Sample records for amorphous silica shell

  1. Preparation and Characterization of WS2@SiO2 and WS2@PANI Core-Shell Nanocomposites

    PubMed Central

    Sade, Hagit

    2018-01-01

    Two tungsten disulfide (WS2)-based core-shell nanocomposites were fabricated using readily available reagents and simple procedures. The surface was pre-treated with a surfactant couple in a layer-by-layer approach, enabling good dispersion of the WS2 nanostructures in aqueous media and providing a template for the polymerization of a silica (SiO2) shell. After a Stöber-like reaction, a conformal silica coating was achieved. Inspired by the resulting nanocomposite, a second one was prepared by reacting the surfactant-modified WS2 nanostructures with aniline and an oxidizing agent in an aqueous medium. Here too, a conformal coating of polyaniline (PANI) was obtained, giving a WS2@PANI nanocomposite. Both nanocomposites were analyzed by electron microscopy, energy dispersive X-ray spectroscopy (EDS) and FTIR, verifying the core-shell structure and the character of shells. The silica shell was amorphous and mesoporous and the surface area of the composite increases with shell thickness. Polyaniline shells slightly differ in their morphologies dependent on the acid used in the polymerization process and are amorphous like the silica shell. Electron paramagnetic resonance (EPR) spectroscopy of the WS2@PANI nanocomposite showed variation between bulk PANI and the PANI shell. These two nanocomposites have great potential to expand the use of transition metals dichalcogenides (TMDCs) for new applications in different fields. PMID:29534426

  2. Whispering gallery modes in a spherical microcavity with a photoluminescent shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grudinkin, S. A., E-mail: grudink@gvg.ioffe.ru; Dontsov, A. A.; Feoktistov, N. A.

    2015-10-15

    Whispering-gallery mode spectra in optical microcavities based on spherical silica particles coated with a thin photoluminescent shell of hydrogenated amorphous silicon carbide are studied. The spectral positions of the whispering-gallery modes for spherical microcavities with a shell are calculated. The dependence of the spectral distance between the TE and TM modes on the shell thickness is examined.

  3. Interface-coupled dissolution-precipitation processes allow a photonic crystal to replace an ionic crystal along lattice planes

    NASA Astrophysics Data System (ADS)

    Liesegang, Moritz; Milke, Ralf

    2015-04-01

    Nanocolloidal amorphous silica (SiO2×nH2O) is a major component of environmental aqueous solutions and surface coatings on rocks or mineral grains. Detailed knowledge of amorphous silica formation is indispensable for a better understanding of silicate rock alteration and diagenetic processes. We analyzed a wide range of samples from the Australian precious opal fields in South Australia and Queensland using petrographic microscopy, XRPD, SEM, and EPMA to characterize opaline silica, the mineral assemblage, and the host rock. Over the past 90 Ma the Lower Cretaceous lithologies of central Australia have undergone a weathering regime ranging from sub-tropical to arid, in which pH fluctuated from alkaline to acidic. The prolonged chemical alteration of sedimentary rocks derived from andesitic volcaniclastics and organic matter liberated large volumes of silica into solution, eventually leading to precipitation of nanocolloidal amorphous silica and formation of opal-A. A regular arrangement of close-packed uniform (monodisperse) spheres permits diffraction of white light and gives rise to the famous play-of-color. The opals in this study consist of silica spheres with an average diameter of 100-320 nm and often show a prominent core-shell structure. Two groups are separated by their relative standard deviation (RSD): monodisperse spheres (RSD<6%) and polydisperse spheres (RDS>10%). Monodisperse and polydisperse spheres are separated by their Na/K ratio, restricting the appearance of monodisperse spheres to values <1.2 and polydisperse spheres to values >3.0. We suggest that the Na/K ratio represents significant differences in the overall solution characteristics. The associated minerals (e.g., alunite, gypsum, kaolinite, K feldspar) indicate large variations of fluid composition and pH. Probably, uniform spheres grew at acidic pH, with repulsive forces large enough to arrange them in an ordered array prior to the evaporation of interstitial fluids. The investigation of fossil shells replaced by opal-A reveals clues for the understanding of structural and chemical reorganization mechanisms behind silica pseudomorphism. Fundamental knowledge about the highly selective replacement process is absent so far, impeding an adequate interpretation of the observations. The replacement of calcitic shells by amorphous silica spheres (~300 nm in size) is a unique example for the transformation of an ionic to a photonic crystal accompanied by a large size contrast of ions and spheres, respectively, but preserving lattice planes. The observed replication of polysynthetic twinning and cleavage planes of calcite by opal-A spheres indicates that silicification occurs via dissolution of shell material and immediate precipitation of amorphous silica. This follows the interface-coupled dissolution-precipitation mechanism model (Putnis and Putnis, 2007), but requires some modification to allow for open space necessary to form spheres in the 100s-nm size range with a core-shell structure. While sphere growth by a gravitational ordering process is implausible, we assume that the ordered array of monodisperse spheres forms via layer-by-layer deposition. References: Putnis A. and Putnis C.V. (2007), J. Solid State Chem., 180, 1783-1786

  4. Designing of luminescent GdPO4:Eu@LaPO4@SiO2 core/shell nanorods: Synthesis, structural and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Labis, Joselito P.; Aslam Manthrammel, M.

    2017-09-01

    GdPO4:Eu3+ (core) and GdPO4:Eu@LaPO4 (core/shell) nanorods (NRs) were successfully prepared by urea based co-precipitation process at ambient conditions which was followed by coating with amorphous silica shell via the sol-gel chemical route. The role of surface coating on the crystal structure, crystallinity, morphology, solubility, surface chemistry and luminescence properties were well investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Fourier Transform Infrared (FTIR), UV-Vis, and photoluminescence spectroscopy. XRD pattern revealed highly purified, well-crystalline, single phase-hexagonal-rhabdophane structure of GdPO4 crystal. The TEM micrographs exhibited highly crystalline and narrow size distributed rod-shaped GdPO4:Eu3+ nanostructures with average width 14-16 nm and typical length 190-220 nm. FTIR spectra revealed characteristic infrared absorption bands of amorphous silica. High absorbance in a visible region of silica modified core/shell/Si NRs in aqueous environment suggests the high solubility along with colloidal stability. The photoluminescence properties were remarkably enhanced after growth of undoped LaPO4 layers due to the reduction of nonradiative transition rate. The advantages of presented high emission intensity and high solubility of core/shell and core/shell/Si NRs indicated the potential applications in monitoring biological events.

  5. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  6. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (<2 mm) composed of ordered arrays of uniform, close-packed silica spheres 300 ± 10 nm in size. Concentric layered spheres composed of 40 nm-sized subparticles provide evidence that, at least in the final stage, particle aggregation was the major sphere growth mechanism. Silica sphere arrays in periodically changing orientations perfectly replicate polysynthetic twinning planes of calcite. FIB-SEM tomography shows that cubic closed-packed sphere arrangements preserve the twin lamellae, while the twin plane consists of a submicrometer layer of randomly ordered spheres and vacancies. To transfer crystallographic information from parent to product, the advancement of synchronized dissolution and precipitation fronts along lattice planes is essential. We assume that the volume-preserving replacement process proceeds via a face-specific dissolution-precipitation mechanism with intermediate subparticle aggregation and subsequent layer-by-layer deposition of spheres along a planar surface. Porosity created during the replacement reaction allows permanent fluid access to the propagating reaction interface. Fluid pH and ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study provides a natural example of the transformation of an atomic crystal to an amorphous, mesoscale ordered material; thus, links the research fields of natural colloidal crystal formation, carbonate-silica replacement, and crystallization by oriented particle aggregation (CPA).

  7. Evolution of Morphology and Crystallinity of Silica Minerals Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Isobe, H.

    2011-12-01

    Silica minerals are quite common mineral species in surface environment of the terrestrial planets. They are good indicator of terrestrial processes including hydrothermal alteration, diagenesis and soil formation. Hydrothermal quartz, metastable low temperature cristobalite and amorphous silica show characteristic morphology and crystallinity depending on their formation processes and kinetics under wide range of temperature, pressure, acidity and thermal history. In this study, silica minerals produced by acidic hydrothermal alteration related to volcanic activities and hydrothermal crystallization experiments from diatom sediment are examined with crystallographic analysis and morphologic observations. Low temperature form of cistobalite is a metastable phase and a common alteration product occured in highly acidic hydrothermal environment around fumaroles in geothermal / volcanic areas. XRD analysis revealed that the alteration degree of whole rock is represented by abundance of cristobalite. Detailed powder XRD analysis show that the primary diffraction peak of cristobalite composed with two or three phases with different d-spacing and FWHM by peak profile fitting analysis. Shorter d-spacing and narrower FWHM cristobalite crystallize from precursor materials with less-crystallized, longer d-spacing and wider FWHM cristobalite. Textures of hydrothermal cristobalite in altered rock shows remnant of porphylitic texture of the host rock, pyroxene-amphibole andesite. Diatom has amorphous silica shell and makes diatomite sediment. Diatomite found in less diagenetic Quarternary formation keeps amorphous silica diatom shells. Hydrothermal alteration experiments of amorphous silica diatomite sediment are carried out from 300 °C to 550 °C. Mineral composition of run products shows crystallization of cristobalite and quartz progress depending on temperature and run durations. Initial crystallization product, cristobalite grains occur as characteristic lepispheres and granules with various surface structures. At the very initial stage of cristobalite crystallization within 2 days run duration, cristobalite shows lepispheres a few micron meters in diameter with irregular, submicron scale ridges and grooves on the surface. With the run duration up to 7 days, lepispheres change to granules with smooth surface remaining a few micron meters in diameter. Crystallinity of cristobalite lepispheres and granules corresponds to opal-CT. Euhedral quartz crystals grow with dissolution of cristobalite grains. Growth rate of cristobalite and quartz is controlled by crystallization kinetics with induction period strongly depending on temperature. Induction period of cristobalite crystallization from amorphous silica may exceed several million years at temperature below 100 °C. Crystallinity, morphology and growth rate of silica minerals occurred in various terrestrial and planetary processes are controlled by temperature and acidity of hydrothermal fluid and nucleation and growth kinetics of silica minerals.

  8. Effect of Surface Functionalization on Structural and Optical Properties of Luminescent LaF₃:Sm Nanoparticles.

    PubMed

    Ansari, Anees A

    2018-02-01

    Samarium (Sm3+)-doped LaF3 nanoparticles (NPs) subsequently encapsulated with inert crystalline LaF3 and amorphous silica layers were prepared by polyol and sol-gel chemical process, respectively. These surface modified core/shell/SiO2-nanostructured were characterized by X-ray diffraction (XRD), FE-transmission electron microscopy (TEM), thermal analysis, FTIR, UV/Vis absorption, bang gap energy and photoluminescence spectroscopy. The FETEM, EDX and FTIR spectral studies clearly revealed that the silica layer has been formed surrounding the core-NPs. Comparative spectral analysis indicated that core/shell/SiO2-NPs revealed high solubility in aqueous and non-aqueous solvents. The decrease in band gap energy after surface growth of an inert LaF3 and silica shells is directly correlated to the increase in grain size. On comparing the emission intensity, a significant enhancement was observed after inert layer coating, whereas, it suppress after silica encapsulation due to the non-radiative transitions. The increase luminescent intensity after inert shell growth indicates that a significant amount of non-radiative centers existing on the surface of core/shell nanoparticles can be eliminated by the shielding effect of LaF3 shells. These observed results indicate that the as-prepared core/shell/SiO2-NPs could be highly useful in broad photonic based applications such as optical sensor/optical bio-probe and light emitting diode.

  9. Synthesis of Fe5C2@SiO2 core@shell nanoparticles as a potential candidate for biomedical application

    NASA Astrophysics Data System (ADS)

    Ahmadpoor, Fatemeh; Shojaosadati, Seyed Abbas; Delavari H, Hamid; Christiansen, Gunna; Saber, Reza

    2018-05-01

    A new strategy for water-dispersibility of hydrophobic carbide nanostructures was proposed. In this regard, hydrophobic Fe5C2 nanoparticles (NPs) with size ranging 25–40 nm were synthesized and coated with 12–15 nm silica shell for biomedical applications. X-ray diffraction (XRD) results revealed that Fe5C2 NPs with monoclinic structure were successfully prepared. The crystalline structure of Fe5C2 NPs was remained unchanged and saturation magnetization of core remained nearly constant after coating with silica shell. Moreover, Raman spectroscopy identified D-band of amorphous carbon shells which was also confirmed by transmission electron microscopy (TEM). Finally, Fe5C2@SiO2 core@shell NPs demonstrated no significant cytotoxicity and appropriate heat generating which makes them a promising candidate for magnetic fluid hyperthermia applications.

  10. Silica-modified luminescent LaPO4 :Eu@LaPO4 @SiO2 core/shell nanorods: Synthesis, structural and luminescent properties.

    PubMed

    Ansari, Anees A

    2018-02-01

    Monoclinic-type tetragonal LaPO 4 :Eu (core) and LaPO 4 :Eu@LaPO 4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO 4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Renewable Decyl-alcohol Templated Synthesis of Si-Cu Core-Shell Nanocomposite

    NASA Astrophysics Data System (ADS)

    Salim, M. A.; >H Misran, S. Z.; Shah, N. N. H.; Razak, N. A. A.; >A Manap,

    2013-06-01

    Monodispersed silica spheres with particles size of ca. 450 nm were successfully synthesized using a modified Stöber method. The synthesized monodispersed silica spheres were successfully coated with copper using modified sol-gel method employing nonsurfactant surface modifiers and catalyst. A renewable palm oil based decyl-alcohol (C10) as nonsurfactant surface modifiers and catalyst were used to modify the silica surfaces prior to coating with copper. The X-ray diffraction patterns of Si-Cu core-shell exhibited a broad peak corresponding to amorphous silica networks and monoclinic CuO phase. It was found that samples modified in the presence of 1 ml catalyst exhibited homogeneous deposition. The surface area of core materials (SiO2) was at ca. 7.04 m2/g and Si-Cu core-shell was at ca. 8.21 m2/g. The band gap of samples prepared with and without catalyst was calculated to be ca. 2.45 eV and ca. 3.90 eV respectively based on the UV-vis absorption spectrum of the product.

  12. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tadyszak, Krzysztof; Kertmen, Ahmet; Coy, Emerson; Andruszkiewicz, Ryszard; Milewski, Sławomir; Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan; Chybczyńska, Katarzyna

    2017-07-01

    Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe3O4@SiO2 nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  13. Determination of silica coating efficiency on metal particles using multiple digestion methods.

    PubMed

    Wang, Jun; Topham, Nathan; Wu, Chang-Yu

    2011-10-15

    Nano-sized metal particles, including both elemental and oxidized metals, have received significant interest due to their biotoxicity and presence in a wide range of industrial systems. A novel silica technology has been recently explored to minimize the biotoxicity of metal particles by encapsulating them with an amorphous silica shell. In this study, a method to determine silica coating efficiency on metal particles was developed. Metal particles with silica coating were generated using gas metal arc welding (GMAW) process with a silica precursor tetramethylsilane (TMS) added to the shielding gas. Microwave digestion and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) were employed to solubilize the metal content in the particles and analyze the concentration, respectively. Three acid mixtures were tested to acquire the appropriate digestion method targeting at metals and silica coating. Metal recovery efficiencies of different digestion methods were compared through analysis of spiked samples. HNO(3)/HF mixture was found to be a more aggressive digestion method for metal particles with silica coating. Aqua regia was able to effectively dissolve metal particles not trapped in the silica shell. Silica coating efficiencies were thus calculated based on the measured concentrations following digestion by HNO(3)/HF mixture and aqua regia. The results showed 14-39% of welding fume particles were encapsulated in silica coating under various conditions. This newly developed method could also be used to examine the silica coverage on particles of silica shell/metal core structure in other nanotechnology areas. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    PubMed

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  15. Conversion of geothermal waste to commercial products including silica

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    2003-01-01

    A process for the treatment of geothermal residue includes contacting the pigmented amorphous silica-containing component with a depigmenting reagent one or more times to depigment the silica and produce a mixture containing depigmented amorphous silica and depigmenting reagent containing pigment material; separating the depigmented amorphous silica and from the depigmenting reagent to yield depigmented amorphous silica. Before or after the depigmenting contacting, the geothermal residue or depigmented silica can be treated with a metal solubilizing agent to produce another mixture containing pigmented or unpigmented amorphous silica-containing component and a solubilized metal-containing component; separating these components from each other to produce an amorphous silica product substantially devoid of metals and at least partially devoid of pigment. The amorphous silica product can be neutralized and thereafter dried at a temperature from about 25.degree. C. to 300.degree. C. The morphology of the silica product can be varied through the process conditions including sequence contacting steps, pH of depigmenting reagent, neutralization and drying conditions to tailor the amorphous silica for commercial use in products including filler for paint, paper, rubber and polymers, and chromatographic material.

  16. Health hazards due to the inhalation of amorphous silica.

    PubMed

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study that allows the classification of amorphous silica with regard to its carcinogenicity in humans. Further work is necessary in order to define the effects of amorphous silica on morbidity and mortality of workers with exposure to these substances.

  17. [Amorphous silica. Types, health effects of exposure, NDS].

    PubMed

    Woźniak, H; Wiecek, E

    1995-01-01

    Maximum allowable concentration (MAC) values for amorphous silica dust have not been identified in the Polish legal regulations up-to-date. In this work the authors review values of allowable (recommended) amorphous silica dust concentrations in other countries. Data on other types of amorphous silica (natural and synthetic) used in industry as well as data on health effects of exposure to these types of dust are presented. The work encompasses 42 entries in the references and one Table which includes the following proposed MAC values: Non-calcinate diatomaceous earth (diatomite) and synthetic silica: Total dust--10 mg/m3 Respirable dust--2 mg/m3 Calcinate diatomaceous earth (diatomite) and fused silica (vitreous silica): Total dust--2 mg/m3 Respirable dust--1 mg/m3.

  18. Dissolution and analysis of amorphous silica in marine sediments.

    USGS Publications Warehouse

    Eggimann, D.W.; Manheim, F. T.; Betzer, P.R.

    1980-01-01

    The analytical estimation of amorphous silica in selected Atlantic and Antarctic Ocean sediments, the U.S.G.S. standard marine mud (MAG-1), A.A.P.G. clays, and samples from cultures of a marine diatom, Hemidiscus, has been examined. Our values for amorphous silica-rich circum-Antarctic sediments are equal to or greater than literature values, whereas our values for a set of amorphous silica-poor sediments from a transect of the N. Atlantic at 11oN, after appropriate correction for silica released from clays, are significantly lower than previous estimates from the same region. -from Authors

  19. The Phagocytosis and Toxicity of Amorphous Silica

    PubMed Central

    Costantini, Lindsey M.; Gilberti, Renée M.; Knecht, David A.

    2011-01-01

    Background Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Methodology/Principal Findings Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37°C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Conclusions/Significance Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both cases. However, the result suggests a mechanistic difference between FcγRIIA receptor-mediated and non-opsonized silica particle phagocytosis. PMID:21311600

  20. The phagocytosis and toxicity of amorphous silica.

    PubMed

    Costantini, Lindsey M; Gilberti, Renée M; Knecht, David A

    2011-02-02

    Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37 °C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both cases. However, the result suggests a mechanistic difference between FcγRIIA receptor-mediated and non-opsonized silica particle phagocytosis.

  1. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    PubMed

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. 2010 Elsevier B.V. All rights reserved.

  2. Porous silicon and diatoms micro-shells: an example of inverse biomimetic

    NASA Astrophysics Data System (ADS)

    De Tommasi, Edoardo; Rea, Ilaria; Rendina, Ivo; De Stefano, Luca

    2011-05-01

    Porous silicon (PSi) is by far a very useful technological platform for optical monitoring of chemical and biological substances and due to its peculiar physical and morphological properties it is worldwide used in sensing experiments. On the other hand, we have discovered a natural material, the micro-shells of marine diatoms, ubiquitous unicellular algae, which are made of hydrated amorphous silica, but, most of all, show geometrical structures made of complex patterns of pores which are surprisingly similar to those of porous silicon. Moreover, under laser irradiation, this material is photoluminescent and the photoluminescence is very sensitive to the surrounding atmosphere, which means that the material can act as a transducer. Starting from our experience on PSi devices, we explore the optical and photonic properties of marine diatoms micro-shells in a sort of inverse biomimicry.

  3. Preparation of SiC/SiO2 core-shell nanowires via molten salt mediated carbothermal reduction route

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Yan, Shuai; Jia, Quanli; Huang, Juntong; Lin, Liangxu; Zhang, Shaowei

    2016-06-01

    The growth of silicon carbide (SiC) crystal generally requires a high temperature, especially when low quality industrial wastes are used as the starting raw materials. In this work, SiC/SiO2 core-shell nanowires (NWs) were synthesized from low cost silica fume and sucrose via a molten salt mediated carbothermal reduction (CR) route. The molten salt was found to be effective in promoting the SiC growth and lowering the synthesis temperature. The resultant NWs exhibited a heterostructure composed of a 3C-SiC core of 100 nm in diameter and a 5-10 nm thick amorphous SiO2 shell layer. The photoluminescence spectrum of the achieved SiC NWs displayed a significant blue shift (a dominant luminescence at round 422 nm), which suggested that they were high quality and could be a promising candidate material for future optoelectronic applications.

  4. A universal cooperative assembly-directed method for coating of mesoporous TiO2 nanoshells with enhanced lithium storage properties

    PubMed Central

    Guan, Bu Yuan; Yu, Le; Li, Ju; Lou, Xiong Wen (David)

    2016-01-01

    TiO2 is exceptionally useful, but it remains a great challenge to develop a universal method to coat TiO2 nanoshells on different functional materials. We report a one-pot, low-temperature, and facile method that can rapidly form mesoporous TiO2 shells on various inorganic, organic, and inorganic-organic composite materials, including silica-based, metal, metal oxide, organic polymer, carbon-based, and metal-organic framework nanomaterials via a cooperative assembly-directed strategy. In constructing hollow, core-shell, and yolk-shell geometries, both amorphous and crystalline TiO2 nanoshells are demonstrated with excellent control. When used as electrode materials for lithium ion batteries, these crystalline TiO2 nanoshells composed of very small nanocrystals exhibit remarkably long-term cycling stability over 1000 cycles. The electrochemical properties demonstrate that these TiO2 nanoshells are promising anode materials. PMID:26973879

  5. Highly aqueous soluble CaF2:Ce/Tb nanocrystals: effect of surface functionalization on structural, optical band gap, and photoluminescence properties.

    PubMed

    Ansari, Anees A; Parchur, Abdul K; Kumar, Brijesh; Rai, S B

    2016-12-01

    The design of nanostructured materials with highly stable water-dispersion and luminescence efficiency is an important concern in nanotechnology and nanomedicine. In this paper, we described the synthesis and distinct surface modification on the morphological structure and optical (optical absorption, band gap energy, excitation, emission, decay time, etc.) properties of highly crystalline water-dispersible CaF 2 :Ce/Tb nanocrystals (core-nanocrystals). The epitaxial growth of inert CaF 2 and silica shell, respectively, on their surface forming as CaF 2 :Ce/Tb@CaF 2 (core/shell) and CaF 2 :Ce/Tb@CaF 2 @SiO 2 (core/shell/SiO 2 ) nanoarchitecture. X-ray diffraction and transmission electron microscope image shows that the nanocrystals were in irregular spherical phase, highly crystalline (~20 nm) with narrow size distribution. The core/shell nanocrystals confirm that the surface coating is responsible in the change of symmetrical nanostructure, which was determined from the band gap energy and luminescent properties. It was found that an inert inorganic shell formation effectively enhances the luminescence efficiency and silica shell makes the nanocrystals highly water-dispersible. In addition, Ce 3+ /Tb 3+ -co-doped CaF 2 nanocrystals show efficient energy transfer from Ce 3+ to Tb 3+ ion and strong green luminescence of Tb 3+ ion at 541 nm( 5 D 4 → 7 F 5 ). Luminescence decay curves of core and core/shell nanocrystals were fitted using mono and biexponential equations, and R 2 regression coefficient criteria were used to discriminate the goodness of the fitted model. The lifetime values for the core/shell nanocrystals are higher than core-nanocrystals. Considering the high stable water-dispersion and intensive luminescence emission in the visible region, these luminescent core/shell nanocrystals could be potential candidates for luminescent bio-imaging, optical bio-probe, displays, staining, and multianalyte optical sensing. A newly designed CaF 2 :Ce/Tb nanoparticles via metal complex decomposition rout shows high dispersibility in aqueous solvents with enhanced photoluminescence. The epitaxial growth of inert CaF 2 shell and further amorphous silica, respectively, enhanced their optical and luminescence properties, which is highly usable for luminescent biolabeling, and optical bioprobe etc.

  6. Nano-biosilica from marine diatoms: A brand new material for photonic applications

    NASA Astrophysics Data System (ADS)

    De Stefano, L.; Maddalena, P.; Moretti, L.; Rea, I.; Rendina, I.; De Tommasi, E.; Mocella, V.; De Stefano, M.

    2009-07-01

    Several biological organisms, from some sea shells to butterflies, exhibit sophisticated optical systems, which have been developed during the evolution of each species. The diatoms are microscopic algae enclosed between two valves of hydrated amorphous silica. These intricate structures, called frustules, show quite symmetric patterns of micrometric and nanometric pores. Their strong similarity with man-made objects suggests to exploit the optical properties of the frustules in light guiding and optical transducing. We have found very interesting results, both from the experimental and numerical points of view.

  7. Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells

    NASA Astrophysics Data System (ADS)

    Qian, Li Peng; Zhou, Li Han; Too, Heng-Phon; Chow, Gan-Moog

    2011-02-01

    Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles ( 70-80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles ( 6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by 31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.

  8. COHESION OF AMORPHOUS SILICA SPHERES: TOWARD A BETTER UNDERSTANDING OF THE COAGULATION GROWTH OF SILICATE DUST AGGREGATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Hiroshi; Wada, Koji; Senshu, Hiroki

    2015-10-10

    Adhesion forces between submicrometer-sized silicate grains play a crucial role in the formation of silicate dust agglomerates, rocky planetesimals, and terrestrial planets. The surface energy of silicate dust particles is the key to their adhesion and rolling forces in a theoretical model based on contact mechanics. Here we revisit the cohesion of amorphous silica spheres by compiling available data on the surface energy for hydrophilic amorphous silica in various circumstances. It turned out that the surface energy for hydrophilic amorphous silica in a vacuum is a factor of 10 higher than previously assumed. Therefore, the previous theoretical models underestimated themore » critical velocity for the sticking of amorphous silica spheres, as well as the rolling friction forces between them. With the most plausible value of the surface energy for amorphous silica spheres, theoretical models based on the contact mechanics are in harmony with laboratory experiments. Consequently, we conclude that silicate grains with a radius of 0.1 μm could grow to planetesimals via coagulation in a protoplanetary disk. We argue that the coagulation growth of silicate grains in a molecular cloud is advanced either by organic mantles rather than icy mantles or, if there are no mantles, by nanometer-sized grain radius.« less

  9. Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN)

    NASA Astrophysics Data System (ADS)

    Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F.; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas

    2011-12-01

    Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell. Electronic supplementary information (ESI) available: Figures S1 to S12, Tables S1 and S2. See DOI: 10.1039/c1nr10930h

  10. Amorphous Silica Micro Powder Additive Influence on Tensile Strength of One-Ply Particle Board

    NASA Astrophysics Data System (ADS)

    Pitukhin, A. V.; Kolesnikov, G. N.; Panov, N. G.; Vasilyev, S. B.

    2018-03-01

    The methods and results of experimental investigation on the additive influence of amorphous silica micro powder when mixed in the glue for one-ply particle board are presented in the article. Wooden particles of coniferous and hardwood species as well as glue solution based on carbamide-formaldehyde resin were used for boards manufacturing. The amorphous silica micro powder contained particles on the average 8 μm by the size and specific surface 120…400 m2/g was used in experiment. The samples were tested to determine their physical-mechanical properties. It was found that 1 % amorphous silica micro powder additive increases the breaking point of one-ply particle board under tensile stress by 143 %.

  11. Production of silver-silica core-shell nanocomposites using ultra-short pulsed laser ablation in nanoporous aqueous silica colloidal solutions

    NASA Astrophysics Data System (ADS)

    Santagata, A.; Guarnaccio, A.; Pietrangeli, D.; Szegedi, Á.; Valyon, J.; De Stefanis, A.; De Bonis, A.; Teghil, R.; Sansone, M.; Mollica, D.; Parisi, G. P.

    2015-05-01

    Ultra-short pulsed laser ablation of materials in liquid has been demonstrated to be a versatile technique for nanoparticles production. In a previous paper, it has been described, for the first time, how by laser ablation in a liquid system, silver nanoparticles can be loaded onto SBA-15 and MCM-41 supports which show promising catalytic properties for the oxidation of Volatile Organic Compounds (VOCs). The aim of the present research is to demonstrate the formation of stable silver-silica core-shell nanoparticles by direct laser ablation (Ti:Sa; 800 nm pulse duration: 120 fs repetition rate: 1 kHz, pulse energy: 3.6 mJ, fluence: 9 J cm  -  2) of a Ag target submerged in a static colloidal solution of MCM-41 or SBA-15 silica nanoporous materials. In previous studies, it was discovered that a side and negligible product of the laser ablation process of silver performed in water-silica systems, could be related to the formation of silver-silica core-shell nanoparticles. In order to emphasize this side process some modifications to the laser ablation experimental set-up were performed. Among these, the most important one, in order to favor the production of the core-shell systems, was to keep the liquid silica suspension firm. The laser generated nanomaterials were then analyzed using TEM morphologic characterization. By UV-vis absorption spectra the observed features have been related to components of the colloidal solution as well as to the number of the incident laser pulses. In this manner characterizations on both the process and the resulting suspension have been performed. Significant amount of small sized silver-silica core-shell nanoparticles have been detected in the studied systems. The size distribution, polydispersivity, UV-vis plasmonic bands and stability of the produced silver-silica core-shell nanocomposites have been related to the extent of damage induced in the nanoporous silica structure during the ablation procedure adopted here. In presence of SBA-15 the silver-silica core-shell nanoparticles observed by TEM are smaller and more homogeneously dispersed if compared with the core-shell system obtained when the MCM-41 mesoporous silica was used. The outcomes show that the choice of the mesoporous silica material can affect the silica shell thickness in addition to the Ag NPs size distribution. With this regard, TEM images evidence that in MCM-41 the silver-silica core-shell nanostructures display a silica layer thickness between 1-10 nm conversely, for SBA-15, the silver-silica core-shell nanoparticles are finely dispersed and the silica shell shows, when present, an average thickness of about 5 nm.

  12. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics

    PubMed Central

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-01-01

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics. PMID:25297473

  13. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics.

    PubMed

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-10-09

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics.

  14. Evaluation of silica nanoparticle toxicity after topical exposure for 90 days

    PubMed Central

    Ryu, Hwa Jung; Seong, Nak-won; So, Byoung Joon; Seo, Heung-sik; Kim, Jun-ho; Hong, Jeong-Sup; Park, Myeong-kyu; Kim, Min-Seok; Kim, Yu-Ri; Cho, Kyu-Bong; Seo, Mu Yeb; Kim, Meyoung-Kon; Maeng, Eun Ho; Son, Sang Wook

    2014-01-01

    Silica is a very common material that can be found in both crystalline and amorphous forms. Well-known toxicities of the lung can occur after exposure to the crystalline form of silica. However, the toxicities of the amorphous form of silica have not been thoroughly studied. The majority of in vivo studies of amorphous silica nanoparticles (NPs) were performed using an inhalation exposure method. Since silica NPs can be commonly administered through the skin, a study of dermal silica toxicity was necessary to determine any harmful effects from dermal exposures. The present study focused on the results of systemic toxicity after applying 20 nm colloidal silica NPs on rat skin for 90 days, in accordance with the Organization for Economic Cooperation and Development test guideline 411 with a good laboratory practice system. Unlike the inhalation route or gastrointestinal route, the contact of silica NPs through skin did not result in any toxicity or any change in internal organs up to a dose of 2,000 mg/kg in rats. PMID:25565831

  15. Physical characteristics of chitosan-silica composite of rice husk ash

    NASA Astrophysics Data System (ADS)

    Sumarni, Woro; Sri Iswari, Retno; Marwoto, Putut; Rahayu, Endah F.

    2016-02-01

    Some previous studies showed that the characteristics of chitosan membranes have a very rigid and non-porous structure so that its utilization is not maximized, particularly in the filtration process. Hence, it needs modification to improve the quality of the chitosan membranes. Adding the silica into the chitosan membranes is one of the offered solutions to overcome the problems of physical and mechanical properties of chitosan. This study aims to investigate the effect of variations in the silica composition to the physical characteristics of the chitosan-silica membranes of rice husk ash that were synthesized. The chitosan used is derived from the chitin of Vannamei shrimps’ shell with 82% degree of de-acetylation, while the silica was synthesized from rice husk ash with rendering of silica (SiO2) by 5% and the results of XRD analysis showed an amorphous phase. Membrane synthesis was performed using the phase inversion method with chitosan-silica mass ratios of rice husk ash, which were 1:0.0; 1:0.5; 1:1.0; 1:1.5 and 1:2.0. The results showed that the addition of silica increases the swelling index and the membrane permeability. The results of the analysis, FTIR spectra, obtained a new functional group after the addition of silica, they are Si-OH, Si-O-Si, and CO- NH2. The morphology test using CCD Microscope MS-804 results in the very tight chitosan membranes without the silica surface, it has no pores, smooth and homogeneous, while the chitosan-silica composite membrane of rice husk ash obviously has cracks and small cavities that seemed to spread out.

  16. Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core-shell particles.

    PubMed

    Gu, Shunchao; Kondo, Tomohiro; Mine, Eiichi; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio

    2004-11-01

    Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.

  17. Titania-coated manganite nanoparticles: Synthesis of the shell, characterization and MRI properties

    NASA Astrophysics Data System (ADS)

    Jirák, Zdeněk; Kuličková, Jarmila; Herynek, Vít; Maryško, Miroslav; Koktan, Jakub; Kaman, Ondřej

    2017-04-01

    Novel procedure for coating of oxide nanoparticles with titania, employing hydrolysis and polycondensation of titanium alkoxides under high-dilution conditions and cationic surfactants, is developed and applied to magnetic cores of perovskite manganite. Bare particles of the ferromagnetic La0.65Sr0.35MnO3 phase, possessing high magnetization, M10 kOe(4.5 K) = 63.5 emu g-1, and Curie temperature, TC = 355 K, are synthesized by sol-gel procedure and subsequently coated with titania. Further, a comparative silica-coated product is prepared. In order to analyse the morphology, colloidal stability, and surface properties of these two types of coated particles, a detailed study by means of transmission electron microscopy, dynamic light scattering, zeta-potential measurements, and IR spectroscopy is carried out. The experiments on the titania-coated sample reveal a continuous though porous character of the TiO2 shell, the nature of which is amorphous but can be transformed to anatase at higher temperatures. Finally, the relaxometric study at the magnetic field of 0.5 T, performed to quantity the transverse relaxivity and its temperature dependence, reveals important differences between the titania-coated and silica-coated nanoparticles.

  18. Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.

    PubMed

    Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya

    2018-04-10

    In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.

  19. Effective utilizations of palm oil mill fly ash for synthetic amorphous silica and carbon zeolite composite synthesis

    NASA Astrophysics Data System (ADS)

    Utama, P. S.; Saputra, E.; Khairat

    2018-04-01

    Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.

  20. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

    DOE PAGES

    Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; ...

    2015-11-02

    In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improvesmore » their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO 2 shell.« less

  1. Anisotropic deformation of metallo-dielectric core shell colloids under MeV ion irradiation

    NASA Astrophysics Data System (ADS)

    Penninkhof, J. J.; van Dillen, T.; Roorda, S.; Graf, C.; van Blaaderen, A.; Vredenberg, A. M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks.

  2. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    NASA Astrophysics Data System (ADS)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  3. Soft template synthesis of yolk/silica shell particles.

    PubMed

    Wu, Xue-Jun; Xu, Dongsheng

    2010-04-06

    Yolk/shell particles possess a unique structure that is composed of hollow shells that encapsulate other particles but with an interstitial space between them. These structures are different from core/shell particles in that the core particles are freely movable in the shell. Yolk/shell particles combine the properties of each component, and can find potential applications in catalysis, lithium ion batteries, and biosensors. In this Research News article, a soft-template-assisted method for the preparation of yolk/silica shell particles is presented. The demonstrated method is simple and general, and can produce hollow silica spheres incorporated with different particles independent of their diameters, geometry, and composition. Furthermore, yolk/mesoporous silica shell particles and multishelled particles are also prepared through optimization of the experimental conditions. Finally, potential applications of these particles are discussed.

  4. Spherical silicon-shell photonic band gap structures fabricated by laser-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, H.; Yang, Z. Y.; Lu, Y. F.

    2007-02-01

    Laser-assisted chemical vapor deposition was applied in fabricating three-dimensional (3D) spherical-shell photonic band gap (PBG) structures by depositing silicon shells covering silica particles, which had been self-assembled into 3D colloidal crystals. The colloidal crystals of self-assembled silica particles were formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave Nd:YAG laser (1064nm wavelength) was used to deposit silicon shells by thermally decomposing disilane gas. Periodic silicon-shell/silica-particle PBG structures were obtained. By removing the silica particles enclosed in the silicon shells using hydrofluoric acid, hollow spherical silicon-shell arrays were produced. This technique is capable of fabricating structures with complete photonic band gaps, which is predicted by simulations with the plane wave method. The techniques developed in this study have the potential to flexibly engineer the positions of the PBGs by varying both the silica particle size and the silicon-shell thickness. Ellipsometry was used to investigate the specific photonic band gaps for both structures.

  5. Phase transformations in 40-60-GPa shocked gneisses from the Haughton Crater (Canada): An Analytical Transmission Electron Microscopy (ATEM) study

    NASA Technical Reports Server (NTRS)

    Martinez, I.; Guyot, F.; Schaerer, U.

    1992-01-01

    In order to better understand phase transformations, chemical migration, and isotopic disequilibrium in highly shocked rocks, we have performed a microprobe and an ATEM study on gneisses shocked up to 60 GPa from the Haughton Crater. This study reveals the following chemical and structural characteristics: (1) SiO2 dominant areas are formed by a mixture of pure SiO2 polycrystalline quartz identified by electron diffraction pattern and chemical analysis and a silica-rich amorphous phase containing minor amounts of aluminium, potassium, and iron; (2) Areas with biotitelike composition are formed by less than 200-nm grains of iron-rich spinels embedded in a silica-rich amorphous phase that is very similar to the one described above; (3) Layers with feldsparlike composition are constituted by 100-200-nm-sized alumina-rich grains (the indexation of the crystalline structure is under progress) and the silica-rich amorphous phase; (4) Zones characterized by the unusual Al/Si ratio close to 1 are formed by spinel grains (200-nm-sized) embedded in the same silica-rich amorphous phase; and (5) The fracturated sillimanites contain domains with a lamellar structure, defined by the intercalation of 100-nm-wide lamellae of mullite crystals and of a silica-rich amorphous phase. These mullite crystals preserved the crystallographical orientation of the preshock sillimanite. All compositional domains, identified at the microprobe scale, can thus be explained by a mixture in different proportion between the following phases: (1) a silica-rich amorphous phase, with minor Al and K; (2) quartz crystals; (3) spinel crystals and alumina-rich crystals; (4) sillimanite; and (5) mullite. Such mixtures of amorphous phases and crystals in different proportions explain disturbed isotope systems in these rocks and chemical heterogeneities observed on the microprobe.

  6. Green synthesis and characterization of size tunable silica-capped gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Shekhawat, Gajendra; Wu, Jin-Song; Bhasin, Aman K. K.; Suri, C. R.; Bhasin, K. K.; Dravid, Vinayak

    2012-08-01

    Silica-coated gold nanoparticles (Au@SiO2) with controlled silica-shell thickness were prepared by a modified Stober's method using 10-nm gold nanoparticles (AuNPs) as seeds. The AuNPs were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source and ammonia as a catalyst. An increase in TEOS concentration resulted in an increase in shell thickness. The NPs were characterized by transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectroscopy, scanning near-field ultrasound holography and scanning transmission electron microscopy. The method required no surface modification and the synthesized core shell nanoparticles can be used for various types of biological applications.

  7. Thermal Infrared and Visible to Near-Infrared Spectral Analysis of Chert and Amorphous Silica

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Hamilton, V. E.; Cady, S. L.; Knauth, P.

    2009-03-01

    We look in detail at the thermal infrared and visible to near-infrared spectra of various forms of chert and amorphous silica and compare the spectral variations between samples with variations in physical and chemical characteristics.

  8. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    PubMed

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Novel chiral core-shell silica microspheres with trans-(1R,2R)-diaminocyclohexane bridged in the mesoporous shell: synthesis, characterization and application in high performance liquid chromatography.

    PubMed

    Wu, Xiabing; You, Linjun; Di, Bin; Hao, Weiqiang; Su, Mengxiang; Gu, Yu; Shen, Lingling

    2013-07-19

    Novel chiral core-shell silica microspheres with trans-(1R,2R)-diaminocyclohexane (DACH) moiety bridged in the mesoporous shell were synthesized using layer-by-layer method. The chiral mesoporous shell around the nonporous silica core was formed by the co-condensation of N,N'-bis-[(triethoxysilyl)propyl]-trans-(1R,2R)-bis-(ureido)-cyclohexane (DACH-BS) and tetraethoxysilane (TEOS) using octadecyltrimethylammonium chloride (C18TMACl) and triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer (P123) as the templates. The functionalized core-shell silica microspheres were characterized and tested as chiral stationary phases for high performance liquid chromatography (HPLC). R/S-1,1'-bi-2,2'-naphthol, R/S-6,6'-dibromo-1,1'-bi-2-naphthol and R/S-1,1'-bi-2,2'-phenanthrol were enantioseparated rapidly on the column packed with the DACH core-shell silica particles. Moreover, the column packed with core-shell particles exhibited better performance than the column packed with the DACH functionalized periodic mesoporous organosilicas. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Ultra-Low Density Aerogel Mirror Substrates

    DTIC Science & Technology

    1993-04-01

    Silica aerogel materials were fabricated by both the high temperature and low temperature methods at the Lawrence Livermore National Laboratory in...evaporation techniques were used to planarize the silica aerogel with SiO 2 prior to metalization. The PECVD was performed at the Cornell University...incident hv. Defect Physics Silica aerogel is an amorphous SiO, matrix of high porosity (or a low density disordered material). The amorphous r~ature of

  11. Spheroidization of silica powders by radio frequency inductively coupled plasma with Ar-H2 and Ar-N2 as the sheath gases at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Li, Lin; Ni, Guo-hua; Guo, Qi-jia; Lin, Qi-fu; Zhao, Peng; Cheng, Jun-li

    2017-09-01

    Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon (serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.

