in the experiments and in the simulations, permits to extend the applicability, on a qualitative basis, of single relaxation time polymer models also to turbulent/non-turbulent interfaces. From the detailed analysis offered by the numerical results, the alterations in the dynamics between strain and vorticity help understanding the mechanics of the polymer action on the TNTI without mean shear. The reduced vorticity stretching and increased vorticity compression terms are found to be due to the modified degrees of alignment between vorticity, polymer conformation tensor, and rate-of-strain tensor eigenvectors observed especially near the interface. These alignments at the smallest scales of the non-Newtonian turbulent flow lead to a reduced production of enstrophy and consequently to a reduced entrainment, which in this problem are seen as reduced advancement of a turbulent region.

  9. Conformational Evolution of Elongated Polymer Solutions Tailors the Polarization of Light-Emission from Organic Nanofibers

    PubMed Central

    2014-01-01

    Polymer fibers are currently exploited in tremendously important technologies. Their innovative properties are mainly determined by the behavior of the polymer macromolecules under the elongation induced by external mechanical or electrostatic forces, characterizing the fiber drawing process. Although enhanced physical properties were observed in polymer fibers produced under strong stretching conditions, studies of the process-induced nanoscale organization of the polymer molecules are not available, and most of fiber properties are still obtained on an empirical basis. Here we reveal the orientational properties of semiflexible polymers in electrospun nanofibers, which allow the polarization properties of active fibers to be finely controlled. Modeling and simulations of the conformational evolution of the polymer chains during electrostatic elongation of semidilute solutions demonstrate that the molecules stretch almost fully within less than 1 mm from jet start, increasing polymer axial orientation at the jet center. The nanoscale mapping of the local dichroism of individual fibers by polarized near-field optical microscopy unveils for the first time the presence of an internal spatial variation of the molecular order, namely the presence of a core with axially aligned molecules and a sheath with almost radially oriented molecules. These results allow important and specific fiber properties to be manipulated and tailored, as here demonstrated for the polarization of emitted light. PMID:25067856

  10. Modeling lower critical solution temperature behavior of associating polymer brushes with classical density functional theory.

    PubMed

    Gong, Kai; Marshall, Bennett D; Chapman, Walter G

    2013-09-07

    We study the lower critical solution temperature (LCST) behavior of associating polymer brushes (i.e., poly(N-isopropylacrylamide)) using classical density functional theory. Without using any empirical or temperature-dependent parameters, we find the phase transition of polymer brushes from extended to collapsed structure with increasing temperature, indicating the LCST behavior of polymer brushes. The LCST behavior of associating polymer brushes is attributed to the interplay of hydrogen bonding interactions and Lennard-Jones attractions in the system. The effect of grafting density and molecular weight on the phase behavior of associating polymer brushes has been also investigated. We find no LCST behavior at low grafting density or molecular weight. Moreover, increasing grafting density decreases the LCST and swelling ratio of polymer brushes. Similarly, increasing molecular weight decreases the LCST but increases the swelling ratio. At very high grafting density, a partial collapsed structure appears near the LCST. Qualitatively consistent with experiments, our results provide insight into the molecular mechanism of LCST behavior of associating polymer brushes.

  11. Binding affinity of a small molecule to an amorphous polymer in a solvent. Part 1: free energy of binding to a binding site.

    PubMed

    Chunsrivirot, Surasak; Diao, Ying; Trout, Bernhardt L

    2011-10-18

    Crystallization is commonly used in a separation and purification process in the production of a wide range of materials in various industries. In industry, crystallization usually starts with heterogeneous nucleation on a foreign surface. The complicated mechanism of heterogeneous nucleation is not well understood; however, we hypothesize that there might be a possible correlation between binding affinity to a surface and enhancement of nucleation. Recent studies show that amorphous polymers can be used to control crystallization, selectively produce pharmaceutical polymorphs, and discover novel pharmaceutical polymorphs. To investigate the possible correlation between the binding affinity of one molecule to key binding sites (local binding) and heterogeneous nucleation activity as well as the possibility of using this binding affinity to help guide the selection of polymers that promote heterogeneous nucleation, we computed the free energy of binding of aspirin to four nonporous cross-linked polymers in an ethanol-water 38 v% mixture. These cross-linked polymers are poly(4-acryloylmorpholine) (PAM), poly(2-carboxyethyl acrylate) (PCEA), poly(4-hydroxylbutyl acrylate) (PHBA), and polystyrene (PS); all of them were cross-linked with divinylbenzene (DVB). These systems were used because their heterogeneous nucleation activities are available in literature, and the ranking is PAM > PCEA > PHBA ≈ PS. We generated three independent surfaces for each polymer and computed the free energy of binding of aspirin to the best binding site that we found on each surface. The average free energies of binding to the best sites of PAM, PCEA, PHBA, and PS are -20.4 ± 1.0, -16.7 ± 1.0, -14.4 ± 1.1, and -13.6 ± 1.1 kcal/mol, respectively. We found that the trend of the magnitudes of the average free energies of binding to the best sites is PAM > PCEA > PHBA ≈ PS. This trend is very similar to that of heterogeneous nucleation activity. Our results suggest the importance of the

  12. Use of pH-sensitive polymer hydrogels in lead removal from aqueous solution.

    PubMed

    Ramírez, Elizabeth; Burillo, S Guillermina; Barrera-Díaz, C; Roa, Gabriela; Bilyeu, Bryan

    2011-08-30

    Three gamma crosslinked polymeric hydrogels were synthesized and evaluated as lead ion sorbents. A crosslinked poly(acrylic acid) hydrogel was compared with two 4-vinylpiridine-grafted poly(acrylic acid) hydrogels (26.74 and 48.1% 4-vinylpiridine). The retention properties for Pb(II) from aqueous solutions of these three polymers were investigated by batch equilibrium procedure. The effects of pH, contact time and Pb(II) concentration were evaluated. The optimal pH range for all polymers was 4-6. The lightly grafted polymer (PAAc-g-4VP at 26.74%) exhibited a Pb(II) removal close to 80% at 5h and above 90% at 24h. The maximum Pb(II) removal was 117.9mg g(-1) of polymer and followed the Freundlich adsorption model. XPS characterization indicates that the carboxyl groups are involved in the Pb(II) removal.

  13. Laboratory study of polymer solutions used for mobility control during in situ NAPL recovery

    SciTech Connect

    Martel, K.E.; Martel, R.; Lefebvre, R.; Gelinas, P.J.

    1998-12-31

    The use of surfactant solutions for the in situ recovery of residual NAPL in aquifers is increasingly considered as a viable remediation technique. The injection of a few pore volumes of high-concentration surfactant solutions can mobilize or solubilize most of the residual NAPL contacted by the solutions. However, the washing solutions` physico-chemical properties (low density and high viscosity), combined with the natural porous media heterogeneity, can prevent a good sweep of the entire contaminated volume. The objective of this laboratory study is first to select and characterize polymers that would be suitable for aquifer restoration. Their experiments showed that among several polymers, xanthan gum is the most suitable for aquifer remediation. An evaluation of xanthan gum solution rheology was made in order to predict shear rates, xanthan gum concentrations, salinity, and temperature effects on solution viscosity. The second set of experiments were made with a sand box which was designed to reproduce a simple heterogeneous media consisting of layers of sand with different permeability. These tests illustrate the xanthan gum solution`s ability to increase surfactant solution`s sweep efficiency and limit viscous fingering.

  14. Light scattering from random coils dispersed in solutions of rodlike polymers

    SciTech Connect

    Jamil, T.; Russo, P.S.; Negulescu, I.; Daly, W.H. ); Schaefer, D.W.; Beaucage, G. )

    1994-01-01

    The thermodynamics and mobility of a random-coil polymer were studied by light scattering in toluene solutions containing a rodlike polymer. The random-coil polymer was polystyrene (PS). The rodlike polymer was helical poly([gamma]-stearyl [alpha],L-glutamate), or PSLG, which aggregates end-to-end in toluene to produce long filaments. As PSLG is almost isorefractive with toluene, the scattering of PS can be measured in PSLG/toluene mixtures with almost no interference from PSLG. The apparent second virial coefficient of the PS component decreases rapidly with addition of the invisible rodlike polymer component, while the PS radius of gyration does not. The reduction of the virial coefficient, but not the size, of the random-coil polymer in the presence of PSLG is due to the occupation of connected (and linearly correlated) space. Parallel effects were observed in the mutual diffusion coefficient of the coil component, which increased with PS concentration at low rod content but did the opposite when enough PSLG was added. Extrapolated to zero PS content, the mutual diffusion coefficient is expected to approach closely the self-diffusion of trace quantities of PS in the PSLG/toluene solution. So obtained, the self-diffusion coefficient decreased with added rodlike PSLG, but not as fast as the viscosity increased; thus, the Stokes-Einstein relationship was not obeyed by PS probes in PSLG/toluene solutions. Scaling arguments are presented for the dependence of the size of a random coil in the presence of rods and for the crossover from Stokes-Einstein diffusion of the coil to a reptative type of motion. The available data are not well suited to test these relationships, due to limitations in the matrix concentration imposed by polymer incompatibility.

  15. Amorphous phase separation in crystallizable polymer blends based on poly (aryl ether ketones) and poly (ether imide)

    SciTech Connect

    Kalika, D.S.; Bristow, J.F.

    1996-12-31

    The morphology of a series of miscible crystallizable blends based on poly (aryl ether ketones) [PAEK] and poly (ether imide) [PEI] has been investigated as a function of blend composition and crystallization condition by dielectric relaxation spectroscopy. For blends of poly (ether ether ketone) [PEEK] and PEI, dielectric scans of the crystallized samples reveal two glass-rubber relaxations corresponding to the coexistence of a mixed interlamellar amorphous phase, and a pure PEI phase located in interfibrillar/interspherulitic regions. The exclusion of a significant fraction of PEI outside of the crystal lamellae reflects a fundamental change in the nature of interaction between the interlamellar PEEK segments and the PEI chains owing to the constraints imposed on the PEEK segments by the crystal surfaces. The degree of PEI exclusion is dependent upon kinetic factors, i.e. the rate of PEEK crystallization relative to the rate of PEI diffusion away from the advancing crystal front. As a result, lower crystallization temperatures lead to an increase in the amount of PEI trapped in the interlamellar regions. In this work, the morphological characteristics of the PEEK/PEI blends are compared with those of blends comprised of poly (ether ketone ketone) [PEKK] and PEI. The introduction of the {open_quotes}kinked{close_quote} isophthalate moiety in the PEKK backbone has been shown to disrupt the persistence of order at the crystal-amorphous interface, and thereby leads to a reduction in the degree of constraint imposed by the crystal lamellae on the amorphous (interlamellar) PEKK segments. The impact of this reduction in crystalline constraint on the nature of the PEKK/PEI intersegmental interactions and the corresponding PEI segregation is discussed.

  16. Flow-enhanced solution printing of all-polymer solar cells

    SciTech Connect

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.

  17. Flow-enhanced solution printing of all-polymer solar cells

    PubMed Central

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A.; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C. K.; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F.; Mannsfeld, Stefan C. B.; Bao, Zhenan

    2015-01-01

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility. PMID:26264528

  18. Cell separations and the demixing of aqueous two phase polymer solutions in microgravity

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.

    1991-01-01

    Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.

  19. Cell separations and the demixing of aqueous two phase polymer solutions in microgravity

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.

    1991-01-01

    Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.

  20. Flow-enhanced solution printing of all-polymer solar cells.

    PubMed

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; Shaw, Leo; Wang, Cheng; Park, Steve; Guo, Yikun; Reinspach, Julia A; Gu, Kevin; Gu, Xiaodan; Tee, Benjamin C K; Pang, Changhyun; Yan, Hongping; Zhao, Dahui; Toney, Michael F; Mannsfeld, Stefan C B; Bao, Zhenan

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a ∼90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhanced all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. We expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.

  1. Amphipols: Polymers that keep membrane proteins soluble in aqueous solutions

    PubMed Central

    Tribet, Christophe; Audebert, Roland; Popot, Jean-Luc

    1996-01-01

    Amphipols are a new class of surfactants that make it possible to handle membrane proteins in detergent-free aqueous solution as though they were soluble proteins. The strongly hydrophilic backbone of these polymers is grafted with hydrophobic chains, making them amphiphilic. Amphipols are able to stabilize in aqueous solution under their native state four well-characterized integral membrane proteins: (i) bacteriorhodopsin, (ii) a bacterial photosynthetic reaction center, (iii) cytochrome b6f, and (iv) matrix porin. PMID:8986761

  2. Employment of the Rheological Characteristics of Polymer Solutions in Modeling Film Production

    NASA Astrophysics Data System (ADS)

    Al Joda, H. N. A.; Pyshnograi, G. V.; Shipovskaya, A. B.; Tregubova, Yu. B.; Zinovich, S. A.

    2016-11-01

    A mathematical model of the process of film formation from a polymer solution is proposed. The rheological parameters of the model were determined by comparing theoretical curves and experimental data for chitosan solutions measured in their simple shear flow. Dimensionless similarity criteria were found for the rheological characteristics of the process. The effect of these criteria on the velocity, concentration, and width of the film in relation to the distance from the die exit is estimated.

  3. Particle manipulation through polymer solutions in microfluidic processes

    NASA Astrophysics Data System (ADS)

    Del Giudice, F.; D'Avino, G.; Villone, M. M.; Greco, F.; Maffettone, P. L.

    2015-12-01

    Manipulation of particles suspended in fluids flowing in microfluidic channels is required in a variety of biological, diagnostic and therapeutic applications. For instance, alignment of particles into a tight stream is a necessary step prior to counting, detecting, and sorting. Generally, this task is accomplished by using a Newtonian fluid as suspending medium and by properly fabricating a complex device aimed to displace particle trajectories. In the last years, however, the use of polymeric liquids in microfluidic processes has received a growing interest. Indeed, the addition of a small amount of polymer in a Newtonian suspension flowing in a channel promotes "internal" forces that can be exploited to manipulate the trajectories of suspended particles in simple devices. In this work, we show the possibility to align particles in simple square-shaped microfluidic channels by exploiting viscoelastic forces in flowing suspending liquids. Experiments have been performed to investigate the effect of the channel length, flow rate, confinement ratio (i.e., the ratio between the particle and channel size) and fluid rheology on the particle alignment. Finally, we present experimental results where particle alignment induced by fluid viscoelasticity is combined with magnetophoresis to deflect magnetic beads in a H-shaped channel. High-efficiency separation of magnetic and non-magnetic beads is demonstrated.

  4. DNA-functionalized gold nanoparticles in macromolecularly crowded polymer solutions.

    PubMed

    Shin, Jeehae; Zhang, Xu; Liu, Juewen

    2012-11-15

    DNA-functionalized gold nanoparticles (AuNPs) are one of the most commonly used reagents in nanobiotechnology. They are important not only for practical applications in analytical chemistry and drug delivery, but also for fundamental understanding of nanoscience. For biological samples such as blood serum or for intracellular applications, the effects of crowded cellular proteins and nucleic acids need to be considered. The thermodynamic effect of crowding is to induce nanoparticle aggregation. But before such aggregation can take place, there might also be a depletion repulsive barrier. Polyethylene glycol (PEG) is one of the most frequently used polymers to mimic the crowded cellular environment. We show herein that while DNA-functionalized AuNPs are very stable in buffer (e.g., no PEG) and citrate-capped AuNPs are very stable in PEG, DNA-functionalized AuNPs are unstable in PEG and are easily aggregated. Although such aggregation in PEG is mediated by DNA, no sharp melting transition typical for DNA-linked AuNPs is observed. We attribute this broad melting to depletion force instead of DNA base pairing. The effects of PEG molecular weight, concentration and temperature have been studied in detail and we also find an interesting PEG phase separation and AuNP partition into the water-rich phase at high temperature.

  5. Prediction of Solution Properties of Flexible-Chain Polymers: A Computer Simulation Undergraduate Experiment

    ERIC Educational Resources Information Center

    de la Torre, Jose Garcia; Cifre, Jose G. Hernandez; Martinez, M. Carmen Lopez

    2008-01-01

    This paper describes a computational exercise at undergraduate level that demonstrates the employment of Monte Carlo simulation to study the conformational statistics of flexible polymer chains, and to predict solution properties. Three simple chain models, including excluded volume interactions, have been implemented in a public-domain computer…

  6. Prediction of Solution Properties of Flexible-Chain Polymers: A Computer Simulation Undergraduate Experiment

    ERIC Educational Resources Information Center

    de la Torre, Jose Garcia; Cifre, Jose G. Hernandez; Martinez, M. Carmen Lopez

    2008-01-01

    This paper describes a computational exercise at undergraduate level that demonstrates the employment of Monte Carlo simulation to study the conformational statistics of flexible polymer chains, and to predict solution properties. Three simple chain models, including excluded volume interactions, have been implemented in a public-domain computer…

  7. Effect of stretching-induced changes in hydrodynamic screening on coil-stretch hysteresis of unentangled polymer solutions

    NASA Astrophysics Data System (ADS)

    Prabhakar, Ranganathan; Sasmal, Chandi; Nguyen, Duc At; Sridhar, Tam; Prakash, J. Ravi

    2017-01-01

    Extensional rheometry and Brownian dynamics simulations of flexible polymer solutions confirm predictions based on blob concepts that coil-stretch hysteresis in extensional flows increases with concentration, reaching a maximum at the critical overlap concentration c* before progressively vanishing in the semidilute regime. These observations demonstrate that chain stretching strengthens intermolecular hydrodynamic screening in dilute solutions, but weakens it in semidilute solutions. Flow can thus strongly modify the concentration dependence of viscoelastic properties of polymer solutions.