  12. A Bottle-around-a-Ship Method To Generate Hollow Thin-Shelled Particles Containing Encapsulated Iron Species with Application to the Environmental Decontamination of Chlorinated Compounds.

    PubMed

    Su, Yang; Wang, Yingqing; Owoseni, Olasehinde; Zhang, Yueheng; Gamliel, David Pierce; Valla, Julia A; McPherson, Gary L; John, Vijay T

    2018-04-25

    Thin-shelled hollow silica particles are synthesized using an aerosol-based process where the concentration of a silica precursor tetraethyl orthosilicate (TEOS) determines the shell thickness. The synthesis involves a novel concept of the salt bridging of an iron salt, FeCl 3 , to a cationic surfactant, cetyltrimethylammonium bromide (CTAB), which modulates the templating effect of the surfactant on silica porosity. The salt bridging leads to a sequestration of the surfactant in the interior of the droplet with the formation of a dense silica shell around the organic material. Subsequent calcination consistently results in hollow particles with encapsulated iron oxides. Control of the TEOS levels leads to the generation of ultrathin-shelled (∼10 nm) particles which become susceptible to rupture upon exposure to ultrasound. The dense silica shell that is formed is impervious to entry of chemical species. Mesoporosity is restored to the shell through desilication and reassembly, again using CTAB as a template. The mesoporous-shelled hollow particles show good reactivity toward the reductive dichlorination of trichloroethylene (TCE), indicating access of TCE to the particle interior. The ordered mesoporous thin-shelled particles containing active iron species are viable systems for chemical reaction and catalysis.

  13. Generation of a mesoporous silica MSU shell onto solid core silica nanoparticles using a simple two-step sol-gel process.

    PubMed

    Allouche, Joachim; Dupin, Jean-Charles; Gonbeau, Danielle

    2011-07-14

    Silica core-shell nanoparticles with a MSU shell have been synthesized using several non-ionic poly(ethylene oxide) based surfactants via a two step sol-gel method. The materials exhibit a typical worm-hole pore structure and tunable pore diameters between 2.4 nm and 5.8 nm.

  14. Interface formation during silica encapsulation of colloidal CdSe/CdS quantum dots observed by in situ Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Biermann, Amelie; Aubert, Tangi; Baumeister, Philipp; Drijvers, Emile; Hens, Zeger; Maultzsch, Janina

    2017-04-01

    We investigate the encapsulation of CdSe/CdS quantum dots (QDs) in a silica shell by in situ Raman spectroscopy and find a distinct shift of the CdS Raman signal during the first hours of the synthesis. This shift does not depend on the final silica shell thickness but on the properties of the initial core-shell QD. We find a correlation between the Raman shift rate and the speed of the silica formation and attribute this to the changing configuration of the outermost layers of the QD shell, where an interface to the newly formed silica is created. This dependence of Raman shift rate on the speed of silica formation process will give rise to many possible studies concerning the growth mechanism in the water-in-oil microemulsion, rendering in situ Raman a valuable instrument in monitoring this type of reaction.

  15. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    PubMed

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  16. Synthesis of PANi-SiO2 Nanocomposite with In-Situ Polymerization Method: Nanoparticle Silica (NPS) Amorphous and Crystalline Phase

    NASA Astrophysics Data System (ADS)

    Munasir; Luvita, N. R. D.; Kusumawati, D. H.; Putri, N. P.; Triwikantoro; Supardi, Z. A. I.

    2018-03-01

    Silica which is synthesized from natural materials such as Bancar Tuban’s sand composited with Polyaniline (PANi), where the silica used are silica has an amorphous phase and cristobalite phase. In this research, the composite method used is in- situ polymerization, which is silica entered during the fabrication of PANi, then automatically silica will be substitute into the chain bonding of PANi. The aim of this research is to find out the results of a composite process using in-situ methods as well as differences in the morphology of PANi/a- SiO2 and PANi/c-SiO2. For the characterization of samples tested in the form of FTIR to determine the functional groups of the composite and SEM to determine the morphology of the sample. From the test results of FTIR are known composite possibility has occurred because there are several functional groups belonging to silica also functional groups belonging polyaniline, functional group that’s happened in wave numbers were almost identical between PANi/a-SiO2 and PANi/c-SiO2, but there are little differences were seen in the form of a graph generated from the peak and intensity that occurred charts for PANi/c-SiO2 has peak more pointed or sharp compared to PANi/a-SiO2 because that bond of crystal is strong, stiff and has a larger particle size than the amorphous composite. Then from the data of SEM seen clearly their morphological differences between PANi/a-SiO2 and PANi/c-SiO2 where polyaniline is composited with amorphous silica will have a fault that is not uniform or irregular different from PANi/c -SiO2 has a regular fault and this is corresponding with the nature of the typical structure of amorphous and crystalline.

  17. Pressure-induced silica quartz amorphization studied by iterative stochastic surface walking reaction sampling.

    PubMed

    Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan

    2017-02-08

    The crystal to amorphous transformation is a common phenomenon in Nature and has important impacts on material properties. Our current knowledge on such complex solid transformation processes is, however, limited because of their slow kinetics and the lack of long-range ordering in amorphous structures. To reveal the kinetics in the amorphization of solids, this work, by developing iterative reaction sampling based on the stochastic surface walking global optimization method, investigates the well-known crystal to amorphous transformation of silica (SiO 2 ) under external pressures, the mechanism of which has long been debated for its non-equilibrium, pressure-sensitive kinetics and complex product components. Here we report for the first time the global potential energy surface (PES) and the lowest energy pathways for α-quartz amorphization from first principles. We show that the pressurization at 15 GPa, the reaction condition, can lift the quartz phase energetically close to the amorphous zone, which thermodynamically initializes the amorphization. More importantly, the large flexibility of Si cation coordination (including four, five and six coordination) results in many kinetically competing routes to more stable dense forms, including the known MI, stishovite, newly-identified MII and TI phases. All these pathways have high barriers due to the local Si-O bond breaking and are mediated by amorphous structures with five-fold Si. This causes simultaneous crystal-to-crystal and crystal-to-amorphous transitions. The high barrier and the reconstructive nature of the phase transition are the key kinetics origin for silica amorphization under pressures.

  18. One-Pot Synthesis of Tunable Crystalline Ni3 S4 @Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors.

    PubMed

    Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu

    2015-08-12

    Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Amorphous silica maturation in chemically weathered clastic sediments

    NASA Astrophysics Data System (ADS)

    Liesegang, Moritz; Milke, Ralf; Berthold, Christoph

    2018-03-01

    A detailed understanding of silica postdepositional transformation mechanisms is fundamental for its use as a palaeobiologic and palaeoenvironmental archive. Amorphous silica (opal-A) is an important biomineral, an alteration product of silicate rocks on the surface of Earth and Mars, and a precursor material for stable silica phases. During diagenesis, amorphous silica gradually and gradationally transforms to opal-CT, opal-C, and eventually quartz. Here we demonstrate the early-stage maturation of several million year old opal-A from deeply weathered Early Cretaceous and Ordovician sedimentary rocks of the Great Artesian Basin (central Australia). X-ray diffraction, scanning electron microscopy, and electron probe microanalyses show that the mineralogical maturation of the nanosphere material is decoupled from its chemical properties and begins significantly earlier than micromorphology suggests. Non-destructive and locally highly resolved X-ray microdiffraction (μ-XRD2) reveals an almost linear positive correlation between the main peak position (3.97 to 4.06 Å) and a new asymmetry parameter, AP. Heating experiments and calculated diffractograms indicate that nucleation and growth of tridymite-rich nanodomains induce systematic peak shifts and symmetry variations in diffraction patterns of morphologically juvenile opal-A. Our results show that the asymmetry parameter traces the early-stage maturation of amorphous silica, and that the mineralogical opal-A/CT stage extends to smaller d-spacings and larger FWHM values than previously suggested.

  20. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  1. Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness

    NASA Astrophysics Data System (ADS)

    Vecchione, Raffaele; Luciani, Giuseppina; Calcagno, Vincenzo; Jakhmola, Anshuman; Silvestri, Brigida; Guarnieri, Daniela; Belli, Valentina; Costantini, Aniello; Netti, Paolo A.

    2016-04-01

    Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy.Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01192f

  2. Non-Reductive Strategies for U Sequestration: Natural Analogues and Practical Application

    NASA Astrophysics Data System (ADS)

    Maher, K.; Bethke, C. M.; Massey, M. S.

    2011-12-01

    A number of strategies have been proposed for the in situ remediation of U contaminated zones, including bioreduction, permeable reactive barriers, and incorporation into secondary phases such as phosphates. An alternative approach is to sequester U within amorphous Si phases such as opaline silica. We have investigated the isotopic and major element composition and structure of naturally occurring U-rich opaline silica in semi-arid soil environments across the western United States. These phases constitute a large natural reservoir of sequestered U. By combining these observations with geochemical considerations, we propose a remedial strategy for sequestering U in amorphous silica. The U-rich opal occurs as laminations, veins, and coatings on clasts in soils developed on a range of parent materials. U-rich opal deposits are also found as speleothems in caves, as silica-rich spring deposits, and as cavity fillings and hydrothermal veins in volcanic tuffs. Measurements of U, Th and Pb isotopes reveal the age of the opaline silica, demonstrating the long-term stability of U sequestration in open chemical environments. The isotopic data also suggest that opaline silica will retain the majority of the initial U over millions of years. U in naturally occurring opal generally ranges between 200 to 1000 ppm. In contrast, co-existing calcite contains less than 100 ppb U. From pore water chemistry, the distribution coefficient for U incorporation into opaline silica is approximately 20, whereas the coefficient for calcite is typically between 0.2 and 1. X-ray absorption spectroscopy investigations confirm that hexavalent U is incorporated in amorphous silica as the UO22+ ion. Coexisting Fe-oxides provide a further sink for sequestering UO22+ from the pore water. However, preliminary calculations suggest that incorporation of U into amorphous silica may be a dominant mechanism for isolating UO22+from groundwater over long time scales. Nature's mechanism for sequestering UO22+ from the environment might be profitably incorporated into groundwater remediation strategies. We consider a remedial strategy in which Na2SiO3 is amended into the subsurface. The silicate flood reacts with the surface acidity in the sediments to lower pH and precipitate amorphous silica. Hexavalent uranium is partitioned strongly into the silica, as well as complexed with the sediment surfaces.

  3. Green synthesis of silica nanoparticles using sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Mohd, Nur Kamilah; Wee, Nik Nur Atiqah Nik; Azmi, Alyza A.

    2017-09-01

    Silica nanoparticles have been great attention as it being evaluated for used in abundant fields and applications. Due to this significance, this research was conducted to synthesis silica nanoparticles using local agricultural waste, sugarcane bagasse. We executed extraction and precipitation process as it involved low cost, less toxic and low energy process compared to other methods. The Infrared (IR) spectra showed the vibration peak of Si-O-Si, which clearly be the evidence for the silica characteristics in the sample. In this research, amorphous silica nanoparticles with spherical morphology with an average size of 30 nm, and specific surface area of 111 m2/g-1 have been successfully synthesized. The XRD patterns showed the amorphous nature of silica nanoparticles. As a comparison, the produced silica nanoparticles from sugarcane bagasse are compared with the respective nanoparticles synthesized using Stöber method.

  4. Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports

    NASA Astrophysics Data System (ADS)

    Ewing, Christopher S.; Veser, Götz; McCarthy, Joseph J.; Lambrecht, Daniel S.; Johnson, J. Karl

    2016-10-01

    Metal-support interactions significantly affect the stability and activity of supported catalytic nanoparticles (NPs), yet there is no simple and reliable method for estimating NP-support interactions, especially for amorphous supports. We present an approach for rapid prediction of catalyst-support interactions between Pt NPs and amorphous silica supports for NPs of various sizes and shapes. We use density functional theory calculations of 13 atom Pt clusters on model amorphous silica supports to determine linear correlations relating catalyst properties to NP-support interactions. We show that these correlations can be combined with fast discrete element method simulations to predict adhesion energy and NP net charge for NPs of larger sizes and different shapes. Furthermore, we demonstrate that this approach can be successfully transferred to Pd, Au, Ni, and Fe NPs. This approach can be used to quickly screen stability and net charge transfer and leads to a better fundamental understanding of catalyst-support interactions.

  5. Crystallization of biogenic hydrous amorphous silica

    NASA Astrophysics Data System (ADS)

    Kyono, A.; Yokooji, M.; Chiba, T.; Tamura, T.; Tuji, A.

    2017-12-01

    Diatom, Nitzschia cf. frustulum, collected from Lake Yogo, Siga prefecture, Japan was cultured in laboratory. Organic components of the diatom cell were removed by washing with acetone and sodium hypochlorite. The remaining frustules were studied by SEM-EDX, FTIR spectroscopy, and synchrotron X-ray diffraction. The results showed that the spindle-shaped morphology of diatom frustule was composed of hydrous amorphous silica. Pressure induced phase transformation of the diatom frustule was investigated by in situ Raman spectroscopic analysis. With exposure to 0.3 GPa at 100 oC, Raman band corresponding to quartz occurred at ν = 465 cm-1. In addition, Raman bands known as a characteristic Raman pattern of moganite was also observed at 501 cm-1. From the integral ratio of Raman bands, the moganite content in the probed area was estimated to be approximately 50 wt%. With the pressure and temperature effect, the initial morphology of diatom frustule was completely lost and totally changed to a characteristic spherical particle with a diameter of about 2 mm. With keeping the compression of 5.7 GPa at 100 oC, a Raman band assignable to coesite appeared at 538 cm-1. That is, with the compression and heating, the hydrous amorphous silica can be readily crystallized into quartz, moganite, and coesite. The first-principles calculations revealed that a disiloxane molecule stabilized in a trans configuration is twisted 60o and changed into the cis configuration with a close approach of water molecule. It is therefore a reasonable assumption that during crystallization of hydrous amorphous silica, the Si-O-Si bridging unit with the cis configuration would survive as a structural defect and then crystallized into moganite by keeping the geometry. This hypothesis is adaptable to the phase transformation from hydrous amorphous silica to coesite as well, because coesite has the four-membered rings and easily formed from the hydrous amorphous silica under high pressure and high temperature conditions.

  6. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix.

    PubMed

    Grabowski, Christopher A; Fillery, Scott P; Westing, Nicholas M; Chi, Changzai; Meth, Jeffrey S; Durstock, Michael F; Vaia, Richard A

    2013-06-26

    The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic-polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure-performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdown-field exclusion and agglomeration-have been mitigated in this experiment to focus on what impact the polymer and polymer-nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5-15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.

  7. Porous, S-bearing silica in metal-sulfide nodules and in the interchondrule clastic matrix in two EH3 chondrites

    NASA Astrophysics Data System (ADS)

    Lehner, S. W.; Németh, P.; Petaev, M. I.; Buseck, P. R.

    2017-11-01

    Two new occurrences of porous, S-bearing, amorphous silica are described within metal-sulfide nodules (MSN) and as interchondrule patches in EH3 chondrites SAH 97072 and ALH 84170. This porous amorphous material, which was first reported from sulfide-bearing chondrules, consists of sinewy SiO2-rich areas containing S with minor Na or Ca as well as Fe, Mg, and Al. Some pores contain minerals including pyrite, pyrrhotite, and anhydrite. Most pores appear vacant or contain unidentified material that is unstable under analytical conditions. Niningerite, olivine, enstatite, albite, and kumdykolite occur enclosed within porous silica patches. Porous silica is commonly interfingered with cristobalite suggesting its amorphous structure resulted from high-temperature quenching. We interpret the S-bearing porous silica to be a product of silicate sulfidation, and the Na, Ca, Fe, Mg, and Al detectable within this material are chemical residues of sulfidized silicates and metal. The occurrence of porous silica in the cores of MSN, which are considered to be pre-accretionary objects, suggests the sulfidizing conditions occurred prior to final parent-body solidification. Ubiquitous S-bearing porous silica among sulfide-bearing chondrules, MSN, and in the interchondrule clastic matrix, suggests that similar sulfidizing conditions affected all the constituents of these EH3 chondrites.

  8. Intracellularly Biodegradable Polyelectrolyte/Silica Composite Microcapsules as Carriers for Small Molecules.

    PubMed

    Gao, Hui; Goriacheva, Olga A; Tarakina, Nadezda V; Sukhorukov, Gleb B

    2016-04-20

    Microcapsules that can be efficiently loaded with small molecules and effectively released at the target area through the degradation of the capsule shells hold great potential for treating diseases. Traditional biodegradable polyelectrolyte (PE) capsules can be degraded by cells and eliminated from the body but fail to encapsulate drugs with small molecular weight. Here, we report a poly-l-arginine hydrochloride (PARG)/dextran sulfate sodium salt (DEXS)/silica (SiO2) composite capsule that can be destructed in cells and of which the in situ formed inorganic SiO2 enables loading of small model molecules, Rhodamine B (Rh-B). The composite capsules were fabricated based on the layer-by-layer (LbL) technique and the hydrolysis of tetraethoxysilane (TEOS). Capsules composed of nondegradable PEs and SiO2, polyllamine hydrochloride (PAH)/poly(sodium 4-styrenesulfonate) (PSS)/silica (the control sample), were prepared and briefly compared with the degradable composite capsules. An intracellular degradation study of both types of composite capsules revealed that PARG/DEXS/silica capsules were degraded into fragments and lead to the release of model molecules in a relatively short time (2 h), while the structure of PAH/PSS/silica capsules remained intact even after 3 days incubation with B50 cells. Such results indicated that the polymer components played a significant role in the degradability of the SiO2. Specifically, PAH/PSS scaffolds blocked the degradation of SiO2. For PARG/DEXS/silica capsules, we proposed the effects of both hydrolytic degradation of amorphous silica and enzymatic degradation of PARG/DEXS polymers as a cell degradation mechanism. All the results demonstrated a new type of functional composite microcapsule with low permeability, good biocompatibility, and biodegradability for potential medical applications.

  9. Processing pathway dependence of amorphous silica nanoparticle toxicity - colloidal versus pyrolytic

    PubMed Central

    Zhang, Haiyuan; Dunphy, Darren R.; Jiang, Xingmao; Meng, Huan; Sun, Bingbing; Tarn, Derrick; Xue, Min; Wang, Xiang; Lin, Sijie; Ji, Zhaoxia; Li, Ruibin; Garcia, Fred L.; Yang, Jing; Kirk, Martin L.; Xia, Tian; Zink, Jeffrey I; Nel, Andre; Brinker, C. Jeffrey

    2012-01-01

    We have developed structure/toxicity relationships for amorphous silica nanoparticles (NPs) synthesized through low temperature, colloidal (e.g. Stöber silica) or high temperature pyrolysis (e.g. fumed silica) routes. Through combined spectroscopic and physical analyses, we have determined the state of aggregation, hydroxyl concentration, relative proportion of strained and unstrained siloxane rings, and potential to generate hydroxyl radicals for Stöber and fumed silica NPs with comparable primary particle sizes (16-nm in diameter). Based on erythrocyte hemolytic assays and assessment of the viability and ATP levels in epithelial and macrophage cells, we discovered for fumed silica an important toxicity relationship to post-synthesis thermal annealing or environmental exposure, whereas colloidal silicas were essentially non-toxic under identical treatment conditions. Specifically, we find for fumed silica a positive correlation of toxicity with hydroxyl concentration and its potential to generate reactive oxygen species (ROS) and cause red blood cell hemolysis. We propose fumed silica toxicity stems from its intrinsic population of strained three-membered rings (3MRs) along with its chain-like aggregation and hydroxyl content. Hydrogen-bonding and electrostatic interactions of the silanol surfaces of fumed silica aggregates with the extracellular plasma membrane cause membrane perturbations sensed by the Nalp3 inflammasome, whose subsequent activation leads to secretion of the cytokine IL-1β. Hydroxyl radicals generated by the strained 3MRs in fumed silica but largely absent in colloidal silicas may contribute to the inflammasome activation. Formation of colloidal silica into aggregates mimicking those of fumed silica had no effect on cell viability or hemolysis. This study emphasizes that not all amorphous silica is created equal and that the unusual toxicity of fumed silica compared to colloidal silica derives from its framework and surface chemistry along with its fused chain-like morphology established by high temperature synthesis (>1300°C) and rapid thermal quenching. PMID:22924492

  10. Linking Spectral Features with Composition, Crystallinity, and Roughness Properties of Silica and Implications for Candidate Hydrothermal Systems on Mars

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; McDowell, M. L.; Berger, J. A.; Cady, S. L.; Knauth, L. P.

    2011-12-01

    We have collected visible to near infrared reflectance (VNIR, ~0.4 - 2.5 um), thermal infrared emissivity (TIR, ~5 - 45 um), SEM, XRD, surface roughness, and petrographic data for 18 silica samples. These rocks (e.g., replacement chert, geyserite, opal-A/-CT) represent a variety of geologic formation environments, including hydrothermal, and have XRD-determined crystallinities ranging from <1 to >10 according to the quartz crystallinity index. Our findings are relevant to the interpretation of orbital and in situ spectral observations of crystalline or amorphous silica on the Martian surface, some of which may have formed in hydrothermal systems. Almost all of our samples' VNIR spectra contain discernible bands. The most common features are related to hydration (H2O and/or OH) of silica (e.g., at ~1.4, 1.9, and 2.2 um). The visibility and strength of these bands is not always constant between spectra from different areas of a sample. Other features include those of carbonate, phyllosilicate, and iron oxide impurities. All of our amorphous silica samples have hydration features in the VNIR, but we note that the absorptions around ~2.2 um can be very weak in amorphous samples relative to features at other wavelengths and relative to ~2.2-um features observed in Martian data, suggesting that some amorphous silica on Mars could go undetected. Deposits containing significant anhydrous, crystalline silica (chert) may be assumed to lack features in the VNIR, but many of our cherts have spectral features and could be misidentified as materials dominated by what is a minor contaminant. Thermal infrared spectra of chert and opaline silica differ from each other as a result of the loss of long-range Si-O order in increasingly amorphous samples. Our samples display a clear trend in TIR band shapes where features attributable to crystalline quartz and amorphous silica are blended in samples with intermediate crystallinities. Most diagnostic TIR spectral features observable in laboratory data typically are recognizable in hyperspectral remote sensing data. These features are more difficult to distinguish (or are not included) at multispectral resolutions, but in nearly all uncontaminated samples, the positions of Si-O emissivity minima shift towards longer wavelengths with decreasing crystallinity. Contaminating phases with strong VNIR spectral features are observed in some of the TIR spectra but have a negligible effect in others, suggesting that TIR spectroscopy helps constrain the abundances of these phases. In addition to compositional and crystallinity information, our laboratory data demonstrate that TIR spectra can be used to deduce important information on silica phases' texture and orientation. If used in combination, VNIR and TIR spectroscopy can detect and characterize silica phases, allowing us to estimate conditions of silica formation, e.g., high- or low-temperature aqueous systems.

  11. Adsorption onto Mesoporous Silica Using Supercritical Fluid Technology Improves Dissolution Rate of Carbamazepine-a Poorly Soluble Compound.

    PubMed

    Gandhi, Aditya V; Thipsay, Priyanka; Kirthivasan, Bharat; Squillante, Emilio

    2017-11-01

    The purpose of this research was to design and characterize an immediate-release formulation of carbamazepine (CBZ), a poorly soluble anti-epileptic drug, using a porous silica carrier. Carbon dioxide in its supercritical state (2000 psi, 30-35°C) was used as an anti-solvent to precipitate CBZ onto two particle size variants of silica. Adsorption isotherms were used as a pre-formulation strategy to select optimum ratios of silica and CBZ. The obtained drug-silica formulations were characterized by dissolution studies, differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). This formulation strategy resulted in a 2.4-fold improvement in dissolution rate when compared to pure drug after 30 min of dissolution testing. PXRD and DSC confirmed the amorphous nature of CBZ in the formulations as well as the differences in polymorphic forms of commercial and supercritical fluid-processed CBZ. Additionally, solid-state NMR spectroscopy showed that the spin-lattice relaxation time for bulk drug (without silica) was ∼7.5 times greater than that for silica-confined CBZ, implying that when CBZ was adsorbed onto mesoporous silica, it is structurally disordered and had higher structural mobility, a characteristic of amorphous solids. The mesoporous silica matrix prevented CBZ crystal growth by imposing spatial constraint on CBZ nuclei and hence resulted in faster dissolution compared to bulk solid drug. Adsorption onto mesoporous silica using supercritical fluid technology may be used as a novel formulation strategy for amorphization of poorly soluble compounds, in turn improving their dissolution rate.

  12. Synthesis of robust water-soluble ZnS:Mn/SiO2 core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Zhuang, Jiaqi; Guan, Shaowei; Yang, Wensheng

    2008-04-01

    Water-soluble Mn doped ZnS (ZnS:Mn) nanocrystals synthesized by using 3-mercaptopropionic acid (MPA) as stabilizer were homogeneously coated with a dense silica shell through a multi-step procedure. First, 3-mercaptopropyl triethoxy silane (MPS) was used to replace MPA on the particle surface to form a vitreophilic layer for further silica deposition under optimal experimental conditions. Then a two-step silica deposition was performed to form the final water-soluble ZnS:Mn/SiO2 core/shell nanoparticles. The as-prepared core/shell nanoparticles show little change in fluorescence intensity in a wide range of pH value.

  13. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less

  14. Size distributions of coastal ocean suspended particulate inorganic matter: Amorphous silica and clay minerals and their dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Stavn, Robert H.; Falster, Alexander U.; Rick, Johannes J.; Gray, Deric; Gould, Richard W.

    2017-04-01

    Particulate inorganic matter (PIM) is a key component in estuarine and coastal systems and plays a critical role in trace metal cycling. Better understanding of coastal dynamics and biogeochemistry requires improved quantification of PIM in terms of its concentration, size distribution, and mineral species composition. The angular pattern of light scattering contains detailed information about the size and composition of particles. These volume scattering functions (VSFs) were measured in Mobile Bay, Alabama, USA, a dynamic, PIM dominated coastal environment. From measured VSFs, we determined through inversion the particle size distributions (PSDs) of major components of PIM, amorphous silica and clay minerals. An innovation here is the extension of our reported PSDs significantly into the submicron range. The PSDs of autochthonous amorphous silica exhibit two unique features: a peak centered at about 0.8 μm between 0.2 and 4 μm and a very broad shoulder essentially extending from 4 μm to >100 μm. With an active and steady particle source from blooming diatoms, the shapes of amorphous silica PSDs for sizes <10 μm varied little across the study area, but showed more particles of sizes >10 μm inside the bay, likely due to wind-induced resuspension of larger frustules that have settled. Compared to autochthonous amorphous silica, the allochthonous clay minerals are denser and exhibit relatively narrower PSDs with peaks located between 1 and 4 μm. Preferential settling of larger mineral particles as well as the smaller but denser illite component further narrowed the size distributions of clay minerals as they were being transported outside the bay. The derived PSDs also indicated a very dynamic situation in Mobile Bay when a cold weather front passed through during the experiment. With northerly winds of speeds up to 15 m s-1, both amorphous silica and clay minerals showed a dramatic increase in concentration and broadening in size distribution outside the exit of the barrier islands, indicative of wind-induced resuspension and subsequent advection of particles out of Mobile Bay. While collectively recognized as the PIM, amorphous silica and clay minerals, as shown in this study, possess very different size distributions. Considering how differences in PSDs and the associated particle areas will effect differences in sorption/desorption properties of these components, the results also demonstrate the potential of applying VSF-inversion in studying biogeochemistry in the estuarine-coastal ocean system.

  15. Production and Application of Olivine Nano-Silica in Concrete

    NASA Astrophysics Data System (ADS)

    Mardiana, Oesman; Haryadi

    2017-05-01

    The aim of this research was to produce nano silica by synthesis of nano silica through extraction and dissolution of ground olivine rock, and applied the nano silica in the design concrete mix. The producing process of amorphous silica used sulfuric acid as the dissolution reagent. The separation of ground olivine rock occurred when the rock was heated in a batch reactor containing sulfuric acid. The results showed that the optimum mole ratio of olivine- acid was 1: 8 wherein the weight ratio of the highest nano silica generated. The heating temperature and acid concentration influenced the mass of silica produced, that was at temperature of 90 °C and 3 M acid giving the highest yield of 44.90%. Characterization using Fourier Transform Infrared (FTIR ) concluded that amorphous silica at a wavenumber of 1089 cm-1 indicated the presence of siloxane, Si-O-Si, stretching bond. Characterization using Scanning Electron Microscope - Energy Dispersive Spectroscopy (SEM-EDS) showed the surface and the size of the silica particles. The average size of silica particles was between 1-10 μm due to the rapid aggregation of the growing particles of nano silica into microparticles, caused of the pH control was not fully achieved.

  16. Photonic bandgap of inverse opals prepared from core-shell spheres

    PubMed Central

    2012-01-01

    In this study, we synthesized monodispersed polystyrene (PS)-silica core-shell spheres with various shell thicknesses for the fabrication of photonic crystals. The shell thickness of the spheres was controlled by various additions of tetraethyl orthosilicate during the shell growth process. The shrinkage ratio of the inverse opal photonic crystals prepared from the core-shell spheres was significantly reduced from 14.7% to within 3%. We suspected that the improvement resulted from the confinement of silica shell to the contraction of PS space during calcination. Due to the shell effect, the inverse opals prepared from the core-shell spheres have higher filling fraction and larger wavelength of stop band maximum. PMID:22894600

  17. Anionic surfactants templating route for synthesizing silica hollow spheres with different shell porosity

    NASA Astrophysics Data System (ADS)

    Han, Lu; Gao, Chuanbo; Wu, Xiaowei; Chen, Qianru; Shu, Peng; Ding, Zhiguang; Che, Shunai

    2011-04-01

    Silica hollow spheres with different shell porosity were simply synthesized with micelle and emulsion dual templating route. Various anionic surfactants, such as palmitic acid (C 16AA), N-acyl- L-phenylalanine (C 18Phe), N-palmitoyl- L-alanine (C 16AlaA) and oleic acid (OA) have been used as templates, and 3-aminopropyl-triethoxysilane (APES) and tetraethyl orthosilicate (TEOS) have been used as co-structure directing agent (CSDA) and silica source, respectively. The circle lamellar layer structure and mesopores vertical to the silica hollow spheres surface are believed to originate from the initial formation of amphiphilic carboxylic acid oil drop, which afterwards self-assemble to form the shell of hollow spheres and its mesostructure upon addition of CSDA and silica source. The mesoporous silica hollow spheres with high porosity could be achieved by adding a moderate amount of ethanol in the OA synthesis system, depending on the co-surfactant effect of ethanol that changes the curvature of micelles. The particle diameter and the hollow structure have been controlled by choosing different templates and by manipulating synthesis gel composition. The average particle diameter of the mesoporous silica hollow spheres were controlled in the range of 80-220 nm with constant shell thickness of ˜20 nm and constant mesopore size of ˜4 nm. Besides, the formation of the silica hollow spheres has been investigated in detail with reaction time. These mesoporous silica hollow spheres would have potential applications on catalysis, bimolecular encapsulation, adsorption, drug release, etc.

  18. Stimuli-responsive polyaniline coated silica microspheres and their electrorheology

    NASA Astrophysics Data System (ADS)

    Park, Dae Eun; Choi, Hyoung Jin; Vu, Cuong Manh

    2016-05-01

    Silica/polyaniline (PANI) core-shell structured microspheres were synthesized by coating the surface of silica micro-beads with PANI and applied as a candidate inorganic/polymer composite electrorheological (ER) material. The silica micro-beads were initially modified using N-[(3-trimethoxysilyl)-propyl] aniline to activate an aniline functional group on the silica surface for a better PANI coating. The morphology of the PANI coating on the silica surface was examined by scanning electron microscopy and the silica/PANI core-shell structure was confirmed by transmission electron microscopy. The chemical structure of the particles was confirmed by Fourier transform infrared spectroscopy. Rotational rheometry was performed to confirm the difference in the ER properties between pure silica and silica/PANI microsphere-based ER fluids when dispersed in silicone oil.

  19. Laser-driven formation of a high-pressure phase in amorphous silica.

    PubMed

    Salleo, Alberto; Taylor, Seth T; Martin, Michael C; Panero, Wendy R; Jeanloz, Raymond; Sands, Timothy; Génin, François Y

    2003-12-01

    Because of its simple composition, vast availability in pure form and ease of processing, vitreous silica is often used as a model to study the physics of amorphous solids. Research in amorphous silica is also motivated by its ubiquity in modern technology, a prominent example being as bulk material in transmissive and diffractive optics for high-power laser applications such as inertial confinement fusion (ICF). In these applications, stability under high-fluence laser irradiation is a key requirement, with optical breakdown occurring when the fluence of the beam is higher than the laser-induced damage threshold (LIDT) of the material. The optical strength of polished fused silica transmissive optics is limited by their surface LIDT. Surface optical breakdown is accompanied by densification, formation of point defects, cratering, material ejection, melting and cracking. Through a combination of electron diffraction and infrared reflectance measurements we show here that synthetic vitreous silica transforms partially into a defective form of the high-pressure stishovite phase under high-intensity (GW cm(-2)) laser irradiation. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics.

  20. Environmental and Biomedical Applications of Iron Oxide/Mesoporous Silica Core-Shell Nanocomposites

    NASA Astrophysics Data System (ADS)

    Egodawatte, Shani Nirasha

    Mesoporous silica has shown great potential as an adsorbent for environmental contaminants and as a host for imaging and therapeutic agents. Mesoporous silica materials have a high surface area, tunable pore sizes and well defined surface properties which are governed by the surface hydroxyl groups. Surface modification of the mesoporous silica can tailor the adsorption properties for a specific metal ion or a small drug molecule by providing better sites for chelation or electrostatic interactions. Iron oxide / mesoporous silica core shell materials couple the favorable properties of both the iron oxide and mesoporous silica materials. The core-shell materials have higher adsorption properties compared to the parent material. With magnetic iron oxide nanoparticle cores, an additional magnetic property is introduced that can be used as magnetic recovery or separation. Heavy metals such as Chromium (Cr) and Arsenic (As) discharged from residential and environmental sources pose a serious threat to human health as well as groundwater pollution. In this thesis, iron oxide nanoparticles and nanofibers were coated with mesoporous silica and functionalized with (3-aminopropyl)triethoxysilane (APTES) using the post synthesis grafting method. The parent and the functionalized magnetic silica samples were characterized using powder X-ray diffraction (pXRD), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy and nitrogen adsorption desorption isotherms for surface area and pore volumes. These materials were evaluated for Cr(III) and As(III)/As(V) adsorption from aqueous solutions in the optimum pH range for the specific metal. The aminopropyl functionalized magnetic mesoporous silica displayed the highest adsorption capacity for Cr(III) and Cu(II) of all the materials evaluated in this study. The high heavy metal adsorption capacity was attributed to a synergistic effect of iron oxide nanoparticles and amine functionalization on mesoporous silica as well as a judicious choice of pH. Modified magnetic mesoporous silica material was also found to have high adsorption capacity for high and low pH aqueous solutions of Uranium (VI). Tuning the loading and release of a small drug molecule (5-FU) onto these iron oxide/ mesoporous silica core-shell materials was also investigated. The polarity of the solvent used to load 5-FU onto the host had an impact not only on the loading but also on the release percentage of 5-FU. The synthesis of a novel core-shell material with a hematite nanofiber core and a SBA type mesoporous silica shell was also explored.

  1. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity

    NASA Astrophysics Data System (ADS)

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-11-01

    A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.

  2. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity.

    PubMed

    Runowski, Marcin; Dąbrowska, Krystyna; Grzyb, Tomasz; Miernikiewicz, Paulina; Lis, Stefan

    2013-01-01

    A simple co-precipitation reaction between Ln 3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb 3+ -doped LaPO 4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH 2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb 3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO 4 :Tb 3+ @SiO 2 @NH 2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO 4 :Tb 3+ @SiO 2 .

  3. Hybrid carbon nanoparticles modified core-shell silica: a high efficiency carbon-based phase for hydrophilic interaction liquid chromatography.

    PubMed

    Ibrahim, Mohammed E A; Wahab, M Farooq; Lucy, Charles A

    2014-04-11

    Hydrophilic interaction liquid chromatography (HILIC) is a fast growing separation technique for hydrophilic and polar analytes. In this work, we combine the unique selectivity of carbon surfaces with the high efficiency of core-shell silica. First, 5 μm core-shell silica is electrostatically coated with 105 nm cationic latex bearing quaternary ammonium groups. Then 50 nm anionic carbon nanoparticles are anchored onto the surface of the latex coated core-shell silica particles to produce a hybrid carbon-silica phase. The hybrid phase shows different selectivity than ten previously classified HILIC column chemistries and 36 stationary phases. The hybrid HILIC phase has shape selectivity for positional isomeric pairs (phthalic/isophthalic and 1-naphthoic/2-naphthoic acids). Fast and high efficiency HILIC separations of biologically important carboxylates, phenols and pharmaceuticals are reported with efficiencies up to 85,000 plates m(-1). Reduced plate height of 1.9 (95,000 plates m(-1)) can be achieved. The hybrid phase is stable for at least 3 months of usage and storage under typical HILIC eluents. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A comparative photophysicochemical study of phthalocyanines encapsulated in core-shell silica nanoparticles.

    PubMed

    Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello

    2015-02-25

    This work presents the synthesis and characterization of a new zinc phthalocyanine complex tetrasubstituted with 3-carboxyphenoxy in the peripheral position. The photophysical properties of the new complex are compared with those of phthalocyanines tetra substituted with 3-carboxyphenoxy or 4-carboxyphenoxy at non-peripheral positions. Three phthalocyanine complexes were encapsulated within silica matrix to form a core shell and the hybrid nanoparticles particles obtained were spherical and mono dispersed. When encapsulated within the silica shell nanoparticles, phthalocyanines showed improved triplet quantum yields and singlet oxygen quantum yields than surface grafted derivatives. The improvements observed could be attributed to the protection provided for the phthalocyanine complexes by the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage.

    PubMed

    Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan

    2017-12-01

    Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Amorphous calcium carbonate: A precursor phase for aragonite in shell disease of the pearl oyster.

    PubMed

    Huang, Jingliang; Liu, Chuang; Xie, Liping; Zhang, Rongqing

    2018-02-26

    Amorphous calcium carbonate (ACC) has long been shown to act as an important constituent or precursor phase for crystalline material in mollusks. However, the presence and the role of ACC in bivalve shell formation are not fully studied. In this study, we found that brown deposits containing heterogeneous calcium carbonates were precipitated when a shell disease occurred in the pearl oyster Pinctada fucata. Calcein-staining of the brown deposits indicated that numerous amorphous calcium deposits were present, which was further confirmed by Fourier-transform infrared spectroscopy (FTIR), Raman spectrum and X-ray difraction (XRD) analyses. So we speculate that ACC plays an important role in rapid calcium carbonate precipitation during shell repair process in diseased oysters. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Predicting the switchable screw sense in fluorene-based polymers.

    PubMed

    Pietropaolo, Adriana; Wang, Yue; Nakano, Tamaki

    2015-02-23

    A chirality-switching free-energy landscape was reconstructed on a 43-mer of poly(9,9-dioctylfluoren-2,7-diyl) (PDOF). The simulations were conducted on amorphous silica surface as well as in the vacuum phase for a single chain or for a group of sixteen chains. The achiral-to-chiral transition occurs only on amorphous silica (activation free-energy 35 kcal mol(-1) ), where the enantiomeric (homochiral) basins are detected. This was supported by the experiments where effective chirality induction to PDOF using circularly polarized light (CPL) was attained only for a film deposited on a quartz glass and not for a solution or a suspension. These results indicate that interactions of PDOF with amorphous silica play a crucial role in chirality switching. Importance of chain assembling was also indicated. Theoretical ECD spectra of the enantiomeric basins containing a 51 helix reproduce the experimental spectra. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    NASA Astrophysics Data System (ADS)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  9. In situ X-Ray Diffraction of Shock-Compressed Fused Silica

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June; Turneaure, Stefan J.; Duffy, Thomas S.

    2018-03-01

    Because of its widespread applications in materials science and geophysics, SiO2 has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ˜5 - 30 nm for compression over a few hundred nanosecond time scale.

  10. Effect of solvents on morphology, magnetic and dielectric properties of (α-Fe2O3@SiO2) core-shell nanoparticles.

    PubMed

    Joshi, Deepika P; Pant, Geeta; Arora, Neha; Nainwal, Seema

    2017-02-01

    Present work describes the formation of α-Fe 2 O 3 @SiO 2 core shell structure by systematic layer by layer deposition of silica shell on core iron oxide nanoparticles prepared via various solvents. Sol-gel method has been used to synthesize magnetic core and the dielectric shell. The average crystallite size of iron oxide nanoparticles was calculated ∼20 nm by X-ray diffraction pattern. Morphological study by scanning electron microscopy revealed that the core-shell nanoparticles were spherical in shape and the average size of nanoparticles increased by varying solvent from methanol to ethanol to isopropanol due to different chemical structure and nature of the solvents. It was also observed that the particles prepared by solvent ethanol were more regular and homogeneous as compared to other solvents. Magnetic measurements showed the weak ferromagnetic behaviour of both core α-Fe 2 O 3 and silica-coated iron oxide nanoparticles which remained same irrespective of the solvent chosen. However, magnetization showed dependency on the types of solvent chosen due to the variation in shell thickness. At room temperature, dielectric constant and dielectric loss of silica nanoparticles for all the solvents showed decrement with the increment in frequency. Decrement in the value of dielectric constant and increment in dielectric loss was observed for silica coated iron oxide nanoparticles in comparison of pure silica, due to the presence of metallic core. Homogeneous and regular silica layer prepared by using ethanol as a solvent could serve as protecting layer to shield the magnetic behaviour of iron oxide nanoparticles as well as to provide better thermal insulation over pure α-Fe 2 O 3 nanoparticles.

  11. SYNTHESIS AND APPLICATIONS OF Fe3O4/SiO2 CORE-SHELL MATERIALS.

    PubMed

    Sonmez, Maria; Georgescu, Mihai; Alexandrescu, Laurentia; Gurau, Dana; Ficai, Anton; Ficai, Denisa; Andronescu, Ecaterina

    2015-01-01

    Multifunctional nanoparticles based on magnetite/silica core-shell, consisting of iron oxides coated with silica matrix doped with fluorescent components such as organic dyes (fluorescein isothiocyanate - FITC, Rhodamine 6G) or quantum dots, have drawn remarkable attention in the last years. Due to the bi-functionality of these types of nanoparticles (simultaneously having magnetic and fluorescent properties), they are successfully used in highly efficient human stem cell labeling, magnetic carrier for photodynamic therapy, drug delivery, hyperthermia and other biomedical applications. Another application of core-shell-based nanoparticles, in which the silica is functionalized with aminosilanes, is for immobilization and separation of various biological entities such as proteins, antibodies, enzymes etc. as well as in environmental applications, as adsorbents for heavy metal ions. In vitro tests on human cancerous cells, such as A549 (human lung carcinoma), breast, human cervical cancer, THP-1 (human acute monocytic leukaemia) etc. , were conducted to assess the potential cytotoxic effects that may occur upon contact of nanoparticles with cancerous tissue. Results show that core-shell nanoparticles doped with cytostatics (cisplatin, doxorubicin, etc.), are easily adsorbed by affected tissue and in some cases lead to an inhibition of cell proliferation and induce cell death by apoptosis. The goal of this review is to summarize the advances in the field of core-shell materials, particularly those based on magnetite/silica with applicability in medicine and environmental protection. This paper briefly describes synthesis methods of silica-coated magnetite nanoparticles (Stöber method and microemulsion), the method of encapsulating functional groups based on aminosilanes in silica shell, as well as applications in medicine of these types of simple or modified nanoparticles for cancer therapy, MRI, biomarker immobilization, drug delivery, biocatalysis etc., and in environmental applications (removal of heavy metal ions and catalysis).

  12. Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, N. Sanjeeva; Zhang, Zheng; Borsadia, Siddharth

    The structural changes in nanospheres with a crystalline core and an amorphous diffuse shell were investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC).

  13. Large-deformation and high-strength amorphous porous carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  14. Synthesis of water dispersible boron core silica shell (B@SiO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Walton, Nathan I.; Gao, Zhe; Eygeris, Yulia; Ghandehari, Hamidreza; Zharov, Ilya

    2018-04-01

    Water dispersible boron nanoparticles have great potential as materials for boron neutron capture therapy of cancer and magnetic resonance imaging, if they are prepared on a large scale with uniform size and shape and hydrophilic modifiable surface. We report the first method to prepare spherical, monodisperse, water dispersible boron core silica shell nanoparticles (B@SiO2 NPs) suitable for aforementioned biomedical applications. In this method, 40 nm elemental boron nanoparticles, easily prepared by mechanical milling and carrying 10-undecenoic acid surface ligands, are hydrosilylated using triethoxysilane, followed by base-catalyzed hydrolysis of tetraethoxysilane, which forms a 10-nm silica shell around the boron core. This simple two-step process converts irregularly shaped hydrophobic boron particles into the spherically shaped uniform nanoparticles. The B@SiO2 NPs are dispersible in water and the silica shell surface can be modified with primary amines that allow for the attachment of a fluorophore and, potentially, of targeting moieties. [Figure not available: see fulltext.

  15. Bio-Based Approaches to Inorganic Material Synthesis (Preprint)

    DTIC Science & Technology

    2007-03-01

    involves the fungus and plant pathogen Fusarium oxysporum acting on amorphous silica in rice husks to transform it into crystalline silica...nanoparticles after 24 hrs at room temperature [3]. Specific cationic proteins from F. oxysporum were found to be associated with the crystalline silica 2 after

  16. Recovery of Stishovite-Structure at Ambient Conditions out of Shock-Generated Amorphous Silica

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Tschauner, O.; Asimow, P. D.; Ahrens, T. J.

    2006-12-01

    We show that bulk amorphous silica recovered from shock wave experiments on quartz to 56 GPa is not a true glass but rather keeps a large degree of long range structural information that can be recovered by static cold recompression to 13 GPa. At this pressure shock-retrieved silica assumes the structure of crystalline stishovite. This amorphous-crystal transition is characterized by long coherence length, resulting in formation of large crystallites. Therefore, the shock-recovered amorphous material studied here is a slightly disordered six-fold coordinated silica phase but not a glass, which possesses only medium range order [1]. It is therefore most likely that stishovite or a structurally closely related solid phase represent the state this material had assumed during shock, while post-shock heating to 500 -1000 K [2-4] induces the observed slight disorder. This probable memory-effect allows for physically more precise characterization of diaplectic silica `glass' and may be extended to other diaplectic `glasses' [1] O.Tschauner, S.N. Luo, P.D.Asimow, T.J. Ahrens, Am. Min. in print (2006) [2] J. Wackerle, Journal of Applied Physics, 33, 922 - 937 (1962) [3] M.B. Boslough, Journal of Geophysical Research, 93, 6477 - 9484 (1988) [4] S.N. Luo, T.J. Ahrens, P.D. Asimow, Journal of Geophysical Research, 108, 2421- 2434 (2003) Supported under the NNSA Cooperative Agreement DE-FC88-01NV14049 and under NASA PGG Grant NNG04G107G and Contribution # 9144, Division of Geological and Planetary Sciences, California Institute of Technology.

  17. Highly luminescent silica-coated CdS/CdSe/CdS nanoparticles with strong chemical robustness and excellent thermal stability

    NASA Astrophysics Data System (ADS)

    Wang, Nianfang; Koh, Sungjun; Jeong, Byeong Guk; Lee, Dongkyu; Kim, Whi Dong; Park, Kyoungwon; Nam, Min Ki; Lee, Kangha; Kim, Yewon; Lee, Baek-Hee; Lee, Kangtaek; Bae, Wan Ki; Lee, Doh C.

    2017-05-01

    We present facile synthesis of bright CdS/CdSe/CdS@SiO2 nanoparticles with 72% of quantum yields (QYs) retaining ca 80% of the original QYs. The main innovative point is the utilization of the highly luminescent CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) as silica coating seeds. The significance of inorganic semiconductor shell passivation and structure design of quantum dots (QDs) for obtaining bright QD@SiO2 is demonstrated by applying silica encapsulation via reverse microemulsion method to three kinds of QDs with different structure: CdSe core and 2 nm CdS shell (CdSe/CdS-thin); CdSe core and 6 nm CdS shell (CdSe/CdS-thick); and CdS core, CdSe intermediate shell and 5 nm CdS outer shell (CdS/CdSe/CdS-SQW). Silica encapsulation inevitably results in lower photoluminescence quantum yield (PL QY) than pristine QDs due to formation of surface defects. However, the retaining ratio of pristine QY is different in the three silica coated samples; for example, CdSe/CdS-thin/SiO2 shows the lowest retaining ratio (36%) while the retaining ratio of pristine PL QY in CdSe/CdS-thick/SiO2 and SQW/SiO2 is over 80% and SQW/SiO2 shows the highest resulting PL QY. Thick outermost CdS shell isolates the excitons from the defects at surface, making PL QY relatively insensitive to silica encapsulation. The bright SiO2-coated SQW sample shows robustness against harsh conditions, such as acid etching and thermal annealing. The high luminescence and long-term stability highlights the potential of using the SQW/SiO2 nanoparticles in bio-labeling or display applications.

  18. Architecture of optical sensor for recognition of multiple toxic metal ions from water.

    PubMed

    Shenashen, M A; El-Safty, S A; Elshehy, E A

    2013-09-15

    Here, we designed novel optical sensor based on the wormhole hexagonal mesoporous core/multi-shell silica nanoparticles that enabled the selective recognition and removal of these extremely toxic metals from drinking water. The surface-coating process of a mesoporous core/double-shell silica platforms by several consequence decorations using a cationic surfactant with double alkyl tails (CS-DAT) and then a synthesized dicarboxylate 1,5-diphenyl-3-thiocarbazone (III) signaling probe enabled us to create a unique hierarchical multi-shell sensor. In this design, the high loading capacity and wrapping of the CS-DAT and III organic moieties could be achieved, leading to the formation of silica core with multi-shells that formed from double-silica, CS-DAT, and III dressing layers. In this sensing system, notable changes in color and reflectance intensity of the multi-shelled sensor for Cu(2+), Co(2+), Cd(2+), and Hg(2+) ions, were observed at pH 2, 8, 9.5 and 11.5, respectively. The multi-shelled sensor is added to enable accessibility for continuous monitoring of several different toxic metal ions and efficient multi-ion sensing and removal capabilities with respect to reversibility, selectivity, and signal stability. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Size- and structure-dependent toxicity of silica particulates

    NASA Astrophysics Data System (ADS)

    Hanada, Sanshiro; Miyaoi, Kenichi; Hoshino, Akiyoshi; Inasawa, Susumu; Yamaguchi, Yukio; Yamamoto, Kenji

    2011-03-01

    Nano- and micro-particulates firmly attach with the surface of various biological systems. In some chronic pulmonary disease such as asbestosis and silicosis, causative particulates will induce chronic inflammatory disorder, followed by poor prognosis diseases. However, nano- and micro-scale specific toxicity of silica particulates is not well examined enough to recognize the risk of nano- and micro-particulates from the clinical aspect. To clarify the effect of the size and structure of silica particulates on the cellular damage and the biological response, we assessed the cytotoxicity of the various kinds of silica particles including amorphous and crystalline silica, in mouse alveolar macrophage culture, focusing on the fibrotic and inflammatory response. Our study showed that the cytotoxicity, which depends on the particle size and surface area, is correlated with their inflammatory response. By contrast, production of TGF-β, which is one of the fibrotic agents in lung, by addition of crystal silica was much higher than that of amorphous silica. We conclude that fibrosis and inflammation are induced at different phases and that the size- and structure-differences of silica particulates affect the both biological responses, caused by surface activity, radical species, and so on.

  20. Synthesis of Hollow Nanotubes of Zn2SiO4 or SiO2: Mechanistic Understanding and Uranium Adsorption Behavior.

    PubMed

    Tripathi, Shalini; Bose, Roopa; Roy, Ahin; Nair, Sajitha; Ravishankar, N

    2015-12-09

    We report a facile synthesis of Zn2SiO4 nanotubes using a two-step process consisting of a wet-chemical synthesis of core-shell ZnO@SiO2 nanorods followed by thermal annealing. While annealing in air leads to the formation of hollow Zn2SiO4, annealing under reducing atmosphere leads to the formation of SiO2 nanotubes. We rationalize the formation of the silicate phase at temperatures much lower than the temperatures reported in the literature based on the porous nature of the silica shell on the ZnO nanorods. We present results from in situ transmission electron microscopy experiments to clearly show void nucleation at the interface between ZnO and the silica shell and the growth of the silicate phase by the Kirkendall effect. The porous nature of the silica shell is also responsible for the etching of the ZnO leading to the formation of silica nanotubes under reducing conditions. Both the hollow silica and silicate nanotubes exhibit good uranium sorption at different ranges of pH making them possible candidates for nuclear waste management.

  1. A facile one-step route to synthesize cage-like silica hollow spheres loaded with superparamagnetic iron oxide nanoparticles in their shells.

    PubMed

    Li, Ling; Choo, Eugene Shi Guang; Tang, Xiaosheng; Ding, Jun; Xue, Junmin

    2009-02-28

    Cage-like silica hollow spheres loaded with superparamagnetic iron oxide nanoparticles incorporated in their macroporous shells are synthesized in a facile manner through a one-step oil-in-diethylene glycol (DEG) microemulsion route.

  2. Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation.

    PubMed

    Konduru, Nagarjun V; Murdaugh, Kimberly M; Swami, Archana; Jimenez, Renato J; Donaghey, Thomas C; Demokritou, Philip; Brain, Joseph D; Molina, Ramon M

    2016-08-01

    Nanoparticle (NP) pharmacokinetics and biological effects are influenced by many factors, especially surface physicochemical properties. We assessed the effects of an amorphous silica coating on the fate of zinc after intravenous (IV) injection of neutron activated uncoated (65)ZnO or silica-coated (65)ZnO NPs in male Wistar Han rats. Groups of IV-injected rats were sequentially euthanized, and 18 tissues were collected and analyzed for (65)Zn radioactivity. The protein coronas on each ZnO NP after incubation in rat plasma were analyzed by SDS-PAGE gel electrophoresis and mass spectrometry of selected gel bands. Plasma clearance for both NPs was biphasic with rapid initial and slower terminal clearance rates. Half-lives of plasma clearance of silica-coated (65)ZnO were shorter (initial - <1 min; terminal - 2.5 min) than uncoated (65)ZnO (initial - 1.9 min; terminal - 38 min). Interestingly, the silica-coated (65)ZnO group had higher (65)Zn associated with red blood cells and higher initial uptake in the liver. The (65)Zn concentrations in all the other tissues were significantly lower in the silica-coated than uncoated groups. We also found that the protein corona formed on silica-coated ZnO NPs had higher amounts of plasma proteins, particularly albumin, transferrin, A1 inhibitor 3, α-2-hs-glycoprotein, apoprotein E and α-1 antitrypsin. Surface modification with amorphous silica alters the protein corona, agglomerate size, and zeta potential of ZnO NPs, which in turn influences ZnO biokinetic behavior in the circulation. This emphasizes the critical role of the protein corona in the biokinetics, toxicology and nanomedical applications of NPs.

  3. Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing

    PubMed Central

    Im, Hyungsoon; Lee, Si Hoon; Wittenberg, Nathan J.; Johnson, Timothy W.; Lindquist, Nathan C.; Nagpal, Prashant; Norris, David J.; Oh, Sang-Hyun

    2011-01-01

    Inexpensive, reproducible and high-throughput fabrication of nanometric apertures in metallic films can benefit many applications in plasmonics, sensing, spectroscopy, lithography and imaging. Here we use template stripping to pattern periodic nanohole arrays in optically thick, smooth Ag films with a silicon template made via nanoimprint lithography. Ag is a low-cost material with good optical properties, but it suffers from poor chemical stability and biocompatibility. However, a thin silica shell encapsulating our template-stripped Ag nanoholes facilitates biosensing applications by protecting the Ag from oxidation as well as providing a robust surface that can be readily modified with a variety of biomolecules using well-established silane chemistry. The thickness of the conformal silica shell can be precisely tuned by atomic layer deposition, and a 15-nm-thick silica shell can effectively prevent fluorophore quenching. The Ag nanohole arrays with silica shells can also be bonded to polydimethylsiloxane (PDMS) microfluidic channels for fluorescence imaging, formation of supported lipid bilayers, and real-time, label-free SPR sensing. Additionally, the smooth surfaces of the template-stripped Ag films enhance refractive index sensitivity compared with as-deposited, rough Ag films. Because nearly centimeter-sized nanohole arrays can be produced inexpensively without using any additional lithography, etching or lift-off, this method can facilitate widespread applications of metallic nanohole arrays for plasmonics and biosensing. PMID:21770414

  4. Preparation and unique electrical behaviors of monodispersed hybrid nanorattles of metal nanocores with hairy electroactive polymer shells.

    PubMed

    Cai, Tao; Zhang, Bin; Chen, Yu; Wang, Cheng; Zhu, Chun Xiang; Neoh, Koon-Gee; Kang, En-Tang

    2014-03-03

    A versatile template-assisted strategy for the preparation of monodispersed rattle-type hybrid nanospheres, encapsulating a movable Au nanocore in the hollow cavity of a hairy electroactive polymer shell (Au@air@PTEMA-g-P3HT hybrid nanorattles; PTEMA: poly(2-(thiophen-3-yl)ethyl methacrylate; P3HT: poly(3-hexylthiophene), was reported. The Au@silica core-shell nanoparticles, prepared by the modified Stöber sol-gel process on Au nanoparticle seeds, were used as templates for the synthesis of Au@silica@PTEMA core-double shell nanospheres. Subsequent oxidative graft polymerization of 3-hexylthiophene from the exterior surface of the Au@silica@PTEMA core-double shell nanospheres allowed the tailoring of surface functionality with electroactive P3HT brushes (Au@silica@PTEMA-g-P3HT nanospheres). The Au@air@ PTEMA-g-P3HT hybrid nanorattles were obtained after etching of the silica interlayer by HF. The as-prepared nanorattles were dispersed into an electrically insulating polystyrene matrix and for the first time used to fabricate nonvolatile memory devices. As a result, unique electrical behaviors, including insulator behavior, write-once-read-many-times and rewritable memory effects, and conductor behavior as well, were observed in the Al/Au@air@PTEMA-g-P3HT+PS/ITO (ITO: indium-tin oxide) sandwich thin-film devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Direct Fabrication of Monodisperse Silica Nanorings from Hollow Spheres - A Template for Core-Shell Nanorings.

    PubMed

    Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Brullot, Ward; Bloemen, Maarten; Volodin, Alexander; Song, Kai; Van Dorpe, Pol; Verellen, Niels; Clays, Koen

    2016-04-27

    We report a new type of nanosphere colloidal lithography to directly fabricate monodisperse silica (SiO2) nanorings by means of reactive ion etching of hollow SiO2 spheres. Detailed TEM, SEM, and AFM structural analysis is complemented by a model describing the geometrical transition from hollow sphere to ring during the etching process. The resulting silica nanorings can be readily redispersed in solution and subsequently serve as universal templates for the synthesis of ring-shaped core-shell nanostructures. As an example we used silica nanorings (with diameter of ∼200 nm) to create a novel plasmonic nanoparticle topology, a silica-Au core-shell nanoring, by self-assembly of Au nanoparticles (<20 nm) on the ring's surface. Spectroscopic measurements and finite difference time domain simulations reveal high quality factor multipolar and antibonding surface plasmon resonances in the near-infrared. By loading different types of nanoparticles on the silica core, hybrid and multifunctional composite nanoring structures could be realized for applications such as MRI contrast enhancement, catalysis, drug delivery, plasmonic and magnetic hyperthermia, photoacoustic imaging, and biochemical sensing.

  6. Interaction of Silica Nanoparticles with Human Cells and Their Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Chu, Zhiqin

    With recent development of nanotechnology, various nanoparticulate systems have been proposed to serve as functional units for biomedical applications in many innovative ways. Among various possible choices, silica nanoparticles (NPs) enjoys easily modifiable surface chemical characteristics and excellent stability in physiological environment. Therefore, it is considered as one of the most promising carrier candidate for therapeutic and diagnostic applications. A systematic study on the interaction between silica nanoparticles and human cells is first carried out in the present thesis work. Endocytosis and exocytosis are identified as major pathways for NPs entering, and exiting the cells, respectively. Most of the NPs are found to be enclosed in membrane bounded organelles, which are fairly stable (against rupture) as very few NPs are released into the cytoplasma. The nanoparticle-cell interaction is a dynamic process, and the amount of NPs inside the cells is affected by both the amount and morphology (degree of aggregation) of NPs in the medium. These interaction characteristics determine the low cytotoxicity of SiO2 NPs at low feeding concentration. Experiments were then designed to compare the biological consequence of two most common form of SiO2 nanoparticles, i.e., crystalline and amorphous NPs, when they were introduced to human cells. Although the apparent cytotoxicity of both types of NPs seems to be low, more detailed characterizations disclose the profound difference induced by the crystalline and amorphous ones, resulting in significantly different cell evolution pathways. Crystalline NPs but not amorphous ones are found to drastically increase the recative oxygen species (ROS) level in the cells, which can cause mitochondria dysfunction (being expressed as mitochondria proliferation), and eventually direct the cell into apoptosis. Nonetheless, only p53 deficient cells are subjective to such ROS induced cell damage, while p53 proficient cells can accommodate the stimulation from crystalline SiO2 NPs. The amorphous SiO2 NPs are found to be benign in the biological systems, and have great potential to be developed as nanomedicine. Base on the understanding obtained from the toxicology study of the SiO 2 NPs, we have designed a special nanocarrier system for drug delivery. We have combined advantages of both SiO2 and Au NPs by constructing Au-core/SiO2-shell (Au SiO2) nanocarriers with the photosensitizer (PS) drug embedded in the SiO2 shell layer. Compared with free PS, PS loading in the Au SiO2 NPs shows an enhanced drug efficacy. In particular, the cells treated with the NP drug take necrosis as a major death path instead of apoptosis, which is a much less effective route. The Au plasmonic effect is found to promote the photo-response of the PS drug under light irradiation, contributing to the largely decreased cell viability. Nevertheless, one shall note that spatial confinement of the drug moledules to the close proximity of the Au core and an energy match between the drug absorption and the Au surface plasmon resonance are critical in manifesting the plasmonic effect. At the same time, embedding the drug in the SiO 2 matrix leads to favorable change in the photochemical process. The combined effects brought by the Au SiO2 NP carrier is responsible for the high drug efficacy. These mechanisms can be generally valid in engineering drug molecule incorporation into NP carriers and also give guidance for the optimum design of the NP drug carrier.

  7. Removal of dissolved and colloidal silica

    DOEpatents

    Midkiff, William S.

    2002-01-01

    Small amorphous silica particles are used to provide a relatively large surface area upon which silica will preferentially adsorb, thereby preventing or substantially reducing scaling caused by deposition of silica on evaporative cooling tower components, especially heat exchange surfaces. The silica spheres are contacted by the cooling tower water in a sidestream reactor, then separated using gravity separation, microfiltration, vacuum filtration, or other suitable separation technology. Cooling tower modifications for implementing the invention process have been designed.

  8. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in bothmore » single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.« less

  9. Silica-Coated Plasmonic Metal Nanoparticles in Action.

    PubMed

    Hanske, Christoph; Sanz-Ortiz, Marta N; Liz-Marzán, Luis M

    2018-05-07

    Hybrid colloids consisting of noble metal cores and metal oxide shells have been under intense investigation for over two decades and have driven progress in diverse research lines including sensing, medicine, catalysis, and photovoltaics. Consequently, plasmonic core-shell particles have come to play a vital role in a plethora of applications. Here, an overview is provided of recent developments in the design and utilization of the most successful class of such hybrid materials, silica-coated plasmonic metal nanoparticles. Besides summarizing common simple approaches to silica shell growth, special emphasis is put on advanced synthesis routes that either overcome typical limitations of classical methods, such as stability issues and undefined silica porosity, or grant access to particularly sophisticated nanostructures. Hereby, a description is given, how different types of silica can be used to provide noble metal particles with specific functionalities. Finally, applications of such nanocomposites in ultrasensitive analyte detection, theranostics, catalysts, and thin-film solar cells are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gold–silica quantum rattles for multimodal imaging and therapy

    PubMed Central

    Hembury, Mathew; Chiappini, Ciro; Bertazzo, Sergio; Kalber, Tammy L.; Drisko, Glenna L.; Ogunlade, Olumide; Walker-Samuel, Simon; Krishna, Katla Sai; Jumeaux, Coline; Beard, Paul; Kumar, Challa S. S. R.; Porter, Alexandra E.; Lythgoe, Mark F.; Boissière, Cédric; Sanchez, Clément; Stevens, Molly M.

    2015-01-01

    Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell’s central cavity. This “quantum rattle” structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. This innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications. PMID:25653336

  11. Rapid Precipitation of Amorphous Silica in Experimental Systems with Nontronite (NAu-1) and Shewanella oneidensis MR-1

    DTIC Science & Technology

    2007-01-15

    law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB...report, we focus on the rapid bio- life because much of our current understanding of early life mineralization of amorphous silica. comes from...matter. The Nanoplast-embedded sample was atomic emission spectroscopy (ICP). After pH analysis ultrathin-sectioned, and examined with JEOL3010 TEM with a

  12. NMR Relaxometry to Characterize the Drug Structural Phase in a Porous Construct.

    PubMed

    Thrane, Linn W; Berglund, Emily A; Wilking, James N; Vodak, David; Seymour, Joseph D

    2018-06-14

    Nuclear magnetic resonance (NMR) frequency spectra and T 2 relaxation time measurements, using a high-power radio frequency probe, are shown to characterize the presence of an amorphous drug in a porous silica construct. The results indicate the ability of non-solid-state NMR methods to characterize crystalline and amorphous solid structural phases in drugs. Two-dimensional T 1 - T 2 magnetic relaxation time correlation experiments are shown to monitor the impact of relative humidity on the drug in a porous silica tablet.

  13. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    NASA Astrophysics Data System (ADS)

    Devi, Jutika; Saikia, Rashmi; Datta, Pranayee

    2016-10-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.

  14. A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance

    NASA Astrophysics Data System (ADS)

    Rangaraj, Suriyaprabha; Venkatachalam, Rajendran

    2017-06-01

    Synthesis of silica nanoparticles from natural resources/waste via cost effective route is presently one of the anticipating strategies for extensive applications. This study reports the low-cost indigenous production of silica nanoparticles from the leftover of bamboo (leaf biomass) through thermal combustion and alkaline extraction, and examination of physico-chemical properties and yield percentage using comprehensive characterization tools. The outcome of primed silica powder exhibits amorphous particles (average size: 25 nm) with high surface area (428 m2 g-1) and spherical morphology. Despite the yield percentage of silica nanoparticles from bamboo leave ash is 50.2%, which is less than rice husk ask resources (62.1%), the bamboo waste is only an inexpensive resource yielding high purity (99%). Synthesis of silica nanoparticles from natural resources/waste with the help of lucrative route is at present times one of the anticipating strategies for extensive applications. In vitro study on animal cell lines (MG-63) shows non-toxic nature of silica nanoparticles up to 125 µg mL-1. Hence, this study highlights the feasibility for the mass production of silica nanoparticles from bamboo leave waste rather using chemical precursor of silica for drug delivery and other medical applications.

  15. Amorphization of quartz by friction: Implication to silica-gel lubrication of fault surfaces

    NASA Astrophysics Data System (ADS)

    Nakamura, Yu; Muto, Jun; Nagahama, Hiroyuki; Shimizu, Ichiko; Miura, Takashi; Arakawa, Ichiro

    2012-11-01

    To understand physico-chemical processes at real contacts (asperities) on fault surfaces, we conducted pin-on-disk friction experiments at room temperature, using single crystalline quartz disks and quartz pins. Velocity weakening from friction coefficient μ ˜ 0.6 to 0.4 was observed under apparent normal stresses of 8-19 (18 > 19), when the slip rate was increased from 0.003 to 2.6 m/s. Frictional surfaces revealed ductile deformation of wear materials. The Raman spectra of frictional tracks showed blue shifts and broadening of quartz main bands, and appearance of new peaks at 490-520 and 610 cm-1. All these features are indicative of pressure- and strain-induced amorphization of quartz. The mapping analyses of Fourier transform infrared (FT-IR) spectroscopy at room dry conditions suggest selective hydration of wear materials. It is possible that the strained Si-O-Si bridges in amorphous silica preferentially react with water to form silica-gel. In natural fault systems, amorphous materials would be produced at real fault contacts and accumulate over the fault surfaces with displacements. Subsequent hydration would lead to significant reduction of fault strength during slip.

  16. Molecular dynamics study of interfacial thermal transport between silicene and substrates.

    PubMed

    Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan

    2015-10-07

    In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials.

  17. Synthesis and characterization of amorphous mesoporous silica using TEMPO-functionalized amphiphilic templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vries, Wilke de; Doerenkamp, Carsten; Zeng, Zhaoyang

    Inorganic–organic hybrid materials based on amorphous mesoporous silica containing organized nitroxide radicals within its mesopores have been prepared using the micellar self-assembly of TEOS solutions containing the nitroxide functionalized amphiphile (4-(N,N-dimethyl-N-hexadecylammonium)-2,2,6, 6-tetramethyl-piperidin-N-oxyl-iodide) (CAT-16). This template has been used both in its pure form and in various mixtures with cetyl trimethylammonium bromide (CTAB). The samples have been characterized by chemical analysis, N{sub 2} sorption studies, magnetic susceptibility measurements, and various spectroscopic methods. While electron paramagnetic resonance (EPR) spectra indicate that the strength of the intermolecular spin–spin interactions can be controlled via the CAT-16/CTAB ratio, nuclear magnetic resonance (NMR) data suggest thatmore » these interactions are too weak to facilitate cooperative magnetism. - Graphical abstract: The amphiphilic radical CAT-16 is used as a template for the synthesis of amorphous mesoporous silica. The resulting paramagnetic hybrid materials are characterized by BET, FTIR, NMR, EPR and magnetic susceptibility studies. - Highlights: • Amphiphilic CAT-16 as a template for mesoporous silica. • Comprehensive structural characterization by BET, FTIR; EPR and NMR. • Strength of radical-radical interactions tuable within CAT-16/CTAB mixtures.« less

  18. Vapor Pressure and Evaporation Coefficient of Silicon Monoxide over a Mixture of Silicon and Silica

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank T.; Nuth, Joseph A., III

    2012-01-01

    The evaporation coefficient and equilibrium vapor pressure of silicon monoxide over a mixture of silicon and vitreous silica have been studied over the temperature range (1433 to 1608) K. The evaporation coefficient for this temperature range was (0.007 plus or minus 0.002) and is approximately an order of magnitude lower than the evaporation coefficient over amorphous silicon monoxide powder and in general agreement with previous measurements of this quantity. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as (355 plus or minus 25) kJ per mol and (363.6 plus or minus 4.1) kJ per mol respectively. In comparison with previous work with the evaporation of amorphous silicon monoxide powder as well as other experimental measurements of the vapor pressure of silicon monoxide gas over mixtures of silicon and silica, these systems all tend to give similar equilibrium vapor pressures when the evaporation coefficient is correctly taken into account. This provides further evidence that amorphous silicon monoxide is an intimate mixture of small domains of silicon and silica and not strictly a true compound.

  19. Well-crystallized mesoporous TiO2 shells for enhanced photocatalytic activity: prepared by carbon coating and silica-protected calcination.

    PubMed

    Zhang, Zewu; Zhou, Yuming; Zhang, Yiwei; Zhou, Shijian; Shi, Junjun; Kong, Jie; Zhang, Sicheng

    2013-04-14

    Mesoporous anatase-phase TiO2 hollow shells were successfully fabricated by the solvothermal and calcination process. This method involves preparation of SiO2@TiO2 core-shell colloidal templates, sequential deposition of carbon and then silica layers through solvothermal and sol-gel processes, crystallization of TiO2 by calcination and finally removal of the inner and outer silica to produce hollow anatase TiO2 shells. The prepared samples were characterized by transmission electron microscopy, X-ray diffraction, N2 adsorption-desorption isotherms and UV-vis absorption spectroscopy. The results show that a uniform carbon layer is coated on the core-shell particles through the solvothermal process. The combustion of carbon offers the space for the TiO2 to further grow into large crystal grains, and the outer silica layer serves as a barrier against the excessive growth of anatase TiO2 nanocrystals. Furthermore, the initial crystallization of TiO2 generated in the carbon coating step and the heat generated by the combustion of the carbon layer allow the crystallization of TiO2 at a relatively low temperature without changing the uniform structure. When used as photocatalysts for the oxidation decomposition of Rhodamine B in aqueous solution under UV irradiation, the hollow TiO2 shells showed enhanced catalytic activity. Moreover, the TiO2 hollow shells prepared with optimal crystallinity by this method showed a higher performance than commercial P25 TiO2.

  20. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  1. Monodisperse core-shell particles composed of magnetite and dye-functionalized mesoporous silica

    NASA Astrophysics Data System (ADS)

    Eurov, D. A.; Kurdyukov, D. A.; Medvedev, A. V.; Kirilenko, D. A.; Yakovlev, D. R.; Golubev, V. G.

    2017-08-01

    Hybrid particles with a core-shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.

  2. Novel core-shell (TiO2@Silica) nanoparticles for scattering medium in a random laser: higher efficiency, lower laser threshold and lower photodegradation.

    PubMed

    Jimenez-Villar, Ernesto; Mestre, Valdeci; de Oliveira, Paulo C; de Sá, Gilberto F

    2013-12-21

    There has been growing interest in scattering media in recent years, due to their potential applications as solar collectors, photocatalyzers, random lasers and other novel optical devices. Here, we have introduced a novel core-shell scattering medium for a random laser composed of TiO2@Silica nanoparticles. Higher efficiency, lower laser threshold and long photobleaching lifetime in random lasers were demonstrated. This has introduced a new method or parameter (fraction of absorbed pumping), which opens a new avenue to characterize and study the scattering media. Optical chemical and colloidal stabilities were combined by coating a suitable silica shell onto TiO2 nanoparticles.

  3. Low cost routes to high purity silicon and derivatives thereof

    DOEpatents

    Laine, Richard M; Krug, David James; Marchal, Julien Claudius; Mccolm, Andrew Stewart

    2013-07-02

    The present invention is directed to a method for providing an agricultural waste product having amorphous silica, carbon, and impurities; extracting from the agricultural waste product an amount of the impurities; changing the ratio of carbon to silica; and reducing the silica to a high purity silicon (e.g., to photovoltaic silicon).

  4. In vitro efficacies of oils, silicas and plant preparations against the poultry red mite Dermanyssus gallinae.

    PubMed

    Maurer, Veronika; Perler, Erika; Heckendorn, Felix

    2009-06-01

    The aim of this study was to test the effectiveness of physically acting substances (oils and silicas) and plant preparations for the control of the poultry red mite Dermanyssus gallinae (De Geer 1778). Reproduction and survival of fed D. gallinae females were evaluated in vitro for a total of 168 h using the "area under the survival curve" (AUC) to compare survival of the mites between treatments. Four oils (two plant oils, one petroleum spray oil and diesel), one soap, three silicas (one synthetic amorphous silica, one diatomaceous earth (DE) and one DE with 2% pyrethrum extract) and seven plant preparations (derived from Chrysanthemum cineariaefolium, Allium sativum, Tanacetum vulgare, Yucca schidigera, Quillaja saponaria, Dryopteris filix-mas, and Thuja occidentalis) were tested at various concentrations. All the oils, diesel and soap significantly reduced D. gallinae survival. All silicas tested inhibited reproduction. DE significantly reduced mite survival, but amorphous silica was less effective in vitro. Except for pure A. sativum juice and the highest concentration of C. cineariaefolium extract, the plant preparations tested resulted in statistically insignificant control of D. gallinae.

  5. Microstructural evolution of ion-irradiated sol–gel-derived thin films

    DOE PAGES

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; ...

    2017-07-17

    In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.

    In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less

  7. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures

    PubMed Central

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-01-01

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2–3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm−2 and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs. PMID:27125309

  8. Influence of SiO2 shell thickness on power conversion efficiency in plasmonic polymer solar cells with Au nanorod@SiO2 core-shell structures.

    PubMed

    Zhang, Ran; Zhou, Yongfang; Peng, Ling; Li, Xue; Chen, Shufen; Feng, Xiaomiao; Guan, Yuqiao; Huang, Wei

    2016-04-29

    Locating core-shell metal nanoparticles into a photoactive layer or at the interface of photoactive layer/hole extraction layer is beneficial for fully employing surface plasmon energy, thus enhancing power conversion efficiency (PCE) in plasmonic organic photovoltaic devices (OPVs). Herein, we first investigated the influence of silica shell thickness in Au nanorods (NRs)@SiO2 core-shell structures on OPV performances by inserting them into poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and thieno[3,4-b]thiophene/benzodithiophene (PTB7) interface, and amazedly found that a 2-3 nm silica shell onto Au NRs induces a highest short-circuit current density of 21.2 mA cm(-2) and PCE of 9.55%. This is primarily due to an extremely strong local field and a much slower attenuation of localized surface plasmon resonance around ultrathin silica-coated Au NRs, with which the field intensity remains a high value in the active layer, thus sufficiently improves the absorption of PTB7. Our work provides a clear design concept on precise control of the shell of metal nanoparticles to realize high performances in plasmonic OPVs.

  9. In vitro characterisation of a sol-gel derived in situ silica-coated silicate and carbonate co-doped hydroxyapatite nanopowder for bone grafting.

    PubMed

    Latifi, Seyed Mohsen; Fathi, Mohammadhossein; Sharifnabi, Ali; Varshosaz, Jaleh

    2017-06-01

    Design and synthesis of materials with better properties and performance are essential requirements in the field of biomaterials science that would directly improve patient quality of life. For this purpose, in situ silica-coated silicate and carbonate co-doped hydroxyapatite (Sc/S.C.HA) nanopowder was synthesized via the sol-gel method. Characterisation of the prepared nanopowder was carried out by XRD, FTIR, TEM, SEM, EDX, ICP, zeta potential, acid dissolution test, and cell culture test. The substitution of the silicate and carbonate ions into hydroxyapatite structure was confirmed by FTIR analysis. XRD analysis showed that silica is an amorphous phase, which played a role in covering the surface of the S.C.HA nanoparticles as confirmed by acid dissolution test. Low thickness and low integrity of the amorphous silica surface layer facilitated ions release from S.C.HA nanoparticles into physiological saline solution. Zeta potential of the prepared nanopowder suspended in physiological saline solution was -27.3±0.2mV at pH7.4. This negatively charged surface, due to the presence of amorphous silica layer upon the S.C.HA nanoparticles, not only had an accelerating effect on in vitro biomineralization of apatite, but also had a positive effect on cell attachment. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    NASA Astrophysics Data System (ADS)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  11. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    PubMed

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Timescales and mechanisms of formation of amorphous silica coatings on fresh basalts at Kīlauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Chemtob, Steven M.; Rossman, George R.

    2014-10-01

    Young basalts from Kīlauea Volcano, Hawai'i, frequently feature opaque surface coatings, 1-80 μm thick, composed of amorphous silica and Fe-Ti oxides. These coatings are the product of interaction of the basaltic surface with volcanically-derived acidic fluids. Previous workers have identified these coatings in a variety of contexts on Hawai'i, but the timescales of coating development, coating growth rates, and factors controlling lateral coating heterogeneity were largely unconstrained. We sampled and analyzed young lava flows (of varying ages, from hours to ~ 40 years) along Kīlauea's southwest and east rift zones to characterize variation in silica coating properties across the landscape. Coating thickness varies as a function of flow age, flow surface type, and proximity to acid sources like local fissure vents and regional plumes emitted from Kīlauea Caldera and Pu'u Ō'ō. Silica coatings that form in immediate proximity to acid sources are more chemically pure than those forming in higher pH environments, which contain significant Al and Fe. Incipient siliceous alteration was observed on basalt surfaces as young as 8 days old, but periods of a year or more are required to develop contiguous coatings with obvious opaque coloration. Inferred coating growth rates vary with environmental conditions but were typically 1-5 μm/year. Coatings form preferentially on flow surfaces with glassy outer layers, such as spatter ramparts, volcanic bombs, and dense pahoehoe breakouts, due to glass strain weakening during cooling. Microtextural evidence suggests that the silica coatings form both by in situ dissolution-reprecipitation and by deposition of silica mobilized in solution. Thin films of water, acidified by contact with volcanic vapors, dissolved near-surface basalt, then precipitated amorphous silica in place, mobilizing more soluble cations. Additional silica was transported to and deposited on the surface by silica-bearing altering fluids derived from the basalt interior.

  13. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures

    DOE PAGES

    Pei, Yuchen; Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; ...

    2015-09-11

    Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO 2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO 2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic propertiesmore » and thermal stabilities compared with those prepared with organic capping agents. As a result, this inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties.« less

  14. Monitoring the recrystallisation of amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering.

    PubMed

    Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko

    2016-07-11

    In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fabrication of Silica-Coated Hollow Carbon Nanospheres Encapsulating Fe3O4 Cluster for Magnetical and MR Imaging Guided NIR Light Triggering Hyperthermia and Ultrasound Imaging.

    PubMed

    Huang, Yun-Kai; Su, Chia-Hao; Chen, Jiu-Jeng; Chang, Chun-Ting; Tsai, Yu-Hsin; Syu, Sheng-Fu; Tseng, Tsu-Ting; Yeh, Chen-Sheng

    2016-06-15

    Iron oxide nanoparticles (IONPs)-carbon (C) hybrid zero-dimensional nanostructures normally can be categorized into core-shell and yolk-shell architectures. Although IONP-C is a promising theranostic nanoagent, the in vivo study has surprisingly been less described. In addition, little effort has strived toward the fabrication of yolk-shell compared to the core-shell structures. In this context, we synthesized a yolk-shell type of the silica-coated hollow carbon nanospheres encapsulating IONPs cluster, which can be dispersed in aqueous solution for systemic studies in vivo, via the preparation involving the mixed micellization, polymerization/hollowing, sol-gel (hydration-condensation), and pyrolysis processes. Through a surface modification of the polyethylenimine followed by the sol-gel process, the silica shell coating was able to escape from condensing and sintering courses resulting in aggregation, due to the annealing. Not limited to the well-known functionalities in magnetical targeting and magnetic resonance (MR) imaging for IONP-C hybrid structures, we expanded this yolk-shell NPs as a near-infrared (NIR) light-responsive echogenic nanoagent giving an enhanced ultrasound imaging. Overall, we fabricated the NIR sensitive yolk-shell IONP-C to activate ultrasound imaging and photothermal ablation under magnetically and MR imaging guided therapy.

  16. Aligned silica nanowires on the inner wall of bubble-like silica film: the growth mechanism and photoluminescence.

    PubMed

    Chen, Yiqing; Zhou, Qingtao; Jiang, Haifeng; Su, Yong; Xiao, Haihua; Zhu, Li-Ang; Xu, Liang

    2006-02-28

    Large area, aligned amorphous silica nanowires grow on the inner wall of bubble-like silica film, which is prepared by thermal evaporation of a molten gallium-silicon alloy in a flow of ammonia. These nanowires are 10-20 nm in diameter and 0.5-1.5 µm in length. The bubble-like silica film functions as a substrate, guiding the growth of silica nanowires by a vapour-solid process. This work helps us to clearly elucidate the growth mechanism of aligned amorphous silica nanowires, ruling out the possibility of liquid gallium acting as a nucleation substrate for the growth of the aligned silica nanowires. A broad emission band from 290 to 600 nm is observed in the photoluminescence (PL) spectrum of these nanowires. There are seven PL peaks: two blue emission peaks at 430 nm (2.88 eV) and 475 nm (2.61 eV); and five ultraviolet emission peaks at 325 nm (3.82 eV), 350 nm (3.54 eV), 365 nm (3.40 eV), 385 nm (3.22 eV) and 390 nm (3.18 eV), which may be related to various oxygen defects.