  8. Flow of Viscoelastic Polymer Solutions through Filter Screens

    NASA Astrophysics Data System (ADS)

    Machač, Ivan; Surý, Alexander; Šiška, Bedřich

    2011-07-01

    In this contribution, the measurements are presented of the pressure drop in the creeping flow of viscoelastic solution of polyacrylamides through metal wire screens, differing in wire diameter, aperture dimension, and type of weaving. In this flow, a strong elastic pressure drop excess manifest itself. Analysing the extensive set of experimental data, it was verified that for engineering estimation of the pressure drop excess, a simple form of the corrective Deborah number function can be used.

  9. Physical-Chemical Studies of Solutions Processing of Nematic Polymers

    DTIC Science & Technology

    1989-02-08

    be used in the preparation of molecular composites . The system has h-en studied prevIousiv, principally with respect to its use in the formation of...filmq [6]. A single phase of the three component solutions is an essential requirement in the preparation of A molecular composite . Accordingly, ternary...discussed in the preceding section [51. Such aggregation could have a deleterious effect on the mechanical properties a molecular composite processed fr

  10. Solution-Processable Hyperbranched Conjugated Polymer Nanoparticles Based on C3h -Symmetric Benzotrithiophene for Polymer Solar Cells.

    PubMed

    Wu, Xiaofu; Zhang, Zijian; Hang, Hao; Chen, Yonghong; Xu, Yuxiang; Tong, Hui; Wang, Lixiang

    2017-02-21

    The development of photovoltaic polymers based on C3h -symmetric benzotrithiophene (C3h -BTT), an analogue of the well-known benzodithiophene (BDT) donor unit, has been severely limited due to difficult processability. Here the authors report the preparation of solution-processable C3h -BTT-based hyperbranched conjugated polymer nanoparticles (BTT-HCPNs) with tunable particle sizes via Stille miniemulsion polymerization. Compared with the corresponding star-shaped small molecule (C3h -BTT core with three diketopyrrolopyrrole arms, BTT-3DPP) with a wide bandgap (1.83 eV), both BTT-HCPNs show strong aggregation even in dilute solutions, leading to much-extended absorption (up to ≈1000 nm) and lower bandgaps (1.38 eV). The larger BTT-HCPN particle exhibits stronger aggregation and more extended absorption than the smaller one. As a result, solar cells fabricated from BTT-HCPNs/PC71 BM solutions show a power conversion efficiency up to 1.51% after DIO additive treatment, much higher than that of BTT-3DPP (0.31%).

  11. Experimental observations and dissipative particle dynamic simulations on microstructures of pH-sensitive polymer containing amorphous solid dispersions.

    PubMed

    Sun, Mengchi; Li, Bingyu; Li, Yanchun; Liu, Yangdan; Liu, Qi; Jiang, Hailun; He, Zhonggui; Zhao, Yongshan; Sun, Jin

    2017-01-30

    Amorphous solid dispersion (ASD) technique is an effective strategy to increase the dissolution rate of poorly soluble drugs. However, it is inherently unstable, and the molecular basis for achieving kinetic stability is not well understood. In this study, lacidipine-Eudragit_E_100 solid dispersions with 20% drug loading were prepared using the solvent evaporation. Dissolution tested showed that ASD had a significantly high rate, which was dependent on the pH of the medium. Based on time-dependent measurement of supersaturation and particle size, inhibition of crystal growth by Eudragit_E_100 differed at pH 1.2 and 6.8 to a great extent. Dissipative particle dynamic (DPD) simulation revealed that at pH 1.2, the swollen microstructures of the particles were associated with rapid drug release. At pH 6.8, a compacted microstructure of small amorphous particle-aggregated large particles was associated with slow dissolution. The DPD simulation provides insight into the structural basis for experimental observations, and thus is a useful tool to investigate the microstructures of ASD.

  12. Mechanical properties of melt-processed polymer blend of amorphous corn flour composite filler and styrene-butadiene rubber

    USDA-ARS?s Scientific Manuscript database

    The corn flour composite fillers were prepared by blending corn flour with rubber latex, dried, and cryogenically ground into powders, which were then melt-blended with rubber polymers in an internal mixer to form composites with enhanced mechanical properties. The composites prepared with melt-blen...

  13. Molecular Packing and Electronic Processes in Amorphous-like Polymer Bulk Heterojunction Solar Cells with Fullerene Intercalation

    PubMed Central

    Xiao, Ting; Xu, Haihua; Grancini, Giulia; Mai, Jiangquan; Petrozza, Annamaria; Jeng, U-Ser; Wang, Yan; Xin, Xin; Lu, Yong; Choon, Ng Siu; Xiao, Hu; Ong, Beng S.; Lu, Xinhui; Zhao, Ni

    2014-01-01

    The interpenetrating morphology formed by the electron donor and acceptor materials is critical for the performance of polymer:fullerene bulk heterojunction (BHJ) photovoltaic (PV) cells. In this work we carried out a systematic investigation on a high PV efficiency (>6%) BHJ system consisting of a newly developed 5,6-difluorobenzo[c]125 thiadiazole-based copolymer, PFBT-T20TT, and a fullerene derivative. Grazing incidence X-ray scattering measurements reveal the lower-ordered nature of the BHJ system as well as an intermixing morphology with intercalation of fullerene molecules between the PFBT-T20TT lamella. Steady-state and transient photo-induced absorption spectroscopy reveal ultrafast charge transfer (CT) at the PFBT-T20TT/fullerene interface, indicating that the CT process is no longer limited by exciton diffusion. Furthermore, we extracted the hole mobility based on the space limited current (SCLC) model and found that more efficient hole transport is achieved in the PFBT-T20TT:fullerene BHJ as compared to pure PFBT-T20TT, showing a different trend as compared to the previously reported highly crystalline polymer:fullerene blend with a similar intercalation manner. Our study correlates the fullerene intercalated polymer lamella morphology with device performance and provides a coherent model to interpret the high photovoltaic performance of some of the recently developed weakly-ordered BHJ systems based on conjugated polymers with branched side-chain. PMID:24909640

  14. The use of polymer-based electrospun nanofibers containing amorphous drug dispersions for the delivery of poorly water-soluble pharmaceuticals.

    PubMed

    Brewster, M E; Verreck, G; Chun, I; Rosenblatt, J; Mensch, J; Van Dijck, A; Noppe, M; Ariën, A; Bruining, M; Peeters, J

    2004-05-01

    Electrostatic spinning was applied to the preparation of drug-laden nanofiber for potential use in oral and topical drug delivery. While this technique is in its infancy with regard to pharmaceutical applications, a number of recent publications suggest that it may be of high value in the formulation of poorly water-soluble drugs by combining nanotechnology and solid solution/dispersion methodologies. The purpose of this article is to describe some of these recently published applications. For immediate release oral application, a water-soluble cellulose polymer was selected (i.e., hydroxypropylmethylcellulose, HPMC) while for topical application, a nonbiodegradable, water-insoluble polymer was investigated (i.e., a segmented polyurethane, SPU). Solutions of the polymer and the drugs in appropriate solvents could be spun across various potentials (16-24 kV) generating nanofibers with diameters ranging from 300 to 2000 nm. Dissolution studies found that the non-woven fabrics derived from HPMC and containing itraconazole dissolved over a time course of minutes to hours depending on the formulation used as well as the drug/polymer ratios. Drug release from the SPU samples was dependent on the incorporated drug as well as nanostructure obtained.

  15. Rigid amorphous fraction of Nylon 11 determined from TMDSC

    NASA Astrophysics Data System (ADS)

    Mao, Bin; Cebe, Peggy

    2012-02-01

    High precision, high accuracy heat capacity measurements were used to study both neat Nylon 11 and Nylon 11 nanocomposites which had been prepared by different processing procedures. The heat capacity step at the glass transition temperature was characterized from the reversing flow using temperature modulated differential scanning calorimetry, and this allows us to determine the mobile amorphous fraction. Heat fusion was obtained from endotherm area of the total heat flow curve, and was correlated with the degree of crystallinity determined from X-ray diffraction. Based on three phase model of the semicrystalline polymer structure, the rigid amorphous fraction (RAF) in Nylon 11 could be calculated. Studied Nylon 11 samples include solution cast, liquid quenched, and isothermally crystallized films, solution cast films containing multi-walled carbon nanotubes, and electrospun fibers. We observed that a rigid amorphous fraction exists in all Nylon 11 samples, and the amount of RAF is strongly dependent upon the crystalline fraction and the nanofiller content.

  16. Dilute and Semidilute Solutions of a Nonionic, Rigid, Water-soluble Polymer

    NASA Astrophysics Data System (ADS)

    Russo, Paul; Huberty, Wayne; Zhang, Donghui; Water-Soluble Rodlike Polymer Team Collaboration

    2014-03-01

    The solution physics of random polymer chains was established largely on the behavior of commercial polymers such as polystyrene for organic solvents or nonionic poly(ethyleneoxide) for aqueous solvents. Not only are these materials widely available for industrial use, they can be synthesized to be essentially monodisperse. When it comes to stiff polymers, good choices are few and less prone to be used in industrial applications. Much was learned from polypeptides such as poly(benzylglutamate) or poly(stearylglutamate) in polar organic solvents and nonpolar organic solvents, respectively, but aqueous systems generally require charge. Poly(Nɛ-2-[2-(2-Methoxyethoxy) ethoxy]acetyl-L-Lysine) a.k.a. PEGL was pioneered by Deming and coworkers. In principle, PEGL provides a convenient platform from which to study stiff polymer behavior--phase relations, dynamics, liquid crystal formation and gelation--all with good molecular weight control and uniformity and without electrical charge. Still, a large gap in knowledge exists between PEGL and traditional rodlike polymer systems. To narrow this gap, dynamic and static scattering, circular dichroism, and viscosity measurements have been made in dilute and semidilute solutions as necessary preliminaries for lyotropic liquid crystalline and gel phases. Supported by NSF DMR 1306262. Department of Chemistry and Macromolecular Studies Group. Current address: Georgia Institute of Technology, School of Materials Science and Engineering.

  17. Phase behavior and second osmotic virial coefficient for competitive polymer solvation in mixed solvent solutions.

    PubMed

    Dudowicz, Jacek; Freed, Karl F; Douglas, Jack F

    2015-11-21

    We apply our recently developed generalized Flory-Huggins (FH) type theory for the competitive solvation of polymers by two mixed solvents to explain general trends in the variation of phase boundaries and solvent quality (quantified by the second osmotic virial coefficient B2) with solvent composition. The complexity of the theoretically predicted miscibility patterns for these ternary mixtures arises from the competitive association between the polymer and the solvents and from the interplay of these associative interactions with the weak van der Waals interactions between all components of the mixture. The main focus here lies in determining the influence of the free energy parameters for polymer-solvent association (solvation) and the effective FH interaction parameters {χαβ} (driving phase separation) on the phase boundaries (specifically the spinodals), the second osmotic virial coefficient B2, and the relation between the positions of the spinodal curves and the theta temperatures at which B2 vanishes. Our classification of the predicted miscibility patterns is relevant to numerous applications of ternary polymer solutions in industrial formulations and the use of mixed solvent systems for polymer characterization, such as chromatographic separation where mixed solvents are commonly employed. A favorable comparison of B2 with experimental data for poly(methyl methacrylate)/acetonitrile/methanol (or 1-propanol) solutions only partially supports the validity of our theoretical predictions due to the lack of enough experimental data and the neglect of the self and mutual association of the solvents.

  18. Phase behavior and second osmotic virial coefficient for competitive polymer solvation in mixed solvent solutions

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2015-11-01

    We apply our recently developed generalized Flory-Huggins (FH) type theory for the competitive solvation of polymers by two mixed solvents to explain general trends in the variation of phase boundaries and solvent quality (quantified by the second osmotic virial coefficient B 2 ) with solvent composition. The complexity of the theoretically predicted miscibility patterns for these ternary mixtures arises from the competitive association between the polymer and the solvents and from the interplay of these associative interactions with the weak van der Waals interactions between all components of the mixture. The main focus here lies in determining the influence of the free energy parameters for polymer-solvent association (solvation) and the effective FH interaction parameters {χαβ} (driving phase separation) on the phase boundaries (specifically the spinodals), the second osmotic virial coefficient B 2 , and the relation between the positions of the spinodal curves and the theta temperatures at which B 2 vanishes. Our classification of the predicted miscibility patterns is relevant to numerous applications of ternary polymer solutions in industrial formulations and the use of mixed solvent systems for polymer characterization, such as chromatographic separation where mixed solvents are commonly employed. A favorable comparison of B 2 with experimental data for poly(methyl methacrylate)/acetonitrile/methanol (or 1-propanol) solutions only partially supports the validity of our theoretical predictions due to the lack of enough experimental data and the neglect of the self and mutual association of the solvents.

  19. Current applications of foams formed from mixed surfactant-polymer solutions.

    PubMed

    Bureiko, Andrei; Trybala, Anna; Kovalchuk, Nina; Starov, Victor

    2015-08-01

    Foams cannot be generated without the use of special foaming agents, as pure liquids do not foam. The most common foaming agents are surfactants, however often for foam stability one active agent is not enough, it is necessary to add other component to increase foam lifetime. Foams on everyday use are mostly made from mixture of different components. Properly chosen combinations of two active ingredients lead to a faster foam formation and increased foam stability. During the last decade polymers (mainly polyelectrolytes and proteins) have become frequently used additives to foaming solutions. Mixtures of surfactants and polymers often demonstrate different foaming properties in comparison to surfactant only or polymer only solutions. The nature of surfactant-polymer interactions is complicated and prediction of resulting foaming properties of such formulations is not straightforward. Properties and foaming of surfactant-polymer mixtures are discussed as well as current applications of foams and foaming agents as foams are widely used in cosmetics, pharmaceutics, medicine and the food industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Effect of some anionic polymers on pH of triethanolamine aqueous solutions.

    PubMed

    Musiał, Witold; Kubis, Aleksander

    2004-01-01

    One of the suggested approaches in the management and prophylaxis of acne involves binding of free fatty acids in the form of soap with alcoholamines. Due to a possible irritating effect of alcoholamines associated with a relatively high pH of their aqueous solutions, complexation of alcoholamines with acid polymers is advocated. Triethanolamine is one of the best recognized alcoholamines. It was conventionally neutralized with Carbopols, Eudragits, alginic acid and pectin. During neutralization of polymer dispersions with triethanolamine, variations in the course of the neutralization curve have been observed among individual macromolecular compounds. The pH of 0.1 mol/l triethanolamine solution reaches 10.51, while following a complete neutralization with anionic polymers, such as Carbopols, Eudragits, alginic acid and pectin, pH ranges from 3.88 for systems neutralized with alginic acid to 8.50 for the system neutralized with Eudragit S-100. Complexation of triethanolamine with anionic polymers decreases its pH, and it is possible to find such pH range in which pH of the preparation containing the polymer and triethanolamine will correspond to the physiological pH of the skin.

  1. Axisymmetric instabilities in electrospinning of highly conducting, viscoelastic polymer solutions

    NASA Astrophysics Data System (ADS)

    Carroll, Colman P.; Joo, Yong Lak

    2009-10-01

    In this paper the axisymmetric instabilities observed during the electrospinning of highly electrically conducting, viscoelastic poly(ethylene oxide) (PEO)/water solutions are investigated. In our theoretical study, a linear stability analysis is coupled with a model for the stable electrospun jet. The combined model is used to calculate the expected bead growth rate and wave number for given electrospinning conditions. In the experimental section of the study, PEO/water solutions are electrospun and the formation of axisymmetric beads is captured using high-speed photography. Experimental values for the bead growth rate and wave number are extracted and compared with the model predictions. An energy analysis is then carried out on the stability results to investigate the mechanism of instability via the coupling between base flow and perturbation. The analysis reveals that the unstable axisymmetric mode for electrically driven, highly conducting jets is not a capillary mode, but is mainly driven by electrical forces due to the interaction of charges on the jet. We note that this axisymmetric, conducting mode often exhibits a growth rate too small to be observed during electrospinning. However, both our experiments and stability analysis demonstrate that the axisymmetric instability with a high growth rate can be seen in practice when the electrical force is effectively coupled with viscoelastic forces.

  2. Influence of second virial coefficient and persistence length on dilute solution polymer conformation.

    PubMed

    Haidar Ahmad, Imad A; Striegel, André M

    2011-02-01

    The effect of different types of short- and long-range intrachain interactions along the polymeric backbone on the persistence length of a polymer, as well as on other properties such as solvation (characterized by the second virial coefficient), dilute solution conformation, specific refractive index increment, and intrinsic viscosity, were studied using multi-detector size-exclusion chromatography and off-line techniques. The polymers in this study, namely, polystyrene (PS), poly(vinyl chloride) (PVC), and poly(p-vinylbenzyl chloride) (PpVBC), were chosen based on intrachain interactions specific to each, intrachain repulsion in PVC, attraction in PS, and hindered attraction in PpVBC, and also based on a coincidence in molar mass averages and distributions between the polymers. The latter allowed polymeric properties of the three polymers to be compared to each other at the same molar mass and/or degree of polymerization. From the comparisons emerged the effects of intrachain repulsion between consecutive monomers and of the second virial coefficient on chain stiffness and solvation. The increase in the second virial coefficient corresponded to an increase in both polymer solvation and rigidity, while increased intrachain repulsion between consecutive monomers increased polymer solvation while decreasing chain rigidity.