  17. The effect of oxide shell thickness on the structural, electronic, and optical properties of Si-SiO{sub 2} core-shell nano-crystals: A (time dependent)density functional theory study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazemi, Sanaz, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir; Soleimani, Ebrahim Asl; Pourfath, Mahdi, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir

    2016-04-14

    Due to their tunable properties, silicon nano-crystals (NC) are currently being investigated. Quantum confinement can generally be employed for size-dependent band-gap tuning at dimensions smaller than the Bohr radius (∼5 nm for silicon). At the nano-meter scale, however, increased surface-to-volume ratio makes the surface effects dominant. Specifically, in Si-SiO{sub 2} core-shell semiconductor NCs the interfacial transition layer causes peculiar electronic and optical properties, because of the co-existence of intermediate oxidation states of silicon (Si{sup n+}, n = 0–4). Due to the presence of the many factors involved, a comprehensive understanding of the optical properties of these NCs has not yet been achieved. Inmore » this work, Si-SiO{sub 2} NCs with a diameter of 1.1 nm and covered by amorphous oxide shells with thicknesses between 2.5 and 4.75 Å are comprehensively studied, employing density functional theory calculations. It is shown that with increased oxide shell thickness, the low-energy part of the optical transition spectrum of the NC is red shifted and attenuated. Moreover, the absorption coefficient is increased in the high-energy part of the spectrum which corresponds to SiO{sub 2} transitions. Structural examinations indicate a larger compressive stress on the central silicon cluster with a thicker oxide shell. Examination of the local density of states reveals the migration of frontier molecular orbitals from the oxide shell into the silicon core with the increase of silica shell thickness. The optical and electrical properties are explained through the analysis of the density of states and the spatial distribution of silicon sub-oxide species.« less

  18. Silicosis Caused by Chronic Inhalation of Snail Shell Powder

    PubMed Central

    Jung, Jae Woo; Lee, Byung Ook; Lee, Jae Hee; Park, Sung Woon; Kim, Bo Min; Choi, Jae Chol; Shin, Jong Wook; Park, In Won; Choi, Byoung Whui

    2012-01-01

    A 70-yr-old woman visited our hospital for shortness of breath. Chest CT showed ground glass opacity and traction bronchiectasis at right middle, lower lobe and left lingular division. Video-assisted thoracic surgical biopsy at right lower lobe and pathologic examination revealed mixed dust pneumoconiosis. Polarized optical microscopy showed lung lesions were consisted of silica and carbon materials. She was a housewife and never been exposed to silica dusts occupationally. She has taken freshwater snails as a health-promoting food for 40 yr and ground shell powder was piled up on her backyard where she spent day-time. Energy dispersive X-ray spectroscopy of snail shell and scanning electron microscopy with energy dispersive x-ray spectroscopy of lung lesion revealed that silica occupies important portion. Herein, we report the first known case of silicosis due to chronic inhalation of shell powder of freshwater snail. PMID:22219621

  19. Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications.

    PubMed

    Chen, Yu; Chen, Hang-Rong; Shi, Jian-Lin

    2014-01-21

    Colloidal hollow mesoporous silica nanoparticles (HMSNs) are aspecial type of silica-based nanomaterials with penetrating mesopore channels on their shells. HMSNs exhibit unique structural characteristics useful for diverse applications: Firstly, the hollow interiors can function as reservoirs for enhanced loading of guest molecules, or as nanoreactors for the growth of nanocrystals or for catalysis in confined spaces. Secondly, the mesoporous silica shell enables the free diffusion of guest molecules through the intact shell. Thirdly, the outer silica surface is ready for chemical modifications, typically via its abundant Si-OH bonds. As early as 2003, researchers developed a soft-templating methodto prepare hollow aluminosilicate spheres with penetrating mesopores in a cubic symmetry pattern on the shells. However, adapting this method for applications on the nanoscale, especially for biomedicine, has proved difficult because the soft templating micelles are very sensitive to liquid environments, making it difficult to tune key parameters such as dispersity, morphology and structure. In this Account, we present the most recent developments in the tailored construction of highly dispersive and monosized HMSNs using simple silica-etching chemistry, and we discuss these particles' excellent performance in diverse applications. We first introduce general principles of silica-etching chemistry for controlling the chemical composition and the structural parameters (particle size, pore size, etching modalities, yolk-shell nanostructures, etc.) of HMSNs. Secondly, we include recent progress in constructing heterogeneous, multifunctional, hollow mesoporous silica nanorattles via several methods for diverse applications. These elaborately designed HMSNs could be topologically transformed to prepare hollow mesoporous carbon nanoparticles or functionalized to produce HMSN-based composite nanomaterials. Especially in biomedicine, HMSNs are excellent as carriers to deliver either hydrophilic or hydrophobic anti-cancer drugs, to tumor cells, offering enhanced chemotherapeutic efficacy and diminished toxic side effects. Most recently, research has shown that loading one or more anticancer drugs into HMSNs can inhibit metastasis or reverse multidrug resistance of cancer cells. HMSNs could also deliver hydrophobic perfluorohexane (PFH) molecules to improve high intensity focused ultrasound (HIFU) cancer surgery by changing the tissue acoustic environment; and HMSNs could act as nanoreactors for enhanced catalytic activity and/or durability. The versatility of silica-etching chemistry, a simple but scalable synthetic methodology, offers great potential for the creation of new types of HMSN-based nanostructures in a range of applications.

  20. Transport properties of Sb doped Si nanowires

    NASA Astrophysics Data System (ADS)

    Nukala, Prathyusha; Sapkota, Gopal; Gali, Pradeep; Usha, Philipose

    2011-10-01

    n-type Si nanowires were synthesized at ambient pressure using SiCl4 as Si source and Sb source as the dopant. Sb doping of 3-4 wt % was achieved through a post growth diffusion technique. The nanowires were found to have an amorphous oxide shell that developed post-growth; the thickness of the shell is estimated to be about 3-4 nm. The composition of the amorphous shell covering the crystalline Si core was determined by Raman spectroscopy, with evidence that the shell was an amorphous oxide layer. Optical characterization of the as-grown nanowires showed green emission, attributed to the presence of the oxide shell covering the Si nanowire core. Etching of the oxide shell was found to decrease the intensity of this green emission. A single undoped Si nanowire contacted in an FET type configuration was found to be p-type with channel mobility of 20 cm^2V-1S-1. Sb doped Si nanowires exhibited n-type behavior, compensating for the holes in the undoped nanowire. The doped nanowires had carrier mobility and concentration of 160 cm^2V-1S-1 and 9.6 x 10^18cm-3 respectively.

  1. Diagenesis of the Oligocene-Miocene rocks of the Upper Floridan and Intermediate aquifer systems by meteoric and mixing-zone waters in southwest Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weedman, S.D.; McCartan, L.

    1993-03-01

    Optical and SEM of samples from 6 cores of Oligocene and Miocene rocks that compose portions of the Florida and Intermediate aquifers and the intervening semiconfining unit documents meteoric and mixing-zone (seawater and fresh carbonate ground water) diagenesis inferred to have occurred over several cycles of sea level change. Dolomite, limestone, sandstone, and claystone of the Suwannee Formation and the Arcadia Formation (Hawthorn Group) were examined. Core samples from time-equivalent strata in two E--W transects in Manatee, Hardee, Highlands, Sarasota, and DeSoto Counties are estimated to be 16--33 Ma on the basis of [sup 87]Sr/[sup 86]Sr ratios from unaltered molluskmore » shells and by molluscan biostratigraphy. Lithostratigraphic correlations are based on examination of 19 cores, 62 thin sections, 60 geophysical logs, and mineralogy determined by X-ray diffraction. Diagenetic indicators that the authors tracked petrographically include shell micritization, shell dissolution, equant and (or) fibrous CaCO[sub 3] cement, neomorphism, dolomite, etched phosphate grains, echinoderm fragment syntaxial overgrowths, and amorphous silica pore lining. Infiltration of meteoric water caused dissolution of carbonate minerals, especially aragonite, and precipitation of equant calcite crystals in voids of dissolved fossils and in pore spaces between grains. The silica was precipitated as pore linings in zones having soil textures. Observed replacement of calcite by limpid dolomite is consistent with modeling predictions of mixing-zone diagenesis. Etched crystals of limpid dolomite may indicate freshwater dissolution of a mixing-zone precipitate. Mapping of regional unconformities revealed pronounced thickening and thinning of some units. Evidence of meteoric water diagenesis is observed in the upper 600 ft of the transects examined. Evidence of mixing-zone diagenesis is observed at varying depths, but appears to increase in abundance and thickness toward the west.« less

  2. Tunable Amorphous Photonic Materials with Pigmentary Colloidal Nanostructures

    DOE PAGES

    Han, Jinkyu; Lee, Elaine; Dudoff, Jessica K.; ...

    2017-01-31

    Amorphous photonic structures using pigmentary α-Fe 2O 3/SiO 2 core–shell nanoparticles are succesfully fabricated. The resulting non-iridicent brilliant colors can be manipulated by shell thickness, particle concentration, and external electrical stimuli using electrophoretic deposition process. In conclusion, fully reversible and instantaneous color changes as well as noticeable difference between transmitted and reflected colors is observed.

  3. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability.

    PubMed

    Lazarus, David B; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N

    2009-06-09

    It has been hypothesized that increased water column stratification has been an abiotic "universal driver" affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change--size and silicification--of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P < 0.001), from approximately 0.18 (shell volume fraction) in the basal Cenozoic to modern values of approximately 0.06. A third of the total change occurred rapidly at 35 Ma, in correlation to major increases in water column stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from approximately 0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians.

  4. Gold–silica quantum rattles for multimodal imaging and therapy

    DOE PAGES

    Hembury, Mathew; Chiappini, Ciro; Bertazzo, Sergio; ...

    2015-02-04

    Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. In this paper, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell’s central cavity. This “quantum rattle” structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, themore » quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. Finally, this innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications.« less

  5. Aqueous route to facile, efficient and functional silica coating of metal nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Shah, Kwok Wei; Sreethawong, Thammanoon; Liu, Shu-Hua; Zhang, Shuang-Yuan; Tan, Li Sirh; Han, Ming-Yong

    2014-09-01

    Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields.Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03306j

  6. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO2 nanoparticles and surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Chao; Xu, Min-Min; Fang, Cong-Wei; Jin, Qi; Yuan, Ya-Xian; Yao, Jian-Lin

    2017-03-01

    Traditional "sandwich" structure immunoassay is mainly based on the self-assembly of "antibody on solid substrate-antigen-antibody with nanotags" architectures, and the sensitivity of this strategy is critically depended on the surface enhanced Raman scattering (SERS) activities and stability of nanotags. Therefore, the rational design and fabrication on the SERS nanotags attracts the common interests to the bio-related detecting and imaging. Herein, silica encapsulated Au with mercaptobenzoic acid (MBA) core-shell nanoparticles (Au-MBA@SiO2) are fabricated instead of the traditional naked Au or Ag nanoparticles for the SERS-based immunoassay on human and mouse IgG antigens. The MBA molecules facilitate the formation of continuous pinhole-free silica shell and are also used as SERS labels. The silica shell is employed to protect MBA labels and to isolate Au core from the ambient solution for blocking the aggregation. This shell also played the similar role to BSA in inhibiting the nonspecific bindings, which allowed the procedures for constructing "sandwich" structures to be simplified. All of these merits of the Au-MBA@SiO2 brought the high performance in the related immunoassay. Benefiting from the introduction of silica shell to encapsulate MBA labels, the detection sensitivity was improved by about 1- 2 orders of magnitude by comparing with the traditional approach based on naked Au-MBA nanoparticles. This kind of label-embedded core-shell nanoparticles could be developed as the versatile nanotags for the bioanalysis and bioimaging.

  7. Intrinsic photoluminescence of diatom shells in sensing applications

    NASA Astrophysics Data System (ADS)

    De Tommasi, E.; Rendina, I.; Rea, I.; De Stefano, M.; Lamberti, A.; De Stefano, L.

    2009-05-01

    Diatoms are monocellular micro-algae provided with external valves, the frustules, made of amorphous hydrated silica. Frustules present patterns of regular arrays of holes, the areolae, characterized by sub-micrometric dimensions. Frustules from centric diatoms are characterized by a radial disposition of areolae and exhibit several optical properties, such as photoluminescence, lens-like behavior and, in general, photonic-crystal-like behavior as long as confinement of electromagnetic field is concerned. In particular, intrinsic photoluminescence from frustules is strongly influenced by the surrounding atmosphere: on exposure to gases, the induced luminescence changes both in the optical intensity and peaks positions. To give specificity against a target analyte, a key feature for an optical sensor, a biomolecular probe, which naturally recognizes its ligand, can be covalently linked to the diatom surface. We explored the photoluminescence emission properties of frustules of Coscinodiscus wailesii centric species, characterized by a diameter of about 100-200 μm, on exposure to different vapours and in presence of specific bioprobes interacting with target analytes. Very high sensitivities have been observed due to the characteristic morphology of diatoms shells. Particular attention has been devoted to the emission properties of single frustules.

  8. Silica nanoparticles on front glass for efficiency enhancement in superstrate-type amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Das, Sonali; Banerjee, Chandan; Kundu, Avra; Dey, Prasenjit; Saha, Hiranmay; Datta, Swapan K.

    2013-10-01

    Antireflective coating on front glass of superstrate-type single junction amorphous silicon solar cells (SCs) has been applied using highly monodispersed and stable silica nanoparticles (NPs). The silica NPs having 300 nm diameter were synthesized by Stober technique where the size of the NPs was controlled by varying the alcohol medium. The synthesized silica NPs were analysed by dynamic light scattering technique and Fourier transform infrared spectroscopy. The NPs were spin coated on glass side of fluorinated tin oxide (SnO2: F) coated glass superstrate and optimization of the concentration of the colloidal solution, spin speed and number of coated layers was done to achieve minimum reflection characteristics. An estimation of the distribution of the NPs for different optimization parameters has been done using field-emission scanning electron microscopy. Subsequently, the transparent conducting oxide coated glass with the layer having the minimum reflectance is used for fabrication of amorphous silicon SC. Electrical analysis of the fabricated cell indicates an improvement of 6.5% in short-circuit current density from a reference of 12.40 mA cm-2 while the open circuit voltage and the fill factor remains unaltered. A realistic optical model has also been proposed to gain an insight into the system.

  9. Earthicle: The Design of a Conceptually New Type of Particle.

    PubMed

    Uskoković, Vuk; Pernal, Sebastian; Wu, Victoria M

    2017-01-18

    The conception and the steps made in the design of a conceptually new type of composite particle, so-called "earthicle", are being described. This particle is meant to roughly mimic the layered structure of the Earth, having zerovalent iron core, silicate mantle, and a thin carbonaceous crust resembling the biosphere and its geological remnants. Particles are made in a stable colloidal form in an aqueous medium, involving chemical precipitation and pyrolysis of citric acid in the solution. The effects of various synthesis parameters were studied, including borohydride and oleate concentrations, APTES/TEOS molar ratio, chemical nature of the carbon precursors, and others. XRD analysis confirmed the predominantly zerovalent iron composition of the core, amorphous silica and crystalline iron silicate/silicide composition of the mesolayer, and the carbonaceous, amorphous graphitic composition of the surface coating. The atomically thin carbon shell was also detected as a distinct shoulder on the broad n-π* absorption resonance and the peak at ∼300 nm, a signature of sp 2 hybridized electronic orbitals and the result of the interband π-π* transition characteristic of graphitic structures. The irregularity of the shape of generally round Fe 0 particles has caused the uniformity of the silica shell to be directly proportional to the particle size. The size of the earthicles ranged from 60 to 500 nm depending on the ionic concentration of the precursors and additives. Silica layer effectively prevented the aggregation of the iron core and increased the biocompatibility of the particles. The point of zero charge first increased from the acidic to the neutral range after coating Fe 0 core with the APTES-functionalized, aminated silica shell and then restored its low value after depositing the carboxylated carbonic crust in a charge-reversal process designed to facilitate the formation of core-multishell structures. Tested on K7M2 osteosarcoma cell line and primary kidney and lung fibroblasts, cytotoxicity was cell-line dependent; however, the trend assessed in both planar and 3D cell culture with respect to the three types of particles, Fe 0 , Fe/SiO 2 , and Fe/SiO 2 /C, was general and independent of the cell line. Thus, the pronounced toxicity of Fe 0 alone became neutralized after the silica layer was coated around Fe 0 . The further addition of the carbonic layer reduced the viability as compared to Fe/SiO 2 , albeit in a statistically significant manner only for K7M2 cell line when compared against the untreated control. Cell response also varied depending on the formulation: while some formulations exhibited lethal effects on kidney fibroblasts, were harmless to lung fibroblasts, and boosted the proliferation of K7M2 osteosarcoma cells, other formulations exhibited the opposite behavior despite being similar in terms of their core/double-shell structure. Compared across three different cancerous cell lines, K7M2 osteosarcoma and U87 and E297 glioblastoma, a similar cell-line dependency in response was observed, yet the viability reduction was consistent for all Fe/SiO 2 /C particles, ranging from 80% to 85% of the untreated control. Carbon surface layer, albeit of graphitic structural nature, was of a markedly more viable character than that of nanosized graphene oxide. The viability of lung fibroblasts incubated with Fe/SiO 2 /C particles was reduced in the presence of the alternating magnetic field of 312.75 A/m and 1 MHz, while the viability reduction caused by Fe/SiO 2 /C particles in kidney fibroblasts and K7M2 cells was converted from statistically insignificant to significant, suggesting that the composite particles could be used for hyperthermia treatments, although their properties should be optimized for a more intense effect. A single-cell immunofluorescent analysis of the interaction of primary kidney fibroblasts and K7M2 osteosarcoma cells with Fe/SiO 2 /C particles demonstrated that the cell uptake and perinuclear localization may be responsible for the necrotic effects. This analysis also showed that composite Fe/SiO 2 /C particles may have the ability to cause the rupture of the cancer cell nucleus while having a harmless effect on the primary cells. Such a promising and selective anticancer activity will be investigated in more detail in future studies.

  10. Solution blow spun spinel ferrite and highly porous silica nanofibers

    USDA-ARS?s Scientific Manuscript database

    The novelty of this work is the production of nano- and submicrometric silica and spinel-ferrite fibers using the solution blow spinning (SBS) method. A pseudo-core-shell method for the production of large surface area silica fibers is also reported. Silica fibers present mean diameters and specific...

  11. In-vitro and in-vivo study of amorphous spironolactone prepared by adsorption method using supercritical CO2.

    PubMed

    Jiang, Qikun; Li, Yuanyuan; Fu, Qiang; Geng, Yajie; Zhao, Juanhang; Ma, Panqin; Zhang, Tianhong

    2015-02-01

    The aim of this study was to improve the oral bioavailability of spironolactone (SP). SP was adsorbed on the fumed silica using supercritical CO2 (scCO2) technology and further compressed into tablets. The morphology was observed by scanning electron microscopy (SEM), and the crystalline form was investigated by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The dissolution test was performed in water, 0.1 M HCl solution, pH 4.5 acetate buffers and pH 6.8 phosphate buffers using the paddle method. The pharmacokinetics was undertaken in six dogs in a crossover fashion. SP was successfully prepared into tablets and presented in amorphous state. SP-silica scCO2 tablets displayed higher dissolution profiles than SP-silica physical mixtures tablets in different media. The AUC0-t and Cmax of SP-silica supercritical CO2 was 1.61- and 1.52-fold greater than those of SP-silica physical mixtures (p < 0.05), respectively. It is a promising method in improving dissolution and bioavailability by adsorbing SP, a poorly soluble drug, on the fumed silica using rapid expansion of supercritical solutions.

  12. Rare pneumoconiosis induced by long-term amorphous silica exposure: the histological characteristics and expression of cyclooxygenase-2 as an antifibrogenic mediator in macrophages.

    PubMed

    Kumasaka, Toshio; Akaike, Yasushi; Nakamura, Osamu; Yamazaki, Kazuma; Moriyama, Hiroshi; Takemura, Tamiko

    2011-11-01

    Pneumoconiosis induced by non-crystalline silica is considered rare, although silicosis resulting from contact with crystalline silica is a well-known hazard associated with progressive pulmonary fibrosis. Here we describe a patient with pneumoconiosis induced by diatomaceous earth composed of amorphous silica detected by two-dimensional imaging of chemical elements. The histology revealed that the disease was characterized by a granulomatous reaction in the lung. A large number of macrophages laden with yellow and black pigments accumulated in alveolar spaces and were incorporated into the interstitial sites. Bronchiolar walls were destroyed by palisade macrophages, suggesting airflow obstruction. Packed macrophages adhering to and covering the denuded interstitium indicated that macrophages might be incorporated into pulmonary interstitium in this fashion. Immunohistochemistry showed that cyclooxygenase-2, an antifibrogenic mediator, was intensely expressed in the macrophages compared with macrophages in control lungs. No birefringent material was found in the tissues. When two-dimensional analysis of chemical elements was performed using an electron probe microanalyzer with a wavelength-dispersive spectrometer, the resultant fine mapping of silicon and oxygen on the tissue indicated that the pigments phagocytosed by macrophages corresponded to amorphous silica. In conclusion, two-dimensional analysis of elements is very useful for pathologists in correlating the presence of chemical elements with histological changes. © 2011 The Authors. Pathology International © 2011 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd.

  13. Hierarchical Mesoporous Organosilica-Silica Core-Shell Nanoparticles Capable of Controlled Fungicide Release.

    PubMed

    Luo, Leilei; Liang, Yucang; Erichsen, Egil Severin; Anwander, Reiner

    2018-05-17

    A new class of hierarchically structured mesoporous silica core-shell nanoparticles (HSMSCSNs) with a periodic mesoporous organosilica (PMO) core and a mesoporous silica (MS) shell is reported. The applied one-pot, two-step strategy allows rational control over the core/shell chemical composition, topology, and pore/particle size, simply by adjusting the reaction conditions in the presence of cetyltrimethylammonium bromide (CTAB) as structure-directing agent under basic conditions. The spherical, ethylene- or methylene-bridged PMO cores feature hexagonal (p6mm) or cage-like cubic symmetry (Pm3‾ n) depending on the organosilica precursor. The hexagonal MS shell was obtained by n-hexane-induced controlled hydrolysis of TEOS followed by directional co-assembly/condensation of silicate/CTAB composites at the PMO cores. The HSMSCSNs feature a hierarchical pore structure with pore diameters of about 2.7 and 5.6 nm in the core and shell domains, respectively. The core sizes and shell thicknesses are adjustable in the ranges of 90-275 and 15-50 nm, respectively, and the surface areas (max. 1300 m 2  g -1 ) and pore volumes (max. 1.83 cm 3  g -1 ) are among the highest reported for core-shell nanoparticles. The adsorption and controlled release of the fungicide propiconazole by the HSMSCSNs showed a three-stage release profile. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of mesoporous hollow silica nanospheres using polymeric micelles as template and their application as a drug-delivery carrier.

    PubMed

    Sasidharan, Manickam; Zenibana, Haruna; Nandi, Mahasweta; Bhaumik, Asim; Nakashima, Kenichi

    2013-10-07

    Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a core-shell-corona architecture have been employed as a soft template at pH 4. The cationic shell block with 2-vinyl pyridine groups facilitates the condensation of silica precursors under the sol-gel reaction conditions. Phenyltrimethoxysilane, octyltriethoxysilane, and octadecyltriethoxysilanes were used as porogens for generating mesopores in the shell matrix of hollow silica and the octadecyl precursor produced the largest mesopore among the different porogens, of dimension ca. 4.1 nm. The mesoporous hollow particles were thoroughly characterized by small-angle X-ray diffraction (SXRD), thermal (TG/DTA) and nitrogen sorption analyses, infra-red (FTIR) and nuclear magnetic resonance ((13)C-CP MAS NMR and (29)Si MAS NMR) spectroscopies, and transmission electron microscopy (TEM). The mesoporous hollow silica nanospheres have been investigated for drug-delivery application by an in vitro method using ibuprofen as a model drug. The hollow silica nanospheres exhibited higher storage capacity than the well-known mesoporous silica MCM-41. Propylamine functionalized hollow particles show a more sustained release pattern than their unfunctionalized counterparts, suggesting a huge potential of hollow silica nanospheres in the controlled delivery of small drug molecules.

  15. Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)(3)(2+)-encapsulated silica nanosphere labels.

    PubMed

    Qian, Jing; Zhou, Zhenxian; Cao, Xiaodong; Liu, Songqin

    2010-04-14

    Here, we describe a new approach for electrochemiluminescence (ECL) assay with Ru(bpy)(3)(2+)-encapsulated silica nanoparticle (SiO(2)@Ru) as labels. A water-in-oil (W/O) microemulsion method was employed for one-pot synthesis of SiO(2)@Ru nanoparticles. The as-synthesized SiO(2)@Ru nanoparticles have a narrow size distribution, which allows reproducible loading of Ru(bpy)(3)(2+) inside the silica shell and of alpha-fetoprotein antibody (anti-AFP), a model antibody, on the silica surface with glutaraldehyde as linkage. The silica shell effectively prevents leakage of Ru(bpy)(3)(2+) into the aqueous solution due to strong electrostatic interaction between the positively charged Ru(bpy)(3)(2+) and the negatively charged surface of silica. The porous structure of silica shell allowed the ion to move easily through the pore to exchange energy/electrons with the entrapped Ru(bpy)(3)(2+). The as-synthesized SiO(2)@Ru can be used as a label for ultrasensitive detection of biomarkers through a sandwiched immunoassay process. The calibration range of AFP concentration was 0.05-30 ng mL(-1) with linear relation from 0.05 to 20 ng mL(-1) and a detection limit of 0.035 ng mL(-1) at 3sigma. The resulting immunosensors possess high sensitivity and good analytical performance. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    PubMed Central

    Kang, Jian; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan

    2013-01-01

    Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and methanol oxidation activity compared using CV and chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells. PMID:28811402

  17. Fused Silica Surface Coating for a Flexible Silica Mat Insulation System

    NASA Technical Reports Server (NTRS)

    Rhodes, W. H.

    1973-01-01

    Fused silica insulation coatings have been developed for application to a flexible mat insulation system. Based on crystalline phase nucleation and growth kinetics, a 99+% SiO2 glass was selected as the base composition. A coating was developed that incorporated the high emissivity phase NiCr2O4 as a two phase coating with goals of high emittance and minimum change in thermal expansion. A second major coating classification has a plasma sprayed emittance coating over a sealed pure amorphous SiO2 layer. A third area of development centered on extremely thin amorphous SiO2 coatings deposited by chemical vapor deposition. The coating characterization studies presented are mechanical testing of thin specimens extracted from the coatings, cyclic arc exposures, and emittance measurements before and after arc exposures.

  18. Prenatal toxicity of synthetic amorphous silica nanomaterial in rats.

    PubMed

    Hofmann, Thomas; Schneider, Steffen; Wolterbeek, André; van de Sandt, Han; Landsiedel, Robert; van Ravenzwaay, Bennard

    2015-08-15

    Synthetic amorphous silica is a nanostructured material, which is produced and used in a wide variety of technological applications and consumer products. No regulatory prenatal toxicity studies with this substance were reported yet. Therefore, synthetic amorphous silica was tested for prenatal toxicity, according to OECD guideline 414 in Wistar rats following oral (gavage) administration at the dose levels 0, 100, 300, or 1000mg/kg bw/d from gestation day 6-19. At gestation day 20, all pregnant animals were examined by cesarean section. Numbers of corpora lutea, implantations, resorptions, live and dead fetuses were counted. Fetal and placental weights were determined. Fetuses were examined for external, visceral and skeletal abnormalities. No maternal toxicity was observed at any dose level. Likewise, administration of the test compound did not alter cesarean section parameters and did not influence fetal or placental weights. No compound-related increase in the incidence of malformations or variations was observed in the fetuses. The no observed adverse effect level (NOAEL) was 1000mg/kg bw/d. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wang, Qihua; Wang, Tingmei

    2015-10-01

    The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm3 g-1. The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis.The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm3 g-1. The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis. Electronic supplementary information (ESI) available: The average particle size distribution of LPASN-1, LPASN-2 and LPASN-3; the wide-angle XRD pattern of LPASN-2/LPASN-3/LPASN-4; the catalytic properties of LPASN-PNIPAM at different temperatures (15 °C and 33 °C). See DOI: 10.1039/c5nr04123f

  20. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.

    PubMed

    Kim, Jun-Hyun; Bryan, William W; Lee, T Randall

    2008-10-07

    This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the Stöber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.

  1. Nano-structured silica coated mesoporous carbon micro-granules for potential application in water filtration

    NASA Astrophysics Data System (ADS)

    Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.

    2017-05-01

    A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.

  2. Titanate-silica mesostructured nanocables: synthesis, structural analysis and biomedical applications

    NASA Astrophysics Data System (ADS)

    Su, Yonghua; Qiao, Shizhang; Yang, Huagui; Yang, Chen; Jin, Yonggang; Stahr, Frances; Sheng, Jiayu; Cheng, Lina; Ling, Changquan; Qing Lu, Gao

    2010-02-01

    1D hierarchical composite mesostructures of titanate and silica were synthesized via an interfacial surfactant templating approach. Such mesostructures have complex core-shell architectures consisting of single-crystalline H2Ti3O7 nanobelts inside the ordered mesoporous SiO2 shell, which are nontoxic and highly biocompatible. The overall diameter of as-prepared 1D hierarchical composite mesostructures is only approx. 34.2 nm with a length over 500 nm on average. A model to explain the formation mechanism of these mesostructures has been proposed; the negatively charged surface of H2Ti3O7 nanobelts controls the formation of the octadecyltrimethylammonium bromide (C18TAB) bilayer, which in turn regulates the cooperative self-assembly of silica and C18TAB complex micelles on the interface to produce a mesoporous silica shell. More importantly, the application of synthesized mesostructured nanocables as anticancer drug reservoirs has also been explored, which indicates that the membranes containing these mesoporous nanocables have a great potential to be used as transdermal drug delivery systems.

  3. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability

    PubMed Central

    Lazarus, David B.; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N.

    2009-01-01

    It has been hypothesized that increased water column stratification has been an abiotic “universal driver” affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change—size and silicification—of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P < 0.001), from ≈0.18 (shell volume fraction) in the basal Cenozoic to modern values of ≈0.06. A third of the total change occurred rapidly at 35 Ma, in correlation to major increases in water column stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from ≈0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians. PMID:19458255

  4. Multifunctional core-shell silica microspheres and their performance in self-carrier decomposition, sustained drug release and fluorescent bioimaging

    NASA Astrophysics Data System (ADS)

    Mehdi, Yamina Ait; Itatahine, Asma; Fizir, Meriem; Xiao, Deli; Dramou, Pierre; He, Hua

    2018-07-01

    An ideal nanocarrier system for drug delivery is that one made from biocompatible and biodegradable materials for safe excretion from the biological system, and often with additional imaging abilities. In the present work, new core-shell silica microspheres have been prepared, with carrier decomposition after drug release. Paclitaxel, which is one of the most efficient drugs against a wide range of malignancies was integrated into the silica core. The carrier decomposition resulted from the escape of drug molecules with loading capacity about 16.95%. To achieve the fluorescents properties of the synthesized material a biocompatible photoluminescent prepared carbon dots were inserted in a silica shell around the Ptx-SiO2 core. The resultant silica core-shell (Ptx-SiO2CDs-SiO2) NPs with average particle size around 100 nm showed high fluorescent properties from the confocal laser scanning microscope observation. Further observation under UV-light at 365 nm also confirmed the photoluminescence. The Ptx-SiO2@CDs-SiO2 NPs were highly water soluble, and provide a sustained drug release as well as pH sensitivity. The incubation of A549 cells line with Ptx-SiO2@CDs-SiO2 NPs exhibits high cellular uptake as shown by CDs imaging. These properties in addition to the biocompatibility of Ptx-SiO2@CDs-SiO2 NPs and biodegradability of the silica core contributed simultaneously with the drug release process for easy body excretion after its functionality via renal system.

  5. Core-shell silicon nanowire solar cells

    PubMed Central

    Adachi, M. M.; Anantram, M. P.; Karim, K. S.

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices. PMID:23529071

  6. In vivo magnetic resonance and fluorescence dual imaging of tumor sites by using dye-doped silica-coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Jang, Haeyun; Lee, Chaedong; Nam, Gi-Eun; Quan, Bo; Choi, Hyuck Jae; Yoo, Jung Sun; Piao, Yuanzhe

    2016-02-01

    The difficulty in delineating tumor is a major obstacle for better outcomes in cancer treatment of patients. The use of single-imaging modality is often limited by inadequate sensitivity and resolution. Here, we present the synthesis and the use of monodisperse iron oxide nanoparticles coated with fluorescent silica nano-shells for fluorescence and magnetic resonance dual imaging of tumor. The as-synthesized core-shell nanoparticles were designed to improve the accuracy of diagnosis via simultaneous tumor imaging with dual imaging modalities by a single injection of contrast agent. The iron oxide nanocrystals ( 11 nm) were coated with Rhodamine B isothiocyanate-doped silica shells via reverse microemulsion method. Then, the core-shell nanoparticles ( 54 nm) were analyzed to confirm their size distribution by transmission electron microscopy and dynamic laser scattering. Photoluminescence spectroscopy was used to characterize the fluorescent property of the dye-doped silica shell-coated nanoparticles. The cellular compatibility of the as-prepared nanoparticles was confirmed by a trypan blue dye exclusion assay and the potential as a dual-imaging contrast agent was verified by in vivo fluorescence and magnetic resonance imaging. The experimental results show that the uniform-sized core-shell nanoparticles are highly water dispersible and the cellular toxicity of the nanoparticles is negligible. In vivo fluorescence imaging demonstrates the capability of the developed nanoparticles to selectively target tumors by the enhanced permeability and retention effects and ex vivo tissue analysis was corroborated this. Through in vitro phantom test, the core/shell nanoparticles showed a T2 relaxation time comparable to Feridex® with smaller size, indicating that the as-made nanoparticles are suitable for imaging tumor. This new dual-modality-nanoparticle approach has promised for enabling more accurate tumor imaging.

  7. Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water

    USGS Publications Warehouse

    Fournier, Robert O.; Williams, Marshall L.

    1983-01-01

    The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model

  8. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods.

    PubMed

    Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev

    2016-01-01

    Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.

  9. A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell

    NASA Astrophysics Data System (ADS)

    Sui, Dong; Xie, Yuqing; Zhao, Weimin; Zhang, Hongtao; Zhou, Ying; Qin, Xiting; Ma, Yanfeng; Yang, Yong; Chen, Yongsheng

    2018-04-01

    Si is a promising anode material for lithium-ion batteries, but suffers from sophisticated engineering structures and complex fabrication processes that pose challenges for commercial application. Herein, a ternary Si/graphite/pyrolytic carbon (SiGC) anode material with a structure of crystal core and amorphous shell using low-cost raw materials is developed. In this ternary SiGC composite, Si component exists as nanoparticles and is spread on the surface of the core graphite flakes while the sucrose-derived pyrolytic carbon further covers the graphite/Si components as the amorphous shell. With this structure, Si together with the graphite contributes to the high specific capacity of this Si ternary material. Also the graphite serves as the supporting and conducting matrix and the amorphous shell carbon could accommodate the volume change effect of Si, reinforces the integrity of the composite architecture, and prevents the graphite and Si from direct exposing to the electrolyte. The optimized ternary SiGC composite displays high reversible specific capacity of 818 mAh g-1 at 0.1 A g-1, initial Coulombic efficiency (CE) over 80%, and excellent cycling stability at 0.5 A g-1 with 83.6% capacity retention (∼610 mAh g-1) after 300 cycles.

  10. Influence of Synthesis Mode of Supplement Based on Calcium Hydrosylicates on the Structure and Properties of Lime Compositions

    NASA Astrophysics Data System (ADS)

    Loganina, V. I.; Pyshkina, I. S.

    2017-11-01

    It was proposed to use synthesized calcium hydrosilicates in finishing lime dry mixes as a modifying supplement. The effect of substances containing amorphous silica which are used for synthesis on the activity of the modifying supplement was established. The effect of the synthesis mode of supplement on the structure formation of lime compositions was illustrated. It was found that the injection of supplements of hydrosilicates accelerates the increase of mechanical strength. The efficiency of the modifying supplements of amorphous silica, such as diatomite, in the synthesis was shown.

  11. Nanostructured Silica/Gold-Cellulose-Bonded Amino-POSS Hybrid Composite via Sol-Gel Process and Its Properties.

    PubMed

    Ramesh, Sivalingam; Kim, Heung Soo; Lee, Young-Jun; Hong, Gwang-Wook; Kim, Joo-Hyung

    2017-12-01

    It is demonstrated in this paper that silica nanoparticles coated with core/shell gold provide efficient thermal, optical, and morphological properties with respect to the cellulose-polyhedral oligomeric silsesquioxanes (POSS) hybrid system. The one-step synthesis of a silica/gold nanocomposite is achieved with a simultaneous hydrolysis and reduction of gold chloride in the presence of formic acid, and the trimethoxysilane group acts as a silica precursor. The focus here comprises the synthesis of cellulose-POSS and silica/gold hybrid nanocomposites using the following two methods: (1) an in situ sol-gel process and (2) a polyvinyl alcohol/tetrakis (hydroxymethyl)phosphonium chloride process. Accordingly, the silica/gold core/shell nanoparticles are synthesized. The growth and attachment of the gold nanoparticles onto the functionalized surface of the silica at the nanometer scale is achieved via both the sol-gel and the tetrakis (hydroxymethyl) phosphonium chloride processes. The cellulose-POSS-silica/gold nanocomposites are characterized according to Fourier transformed infrared spectroscopy, Raman, X-ray diffraction, UV, photoluminescence, SEM, energy-dispersive X-ray spectroscopy, TEM, thermogravimetric, and Brunauer-Emmett-Teller analyses.

  12. Nanostructured Silica/Gold-Cellulose-Bonded Amino-POSS Hybrid Composite via Sol-Gel Process and Its Properties

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Heung Soo; Lee, Young-June; Hong, Gwang-Wook; Kim, Joo-Hyung

    2017-06-01

    It is demonstrated in this paper that silica nanoparticles coated with core/shell gold provide efficient thermal, optical, and morphological properties with respect to the cellulose-polyhedral oligomeric silsesquioxanes (POSS) hybrid system. The one-step synthesis of a silica/gold nanocomposite is achieved with a simultaneous hydrolysis and reduction of gold chloride in the presence of formic acid, and the trimethoxysilane group acts as a silica precursor. The focus here comprises the synthesis of cellulose-POSS and silica/gold hybrid nanocomposites using the following two methods: (1) an in situ sol-gel process and (2) a polyvinyl alcohol/tetrakis (hydroxymethyl)phosphonium chloride process. Accordingly, the silica/gold core/shell nanoparticles are synthesized. The growth and attachment of the gold nanoparticles onto the functionalized surface of the silica at the nanometer scale is achieved via both the sol-gel and the tetrakis (hydroxymethyl) phosphonium chloride processes. The cellulose-POSS-silica/gold nanocomposites are characterized according to Fourier transformed infrared spectroscopy, Raman, X-ray diffraction, UV, photoluminescence, SEM, energy-dispersive X-ray spectroscopy, TEM, thermogravimetric, and Brunauer-Emmett-Teller analyses.

  13. A new continuous fluorometric assay for acetylcholinesterase activity and inhibitor screening with emissive core-shell silica particles containing tetraphenylethylene fluorophore.

    PubMed

    Shen, Xiang; Liang, Fuxin; Zhang, Guanxin; Zhang, Deqing

    2012-05-07

    Emissive core-shell silica particles with tetraphenylethylene moieties were prepared and characterized. Fluorescence quenching was observed for the silica particles upon addition of compound 2 (Dabcyl-ACh). This was attributed to the electrostatic interaction between the silica particles and 2 and the resulting photoinduced energy transfer between them. After incubation with AChE, the fluorescence intensity started to increase. The fluorescence enhancement became more significant when the concentration of AChE was higher. The reaction kinetic parameters for AChE were successfully estimated with the silica particles and 2. These results reveal that the ensemble of the silica particles and 2 can be utilized for AChE assay. Moreover, the fluorescence spectra of the ensemble of the silica particles and 2 containing AChE were also measured after further addition of either neostigmine or tacrine which are typical inhibitors of AChE. The results manifest that the ensemble of the emissive silica particles and 2 is also useful for screening the inhibitors of AChE.

  14. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kaur, Navjot; Chudasama, Bhupendra

    2015-05-01

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe3O4) nanoparticles and their coating with SiO2 is reported. Fe3O4 nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.

  15. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.

    PubMed

    Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang

    2010-12-07

    We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.

  16. Effect of amorphous silica nanoparticles on in vitro RANKL-induced osteoclast differentiation in murine macrophages

    NASA Astrophysics Data System (ADS)

    Nabeshi, Hiromi; Yoshikawa, Tomoaki; Akase, Takanori; Yoshida, Tokuyuki; Tochigi, Saeko; Hirai, Toshiro; Uji, Miyuki; Ichihashi, Ko-Ichi; Yamashita, Takuya; Higashisaka, Kazuma; Morishita, Yuki; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-Ichi; Itoh, Norio; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2011-07-01

    Amorphous silica nanoparticles (nSP) have been used as a polishing agent and/or as a remineralization promoter for teeth in the oral care field. The present study investigates the effects of nSP on osteoclast differentiation and the relationship between particle size and these effects. Our results revealed that nSP exerted higher cytotoxicity in macrophage cells compared with submicron-sized silica particles. However, tartrate-resistant acid phosphatase (TRAP) activity and the number of osteoclast cells (TRAP-positive multinucleated cells) were not changed by nSP treatment in the presence of receptor activator of nuclear factor κB ligand (RANKL) at doses that did not induce cytotoxicity by silica particles. These results indicated that nSP did not cause differentiation of osteoclasts. Collectively, the results suggested that nanosilica exerts no effect on RANKL-induced osteoclast differentiation of RAW264.7 cells, although a detailed mechanistic examination of the nSP70-mediated cytotoxic effect is needed.

  17. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    PubMed

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Layer-by-layer-based silica encapsulation of individual yeast with thickness control.

    PubMed

    Lee, Hojae; Hong, Daewha; Choi, Ji Yu; Kim, Ji Yup; Lee, Sang Hee; Kim, Ho Min; Yang, Sung Ho; Choi, Insung S

    2015-01-01

    In the area of cell-surface engineering with nanomaterials, the metabolic and functional activities of the encapsulated cells are manipulated and controlled by various parameters of the artificial shells that encase the cells, such as stiffness and elasticity, thickness, and porosity. The mechanical durability and physicochemical stability of inorganic shells prove superior to layer-by-layer-based organic shells with regard to cytoprotection, but it has been difficult to vary the parameters of inorganic shells including their thickness. In this work, we combine the layer-by-layer technique with a process of bioinspired silicification to control the thickness of the silica shells that encapsulate yeast Saccharomyces cerevisiae cells individually, and investigate the thickness-dependent microbial growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Improvements in geothermal electric power and silica production

    DOEpatents

    Hill, J.H.; Fulk, M.M.

    Electricity is generated from hot geothermal solution by extracting heat therefrom, mineral solids which form in a so cooled geothermal solution are separated to recover minerals and facilitate reinjection of the solution into the ground. The separated solids are treated to recover silica by addition of an acid (amorphous silica precipitates) or a base (other minerals precipitate and soulble silicates are formed which are subsequently precipitated by acid neutralization). If desired, after silica is separated, other minerals can be separated and recovered.

  20. Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells

    PubMed Central

    Zhang, Zhijian; Xu, Liping; Zhang, Chunlong

    2015-01-01

    The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater. PMID:25837498

  1. Synthesis of hollow silica spheres with hierarchical shell structure by the dual action of liquid indium microbeads in vapor-liquid-solid growth.