  3. Removal of Parabens from Aqueous Solution Using β-Cyclodextrin Cross-Linked Polymer

    PubMed Central

    Chin, Yuk Ping; Mohamad, Sharifah; Abas, Mhd Radzi Bin

    2010-01-01

    The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD) polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI) and toluene-2,6-diisocyanate (TDI), with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were subsequently used for further studies. The adsorption capacity of β-CD-HMDI is 0.0305, 0.0376, 0.1854 and 0.3026 mmol/g for methyl-, ethyl-, propyl-, and benzyl-paraben, respectively. β-CD-TDI have higher adsorption capacities compared with β-CD-HMDI, the adsorption capacity are 0.1019, 0.1286, 0.2551, and 0.3699 mmol/g methyl-, ethyl-, propyl-, and benzyl-paraben respectively. The parameters studied were adsorption capacity, water retention, and reusability. Role of both cross-linker in adsorption, hydrophobicity of polymers, and adsorption capacity of different parabens were compared and discussed. All experiments were conducted in batch adsorption technique. These polymers were applied to real samples and showed positive results. PMID:20957106

  4. Removal of parabens from aqueous solution using β-cyclodextrin cross-linked polymer.

    PubMed

    Chin, Yuk Ping; Mohamad, Sharifah; Abas, Mhd Radzi Bin

    2010-09-20

    The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD) polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI) and toluene-2,6-diisocyanate (TDI), with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were subsequently used for further studies. The adsorption capacity of β-CD-HMDI is 0.0305, 0.0376, 0.1854 and 0.3026 mmol/g for methyl-, ethyl-, propyl-, and benzyl-paraben, respectively. β-CD-TDI have higher adsorption capacities compared with β-CD-HMDI, the adsorption capacity are 0.1019, 0.1286, 0.2551, and 0.3699 mmol/g methyl-, ethyl-, propyl-, and benzyl-paraben respectively. The parameters studied were adsorption capacity, water retention, and reusability. Role of both cross-linker in adsorption, hydrophobicity of polymers, and adsorption capacity of different parabens were compared and discussed. All experiments were conducted in batch adsorption technique. These polymers were applied to real samples and showed positive results.

  5. Dual chamber capillary viscometer for viscosity measurements of concentrated polymer solutions at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Akkarachittoor, Narayanan S.; Fricke, Arthur L.; Small, James D., Jr.

    1986-06-01

    A dual chamber capillary viscometer (DCCV) has been designed and constructed to measure steady shear viscosity of concentrated polymer solutions at temperatures above the solution normal boiling point. Projected equipment capabilities are as follows: Shear rate: 102≤γ˙≤104 s-1, Viscosity: 10-1≤η≤104 Pa s, Temperature: 300 ≤T≤520 K. Equipment design and results using Newtonian viscosity standards and various Newtonian polymer solutions are presented. Viscosity results determined with Newtonian standards are within ±5% or better of the reported values and two different concentrated polymer solutions and a paper coating (a suspension of clay in a starch-water solution) were used to test the equipment capabilities over wide ranges of shear rate, viscosity, and temperature. The ranges of equipment capabilities tested to date are Shear rate: 300≤γ≤5500 s-1, Viscosity: 0.12≤η≤7.5 Pa s, Temperature: 299≤T≤399 K.

  6. Solution Behavior of Modified Polyethylenimine (PEI) Polymers by Light Scattering Investigations

    SciTech Connect

    Sonny A. Ekhorutomwen; Samuel P. Sawan; Barbara F. Smith; Thomas W. Robison; Kennard V. Wilson

    2004-03-18

    The eight average molecular weights, as well as other characteristics such as the second virial coefficients and root-mean-square (RMS) radii of gyration of poly (ethyleneimine) (PEI) and various derivatives, have been determined in solution light scattering studies. The solution dynamics of PEI and carboxylated and phosphorylated derivatives were studied a pH of 3.3, 7.0 and 10.0. Measurements were made in freshly distilled and de-ionized water as well as in 0.1 M, 1 M and 5-M solutions of sodium chloride in water. Molecular weights were calculated from Berry plots. The purified polymer, PEI-1, gave a molecular weight of 39,600 g/mol., while the same polymer, which was not purified, PEI-2, has MW of 43,100 g/mol.

  7. Simultaneous Prediction of Upper and Lower Critical Temperatures in Polymer Solutions Using a Constant Parameter Set

    NASA Astrophysics Data System (ADS)

    Clark, Elizabeth; Lipson, Jane

    2009-03-01

    Polymer solutions commonly exhibit phase separation and so the ability to predict temperatures and compositions associated with immiscibility is advantageous to experimentalists. We have been applying a simple lattice model that is capable of capturing both upper (UCST) and lower critical solution temperature (LCST) type phase behavior for polymer blends. Most recently we have become interested in mixtures which simultaneously exhibit both types of phase behavior. Examples include polyisobutylene (PIB) in pure and mixed solvents, and cyclohexane/polystyrene mixtures. We have found that with a single set of temperature-independent parameters the lattice theory is capable of capturing all the physics of these solutions; in addition we discuss conditions under which 'hourglass' phase diagrams result.

  8. A solution state diode using semiconductor polymer nanorods with nanogap electrodes.

    PubMed

    Mutlu, Senol; Sonmez, Bedri Gurkan

    2012-06-22

    A solution state polymer diode, which uses regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT):dichlorobenzene solution as the semiconductor between highly doped p-type silicon and aluminum electrodes has been built. Electrodes separated by a 40 nm gap enable intra-chain charge carrier transfer through the lengths of single polymer chains. This prevents chain to chain hopping and chain entanglements, increasing carrier mobility. The degradation with time and hysteresis effects of the diodes are measured. An optimal P3HT solution concentration of 6 mg ml(-1) is found. A current density of at least 300 mA cm(-2) is achieved, indicating at least a six-fold improvement in carrier mobility compared to previously fabricated solid state P3HT diodes.

  9. Structure, surface excess and effective interactions in polymer nanocomposite melts and concentrated solutions.

    PubMed

    Hooper, J B; Schweizer, K S; Desai, T G; Koshy, R; Keblinski, P

    2004-10-08

    The Polymer Reference Interaction Site Model (PRISM) theory is employed to investigate structure, effective forces, and thermodynamics in dense polymer-particle mixtures in the one and two particle limit. The influence of particle size, degree of polymerization, and polymer reduced density is established. In the athermal limit, the surface excess is negative implying an entropic dewetting interface. Polymer induced depletion interactions are quantified via the particle-particle pair correlation function and potential of mean force. A transition from (nearly) monotonic decaying, attractive depletion interactions to much stronger repulsive-attractive oscillatory depletion forces occurs at roughly the semidilute-concentrated solution boundary. Under melt conditions, the depletion force is extremely large and attractive at contact, but is proceeded by a high repulsive barrier. For particle diameters larger than roughly five monomer diameters, division of the force by the particle radius results in a nearly universal collapse of the depletion force for all interparticle separations. Molecular dynamics simulations have been employed to determine the depletion force for nanoparticles of a diameter five times the monomer size over a wide range of polymer densities spanning the semidilute, concentrated, and melt regimes. PRISM calculations based on the spatially nonlocal hypernetted chain closure for particle-particle direct correlations capture all the rich features found in the simulations, with quantitative errors for the amplitude of the depletion forces at the level of a factor of 2 or less. The consequences of monomer-particle attractions are briefly explored. Modification of the polymer-particle pair correlations is relatively small, but much larger effects are found for the surface excess including an energetic driven transition to a wetting polymer-particle interface. The particle-particle potential of mean force exhibits multiple qualitatively different behaviors

  10. Interaction Mechanisms between Air Bubble and Molybdenite Surface: Impact of Solution Salinity and Polymer Adsorption.

    PubMed

    Xie, Lei; Wang, Jingyi; Yuan, Duowei; Shi, Chen; Cui, Xin; Zhang, Hao; Liu, Qi; Liu, Qingxia; Zeng, Hongbo

    2017-03-07

    The surface characteristics of molybdenite (MoS2) such as wettability and surface interactions have attracted much research interest in a wide range of engineering applications, such as froth flotation. In this work, a bubble probe atomic force microscope (AFM) technique was employed to directly measure the interaction forces between an air bubble and molybdenite mineral surface before/after polymer (i.e., guar gum) adsorption treatment. The AFM imaging showed that the polymer coverage on the surface of molybdenite could achieve ∼5.6, ∼44.5, and ∼100% after conditioning in 1, 5, and 10 ppm polymer solution, respectively, which coincided with the polymer coverage results based on contact angle measurements. The electrolyte concentration and surface treatment by polymer adsorption were found to significantly affect bubble-mineral interaction and attachment. The experimental force results on bubble-molybdenite (without polymer treatment) agreed well with the calculations using a theoretical model based on the Reynolds lubrication theory and augmented Young-Laplace equation including the effect of disjoining pressure. The overall surface repulsion was enhanced when the NaCl concentration decreased from 100 to 1 mM, which inhibited the bubble-molybdenite attachment. After conditioning the molybdenite surface in 1 ppm polymer solution, it was more difficult for air bubbles to attach to the molybdenite surface due to the weakened hydrophobic interaction with a shorter decay length. Increasing the polymer concentration to 5 ppm effectively inhibited bubble attachment on mineral surface, which was mainly due to the much reduced hydrophobic interaction as well as the additional steric repulsion between the extended polymer chains and bubble surface. The results provide quantitative information on the interaction mechanism between air bubbles and molybdenite mineral surfaces on the nanoscale, with useful implications for the development of effective polymer depressants

  11. Chain propagator, mass, and universality in polymer solutions from Brownian relativity

    SciTech Connect

    Mezzasalma, Stefano A. . E-mail: mezzasalma@bbcm1.univ.trieste.it

    2005-08-01

    A Lagrangian theory for single chains in polymer solutions is addressed via a recent Brownian relativity. By employing generalized diffusive coordinates, statements of covariance and diffusivity invariance result into free particle Lagrangians, where mass turns out to rise as a universal spacetime property. It descends from lowering diffusivity (or curving spacetime), so identifying a mechanism which conceptually resemble those ruling macromolecular scaling laws. An extended chain propagator recovers the Gaussian end-to-end distribution and, in the limits of time-like and space-like orbits, the dualism for diffusive paths and polymer random-walks00.

  12. An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems.

    PubMed

    Tian, Yiwei; Jones, David S; Andrews, Gavin P

    2015-04-06

    Using phase diagrams derived from Flory-Huggins theory, we defined the thermodynamic state of amorphous felodipine within three different polymeric carriers. Variation in the solubility and miscibility of felodipine within different polymeric materials (using F-H theory) has been identified and used to select the most suitable polymeric carriers for the production of amorphous drug-polymer solid dispersions. With this information, amorphous felodipine solid dispersions were manufactured using three different polymeric materials (HPMCAS-HF, Soluplus, and PVPK15) at predefined drug loadings, and the crystal growth rates of felodipine from these solid dispersions were investigated. Crystallization of amorphous felodipine was studied using Raman spectral imaging and polarized light microscopy. Using this data, we examined the correlation among several characteristics of solid dispersions to the crystal growth rate of felodipine. An exponential relationship was found to exist between drug loading and crystal growth rate. Moreover, crystal growth within all selected amorphous drug-polymer solid dispersion systems were viscosity dependent (η(-ξ)). The exponent, ξ, was estimated to be 1.36 at a temperature of 80 °C. Values of ξ exceeding 1 may indicate strong viscosity dependent crystal growth in the amorphous drug-polymer solid dispersion systems. We argue that the elevated exponent value (ξ > 1) is a result of drug-polymer mixing which leads to a less fragile amorphous drug-polymer solid dispersion system. All systems investigated displayed an upper critical solution temperature, and the solid-liquid boundary was always higher than the spinodal decomposition curve. Furthermore, for PVP-FD amorphous dispersions at drug loadings exceeding 0.6 volume ratio, the mechanism of phase separation within the metastable zone was found to be driven by nucleation and growth rather than liquid-liquid separation.

  13. Theory of nematic systems of semiflexible polymers. III. Phase equilibria in solutions

    NASA Astrophysics Data System (ADS)

    Ronca, G.; Yoon, D. Y.

    1985-07-01

    Biphasic equilibria of lyotropic solutions of semiflexible polymers are calculated using the worm-like chain model with limiting curvature. The threshold concentration at incipient phase separation varies gradually with molecular weight to reach a finite value at infinite chain length. This limiting concentration is found to depend on the axial ratio of the persistence length and on the temperature. The theory is then applied specifically to poly(n-hexyl isocyanate) (PHIC) solutions. Deriving the configurational parameters from measurements on chain dimensions in dilute solutions, theoretical calculations are found to satisfactorily match recent experimental results on the molecular weight dependence of the threshold concentration of PHIC in toluene.

  14. Surfactant-mediated modulation of hydrophobic interactions in associative polymer solutions containing cyclodextrin.

    PubMed

    Talwar, Sachin; Harding, Jonathon; Oleson, Keith R; Khan, Saad A

    2009-01-20

    The ability of nonionic surfactants to modulate the rheological characteristics of comblike hydrophobically modified associative polymer solutions containing cyclodextrin (CD) is examined. Addition of either alpha- or beta-CD to these polymers results in a marked decrease in solution viscosity and viscoelastic properties because of the encapsulation of the polymer hydrophobes by CD. Nonionic surfactants, introduced to such a system, alter the hydrophobic interactions by competing with the polymer hydrophobes for complexation with the CDs. In this regard, nonylphenol ethoxylates (NPe) with different ethylene oxide chain lengths, which determine the hydrophilic-lipophilic balance (HLB) of the surfactant, are used. Our results reveal that the extent and rate of recovery of zero shear viscosity as well as dynamic moduli are strongly influenced by the type of CD (alpha versus beta) as well as the HLB of the surfactant. For polymer solutions containing alpha-CD, recovery is observed solely in the presence of a low-HLB surfactant (NP6 and NP8). Additionally, in the case of NP6, the viscosity increases monotonically above the original hydrophobically modified alkali-soluble emulsion viscosity with surfactant addition, whereas for that of a higher HLB surfactant (NP15), the viscosity shows no appreciable change. In the case of beta-CD, on the other hand, a complete recovery as well as further enhancement of rheological properties is achieved using the above surfactants. However, the trends of viscosity modulation are dissimilar for different surfactants as we witness a monotonous increase in the case of NP6 while a maximum in viscosity is observed in the presence of NP8 and NP15. The contrasting observations can be explained in terms of varying affinities of alpha- and beta-CDs to bind with NP surfactants and the existence of different micellar structures in solution as governed by surfactant HLB. These results are further confirmed by UV/vis spectroscopy and cloud point

  15. Probing Interactions between Air Bubble and Hydrophobic Polymer Surface: Impact of Solution Salinity and Interfacial Nanobubbles.

    PubMed

    Cui, Xin; Shi, Chen; Xie, Lei; Liu, Jing; Zeng, Hongbo

    2016-11-01

    The interactions between air bubbles and hydrophobic polymer surfaces in aqueous media play important roles in many industrial and engineering processes. In this work, the interaction forces between air bubble and a model hydrophobic polymer-polystyrene (PS) in NaCl solutions (1 mM to 1000 mM) were directly measured using a bubble probe atomic force microscope (AFM) technique, and the measured forces were analyzed by a theoretical model based on Reynolds lubrication theory and augmented Young-Laplace equation including the influence of disjoining pressure. It was found that the theoretical analysis, by assuming that the PS surface was a pristine and bare polymer surface in aqueous solutions, could not fully agree with the experimental force measurements at intermedium salinity condition (i.e., 100 mM NaCl), and the discrepancy could not be described by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory even including the effects of non-DLVO interactions such as hydrophobic interaction. Atomic force microscope (AFM) imaging demonstrated that the above discrepancy was caused by the presence of interfacial nanobubbles (INBs) on the hydrophobic PS surface. The solution salinity was found to significantly affect the size and surface coverage of INBs on the PS surface, thereby influencing the surface forces. At high NaCl concentration (e.g., 500 and 1000 mM), the INB formation (and its impact on the surface interactions) and electric double layer repulsion were highly suppressed, and the bubble-PS attachment was observed attributing to their hydrophobic attraction with a decay length of ∼0.75 ± 0.05 nm. The results agree with our previous surface force measurements between two PS surfaces using a surface forces apparatus. This work provides useful insights into the interaction mechanism between air bubbles and hydrophobic polymer surfaces, as well as the influence of solution salinity and interfacial nanobubbles on the bubble-polymer interaction.

  16. Dynamics of single semiflexible polymers in dilute solution.

    PubMed

    Nikoubashman, Arash; Milchev, Andrey; Binder, Kurt

    2016-12-21

    We study the dynamics of a single semiflexible chain in solution using computer simulations, where we systematically investigate the effect of excluded volume, chain stiffness, and hydrodynamic interactions. We achieve excellent agreement with previous theoretical considerations, but find that the crossover from the time τb, up to which free ballistic motion of the monomers describes the chain dynamics, to the times W(-1) or τ0, where anomalous monomer diffusion described by Rouse-type and Zimm-type models sets in, requires two decades of time. While in the limit of fully flexible chains the visibility of the anomalous diffusion behavior is thus rather restricted, the t(3/4) power law predicted for stiff chains without hydrodynamic interactions is verified. Including hydrodynamics, evidence for the predicted [tln(t)](3/4) behavior is obtained. Similar good agreement with previous theoretical predictions is found for the decay of the bond autocorrelation functions and the end-to-end vector correlation. Finally, several predictions on the variation of characteristic relaxation times with persistence length describing the chain stiffness are tested.

  17. Dynamics of single semiflexible polymers in dilute solution

    NASA Astrophysics Data System (ADS)

    Nikoubashman, Arash; Milchev, Andrey; Binder, Kurt

    2016-12-01

    We study the dynamics of a single semiflexible chain in solution using computer simulations, where we systematically investigate the effect of excluded volume, chain stiffness, and hydrodynamic interactions. We achieve excellent agreement with previous theoretical considerations, but find that the crossover from the time τb, up to which free ballistic motion of the monomers describes the chain dynamics, to the times W-1 or τ0, where anomalous monomer diffusion described by Rouse-type and Zimm-type models sets in, requires two decades of time. While in the limit of fully flexible chains the visibility of the anomalous diffusion behavior is thus rather restricted, the t3/4 power law predicted for stiff chains without hydrodynamic interactions is verified. Including hydrodynamics, evidence for the predicted [tln (t ) ] 3 /4 behavior is obtained. Similar good agreement with previous theoretical predictions is found for the decay of the bond autocorrelation functions and the end-to-end vector correlation. Finally, several predictions on the variation of characteristic relaxation times with persistence length describing the chain stiffness are tested.

  18. Biodegradable Polycaprolactone as Ion Solvating Polymer for Solution-Processed Light-Emitting Electrochemical Cells

    NASA Astrophysics Data System (ADS)

    Jürgensen, Nils; Zimmermann, Johannes; Morfa, Anthony John; Hernandez-Sosa, Gerardo

    2016-11-01

    In this work, we demonstrate the use of the biodegradable polymer polycaprolactone (PCL) as the ion solvating polymer in solution-processed light-emitting electrochemical cells (LEC). We show that the inclusion of PCL in the active layer yields higher ionic conductivities and thus contributes to a rapid formation of the dynamic p-i-n junction and reduction of operating voltages. PCL shows no phase separation with the emitter polymer and reduces film roughness. The devices show light-emission at voltages as low as 3.2 V and lifetimes on the order of 30 h operating above 150 cd m-2 with turn-on times <20 s and current and luminous efficacies of 3.2 Cd A-1 and 1.5 lm W-1 respectively.

  19. Biodegradable Polycaprolactone as Ion Solvating Polymer for Solution-Processed Light-Emitting Electrochemical Cells

    PubMed Central

    Jürgensen, Nils; Zimmermann, Johannes; Morfa, Anthony John; Hernandez-Sosa, Gerardo

    2016-01-01

    In this work, we demonstrate the use of the biodegradable polymer polycaprolactone (PCL) as the ion solvating polymer in solution-processed light-emitting electrochemical cells (LEC). We show that the inclusion of PCL in the active layer yields higher ionic conductivities and thus contributes to a rapid formation of the dynamic p-i-n junction and reduction of operating voltages. PCL shows no phase separation with the emitter polymer and reduces film roughness. The devices show light-emission at voltages as low as 3.2 V and lifetimes on the order of 30 h operating above 150 cd m−2 with turn-on times <20 s and current and luminous efficacies of 3.2 Cd A−1 and 1.5 lm W−1 respectively. PMID:27811991

  20. Biodegradable Polycaprolactone as Ion Solvating Polymer for Solution-Processed Light-Emitting Electrochemical Cells.

    PubMed

    Jürgensen, Nils; Zimmermann, Johannes; Morfa, Anthony John; Hernandez-Sosa, Gerardo

    2016-11-04

    In this work, we demonstrate the use of the biodegradable polymer polycaprolactone (PCL) as the ion solvating polymer in solution-processed light-emitting electrochemical cells (LEC). We show that the inclusion of PCL in the active layer yields higher ionic conductivities and thus contributes to a rapid formation of the dynamic p-i-n junction and reduction of operating voltages. PCL shows no phase separation with the emitter polymer and reduces film roughness. The devices show light-emission at voltages as low as 3.2 V and lifetimes on the order of 30 h operating above 150 cd m(-)(2) with turn-on times <20 s and current and luminous efficacies of 3.2 Cd A(-1) and 1.5 lm W(-1) respectively.

  1. Geometric pumping induced by shear flow in dilute liquid crystalline polymer solutions.

    PubMed

    Yabunaka, Shunsuke; Yabunaka, Shunsuka; Hayakawa, Hisao

    2015-02-07

    We investigate nonlinear rheology of dilute liquid crystalline polymer solutions under time dependent two-directional shear flow. We analyze the Smoluchowski equation, which describes the dynamics of the orientation of a liquid crystalline polymer, by employing technique of the full counting statistics. In the adiabatic limit, we derive the expression for time integrated currents generated by a Berry-like curvature. Using this expression, it is shown that the expectation values of the time-integrated angular velocity of a liquid crystalline polymer and the time-integrated stress tensor are generally not zero even if the time average of the shear rate is zero. The validity of the theoretical calculations is confirmed by direct numerical simulations of the Smoluchowski equation. Nonadiabatic effects are also investigated by means of simulations and it is found that the time-integrated stress tensor depends on the speed of the modulation of the shear rate if we adopt the isotropic distribution as an initial state.

  2. A Small-angle Study of the Solution Properties of Dendrimer-like Star Polymers

    SciTech Connect

    Pople, John A

    2001-03-22

    The solution properties of poly(e-caprolactone) dendritic polymers are investigated by small angle neutron scattering (SANS) techniques. Comparisons of the scattering function in the intermediate region of the SANS patterns with molecular dynamic simulations indicate that the dendritic polymers are relatively extended in their conformation. We report a decay exponent, which scales as l/{nu}, of -1.2, which suggests a conformation more extended than star polymers, approaching the case of sea urchins. Guinier plots of SANS patterns yield radius of gyration measurements R{sub g} {approx} 30{angstrom}, which increase with generation number. Modeling the scattering profiles according to a ''blob'' model yields values of the random walk persistence length <{xi}{sub E}> {approx} 10{angstrom}, which decreases with increasing polymerization generation.

  3. Sodium chloride methanol solution spin-coating process for bulk-heterojunction polymer solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Tong-Fang; Hu, Yu-Feng; Deng, Zhen-Bo; Li, Xiong; Zhu, Li-Jie; Wang, Yue; Lv, Long-Feng; Wang, Tie-Ning; Lou, Zhi-Dong; Hou, Yan-Bing; Teng, Feng

    2016-08-01

    The sodium chloride methanol solution process is conducted on the conventional poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) polymer bulk heterojunction solar cells. The device exhibits a power conversion efficiency of up to 3.36%, 18% higher than that of the device without the solution process. The measurements of the active layer by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and ultraviolet photoelectron spectroscopy (UPS) indicate a slight phase separation in the vertical direction and a sodium chloride distributed island-like interface between the active layer and the cathode. The capacitance-voltage (C-V) and impedance spectroscopy measurements prove that the sodium chloride methanol process can reduce the electron injection barrier and improve the interfacial contact of polymer solar cells. Therefore, this one-step solution process not only optimizes the phase separation in the active layers but also forms a cathode buffer layer, which can enhance the generation, transport, and collection of photogenerated charge carriers in the device simultaneously. This work indicates that the inexpensive and non-toxic sodium chloride methanol solution process is an efficient one-step method for the low cost manufacturing of polymer solar cells. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2014JBZ009) and the National Natural Science Foundation of China (Grant Nos. 61274063, 61377028, 61475014, and 61475017).

  4. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries.

    PubMed

    Berk Usta, O; Ladd, Anthony J C; Butler, Jason E

    2005-03-01

    A numerical method to simulate the dynamics of polymer solutions in confined geometries has been implemented and tested. The method combines a fluctuating lattice-Boltzmann model of the solvent [Ladd, Phys. Rev. Lett. 70, 1339 (1993)] with a point-particle model of the polymer chains. A friction term couples the monomers to the fluid [Ahlrichs and Dunweg, J. Chem. Phys. 111, 8225 (1999)], providing both the hydrodynamic interactions between the monomers and the correlated random forces. The coupled equations for particles and fluid are solved on an inertial time scale, which proves to be surprisingly simple and efficient, avoiding the costly linear algebra associated with Brownian dynamics. Complex confined geometries can be represented by a straightforward mapping of the boundary surfaces onto a regular three-dimensional grid. The hydrodynamic interactions between monomers are shown to compare well with solutions of the Stokes equations down to distances of the order of the grid spacing. Numerical results are presented for the radius of gyration, end-to-end distance, and diffusion coefficient of an isolated polymer chain, ranging from 16 to 1024 monomers in length. The simulations are in excellent agreement with renormalization group calculations for an excluded volume chain. We show that hydrodynamic interactions in large polymers can be systematically coarse-grained to substantially reduce the computational cost of the simulation. Finally, we examine the effects of confinement and flow on the polymer distribution and diffusion constant in a narrow channel. Our results support the qualitative conclusions of recent Brownian dynamics simulations of confined polymers [Jendrejack et al., J. Chem. Phys. 119, 1165 (2003) and Jendrejack et al., J. Chem. Phys. 120, 2513 (2004)].

  5. Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries

    NASA Astrophysics Data System (ADS)

    Berk Usta, O.; Ladd, Anthony J. C.; Butler, Jason E.

    2005-03-01

    A numerical method to simulate the dynamics of polymer solutions in confined geometries has been implemented and tested. The method combines a fluctuating lattice-Boltzmann model of the solvent [Ladd, Phys. Rev. Lett. 70, 1339 (1993)] with a point-particle model of the polymer chains. A friction term couples the monomers to the fluid [Ahlrichs and Dünweg, J. Chem. Phys. 111, 8225 (1999)], providing both the hydrodynamic interactions between the monomers and the correlated random forces. The coupled equations for particles and fluid are solved on an inertial time scale, which proves to be surprisingly simple and efficient, avoiding the costly linear algebra associated with Brownian dynamics. Complex confined geometries can be represented by a straightforward mapping of the boundary surfaces onto a regular three-dimensional grid. The hydrodynamic interactions between monomers are shown to compare well with solutions of the Stokes equations down to distances of the order of the grid spacing. Numerical results are presented for the radius of gyration, end-to-end distance, and diffusion coefficient of an isolated polymer chain, ranging from 16 to 1024 monomers in length. The simulations are in excellent agreement with renormalization group calculations for an excluded volume chain. We show that hydrodynamic interactions in large polymers can be systematically coarse-grained to substantially reduce the computational cost of the simulation. Finally, we examine the effects of confinement and flow on the polymer distribution and diffusion constant in a narrow channel. Our results support the qualitative conclusions of recent Brownian dynamics simulations of confined polymers [Jendrejack et al., J. Chem. Phys. 119, 1165 (2003) and Jendrejack et al., J. Chem. Phys. 120, 2513 (2004)].

  6. Thickness Dependent Effective Viscosity of a Polymer Solution near an Interface Probed by a Quartz Crystal Microbalance with Dissipation Method

    PubMed Central

    Fang, Jiajie; Zhu, Tao; Sheng, Jie; Jiang, Zhongying; Ma, Yuqiang

    2015-01-01

    The solution viscosity near an interface, which affects the solution behavior and the molecular dynamics in the solution, differs from the bulk. This paper measured the effective viscosity of a dilute poly (ethylene glycol) (PEG) solution adjacent to a Au electrode using the quartz crystal microbalance with dissipation (QCM-D) technique. We evidenced that the effect of an adsorbed PEG layer can be ignored, and calculated the zero shear rate effective viscosity to remove attenuation of high shear frequency oscillations. By increasing the overtone n from 3 to 13, the thickness of the sensed polymer solution decreased from ~70 to 30 nm. The zero shear rate effective viscosity of the polymer solution and longest relaxation time of PEG chains within it decrease with increasing solution thickness. The change trends are independent of the relation between the apparent viscosity and shear frequency and the values of the involved parameter, suggesting that the polymer solution and polymer chains closer to a solid substrate have a greater effective viscosity and slower relaxation mode, respectively. This method can study the effect of an interface presence on behavior and phenomena relating to the effective viscosity of polymer solutions, including the dynamics of discrete polymer chains. PMID:25684747

  7. Surfactant-aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions.

    PubMed

    Pérez-Masiá, Rocío; Lagaron, Jose M; López-Rubio, Amparo

    2014-01-30

    In this work it is demonstrated, for the first time, that it is feasible to develop, using the electrospraying technique, low molecular weight carbohydrate-based capsule morphologies from aqueous solutions through the rational use of surfactants. Two different low molecular weight carbohydrate polymers were used, a maltodextrin and a commercial resistant starch. The solution properties and subsequent high voltage sprayability was evaluated upon addition of non-ionic (Tween20, and Span20) and zwitterionic (lecithin) surfactants. The morphology and molecular organization of the structures obtained was characterized and related to the solution properties. Results showed that, while unstable jetting and dropping occurred from the pure carbohydrate solutions without surfactant, the addition of some surface active molecules above their critical micelle concentration facilitated capsule formation. Higher surfactant concentrations led to smaller and more homogeneous capsule morphologies, related to lower surface tension and higher conductivity of the solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Gate-induced superconductivity in a solution-processed organic polymer film

    NASA Astrophysics Data System (ADS)

    Schön, J. H.; Dodabalapur, A.; Bao, Z.; Kloc, Ch.; Schenker, O.; Batlogg, B.

    2001-03-01

    The electrical and optical properties of conjugated polymers have received considerable attention in the context of potentially low-cost replacements for conventional metals and inorganic semiconductors. Charge transport in these organic materials has been characterized in both the doped-metallic and the semiconducting state, but superconductivity has not hitherto been observed in these polymers. Here we report a distinct metal-insulator transition and metallic levels of conductivity in a polymer field-effect transistor. The active material is solution-cast regioregular poly(3-hexylthiophene), which forms relatively well ordered films owing to self-organization, and which yields a high charge carrier mobility (0.05-0.1cm2V-1s-1) at room temperature. At temperatures below ~2.35K with sheet carrier densities exceeding 2.5 × 1014cm-2, the polythiophene film becomes superconducting. The appearance of superconductivity seems to be closely related to the self-assembly properties of the polymer, as the introduction of additional disorder is found to suppress superconductivity. Our findings therefore demonstrate the feasibility of tuning the electrical properties of conjugated polymers over the largest range possible-from insulating to superconducting.

  9. Polymer dynamics in semidilute solution during electrospinning: a simple model and experimental observations.

    PubMed

    Greenfeld, Israel; Arinstein, Arkadii; Fezzaa, Kamel; Rafailovich, Miriam H; Zussman, Eyal

    2011-10-01

    Electrospun polymer nanofibers demonstrate outstanding mechanical and thermodynamic properties as compared to macroscopic-scale structures. Our previous work has demonstrated that these features are attributed to nanofiber microstructure [Nat. Nanotechnol. 2, 59 (2007)]. It is clear that this microstructure is formed during the electrospinning process, characterized by a high stretching rate and rapid evaporation. Thus, when studying microstructure formation, its fast evolution must be taken into account. This study focuses on the dynamics of a highly entangled semidilute polymer solution under extreme longitudinal acceleration. The theoretical modeling predicts substantial longitudinal stretching and transversal contraction of the polymer network caused by the jet hydrodynamic forces, transforming the network to an almost fully stretched state. This prediction was verified by x-ray phase-contrast imaging of electrospinning jets of poly(ethylene oxide) and poly(methyl methacrylate) semidilute solutions, which revealed a noticeable increase in polymer concentration at the jet center, within less than 1 mm from the jet start. Thus, the proposed mechanism is applicable to the initial stage of the microstructure formation.

  10. New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution.

    PubMed

    Bleek, Katrin; Taubert, Andreas

    2013-05-01

    The polymer-controlled and bioinspired precipitation of inorganic minerals from aqueous solution at near-ambient or physiological conditions avoiding high temperatures or organic solvents is a key research area in materials science. Polymer-controlled mineralization has been studied as a model for biomineralization and for the synthesis of (bioinspired and biocompatible) hybrid materials for a virtually unlimited number of applications. Calcium phosphate mineralization is of particular interest for bone and dental repair. Numerous studies have therefore addressed the mineralization of calcium phosphate using a wide variety of low- and high-molecular-weight additives. In spite of the growing interest and increasing number of experimental and theoretical data, the mechanisms of polymer-controlled calcium phosphate mineralization are not entirely clear to date, although the field has made significant progress in the last years. A set of elegant experiments and calculations has shed light on some details of mineral formation, but it is currently not possible to preprogram a mineralization reaction to yield a desired product for a specific application. The current article therefore summarizes and discusses the influence of (macro)molecular entities such as polymers, peptides, proteins and gels on biomimetic calcium phosphate mineralization from aqueous solution. It focuses on strategies to tune the kinetics, morphologies, final dimensions and crystal phases of calcium phosphate, as well as on mechanistic considerations.

  11. Solution Properties of 1,3-Cyclohexadiene Polymers by Small Angle Neutron and Light Scattering

    SciTech Connect

    Yun, Seok I; Melnichenko, Yuri B; Wignall, George D; Hong, Kunlun; Mays, Jimmy; Britt, Phillip F; Terao, Ken; Nakamura, Yo

    2006-01-01

    1,3-Cyclohexdiene polymers (PCHD) and their derivatives are of interest due to the six-member rings in the main chain, which are expected to impart higher mechanical strength and better thermal and chemical stability, as compared to common vinyl polymers. For example, hydrogenated PCHD has the highest glass transition temperature (T{sub g} {approx} 231 C) of all hydrocarbon polymers, and it also shows good heat, weather, impact, abrasion, and chemical resistance as well as low water absorption. In addition, PCHD has unique photochemical properties, such as excellent transparency, due to the isolated double bonds in the main chain. Also, block copolymers containing PCHD show unusual phase separation behavior. For example, a styrene/1,3-CHD block copolymer (PS-b-PCHD) with 50 vol % CHD (1,4/1,2 {approx} 95/5) exhibits a core-shell or hollow cylinder morphology, while a typical styrene/acyclic diene (isoprene or butadiene) block copolymer with similar composition exhibits a lamellar structure. Such phase behavior and many other properties strongly depend on the conformation of the polymer in solution or bulk. However, almost no data have been reported on the conformation of PCHD, probably because of the lack of well-defined and well-characterized samples. Here we report solution properties of PCHD in tetrahydrofuran (THF) and chloroform by multiangle laser light scattering, viscometry, and small-angle neutron scattering (SANS).