    PubMed

    Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong

    2011-07-05

    Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society

  2. Nanoscale Transforming Mineral Phases in Fresh Nacre.

    PubMed

    DeVol, Ross T; Sun, Chang-Yu; Marcus, Matthew A; Coppersmith, Susan N; Myneni, Satish C B; Gilbert, Pupa U P A

    2015-10-21

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropod shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVol, Ross T.; Sun, Chang-Yu; Marcus, Matthew A.

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO 3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropodmore » shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO 3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.« less

  4. Amorphous Silica-Promoted Lysine Dimerization: a Thermodynamic Prediction

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio; Nishiuchi, Kumiko; Nishii, Akari; Fukushi, Keisuke

    2018-03-01

    It has long been suggested that mineral surfaces played a crucial role in the abiotic polymerization of amino acids that preceded the origin of life. Nevertheless, it remains unclear where the prebiotic process took place on the primitive Earth, because the amino acid-mineral interaction and its dependence on environmental conditions have yet to be understood adequately. Here we examined experimentally the adsorption of L-lysine (Lys) and its dimer (LysLys) on amorphous silica over a wide range of pH, ionic strength, adsorbate concentration, and the solid/water ratio, and determined the reaction stoichiometries and the equilibrium constants based on the extended triple-layer model (ETLM). The retrieved ETLM parameters were then used, in combination with the equilibrium constant for the peptide bond formation in bulk water, to calculate the Lys-LysLys equilibrium in the presence of amorphous silica under various aqueous conditions. Results showed that the silica surface favors Lys dimerization, and the influence varies greatly with changing environmental parameters. At slightly alkaline pH (pH 9) in the presence of a dilute NaCl (1 mM), the thermodynamically attainable LysLys from 0.1 mM Lys reached a concentration around 50 times larger than that calculated without silica. Because of the versatility of the ETLM, which has been applied to describe a wide variety of biomolecule-mineral interactions, future experiments with the reported methodology are expected to provide a significant constraint on the plausible geological settings for the condensation of monomers to polymers, and the subsequent chemical evolution of life.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loginova, Y.F.; Dezhurov, S.V.; Zherdeva, V.V.

    Highlights: Black-Right-Pointing-Pointer New QDs coated with combination of polythiol ligands and silica shell were synthesized. Black-Right-Pointing-Pointer We examine the QDs stability in digestive tract of mice after per os administration. Black-Right-Pointing-Pointer The polymer/silica shell prevents QDs degradation and fluorescence quenching in vivo. -- Abstract: CdSe-core, ZnS-capped semiconductor quantum dots (QDs) are of great potential for biomedical applications. However, applications in the gastrointestinal tract for in vivo imaging and therapeutic purposes are hampered by their sensitivity to acidic environments and potential toxicity. Here we report the use of coatings with a combination of polythiol ligands and silica shell (QDs PolyT-APS) tomore » stabilize QDs fluorescence under acidic conditions. We demonstrated the stability of water-soluble QDs PolyT-APS both in vitro, in strong acidic solutions, and in vivo. The biodistribution, stability and photoluminescence properties of QDs in the gastrointestinal tract of mice after per os administration were assessed. We demonstrated that QDs coated with current traditional materials - mercapto compounds (QDs MPA) and pendant thiol group (QDs PolyT) - are not capable of protecting QDs from chemically induced degradation and surface modification. Polythiol ligands and silica shell quantum dots (QDs PolyT-APS) are suitable for biological and biomedical applications in the gastrointestinal tract.« less

  6. Contact angle and detachment energy of shape anisotropic particles at fluid-fluid interfaces.

    PubMed

    Anjali, Thriveni G; Basavaraj, Madivala G

    2016-09-15

    The three phase contact angle of particles, a measure of its wettability, is an important factor that greatly influences their behaviour at interfaces. It is one of the principal design parameters for potential applications of particles as emulsion/foam stabilizers, functional coatings and other novel materials. In the present work, the effect of size, shape and surface chemistry of particles on their contact angle is investigated using the gel trapping technique, which facilitates the direct visualization of the equilibrium position of particles at interfaces. The contact angle of hematite particles of spherocylindrical, peanut and cuboidal shapes, hematite-silica core-shell and silica shells is reported at a single particle level. The spherocylindrical and peanut shaped particles are always positioned with their major axis parallel to the interface. However, for cuboidal particles at air-water as well as decane-water interfaces, different orientations namely - face-up, edge-up and the vertex-up - are observed. The influence of gravity on the equilibrium position of the colloidal particles at the interface is studied using the hematite-silica core-shell particles and the silica shells. The measured contact angle values are utilized in the calculations of the detachment and surface energies of the hematite particles adsorbed at the interface. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Size-tunable drug-delivery capsules composed of a magnetic nanoshell.

    PubMed

    Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa

    2012-01-01

    Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems.

  8. Size-tunable drug-delivery capsules composed of a magnetic nanoshell

    PubMed Central

    Fuchigami, Teruaki; Kitamoto, Yoshitaka; Namiki, Yoshihisa

    2012-01-01

    Nano-sized FePt capsules with two types of ultrathin shell were fabricated using a template method for use in a nano-scale drug delivery system. One capsule was composed of an inorganic-organic hybrid shell of a water-soluble polymer and FePt nanoparticles, and the other capsule was composed of a network of fused FePt nanoparticles. We demonstrated that FePt nanoparticles selectively accumulated on the polymer molecules adsorbed on the template silica particles, and investigated the morphologies of the particle accumulation by changing the concentration of the polymer solution with which the template particles were treated. Capsular size was reduced from 340 to less than 90 nm by changing the size of the silica template particles, and the shell thickness was controlled by changing the amount of FePt nanoparticles adsorbed on the template particles. The hybrid shell was maintained by the connection of FePt nanoparticles and polymer molecules, and the shell thickness was 10 nm at the maximum. The FePt network shell was fabricated by hydrothermal treatment of the FePt/polymer-modified silica composite particles. The FePt network shell was produced from only the FePt alloy, and the shell thickness was 3 nm. Water-soluble anti-cancer drugs could be loaded into the hollow space of FePt network capsules, and lipid-coated FePt network capsules loaded with anti-cancer drugs showed cellular toxicity. The nano-sized capsular structure and the ultrathin shell suggest applicability as a drug carrier in magnetically guided drug delivery systems. PMID:23507895

  9. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica

    PubMed Central

    Wang, Ying; Zhao, Qinfu; Hu, Yanchen; Sun, Lizhang; Bai, Ling; Jiang, Tongying; Wang, Siling

    2013-01-01

    The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM) silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm) and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15) with well-ordered two dimensional (2D) cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC) via the solvent deposition method. Scanning electron microscopy (SEM), N2 adsorption, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41) has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Cell Counting Kit (CCK)-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous silica, especially for 3DOM silica and SBA-15. The present work encourages further study of the drug release properties and stability of drug entrapped in different pore architecture of silica in order to realize their potential in oral drug delivery. PMID:24174875

  10. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive.

    PubMed

    Peters, Ruud; Kramer, Evelien; Oomen, Agnes G; Rivera, Zahira E Herrera; Oegema, Gerlof; Tromp, Peter C; Fokkink, Remco; Rietveld, Anton; Marvin, Hans J P; Weigel, Stefan; Peijnenburg, Ad A C M; Bouwmeester, Hans

    2012-03-27

    The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products subjected to in vitro digestion included (i) hot water, (ii) coffee with powdered creamer, (iii) instant soup, and (iv) pancake which either contained silica as the food additive E551, or to which a form of synthetic amorphous silica or 32 nm SiO(2) particles were added. The results showed that, in the mouth stage of the digestion, nano-sized silica particles with a size range of 5-50 and 50-500 nm were present in food products containing E551 or added synthetic amorphous silica. However, during the successive gastric digestion stage, this nano-sized silica was no longer present for the food matrices coffee and instant soup, while low amounts were found for pancakes. Additional experiments showed that the absence of nano-sized silica in the gastric stage can be contributed to an effect of low pH combined with high electrolyte concentrations in the gastric digestion stage. Large silica agglomerates are formed under these conditions as determined by DLS and SEM experiments and explained theoretically by the extended DLVO theory. Importantly, in the subsequent intestinal digestion stage, the nano-sized silica particles reappeared again, even in amounts higher than in the saliva (mouth) digestion stage. These findings suggest that, upon consumption of foods containing E551, the gut epithelium is most likely exposed to nano-sized silica. © 2012 American Chemical Society

  11. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    NASA Astrophysics Data System (ADS)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  12. Tadalafil inclusion in microporous silica as effective dissolution enhancer: optimization of loading procedure and molecular state characterization.

    PubMed

    Mehanna, Mohammed M; Motawaa, Adel M; Samaha, Magda W

    2011-05-01

    Tadalafil is an efficient drug used to treat erectile dysfunction characterized by poor water solubility, which has a negative influence on its bioavailability. Utilization of microporous silica represents an effective and facile technology to increase the dissolution rate of poorly soluble drugs. Our strategy involved directly introducing tadalafil as guest molecule into microporous silica as host material by incipient wetness impregnation method. To optimize tadalafil inclusion, response surface methodology (RSM) using 3(3) factorial design was utilized. Furthermore, to investigate the molecular state of tadalafil, Fourier-transform infrared spectroscopy, differential scanning calorimetery, thermal gravimetrical analysis, nitrogen adsorption, and powder X-ray diffraction (PXRD) were carried out. The results obtained pointed out that the quantity of microporous silica was the predominant factor that increased the loading efficiency. For the optimized formula, the loading efficiency was 42.50 wt %. Adsorption-desorption experiments indicated that tadalafil has been introduced into the micropores. Powder XRD and differential scanning calorimetry analyses revealed that tadalafil is arranged in amorphous form. In addition, the dissolution rate of tadalafil from the microporous silica was faster than that of free drug. Amorphous tadalafil occluded in microporous silica did not crystallize over 3 months. These findings contributed in opening a new strategy concerning the utilization of porous silica for the dissolution rate enhancement. Copyright © 2010 Wiley-Liss, Inc.

  13. Amorphous Calcium Carbonate Precipitation by Cellular Biomineralization in Mantle Cell Cultures of Pinctada fucata

    PubMed Central

    Xiang, Liang; Kong, Wei; Su, Jingtan; Liang, Jian; Zhang, Guiyou; Xie, Liping; Zhang, Rongqing

    2014-01-01

    The growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC) precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro. In addition, the cells also maintained high levels of alkaline phosphatase and carbonic anhydrase activity, enzymes responsible for shell formation. On the basis of polarized light microscopy and scanning electron microscopy, we observed intracellular crystals production by mantle cells in vitro. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed the crystals to be ACC, and de novo biomineralization was confirmed by following the incorporation of Sr into calcium carbonate. Our results demonstrate the ability of mantle cells to perform fundamental biomineralization processes via amorphous calcium carbonate, and these cells may be directly involved in pearl oyster shell formation. PMID:25405357

  14. Fabrication of poly(o-anisidine) coated silica core-shell microspheres and their electrorheological response

    NASA Astrophysics Data System (ADS)

    Lee, Chul Joo; Choi, Hyoung Jin

    2017-11-01

    In this work, silica/poly(o-anisidine) (POA) core-shell structured microspheres were synthesized by coating the silica core surface with POA with a help of a chemical grafting agent, N-[(3-trimethoxylsilyl)-propyl] aniline. The synthesized silica microspheres were then applied as a polymer/inorganic composite particle-based electrorheological (ER) fluid. The morphology of the silica/POA microspheres was examined by using both transmission electron microscopy and scanning electron microscopy, while their thermal properties and chemical structure were checked by thermogravimetric analysis and Fourier-transform infrared spectroscopy, respectively. The ER properties of the silica/POA particle-based ER fluid were examined by using a Couette-type rotational rheometer equipped with a high-voltage power supplier and analyzed by the Bingham model and modified Mason number. In order to obtain additional information about the electrical polarization properties, the dielectric spectra were measured by an LCR meter and fitted by using the Cole-Cole equation. Furthermore, suspension stability of the ER fluid was tested using Turbiscan.

  15. Copper Ferrocyanide Functionalized Core-Shell Magnetic Silica Composites for the Selective Removal of Cesium Ions from Radioactive Liquid Waste.

    PubMed

    Lee, Hyun Kyu; Yang, Da Som; Oh, Wonzin; Choi, Sang-June

    2016-06-01

    The copper ferrocyanide functionalized core-shell magnetic silica composite (mag@silica-CuFC) was prepared and was found to be easily separated from aqueous solutions by using magnetic field. The synthesized mag@silica-CuFC composite has a high sorption ability of Cs owing to its strong affinity for Cs as well as the high surface area of the supports. Cs sorption on the mag@silica-CuFC composite quickly reached the sorption equilibrium after 2 h of contact time. The effect of the presence of salts with a high concentration of up to 3.5 wt% on the efficiency of Cs sorption onto the composites was also studied. The maximum sorption ability was found to be maintained in the presence of up to 3.5 wt% of NaCl in the solution. Considering these results, the mag@silica-CuFC composite has great potential for use as an effective sorbent for the selective removal of radioactive Cs ions.

  16. Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao

    2013-03-01

    We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.

  17. Fabrication of amorphous silica nanowires via oxygen plasma treatment of polymers on silicon

    NASA Astrophysics Data System (ADS)

    Chen, Zhuojie; She, Didi; Chen, Qinghua; Li, Yanmei; Wu, Wengang

    2018-02-01

    We demonstrate a facile non-catalytic method of fabricating silica nanowires at room temperature. Different polymers including photoresists, parylene C and polystyrene are patterned into pedestals on the silicon substrates. The silica nanowires are obtained via the oxygen plasma treatment on those pedestals. Compared to traditional strategies of silica nanowire fabrication, this method is much simpler and low-cost. Through designing the proper initial patterns and plasma process parameters, the method can be used to fabricate various regiment nano-scale silica structure arrays in any laboratory with a regular oxygen-plasma-based cleaner or reactive-ion-etching equipment.

  18. High Pressure Response of Siliceous Materials

    DTIC Science & Technology

    2013-02-01

    iron-containing soda lime silicate glass, opal (a hydrated silicate glass), ROBAX glass ceramic, and others were single crystal (α-quartz) and...10 2.6. Opal (hydrated amorphous silica...Raman spectrum as a function of stress for opal (hydrated silica) glass. ................... 29 4.9. Raman spectrum as a function of stress for

  19. Advanced Research Projects Agency on Materials Preparation and Characterization Research

    DTIC Science & Technology

    Briefly summarized is research concerned with such topics as: Preparation of silica glass from amorphous silica; Glass structure by Raman ...ferroelectrics; Silver iodide crystals; Vapor phase growth; Refractory optical host materials; Hydroxyapatite ; Calcite; Characterization of single crystals with a double crystal spectrometer; Characterization of residual strain.

  20. Computer Simulation of Fracture in Aerogels

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2006-01-01

    Aerogels are of interest to the aerospace community primarily for their thermal properties, notably their low thermal conductivities. While the gels are typically fragile, recent advances in the application of conformal polymer layers to these gels has made them potentially useful as lightweight structural materials as well. In this work, we investigate the strength and fracture behavior of silica aerogels using a molecular statics-based computer simulation technique. The gels' structure is simulated via a Diffusion Limited Cluster Aggregation (DLCA) algorithm, which produces fractal structures representing experimentally observed aggregates of so-called secondary particles, themselves composed of amorphous silica primary particles an order of magnitude smaller. We have performed multi-length-scale simulations of fracture in silica aerogels, in which the interaction b e e n two secondary particles is assumed to be described by a Morse pair potential parameterized such that the potential range is much smaller than the secondary particle size. These Morse parameters are obtained by atomistic simulation of models of the experimentally-observed amorphous silica "bridges," with the fracture behavior of these bridges modeled via molecular statics using a Morse/Coulomb potential for silica. We consider the energetics of the fracture, and compare qualitative features of low-and high-density gel fracture.

  1. Low-temperature behavior of core-softened models: water and silica behavior.

    PubMed

    Jagla, E A

    2001-06-01

    A core-softened model of a glass forming fluid is numerically studied in the limit of very low temperatures. The model shows two qualitatively different behaviors depending on the strength of the attraction between particles. For no or low attraction, the changes of density as a function of pressure are smooth, although hysteretic due to mechanical metastabilities. For larger attraction, sudden changes of density upon compressing and decompressing occur. This global mechanical instability is correlated to the existence of a thermodynamic first-order amorphous-amorphous transition. The two different behaviors obtained correspond qualitatively to the different phenomenology observed in silica and water.

  2. Size effect on atomic structure in low-dimensional Cu-Zr amorphous systems.

    PubMed

    Zhang, W B; Liu, J; Lu, S H; Zhang, H; Wang, H; Wang, X D; Cao, Q P; Zhang, D X; Jiang, J Z

    2017-08-04

    The size effect on atomic structure of a Cu 64 Zr 36 amorphous system, including zero-dimensional small-size amorphous particles (SSAPs) and two-dimensional small-size amorphous films (SSAFs) together with bulk sample was investigated by molecular dynamics simulations. We revealed that sample size strongly affects local atomic structure in both Cu 64 Zr 36 SSAPs and SSAFs, which are composed of core and shell (surface) components. Compared with core component, the shell component of SSAPs has lower average coordination number and average bond length, higher degree of ordering, and lower packing density due to the segregation of Cu atoms on the shell of Cu 64 Zr 36 SSAPs. These atomic structure differences in SSAPs with various sizes result in different glass transition temperatures, in which the glass transition temperature for the shell component is found to be 577 K, which is much lower than 910 K for the core component. We further extended the size effect on the structure and glasses transition temperature to Cu 64 Zr 36 SSAFs, and revealed that the T g decreases when SSAFs becomes thinner due to the following factors: different dynamic motion (mean square displacement), different density of core and surface and Cu segregation on the surface of SSAFs. The obtained results here are different from the results for the size effect on atomic structure of nanometer-sized crystalline metallic alloys.

  3. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Navjot, E-mail: navjot.dhindsa2989@gmail.com; Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe{sub 3}O{sub 4}) nanoparticles and their coating with SiO{sub 2} is reported. Fe{sub 3}O{sub 4} nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identicalmore » to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.« less

  4. Emission Behavior of Fluorescently Labeled Silver Nanoshell: Enhanced Self-Quenching by Metal Nanostructure.

    PubMed

    Zhang, Jian; Fu, Yi; Lakowicz, Joseph R

    2007-02-08

    Labeled silica beads with an average diameter of 100 nm were synthesized by incorporating with 20-600 μM Ru(bpy)(3) (2+) complexes. Silver shells were deposited on the beads layer-by-layer with the shell thickness of 5-50 nm. The emission band became narrower and the intensity was enhanced depending on the shell thickness. Self-quenching of the probe was observed at high concentration. Poisson statistics were employed to analyze self-quenching of the fluorophores. The estimated quenching distance was extended from 6 to 16 nm with shell growth from 0 to 50 nm. Moreover, the silver shells were also labeled with Rhodamine 6G. Fluorescence enhancement and reduced lifetime were also observed for silver-silica shell containing R6G. We found that by adjustment of probe concentration and silver shell thickness, a Ru(bpy)(3) (2+)-labeled particle could be 600 times brighter than an isolated Ru(bpy)(3) (2+) molecule. We expect labeled metal core-shell structures can become useful probes for high sensitivity and/or single particle assay.

  5. Gold atoms and dimers on amorphous SiO(2): calculation of optical properties and cavity ringdown spectroscopy measurements.

    PubMed

    Del Vitto, Annalisa; Pacchioni, Gianfranco; Lim, Kok Hwa; Rösch, Notker; Antonietti, Jean-Marie; Michalski, Marcin; Heiz, Ulrich; Jones, Harold

    2005-10-27

    We report on the optical absorption spectra of gold atoms and dimers deposited on amorphous silica in size-selected fashion. Experimental spectra were obtained by cavity ringdown spectroscopy. Issues on soft-landing, fragmentation, and thermal diffusion are discussed on the basis of the experimental results. In parallel, cluster and periodic supercell density functional theory (DFT) calculations were performed to model atoms and dimers trapped on various defect sites of amorphous silica. Optically allowed electronic transitions were calculated, and comparisons with the experimental spectra show that silicon dangling bonds [[triple bond]Si(.-)], nonbridging oxygen [[triple bond]Si-O(.-)], and the silanolate group [[triple bond]Si-O(-)] act as trapping centers for the gold particles. The results are not only important for understanding the chemical bonding of atoms and clusters on oxide surfaces, but they will also be of fundamental interest for photochemical studies of size-selected clusters on surfaces.

  6. Electrochemical characteristics of discrete, uniform, and monodispersed hollow mesoporous carbon spheres in double-layered supercapacitors.

    PubMed

    Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa

    2013-11-01

    Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Using silicon-coated gold nanoparticles to enhance the fluorescence of CdTe quantum dot and improve the sensing ability of mercury (II)

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Chang, Hui; Li, Jian-Jun; Li, Xin; Zhao, Jun-Wu

    2018-01-01

    The effect of silicon-coated gold nanoparticles with different gold core diameter and silica shell thickness on the fluorescence emission of CdTe quantum dots (QDs) was investigated. For gold nanoparticles with a diameter of 15 nm, silica coating can only results in fluorescence recover of the bare gold nanoparticle-induced quenching of QDs. However, when the size of gold nanoparticle is increased to 60 nm, fluorescence enhancement of the QDs could be obtained by silica coating. Because of the isolation of the silica shell-reduced quenching effect and local electric field effect, the fluorescence of QDs gets intense firstly and then decreases. The maximum fluorescence enhancement takes place as the silica shell has a thickness of 30 nm. This enhanced fluorescence from silicon-coated gold nanoparticles is demonstrated for sensing of Hg2 +. Under optimal conditions, the enhanced fluorescence intensity decreases linearly with the concentration of Hg2 + ranging from 0 to 200 ng/mL. The limit of detection for Hg2 + is 1.25 ng/mL. Interference test and real samples detection indicate that the influence from other metal ions could be neglected, and the Hg2 + could be specifically detected.

  8. Atomistic study of two-level systems in amorphous silica

    NASA Astrophysics Data System (ADS)

    Damart, T.; Rodney, D.

    2018-01-01

    Internal friction is analyzed in an atomic-scale model of amorphous silica. The potential energy landscape of more than 100 glasses is explored to identify a sample of about 700 two-level systems (TLSs). We discuss the properties of TLSs, particularly their energy asymmetry and barrier as well as their deformation potential, computed as longitudinal and transverse averages of the full deformation potential tensors. The discrete sampling is used to predict dissipation in the classical regime. Comparison with experimental data shows a better agreement with poorly relaxed thin films than well relaxed vitreous silica, as expected from the large quench rates used to produce numerical glasses. The TLSs are categorized in three types that are shown to affect dissipation in different temperature ranges. The sampling is also used to discuss critically the usual approximations employed in the literature to represent the statistical properties of TLSs.

  9. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles. Electronic supplementary information (ESI) available: FTIR, Raman spectral data, additional TEM pictures, N2 adsorption and physical characteristics of hollow particles data, and cycling performance of dense silica particles. See DOI: 10.1039/c1nr10804b

  10. Syntheses and applications of manganese-doped II-VI semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, Heesun

    Syntheses, characterizations, and applications of two different Mn-doped semiconductor nanocrystals, ZnS:Mn and CdS:Mn/ZnS core/shell, were investigated. ZnS:Mn nanocrystals with sizes between 3 and 4 nm were synthesized via a competitive reaction chemistry. A direct current (dc) electroluminescent (EL) device having a hybrid organic/inorganic multilayer structure of an indium tin oxide (ITO) transparent conducting electrode, a (poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT-PSS) and a poly(N-vinylcarbazole) (PVK) bilayer hole transport film, a ZnS:Mn nanocrystal layer, and Al dot contacts was demonstrated to emit blue (˜445 and ˜495 nm) from PVK and yellow (˜600 nm) light from Mn activator in ZnS. The EL emission spectrum was dependent upon both the voltage and Mn concentration, showing a decreasing nanocrystal to PVK emission ratio from 10 at 20 V to 4 at 28 V, and an increasing ratio from 1.3 at 0.40 mol % to 4.3 at 2.14 mol %. Mn-doped CdS core nanocrystals were produced ranging from 1.5 to 2.3 nm in diameter with a ZnS shell via a reverse micelle process. In contrast to CdS:Mn nanocrystals passivated by n-dodecanethiol, ZnS-passivated CdS:Mn (CdS:Mn/ZnS core/shell) nanocrystals were efficient and photostable. CdS:Mn/ZnS core/shell nanocrystals exhibited a quantum yield of ˜18%, and the photoluminescence (PL) intensity increased by 40% after 400 nm UV irradiation in air. X-ray photoelectron spectroscopy (XPS) data showed that UV irradiation of CdS:Mn/ZnS nanocrystals induces the photooxidation of the ZnS shell surface to ZnSO4. This photooxidation product is presumably responsible for the increased PL emission by serving as a passivating surface layer. Luminescent lifetime data from the core/shell nanocrystals could be fit with two exponential functions, with a time constant of ˜170 nsec for the defect-related centers and of ˜1 msec for the Mn centers. The CdS:Mn/ZnS nanocrystals with a core crystal diameter of 2.3 nm and a 0.4 nm thick ZnS shell were used as an electroluminescent material. EL devices were tested having a hybrid organic/inorganic multilayer structure of ITO//PEDOT-PSS//conjugated polymer//CdS:Mn/ZnS nanocrystal//Al. Orange from PVK device and green EL emission from poly(p-phenylene vinylene) (PPV) device were observed, respectively. These observations are shown to be consistent with the energy level diagrams of the EL devices. The CdS:Mn/ZnS core/shell quantum dots are not water-soluble because of their hydrophobicity. Silica-overcoated CdS:Mn/ZnS quantum dots were synthesized to create water-soluble quantum dots. The amorphous and porous silica layer did not significantly modify the optical and photophysical properties of CdS:Mn/ZnS quantum dots.

  11. Tunable plasmon resonances in anisotropic metal nanostructures

    NASA Astrophysics Data System (ADS)

    Penninkhof, J. J.

    2006-09-01

    Coherent oscillations of free electrons in a metal, localized in a small volume or at an interface between a metal and a dielectric medium, have attracted a lot of attention in the past decades. These so-called surface plasmons have special optical properties that can be used in many applications ranging from optoelectronics to sensing of small quantities of molecules. One of the key issues is that electromagnetic energy can be confined to a relatively small volume close to the metal surface. This field enhancement and the resonance frequency strongly depend on the shape and size of the metal structures. In this thesis, several fabrication methods to create these metal structures on the nanometer to micrometer scale are presented. The optical properties are studied with a special emphasis on the effect of shape anisotropy. Self-assembled 2D colloidal crystals are used as mask to fabricate arrays of metal triangles on a substrate. One of the limitations of this nanosphere lithography technique is that the size of the holes in the colloidal mask (through which the metal is evaporated) is determined by the size of the colloids in the mask. The masks, however, can be modified by use of MeV ion beams and/or wet-chemical growth of a thin layer of silica, resulting in a reduced hole size. Arbitrary symmetry and spacing can be obtained by use of optical tweezers and angle-resolved metal deposition. In contrast to pure metals, amorphous materials like silica are known to show anisotropic plastic deformation at constant volume when subject to MeV ion irradiation. Gold cores embedded in a silica matrix, however, show an elongation along the direction of the ion beam, whereas silver cores rather disintegrate. Silver nanocrystals in an ion-exchanged soda-lime glass redistribute themselves in arrays along the ion beam direction. The optical extinction becomes polarization-dependent, with red- and blue-shifts of the plasmon resonances for polarizations longitudinal and transverse to the arrays, respectively. The band splitting is attributed to near-field electromagnetic plasmon coupling within the arrays. Finite difference time domain simulations indicate that the combination of particle center-to-center spacing and diameter, rather than inter-particle spacing alone, is the key parameter determining the coupling strength. The resonant electric field is concentrated in the very small gaps between the particles in the array. With the MeV ion beam technique, it is possible to fabricate large substrates with relatively monodisperse oblate ellipsoidal silica-core/metal-shell colloids, with the short axis aligned in the direction of the ion beam. The optical extinction of these particles, is a complex function of the core radius and the shell thickness, due to a competition between phase retardation effects and the coupling between the surface plasmons at the inner and outer surfaces of the shell. After deformation, the extinction is angle- and polarization-dependent. Calculations indicate that large Au-shell particles can sustain cavity modes, for which the electric field is enhanced in almost the full volume of the dielectric core. The resonance frequency is sensitive to the size, shape and dielectric constant of the core, and the polarization direction.

  12. Characterizing Crystalline-Vitreous Structures: From Atomically Resolved Silica to Macroscopic Bubble Rafts

    ERIC Educational Resources Information Center

    Burson, Kristen M.; Schlexer, Philomena; Bu¨chner, Christin; Lichtenstein, Leonid; Heyde, Markus; Freund, Hans-Joachim

    2015-01-01

    A two-part experiment using bubble rafts to analyze amorphous structures is presented. In the first part, the distinctions between crystalline and vitreous structures are examined. In the second part, the interface between crystalline and amorphous regions is considered. Bubble rafts are easy to produce and provide excellent analogy to recent…

  13. Development of SiO2@TiO2 core-shell nanospheres for catalytic applications

    NASA Astrophysics Data System (ADS)

    Kitsou, I.; Panagopoulos, P.; Maggos, Th.; Arkas, M.; Tsetsekou, A.

    2018-05-01

    Silica-titania core-shell nanospheres, CSNp, were prepared via a simple and environmentally friendly two step route. First, silica cores were prepared through the hydrolysis-condensation reaction of silicic acid in the presence of hyperbranched poly(ethylene)imine (HBPEI) followed by repeating washing, centrifugation and, finally, calcination steps. To create the core-shell structure, various amounts of titanium isopropoxide were added to the cores and after that a HBPEI-water solution was added to hydrolyze the titanium precursor. Washing with ethanol and heat treatment followed. The optimization of processing parameters led to well-developed core-shell structures bearing a homogeneous nanocrystalline anatase coating over each silica core. The photocatalytic activity for NO was examined in a continuous flux photocatalytic reactor under real environmental conditions. The results revealed a very potent photocatalyst as the degradation percentage reached 84.27% for the core-shell material compared to the 82% of pure titania with the photodecomposition rates measured at 0.62 and 0.55 μg·m-2·s-1, respectively. In addition, catalytic activities of the CSNp and pure titania were investigated by monitoring the reduction of 4-nitrophenol to 4-aminophenol by an excess of NaBH4. Both materials exhibited excellent catalytic activity (100%), making the core-shell material a promising alternative catalyst to pure titania for various applications.

  14. Formation of oligonucleotide-gated silica shell-coated Fe₃O₄-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform.

    PubMed

    Li, Wei-Peng; Liao, Pei-Yi; Su, Chia-Hao; Yeh, Chen-Sheng

    2014-07-16

    A new multifunctional nanoparticle to perform a near-infrared (NIR)-responsive remote control drug release behavior was designed for applications in the biomedical field. Different from the previous studies in formation of Fe3O4-Au core-shell nanoparticles resulting in a spherical morphology, the heterostructure with polyhedral core and shell was presented with the truncated octahedral Fe3O4 nanoparticle as the core over a layer of trisoctahedral Au shell. The strategy of Fe3O4@polymer@Au was adopted using poly-l-lysine as the mediate layer, followed by the subsequent seeded growth of Au nanoparticles to form a Au trisoctahedral shell. Fe3O4@Au trisoctahedra possess high-index facets of {441}. To combine photothermal and chemotherapy in a remote-control manner, the trisoctahedral core-shell Fe3O4@Au nanoparticles were further covered with a mesoporous silica shell, yielding Fe3O4@Au@mSiO2. The bondable oligonucleotides (referred as dsDNA) were used as pore blockers of the mesoporous silica shell that allowed the controlled release, resulting in a NIR-responsive DNA-gated Fe3O4@Au@mSiO2 nanocarrier. Taking advantage of the magnetism, remotely triggered drug release was facilitated by magnetic attraction accompanied by the introduction of NIR radiation. DNA-gated Fe3O4@Au@mSiO2 serves as a drug control and release carrier that features functions of magnetic target, MRI diagnosis, and combination therapy through the manipulation of a magnet and a NIR laser. The results verified the significant therapeutic effects on tumors with the assistance of combination therapy consisting of magnetic guidance and remote NIR control.

  15. Core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses: Preparation and their effects on photoluminescence of lanthanide complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jie; Li, Yuan; Chen, Yingnan

    Highlights: • Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses were prepared via the Stöber process. • Sm and Dy complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. • The complex-doped Ag@SiO{sub 2} composites show stronger luminescent intensities than pure complexes. • The luminescent intensities of the composites strongly depend on the SiO{sub 2} shell thickness. - Abstract: Three kinds of almost spherical core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses (10, 25 and 80 nm) were prepared via the Stöber process. The Ag core nanoparticles were prepared by reducing silver nitrate with sodium citrate. The size, morphology andmore » structure of core–shell Ag@SiO{sub 2} nanoparticles were characterized by transmission electron microscopy. Subsequently, eight kinds of lanthanide complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. The composition of the lanthanide complexes was characterized by elemental analysis, IR and UV spectra. Finally, lanthanide complexes were attached to the surface of Ag@SiO{sub 2} nanoparticles to form lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites. The results show that the complex-doped Ag@SiO{sub 2} nanocomposites display much stronger luminescence intensities than the lanthanide complexes. Furthermore, the luminescence intensities of the lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites with SiO{sub 2} shell thickness of 25 nm are stronger than those of the nanocomposites with SiO{sub 2} shell thickness of 10 and 80 nm.« less

  16. Organic-Inorganic Hydrophobic Nanocomposite Film with a Core-Shell Structure

    PubMed Central

    Liu, Peng; Chen, Ying; Yu, Zhiwu

    2016-01-01

    A method to prepare novel organic-inorganic hydrophobic nanocomposite films was proposed by a site-specific polymerization process. The inorganic part, the core of the nanocomposite, is a ternary SiO2–Al2O3–TiO2 nanoparticles, which is grafted with methacryloxy propyl trimethoxyl silane (KH570), and wrapped by fluoride and siloxane polymers. The synthesized samples are characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrscopy, X-ray diffractometry (XRD), contact angle meter (CA), and scanning electron microscope (SEM). The results indicate that the novel organic-inorganic hydrophobic nanocomposite with a core-shell structure was synthesized successfully. XRD analysis reveals the nanocomposite film has an amorphous structure, and FTIR analysis indicates the nanoparticles react with a silane coupling agent (methacryloxy propyl trimethoxyl silane KH570). Interestingly, the morphology of the nanoparticle film is influenced by the composition of the core. Further, comparing with the film synthesized by silica nanoparticles, the film formed from SiO2–Al2O3–TiO2 nanoparticles has higher hydrophobic performance, i.e., the contact angle is greater than 101.7°. In addition, the TEM analysis reveals that the crystal structure of the particles can be changed at high temperatures. PMID:28774141

  17. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean

    PubMed Central

    Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang

    2009-01-01

    Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications. PMID:20007788

  18. Magnesium-aspartate-based crystallization switch inspired from shell molt of crustacean.

    PubMed

    Tao, Jinhui; Zhou, Dongming; Zhang, Zhisen; Xu, Xurong; Tang, Ruikang

    2009-12-29

    Many animals such as crustacean periodically undergo cyclic molt of the exoskeleton. During this process, amorphous calcium mineral phases are biologically stabilized by magnesium and are reserved for the subsequent rapid formation of new shell tissue. However, it is a mystery how living organisms can regulate the transition of the precursor phases precisely. We reveal that the shell mineralization from the magnesium stabilized precursors is associated with the presence of Asp-rich proteins. It is suggested that a cooperative effect of magnesium and Asp-rich compound can result into a crystallization switch in biomineralization. Our in vitro experiments confirm that magnesium increases the lifetime of amorphous calcium carbonate and calcium phosphate in solution so that the crystallization can be temporarily switched off. Although Asp monomer alone inhibits the crystallization of pure amorphous calcium minerals, it actually reduces the stability of the magnesium-stabilized precursors to switch on the transformation from the amorphous to crystallized phases. These modification effects on crystallization kinetics can be understood by an Asp-enhanced magnesium desolvation model. The interesting magnesium-Asp-based switch is a biologically inspired lesson from nature, which can be developed into an advanced strategy to control material fabrications.

  19. Novel 3-hydroxypropyl bonded phase by direct hydrosilylation of allyl alcohol on amorphous hydride silica

    PubMed Central

    Gómez, Jorge E.; Navarro, Fabián H.; Sandoval, Junior E.

    2015-01-01

    A novel 3-hydroxypropyl (propanol) bonded silica phase has been prepared by hydrosilylation of allyl alcohol on a hydride silica intermediate, in the presence of platinum (0)-divinyltetramethyldisiloxane (Karstedt's catalyst). The regio-selectivity of this synthetic approach had been correctly predicted by previous reports involving octakis(dimethylsiloxy)octasilsesquioxane (Q8M8H) and hydrogen silsesquioxane (T8H8), as molecular analogs of hydride amorphous silica. Thus, C-silylation predominated (~ 94%) over O-silylation, and high surface coverages of propanol groups (5±1 µmol/m2) were typically obtained in this work. The propanol-bonded phase was characterized by spectroscopic (IR and solid state NMR on silica microparticles), contact angle (on fused-silica wafers) and CE (on fused-silica tubes) techniques. CE studies of the migration behavior of pyridine, caffeine, tris(2,2’-bipyridine)Ru(II) chloride and lysozyme on propanol-modified capillaries were carried out. The adsorption properties of these select silanol-sensitive solutes were compared to those on the unmodified and hydride-modified tubes. It was found that hydrolysis of the SiH species underlying the immobilized propanol moieties leads mainly to strong ion-exchange based interactions with the basic solutes at pH 4, particularly with lysozyme. Interestingly, and in agreement with water contact angle and electroosmotic mobility figures, the silanol-probe interactions on the buffer-exposed (hydrolyzed) hydride surface are quite different from those of the original unmodified tube. PMID:24934906

  20. Evaluating Dimethyldiethoxysilane for use in Polyurethane Crosslinked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Randall, Jason P.; Meador, Mary Ann B.; Jana, Sadhan C.

    2008-01-01

    Silica aerogels are highly porous materials which exhibit exceptionally low density and thermal conductivity. Their "pearl necklace" nanostructure, however, is inherently weak; most silica aerogels are brittle and fragile. The strength of aerogels can be improved by employing an additional crosslinking step using isocyanates. In this work, dimethyldiethoxysilane (DMDES) is evaluated for use in the silane backbone of polyurethane crosslinked aerogels. Approximately half of the resulting aerogels exhibited a core/shell morphology of hard crosslinked aerogel surrounding a softer, uncrosslinked center. Solid state NMR and scanning electron microscopy results indicate the DMDES incorporated itself as a conformal coating around the outside of the secondary silica particles, in much the same manner as isocyanate crosslinking. Response surface curves were generated from compression data, indicating levels of reinforcement comparable to that in previous literature, despite the core/shell morphology.

  1. Biotin-decorated silica coated PbS nanocrystals emitting in the second biological near infrared window for bioimaging

    NASA Astrophysics Data System (ADS)

    Corricelli, M.; Depalo, N.; di Carlo, E.; Fanizza, E.; Laquintana, V.; Denora, N.; Agostiano, A.; Striccoli, M.; Curri, M. L.

    2014-06-01

    Nanoparticles (NPs) emitting in the second biological near infrared (NIR) window of the electromagnetic spectrum have been successfully synthesized by growing a silica shell on the hydrophobic surface of OLEA/TOP PbS nanocrystals (NCs), by means of a reverse microemulsion approach, and subsequently decorated with biotin molecules. The fabrication of very uniform and monodisperse NPs, formed of SiO2 shell coated single core PbS NCs, has been demonstrated by means of a set of complementary optical and structural techniques (Vis-NIR absorption and photoluminescence spectroscopy, transmission electron microscopy) that have highlighted how experimental parameters, such as PbS NC and silica precursor concentration, are crucial to direct the morphology and optical properties of silica coated PbS NPs. Subsequently, the silica surface of the core-shell NPs has been grafted with amino groups, in order to achieve covalent binding of biotin to NIR emitting silica coated NPs. Finally the successful reaction with a green-fluorescent labelled streptavidin has verified the molecular recognition response of the biotin molecules decorating the PbS@SiO2 NP surface. Dynamic light scattering (DLS) and ζ-potential techniques have been used to monitor the hydrodynamic diameter and colloidal stability of both PbS@SiO2 and biotin decorated NPs, showing their high colloidal stability in physiological media, as needed for biomedical applications. Remarkably the obtained biotinylated PbS@SiO2 NPs have been found to retain emission properties in the `second optical window' of the NIR region of the electromagnetic spectrum, thus representing attractive receptor-targeted NIR fluorescent probes for in vivo tumour imaging.Nanoparticles (NPs) emitting in the second biological near infrared (NIR) window of the electromagnetic spectrum have been successfully synthesized by growing a silica shell on the hydrophobic surface of OLEA/TOP PbS nanocrystals (NCs), by means of a reverse microemulsion approach, and subsequently decorated with biotin molecules. The fabrication of very uniform and monodisperse NPs, formed of SiO2 shell coated single core PbS NCs, has been demonstrated by means of a set of complementary optical and structural techniques (Vis-NIR absorption and photoluminescence spectroscopy, transmission electron microscopy) that have highlighted how experimental parameters, such as PbS NC and silica precursor concentration, are crucial to direct the morphology and optical properties of silica coated PbS NPs. Subsequently, the silica surface of the core-shell NPs has been grafted with amino groups, in order to achieve covalent binding of biotin to NIR emitting silica coated NPs. Finally the successful reaction with a green-fluorescent labelled streptavidin has verified the molecular recognition response of the biotin molecules decorating the PbS@SiO2 NP surface. Dynamic light scattering (DLS) and ζ-potential techniques have been used to monitor the hydrodynamic diameter and colloidal stability of both PbS@SiO2 and biotin decorated NPs, showing their high colloidal stability in physiological media, as needed for biomedical applications. Remarkably the obtained biotinylated PbS@SiO2 NPs have been found to retain emission properties in the `second optical window' of the NIR region of the electromagnetic spectrum, thus representing attractive receptor-targeted NIR fluorescent probes for in vivo tumour imaging. Electronic supplementary information (ESI) available: Size statistical analysis of silanized PbS NPs, TLC plate showing the ninhydrin test results and a table summarizing the DH and ζ-potential values for the investigated samples. See DOI: 10.1039/c4nr01025f

  2. An efficient core-shell fluorescent silica nanoprobe for ratiometric fluorescence detection of pH in living cells.

    PubMed

    Fu, Jingni; Ding, Changqin; Zhu, Anwei; Tian, Yang

    2016-08-07

    Intracellular pH plays a vital role in cell biology, including signal transduction, ion transport and homeostasis. Herein, a ratiometric fluorescent silica probe was developed to detect intracellular pH values. The pH sensitive dye fluorescein isothiocyanate isomer I (FITC), emitting green fluorescence, was hybridized with reference dye rhodamine B (RB), emitting red fluorescence, as a dual-emission fluorophore, in which RB was embedded in a silica core of ∼40 nm diameter. Moreover, to prevent fluorescence resonance energy transfer between FITC and RB, FITC was grafted onto the surface of core-shell silica colloidal particles with a shell thickness of 10-12 nm. The nanoprobe exhibited dual emission bands centered at 517 and 570 nm, under single wavelength excitation of 488 nm. RB encapsulated in silica was inert to pH change and only served as reference signals for providing built-in correction to avoid environmental effects. Moreover, FITC (λem = 517 nm) showed high selectivity toward H(+) against metal ions and amino acids, leading to fluorescence variation upon pH change. Consequently, variations of the two fluorescence intensities (Fgreen/Fred) resulted in a ratiometric pH fluorescent sensor. The specific nanoprobe showed good linearity with pH variation in the range of 6.0-7.8. It can be noted that the fluorescent silica probe demonstrated good water dispersibility, high stability and low cytotoxicity. Accordingly, imaging and biosensing of pH variation was successfully achieved in HeLa cells.