  12. Polymer dynamics in semidilute solution during electrospinning: A simple model and experimental observations

    NASA Astrophysics Data System (ADS)

    Greenfeld, Israel; Arinstein, Arkadii; Fezzaa, Kamel; Rafailovich, Miriam H.; Zussman, Eyal

    2011-10-01

    Electrospun polymer nanofibers demonstrate outstanding mechanical and thermodynamic properties as compared to macroscopic-scale structures. Our previous work has demonstrated that these features are attributed to nanofiber microstructure [Nat. Nanotechnol.1748-338710.1038/nnano.2006.172 2, 59 (2007)]. It is clear that this microstructure is formed during the electrospinning process, characterized by a high stretching rate and rapid evaporation. Thus, when studying microstructure formation, its fast evolution must be taken into account. This study focuses on the dynamics of a highly entangled semidilute polymer solution under extreme longitudinal acceleration. The theoretical modeling predicts substantial longitudinal stretching and transversal contraction of the polymer network caused by the jet hydrodynamic forces, transforming the network to an almost fully stretched state. This prediction was verified by x-ray phase-contrast imaging of electrospinning jets of poly(ethylene oxide) and poly(methyl methacrylate) semidilute solutions, which revealed a noticeable increase in polymer concentration at the jet center, within less than 1 mm from the jet start. Thus, the proposed mechanism is applicable to the initial stage of the microstructure formation.

  13. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method.

    PubMed

    Jahangiri, Azin; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef; Hamishehkar, Hamed; Adibkia, Khosro

    2016-07-13

    In the present study, electrospraying was applied as a novel method for the fabrication of amorphous nano-solid dispersions (N-SDs) of atorvastatin calcium (ATV), ezetimibe (EZT), and ATV/EZT combination as poorly water-soluble drugs. N-SDs were prepared using polyvinylpyrrolidone K30 as an amorphous carrier in 1:1 and 1:5 drug to polymer ratios and the total solid (including drug and polymer) concentrations of 10 and 20% (w/v). The prepared formulations were further investigated for their morphological, physicochemical, and dissolution properties. Scanning electron microscopy studies indicated that the morphology and diameter of the electrosprayed samples (ESs) were influenced by the solution concentration and drug:polymer ratio, so that an increase in the solution concentration resulted in fiber formation while an increase in the polymer ratio led to enhancement of the particle diameter. Differential scanning calorimetry and X-ray powder diffraction studies together with in vitro dissolution test revealed that the ESs were present in an amorphous form with improved dissolution properties. Infrared spectroscopic studies showed hydrogen-bonding interaction between the drug and polymer in ESs. Since the electrospraying method benefits from the both amorphization and nanosizing effect, this novel approach seems to be an efficient method for the fabrication of N-SDs of poorly water-soluble drugs.

  14. Concentration-dependent self-diffusion coefficients in amorphous Si{sub 1−x}Ge{sub x} solid solutions: An interdiffusion study

    SciTech Connect

    Noah, Martin A. Flötotto, David; Wang, Zumin; Mittemeijer, Eric J.

    2015-04-28

    Self-diffusion coefficients of Si and Ge in amorphous Si{sub 1−x}Ge{sub x} (a-Si{sub 1−x}Ge{sub x}) solid solutions were determined quantitatively in the temperature range of 440 °C – 460 °C by the investigation of interdiffusion in amorphous Si/Si{sub 0.52}Ge{sub 0.48} multilayers using Auger electron spectroscopy sputter-depth profiling. The determined concentration dependent self-diffusion coefficients of Si and Ge in a-Si{sub 1−x}Ge{sub x} with 0 ≤ x ≤ 0.48 at. % Ge are about ten orders of magnitude larger than in the corresponding crystalline phases, due to the inherent, excess free volume in the amorphous phase. The self-diffusion coefficient of Si (or Ge) in a-Si{sub 1−x}Ge{sub x} increases in association with a decreasing activation enthalpy with increasing Ge concentration. This concentration dependence has been related to an overall decrease of the average bond strength with increasing Ge concentration.

  15. Measurement of temperature profiles in turbulent pipe flow of polymer and surfactant drag-reducing solutions

    NASA Astrophysics Data System (ADS)

    Gasljevic, K.; Aguilar, G.; Matthys, E. F.

    2007-08-01

    A device was built to measure temperature profiles of turbulent pipe flows of various drag-reducing fluids. It is easy to use and reliable. We measured temperature profiles over a range of conditions leading to accurate measurements down to y+≈10, for tests carried over Reynolds numbers (Re) between 10 000 and 90 000. The effects of high heat fluxes and buoyancy, in particular, were quantified to ascertain the parameter range for accurate measurements. Temperature profiles measured for type-A polymer solution and for cationic surfactant solutions allowed us to see strong similarity between velocity and temperature profiles for drag-reducing surfactant solutions. A comparison between the slopes of the thermal and velocity buffer layers resulted in calculated turbulent Prandtl numbers between 6 and 9 for those drag-reducing solutions. We also used this tool to investigate drag reduction for a nonionic surfactant solution, which showed a significantly different fan-type profile, and also for a type-B drag-reducing polymer solution (Xanthan gum).

  16. The effect of heat developed during high strain rate deformation on the constitutive modeling of amorphous polymers

    NASA Astrophysics Data System (ADS)

    Safari, Keivan H.; Zamani, Jamal; Guedes, Rui M.; Ferreira, Fernando J.

    2016-02-01

    An adiabatic constitutive model is proposed for large strain deformation of polycarbonate (PC) at high strain rates. When the strain rate is sufficiently high such that the heat generated does not have time to transfer to the surroundings, temperature of material rises. The high strain rate deformation behavior of polymers is significantly affected by temperature-dependent constants and thermal softening. Based on the isothermal model which first was introduced by Mulliken and Boyce et al. (Int. J. Solids Struct. 43:1331-1356, 2006), an adiabatic model is proposed to predict the yield and post-yield behavior of glassy polymers at high strain rates. When calculating the heat generated and the temperature changes during the step by step simulation of the deformation, temperature-dependent elastic constants are incorporated to the constitutive equations. Moreover, better prediction of softening phenomena is achieved by the new definition for softening parameters of the proposed model. The constitutive model has been implemented numerically into a commercial finite element code through a user material subroutine (VUMAT). The experimental results, obtained using a split Hopkinson pressure bar, are supported by dynamic mechanical thermal analysis (DMTA) and Decompose/Shift/Reconstruct (DSR) method. Comparison of adiabatic model predictions with experimental data demonstrates the ability of the model to capture the characteristic features of stress-strain curve of the material at very high strain rates.

  17. Polymer Conformation near the Critical Demixing Point of a Binary Solution

    NASA Astrophysics Data System (ADS)

    He, Lilin; Cheng, Gang; Melnichenko, Yuri

    2012-02-01

    We have used Contrast Matching Small Angle Neutron Scattering (CMSANS) to probe directly the conformation change of polyethylene glycerol (PEO) chains in the critical demixing region of Acetonitrile-d3 in (D2O + H2O) at concentration of the components corresponding to zero-average contrast condition. The d-PEO and h-PEO were mixed to match the scattering length density (SLD) of the critical liquid solution, which allowed us to extract single-chain dimension of polymer molecules in the aggregates near the critical point of the solvent. A non-monotonic variation of Rg was detected as temperature approached the critical temperature of phase demixing of acetonitrile- water solution, which was attributed to the interaction asymmetry of the solvent molecules with polymers predicted by Brochard and de Gennes two decades ago. To our best knowledge, this is the first direct experimental evidence supporting this prediction.

  18. Wetting Kinetics: an Alternative Approach Towards Understanding the Enhanced Dissolution Rate for Amorphous Solid Dispersion of a Poorly Soluble Drug.

    PubMed

    Verma, Sanjay; Rudraraju, Varma S

    2015-10-01

    Developing amorphous solid dispersions of water-insoluble molecules using polymeric materials is a well-defined approach to improve the dissolution rate and bioavailability. While the selected polymer plays a vital role in stabilizing the amorphous solid dispersion physically, it is equally important to improve the dissolution profile by inhibiting crystallization from the supersaturated solution generated by dissolution of the amorphous material. Furthermore, understanding the mechanism of dissolution rate enhancement is of vital importance. In this work, wetting kinetics was taken up as an alternative approach for understanding the enhanced dissolution rate for amorphous solid dispersion of a poorly soluble drug. While cilostazol (CIL) was selected as the model drug, povidone (PVP), copovidone, and hypromellose (HPMC) were the polymers of choice. The concentrations against time profiles were evaluated for the supersaturated solutions of CIL in the presence and absence of the selected polymers. The degree of supersaturation increased significantly with increase in polymer content within the solid dispersion. While povidone was found to maintain the highest level of supersaturation for the greatest length of time both in dissolution and solution crystallization experiments, copovidone and hypromellose were found to be the less effective as crystallization inhibitor. The ability of polymers to generate and maintain supersaturated drug solutions was assessed by dissolution studies. The wetting kinetics was compared against the solid dispersion composition to establish a correlation with enhanced dissolution rate.

  19. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts.

    PubMed

    Zimnyakov, D A; Sevrugin, A V; Yuvchenko, S A; Fedorov, F S; Tretyachenko, E V; Vikulova, M A; Kovaleva, D S; Krugova, E Y; Gorokhovsky, A V

    2016-06-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka-Munk function reveals a presence of local maxima in the regions 0.5-1.5 eV and 1.6-3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction.

  20. Solute induced relaxation in glassy polymers: Experimental measurements and nonequilibrium thermodynamic model

    NASA Astrophysics Data System (ADS)

    Minelli, Matteo; Doghieri, Ferruccio

    2014-05-01

    Data for kinetics of mass uptake from vapor sorption experiments in thin glassy polymer samples are here interpreted in terms of relaxation times for volume dilation. To this result, both models from non-equilibrium thermodynamics and from mechanics of volume relaxation contribute. Different kind of sorption experiments have been considered in order to facilitate the direct comparison between kinetics of solute induced volume dilation and corresponding data from process driven by pressure or temperature jumps.

  1. Characterization of low viscosity polymer solutions for microchip electrophoresis of non-denatured proteins on plastic chips.

    PubMed

    Yasui, Takao; Reza Mohamadi, Mohamad; Kaji, Noritada; Okamoto, Yukihiro; Tokeshi, Manabu; Baba, Yoshinobu

    2011-12-01

    In this paper, we study characteristics of polymers (methylcellulose, hypromellose ((hydroxypropyl)methyl cellulose), poly(vinylpyrrolidone), and poly(vinyl alcohol)) with different chemical structures for microchip electrophoresis of non-denatured protein samples in a plastic microchip made of poly(methyl methacrylate) (PMMA). Coating efficiency of these polymers for controlling protein adsorption onto the channel surface of the plastic microchip, wettability of the PMMA surface, and electroosmotic flow in the PMMA microchannels in the presence of these polymers were compared. Also relative electrophoretic mobility of protein samples in solutions of these polymers was studied. We showed that when using low polymer concentrations (lower than the polymer entanglement point) where the sieving effect is substantially negligible, the interaction of the samples with the polymer affected the electrophoretic mobility of the samples. This effect can be used for achieving better resolution in microchip electrophoresis of protein samples.

  2. Dynamics of associative polymer solutions: Capillary break-up, jetting and rheology

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Serdy, James G.; Threfall-Holmes, Phil; McKinley, Gareth H.

    2011-11-01

    Associative polymer solutions are used in extensively in the formulations for water-borne paints, food, inks, cosmetics, etc to control the rheology and processing behavior of multi-component dispersions. These complex dispersions are processed and used over a broad range of shear and extensional rates. Furthermore, the commercially relevant formulations use dilute solutions of associative polymers, which have low viscosity and short relaxation times, and hence their non-Newtonian response is not apparent in a conventional rheometer. In this talk, we explore several methods for systematically exploring the linear and nonlinear solution rheology of associative polymer dispersions, including: fractional model description of physical gelation, high frequency oscillatory tests at frequencies up to 10 kHz, microfluidic shear rheometry at deformation rates up to 1000000 /s and the influence of transient extensional rheology in the jet breakup. We show that high deformation rates can be obtained in jetting flows, and the growth and evolution of instability during jetting and break-up of these viscoelastic fluids shows the influence of both elasticity and extensibility.

  3. Concurrent solution-like decoloration rate and high mechanical strength from polymer-dispersed photochromic organogel.

    PubMed

    Long, Shijun; Bi, Shuguang; Liao, Yonggui; Xue, Zhigang; Xie, Xiaolin

    2014-04-01

    To achieve a fast photochromic response in solid matrix, photochromic molecules/segments have been either dispersed into elastomers via physical doping or linked to glassy polymers by soft units through covalent bonding. However, the former is lack of high mechanical strength and the latter owes the drawback of time-consumption of synthesis. Here, we propose a facile strategy of co-solvent evaporation to prepare polymer-dispersed photochromic organogel where both high mechanical strength of the glassy polymer matrix and solution-like fast photochromism of the photochromic molecule within organogel can be retained concurrently. Glassy PVA matrix and dispersed organogel of 1,3:2,4-di-O-benzylidene-d-sorbitol/poly(propylene glycol) (DBS/PPG) provide high mechanical strength and sufficient free volume for intramolecular rotation of photochromic spiropyran (SP), respectively. Interestingly, these thin films behave a solution-like decoloration the decay rate of which is 65-70 fold faster than that in the SP-directly doped PVA film and only slightly slower than those in their corresponding PPG solutions.

  4. Theory of DNA electrophoresis in physical gels and entangled polymer solutions

    NASA Astrophysics Data System (ADS)

    Duke, Thomas; Viovy, Jean Louis

    1994-03-01

    A scaling theory is presented for the electrophoretic mobility of DNA in sieving media that form dynamically evolving meshworks, such as physical gels and solutions of entangled polymers. In such media, the topological constraints on the DNA's motion are perpetually changing as cross links break and rejoin or as the polymers diffuse. It is shown that if the rate of constraint release falls within a certain range (which depends on the field strength), fractionation can be extended to higher molecular weights than would be feasible using a permanent gel of equivalent pore size. This improvement is a consequence of the disruptive effect that constraint release has on the mechanism of molecular orientation. Numerical simulations support the predictions of the theory. The possibility of realizing such a system in practice, with the aim of improving on current electrophoresis methods, is commented upon. It is suggested that semidilute polymer solutions may be a versatile medium for the rapid separation of long single-stranded DNA molecules, and the particular quality of solution required is identified.

  5. Photovoltaic manufacturing technology monolithic amorphous silicon modules on continuous polymer substrates: Final technical report, July 5, 1995--December 31, 1999

    SciTech Connect

    Jeffrey, F.

    2000-03-28

    Iowa Thin Film Technologies is completing a three-phase program that has increased throughput and decreased costs in nearly all aspects of its thin-film photovoltaic manufacturing process. The overall manufacturing costs have been reduced by 61 percent through implementation of the improvements developed under this program. Development of the ability to use a 1-mil substrate, rather than the standard 2-mil substrate, results in a 50 percent cost-saving for this material. Process development on a single-pass amorphous silicon deposition system has resulted in a 37 percent throughput improvement. A wide range of process and machine improvements have been implemented on the transparent conducting oxide deposition system. These include detailed parameter optimization of deposition temperatures, process gas flows, carrier gas flows, and web speeds. An overall process throughput improvement of 275 percent was achieved based on this work. The new alignment technique was developed for the laser scriber and printer systems, which improved registration accuracy from 100 microns to 10 microns. The new technique also reduced alignment time for these registration systems significantly. This resulted in a throughput increase of 75 percent on the scriber and 600 percent on the printer. Automated techniques were designed and implemented for the module assembly processes. These include automated busbar attachment, roll-based lamination, and automated die cutting of finished modules. These processes were previously done by hand labor. Throughput improvements ranged from 200 percent to 1200 percent, relative to hand labor rates. A wide range of potential encapsulation materials were evaluated for suitability in a roll lamination process and for cost-effectiveness. A combination material was found that has a cost that is only 10 percent of the standard EVA/Tefzel cost and is suitable for medium-lifetime applications. The 20-year lifetime applications still require the more expensive

  6. Flow of polymer solutions in porous media: inadequacy of the capillary model

    SciTech Connect

    Duda, J.L.; Klaus, E.E.; Hong, S.A.

    1983-08-01

    Experimental measurements show that conventional capillary models are inadequate for the description of the flow of nonlinear purely viscous solutions in porous media. A theoretical analysis indicates that any model for the flow of purely viscous polymer solutions in porous media must meet 2 criteria. First, the model must include expansion and contraction regions where excess pressure drops occur. Secondly, the rheologic model for the fluid must include the characteristic transition from Newtonian behavior at low shear rates to shear-thinning behavior at high shear rates. 17 references.

  7. Photoinduced processes in solid polymer solutions of dyes in an interference field of laser radiation

    SciTech Connect

    Sizykh, A G; Tarakanova, E A

    1998-12-31

    An investigation was made of the relationships governing the photochemical mechanism of formation of light-induced gratings in solid polymer solutions of a dye with a high quantum yield of the triplet states. The combined analysis of the results of real and numerical experiments was made for a solution of eosin K in gelatin. The protonation rate constant of the dye was measured and the dependence of the diffraction efficiency on the duration of irradiation was explained taking diffusion of the dye into account. A method was proposed for determination of the duffusion coefficient in a spatially modified interference field of the laser radiation. The diffusion coefficients were found. (nonlinear optical phenomena)

  8. The effect of injection molding conditions on the near-surface rubber morphology, surface chemistry, and adhesion performance of semi-crystalline and amorphous polymers

    NASA Astrophysics Data System (ADS)

    Weakley-Bollin, Shannon Christine

    This thesis investigated the effect of injection molding processing variables, resin formulation and mold material on the resulting morphology and properties of semi-crystalline and amorphous polymers in parts molded on large presses with fully developed flow. Five different polymer resins and two different coating types were investigated, and the near-surface morphology was found to be dependent on material formulation, processing parameters, and geometry. For painted TPO, changes in the near-surface rubber morphology and surface chemistry based on material and processing conditions had no significant effect on the adhesion performance. For metal plated ABS, the adhesion performance was found to be heavily dependent on the rubber surface morphology, which varied with material formulation and processing conditions. One of the most significant findings was that forged aluminum injection molding tooling had little effect on the surface morphology or adhesion performance of either polypropylene or the two TPO formulations examined, despite the five-fold increase in thermal conductivity over traditional tool steel. Surface chemistry, however, was found to be affected by cooling rate, depending on material formulation. A UV stabilizer additive was found concentrated at 2.5 atomic percent on the surface of the aluminum molded part, but not the steel molded part, demonstrating a possible opportunity for using additives and aluminum tooling to create "designer surfaces". Processing conditions were found to have a competing role in metal plated ABS, where conditions that lowered surface stress and improved adhesion by a factor of 15 also increased the amount of bulk molded-in stress by nearly 7%. Both factors were found to play an important role in adhesion performance due to the effect of surface stress on the quality of the resulting etch structure. The bulk stress must be minimized to due to the large mechanical and thermal mismatch between the polymer and metal layers

  9. Polymer-based oral rehydration solution for treating acute watery diarrhoea

    PubMed Central

    Gregorio, Germana V; Gonzales, Maria Liza M; Dans, Leonila F; Martinez, Elizabeth G

    2016-01-01

    Background Acute diarrhoea is one of the main causes of morbidity and mortality among children in low-income countries. Glucose-based oral rehydration solution (ORS) helps replace fluid and prevent further dehydration from acute diarrhoea. Since 2004, the World Health Organization (WHO) has recommended the osmolarity of less than 270 mOsm/L (ORS ≤ 270) versus greater than 310 mOsm/L formulation (ORS ≥ 310). Polymer-based ORS (for example, prepared using rice or wheat) slowly releases glucose and may be superior to glucose-based ORS. Objectives To compare polymer-based oral rehydration solution (polymer-based ORS) with glucose-based oral rehydration solution (glucose-based ORS) for treating acute watery diarrhoea. Search methods We searched the following sources up to 5 September 2016: the Cochrane Infectious Diseases Group (CIDG) Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 9), MEDLINE (1966 to 5 September 2016), EMBASE (1974 to 5 September 2016), LILACS (1982 to 5 September 2016), and mRCT (2007 to 5 September 2016). We also contacted researchers, organizations, and pharmaceutical companies, and searched reference lists. Selection criteria We included randomized controlled trials (RCTs) of people with acute watery diarrhoea (cholera and non-cholera associated) that compared polymer-based and glucose-based ORS (with identical electrolyte contents). Data collection and analysis Two review authors independently assessed the search results and risk of bias, and extracted data. In multiple-treatment arms with two or more treatment groups, we combined outcomes as appropriate and compared collectively with the control group. Main results Thirty-five trials that included 4284 participants met the inclusion criteria: 28 trials exclusively included children, five included adults, and two included both adults and children. Polymer-based ORS versus glucose-based ORS (osmolarity ≤ 270) Eight trials

  10. Trehalose amorphization and recrystallization.

    PubMed

    Sussich, Fabiana; Cesàro, Attilio

    2008-10-13

    The stability of the amorphous trehalose prepared by using several procedures is presented and discussed. Amorphization is shown to occur by melting (T(m)=215 degrees C) or milling (room temperature) the crystalline anhydrous form TRE-beta. Fast dehydration of the di-hydrate crystalline polymorph, TRE-h, also produces an amorphous phase. Other dehydration procedures of TRE-h, such as microwave treatment, supercritical extraction or gentle heating at low scan rates, give variable fractions of the polymorph TRE-alpha, that undergo amorphization upon melting (at lower temperature, T(m)=130 degrees C). Additional procedures for amorphization, such as freeze-drying, spray-drying or evaporation of trehalose solutions, are discussed. All these procedures are classified depending on the capability of the undercooled liquid phase to undergo cold crystallization upon heating the glassy state at temperatures above the glass transition temperature (T(g)=120 degrees C). The recrystallizable amorphous phase is invariably obtained by the melt of the polymorph TRE-alpha, while other procedures always give an amorphous phase that is unable to crystallize above T(g). The existence of two different categories is analyzed in terms of the transformation paths and the hypothesis that the systems may exhibit different molecular mobilities.

  11. Quality of nanofibrous web in dependence on the preparation of polymer solutions

    NASA Astrophysics Data System (ADS)

    Peer, Petra; Filip, Petr

    2013-04-01

    The aim of this contribution is to compare the nanofibrous webs in dependence on the preparation of polymer solution from which are created. The solutions formed by polyvinylbutyral (PVB) solved in methanol at different concentrations were prepared in two ways - either using a vibrating shaker or a magnetic stirrer. The principal difference consists in invasive and non-invasive effect of the individual approaches and the consecutive mild changes in the molecular architecture. The rheological characterization of both types of PVB solutions was carried out an electrocell housed in the rotational rheometer. The nanofibrous webs obtained by an electrospinning process were analyzed by means of scanning electron microscopy. There was found a correspondence between the differences in quality of the nanofibrous webs and the rheological characteristics of either solutions.

  12. Proton Conducting Polymer Electrolyte Based on Pva-Pan

    NASA Astrophysics Data System (ADS)

    Devi, S. Siva; Selvasekarapandian, S.; Rajeswari, N.; Genova, F. Kingslin Mary; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    Proton conducting polymer electrolytes based on blend polymer using Poly Vinyl Alcohol (PVA) and Poly Acrylo Nitrile (PAN) doped with ammonium nitrate have been prepared by solution casting method. The highest conductivity at room temperature (305K) has been found to be 1.8×10-3 S cm-1 for 15 mole % NH4NO3 doped PVA-PAN system. X ray Diffraction pattern of the doped and the undoped blend polymer electrolyte confirms the amorphous nature of blend polymer, when salt is added. The complex formation between the blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy.

  13. Does nitrogen gas bubbled through a low density polymer gel dosimeter solution affect the polymerization process?

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Pourfallah, Tayyeb Allahverdi; Keshtkar, Mohammad

    2015-01-01

    Background: On account of the lower electron density in the lung tissue, the dose distribution in the lung cannot be verified with the existing polymer gel dosimeters. Thus, the aims of this study are to make a low density polymer gel dosimeter and investigate the effect of nitrogen gas bubbles on the R2 responses and its homogeneity. Materials and Methods: Two different types of low density polymer gel dosimeters were prepared according to a composition proposed by De Deene, with some modifications. In the first type, no nitrogen gas was perfused through the gel solution and water. In the second type, to expel the dissolved oxygen, nitrogen gas was perfused through the water and gel solution. The post-irradiation times in the gels were 24 and 5 hours, respectively, with and without perfusion of nitrogen gas through the water and gel solution. Results: In the first type of gel, there was a linear correlation between the doses and R2 responses from 0 to 12 Gy. The fabricated gel had a higher dynamic range than the other low density polymer gel dosimeter; but its background R2 response was higher. In the second type, no difference in R2 response was seen in the dose ranges from 0 to 18 Gy. Both gels had a mass density between 0.35 and 0.45 g.cm-3 and CT values of about -650 to -750 Hounsfield units. Conclusion: It appeared that reactions between gelatin-free radicals and monomers, due to an increase in the gel temperature during rotation in the household mixer, led to a higher R2-background response. In the second type of gel, it seemed that the collapse of the nitrogen bubbles was the main factor that affected the R2-responses. PMID:26015914

  14. Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates.

    PubMed

    Zhao, Kui; Khan, Hadayat Ullah; Li, Ruipeng; Hu, Hanlin; Amassian, Aram

    2016-08-03

    We demonstrate that local and long-range orders of poly(3-hexylthiophene) (P3HT) semicrystalline films can be synergistically improved by combining chemical functionalization of the substrate with solution-state disentanglement and preaggregation of P3HT in a θ solvent, leading to a very significant enhancement of the field effect carrier mobility. The preaggregation and surface functionalization effects combine to enhance the carrier mobility nearly 100-fold as compared with standard film preparation by spin-coating, and nearly 10-fold increase over the benefits of preaggregation alone. In situ quartz crystal microbalance with dissipation (QCM-D) experiments reveal enhanced deposition of preaggregates on surfaces modified with an alkyl-terminated self-assembled monolayer (SAM) in comparison to unaggregated polymer chains in the same conditions. Additional measurements reveal the combined preaggregation and surface functionalization significantly enhances local order of the conjugated polymer through planarization and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining complementary routes, such as well-known preaggregation with substrate chemical functionalization, to enhance the polymer self-assembly and improve its interfacial order with benefits for transport properties.

  15. Low-temperature dynamics in amorphous polymers and low-molecular-weight glasses--what is the difference?

    PubMed

    Eremchev, Ivan Yu; Vainer, Yury G; Naumov, Andrei V; Kador, Lothar

    2011-02-07

    Numerous experiments have shown that the low-temperature dynamics of a wide variety of disordered solids is qualitatively universal. However, most of these results were obtained with ensemble-averaging techniques which hide the local parameters of the dynamic processes. We used single-molecule (SM) spectroscopy for direct observation of the dynamic processes in disordered solids with different internal structure and chemical composition. The surprising result is that the dynamics of low-molecular-weight glasses and short-chain polymers does not follow, on a microscopic level, the current concept of low-temperature glass dynamics. An extra contribution to the dynamics was detected causing irreproducible jumps and drifts of the SM spectra on timescales between milliseconds and minutes. In most matrices consisting of small molecules and oligomers, the spectral dynamics was so fast that SM spectra could hardly or not at all be recorded and only irregular fluorescence flares were observed. These results provide new mechanistic insight into the behavior of glasses in general: At low temperatures, the local dynamics of disordered solids is not universal but depends on the structure and chemical composition of the material.

  16. Application of X-ray microtomography for the characterisation of hollow polymer-stabilised spray dried amorphous dispersion particles.

    PubMed

    Gamble, John F; Terada, Masako; Holzner, Christian; Lavery, Leah; Nicholson, Sarah J; Timmins, Peter; Tobyn, Mike

    2016-08-20

    The aim of this study was to investigate the capability of X-ray microtomography to obtain information relating to powder characteristics such as wall thickness and solid volume fraction for hollow, polymer-stabilised spray dried dispersion (SDD) particles. SDDs of varying particle properties, with respect to shell wall thickness and degree of particle collapse, were utilised to assess the capability of the approach. The results demonstrate that the approach can provide insight into the morphological characteristics of these hollow particles, and thereby a means to understand/predict the processability and performance characteristics of the bulk material. Quantitative assessments of particle wall thickness, particle/void volume and thereby solid volume fraction were also demonstrated to be achievable. The analysis was also shown to be able to qualitatively assess the impact of the drying rate on the morphological nature of the particle surfaces, thus providing further insight into the final particle shape. The approach demonstrated a practical means to access potentially important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as particle size and bulk density, may enable a better understanding of such materials, and their impact on downstream processability and dosage form performance.

  17. Solubility advantage of amorphous pharmaceuticals, part 3: Is maximum solubility advantage experimentally attainable and sustainable?

    PubMed

    Murdande, Sharad B; Pikal, Michael J; Shanker, Ravi M; Bogner, Robin H

    2011-10-01

    A method is described for screening compounds that inhibit crystallization in solution to enable more accurate measurement of amorphous drug solubility. Three polymers [polyvinylpyrrolidone, hydroxypropyl methylcellulose, and hydroxypropyl methylcellulose acetate succinate (HPMCAS)] were screened for their ability to inhibit the crystallization of neat amorphous drugs during measurement of solubility of the amorphous form in water. Among the polymers evaluated, HPMCAS was found to be most promising. The use of HPMCAS provided an "apparent solubility" of amorphous drugs that was closer to the theoretically calculated values. With danazol, agreement was essentially quantitative, and for griseofulvin and iopanoic acid, agreement was within a factor of two; these maximum concentrations were sustained for a period of 40-90 min. Dynamic light scattering of filtered samples (0.22 µ) revealed the presence of colloidal drug-polymer assemblies in solution (100-150 nm). The supernatant resulting from this centrifugation gradually decreased in concentration, but remained supersaturated with respect to crystalline drug for several hours. Thus, HPMCAS has been shown to be a useful additive in dissolution media to allow a more accurate determination of the solubility of fast crystallizing neat amorphous drugs, at least for the drugs studied, and it should also serve to retard crystallization in vivo and therefore, facilitate improved bioavailability. Copyright © 2011 Wiley-Liss, Inc.

  18. Critical Role of Surface Energy in Guiding Crystallization of Solution Coated Conjugated Polymer Thin Films.

    PubMed

    Zhang, Fengjiao; Mohammadi, Erfan; Luo, Xuyi; Strzalka, Joseph; Mei, Jianguo; Diao, Ying

    2017-10-02

    It is well-known that substrate surface properties have a profound impact on morphology of thin films solution coated atop and the resulting solid-state properties. However, design rules for guiding the substrate selection have not yet been established. Such design rules are particularly important for solution coated semiconducting polymers, as the substrate-directed thin film morphology can impact charge transport properties by orders of magnitude. We hypothesize that substrate surface energies dictate the thin film morphology by modulating the free energy barrier to heterogeneous nucleation. To test this hypothesis, we systematically vary the substrate surface energy via surface functionalization techniques. We perform in-depth morphology and device characterizations to establish the relationship between substrate surface energy, thin film morphology and charge transport properties, employing a donor-accepter (D-A) conjugated polymer. We find that decreasing the substrate surface energy progressively increases thin film crystallinity, degree of molecular ordering and extent of domain alignment. Notably, the enhanced morphology on the lowest surface energy substrate lead to a 10-fold increase in the charge carrier mobility. We further develop a free energy model relating the substrate surface energy to the penalty of heterogeneous nucleation from solution in the thin film geometry. The model correctly predicts the experimental trend, thereby validating our hypothesis. This work is a significant step towards establishing design rules and understanding the critical role of substrates in determining morphology of solution coated thin films.

  19. Flow-enhanced solution printing of all-polymer solar cells

    DOE PAGES

    Diao, Ying; Zhou, Yan; Kurosawa, Tadanori; ...

    2015-08-12

    Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization. Our flow design resulted in a similar to 90% increase in the donor thin film crystallinity and reduced microphase separated donor and acceptor domain sizes. The improved morphology enhancedmore » all metrics of solar cell device performance across various printing conditions, specifically leading to higher short-circuit current, fill factor, open circuit voltage and significantly reduced device-to-device variation. However, we expect our design concept to have broad applications beyond all-polymer solar cells because of its simplicity and versatility.« less

  20. Comparative study of polymer chain dynamics in aqueous solutions by FPR and DLS

    NASA Astrophysics Data System (ADS)

    Streletzky, Kiril; McDonough, Ryan; Cueto, Rafael; Russo, Paul

    2012-02-01

    Self diffusion of tagged polymer chains in aqueous solutions of hydroxypropylcellulose (HPC) was measured by Fluorescence Photo-bleaching Recovery (FPR) and compared to mutual diffusion of scattering species in the same solutions measured by Dynamic Light Scattering (DLS). The effect of the dye presence on thermodynamic concentration fluctuations observed by DLS was also studied. The observed multimodal spectra in DLS and FPR were analyzed with CONTIN and stretched exponential fits. A set of consistent dissimilarities in the modal distributions of FPR and DLS spectra was found. This indicates a comparative limitation or sensitivity in range of detectable diffusive processes between FPR and DLS in this complex system. In addition, it was found that the fluorescent tag and/or tagging process seem to alter the mutual diffusion processes seen by DLS. In particular, a slower mode which is apparent in the non-tagged sample does not appear in the tagged sample. It seems likely that the dye chemically affects the polymer chains keeping them from clustering with each other, altering the solvent environment preventing formation of polymer clusters responsible for the slow mode usually seen in HPC.

  1. Shear Rheology of Suspensions of Porous Zeolite Particles in Concentrated Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode O.; Breedveld, Victor

    2008-07-01

    We present experimental data on the shear rheology of Ultem (polyetherimide)/NMP(l-methyl-2-pyrrolidinone) solutions with and without suspended surface-modified porous/nonporous zeolite (ZSM-5) particles. We found that the porous zeolite suspensions have relative viscosities that significantly exceed the Krieger-Dougherty predictions for hard sphere suspensions. The major origin of this discrepancy is the selective absorption of NMP solvent into the zeolite pores, which raises both the polymer concentration and the particle volume fraction, thus enhancing both the viscosity of the continuous phase Ultem/NMP polymer solution and the particle contribution to the suspension viscosity. Other factors, such as zeolite non-sphericity and specific interactions with Ultem polymer, contribute to the suspension viscosity to a lesser extent. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating an absorption parameter, α, into the Krieger-Dougherty model. We also propose independent approaches to determine α. The first one is indirect and based on zeolite density/porosity data, assuming that all pores will be filled with solvent. The other method is based on our experimental data, by comparing the viscosity data of porous versus non-porous zeolite suspensions. The different approaches are compared.

  2. Thermally cross-linkable hole transport polymers for solution-based organic light-emitting diodes.

    PubMed

    Cha, Seung Ji; Cho, Se-Na; Lee, Woo-Hyung; Chung, Ha-Seul; Kang, In-Nam; Suh, Min Chul

    2014-04-01

    Two thermally cross-linkable hole transport polymers that contain phenoxazine and triphenylamine moieties, X-P1 and X-P2, are developed for use in solution-processed multi-stack organic light-emitting diodes (OLEDs). Both X-P1 and X-P2 exhibit satisfactory cross-linking and optoelectronic properties. The highest occupied molecular orbital (HOMO) levels of X-P1 and X-P2 are -5.24 and -5.16 eV, respectively. Solution-processed super yellow polymer devices (ITO/X-P1 or X-P2/PDY-132/LiF/Al) with X-P1 or X-P2 hole transport layers of various thicknesses are fabricated with the aim of optimizing the device characteristics. The fabricated multi-stack yellow devices containing the newly synthesized hole transport polymers exhibit satisfactory currents and power efficiencies. The optimized X-P2 device exhibits a device efficiency that is dramatically improved by more than 66% over that of a reference device without an HTL.