  3. Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping

    USGS Publications Warehouse

    Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wang, A.; Ruff, S.W.; Craig, M.A.; Bailey, D.T.; Johnson, J. R.; De Souza, P.A.; Farrand, W. H.

    2010-01-01

    The Mars Exploration Rover (MER) Spirit has discovered surprisingly high concentrations of amorphous silica in soil and nodular outcrops in the Inner Basin of the Columbia Hills. In Pancam multispectral observations, we find that an absorption feature at the longest Pancam wavelength (1009 nm) appears to be characteristic of these silica-rich materials; however, spectral analyses of amorphous silica suggest that the ???1009 nm spectral feature is not a direct reflection of their silica-rich nature. Based on comparisons with spectral databases, we hypothesize that the presence of H2O or OH, either free (as water ice), adsorbed or bound in a mineral structure, is responsible for the spectral feature observed by Pancam. The Gertrude Weise soil, which is nearly pure opaline silica, may have adsorbed water cold-trapped on mineral grains. The origin of the ???1009 nm Pancam feature observed in the silica-rich nodular outcrops may result from the presence of additional hydrated minerals (specific sulfates, halides, chlorides, sodium silicates, carbonates or borates). Using the ???1009 nm feature with other spectral parameters as a "hydration signature" we have mapped the occurrence of hydrated materials along the extent of Spirit's traverse across the Columbia Hills from West Spur to Home Plate (sols 155-1696). We have also mapped this hydration signature across large panoramic images to understand the regional distribution of materials that are spectrally similar to the silica-rich soil and nodular outcrops. Our results suggest that hydrated materials are common in the Columbia Hills. ?? 2009 Elsevier Inc.

  4. Ni3Si(Al)/a-SiOx core shell nanoparticles: characterization, shell formation, and stability

    NASA Astrophysics Data System (ADS)

    Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G.

    2006-08-01

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni3Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni3Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiOx). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  5. Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.

    PubMed

    Pigozzi, G; Mukherji, D; Gilles, R; Barbier, B; Kostorz, G

    2006-08-28

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni(3)Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni(3)Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiO(x)). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  6. Boron-based nanostructures: Synthesis, functionalization, and characterization

    NASA Astrophysics Data System (ADS)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any contamination and with a uniform size distribution. Various reaction parameters such as temperature, reaction time, and sonication were altered to find the optimal reaction conditions. Once these conditions were determined, boron nanorods were produced then functionalized with amine-terminated polyethylene glycol.

  7. Synthesis of Dispersible Mesoporous Nitrogen-Doped Hollow Carbon Nanoplates with Uniform Hexagonal Morphologies for Supercapacitors.

    PubMed

    Cao, Jie; Jafta, Charl J; Gong, Jiang; Ran, Qidi; Lin, Xianzhong; Félix, Roberto; Wilks, Regan G; Bär, Marcus; Yuan, Jiayin; Ballauff, Matthias; Lu, Yan

    2016-11-02

    In this study, dispersible mesoporous nitrogen-doped hollow carbon nanoplates have been synthesized as a new anisotropic carbon nanostructure using gibbsite nanoplates as templates. The gibbsite-silica core-shell nanoplates were first prepared before the gibbsite core was etched away. Dopamine as carbon precursor was self-polymerized on the hollow silica nanoplates surface assisted by sonification, which not only favors a homogeneous polymer coating on the nanoplates but also prevents their aggregation during the polymerization. Individual silica-polydopamine core-shell nanoplates were immobilized in a silica gel in an insulated state via a silica nanocasting technique. After pyrolysis in a nanoconfine environment and elimination of silica, discrete and dispersible hollow carbon nanoplates are obtained. The resulted hollow carbon nanoplates bear uniform hexagonal morphology with specific surface area of 460 m 2 ·g -1 and fairly accessible small mesopores (∼3.8 nm). They show excellent colloidal stability in aqueous media and are applied as electrode materials for symmetric supercapacitors. When using polyvinylimidazolium-based nanoparticles as a binder in electrodes, the hollow carbon nanoplates present superior performance in parallel to polyvinylidene fluoride (PVDF) binder.

  8. Uptake of bright fluorophore core-silica shell nanoparticles by biological systems

    PubMed Central

    Zane, Andrew; McCracken, Christie; Knight, Deborah A; Young, Tanya; Lutton, Anthony D; Olesik, John W; Waldman, W James; Dutta, Prabir K

    2015-01-01

    Nanoparticles are used in a variety of consumer applications. Silica nanoparticles in particular are common, including as a component of foods. There are concerns that ingested nano-silica particles can cross the intestinal epithelium, enter the circulation, and accumulate in tissues and organs. Thus, tracking these particles is of interest, and fluorescence spectroscopic methods are well-suited for this purpose. However, nanosilica is not fluorescent. In this article, we focus on core-silica shell nanoparticles, using fluorescent Rhodamine 6G, Rhodamine 800, or CdSe/CdS/ZnS quantum dots as the core. These stable fluorophore/silica nanoparticles had surface characteristics similar to those of commercial silica particles. Thus, they were used as model particles to examine internalization by cultured cells, including an epithelial cell line relevant to the gastrointestinal tract. Finally, these particles were administered to mice by gavage, and their presence in various organs, including stomach, small intestine, cecum, colon, kidney, lung, brain, and spleen, was examined. By combining confocal fluorescence microscopy with inductively coupled plasma mass spectrometry, the presence of nanoparticles, rather than their dissolved form, was established in liver tissues. PMID:25759579

  9. Nanoscale Transforming Mineral Phases in Fresh Nacre

    DOE PAGES

    DeVol, Ross T.; Sun, Chang-Yu; Marcus, Matthew A.; ...

    2015-09-24

    Nacre, or mother-of-pearl, the iridescent inner layer of many mollusk shells, is a biomineral lamellar composite of aragonite (CaCO 3) and organic sheets. Biomineralization frequently occurs via transient amorphous precursor phases, crystallizing into the final stable biomineral. In nacre, despite extensive attempts, amorphous calcium carbonate (ACC) precursors have remained elusive. They were inferred from non-nacre-forming larval shells, or from a residue of amorphous material surrounding mature gastropod nacre tablets, and have only once been observed in bivalve nacre. Here we present the first direct observation of ACC precursors to nacre formation, obtained from the growth front of nacre in gastropodmore » shells from red abalone (Haliotis rufescens), using synchrotron spectromicroscopy. Surprisingly, the abalone nacre data show the same ACC phases that are precursors to calcite (CaCO 3) formation in sea urchin spicules, and not proto-aragonite or poorly crystalline aragonite (pAra), as expected for aragonitic nacre. In contrast, we find pAra in coral.« less

  10. Fabrication of a magnetic helical mesostructured silica rod

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhang Qiao, Shi; Cheng, Lina; Yan, Zifeng; Qing Lu, Gao Max

    2008-10-01

    We report a one-step synthesis of magnetic helical mesostructured silica (MHMS) by self-assembly of an achiral surfactant, magnetic nanocrystals with stearic acid ligands and silicate. This core-shell structured material consists of an Fe3O4 superparamagnetic nanocrystal core and a highly ordered periodic helical mesoporous silica shell. We propose that the formation of the helical structure is induced by the interaction between the surfactant and dissociated stearic acid ligands. The MHMS obtained possesses superparamagnetism, uniform mesostructure, narrow pore size distribution, high surface area, and large pore volume. Furthermore, the drug release process is demonstrated using aspirin as a drug model and MHMS as a drug carrier in a sodium phosphate buffer solution.

  11. Loading amorphous Asarone in mesoporous silica SBA-15 through supercritical carbon dioxide technology to enhance dissolution and bioavailability.

    PubMed

    Zhang, Zhengzan; Quan, Guilan; Wu, Qiaoli; Zhou, Chan; Li, Feng; Bai, Xuequn; Li, Ge; Pan, Xin; Wu, Chuanbin

    2015-05-01

    The aim of this study was to load amorphous hydrophobic drug into ordered mesoporous silica (SBA-15) by supercritical carbon dioxide technology in order to improve the dissolution and bioavailability of the drug. Asarone was selected as a model drug due to its lipophilic character and poor bioavailability. In vitro dissolution and in vivo bioavailability of the obtained Asarone-SBA-15 were significantly improved as compared to the micronized crystalline drug. This study offers an effective, safe, and environmentally benign means of solving the problems relating to the solubility and bioavailability of hydrophobic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers as a binder-free self-supported electrode for lithium ion batteries.

    PubMed

    Xie, Wenhe; Li, Suyuan; Wang, Suiyan; Xue, Song; Liu, Zhengjiao; Jiang, Xinyu; He, Deyan

    2014-11-26

    N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers were prepared via a facile approach. The core composite nanofibers were first made by electrospinning technology, then the shells were conformally coated using the chemical bath deposition and subsequent carbonization with polydopamine as a carbon source. When applied as a binder-free self-supported anode for lithium ion batteries, the coaxial nanofibers displayed an enhanced electrochemical storage capacity and excellent rate performance. The morphology of the interwoven nanofibers was maintained even after the rate cycle test. The superior electrochemical performance originates in the structural stability of the N-doped amorphous carbon shells formed by carbonizing polydopamine.

  13. In situ observation of stishovite formation in shock-compressed fused silica

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June; Turneaure, Stefan; Duffy, Thomas

    2017-06-01

    Silica, SiO2, has widespread applications ranging from optical components to refractory materials and is of geological importance as one of the major oxide components of the Earth's crust and mantle. The response of silica phases to dynamic loading has long been of interest for understanding the structural evolution of this fundamental oxide. Under shock compression both crystalline quartz and fused silica are characterized by the occurrence of a broad `mixed-phase region' (15-40 GPa) and a dense, high-pressure phase with much lower compressibility. Despite decades of study, the nature of this transformation and the identity of the high-pressure phase(s) remain poorly understood. In situ x-ray diffraction experiments on shock-compressed fused silica were conducted at the Dynamic Compression Sector of the Advanced Photon Source. The lattice-level structure was investigated through time-resolved x-ray diffraction measurements on samples reaching peak stress ranging from 12 to 47 GPa. Our results demonstrate that SiO2 adopts a dense amorphous structure in the `mixed-phase region' and abruptly transforms to stishovite above 34 GPa. These results provide clear evidence that high-pressure crystalline silicate phases can form from amorphous starting materials on the time-scale of laboratory shock experiments.

  14. Grafting strategy to develop single site titanium on an amorphous silica surface.

    PubMed

    Capel-Sanchez, M C; Blanco-Brieva, G; Campos-Martin, J M; de Frutos, M P; Wen, W; Rodriguez, J A; Fierro, J L G

    2009-06-16

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO(2)-SiO(2) samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate. The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.

  15. Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capel-Sanchez, M.; Blanco-Brieva, G; Campos-Martin, J

    2009-01-01

    Titanium/silica systems were prepared by grafting a titanium alkoxide (titanium isopropoxide and titanium (triethanolaminate) isopropoxide) precursor onto amorphous silica. The grafting process, which consisted of the hydrolysis of the Ti precursor by the hydroxyl groups on the silica surface, yielded samples containing Ti-loadings of 1-1.6 wt %. The as synthesized and calcined TiO2-SiO2 samples were characterized by UV-vis, FTIR, XPS, and XANES spectroscopic techniques. These systems were tested in the liquid-phase epoxidation of oct-1-ene with hydrogen peroxide reaction. Spectroscopic data indicated that titanium anchoring takes place by reaction between the alkoxide precursor and surface OH groups of the silica substrate.more » The nature of surface titanium species generated by chemical grafting depends largely on the titanium precursor employed. Thus, the titanium isopropoxide precursor yields tetrahedrally coordinated polymeric titanium species, which give rise to a low-efficiency catalyst. However, if an atrane precursor (titanium (triethanolaminate) isopropoxide) is employed, isolated titanium species are obtained. The fact that these species remain isolated even after calcination is due to the protective effect of the triethanolaminate ligand that avoids titanium polymerization. These differences in the titanium environment have a pivotal role in the performance of these systems in the epoxidation of alkenes with hydrogen peroxide.« less

  16. Simultaneous utilization of soju industrial waste for silica production and its residue ash as effective cationic dye adsorbent

    USDA-ARS?s Scientific Manuscript database

    Soju industrial waste is an important biomass resource. The present study is aimed to utilize soju industrial waste for silica extraction, and residual ash as a low cost adsorbent for the removal of Methylene Blue (MB) from aqueous solution. High percentage of pure amorphous nanosilica was obtained ...

  17. Passion fruit-like nano-architectures: a general synthesis route

    NASA Astrophysics Data System (ADS)

    Cassano, D.; David, J.; Luin, S.; Voliani, V.

    2017-03-01

    Noble metal nanostructures have demonstrated a number of intriguing features for both medicine and catalysis. However, accumulation issues have prevented their clinical translation, while their use in catalysis has shown serious efficiency and stability hurdles. Here we introduce a simple and robust synthetic protocol for passion fruit-like nano-architectures composed by a silica shell embedding polymeric arrays of ultrasmall noble metal nanoparticles. These nano-architectures show interesting features for both oncology and catalysis. They avoid the issue of persistence in organism thanks to their fast biodegradation in renal clearable building blocks. Furthermore, their calcination results in yolk-shell structures composed by naked metal or alloy nanospheres shielded from aggregation by a silica shell.

  18. Passion fruit-like nano-architectures: a general synthesis route

    PubMed Central

    Cassano, D.; David, J.; Luin, S.; Voliani, V.

    2017-01-01

    Noble metal nanostructures have demonstrated a number of intriguing features for both medicine and catalysis. However, accumulation issues have prevented their clinical translation, while their use in catalysis has shown serious efficiency and stability hurdles. Here we introduce a simple and robust synthetic protocol for passion fruit-like nano-architectures composed by a silica shell embedding polymeric arrays of ultrasmall noble metal nanoparticles. These nano-architectures show interesting features for both oncology and catalysis. They avoid the issue of persistence in organism thanks to their fast biodegradation in renal clearable building blocks. Furthermore, their calcination results in yolk-shell structures composed by naked metal or alloy nanospheres shielded from aggregation by a silica shell. PMID:28256565

  19. The electronic and optical properties of amorphous silica with hydrogen defects by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ren, Dahua; Xiang, Baoyan; Hu, Cheng; Qian, Kai; Cheng, Xinlu

    2018-04-01

    Hydrogen can be trapped in the bulk materials in four forms: interstitial molecular H2, interstitial atom H, O‑H+(2Si=O–H)+, Si‑H‑( {{4O}}\\bar \\equiv {{Si&x2212H}})‑ to affect the electronic and optical properties of amorphous silica. Therefore, the electronic and optical properties of defect-free and hydrogen defects in amorphous silica were performed within the scheme of density functional theory. Initially, the negative charged states hydrogen defects introduced new defect level between the valence band top and conduction band bottom. However, the neutral and positive charged state hydrogen defects made both the valence band and conduction band transfer to the lower energy. Subsequently, the optical properties such as absorption spectra, conductivity and loss functions were analyzed. It is indicated that the negative hydrogen defects caused the absorption peak ranging from 0 to 2.0 eV while the positive states produced absorption peaks at lower energy and two strong absorption peaks arose at 6.9 and 9.0 eV. However, the neutral hydrogen defects just improved the intensity of absorption spectrum. This may give insights into understanding the mechanism of laser-induced damage for optical materials. Project supported by the Science and Technology of Hubei Provincial Department of Education (No. B2017098).

  20. High-pressure infrared sepctra of alpha-quartz, coesite, stishovite and silica glass

    NASA Technical Reports Server (NTRS)

    Williams, Q.; Hemley, R. J.; Kruger, M. B.; Jeanloz, R.

    1993-01-01

    High-pressure infrared absorption spectra of alpha-quatz, coesite, stishovite, and SiO2 glass are consistent with the primary compression mechanism of the initially tetrahedrally bonded phases being the bending of the Si-O-Si angle at pressures less than 10-20 GPa. At higher pressures, up to 40 GPa, we observe a decline in the intensity of the infrared SiO4 asymmetric-stretching vibrations of all three phases, with an increase in the relative amplitude between 700 and 900/cm. This change in intensities is attributed to an increase in the average coordination number of silicon through extreme distortion of tetrahedra. At pressures above approximately 20 GPa, the low-pressure crystalline polymorphs gradually become amorphous, and the infrared spectra provide evidence for an increase in silicon coordination in these high-density amorphous phases. The pressure-amorphized samples prepared from quartz and coesite differ structurally both from each other and from silica glass that has been compressed, and the high pressure spectra indicate that these materials are considerably more disordered than stishovite under comparable pressure conditions. Average mode Grueneisen parameters calculated for quartz, stishovite and fused silica from both infrared and Raman spectra are compatible with the corresponding thermodynamic value of the Grueneisen parameter, however, that of coesite is significantly discrepant.

  1. Hierarchical structures of amorphous solids characterized by persistent homology

    PubMed Central

    Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G.; Matsue, Kaname; Nishiura, Yasumasa

    2016-01-01

    This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods. PMID:27298351

  2. Preparation, characterization, and infrared emissivity property of optically active polyurethane/TiO{sub 2}/SiO{sub 2} multilayered microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Yong; Zhou Yuming, E-mail: ymzhou@seu.edu.cn; Ge Jianhua

    Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO{sub 2}/SiO{sub 2} was characterized by FT-IR, UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8-14 {mu}m) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO{sub 2}/SiO{sub 2} exhibited clearly multilayered core-shell construction. The infrared emissivity values reduced along with the increase of covering layers thus provedmore » that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO{sub 2}/SiO{sub 2} multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value. - Graphical Abstract: Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. Highlights: > Optically active polyurethane based on tyrosine was used for the modification of nanoparticles. > LPU/TiO{sub 2}/SiO{sub 2} multilayered core-shell microspheres were prepared and characterized. > Interfacial interactions and secondary structure affected the infrared emissivity of composite.« less

  3. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

    PubMed Central

    Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas

    2017-01-01

    A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes. PMID:28685115

  4. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process.

    PubMed

    Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas; Volkmer, Dirk

    2017-01-01

    A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol-gel-processing of silica precursors is used to deposit a silica coating directly on the fiber's surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.

  5. General Method for the Synthesis of Hollow Mesoporous Carbon Spheres with Tunable Textural Properties.

    PubMed

    Mezzavilla, Stefano; Baldizzone, Claudio; Mayrhofer, Karl J J; Schüth, Ferdi

    2015-06-17

    A versatile synthetic procedure to prepare hollow mesoporous carbon spheres (HMCS) is presented here. This approach is based on the deposition of a homogeneous hybrid polymer/silica composite shell on the outer surface of silica spheres through the surfactant-assisted simultaneous polycondensation of silica and polymer precursors in a colloidal suspension. Such composite materials can be further processed to give hollow mesoporous carbon spheres. The flexibility of this method allows for independent control of the morphological (i.e., core diameter and shell thickness) and textural features of the carbon spheres. In particular, it is demonstrated that the size of the pores within the mesoporous shell can be precisely tailored over an extended range (2-20 nm) by simply adjusting the reaction conditions. In a similar fashion, also the specific carbon surface area as well as the total shell porosity can be tuned. Most importantly, the textural features can be adjusted without affecting the dimension or the morphology of the spheres. The possibility to directly modify the shell textural properties by varying the synthetic parameters in a scalable process represents a distinct asset over the multistep hard-templating (nanocasting) routes. As an exemplary application, Pt nanoparticles were encapsulated in the mesoporous shell of HMCS. The resulting Pt@HMCS catalyst showed an enhanced stability during the oxygen reduction reaction, one of the most important reactions in electrocatalysis. This new synthetic procedure could allow the expansion, perhaps even beyond the lab-scale, of advanced carbon nanostructured supports for applications in catalysis.

  6. Sonochemical approach to the synthesis of Fe(3)O(4)@SiO(2) core-shell nanoparticles with tunable properties.

    PubMed

    Morel, Anne-Laure; Nikitenko, Sergei I; Gionnet, Karine; Wattiaux, Alain; Lai-Kee-Him, Josephine; Labrugere, Christine; Chevalier, Bernard; Deleris, Gerard; Petibois, Cyril; Brisson, Alain; Simonoff, Monique

    2008-05-01

    In this study, we report a rapid sonochemical synthesis of monodisperse nonaggregated Fe(3)O(4)@SiO(2) magnetic nanoparticles (NPs). We found that coprecipitation of Fe(II) and Fe(III) in aqueous solutions under the effect of power ultrasound yields smaller Fe(3)O(4) NPs with a narrow size distribution (4-8 nm) compared to the silent reaction. Moreover, the coating of Fe(3)O(4) NPs with silica using an alkaline hydrolysis of tetraethyl orthosilicate in ethanol-water mixture is accelerated many-fold in the presence of a 20 kHz ultrasonic field. The thickness of the silica shell can be easily controlled in the range of several nanometers during sonication. Mossbauer spectra revealed that nonsuperparamagnetic behavior of obtained core-shell NPs is mostly related to the dipole-dipole interactions of magnetic cores and not to the particle size effect. Core-shell Fe(3)O(4)@SiO(2) NPs prepared with sonochemistry exhibit a higher magnetization value than that for NPs obtained under silent conditions owing to better control of the deposited silica quantities as well as to the high speed of sonochemical coating, which prevents the magnetite from oxidizing.

  7. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei

    2016-11-01

    We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  8. Diffusion-driven D/H fractionation in silicates during hydration, dehydration and degassing

    NASA Astrophysics Data System (ADS)

    Roskosz, Mathieu; Laporte, Didier; Deloule, Etienne; Ingrin, Jannick; Remusat, Laurent; Depecker, Christophe; Leroux, Hugues

    2017-04-01

    Understanding how degassing occurs during accretion and differentiation is crucial to explain the water budget of planetary bodies. In this context, the hydrogen isotopic signature of water in mantle minerals and melts is particularly useful to trace reservoirs and their interactions. Nonetheless, little is known on the influence of mantle processes on the D/H signatures of silicates. In this study, we performed controlled hydration/dehydration experiments. We explore the possibility that diffusion-driven fractionation could affect the D/H signature of partially hydrated amorphous or molten silicates and nominally anhydrous minerals (NAMs). High purity synthetic fused silica samples were annealed at between 200 and 1000°C at 20 mbar water partial pressure for 1 to 30 days. Dehydration of initially hydrated silica was also performed at 1000°C for a few hours. A set of rhyolitic samples previously synthesized in order to study bubble nucleation during magma decompression was also analyzed. Finally a natural grossular monocrystal (Zillertaler Alps, Austria), partially dehydrated in air at 800°C for 10 hours was studied. Water content and speciation were measured both by Fourier-Transform Infra-Red and Raman spectroscopies. Isotopic analyses were performed with the IMS 1270 and 1280 ion microprobes. The silica samples, the rhyolitic glasses and the grossular monocrystal exhibit typical water concentration profiles. In all cases, water speciation does not change significantly along concentration profiles. Concerning D/H signatures, no isotopic variation is detectable across amorphous silica and rhyolitic glasses. The situation is however very different in the grossular monocrystal. A strong isotopic gradient appears correlated to the water concentration profile. Our data are interpreted in terms of diffusion mechanisms in both amorphous (and molten) silicates and NAMs. Hydration, dehydration and magma degassing are probably not able to promote large diffusion-driven fractionation of hydrogen in amorphous silicates. Conversely, the diffusion of water through the structure of NAMs affects the overall isotopic composition of dissolved water.

  9. Novel Synthesis of Core-Shell Silica Nanoparticles for the Capture of Low Molecular Weight Proteins and Peptides.

    PubMed

    Hernandez-Leon, Sergio G; Sarabia-Sainz, Jose Andre-I; Montfort, Gabriela Ramos-Clamont; Guzman-Partida, Ana M; Robles-Burgueño, Maria Del Refugio; Vazquez-Moreno, Luz

    2017-10-12

    Silica nanoparticles were functionalized with immobilized molecular bait, Cibacron Blue, and a porous polymeric bis-acrylamide shell. These nanoparticles represent a new alternative to capture low molecular weight (LMW) proteins/peptides, that might be potential biomarkers. Functionalized core-shell silica nanoparticles (FCSNP) presented a size distribution of 243.9 ± 11.6 nm and an estimated surface charge of -38.1 ± 0.9 mV. The successful attachment of compounds at every stage of synthesis was evidenced by ATR-FTIR. The capture of model peptides was determined by mass spectrometry, indicating that only the peptide with a long sequence of hydrophobic amino acids (alpha zein 34-mer) interacted with the molecular bait. FCSNP excluded the high molecular weight protein (HMW), BSA, and captured LMW proteins (myoglobin and aprotinin), as evidenced by SDS-PAGE. Functionalization of nanoparticles with Cibacron Blue was crucial to capture these molecules. FCSNP were stable after twelve months of storage and maintained a capacity of 3.1-3.4 µg/mg.

  10. Preparation and Structural Studies on Hybrid Core-Shell Nanoparticles Consisting of Silica Core and Conjugated Block Copolymer Shell Prepared by Surface-Initiated Polymerization

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Karam, Tony; Rosu, Cornelia; Li, Xin; Do, Changwoo; Youm, Sang Gil; Haber, Louis; Russo, Paul; Nesterov, Evgueni

    Controlled Kumada catalyst-transfer polymerization occurring by chain-growth mechanism was developed for the synthesis of conjugated polymers and block copolymers from the surface of inorganic substrates such as silica nanoparticles. Although synthesis of conjugated polymers via Kumada polymerization became an established method for solution polymerization, carrying out the same reaction in heterogeneous conditions to form monodisperse polymer chains still remains a challenge. We developed and described a simple and efficient approach to the preparation of surface-immobilized layer of catalytic Ni(II) initiator, and demonstrated using it to prepare polymers and block copolymers on silica nanoparticle. The structure of the resulting hybrid nanostructures was thoroughly studied using small-angle neutron and X-ray scattering, thermal analysis, and optical spectroscopy. The photoexcitation energy transfer processes in the conjugated polymer shell were studied via steady-state and time resolved transient absorption spectroscopy. This study uncovered important details of the energy transfer, which will be discussed in this presentation.

  11. AB Initi Molecular Dynamics Simulation of the Amorphous Structure of Ca-Mg-Cu and Ca-Mg-Zn Alloys (Postprint)

    DTIC Science & Technology

    2012-09-26

    characteristic coordination poly- hedra present in an amorphous structure.[23,42] A coor- dination polyhedron is defined as an i-centered cluster with...vertices at the first-shell atom positions and edges coinciding with the interatomic bonds in the first shell.[45] Each coordination polyhedron can be...assigned a Voronoi signature (n3, n4, n5, n6), where nm is the number of vertices common to m polyhedron faces (or edges).[46] m is also called the

  12. Fluorescence labeling of colloidal core-shell particles with defined isoelectric points for in vitro studies.

    PubMed

    Daberkow, Timo; Meder, Fabian; Treccani, Laura; Schowalter, Marco; Rosenauer, Andreas; Rezwan, Kurosch

    2012-02-01

    In the light of in vitro nanotoxicological studies fluorescence labeling has become standard for particle localization within the cell environment. However, fluorescent labeling is also known to significantly alter the particle surface chemistry and therefore potentially affect the outcome of cell studies. Hence, fluorescent labeling is ideally carried out without changing, for example, the isoelectric point. A simple and straightforward method for obtaining fluorescently labeled spherical metal oxide particles with well-defined isoelectric points and a narrow size distribution is presented in this study. Spherical amorphous silica (SiO2, 161 nm diameter) particles were used as the substrate material and were coated with silica, alumina (Al2O3), titania (TiO2), or zirconia (ZrO2) using sol-gel chemistry. Fluorescent labeling was achieved by directly embedding rhodamine 6G dye in the coating matrix without affecting the isoelectric point of the metal oxide coatings. The coating quality was confirmed by high resolution transmission electron microscopy, energy filtered transmission electron microscopy and electrochemical characterization. The coatings were proven to be stable for at least 240 h under different pH conditions. The well-defined fluorescent particles can be directly used for biomedical investigations, e.g. elucidation of particle-cell interactions in vitro. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Colloidal and physical transport textures exhibited by electrum and naumannite in bonanza epithermal veins from western USA, and their significance

    USGS Publications Warehouse

    Saunders, James A.; Vikre, Peter G.; Unger, Derick L.; Beasley, Lee

    2010-01-01

    It is reasonably clear that disequilibrium or “far-from equilibrium” conditions lead to the formation of silica colloids and their deposition in many epithermal deposits. This implies ore-forming solutions had elevated concentrations of dissolved silica, well in excess of amorphous silica saturation. We have previously demonstrated that such colloidal silica particles were deposited in epithermal veins as silica gels and opal, which may later progress along a path to crystallize into more thermodynamically favored (less-soluble) silica phases such as quartz and chalcedony. Also, in some deposits, amorphous silica is co-deposited with precious-metal minerals, such as electrum in the banded super-bonanza ores of the Sleeper deposit (NV). Ore-mineral textures from some western USA bonanza epithermal ores indicate that two precious-metal phases (electrum and naumannite, Ag2Se) form colloidal particles that are transported by ore-forming fluids and are deposited either by aggregation (by sticking to other precious metal-particles) to make dendrites, or are deposited on the “lee” side of protrusion along vein walls (or perhaps by both processes). We can infer by analogy to silica that this also implies that ore-forming solutions contained elevated (supersaturated) dissolved concentrations of both gold and silver that formed colloidal particles under disequilibrium (often chaotic) conditions. Thus physical transport and deposition textures seem to indicate the presence of strongly precious-metal-enriched ore forming fluids, which led to (not surprisingly) the bonanza grades of these remarkable ores. What causes such a precious-metal-rich solution is debatable, but that is the subject of our continued investigations.

  14. Silica Debris Disk Evidence for Giant Planet Forming Impacts

    NASA Astrophysics Data System (ADS)

    Lisse, C.

    2014-04-01

    Giant impacts are major formation events in the history of our solar system. The final assembly of the planets, as we understand it, had to include massive fast collision events as the planets grew to objects with large escape velocities or in regions of high Keplerian velocities (Chambers 2004; Kenyon & Bromley 2004a,b, 2006; Fegley & Schaefer 2005). These massive impact events should create large amounts of glassy silica material derived from the rapid melting, vaporization, and refreezing of normal silicate rich primitive rocky material. We report here the detection of 4 bright silica-rich debris disks in the Spitzer IRS spectral archive, and the possible identification of 7 others. The stellar types of the system primaries span from A5V to G0V, their ages are 10 - 100 Myr, and the dust is warm, 280 - 480 K, and is located between 1.5 and 6 AU, well inside the systems' terrestrial planet regions. The minimum amount of detected 0.1 - 20 dust mass ranges from 10^21 - 10^23 kg; assuming < 10% dust formation efficiency (Benz 2009, 2011) this implies collisions involving impactors massing at least 10^22 - 10^24 kg, i.e. from Moon to Earth mass. We find possible trends in the mineralogy of the silica, with predominantly amorphous silica found in the 2 younger systems, and crystalline silica in the older systems. We speculate this is due higher velocity impacts found in younger, hotter systems, coupled with the effects of energetic photon annealing of small amorphous silica grains. All of these measures are consistent with the creation of silica rich rubble, or construction debris, during the terrestrial planet formation era of giant impacts.

  15. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    NASA Astrophysics Data System (ADS)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-11-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.

  16. Phase analysis of ZrO2-SiO2 systems synthesized through Ball milling mechanical activations

    NASA Astrophysics Data System (ADS)

    Nurlaila, Rizka; Musyarofah, Muwwaqor, Nibras Fuadi; Triwikantoro, Kuswoyo, Anton; Pratapa, Suminar

    2017-01-01

    Zircon powders have been produced from raw materials of amorphous zirconia and amorphous silica powders obtained from natural zircon sand of Kalimantan Tengah, Indonesia. Synthesis process was started with the extraction of zircon powder to produce sodium silicate solution and pure zircon powder. The amorphous zirconia and silica powders were prepared by alkali fusion and co-precipitation techniques. The powders were mixed using a planetary ball mill, followed by a calcination of various holding time of 3, 10, and 15 h. Phase characterization was done using X-Ray Diffraction (XRD) technique and analysis of the diffraction data was carried out using Rietica and MAUD software. The identified phases after the calcination were zircon, tetragonal zirconia, and cristobalite. The highest zircon content was obtained in the sample calcinated for15 hours - reaching 99.66 %wt. Crystallite size analysis revealed that the samples calcinated for 3, 10, and 15 h exhibited zircon crystal size of 176 (1) nm, 191 (1) nm and 233 (1) nm respectively.

  17. Highly selective coextraction of rhodamine B and dibenzyl phthalate based on high-density dual-template imprinted shells on silica microparticles.

    PubMed

    Long, Zerong; Xu, Weiwei; Peng, Yumei; Lu, Yi; Luo, Qian; Qiu, Hongdeng

    2017-01-01

    A simple one-pot approach based on molecularly imprinted polymer shells dispersed on the surface of silica for simultaneous determination of rhodamine B and dibenzyl phthalate (DBzP) has been developed. Highly dense molecularly imprinted polymer shells were formed in the mixture of acetonitrile and toluene by the copolymerization of methacrylic acid and ethylene glycol dimethacrylate, as well as two templates, rhodamine B and dibenzyl phthalate, directed by the vinyl end groups functional monolayer at surface silica microspheres after 3-methacryloxypropyl trimethoxysilane modification. The obtained imprinted polymer shells showed large average pore diameter (102.5 nm) and about 100 nm shell thickness. The imprinted particles also showed high imprinting factor (α RhB = 3.52 and α DBzP = 3.94), rapid binding kinetics, and excellent selective affinity capacity for rhodamine B and dibenzyl phthalate containing another three competitors in mixed solution. Moreover, the imprinted particles coupled with ultra high performance liquid chromatography was successfully applied to simultaneous analysis of rhodamine B and dibenzyl phthalate in two spiked beverage samples with average recoveries in the range of 88.0-93.0% for rhodamine B and 84.0-92.0% for dibenzyl phthalate with the relative standard deviation lower than 5.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Silica substrate or portion formed from oxidation of monocrystalline silicon

    DOEpatents

    Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.

    2003-07-15

    A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.

  19. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars

    USGS Publications Warehouse

    Frydenvang, Jens; Gasda, Patrick J.; Hurowitz, Joel A.; Grotzinger, John P.; Wiens, Roger C.; Newsom, Horton E.; Edgett, Ken S.; Watkins, Jessica; Bridges, John C.; Maurice, Sylvestre; Fisk, Martin R.; Johnson, Jeffrey R.; Rapin, William; Stein, Nathan; Clegg, Sam M.; Schwenzer, S. P.; Bedford, C.; Edwards, P.; Mangold, Nicolas; Cousin, Agnes; Anderson, Ryan; Payre, Valerie; Vaniman, David; Blake, David; Lanza, Nina L.; Gupta, Sanjeev; Van Beek, Jason; Sautter, Violaine; Meslin, Pierre-Yves; Rice, Melissa; Milliken, Ralf; Gellert, Ralf; Thompson, Lucy; Clark, Ben C.; Sumner, Dawn Y.; Fraeman, Abigail A.; Kinch, Kjartan M; Madsen, Morten B.; Mitofranov, Igor; Jun, Insoo; Calef, Fred J.; Vasavada, Ashwin R.

    2017-01-01

    Diagenetic silica enrichment in fracture-associated halos that crosscut lacustrine and unconformably overlying aeolian sedimentary bedrock is observed on the lower north slope of Aeolis Mons in Gale crater, Mars. The diagenetic silica enrichment is colocated with detrital silica enrichment observed in the lacustrine bedrock yet extends into a considerably younger, unconformably draping aeolian sandstone, implying that diagenetic silica enrichment postdates the detrital silica enrichment. A causal connection between the detrital and diagenetic silica enrichment implies that water was present in the subsurface of Gale crater long after deposition of the lacustrine sediments and that it mobilized detrital amorphous silica and precipitated it along fractures in the overlying bedrock. Although absolute timing is uncertain, the observed diagenesis likely represents some of the most recent groundwater activity in Gale crater and suggests that the timescale of potential habitability extended considerably beyond the time that the lacustrine sediments of Aeolis Mons were deposited.

  20. Pozzolanic Characterization Of Waste Rice Husk Ash (RHA) From Muar, Malaysia

    NASA Astrophysics Data System (ADS)

    Hadipramana, J.; Riza, F. V.; Rahman, I. A.; Loon, L. Y.; Adnan, S. H.; Zaidi, A. M. A.

    2016-11-01

    Investigation of Rice Husk Ash (RHA) thoroughly under controlled burning is regular issue to obtain result to produce the amorphous silica that has high pozzolanic reactivity characteristic. This paper offered an observation about characteristic of ground and un-ground of un-controlled burning temperature RHA that were taken from rice millings in Muar, Johor Malaysia. Such tests as X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Particle Size Analysis and Specific Area Surface, Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron microscope (SEM) were conducted in this investigation to carry out the characteristic of RHA samples. The results show that the RHA was consist approximately 89.90% of silica and the RHA possessed the amorphous particle were dominant than its crystalline part. This proves that the RHA has a big potential as a pozzolanic material considering the silica content and porous structure. In addition, particle size analysis decides whether the pozzolanic reactivity can be increased by grinding process.

  1. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2013-06-25

    polyurea shell. The degradation was so slow over the course of one month that it was easier to monitor IPD1 degradation instead. We found first order...dependence of water diffusion through the shell. Note that the polyurea shell in this case contains silica inclusions. -13.6 -14.0 -14.4 -14.8 -15.2

  2. Coherent anti-Stokes Raman scattering microscopy driving the future of loaded mesoporous silica imaging.

    PubMed

    Fussell, Andrew L; Mah, Pei Ting; Offerhaus, Herman; Niemi, Sanna-Mari; Salonen, Jarno; Santos, Hélder A; Strachan, Clare

    2014-11-01

    This study reports the use of variants of coherent anti-Stokes Raman scattering (CARS) microscopy as a novel method for improved physicochemical characterization of drug-loaded silica particles. Ordered mesoporous silica is a biomaterial that can be loaded to carry a number of biochemicals, including poorly water-soluble drugs, by allowing the incorporation of drug into nanometer-sized pores. In this work, the loading of two poorly water-soluble model drugs, itraconazole and griseofulvin, in MCM-41 silica microparticles is characterized qualitatively, using the novel approach of CARS microscopy, which has advantages over other analytical approaches used to date and is non-destructive, rapid, label free, confocal and has chemical and physical specificity. The study investigated the effect of two solvent-based loading methods, namely immersion and rotary evaporation, and microparticle size on the three-dimensional (3-D) distribution of the two loaded drugs. Additionally, hyperspectral CARS microscopy was used to confirm the amorphous nature of the loaded drugs. Z-stacked CARS microscopy suggested that the drug, but not the loading method or particle size range, affected 3-D drug distribution. Hyperspectral CARS confirmed that the drug loaded in the MCM-41 silica microparticles was in an amorphous form. The results show that CARS microscopy and hyperspectral CARS microscopy can be used to provide further insights into the structural nature of loaded mesoporous silica microparticles as biomaterials. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Production of colourful pigments consisting of amorphous arrays of silica particles.

    PubMed

    Yoshioka, Shinya; Takeoka, Yukikazu

    2014-08-04

    It is desirable to produce colourful pigments that have anti-fading properties and are environmentally friendly. In this Concept, we describe recently developed pigments that exhibit such characteristics. The pigments consist of amorphous arrays of submicron silica particles, and they exhibit saturated and angle-independent structural colours. Variously coloured pigments can be produced by changing the size of the particles, and the saturation of the colour can be controlled by incorporating small amounts of black particles. We review a simple analysis that is useful for interpreting the angular independence of the structural colours and discuss the remaining tasks that must be accomplished for the realistic application of these pigments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Response Surface Methodology for Design of Porous Hollow Sphere Thermal Insulator

    NASA Astrophysics Data System (ADS)

    Shohani, Nazanin; Pourmahdian, Saeed; Shirkavand Hadavand, Behzad

    2017-11-01

    In this study, response surface method is used for synthesizing polystyrene (PS) as sacrificial templates and optimizing the particle size. Three factors of initiator, stabilizer concentration and also stirring rate were selected as variable factors. Then, three different concentration of tetraethyl orthosilicate (TEOS) added to reaction media and core-shell structure with PS core and silica shell was developed. Finally, core-shell structure was changed to hollow silica sphere for using as thermal insulator. We observed that increased initiator concentration caused to larger PS particles, increase the stirring rate caused the smaller PS and also with increased the stabilizer concentration obtained that particle size decrease then after 2.5% began to increase. Also the optimum amount of TEOS was found.

  5. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors

    NASA Astrophysics Data System (ADS)

    Mao, Hanping; Liu, Zhongshou

    2018-01-01

    In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples.

  6. High-temperature synthesis of silica particles by the chloride method in the regime of counter flow jet quenching

    NASA Astrophysics Data System (ADS)

    Kartaev, E. V.; Emel'kin, V. A.; Aul'chenko, S. M.

    2017-10-01

    The experimental and numerical investigations of synthesis of silica (SiO2) nanoparticles from premixed gaseous silicon tetrachloride (SiCl4) and oxygen of dry air in the high-temperature nitrogen flow of plasma-chemical reactor have been carried out. The regime of counter flow jet quenching of high-temperature heterogeneous flow has been utilized. The latter provided a rapid cooling of silica particles under nonequilibrium conditions with substantial temperature gradients. Synthesized silica particles were amorphous, with surface-average size being about 28 nm. The results of numerical calculations are found to agree qualitatively with experimental data.

  7. Studying the loading effect of acidic type antioxidant on amorphous silica nanoparticle carriers

    NASA Astrophysics Data System (ADS)

    Ravinayagam, Vijaya; Rabindran Jermy, B.

    2017-06-01

    The study investigates the suitable nanosilica carriers to transport acidic type cargo molecules for potential targeted drug delivery application. Using phenolic acidic type antioxidant gallic acid (GA) as model compound, the present study investigates the loading effect of GA (0.3-15.9 mmol GA g-1 support) on textural characteristics of amorphous silica nanoparticles such as Q10 silica (1D), structured two-dimensional Si-MCM-41 (2D), and three-dimensional Si-SBA-16 (3D). The variation in the nature of textures after GA loading was analyzed using X-ray diffraction, N2 adsorption, FT-IR, scanning electron microscopy with energy dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy. Among the nanocarriers, high adsorption of GA was found in the following order: Si-SBA-16 (3D)˜Si-KIT-6 (3D) > Si-MCM-41 (2D) > ultralarge pore FDU-12 (ULPFDU-12; 3D) > Q10 (1D)˜mesostructured cellular silica foam (MSU-F). 3D-type silicas Si-SBA-16 and KIT-6 were shown to maintain structural integrity at acidic condition (pH ˜3) and accommodate GA in non-crystalline form. In the case of ULPFDU-12 and MSU-F cellular foam, only crystalline deposition of GA occurs with a significant variation in the surface area and pore volume. [Figure not available: see fulltext.

  8. Electronic Structures and Optical Properties of α-Al2O3Nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Li, Chunlei; Liu, Lijia; Sham, Tsun-Kong

    2013-04-01

    The electronic structure and optical properties of α-Al2O3 nanowires (NWs) have been investigated using X-ray absorption near-edge structures (XANES) and X-ray excited optical luminescence (XEOL). The XANES were recorded in total electron yield (TEY) and total fluorescence yield (TFY) across the K- and L3,2-edges of aluminium and the K-edge of oxygen. The results indicate that the NWs are of a core/shell structure with a single-crystalline core and an amorphous shell. The XEOL spectra of the NWs show an intense peak at 404 nm, which comes from the F centre located in the amorphous shell of the NWs. The implication of these findings and the sensitivity of XEOL for defect detection are discussed.

  9. Chemical nature and structure of organic coating of quantum dots is crucial for their application in imaging diagnostics

    PubMed Central

    Bakalova, Rumiana; Zhelev, Zhivko; Kokuryo, Daisuke; Spasov, Lubomir; Aoki, Ichio; Saga, Tsuneo

    2011-01-01

    Background: One of the most attractive properties of quantum dots is their potential to extend the opportunities for fluorescent and multimodal imaging in vivo. The aim of the present study was to clarify whether the composition and structure of organic coating of nanoparticles are crucial for their application in vivo. Methods: We compared quantum dots coated with non-crosslinked amino-functionalized polyamidoamine (PAMAM) dendrimers, quantum dots encapsulated in crosslinked carboxyl-functionalized PAMAM dendrimers, and silica-shelled amino-functionalized quantum dots. A multimodal fluorescent and paramagnetic quantum dot probe was also developed and analyzed. The probes were applied intravenously in anesthetized animals for visualization of brain vasculature using two-photon excited fluorescent microscopy and visualization of tumors using fluorescent IVIS® imaging (Caliper Life Sciences, Hopkinton, MA) and magnetic resonance imaging. Results: Quantum dots coated with non-crosslinked dendrimers were cytotoxic. They induced side effects in vivo, including vasodilatation with a decrease in mean arterial blood pressure and heart rate. The quantum dots penetrated the vessels, which caused the quality of fluorescent imaging to deteriorate. Quantum dots encapsulated in crosslinked dendrimers had low cytotoxicity and were biocompatible. In concentrations <0.3 nmol quantum dots/kg bodyweight, these nanoparticles did not affect blood pressure and heart rate, and did not induce vasodilatation or vasoconstriction. PEGylation (PEG [polyethylene glycol]) was an indispensable step in development of a quantum dot probe for in vivo imaging, based on silica-shelled quantum dots. The non-PEGylated silica-shelled quantum dots possessed low colloidal stability in high-salt physiological fluids, accompanied by rapid aggregation in vivo. The conjugation of silica-shelled quantum dots with PEG1100 increased their stability and half-life in the circulation without significant enhancement of their size. In concentrations <2.5 nmol/kg bodyweight, these quantum dots did not affect the main physiological variables. It was possible to visualize capillaries, which makes this quantum dot probe appropriate for investigation of mediators of vasoconstriction, vasodilatation, and brain circulation in intact animals in vivo. The multimodal silica-shelled quantum dots allowed visualization of tumor tissue in an early stage of its development, using magnetic resonance imaging. Conclusion: The present study shows that the type and structure of organic/bioorganic shells of quantum dots determine their biocompatibility and are crucial for their application in imaging in vivo, due to the effects of the shell on the following properties: colloidal stability, solubility in physiological fluids, influence of the basic physiological parameters, and cytotoxicity. PMID:21980235

  10. 3D-Printed Transparent Glass

    DOE PAGES

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.; ...

    2017-04-28

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  11. Conversion of glucose to sorbose

    DOEpatents

    Davis, Mark E.; Gounder, Rajamani

    2016-02-09

    The present invention is directed to methods for preparing sorbose from glucose, said method comprising: (a) contacting the glucose with a silica-containing structure comprising a zeolite having a topology of a 12 membered-ring or larger, an ordered mesoporous silica material, or an amorphous silica, said structure containing Lewis acidic Ti.sup.4+ or Zr.sup.4+ or both Ti.sup.4+ and Zr.sup.4+ framework centers, said contacting conducted under reaction conditions sufficient to isomerize the glucose to sorbose. The sorbose may be (b) separated or isolated; or (c) converted to ascorbic acid.

  12. 3D-Printed Transparent Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  13. Picosecond amorphization of SiO2 stishovite under tension.

    PubMed

    Misawa, Masaaki; Ryuo, Emina; Yoshida, Kimiko; Kalia, Rajiv K; Nakano, Aiichiro; Nishiyama, Norimasa; Shimojo, Fuyuki; Vashishta, Priya; Wakai, Fumihiro

    2017-05-01

    It is extremely difficult to realize two conflicting properties-high hardness and toughness-in one material. Nano-polycrystalline stishovite, recently synthesized from Earth-abundant silica glass, proved to be a super-hard, ultra-tough material, which could provide sustainable supply of high-performance ceramics. Our quantum molecular dynamics simulations show that stishovite amorphizes rapidly on the order of picosecond under tension in front of a crack tip. We find a displacive amorphization mechanism that only involves short-distance collective motions of atoms, thereby facilitating the rapid transformation. The two-step amorphization pathway involves an intermediate state akin to experimentally suggested "high-density glass polymorphs" before eventually transforming to normal glass. The rapid amorphization can catch up with, screen, and self-heal a fast-moving crack. This new concept of fast amorphization toughening likely operates in other pressure-synthesized hard solids.

  14. Thermochemistry of amorphous and crystalline zirconium and hafnium silicates.

    NASA Astrophysics Data System (ADS)

    Ushakov, S.; Brown, C. E.; Navrotsky, Alexandra; Boatner, L. A.; Demkov, A. A.; Wang, C.; Nguyen, B.-Y.

    2003-03-01

    Calorimetric investigation of amorphous and crystalline zirconium and hafnium silicates was performed as part of a research program on thermochemistry of alternative gate dielectrics. Amorphous hafnium and zirconium silicates with varying SiO2 content were synthesized by a sol-gel process. Crystalline zirconium and hafnium silicates (zircon and hafnon) were synthesized by solid state reaction at 1450 °C from amorphous gels and grown as single crystals from flux. High temperature oxide melt solution calorimetry in lead borate (2PbO.B2O3) solvent at 800 oC was used to measure drop solution enthalpies for amorphous and crystalline zirconium and hafnium silicates and corresponding oxides. Applying appropriate thermochemical cycles, formation enthalpy of crystalline ZrSiO4 (zircon) from binary oxides (baddeleite and quartz) at 298 K was calculated as -23 +/-2 kJ/mol and enthalpy difference between amorphous and crystalline zirconium silicate (vitrification enthalpy) was found to be 61 +/-3 kJ/mol. Crystallization onset temperatures of amorphous zirconium and hafnium silicates, as measured by differential scanning calorimetry (DSC), increased with silica content. The resulting crystalline phases, as characterized by X-ray diffraction (XRD), were tetragonal HfO2 and ZrO2. Critical crystallite size for tetragonal to monoclinic transformation of HfO2 in the gel was estimated as 6 +/-2 nm from XRD data Crystallization enthalpies per mole of hafnia and zirconia in gels decrease slightly together with crystallite size with increasing silica content, for example from -22 to -15 +/-1 kJ per mol of HfO2 crystallized at 740 and 1006 °C from silicates with 10 and 70 mol Applications of thermal analyses and solution calorimetry techniques together with first-principles density functional calculations to estimate interface and surface energies are discussed.

  15. Fe3O4@Au@mSiO2 as an enhancing nanoplatform for Rose Bengal photodynamic activity.

    PubMed

    Rosa-Pardo, I; Roig-Pons, M; Heredia, A A; Usagre, J V; Ribera, A; Galian, R E; Pérez-Prieto, J

    2017-07-27

    A novel nanoplatform composed of three types of materials with different functionalities, specifically core-shell Fe 3 O 4 @Au nanoparticles encapsulated near the outer surface of mesoporous silica (mSiO 2 ) nanoparticles, has been successfully synthesised and used to enhance the efficiency of a photosensitiser, namely Rose Bengal, in singlet oxygen generation. Fe 3 O 4 is responsible for the unusual location of the Fe 3 O 4 @Au nanoparticle, while the plasmonic shell acts as an optical antenna. In addition, the mesoporous silica matrix firmly encapsulates Rose Bengal by chemical bonding inside the pores, thus guaranteeing its photostability, and in turn making the nanosystem biocompatible. Moreover, the silica surface of the nanoplatform ensures further functionalisation on demand.

  16. Photocatalytic performance of highly amorphous titania-silica aerogels with mesopores: The adverse effect of the in situ adsorption of some organic substrates during photodegradation

    NASA Astrophysics Data System (ADS)

    Lázár, István; Kalmár, József; Peter, Anca; Szilágyi, Anett; Győri, Enikő; Ditrói, Tamás; Fábián, István

    2015-11-01

    Titania-silica composite aerogels with 16-29% Ti-content by the mass were synthesized by the sol-gel method from different Ti-precursors, and calcined at 500 °C. These aerogels are highly amorphous as no crystalline TiO2 phase can be detected in them by X-ray diffraction methods, and show the dominating presence of either mesopores or macropores. The incorporation of Ti into the silica structure is shown by the appearance of characteristic IR transitions of Sisbnd Osbnd Ti vibrations. The characteristic band-gap energies of the different aerogels are estimated to be between 3.6 and 3.9 eV from UV reflection spectra. Band-gap energy decreases with decreasing pore-size. When suspended in solution, even these highly amorphous aerogels accelerate the photodegradation of salicylic acid and methylene blue compared to simple photolysis. Kinetic experiments were conducted under illumination, and also in the dark to study the adsorption of the substrates onto the suspended aerogels. We assume that the fast in situ adsorption of the organic substrates mask the suspended aerogel particles from UV photons, which reduces the rate of photocatalysis. We managed to mathematically separate the parallel processes of photocatalysis and adsorption, and develop a simple kinetic model to describe the reaction system.

  17. Abnormal elastic modulus behavior in a crystalline-amorphous core-shell nanowire system.

    PubMed

    Lee, Jeong Hwan; Choi, Su Ji; Kwon, Ji Hwan; Van Lam, Do; Lee, Seung Mo; Kim, An Soon; Baik, Hion Suck; Ahn, Sang Jung; Hong, Seong Gu; Yun, Yong Ju; Kim, Young Heon

    2018-06-13

    We investigated the elastic modulus behavior of crystalline InAs/amorphous Al2O3 core-shell heterostructured nanowires with shell thicknesses varying between 10 and 90 nm by conducting in situ tensile tests inside a transmission electron microscope (TEM). Counterintuitively, the elastic modulus behaviors of InAs/Al2O3 core-shell nanowires differ greatly from those of bulk-scale composite materials, free from size effects. According to our results, the elastic modulus of InAs/Al2O3 core-shell nanowires increases, peaking at a shell thickness of 40 nm, and then decreases in the range of 50-90 nm. This abnormal behavior is attributed to the continuous decrease in the elastic modulus of the Al2O3 shell as the thickness increases, which is caused by changes in the atomic/electronic structure during the atomic layer deposition process and the relaxation of residual stress/strain in the shell transferred from the interfacial mismatch between the core and shell materials. A novel method for estimating the elastic modulus of the shell in a heterostructured core-shell system was suggested by considering these two effects, and the predictions from the suggested method coincided well with the experimental results. We also found that the former and latter effects account for 89% and 11% of the change in the elastic modulus of the shell. This study provides new insight by showing that the size dependency, which is caused by the inhomogeneity of the atomic/electronic structure and the residual stress/strain, must be considered to evaluate the mechanical properties of heterostructured nanowires.

  18. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, H.B.; Delanoy, G.A.; Thomas, D.M.

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; andmore » a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.« less

  19. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    West, H. B.; Delanoy, G. A.; Thomas, D. M.; Gerlach, D. C.; Chen, B.; Takahashi, P.; Thomas, D. M.

    1992-03-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of the mixing of at least two, and possibly three, source fluids. These source fluids were recognized as a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibriated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80 percent of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs, yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  20. Numerical modeling of mineral dissolution - precipitation kinetics integrating interfacial processes

    NASA Astrophysics Data System (ADS)

    Azaroual, M. M.

    2016-12-01

    The mechanisms of mineral dissolution/precipitation are complex and interdependent. Within a same rock, the geochemical modelling may have to manage kinetic reactions with high ratios between the most reactive minerals (i.e., carbonates, sulfate salts, etc.) and less reactive minerals (i.e., silica, alumino-silicates, etc.). These ratios (higher than 10+6) induce numerical instabilities for calculating mass and energy transfers between minerals and aqueous phases at the appropriate scales of time and space. The current scientific debate includes: i) changes (or not) of the mineral reactive surface with the progress of the dissolution/precipitation reactions; ii) energy jumps (discontinuity) in the thermodynamic affinity function of some dissolution/precipitation reactions and iii) integration of processes at the "mineral - aqueous solution" interfaces for alumino-silicates, silica and carbonates. In recent works dealing with the specific case of amorphous silica, measurements were performed on nano-metric cross-sections indicating the presence of surface layer between the bulk solution and the mineral. This thin layer is composed by amorphous silica and hydrated silica "permeable" to the transfer of water and ionic chemical constituents. The boundary/interface between the initial mineral and the silica layer is characterized by a high concentration jump of chemical products at the nanoscale and some specific interfacial dissolution/precipitation processes.In this study, the results of numerical simulations dealing with different mechanisms of silicate and carbonate dissolution/precipitation reactions and integrating interfacial processes will be discussed. The application of this approach to silica precipitation is based on laboratory experiments and it highlights the significant role of the "titration" surface induced by surface complexation reactions in the determination of the kinetics of precipitation.

  1. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes.

    PubMed

    Clark, Malcolm W; Despland, Laure M; Lake, Neal J; Yee, Lachlan H; Anstoetz, Manuela; Arif, Elisabeth; Parr, Jeffery F; Doumit, Philip

    2017-04-01

    Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia) where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α -quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.

  2. Shock-wave equation-of-state measurements in fused silica up to 1600 GPa

    DOE PAGES

    McCoy, C. A.; Gregor, M. C.; Polsin, D. N.; ...

    2016-06-02

    The properties of silica are important to geophysical and high-pressure equation of state research. The most prevalent crystalline form, α-quartz, has been extensively studied to TPa pressures. Recent experiments with amorphous silica, commonly referred to as fused silica, provided Hugoniot and reflectivity data up to 630 GPa using magnetically-driven aluminum impactors. This article presents measurements of the fused silica Hugoniot over the range from 200 to 1600 GPa using laser-driven shocks with a quartz standard. These results extend the measured Hugoniot of fused silica to higher pressures, but more importantly, in the 200-600 GPa range, the data are very goodmore » agreement with those obtained with a different driver and standard material. As a result, a new shock velocity-particle velocity relation is derived to fit the experimental data.« less

  3. Mineralization dynamics of metakaolin-based alkali-activated cements

    USGS Publications Warehouse

    Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler; Shoemaker, Richard K.; Srubar, Wil V.

    2017-01-01

    This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.

  4. Highly sensitive and stable Ag@SiO2 nanocubes for label-free SERS-photoluminescence detection of biomolecules

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Kha; Su, Wei-Nien; Chen, Ching-Hsiang; Rick, John; Hwang, Bing-Joe

    2017-03-01

    Surface-enhanced Raman scattering (SERS) and fluorescence microscopy are a widely used biological and chemical characterization techniques. However, the peak overlapping in multiplexed experiments and rapid photobleaching of fluorescent organic dyes is still the limitations. When compared to Ag nanocubes (NCs), higher SERS sensitivities can be obtained with thin shelled silica Ag@SiO2 NCs, in contrast metal-enhanced photoluminescence (MEPL) is only found with NCs that have thicker silica shells. A 'dual functionality' represented by the simultaneous strengthening of SERS and MEPL signals can be achieved by mixing Ag@SiO2 NCs, with a silica shell thickness of 1.5 nm and 4.4 nm. This approach allows both the Ag@SiO2 NCs SERS and MEPL sensitivities to be maintained at 90% after 12 weeks of storage. Based on the distinguished detection of creatinine and flavin adenine dinucleotide in the mixture, the integration of SERS and MEPL together on a stable single plasmonic nanoparticle platform offers an opportunity to enhance both biomarker detection sensitivity and specificity.

  5. The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate.

    PubMed

    Becker, Alexander; Ziegler, Andreas; Epple, Matthias

    2005-05-21

    The cuticules (shells) of the woodlice Porcellio scaber and Armadillidium vulgare were analysed with respect to their content of inorganic material. It was found that the cuticles consist of crystalline magnesium calcite, amorphous calcium carbonate (ACC), and amorphous calcium phosphate (ACP), besides small amounts of water and an organic matrix. It is concluded that the cuticle, which constitutes a mineralized protective organ, is chemically adapted to the biological requirements by this combination of different materials.

  6. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    DOE PAGES

    Jiang, Xingmao; Jiang, Ying-Bing; Liu, Nanguo; ...

    2011-01-01

    Ceriumore » m (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0 × 10 − 14  m 2 s for Ce 3+ compared to 2.5 × 10 − 13  m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.« less

  7. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors.

    PubMed

    Mao, Hanping; Liu, Zhongshou

    2018-01-15

    In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe 3 O 4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N 2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Thin fused silica shells for high-resolution and large collecting area x-ray telescopes (like Lynx/XRS)

    NASA Astrophysics Data System (ADS)

    Civitani, M. M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Citterio, O.; Ghigo, M.; Pareschi, G.; Parodi, G.; Incorvaia, S.

    2017-09-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (< 1 arc second Half Energy Width, HEW), but with a much larger throughput (2.5 m2 effective area @1 keV), represents a compelling request by the scientific community. To this end the Lynx/XRS mission is being studied in USA, with the participation of international partners. In order to figure out the challenging technological task of the mirror fabrication, different approaches are considered, based on monolithic and segmented shells. Starting from the experience done on the glass prototypal shell realized in the past years, the direct polishing of thin (2 mm thick) fused silica monolithic shells is being investigated as a possible solution. A temporary stiffening structure is designed to support the shell during the figuring and polishing operations and to manage the handling up to its integration in the telescope structure. After the grinding and the polishing phases, in order to achieve the required surface accuracy, a final ion beam figuring correction is foreseen. In this paper, we present the technological process and the results achieved so far on a prototypal shell under development.

  9. Crystallized alkali-silica gel in concrete from the late 1890s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Karl; Gress, David; Van Dam, Tom

    The Elon Farnsworth Battery, a concrete structure completed in 1898, is in an advanced state of disrepair. To investigate the potential for rehabilitation, cores were extracted from the battery. Petrographic examination revealed abundant deposits of alkali silica reaction products in cracks associated with the quartz rich metasedimentary coarse aggregate. The products of the alkali silica reaction are variable in composition and morphology, including both amorphous and crystalline phases. The crystalline alkali silica reaction products are characterized by quantitative X-ray energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). The broad extent of the reactivity is likely due to elevated alkali levelsmore » in the cements used.« less

  10. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  11. Silica problem in the design of geothermal power plants

    NASA Astrophysics Data System (ADS)

    Dipippo, R.

    1985-02-01

    The silica problem is examined from the perspective of the power plant designer to develop a procedure to enable a quick estimate to be made of the potential seriousness of the silica deposition problem for a wide variety of resources and for selected types of power plant. The method employs correlations for the equilibrium solubilities of quartz and amorphous silica and for the saturated liquid enthalpy and the latent heat of water substance. Single- and double-flash plants optimized for highest thermodynamic efficiency are considered. Binary-type plants are included generically without mention of cycle specifics. The results are presented both graphically and in tabular form, and the governing equations will be given in an easily-programmable form.

  12. Preparation and characterization of oriented silica nanowires

    NASA Astrophysics Data System (ADS)

    Sun, S. H.; Meng, G. W.; Zhang, M. G.; Tian, Y. T.; Xie, T.; Zhang, L. D.

    2003-11-01

    Large-scale of oriented closely packed silica nanowire bunches have been synthesized by using large size (1-10 μm in diameter), low melting point tin droplets as catalyst on silicon wafers at 980 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show that the amorphous silica nanowires have lengths of 50-100 μm and diameters of 100-200 nm. Unlike any previous observed results using high melting point metal (such as gold and iron) as catalyst, the Sn catalyst growth exhibits many interesting phenomena. Each Sn ball can simultaneously catalyze the growth of many silica nanowires, which is quite different from the conventional vapor-liquid-solid process.

  13. Towards better light harvesting capability for DSSC (dye sensitized solar cells) through addition of Au@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Fadhilah, Nur; Alhadi, Emha Riyadhul Jinan; Risanti, Doty Dewi

    2018-04-01

    The Au nanoparticles as core can increase the light harvesting due to the strong near-field effect LSPR (Localized Surface Plasmon Resonance), effectively minimized the electron recombination process and also can improve the optical absorption of the dye sensitized. Au@SiO2 core-shell nanoparticles were prepared using SiO2 extracted from Sidoarjo mud volcano. In this work investigated the influence of pH solution and silica shell volume fraction in Au@SiO2 nanoparticles core-shell structure on DSSC loaded with Ru-based dye. From XRD characterization it was found that core-shell contains SiO2, Au, γAl2O3 and traces NaCl. UV-Vis absorption spectra of core-shell showed the position of the surface plasmon AuNP band in the range of 500-600 nm. The Au@SiO2 core-shell with volume fraction of 30ml silica has the highest peak absorbance. The enhanced light absorption is primarily attributed to the LSPR effect of the Au core. Our results on incident photon-to-current conversion efficiency indicates that the presence of SiO2 depending on its volume fraction tends to shift to longer wavelength.

  14. Raman Scattering Studies on Ag Nanocluster Composites Formed by Ion Implantation into Silica

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Jiang, Chang Zhong; Fu, De Jun; Fu, Qiang

    2005-12-01

    Highly-pure amorphous silica slides were implanted by 200 keV Ag ions with doses ranged from 1× 1016 to 2× 1017 ions/cm2. Optical absorption spectra show that Ag nanoclusters with various sizes have been formed. Enhancement of surface enhanced Raman scattering signal by a factor up to about 103 was obtained by changing the Ag particle size. The silica was damaged by the implanted Ag ions, and the large compression stress on the silica leads to the shift of Raman peaks. New bands at 1368 and 1586 cm-1, which are attributed to the vibration of Ag-O bond and O2 molecules in silica, are observed in the samples with doses higher than 1× 1017 ions/cm2.

  15. Amorphous silica as a versatile supermolecular ligand for Ni(II) amine complexes: toward interfacial molecular recognition.

    PubMed

    Boujday, Souhir; Lambert, Jean-François; Che, Michel

    2004-07-19

    Selective adsorption of Ni(II) amine complexes used as precursors for supported catalysts was studied on amorphous silica surfaces. The nature of the adsorption sites was probed by [Ni(en)(dien) (H2O)]2+, [Ni(en)2(H2O)2]2+, and [Ni(dien)(H2O)3]2+ (en = ethylenediamine, dien = diethylenetriamine), which respectively contain one, two, and three labile aqua ligands. The silica surface acts as a mono- or polydentate ligand that can substitute the aqua ligands of the Ni(II) complexes in an inner-sphere adsorption mechanism. Room-temperature adsorption isotherms indicate that each nickel complex selects a limited number of adsorption sites; different sites are recognised by the three complexes, even though they have the same charge and comparable sizes. Several spectroscopic techniques (UV/Vis/NIR, EXAFS, and 29Si NMR) were used to confirm the selective character of the interaction of Ni(II) amine complexes with the silica surface. The specific sites include both silanol/silanolate groups in the same number as the original labile ligands and other surface groups that probably act as hydrogen-bond acceptors. These two types of groups cooperate to result in interfacial molecular-recognition phenomena with interactional complementarity.

  16. Picosecond amorphization of SiO2 stishovite under tension

    PubMed Central

    Misawa, Masaaki; Ryuo, Emina; Yoshida, Kimiko; Kalia, Rajiv K.; Nakano, Aiichiro; Nishiyama, Norimasa; Shimojo, Fuyuki; Vashishta, Priya; Wakai, Fumihiro

    2017-01-01

    It is extremely difficult to realize two conflicting properties—high hardness and toughness—in one material. Nano-polycrystalline stishovite, recently synthesized from Earth-abundant silica glass, proved to be a super-hard, ultra-tough material, which could provide sustainable supply of high-performance ceramics. Our quantum molecular dynamics simulations show that stishovite amorphizes rapidly on the order of picosecond under tension in front of a crack tip. We find a displacive amorphization mechanism that only involves short-distance collective motions of atoms, thereby facilitating the rapid transformation. The two-step amorphization pathway involves an intermediate state akin to experimentally suggested “high-density glass polymorphs” before eventually transforming to normal glass. The rapid amorphization can catch up with, screen, and self-heal a fast-moving crack. This new concept of fast amorphization toughening likely operates in other pressure-synthesized hard solids. PMID:28508056

  17. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current

    PubMed Central

    Assmy, Philipp; Smetacek, Victor; Montresor, Marina; Klaas, Christine; Henjes, Joachim; Strass, Volker H.; Arrieta, Jesús M.; Bathmann, Ulrich; Berg, Gry M.; Breitbarth, Eike; Cisewski, Boris; Friedrichs, Lars; Fuchs, Nike; Herndl, Gerhard J.; Jansen, Sandra; Krägefsky, Sören; Latasa, Mikel; Peeken, Ilka; Röttgers, Rüdiger; Scharek, Renate; Schüller, Susanne E.; Steigenberger, Sebastian; Webb, Adrian; Wolf-Gladrow, Dieter

    2013-01-01

    Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux. PMID:24248337

  18. Fabrication of superhydrophobic fluorinated silica nanoparticles for multifunctional liquid marbles

    NASA Astrophysics Data System (ADS)

    Shang, Qianqian; Hu, Lihong; Hu, Yun; Liu, Chengguo; Zhou, Yonghong

    2018-01-01

    A facile one-pot method for the fabrication of superhydrophobic fluorinated silica nanoparticles is reported. Fluorinated aggregated silica (A-SiO2/FAS) nanoparticles were synthesized by controlling the nanoparticles assembly, in situ fixation and overgrowth of particle seeds with the assist of tetraethoxysilane (TEOS) in ethanol/water solution and then modification with fluoroalkylsilane (FAS) molecules. Such kind of A-SiO2/FAS nanoparticles showed superhydrophobicity and was not wetted by water, thus it could be served as the encapsulating shells to manipulate liquid droplets. Liquid marbles fabricated from A-SiO2/FAS nanoparticles were used for ammonia gas sensing or emitting by taking advantage of the porosity and superhydrophobicity of the liquid marble shells. In addition, the posibility of A-SiO2/FAS-based liquid marbles as microreactor for dopamine polymerization also was explored.

  19. Nano-scale observations of interface between lichen and basaltic rock: Pseudomorphic growth of amorphous silica on augite

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Kyono, A.; Kebukawa, Y.; Takagi, S.

    2017-12-01

    Recently, lichens as the earliest colonizers of terrestrial habitats are recognized to accelerate the mineral degradation at the interface between lichens and surface rocks. Much interest has been therefore devoted in recent years to the weathering induced by the lichen colonization. Here, we report nano-scale observations of the interface between lichens and basaltic rock by TEM and STXM techniques. Some samples of basaltic rocks totally covered by lichens were collected from the 1986 lava flows on the northwest part of Izu-Oshima volcano, Japan. To prepare specimens for the nano-scale observation, we utilized the focused ion beam (FIB) system. The microstructure and local chemistry of the specimens were thoroughly investigated by TEM equipped with energy-dispersive X-ray spectroscopy (EDX). Chemical components and chemical heterogeneity at the interface were observed by scanning transmission X-ray microscopy (STXM) at Advanced Light Source branch line 5.3.2.2. The collected rocks were classified into the augite-pigeonite-bronzite basalt including 6 to 8% plagioclase phenocrysts. The lichens adhering to the rocks were mainly Stereocaulon vesuvianum, fruticose lichen, which are widespread over the study area. The metabolites of the Stereocaulon vesuvianum exhibited a mean pH of 4.5 and dominance by acids. The STEM-EDX observations revealed that the interface between augite and the lichen was completely covered with amorphous silica multilayer with a thickness of less than 1 µm. Ca L-edge XANES spectra of the augite showed that the energy profile of the absorption edge at 349 eV was varied with the depth from the surface, indicating that the M2 site coordination accommodating Ca2+ undergoes significant change in shape as a function of distance from the surface. This behavior results from the fact that the M2 site is more distorted and more flexible in the C2/c clinopyroxene phase. Taking into consideration that the S. vesuvianum can produce acidic organic compounds during metabolism, the amorphous silica multilayers observed at the interface were produced by mineral dissolution induced by the lichen, and formed as a pseudomorphic replacement of augite by amorphous silica.

  20. Synthesis and characterization of hematite pigment obtained from a steel waste industry.

    PubMed

    Prim, S R; Folgueras, M V; de Lima, M A; Hotza, D

    2011-09-15

    Pigments that meet environmental and technology requirements are the focus of the research in the ceramic sector. This study focuses on the synthesis of ceramic pigment by encapsulation of hematite in crystalline and amorphous silica matrix. Iron oxide from a metal sheet rolling process was used as chromophore. A different content of hematite and silica was homogenized by conventional and high energy milling. The powders obtained after calcinations between 1050 and 1200 °C for 2h were characterized by X-ray diffraction and SEM analysis. The pigments were applied to ceramic enamel and porcelain body. The effect of pigment was measured by comparing L*a*b* values of the heated samples. Results showed that the color developed is influenced by variables such as oxide content employed, conditions of milling and processing temperature. The results showed that the use of pigment developed does not interfere in microstructural characteristics of pigmented material. The best hue was obtained from samples with 15 wt% of chromophore, heated at 1200 °C in amorphous silica matrix. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    PubMed

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  2. Physical processes of quartz amorphization due to friction

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Muto, J.; Nagahama, H.; Miura, T.; Arakawa, I.; Shimizu, I.

    2011-12-01

    Solid state amorphization of minerals occurs in indentations, in shock experiments, and in high pressure metamorphic quartz rock. A production of amorphous material is also reported in experimentally created silicate gouges (Yund et al., 1990), and in San Andreas Fault core samples (Janssen et al., 2010). Rotary-shear friction experiments of quartz rocks imply dynamic weakening at seismic rates (Di Toro et al., 2004). These experiments have suggested that weakening is caused by formation and thixotropic behavior of a silica gel layer which comprises of very fine particles of hydrated amorphous silica on fault gouges (Goldsby & Tullis, 2002; Hayashi & Tsutsumi, 2010). Therefore, physical processes of amorphization are important to better understand weakening of quartz bearing rocks. In this study, we conducted a pin-on-disk friction experiment to investigate details of quartz amorphization (Muto et al, 2007). Disks were made of single crystals of synthetic and Brazilian quartz. The normal load F and sliding velocity V were ranged from 0.01 N to 1 N and from 0.01 m/s to 2.6 m/s, respectively. The friction was conducted using quartz and diamond pins (curvature radii of 0.2 ~ 3 mm) to large displacements (> 1000 m) under controlled atmosphere. We analyzed experiment samples by Raman spectroscopy and FT-IR. Raman spectroscopy (excitation wavelength 532.1 nm) provides lattice vibration modes, and was used to investigate the degree of amorphization of samples. Raman spectra of friction tracks on the disk show clear bands at wavenumbers of 126, 204, 356, 394, and 464 cm-1, characteristic of intact α-quartz. Remarkably, in experiments using diamond pins (F = 0.8 N, normal stress σr calculated by contact area = 293 ~ 440 MPa, V = 0.12 ~ 0.23 m/s), the bands at 204 and 464 cm-1 gradually broaden to reveal shoulders on the higher-wavenumber sides of these peaks. Especially, two distinguished peaks at 490 and 515 cm-1 and a weak broad peak at 606 cm-1 appear sporadically on the track after the slip distance of 43 m. The bands at 490 and 606 cm-1 can be assigned to the symmetric stretching of four-membered Si-O ring (D1 band) and planar three-membered Si-O ring (D2 band) in amorphous silica, respectively. The peak at 515 cm-1 corresponds to the strongest coesite A1 mode arising from four-membered Si-O ring structure. On the other hand, the bands at 464 cm-1 broaden to reveal a shoulder adjacent to the main peak in experiments using quartz pins (F = 1 N, σr = 1 MPa, V = 0.01 ~ 2.6 m/s) after a large displacement (>1000m). These results indicate that quartz change intermediate range structure of SiO2 network during friction, and four or three-membered Si-O rings gradually increase in six-membered quartz. The results of FT-IR analyses on friction tracks showed a broad peak at 3000 -3600 cm-1 which indicates the -OH symmetric stretching band of molecular H2O. It shows that hydration of quartz on friction tracks occur due to friction. The results of Raman spectroscopy and FT-IR imply that Si-O-Si bridging of strained rings preferentially react with water to form hydrated amorphous silica layer on friction surfaces, which is likely to occur weakening.

  3. New Silica Magnetite Sorbent: The Influence of Variations of Sodium Silicate Concentrations on Silica Magnetite Character

    NASA Astrophysics Data System (ADS)

    Azmiyawati, C.; Pratiwi, P. I.; Darmawan, A.

    2018-04-01

    The adsorption capacity of an adsorbent is determined by the adsorbent and the adsorbate properties. The character of the adsorbent will play a major role in its ability to adsorb the corresponding adsorbate. Therefore, in this study we looked at the effects of variations of sodium silicate concentrations on the resulting magnetite silica adsorbent properties. The application of silica coating on the magnetite was carried out through a sol-gel process with sodium silicate and HCl precursors. Based on the characterization data obtained, it was found that the silica coating on magnetite can increase the resistance to acid leaching, increase the particle size, but decrease the magnetic properties of the magnetite. Based on Gas Sorption Analyzer (GSA) and X-ray Difraction (XRD) data it can successively be determined that increase in concentration of sodium silicate will increase the surface area and amorphous structure of the Silica Magnetie.

  4. Poisson's ratio and the densification of glass under high pressure.

    PubMed

    Rouxel, T; Ji, H; Hammouda, T; Moréac, A

    2008-06-06

    Because of a relatively low atomic packing density, (Cg) glasses experience significant densification under high hydrostatic pressure. Poisson's ratio (nu) is correlated to Cg and typically varies from 0.15 for glasses with low Cg such as amorphous silica to 0.38 for close-packed atomic networks such as in bulk metallic glasses. Pressure experiments were conducted up to 25 GPa at 293 K on silica, soda-lime-silica, chalcogenide, and bulk metallic glasses. We show from these high-pressure data that there is a direct correlation between nu and the maximum post-decompression density change.

  5. Chemical interactions of aluminum with aqueous silica at 25 degrees Celsius

    USGS Publications Warehouse

    Hem, John David; Roberson, C.E.; Lind, Carol J.; Polxer, W.L.

    1973-01-01

    Solutions containing from 10 -5 to 10 -2 moles per liter of aluminum and dissolved silica in various ratios were aged at pH levels between 4 and 10 at 25?C. A colloidal amorphous product having the composition of halloysite was produced in most solutions. It had a consistent and reversible equilibrium solubility equivalent to a standard free energy of formation of -8974 ? 1.0 kcal per mole for the formula A12Si2O5(OH)4. Some aging times were longer than 4 years, but most solutions gave consistent solubilities after only a few months of aging. Where silica concentrations were below about 10 -4 molar, microcrystalline gibbsite was formed below pH 6.0 and crystalline bayerite above pH 7.0, but only after much longer aging than was required for crystallization in silica-free solutions. Electron micrographs and diffraction patterns of the synthesized material indicate some crystallinity in the aluminosilicate, but no X-ray diffraction patterns could be obtained even in the material aged 4 years. Solubility relationships for solutions containing fluoride as well as silica and aluminum are explainable by using cryolite stabilities determined in previous work. Aluminum contents of 51 samples of water analyzed for other purposes are in reasonable agreement with the assumption of equilibrium with amorphous clay mineral species similar to the material synthesized in this work. Solubility calculations are summarized graphically for solutions of ionic strength of 0.01 and 0.10.

  6. Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery.

    PubMed

    Niedermayer, Stefan; Weiss, Veronika; Herrmann, Annika; Schmidt, Alexandra; Datz, Stefan; Müller, Katharina; Wagner, Ernst; Bein, Thomas; Bräuchle, Christoph

    2015-05-07

    A highly stable modular platform, based on the sequential covalent attachment of different functionalities to the surface of core-shell mesoporous silica nanoparticles (MSNs) for targeted drug delivery is presented. A reversible pH-responsive cap system based on covalently attached poly(2-vinylpyridine) (PVP) was developed as drug release mechanism. Our platform offers (i) tuneable interactions and release kinetics with the cargo drug in the mesopores based on chemically orthogonal core-shell design, (ii) an extremely robust and reversible closure and release mechanism based on endosomal acidification of the covalently attached PVP polymer block, (iii) high colloidal stability due to a covalently coupled PEG shell, and (iv) the ability to covalently attach a wide variety of dyes, targeting ligands and other functionalities at the outer periphery of the PEG shell. The functionality of the system was demonstrated in several cell studies, showing pH-triggered release in the endosome, light-triggered endosomal escape with an on-board photosensitizer, and efficient folic acid-based cell targeting.

  7. A Magnetic-Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclast-Targeted Inhibition and Heterogeneous Nanocatalysis.

    PubMed

    Wan, Li; Song, Hongyuan; Chen, Xiao; Zhang, Yu; Yue, Qin; Pan, Panpan; Su, Jiacan; Elzatahry, Ahmed A; Deng, Yonghui

    2018-06-01

    1D core-shell magnetic materials with mesopores in shell are highly desired for biocatalysis, magnetic bioseparation, and bioenrichment and biosensing because of their unique microstructure and morphology. In this study, 1D magnetic mesoporous silica nanochains (Fe 3 O 4 @nSiO 2 @mSiO 2 nanochain, Magn-MSNCs named as FDUcs-17C) are facilely synthesized via a novel magnetic-field-guided interface coassembly approach in two steps. Fe 3 O 4 particles are coated with nonporous silica in a magnetic field to form 1D Fe 3 O 4 @nSiO 2 nanochains. A further interface coassembly of cetyltrimethylammonium bromide and silica source in water/n-hexane biliquid system leads to 1D Magn-MSNCs with core-shell-shell structure, uniform diameter (≈310 nm), large and perpendicular mesopores (7.3 nm), high surface area (317 m 2 g -1 ), and high magnetization (34.9 emu g -1 ). Under a rotating magnetic field, the nanochains with loaded zoledronate (a medication for treating bone diseases) in the mesopores, show an interesting suppression effect of osteoclasts differentiation, due to their 1D nanostructure that provides a shearing force in dynamic magnetic field to induce sufficient and effective reactions in cells. Moreover, by loading Au nanoparticles in the mesopores, the 1D Fe 3 O 4 @nSiO 2 @mSiO 2 -Au nanochains can service as a catalytically active magnetic nanostirrer for hydrogenation of 4-nitrophenol with high catalytic performance and good magnetic recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Flake-shell capsules: adjustable inorganic structures.

    PubMed

    Ji, Qingmin; Guo, Chunyan; Yu, Xiaoyan; Ochs, Christopher J; Hill, Jonathan P; Caruso, Frank; Nakazawa, Hiromoto; Ariga, Katsuhiko

    2012-08-06

    Structure-adjustable capsules are fabricated from inorganic components by using a self-template dissolution-regrowth mechanism to give flake-shell silica microcapsules. The capsules shrink under thermal stimulus and their structures can be adjusted by treatment at different pH values. Tuning of shell pore diameters leads to tailored drug release over prolonged periods. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Irradiation effect of low-energy ion on polyurethane nanocoating containing metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Jaya; Nigam, Subhasha; Sinha, Surbhi; Sikarwar, B. S.; Bhattacharya, Arpita

    2017-12-01

    Irradiation effect of low-energy ion beam has been investigated on nanocoating developed with silica, titania and silica-titania core-shell nanoparticles embedded in an organic binder for nanopaint application. In this work, we have taken polyurethane as a model organic binder. Silica nanoparticles have been prepared through sol-gel synthesis with a particle size of 85 nm. Titania and core-shell nanoparticles have been prepared through both sol-gel and peptization process. Particle sizes obtained were 107 nm for titania and 240 nm for core-shell nanoparticles prepared through sol-gel process and 75 nm for TiO2 and 144 nm for core-shell nanoparticles prepared through peptization process. The coating formulations were developed with the above nanoparticles individually and nanoparticle concentration was varied from 1 to 6 wt% and the best performance in terms of hydrophobicity was obtained with 4 wt % of the nanoparticles in polyurethane coating formulation. All the coating formulations prepared were applied on a glass substrate and dried at 100°C. The dry film thickness obtained was around 100 µm in each case. These films dried on glass substrate were irradiated by nitrogen and argon ion beam with energy of 26 keV at fluences of 1014 to 1016 ions/cm2. The anti-algal property of the irradiated samples was improved and hydrophobicity was reduced.

  10. Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM Microcapsules.