  3. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning

    NASA Astrophysics Data System (ADS)

    Reneker, Darrell H.; Yarin, Alexander L.; Fong, Hao; Koombhongse, Sureeporn

    2000-05-01

    Nanofibers of polymers were electrospun by creating an electrically charged jet of polymer solution at a pendent droplet. After the jet flowed away from the droplet in a nearly straight line, it bent into a complex path and other changes in shape occurred, during which electrical forces stretched and thinned it by very large ratios. After the solvent evaporated, birefringent nanofibers were left. In this article the reasons for the instability are analyzed and explained using a mathematical model. The rheological complexity of the polymer solution is included, which allows consideration of viscoelastic jets. It is shown that the longitudinal stress caused by the external electric field acting on the charge carried by the jet stabilized the straight jet for some distance. Then a lateral perturbation grew in response to the repulsive forces between adjacent elements of charge carried by the jet. The motion of segments of the jet grew rapidly into an electrically driven bending instability. The three-dimensional paths of continuous jets were calculated, both in the nearly straight region where the instability grew slowly and in the region where the bending dominated the path of the jet. The mathematical model provides a reasonable representation of the experimental data, particularly of the jet paths determined from high speed videographic observations.

  4. Solution-Crystallization and Related Phenomena in 9,9-Dialkyl-Fluorene Polymers. I. Crystalline Polymer-Solvent Compound Formation for Poly(9,9-dioctylfluorene).

    PubMed

    Perevedentsev, Aleksandr; Stavrinou, Paul N; Bradley, Donal D C; Smith, Paul

    2015-11-01

    Polymer-solvent compound formation, occurring via co-crystallization of polymer chains and selected small-molecular species, is demonstrated for the conjugated polymer poly(9,9-dioctylfluorene) (PFO) and a range of organic solvents. The resulting crystallization and gelation processes in PFO solutions are studied by differential scanning calorimetry, with X-ray diffraction providing additional information on the resulting microstructure. It is shown that PFO-solvent compounds comprise an ultra-regular molecular-level arrangement of the semiconducting polymer host and small-molecular solvent guest. Crystals form following adoption of the planar-zigzag β-phase chain conformation, which, due to its geometry, creates periodic cavities that accommodate the ordered inclusion of solvent molecules of matching volume. The findings are formalized in terms of nonequilibrium temperature-composition phase diagrams. The potential applications of these compounds and the new functionalities that they might enable are also discussed. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1481-1491.

  5. Solution-Crystallization and Related Phenomena in 9,9-Dialkyl-Fluorene Polymers. I. Crystalline Polymer-Solvent Compound Formation for Poly(9,9-dioctylfluorene)

    PubMed Central

    Perevedentsev, Aleksandr; Stavrinou, Paul N; Bradley, Donal D C; Smith, Paul

    2015-01-01

    Polymer-solvent compound formation, occurring via co-crystallization of polymer chains and selected small-molecular species, is demonstrated for the conjugated polymer poly(9,9-dioctylfluorene) (PFO) and a range of organic solvents. The resulting crystallization and gelation processes in PFO solutions are studied by differential scanning calorimetry, with X-ray diffraction providing additional information on the resulting microstructure. It is shown that PFO-solvent compounds comprise an ultra-regular molecular-level arrangement of the semiconducting polymer host and small-molecular solvent guest. Crystals form following adoption of the planar-zigzag β-phase chain conformation, which, due to its geometry, creates periodic cavities that accommodate the ordered inclusion of solvent molecules of matching volume. The findings are formalized in terms of nonequilibrium temperature–composition phase diagrams. The potential applications of these compounds and the new functionalities that they might enable are also discussed. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1481–1491 PMID:26435576

  6. Study of a smart polymer medical device, product development obstacles and innovative solutions

    NASA Astrophysics Data System (ADS)

    Banister, Mark; Clark, Ray; Coiner, Eric; Geronov, Yordan; McWilliams, Mark; Sias, Ralph; Walters, Gary; McGrath, Dominic

    2012-04-01

    The concept is simple, within the pump a pH responsive polymer actuator swells in volume under electrically controlled stimulus. As the actuator swells it presses against a drug reservoir, as the reservoir collapses the drug is metered out to the patient. From concept to finished product, engineering this smart system entailed integration across multiple fields of science and engineering. Materials science, nanotechnology, polymer chemistry, organic chemistry, electrochemistry, molecular engineering, electrical engineering, and mechanical engineering all played a part in solutions to multiple technical hurdles. Some of these hurdles where overcome by tried and true materials and component engineering, others where resolved by some very creative out of the box thinking and tinkering. This paper, hopefully, will serve to encourage others to venture into unfamiliar territory as we did, in order to overcome technical obstacles and successfully develop a low cost smart medical device that can truly change a patient's life.

  7. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics.

    PubMed

    Kiefer, David; Yu, Liyang; Fransson, Erik; Gómez, Andrés; Primetzhofer, Daniel; Amassian, Aram; Campoy-Quiles, Mariano; Müller, Christian

    2017-01-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm(-1) and Seebeck coefficient from 100 to 60 μV K(-1) upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m(-1) K(-1) gives rise to a thermoelectric Figure of merit ZT ∼ 10(-4) that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  8. Control of molecular rotor rotational frequencies in porous coordination polymers using a solid-solution approach.

    PubMed

    Inukai, Munehiro; Fukushima, Tomohiro; Hijikata, Yuh; Ogiwara, Naoki; Horike, Satoshi; Kitagawa, Susumu

    2015-09-30

    Rational design to control the dynamics of molecular rotors in crystalline solids is of interest because it offers advanced materials with precisely tuned functionality. Herein, we describe the control of the rotational frequency of rotors in flexible porous coordination polymers (PCPs) using a solid-solution approach. Solid-solutions of the flexible PCPs [{Zn(5-nitroisophthalate)x(5-methoxyisophthalate)1-x(deuterated 4,4'-bipyridyl)}(DMF·MeOH)]n allow continuous modulation of cell volume by changing the solid-solution ratio x. Variation of the isostructures provides continuous changes in the local environment around the molecular rotors (pyridyl rings of the 4,4'-bipyridyl group), leading to the control of the rotational frequency without the need to vary the temperature.

  9. Preparation of Pt/Rh bimetallic colloidal particles in polymer solutions using borohydride-reduction.

    PubMed

    Harada, Masafumi; Einaga, Hisahiro

    2007-04-15

    Colloidal dispersions of Pt/Rh bimetallic particles have been synthesized by the reduction of Pt(IV)/Rh(III) ionic solutions by using borohydride-reduction in the presence of poly(N-vinyl-2-pyrrolidone). The size and the structure of the synthesized particles have been examined by transmission electron micrograph (TEM) and extended X-ray absorption fine structure (EXAFS). We have succeeded in producing the bimetallic Pt/Rh particles with an average diameter of 2.8 nm in polymer solutions by the stepwise addition of sodium borohydride aqueous solution. The distribution of different metallic species in a particle tended to be "cluster-in-cluster" structure, in contrast to the bimetallic particle with an average diameter of 1.4 nm synthesized by alcohol-reduction which have a core-shell structure.

  10. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers

    NASA Astrophysics Data System (ADS)

    He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-12-01

    Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.

  11. High sensitivity and fast response solution processed polymer photodetectors with polyethylenimine ethoxylated (PEIE) modified ITO electrode.

    PubMed

    Wang, Yue; Zhu, Lijie; Hu, Yufeng; Deng, Zhenbo; Lou, Zhidong; Hou, Yanbing; Teng, Feng

    2017-04-03

    Most organic photodetectors utilize a bulk heterojunction (BHJ) photo-active film due to its high exciton dissociation efficiency. However, the low dark current density, a key role in determining the overall performance of photodetectors, is hardly achieved in the BHJ structure since both the donor and acceptor domains are in contact with the same electrode. The most popular strategy to overcome this problem is by fabricating bilayer or multilayer devices. However, the complicated fabrication process is a challenge for printing electronics. In this work, we demonstrate a solution processed polymer photodetector based on a poly (3-hexylthiophene) (P3HT): (phenyl-C61-butyric-acid-methyl-ester) (PC61BM) blend film with polyethylenimine ethoxylated (PEIE) modified ITO electrode. The transparent PEIE efficiently blocks the unnecessary electronic charge injection between the active film and the electrode, which dramatically decrease the dark current. Under illumination, the photoexcited charges accumulated in the PEIE modified ITO region finally can tunnel through the barrier with the help of the applied reverse bias, leading to a large photocurrent. Therefore, the resulting polymer photodetector shows a 2.48 × 104 signal-to-noise ratio (SNR) under -0.3 V bias and an 11.4 MHz bandwidth across the visible spectra under a small reverse bias of 0.5 V. The maximum EQE of 3250% in the visible wavelength is obtained for the polymer photodetector at -1 V under 370 nm (3.07 μW/cm2) illumination. This solution processed polymer photodetector manufacturing is highly compatible with the flexible, low-cost, and large area organic electronic technologies.

  12. Solution Self-Assembly of Globular Protein-Polymer Conjugate Block Copolymers

    NASA Astrophysics Data System (ADS)

    Olsen, Bradley

    2014-03-01

    Controlling the nanostructured self-assembly of globular proteins and enzymes can significantly advance the applications of soft materials as catalysts, sensors, and medical materials. However, the incorporation of globular proteins as one block in the block copolymer introduces changes in chain shape, chain entropy, and specific interactions that significantly impact the thermodynamics of self-assembly. Here, we explore the self-assembly of model globular protein-polymer block copolymers in concentrated solutions to form nanostructured materials. A phase diagram as a function of concentration and temperature for a model material mCherry-poly(N-isopropylacrylamide) (PNIPAM) is asymmetric, showing hexagonal cylinders for coil fractions less than 0.5 and a lamellar ordering for coil fractions greater than 0.5, divided by a narrow region of hexagonally perforated lamellae. Order-order transitions as a function of temperature are driven by the thermoresponsive desolvation of PNIPAM. Surprisingly, the materials exhibit reentrant order-disorder transition behavior, such that the conjugate block copolymers are disordered at both low and high concentrations but well-ordered at intermediate concentrations. Changing the polymer chemistry to monomers with different types of hydrogen bonding results in significant changes in the self-assembly, including the observation of a cubic phase that shows the same scattering pattern as the gyroid phase observed in traditional block copolymers. The choice of polymer also has a strong impact on the order-disorder transition concentration, demonstrating that the polymer-protein interaction plays a significant role in governing self-assembly in solution. Consistent with this effect, the order-disorder transition concentration is minimized in symmetric conjugates. Changing the protein from mCherry to myoglobin results in a reduction in ordering, suggesting that the regularity of the protein shape is important. This research was supported by

  13. N-doped P25 TiO2-amorphous Al2O3 composites: one-step solution combustion preparation and enhanced visible-light photocatalytic activity.

    PubMed

    Li, Fa-tang; Zhao, Ye; Hao, Ying-juan; Wang, Xiao-jing; Liu, Rui-hong; Zhao, Di-shun; Chen, Dai-mei

    2012-11-15

    Nitrogen-doped Degussa P25 TiO2-amorphous Al2O3 composites were prepared via facile solution combustion. The composites were characterised using X-ray diffraction, high-resolution transmission microscopy, scanning electron microscopy, nitrogen adsorption-desorption measurements, X-ray photoelectron spectroscopy, UV-vis light-diffusion reflectance spectrometry (DRS), zeta-potential measurements, and photoluminescence spectroscopy. The DRS results showed that TiO2 and amorphous Al2O3 exhibited absorption in the UV region. However, the Al2O3/TiO2 composite exhibited visible-light absorption, which was attributed to N-doping during high-temperature combustion and to alterations in the electronic structure of Ti species induced by the addition of Al. The optimal molar ratio of TiO2 to Al2O3 was 1.5:1, and this composite exhibited a large specific surface area of 152 m2/g, surface positive charges, and enhanced photocatalytic activity. These characteristics enhanced the degradation rate of anionic methylene orange, which was 43.6 times greater than that of pure P25 TiO2. The high visible-light photocatalytic activity was attributed to synthetic effects between amorphous Al2O3 and TiO2, low recombination efficiency of photo-excited electrons and holes, N-doping, and a large specific surface area. Experiments that involved radical scavengers indicated that OH and O2- were the main reactive species. A potential photocatalytic mechanism was also proposed.

  14. Microchip-based 3D-Cell Culture Using Polymer Nanofibers Generated by Solution Blow Spinning.

    PubMed

    Chen, Chengpeng; Townsend, Alexandra D; Sell, Scott A; Martin, R Scott

    2017-06-14

    Polymer nano/micro fibers have found many applications including 3D cell culture and the creation of wound dressings. The fibers can be produced by a variety of techniques that include electrospinning, the primary disadvantage of which include the requirement for a high voltage supply (which may cause issues such as polymer denaturation) and lack of portability. More recently, solution blow spinning, where a high velocity sheath gas is used instead of high voltage, has been used to generate polymer fibers. In this work, we used blow spinning to create nano/microfibers for microchip-based 3D cell culture. First, we thoroughly investigated fiber generation from a 3D printed gas sheath device using two polymers that are amenable to cell culture (polycaprolactone, PCL and polystyrene, PS) as well as the parameters that can affect PCL and PS fiber quality. Using the 3D printed sheath device, it was found that the pressure of the sheath N2 and the concentration of polymer solutions determine if fibers can be produced as well as the resulting fiber morphology. In addition, we showed how these fibers can be used for 3D cell culture by directly depositing PCL fibers in petri dishes and well plates. It is shown the fibers have good compatibility with RAW 264.7 macrophages and the PCL fiber scaffold can be as thick as 178 ± 14 μm. PCL fibers created from solution blow spinning (with the 3D printed sheath device) were then integrated with a microfluidic device for the first time to fabricate a 3D cell culture scaffold with a flow component. After culturing and stimulating macrophages on the fluidic device, it was found that the integrated 3D fibrous scaffold is a better mimic of the extracellular matrix (as opposed to a flat, 2D substrate), with enhanced nitrite accumulation (product of nitric oxide release) from macrophages stimulated with lipopolysaccharide. PS fibers were also made and integrated in a microfluidic device for 3D culture of endothelial cells, which stayed

  15. a Dynamic Light Scattering Study of the Relaxation Dynamics in Aqueous Polymer Gelatin Solutions and Gels.

    NASA Astrophysics Data System (ADS)

    Ren, Shangzhi

    1992-01-01

    The dynamics of the molecular relaxations in semi -dilute polymer solutions and gels has important implications in fundamental physics and technological applications. Dynamic Light Scattering (DLS) techniques directly probe such dynamics by monitoring and analyzing the pattern of fluctuations of the light scattered from polymer molecules. We have employed the DLS to explore the molecular relaxation behavior of thermally reversible, semi-dilute, aqueous gelatin solutions and gels. Our experiment results indicate that there are three relaxation modes in the DLS spectrum for the semi-dilute aqueous gelatin solutions: a fast exponential cooperative diffusion mode, an intermediate power-law mode, and a stretched exponential slow mode. When the system evolves from sol to gel under a thermal quench, the fast mode remains unchanged while the characteristic relaxation time of the slow mode diverges, leaving the power-law intermediate mode most apparent for ~ 5 decades in correlation time. The power -law mode is novel in the experimental studies of the relaxation dynamics in linear polymer chain systems and is found to be q dependent. The DLS data is analyzed under a new scheme separating the dynamic scattering component from the static counterpart developed under the growing chain crosslinking. It is the first attempt ever made to deal with the non-ergodicity effect in the DLS studies not only for the gels, as suggested by Pusey and van Megen (80), but also for the DLS during the sol-gel transitions. We have considered a possible interpretation for the observed relaxation based on anomalous diffusion of < x^2>~ lnt and < x^2 >~ t^beta, with < {rm x}^2> being mean-square-displacement and 0polymer chains and the length scales extracted under this model obey scaling. We find that the < x^2 >~ lnt behavior is associated with the intermediate power-law relaxation mode while the < x^2>~ t^beta behavior is

  16. Mannitol influence on the separation of DNA fragments by capillary electrophoresis in entangled polymer solutions.

    PubMed

    Han, F; Xue, J; Lin, B

    1998-08-01

    A new kind of sieving matrix is presented in this paper to allow satisfactory separation of DNA fragments in a relatively low viscous solution. When a certain amount of mannitol was added to cellulose solution not concentrated enough to separate PGEM-3Zf(+)/HaeIII standards well, a polymer solution with low viscosity but with very good separation effects was obtained. The separation result of this sieving buffer was comparable with those using highly concentrated cellulose solutions. The sieving ability of solutions with different cellulose concentrations and different amounts of mannitol has been investigated. It was proved that 0.5% was the minimum hydroxypropylmethylcellulose (HPMC) concentration that could be used to separate DNA fragments satisfactorily. HPMC solutions with a concentration of less than 0.5% could not separate the standard DNA fragments even in the presence of mannitol. It was found that 6% was the optimized mannitol concentration because either more or less mannitol will lead a decrease of resolution. The principle of the positive influence of mannitol has also been discussed.

  17. Gold Nanorod Linking to Control Plasmonic Properties in Solution and Polymer Nanocomposites

    PubMed Central

    2015-01-01

    A novel, solution-based method is presented to prepare bifunctional gold nanorods (B-NRs), assemble B-NRs end-to-end in various solvents, and disperse linked B-NRs in a polymer matrix. The B-NRs have poly(ethylene glycol) grafted along its long axis and cysteine adsorbed to its ends. By controlling cysteine coverage, bifunctional ligands or polymer can be end-grafted to the AuNRs. Here, two dithiol ligands (C6DT and C9DT) are used to link the B-NRs in organic solvents. With increasing incubation time, the nanorod chain length increases linearly as the longitudinal surface plasmon resonance shifts toward lower adsorption wavelengths (i.e., red shift). Analogous to step-growth polymerization, the polydispersity in chain length also increases. Upon adding poly(ethylene glycol) or poly(methyl methacrylate) to chloroform solution with linked B-NR, the nanorod chains are shown to retain end-to-end linking upon spin-casting into PEO or PMMA films. Using quartz crystal microbalance with dissipation (QCM-D), the mechanism of nanorod linking is investigated on planar gold surfaces. At submonolayer coverage of cysteine, C6DT molecules can insert between cysteines and reach an areal density of 3.4 molecules per nm2. To mimic the linking of Au NRs, this planar surface is exposed to cysteine-coated Au nanoparticles, which graft at 7 NPs per μm2. This solution-based method to prepare, assemble, and disperse Au nanorods is applicable to other nanorod systems (e.g., CdSe) and presents a new strategy to assemble anisotropic particles in organic solvents and polymer coatings. PMID:24483622

  18. Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons. I. Binary systems water-polyalcohol.

    PubMed

    Boutron, P; Mehl, P; Kaufmann, A; Angibaud, P

    1986-10-01

    All the aqueous solutions of linear saturated polyalcohols with four carbons have been investigated at low temperature. Only ice has been observed in the solutions of 1,3-butanediol and 1,2,3- and 1,2,4-butanetriol. For same solute concentration, the glass-forming tendency on cooling is highest with 2,3-butanediol, where it is comparable to that with 1,2-propanediol, the best solute reported to date. However, the quantity of ice and hydrate crystallized is particularly high on slow cooling or on subsequent rewarming. The highest stability of the amorphous state is observed on rewarming the 1,2-butanediol and 1,3-butanediol solutions. With respect to this property, these compounds come just after 1,2-propanediol and before all the other compounds studied so far. They are followed by dimethylsulfoxide and 1,2,3-butanetriol. The glass-forming tendency of the 1,3-butanediol solutions is also very high; it is third only to that of 1,2-propanediol and 2,3-butanediol. The glass-forming tendency is a little smaller with 1,2-butanediol, but it is cubic instead of ordinary hexagonal ice which crystallizes on cooling rapidly with 35% 1,2-butanediol. Cubic ice is thought to be innocuous. A gigantic glass transition is observed with 45% of this strange solute. 1,4-Butanediol, 45% also favors cubic ice greatly. Therefore, 1,2- and 1,3-butanediol with comparable physical properties are perhaps as interesting as 1,2-propanediol for cryopreservation of cells or organs by complete vitrification. Together with 1,2-propanediol, 1,2- and 1,3-butanetriol, 1,2,3-butanetriol, and perhaps 2,3-butanediol provide an interesting battery of solutions for cryopreservation by vitrification.

  19. Polymer-based oral rehydration solution for treating acute watery diarrhoea.

    PubMed

    Gregorio, Germana V; Gonzales, Maria Liza M; Dans, Leonila F; Martinez, Elizabeth G

    2016-12-13

    Acute diarrhoea is one of the main causes of morbidity and mortality among children in low-income countries. Glucose-based oral rehydration solution (ORS) helps replace fluid and prevent further dehydration from acute diarrhoea. Since 2004, the World Health Organization (WHO) has recommended the osmolarity of less than 270 mOsm/L (ORS ≤ 270) versus greater than 310 mOsm/L formulation (ORS ≥ 310). Polymer-based ORS (for example, prepared using rice or wheat) slowly releases glucose and may be superior to glucose-based ORS. To compare polymer-based oral rehydration solution (polymer-based ORS) with glucose-based oral rehydration solution (glucose-based ORS) for treating acute watery diarrhoea. We searched the following sources up to 5 September 2016: the Cochrane Infectious Diseases Group (CIDG) Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 9), MEDLINE (1966 to 5 September 2016), EMBASE (1974 to 5 September 2016), LILACS (1982 to 5 September 2016), and mRCT (2007 to 5 September 2016). We also contacted researchers, organizations, and pharmaceutical companies, and searched reference lists. We included randomized controlled trials (RCTs) of people with acute watery diarrhoea (cholera and non-cholera associated) that compared polymer-based and glucose-based ORS (with identical electrolyte contents). Two review authors independently assessed the search results and risk of bias, and extracted data. In multiple-treatment arms with two or more treatment groups, we combined outcomes as appropriate and compared collectively with the control group. Thirty-five trials that included 4284 participants met the inclusion criteria: 28 trials exclusively included children, five included adults, and two included both adults and children. Polymer-based ORS versus glucose-based ORS (osmolarity ≤ 270) Eight trials (752 participants) evaluated this comparison, and seven trials used rice as a polymer source

  20. Communication: Relationship between solute localization and diffusion in a dynamically constrained polymer system

    NASA Astrophysics Data System (ADS)

    Saylor, David M.; Jawahery, Sudi; Silverstein, Joshua S.; Forrey, Christopher

    2016-07-01

    We investigate the link between dynamic localization, characterized by the Debye-Waller factor, , and solute self-diffusivity, D, in a polymer system using atomistic molecular dynamics simulations and vapor sorption experiments. We find a linear relationship between lnD and 1/ over more than four decades of D, encompassing most of the glass formation regime. The observed linearity is consistent with the Langevin dynamics in a periodically varying potential field and may offer a means to rapidly assess diffusion based on the characterization of dynamic localization.

  1. Dynamic characterization of viscoelastic polymer solutions in a lubricated cylinder - Plate apparatus

    NASA Technical Reports Server (NTRS)

    Doremus, P.; Piau, J. M.; Altman, R. L.

    1987-01-01

    The characterization of several viscoelastic lubricants which are oil or water based has been studied in an apparatus consisting of a lubricated cylinder-plate contact. The friction loads were measured as a function of speed. The experimental results show the influence of the molecular weight and of the concentration of the polymeric additive as well as the influence of the viscosity of the oil-base on the load and friction coefficient. Also a test for mechanical degradation was performed on the polymer solutions. Several additives can favor a viscoelastic lubrication.

  2. Critical Phenomenon Analysis of Shear-Banding Flow in Polymer-Like Micellar Solutions

    NASA Astrophysics Data System (ADS)

    Bautista, F.; Pérez-López, J. H.; Puig, J. E.; Manero, O.

    2008-07-01

    We examined the shear-banding flow phenomenon in polymer-like micellar solutions with the Bautista-Manero-Puig (BMP) model, which predicts that upon decreasing the shear banding intensity parameter of this model, which correspond to increasing temperature, concentration or varying salt-to-surfactant concentration, a non-equilibrium critical line is reached. By using non-equilibrium critical theory, which we obtain a set of symmetrical curves which are the normalized stress versus normalized shear rate flow curves, similar to gas-liquid transitions around the critical point. In addition, we derived the non-equilibrium critical exponents and found that them are no classic values.

  3. Communication: Relationship between solute localization and diffusion in a dynamically constrained polymer system.

    PubMed

    Saylor, David M; Jawahery, Sudi; Silverstein, Joshua S; Forrey, Christopher

    2016-07-21

    We investigate the link between dynamic localization, characterized by the Debye-Waller factor, 〈u(2)〉, and solute self-diffusivity, D, in a polymer system using atomistic molecular dynamics simulations and vapor sorption experiments. We find a linear relationship between lnD and 1/〈u(2)〉 over more than four decades of D, encompassing most of the glass formation regime. The observed linearity is consistent with the Langevin dynamics in a periodically varying potential field and may offer a means to rapidly assess diffusion based on the characterization of dynamic localization.

  4. Thermoresponsive Polymers with Lower Critical Solution Temperature- or Upper Critical Solution Temperature-Type Phase Behaviour Do Not Induce Toxicity to Human Endothelial Cells.

    PubMed

    Ji, Yuejia; Zhu, Mengxiang; Gong, Yu; Tang, Haoyu; Li, Juan; Cao, Yi

    2017-01-01

    Thermoresponsive polymers have gained extensive attention as biomedical materials especially for targeted drug delivery systems. We have recently developed water-soluble polypeptide-based thermoresponsive polymers that exhibit lower critical solution temperature (LCST)- or upper critical solution temperature (UCST)-type phase behaviours. In this study, the toxicity of these polymers to human umbilical vein endothelial cells (HUVECs) was investigated to assess the safety and biocompatibility. Up to 100 μg/ml, thermoresponsive polymers did not induce cytotoxicity to HUVECs, showing as unaltered mitochondrial viability assessed as cell counting kit-8 (CCK-8) assay and membrane integrity assessed as lactate dehydrogenase (LDH) assay. Inflammatory response, assessed as the release of chemokine-soluble monocyte chemotactic protein 1 (sMCP-1) and interleukin-8 (IL-8) as well as cytokine IL-6, was not significantly affected by the polymers. In addition, 1 μM thapsigargin (TG), an endoplasmic reticulum (ER) stress inducer, significantly decreased mitochondrial viability, but did not affect membrane integrity or inflammatory response. The presence of thermoresponsive polymers with LCST-type phase behaviour did not further affect the effects of TG. In conclusion, the thermoresponsive polymers used in this study are not toxic to endothelial cells and therefore could be further considered as safe materials for biomedical applications.

  5. Atomization and rheology of mixed non-ionic and ionic polymer solutions

    NASA Astrophysics Data System (ADS)

    Sun, Patricia B.

    2003-06-01

    Misting problem of metalworking fluids caused by liquid jets breakup under high shear and strong impact working conditions during machining processes brings about significant health hazard and air pollution in automotive plants. The use of high molecular polyethylene oxide (PEO) is very effective to reduce mist formation of low viscosity aqueous solutions by bestowing elasticity to the system. However, severe chain scission induced high replenishment cost is the biggest economical barrier of this method. In this study, mixed polymer solutions with physical associating structures were developed to improve PEO's cost effectiveness as anti-misting agent for water-based machining fluids through improved shear stability (due to structure regeneration) and reduced polymer molecular weight and concentrations (due to enhanced mist suppression effectiveness). The association of sodium poly(styrene sulfonate salt) (SPSS) with PEO, particularly its impact on dynamics, rheology and atomization behavior of aqueous solutions were systematically investigated, providing a more reliable and efficient means of enhancing PEO mist reduction performances relative to PEO-surfactant systems. Strong structure-forming interaction of the two components was detected by dynamic light scatting. It yields pronounced enlargement in PEO's coil size, and consequently magnificent enhancement on solution's elongational viscosity, which contributes most in retarding liquid jet disintegration and exhibits direct correlation with the resultant drop size distribution under atomization. The degree of their association is dependent on both molecular weight and concentration of each species and their molar ratio. By using mixed polymeric solutions, the optimum anti-misting effectiveness can be obtained throughout a broad concentration range.

  6. Amorphous Silk Fibroin Membranes for Separation of CO2

    NASA Technical Reports Server (NTRS)

    Aberg, Christopher M.; Patel, Anand K.; Gil, Eun Seok; Spontak, Richard J.; Hagg, May-Britt

    2009-01-01

    Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation. Accordingly, one aspect of the present development is a process for generating amorphous silk fibroin by treating native silk fibroin in an aqueous methanol/salt solution. The resulting material remains self-standing and can be prepared as thin film suitable for permeation testing. The permeability of this material by pure CO2 has been found to be highly improved, and its mixed-gas permeability has been found to exceed the mixed-gas permeabilities of several ultrahigh-CO2-permeable synthetic polymers. Only one of the synthetic polymers poly(trimethylsilylpropyne) [PTMSP] may be more highly permeable by CO2. PTMSP becomes unstable with time, whereas amorphous silk should not, although at the time of this reporting this has not been conclusively proven.

  7. Rheological Behavior Xanthan and SlurryPro Polymer Solutions Evaluated as Shear Thinning Delivery Fluids for Subsurface Remediation

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Oostrom, M.; Truex, M.; Vermeul, V.

    2011-12-01

    Shear thinning fluids can be applied as a delivery means to enhance the uniformity of remedial amendment distribution in heterogeneous aquifers, thereby to improve remediation performance. The rheological behavior of biopolymer xanthan gum and synthetic polymer SlurryPro were tested, and their influence on the amendment delivery performance was evaluated. The impact of polymer concentration, basic water chemistry, salinity (e.g., Br-, Na+, Ca2+ concentrations), remedial amendments (phosphate, sodium lactate, ethyl lactate, lactate oil, whey), sediments, and the mixing approach on the rheological properties of the polymer solutions was determined. The SlurryPro polymer lost shear-thinning properties even at relatively low solution ionic strength. However, the xanthan gum polymer maintained shear-thinning properties under most of the tested conditions, though with some loss in absolute viscosity with increasing ionic strength. Xanthan appeared to be the better candidate for enhanced amendment delivery. Increasing in xanthan concentration not only increased the solution viscosity, but also increased degree of shear thinning. Addition of salt decreased the solution viscosity and the degree of shear thinning, while the influence was diminished when the polymer concentration was higher. After reaching a critical xanthan concentration, addition of salt increased solution viscosity. The degradation of xanthan and SlurryPro in the presence of site aquifer materials and microbes was studied in batch tests in which the field sediment/water ratio was simulated. The viscosity of the polymer solutions dropped 85% or more in the first week, while the solution chemical oxygen demand (COD) decreasing occurred at a much slower rate.

  8. Column preconcentration of lead in aqueous solution with macroporous epoxy resin-based polymer monolithic matrix.

    PubMed

    Wang, Sui; Zhang, Ruifeng

    2006-08-11

    The objective of this article was to investigate the feasibility of epoxy resin-based monoliths prepared by stepwise polymerization and column preconcentration of metal ions using large-scale monolithic matrix. A novel macroporous polymer monolith matrix was prepared from epoxy resin (EP) and ethylenediamine (EDA) and pore-forming reagent (polyethylene glycol, PEG-1000) by in situ step-addition polymerization. The morphology of the resulting polymer monolith was characterized by scanning electron microscopy (SEM). A solid-phase extraction (SPE) cartridge prepared from a simple glass-tube was used for the preconcentration and determination of Pb(II) combined with flame atomic absorption spectroscopy (FAAS). The characteristics of the monoliths for the extraction of Pb(II) in aqueous solution were investigated. The experimental results showed that trace Pb(II) ions could be quantitatively preconcentrated in the pH range of 4.0-9.0 with recoveries of >95%. The maximum static adsorption capacity of the monolith adsorbent was 106.8 mg g(-1). The column was eluted by 1.0 mol L(-1) HNO3 and recovery of Pb(II) was more than 97%. Moreover, the polymer monolith adsorbent shows superior reusability and stability. The precision and the accuracy of the proposed procedure were satisfactory by analyzing a standard reference material and three natural water samples. It was shown that the EP-EDA monolith was suitable for the preconcentration of environmental Pb(II) as an ion-selective SPE adsorbent.

  9. Fabrication of nanosized alumina powders by a simple polymer solution route.

    PubMed

    Lee, Sang-Jin; Chun, Sung-Yong; Lee, Choong-Hyo; Yoon, Young-Soo

    2006-11-01

    Nanosized alumina (Al2O3) powders had been successfully fabricated by a simple polymer solution route employing polyvinyl alcohol (PVA) as an organic carrier. The fabricated alumina powders had an average particle size of 6.1 nm with a high specific surface area of 99.5 m2/g. As well, the alumina powders were fully crystallized to alpha phase at a relatively low temperature of 1000 degrees C. The PVA polymer contributed to a soft and porous microstructure of the calcined alumina powders, and ball-milling process with the porous powders was effective in making nanosized alumina powders. In addition, the content and degree of polymerization of the PVA affected the development of crystallization and powder properties. In this study, the simple polymer technique and milling process for the fabrication of nanosized alumina powders are introduced, and the effects of PVA on the property of the synthesized alumina powders are observed. For the study, the characterizations of the synthesized powders are conducted by using XRD, TEM, particle size analyzer, and nitrogen gas adsorption.

  10. Orientational correlation of liquid-crystalline polymer chains in isotropic solutions. I. Anisotropic light scattering

    NASA Astrophysics Data System (ADS)

    Jinbo, Yuji; Varichon, Lionel; Sato, Takahiro; Teramoto, Akio

    1998-11-01

    The orientational fluctuation in isotropic toluene and dichloromethane solutions of a stiff-chain polymer, poly(n-hexyl isocyanate) (PHIC), has been studied by anisotropic light scattering up to the vicinity of the isotropic-nematic phase separation region. The depolarized component ΔRθ,Hv of the Rayleigh ratio divided by the polymer concentration increased with increasing the polymer concentration. The ΔRθ,Hv data for different molecular weights were fitted almost quantitatively to the scaled particle theory for wormlike hard-spherocylinders with the hard-core diameter d, developed by incorporating the higher virial terms in the free energy. However, the fitted d value was appreciably smaller than that chosen to explain the experimental osmotic compressibilities and/or isotropic-nematic phase boundaries of the same systems. Then it was found that the "spinodal concentration" c*, where the isotropic phase becomes thermodynamically unstable, lies within the nematic region, in contrast with the prediction of the scaled particle theory that c* should be in the isotropic-nematic biphasic region. This inconsistency may come from a mean-field approximation used in the scaled particle theory.

  11. Elastic effects of dilute polymer solution on bubble generation in a microfluidic flow-focusing channel

    NASA Astrophysics Data System (ADS)

    Kim, Dong Young; Shim, Tae Soup; Kim, Ju Min

    2017-05-01

    Recently, two-phase flow in microfluidics has attracted much attention because of its importance in generating droplets or bubbles that can be used as building blocks for material synthesis and biological applications. However, there are many unresolved issues in understanding droplet and bubble generation processes, especially when complex fluids are involved. In this study, we investigated elastic effects on bubble generation processes in a flow-focusing geometry and the shapes of the produced bubbles flowing through a microchannel. We used dilute polymer solutions with nearly constant shear viscosities so that the shear-thinning effects on bubble generation could be precluded. We observed that a very small amount of polymer (poly(ethylene oxide) at O(10) ppm) significantly affects bubble generation. When the polymer was added to a Newtonian fluid, the fluctuation in bubble size increased notably, which was attributed to the chaotic flow dynamics in the flow-focusing region. In addition, it was demonstrate