    PubMed

    Guo, Jia; Yang, Wuli; Deng, Yonghui; Wang, Changchun; Fu, Shoukuan

    2005-07-01

    We present a new approach for the fabrication of thermoresponsive polymer microcapsules with mobile magnetic cores that undergo a volume phase-transition upon changing the temperature and are collected under an external magnetic field. We have prepared organic/inorganic composite microspheres with a well-defined core-shell structure that are composed of a crosslinked poly(N-isopropylacrylamide) (PNIPAM) shell and silica cores dotted centrally by magnetite nanoparticles. Since the infiltration of template-decomposed products is dependent on the permeability of PNIPAM shells triggered by changes of exterior temperature, the silica layer sandwiched between the magnetic core and the PNIPAM shell was quantitatively removed to generate PNIPAM microcapsules with mobile magnetic cores by treatment with aqueous NaOH solution. For development of the desired multifunctional microcapsules, modification of the unetched silica surface interiors can be realized by treatment with a silane coupling agent containing functional groups that can easily bind to catalysts, enzymes, or labeling molecules. Herein, fluorescein isothiocyanate (FITC), which is a common organic dye, is attached to the insides of the mobile magnetic cores to give PNIPAM microcapsules with FITC-labeled magnetic cores. In this system, it can be expected that an extension of the functionalization of the cavity properties of smart polymer microcapsules is to immobilize other target molecules onto the mobile cores in order to introduce other desired functions in the hollow cage.

  11. Formation of grafted surface layers on silicon dioxide particles and their investigation by means of thermoprogrammed oxidation

    NASA Astrophysics Data System (ADS)

    Aleksandrova, E. O.; Novichkov, R. V.; Olenin, A. Yu.; Zuev, B. K.

    2017-03-01

    Silica nanoparticles are obtained according to the Stober-Fink-Bohn method, and their surfaces are chemically modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane. It is estimated that sols of porous silica nanoparticles (average sizes, 50-200 nm) form during primary chemical process; the average size of the particles can be increased to 400-500 nm by consecutive growth. Oxythermography (thermoprogrammed oxidation) measurements reveal a stepped dependence between the content of organic substance of nanoparticles and the duration of chemical modification reaction exists. It is concluded that this could be due to the formation of dense shell (or shells) as a result of sols aging between the cycles of growth; such shells impose diffusive restrictions when molecules penetrate into the pores of the internal volume of the particles.

  12. Preparation and Characterization of Hydroxyapatite-Silica Composite Nanopowders

    NASA Astrophysics Data System (ADS)

    Latifi, S. M.; Fathi, M. H.; Golozar, M. A.

    One of the most important objectives in the field of biomaterials science and engineering is development of new materials as bone substitutes. Silica (SiO2) has an important role in the biomineralization and biological responses. The aim of this research was to prepare and characterize hydroxyapatite-silica (HA-SiO2) composite nanopowder with different content of silica. Hydroxyapatite-silica composite nanopowders with 20 and 40 wt% silica were prepared using a sol-gel method at 600°C with phosphoric pentoxide and calcium nitrate tetrahydrate as a source of hydroxyapatite; also, tetraethylorthosilicate and methyltriethoxisilane as a source of silica. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used for characterization and evaluation of the products. The results indicated the presence of nanocrystalline hydroxyapatite phase beside amorphous silica phase in prepared composite nanopowders. Moreover, by increasing the content of silica in composite nanopowders, the crystallinity will be decreased,and the ability of the product as a bone substitute material might be controlled by changing the content of the ingredients and subsequently its structure.

  13. Refractory ceramic has wide usage, low fabrication cost

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Particulate, fused amorphous silica is formed into complex shapes by casting in plaster molds. High temperature firing is not required. This ceramic is resistant to thermal shock and exhibits good strength properties.

  14. Synthesis and thermal behavior of tin-based alloy (Sn-Ag-Cu) nanoparticles

    NASA Astrophysics Data System (ADS)

    Roshanghias, Ali; Yakymovych, Andriy; Bernardi, Johannes; Ipser, Herbert

    2015-03-01

    The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles.The prominent melting point depression of nanoparticles has been the subject of a considerable amount of research. For their promising applications in electronics, tin-based nano-alloys such as near-eutectic Sn-Ag-Cu (SAC) alloys have been synthesized via various techniques. However, due to issues such as particle aggregation and oxidation or introduced impurities, the application of these nano-size particles has been confined or aborted. For instance, thermal investigations by DTA/DSC in a large number of studies revealed exothermic peaks in the range of 240-500 °C, i.e. above the melting point of SAC nanoparticles, with different and quite controversial explanations for this unclear phenomenon. This represents a considerable drawback for the application of nanoparticles. Correspondingly, in the current study, the thermal stability of SAC nanoparticles has been investigated via electron microscopy, XRD, FTIR, and DSC/TG analysis. It was found that the nanoparticles consist mainly of a metallic β-Sn core and an amorphous tin hydroxide shell structure. The SnO crystalline phase formation from this amorphous shell has been associated with the exothermic peaks on the first heating cycle of the nanoparticles, followed by a disproportionation reaction into metallic Sn and SnO2.The results also revealed that the surfactant and reducing agent cannot only affect the size and size distribution of the nanoparticles, they might also alter the ratio between the amorphous shell and the crystalline core in the structure of particles. Dedicated to Prof. Brigitte Weiss.

  15. Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method.

    PubMed

    Hosono, Eiji; Wang, Yonggang; Kida, Noriyuki; Enomoto, Masaya; Kojima, Norimichi; Okubo, Masashi; Matsuda, Hirofumi; Saito, Yoshiyasu; Kudo, Tetsuichi; Honma, Itaru; Zhou, Haoshen

    2010-01-01

    A triaxial LiFePO4 nanowire with a multi wall carbon nanotube (VGCF:Vapor-grown carbon fiber) core column and an outer shell of amorphous carbon was successfully synthesized through the electrospinning method. The carbon nanotube core oriented in the direction of the wire played an important role in the conduction of electrons during the charge-discharge process, whereas the outer amorphous carbon shell suppressed the oxidation of Fe2+. An electrode with uniformly dispersed carbon and active materials was easily fabricated via a single process by heating after the electrospinning method is applied. Mossbauer spectroscopy for the nanowire showed a broadening of the line width, indicating a disordered coordination environment of the Fe ion near the surface. The electrospinning method was proven to be suitable for the fabrication of a triaxial nanostructure.

  16. Local Crystalline Structure in an Amorphous Protein Dense Phase

    PubMed Central

    Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.

    2015-01-01

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663

  17. Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles.

    PubMed

    Kong, Xianming; Squire, Kenny; Li, Erwen; LeDuff, Paul; Rorrer, Gregory L; Tang, Suning; Chen, Bin; McKay, Christopher P; Navarro-Gonzalez, Rafael; Wang, Alan X

    2016-12-01

    In this paper, we described a new type of bioenabled nano-plasmonic sensors based on diatom photonic crystal biosilica with in-situ growth silver nanoparticles and demonstrated label-free chemical and biological sensing based on surface-enhanced Raman scattering (SERs) from complex samples. Diatoms are photosynthetic marine micro-organisms that create their own skeletal shells of hydrated amorphous silica, called frustules, which possess photonic crystal-like hierarchical micro- & nanoscale periodic pores. Our research shows that such hybrid plasmonic-biosilica nanostructures formed by cost-effective and eco-friendly bottom-up processes can achieve ultra-high limit of detection for medical applications, food sensing, water/air quality monitoring and geological/space research. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatom frustules and the localized surface plasmons of the silver nanoparticles. Additionally, the nanoporous, ultra-hydrophilic diatom biosilica with large surface-to-volume ratio can concentrate more analyte molecules to the surface of the SERS substrates, which can help to detect biomolecules that cannot be easily adsorbed by metallic nanoparticles.

  18. Sol–gel method as a way of carbonyl iron powder surface modification for interaction improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Małecki, P., E-mail: pawel.malecki@pwr.edu.pl; Kolman, K.; Pigłowski, J.

    2015-03-15

    This article presents a method for modification of carbonyl iron particles’ surface (CIP), (d{sub 50}=4–9 µm) by silica coatings obtained using the sol–gel method. Reaction parameters were determined to obtain dry magnetic powder with homogeneous silica coatings without further processing and without any by-product in the solid or liquid phase. This approach is new among the commonly used methods of silica coating of iron particles. No attempt has been made to cover a carbonyl iron surface by silica in a waste-free method, up to date. In the current work two different silica core/shell structures were made by the sol–gel process,more » based on different silica precursors: tetraethoxy-silane (TEOS) and tetramethoxy-silane (TMOS). The dependence between the synthesis procedure and thickness of silica shell covering carbonyl iron particles has been described. Surface morphology of the modified magnetic particles and the coating thickness were characterized with the use of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Determination of the physicochemical structure of the obtained materials was performed by the energy-dispersive X-ray spectroscope (EDS), and the infrared technique (IR). The surface composition was analyzed using X-ray photoelectron spectroscopy (XPS). Additionally, distribution of particle size was measured using light microscopy. The new, efficient process of covering micro-size CIP with a nanometric silica layer was shown. Results of a performed analysis confirm the effectiveness of the presented method. - Highlights: • Proper covering CIP by sol–gel silica layer avoids agglomeration. • A new solid waste-free method of CIP coating is proposed. • Examination of the properties of modified CIP in depends on washing process. • Coatings on CIP particles doesn’t change the magnetic properties of particles.« less

  19. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  20. A Facile Strategy for In Situ Core-Template-Functionalizing Siliceous Hollow Nanospheres for Guest Species Entrapment

    PubMed Central

    2009-01-01

    The shell wall-functionalized siliceous hollow nanospheres (SHNs) with functional molecules represent an important class of nanocarriers for a rich range of potential applications. Herein, a self-templated approach has been developed for the synthesis of in situ functionalized SHNs, in which the biocompatible long-chain polycarboxylates (i.e., polyacrylate, polyaspartate, gelatin) provide the framework for silica precursor deposition by simply controlling chain conformation with divalent metal ions (i.e., Ca2+, Sr2+), without the intervention of any external templates. Metal ions play crucial roles in the formation of organic vesicle templates by modulating the long chains of polymers and preventing them from separation by washing process. We also show that, by in situ functionalizing the shell wall of SHNs, it is capable of entrapping nearly an eightfold quantity of vitamin Bc in comparison to the bare bulk silica nanospheres. These results confirm the feasibility of guest species entrapment in the functionalized shell wall, and SHNs are effective carriers of guest (bio-)molecules potentially for a variety of biomedical applications. By rationally choosing the functional (self-templating) molecules, this concept may represent a general strategy for the production of functionalized silica hollow structures. PMID:20596316

  1. Polyamorphism in tetrahedral substances: Similarities between silicon and ice

    NASA Astrophysics Data System (ADS)

    Garcez, K. M. S.; Antonelli, A.

    2015-07-01

    Tetrahedral substances, such as silicon, water, germanium, and silica, share various unusual phase behaviors. Among them, the so-called polyamorphism, i.e., the existence of more than one amorphous form, has been intensively investigated in the last three decades. In this work, we study the metastable relations between amorphous states of silicon in a wide range of pressures, using Monte Carlo simulations. Our results indicate that the two amorphous forms of silicon at high pressures, the high density amorphous (HDA) and the very high density amorphous (VHDA), can be decompressed from high pressure (˜20 GPa) down to the tensile regime, where both convert into the same low density amorphous. Such behavior is also observed in ice. While at high pressure (˜20 GPa), HDA is less stable than VHDA, at the pressure of 10 GPa both forms exhibit similar stability. On the other hand, at much lower pressure (˜5 GPa), HDA and VHDA are no longer the most stable forms, and, upon isobaric annealing, an even less dense form of amorphous silicon emerges, the expanded high density amorphous, again in close similarity to what occurs in ice.

  2. Highly Sensitive FRET-Based Fluorescence Immunoassay for Detecting of Aflatoxin B1 Using Magnetic/Silica Core-Shell as a Signal Intensifier.

    PubMed

    Kalarestaghi, Alireza; Bayat, Mansour; Hashemi, Seyed Jamal; Razavilar, Vadood

    2015-09-01

    Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from Cd/Te quantum dots (antiaflatoxin B1 antibody immobilized on the surface of Cd/Te quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The specific immune-reaction between the anti-aflatoxin B1 antibody on the QDs and the labeledaflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photo-excitation of the QDs. Using magnetic/silica core shell to intensify the obtained signal is the novelty of this study. Cd/Te QDs were synthesized by the simultaneous reduction of cadmium chloride and tellurium in the presence of sodium borohydride under nitrogen atmosphere. Magnetic nanoparticles were synthesized using FeSO 4 and FeCl 3 (1:2 molar ratio) and ammonia as an oxidizing agent under nitrogen atmosphere. The prepared magnetic nanoparticles shelled by silica using tetraethoxysilane in the presence of ammonia. Nanoparticles synthesis and monodispersity confirmed by TEM. Immobilization of Cd/Te QDs to antibodies and labeling of aflatoxin B1-albumin by Rho 123 were performed by EDC/NHS reaction in reaction mixture buffer, pH 6, at room temperature. By using the magnetic/silica core shell sensitivity of the system changed from 2×10 -11 in our previous study to 2×10 -12 in this work. The feasibility of the method established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the decreased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spiked samples, over the range of 0.01-0.06 μmol.mL -1 . This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require multiple separation steps and excessive washing.

  3. Thermally stable silica-coated hydrophobic gold nanoparticles.

    PubMed

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  4. Silica nanoparticle stability in biological media revisited.

    PubMed

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  5. Silica passivated conjugated polymer nanoparticles for biological imaging applications

    NASA Astrophysics Data System (ADS)

    Bourke, Struan; Urbano, Laura; Olona, Antoni; Valderrama, Ferran; Dailey, Lea Ann; Green, Mark A.

    2017-02-01

    Colorectal and prostate cancers are major causes of cancer-related death, with early detection key to increased survival. However, as symptoms occur during advanced stages and current diagnostic methods have limitations, there is a need for new fluorescent probes that remain bright, are biocompatible and can be targeted. Conjugated polymer nanoparticles have shown great promise in biological imaging due to their unique optical properties. We have synthesised small, bright, photo-stable CN-PPV, nanoparticles encapsulated with poloxamer polymer and a thin silica shell. By incubating the CN-PPV silica shelled cross-linked (SSCL) nanoparticles in mammalian (HeLa) cells; we were able to show that cellular uptake occurred. Uptake was also shown by incubating the nanoparticles in RWPE-1, WPE1-NB26 and WPE1- NA22 prostate cancer cell lines. Finally, HEK cells were used to show the particles had limited cytotoxicity.

  6. Study of ice cluster impacts on amorphous silica using the ReaxFF reactive force field molecular dynamics simulation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahnamoun, A.; Duin, A. C. T. van

    We study the dynamics of the collisions between amorphous silica structures and amorphous and crystal ice clusters with impact velocities of 1 km/s, 4 km/s, and 7 km/s using the ReaxFF reactive molecular dynamics simulation method. The initial ice clusters consist of 150 water molecules for the amorphous ice cluster and 128 water molecules for the crystal ice cluster. The ice clusters are collided on the surface of amorphous fully oxidized and suboxide silica. These simulations show that at 1 km/s impact velocities, all the ice clusters accumulate on the surface and at 4 km/s and 7 km/s impact velocities, some of the ice cluster moleculesmore » bounce back from the surface. At 4 km/s and 7 km/s impact velocities, few of the water molecules dissociations are observed. The effect of the second ice cluster impacts on the surfaces which are fully covered with ice, on the mass loss/accumulation is studied. These studies show that at 1 km/s impacts, the entire ice cluster accumulates on the surface at both first and second ice impacts. At higher impact velocities, some ice molecules which after the first ice impacts have been attached to the surface will separate from the surface after the second ice impacts at 7 km/s impact velocity. For the 4 km/s ice cluster impact, ice accumulation is observed for the crystal ice cluster impacts and ice separation is observed for the amorphous ice impacts. Observing the temperatures of the ice clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting ice clusters increase to about 2000 K, with individual molecules occasionally reaching temperatures of over 8000 K and thus it will be prudent to consider the concept of electron excitation at these higher impact velocities, which goes beyond the current ReaxFF ability.« less

  7. Core-shell magnetite-silica composite nanoparticles enhancing DNA damage induced by a photoactive platinum-diimine complex in red light.

    PubMed

    Zhang, Zhigang; Chai, Aiyun

    2012-12-01

    Lack of solubility under physiological conditions poses an additional risk for toxicity and side effects for intravenous delivery of the photodynamic therapeutic agent in vivo. Employing magnetite-silica composite nanoparticles as carriers of the photodynamic therapeutic agents may be a promising way to solve the problem. In this study, core-shell magnetite-silica composite nanoparticles were prepared by a sol-gel method, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering, then they were used as carriers of a photoactive platinum diimine complex. The interactions of the photosensitizer-loaded magnetic composite nanoparticles with DNA in red light were monitored by agarose-gel electrophoresis. The results suggest that high doses of magnetite-silica composite nanoparticles might facilitate the transformation of covalently closed circular (ccc)-DNA band to open circular (oc)-DNA band though they are harmless to DNA at their low concentrations, therefore enhancing the extent of DNA damage caused by the metal complex in red light. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Adsorption of Pb(II) using silica gel composite from rice husk ash modified 3-aminopropyltriethoxysilane (APTES)-activated carbon from coconut shell

    NASA Astrophysics Data System (ADS)

    Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur

    2017-03-01

    Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.

  9. Functional magnetic porous silica for T 1-T 2 dual-modal magnetic resonance imaging and pH-responsive drug delivery of basic drugs

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhang, Run; Guo, Yi; Zhang, Cheng; Zhao, Wei; Xu, Zhiping; Whittaker, Andrew K.

    2016-12-01

    A smart magnetic-targeting drug carrier γ-Fe2O3@p-silica comprising a γ-Fe2O3 core and porous shell has been prepared and characterized. The particles have a uniform size of about 60 nm, and a porous shell of thickness 3 nm. Abundant hydroxyl groups and a large surface area enabled the γ-Fe2O3@p-silica to be readily loaded with a large payload of the basic model drug rhodamine B (RB) (up to 73 mg g-1). Cytotoxicity assays of the γ-Fe2O3@p-silica particles indicated that the particles were biocompatible and suitable for carrying drugs. It was found that the RB was released rapidly at pH 5.5 but at pH 7.4 the rate and extent of release was greatly attenuated. The particles therefore demonstrate an excellent pH-triggered drug release. In addition, the γ-Fe2O3@p-silica particles could be tracked by magnetic resonance imaging (MRI). A clear dose-dependent contrast enhancement in both T 1-weighted and T 2-weighted MR images indicated the potential of the γ-Fe2O3@p-silica particles to act as dual-mode T 1 and T 2 MRI contrast agents.

  10. Core-shell monodisperse spherical mSiO2/Gd2O3:Eu3+@mSiO2 particles as potential multifunctional theranostic agents

    NASA Astrophysics Data System (ADS)

    Eurov, Daniil A.; Kurdyukov, Dmitry A.; Kirilenko, Demid A.; Kukushkina, Julia A.; Nashchekin, Alexei V.; Smirnov, Alexander N.; Golubev, Valery G.

    2015-02-01

    Core-shell nanoparticles with diameters in the range 100-500 nm have been synthesized as monodisperse spherical mesoporous (pore diameter 3 nm) silica particles with size deviation of less than 4 %, filled with gadolinium and europium oxides and coated with a mesoporous silica shell. It is shown that the melt technique developed for filling with gadolinium and europium oxides provides a nearly maximum filling of mesopores in a single-run impregnation, with gadolinium and europium uniformly distributed within the particles and forming no bulk oxides on their surface. The coating with a shell does not impair the monodispersity and causes no coagulation. The coating technique enables controlled variation of the shell thickness within the range 5-100 % relative to the core diameter. The thus produced nanoparticles are easily dispersed in water, have large specific surface area (300 m2 g-1) and pore volume (0.3 cm3 g-1), and are bright solid phosphor with superior stability in aqueous media. The core-shell structured particles can be potentially used for cancer treatment as a therapeutic agent (gadolinium neutron-capture therapy and drug delivery system) and, simultaneously, as a multimodal diagnostic tool (fluorescence and magnetic resonance imaging), thereby serving as a multifunctional theranostic agent.

  11. Magnetic carbon nanostructures: microwave energy-assisted pyrolysis vs. conventional pyrolysis.

    PubMed

    Zhu, Jiahua; Pallavkar, Sameer; Chen, Minjiao; Yerra, Narendranath; Luo, Zhiping; Colorado, Henry A; Lin, Hongfei; Haldolaarachchige, Neel; Khasanov, Airat; Ho, Thomas C; Young, David P; Wei, Suying; Guo, Zhanhu

    2013-01-11

    Magnetic carbon nanostructures from microwave assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shells from conventional heating, different carbon shell morphologies including nanotubes, nanoflakes and amorphous carbon were observed. Crystalline iron and cementite were observed in the magnetic core, different from a single cementite phase from the conventional process.

  12. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites

    PubMed Central

    Patzke, Greta R.; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-01-01

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H2O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP–Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics. PMID:28809296

  13. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites.

    PubMed

    Patzke, Greta R; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-12-27

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H₂O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP-Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics.

  14. Reactive molecular dynamics simulation on the disintegration of Kapton, POSS polyimide, amorphous silica, and teflon during atomic oxygen impact using the ReaxFF reactive force-field method.

    PubMed

    Rahnamoun, A; van Duin, A C T

    2014-04-17

    Atomic oxygen (AO) is the most abundant element in the low Earth orbit (LEO). It is the result of the dissociation of molecular oxygen by ultraviolet radiation from the sun. In the LEO, it collides with the materials used on spacecraft surfaces and causes degradation of these materials. The degradation of the materials on the surface of spacecrafts at LEO has been a significant problem for a long time. Kapton polyimide, polyhedral oligomeric silsesquioxane (POSS), silica, and Teflon are the materials extensively used in spacecraft industry, and like many other materials used in spacecraft industry, AO collision degradation is an important issue in their applications on spacecrafts. To investigate the surface chemistry of these materials in exposure to space AO, a computational chemical evaluation of the Kapton polyimide, POSS, amorphous silica, and Teflon was performed in separate simulations under similar conditions. For performing these simulations, the ReaxFF reactive force-field program was used, which provides the computational speed required to perform molecular dynamics (MD) simulations on system sizes sufficiently large to describe the full chemistry of the reactions. Using these simulations, the effects of AO impact on different materials and the role of impact energies, the content of material, and temperature of material on the behavior of the materials are studied. The ReaxFF results indicate that Kapton is less resistant than Teflon toward AO damage. These results are in good agreement with experiment. These simulations indicate that the amorphous silica shows the highest stability among these materials before the start of the highly exothermic silicon oxidation. We have verified that adding silicon to the bulk of the Kapton structure enhances the stability of the Kapton against AO impact. Our canonical MD simulations demonstrate that an increase in the heat transfer in materials during AO impact can provide a considerable decrease in the disintegration of the material. This effect is especially relevant in silica AO collision. Considerable experimental efforts have been undertaken to minimize such AO-based degradations. As our simulations demonstrate, ReaxFF can provide a cost-effective screening tool for future material optimization.

  15. Black GE based on crystalline/amorphous core/shell nanoneedle arrays

    DOEpatents

    Javey, Ali; Chueh, Yu-Lun; Fan, Zhiyong

    2014-03-04

    Direct growth of black Ge on low-temperature substrates, including plastics and rubber is reported. The material is based on highly dense, crystalline/amorphous core/shell Ge nanoneedle arrays with ultrasharp tips (.about.4 nm) enabled by the Ni catalyzed vapor-solid-solid growth process. Ge nanoneedle arrays exhibit remarkable optical properties. Specifically, minimal optical reflectance (<1%) is observed, even for high angles of incidence (.about.75.degree.) and for relatively short nanoneedle lengths (.about.1 .mu.m). Furthermore, the material exhibits high optical absorption efficiency with an effective band gap of .about.1 eV. The reported black Ge can have important practical implications for efficient photovoltaic and photodetector applications on nonconventional substrates.

  16. Probing the chemistry, structure, and dynamics of the water-silica interface

    NASA Astrophysics Data System (ADS)

    Lockwood, Glenn K.

    Despite its natural abundance and wide-ranging technological relevance, much remains unknown or unclear about water-silica interfaces. Computer simulation stands to bridge the gaps of knowledge left by experiment, and a recently developed Dissociative Water Potential has enabled the simulation of large amorphous silica surfaces in contact with water without having to impose a model of surface chemistry a priori. Earlier work with this model has revealed the existence of several protonated surface sites such as SiOH2 + and Si-(OH+)-Si that have yet to be extensively characterized. However, both experiment and quantum mechanical simulation have provided an increasing body of evidence that suggests these sites exist, and these sites may play key roles in some of the unexplained phenomena observed in water-silica systems. To this end, this Dissociative Water Potential has been applied to develop a comprehensive picture of the chemistry, structure, and dynamics of the water-silica interface that is unbiased by any expectation of what sites should form. The bridging OH site, Si-(OH+)-Si, does form and is characterized as a highly acidic site that occurs predominantly on strained Si-O-Si bridges near the interface. Similarly, the transient formation of SiOH2 + is observed, and this site is found to be more acidic than Si-(OH +)-Si. In addition to H3O+ that forms near the interface, all of these sites readily deprotonate and are expected to play a role in the enhanced proton conductivity experimentally observed in hydrated mesoporous silica. The reactions between water and silica are particularly relevant to the engineering of nuclear waste forms, and the role of water-silica interactions are also explored within the context of the degradation of silica-based waste forms exposed to radiation. Despite the significant simulation effort employed in glassy waste form research, no molecular models of radiation damage in silica include the effects of moisture. This deficiency is addressed, and water is found to play a significant role in accelerating the degradation of amorphous silica under irradiation. Water inhibits healing of the network and promotes the formation of voids into which more water can penetrate, giving way to new damage accumulation mechanisms not seen in any past simulations.

  17. Self-repairing properties of OPC clinker/natural zeolite blend in water and alkali carbonate environments at 270°C

    DOE PAGES

    Pyatina, Tatiana; Sugama, Toshifumi; Ronne, Arthur; ...

    2018-01-01

    The 10 d recoveries of the mechanical properties and crack sealing of an ordinary Portland cement (OPC) clinker/natural zeolite (ferrierite (Fer)) blend modified or unmodified with silica were tested at 270°C in water and alkali carbonate environments. The recoveries of the samples depended on their modification with silica and the curing environment, but were more than 100% after repeated damage under some test conditions. The mechanical properties and phase compositions of recovered samples were evaluated by compressive strength measurements and x-ray diffraction, differential thermogravimetric analyses, Fourier transform infrared analyses and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. Themore » sealing of 0·25 mm wide and ~2 mm deep cracks was visualised with a three-dimensional optical microscope. Fer decomposed under high-temperature alkaline conditions with the release of hydrolysates that, along with the hydrating clinker, participated in the formation of new phases contributing to strength recoveries. Here, these phases included crystalline magnesium and aluminium-containing silicates, calcium and carbonated calcium silicates and amorphous hydrates. Crack sealing was complete for the silica-modified samples and partial for unmodified ones cured in carbonate environments. The sealing was very poor for samples cured in water. Lastly, the main sealing phases included crystalline and amorphous silica, high-temperature-stable zeolites and talc mineral.« less

  18. Self-repairing properties of OPC clinker/natural zeolite blend in water and alkali carbonate environments at 270°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyatina, Tatiana; Sugama, Toshifumi; Ronne, Arthur

    The 10 d recoveries of the mechanical properties and crack sealing of an ordinary Portland cement (OPC) clinker/natural zeolite (ferrierite (Fer)) blend modified or unmodified with silica were tested at 270°C in water and alkali carbonate environments. The recoveries of the samples depended on their modification with silica and the curing environment, but were more than 100% after repeated damage under some test conditions. The mechanical properties and phase compositions of recovered samples were evaluated by compressive strength measurements and x-ray diffraction, differential thermogravimetric analyses, Fourier transform infrared analyses and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy. Themore » sealing of 0·25 mm wide and ~2 mm deep cracks was visualised with a three-dimensional optical microscope. Fer decomposed under high-temperature alkaline conditions with the release of hydrolysates that, along with the hydrating clinker, participated in the formation of new phases contributing to strength recoveries. Here, these phases included crystalline magnesium and aluminium-containing silicates, calcium and carbonated calcium silicates and amorphous hydrates. Crack sealing was complete for the silica-modified samples and partial for unmodified ones cured in carbonate environments. The sealing was very poor for samples cured in water. Lastly, the main sealing phases included crystalline and amorphous silica, high-temperature-stable zeolites and talc mineral.« less

  19. Synthesis of biogenic silicon/silica (Si/SiO2) nanocomposites from rice husks and wheat bran through various microorganisms

    NASA Astrophysics Data System (ADS)

    Kaur, Taranjot; Pal Singh, Gurwinder; Kaur, Gurneet; Kaur, Sukhvir; Gill, Prabhjot Kaur

    2016-08-01

    Biosilification is an economically viable, energy saving and green approach for the commercial scale synthesis of oxide nanomaterials. The room temperature synthesis of oxide nanocomposites from cost effective agro-based waste is a particular example of biosilification. In this study, synthesis of Si/SiO2 nanocomposites from inexpensive agro-based waste material i.e. rice husks (RH) and wheat bran (WB) has been carried out by means of various eukaryotic microorganisms, i.e. Actinomycete, Fusarium oxysporum, Aspergillus niger, Trichoderma sp. and Penicillium sp., under ambient conditions. The XRD diffrectrograms represents that the synthesized nanomaterials exhibits silicon, amorphous silica and other crystal arrays such as cristobalite, trydimite and quartz, depending upon the type microorganism and time period used for extraction. All of the aforesaid microorganism bio transformed the naturally occurring amorphous silica to crystalline structures within the period of 24 h. However, the Actinomycete and Trichoderma sp. took 48 h in case of rice husks for biotransformation of naturally occurring plant silica to crystalline nanocomposite. While in case of wheat bran, Actinomycete and Trichoderma sp. took 24 h for biotransformation. The extracted nanocomposites exhibits band edge in the range 230-250 nm and blue emission. The procedure described in study can be used for commercial level production of Si/SiO2 nanocomposites from agro based waste materials.

  20. Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background.

    PubMed

    Iwata, Masanori; Teshima, Midori; Seki, Takahiro; Yoshioka, Shinya; Takeoka, Yukikazu

    2017-07-01

    Inspired by Steller's jay, which displays angle-independent structural colors, angle-independent structurally colored materials are created, which are composed of amorphous arrays of submicrometer-sized fine spherical silica colloidal particles. When the colloidal amorphous arrays are thick, they do not appear colorful but almost white. However, the saturation of the structural color can be increased by (i) appropriately controlling the thickness of the array and (ii) placing the black background substrate. This is similar in the case of the blue feather of Steller's jay. Based on the knowledge gained through the biomimicry of structural colored materials, colloidal amorphous arrays on the surface of a black particle as the core particle are also prepared as colorful photonic pigments. Moreover, a structural color on-off system is successfully built by controlling the background brightness of the colloidal amorphous arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, S.

    This study describes a simple two-step approach to coat gold nanorods with a silica/titania shell. Gold nanorods with an aspect ratio of 2.5 (L = 48 {+-} 2 and d = 19 {+-} 1) are synthesized by a silver-seed mediated growth approach according to our previously reported procedure (Hunyadi Murph ACS Symposium Series, Volume 1064, Chapter 8, 2011, 127-163 and reference herein). Gold nanorods are grown on pre-formed gold nano-seeds in the presence of surfactant, cetyltrimethylammonium bromide (CTAB), and a small amount of silver ions. A bifunctional linker molecule which has a thiol group at one end and a silanemore » group at the other is used to derivatize gold nanorods. The silane group is subsequently reacted with both sodium silicate and titanium isopropoxide to a silica/titania shell around the gold nanorods. By fine tuning the reaction conditions, the silica/titania shell thickness can be controlled from {approx}5 to {approx}40nm. The resulting nanomaterials are stable, amenable to scale up and can be isolated without core aggregation or decomposition. These new materials have been characterized by scanning electron microscopy, energy dispersive X-ray analysis, UV-Vis spectroscopy and dynamic light scattering analysis. Photocatalytic activity of Au-silica/titania nanomaterials under visible and UV illumination is measured via degradation of a model dye, methyl orange (MO) under visible and UV illumination. The results indicate a 3 fold improvement in the photocatalytic decomposition rate of MO under visible illumination vs. UV illumination.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO 2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of themore » hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less

  3. Size-dependent characterization of embedded Ge nanocrystals: Structural and thermal properties

    NASA Astrophysics Data System (ADS)

    Araujo, L. L.; Giulian, R.; Sprouster, D. J.; Schnohr, C. S.; Llewellyn, D. J.; Kluth, P.; Cookson, D. J.; Foran, G. J.; Ridgway, M. C.

    2008-09-01

    A combination of conventional and synchrotron-based techniques has been used to characterize the size-dependent structural and thermal properties of Ge nanocrystals (NCs) embedded in a silica (a-SiO2) matrix. Ge NC size distributions with four different diameters ranging from 4.0 to 9.0 nm were produced by ion implantation and thermal annealing as characterized with small-angle x-ray scattering and transmission electron microscopy. The NCs were well represented by the superposition of bulklike crystalline and amorphous environments, suggesting the formation of an amorphous layer separating the crystalline NC core and the a-SiO2 matrix. The amorphous fraction was quantified with x-ray-absorption near-edge spectroscopy and increased as the NC diameter decreased, consistent with the increase in surface-to-volume ratio. The structural parameters of the first three nearest-neighbor shells were determined with extended x-ray-absorption fine-structure (EXAFS) spectroscopy and evolved linearly with inverse NC diameter. Specifically, increases in total disorder, interatomic distance, and the asymmetry in the distribution of distances were observed as the NC size decreased, demonstrating that finite-size effects govern the structural properties of embedded Ge NCs. Temperature-dependent EXAFS measurements in the range of 15-300 K were employed to probe the mean vibrational frequency and the variation of the interatomic distance distribution (mean value, variance, and asymmetry) with temperature for all NC distributions. A clear trend of increased stiffness (higher vibrational frequency) and decreased thermal expansion with decreasing NC size was evident, confirming the close relationship between the variation of structural and thermal/vibrational properties with size for embedded Ge NCs. The increase in surface-to-volume ratio and the presence of an amorphous Ge layer separating the matrix and crystalline NC core are identified as the main factors responsible for the observed behavior, with the surrounding a-SiO2 matrix also contributing to a lesser extent. Such results are compared to previous reports and discussed in terms of the influence of the surface-to-volume ratio in objects of nanometer dimensions.

  4. Poisson's Ratio and the Densification of Glass under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouxel, T.; Ji, H.; Hammouda, T.

    2008-06-06

    Because of a relatively low atomic packing density, (C{sub g}) glasses experience significant densification under high hydrostatic pressure. Poisson's ratio ({nu}) is correlated to C{sub g} and typically varies from 0.15 for glasses with low C{sub g} such as amorphous silica to 0.38 for close-packed atomic networks such as in bulk metallic glasses. Pressure experiments were conducted up to 25 GPa at 293 K on silica, soda-lime-silica, chalcogenide, and bulk metallic glasses. We show from these high-pressure data that there is a direct correlation between {nu} and the maximum post-decompression density change.

  5. Elucidation of Compression-Induced Surface Crystallization in Amorphous Tablets Using Sum Frequency Generation (SFG) Microscopy.

    PubMed

    Mah, Pei T; Novakovic, Dunja; Saarinen, Jukka; Van Landeghem, Stijn; Peltonen, Leena; Laaksonen, Timo; Isomäki, Antti; Strachan, Clare J

    2017-05-01

    To investigate the effect of compression on the crystallization behavior in amorphous tablets using sum frequency generation (SFG) microscopy imaging and more established analytical methods. Tablets containing neat amorphous griseofulvin with/without excipients (silica, hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC) and polyethylene glycol (PEG)) were prepared. They were analyzed upon preparation and storage using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and SFG microscopy. Compression-induced crystallization occurred predominantly on the surface of the neat amorphous griseofulvin tablets, with minimal crystallinity being detected in the core of the tablets. The presence of various types of excipients was not able to mitigate the compression-induced surface crystallization of the amorphous griseofulvin tablets. However, the excipients affected the crystallization rate of amorphous griseofulvin in the core of the tablet upon compression and storage. SFG microscopy can be used in combination with ATR-FTIR spectroscopy and SEM to understand the crystallization behaviour of amorphous tablets upon compression and storage. When selecting excipients for amorphous formulations, it is important to consider the effect of the excipients on the physical stability of the amorphous formulations.

  6. Synthesis and characterization of SiO2/(PMMA/Fe3O4) magnetic nanocomposites.

    PubMed

    Wang, Zhifei; Guo, Yafei; Li, Song; Sun, Yueming; He, Nongyue

    2008-04-01

    Magnetic silica nanocomposites (magnetic nanoparticles core coated by silica shell) have the wide promising applications in the biomedical field and usually been prepared based on the famous Stöber process. However, the flocculation of Fe3O4 nanoparticles easily occurs during the silica coating, which limits the amount of magnetic silica particles produced in the Stöber process. In this paper, PMMA/Fe3O4 nanoparticles were used in the Stöber process instead of the "nude" Fe3O4 nanoparticles. And coating Fe3O4 with PMMA polymer beforehand can prevent magnetic nanoparticles from the aggregation that usually comes from the increasing of ionic strength during the hydrolyzation of tetraethoxysilane (TEOS) by the steric hindrance. The results show that the critical concentration of magnetic nanoparticles can increase from 12 mg/L for "nude" Fe3O4 nanoparticles to 3 g/L for PMMA/Fe3O4 nanoparticles during the Stöber process. And before the deposition of silica shell, the surface of PMMA/FeO4 nanoparticles had to be further modified by hydrolyzing them in CH3OH/NH3 x H2O mixture solution, which provides the carboxyl groups on their surface to react further with the silanol groups of silicic acid.

  7. Synthesis of Magnetic Rattle-Type Silica with Controllable Magnetite and Tunable Size by Pre-Shell-Post-Core Method.

    PubMed

    Chen, Xue; Tan, Longfei; Meng, Xianwei

    2016-03-01

    In this study, we have developed the pre-shell-post-core route to synthesize the magnetic rattle-type silica. This method has not only simplified the precursor's process and reduced the reacting time, but also ameliorated the loss of magnetite and made the magnetite content and the inner core size controllable and tunable. The magnetite contents and inner core size can be easily controlled by changing the type and concentration of alkali, reaction system and addition of water. The results show that alkali aqueous solution promotes the escape of the precursor iron ions from the inner space of rattle-type silica and results in the loss of magnetite. In this case, NaOH ethanol solution is better for the formation of magnetite than ammonia because it not only offers an appropriate alkalinity to facilitate the synthesis of. magnetic particles, but also avoids the escape of the iron ions from the mesopores of rattle-type silica. The synthesis process is very simple and efficient, and it takes no more than 2 hours to complete the total preparation and handling of the magnetic rattle-type silica. The end-product Fe3O4@SiO2 nanocomposites also have good magnetic properties which will perform potential application in biomedical science.

  8. Self-assembled cyclodextrin-modified gold nanoparticles on silica beads as stationary phase for chiral liquid chromatography and hydrophilic interaction chromatography.

    PubMed

    Li, Yuanyuan; Wei, Manman; Chen, Tong; Zhu, Nan; Ma, Yulong

    2016-11-01

    A facile strategy based on self-assembly of Au nanoparticles (AuNPs) (60±10nm in size) on the surfaces of amino-functionalized porous silica spheres under mild conditions was proposed. The resulting material possessed a core-shell structure in which AuNPs were the shell and silica spheres were the core. Then, thiolated-β-cyclodextrin (SH-β-CD) was covalently attached onto the AuNPs as chiral selector for the enantioseparation. The resultant packing material was evaluated by high-performance liquid chromatography (HPLC). The separations of nine pairs of enantiomers were achieved by using the new chiral stationary phase (CSP) in the reversed-phase liquid chromatography (RPLC) mode, respectively. The results showed the new CSP have more sufficient interaction with the analytes due to the existence of AuNPs on silica surfaces, resulting in faster mass transfer rate, compared with β-CD modified silica column. The result shed light on potential usage of chemical modified NPs as chiral selector for enantioseparation based on HPLC. In addition, the new phase was also used in hydrophilic interaction liquid chromatography (HILIC) to separate polar compounds and highly hydrophilic compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. New Evidence from Silica Debris Exo-Systems for Planet Building Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Lisse, Carey

    2010-05-01

    There is abundant inferential evidence for massive collisions in the early solar system [1]: Mercury's high density; Venus' retrograde spin; Earth's Moon; Mars' North/South hemispherical cratering anisotropy; Vesta's igneous origin [2]; brecciation in meteorites [3]; and Uranus' spin axis located near the plane of the ecliptic. Recent work [4] analyzing Spitzer mid-IR spectra has demonstrated the presence of large amounts of amorphous silica and SiO gas produced by a recent (within 103 - 104 yrs) large (MExcess > MPluto) hypervelocity impact collision around the young (~12 Myr old) nearby star HD172555, at the right age to form rocky planets. Many questions still remain concerning the location, lifetime, and source of the detected silica/SiO gas, which should not be stable in orbit at the estimated 5.8 AU from the HD172555 A5V primary for more than a few decades, yet it is also highly unlikely that we are fortuitously observing these systems immediately after silica formation A tabulation of the amount counts in the fine silica dust is decidedly Fe and Mg-atom poor compared to solar [4]. Three possible origins for the observed silica/SiO gas seem currently plausible : (1) A single hyperevelocity impact (>10km/s in order to produce silica and vaporize SiO at impact) creating an optically thick circumplanetary debris ring which is overflowing or releasing silica-rich material from its Hill sphere. Like terrestrial tektites, the Fe/Mg poor amorphous silica rubble is formed from quick-quenched molten/vaporized rock created during the impact. The amount of dust detected in the HD172555 system is easily enough to fill and overflow the Hill sphere radius of 0.03 AU for a Pluto-sized body at 5.8 AU from an A5 star, unless it is optically thick (> 1 cm in physical depth). Such a disk would provide a substantial fraction of the observed IR flux, and will be dense enough to self-shield its SiO gas, greatly extending its photolytic lifetime. The lifetime for such a system versus re-condensation into a solid body like the Moon is short, though, ~ 103 to 104 yrs [5]. Credence is lent to this scenario by observations of the Jovian impact in July 2009 [6], where absorption features due to silica have been found superimposed on those of hot ammonia at the > 60 km/s impact site (Fig. 1). (2) Ongoing multiple small hypervelocity impacts continuously grinding down a distribution of large circumstellar particles above the blowout size limit (the 'rubble' identified in [4]) and releasing silica rich material and SiO gas. This model would require a massive (>1 MMoon) belt of 10 μm - 1 cm particles with inclinations spread out over at least ±45o [4] or dust on highly eccentric orbits [7]. The amount of material implied by the relative amplitude of the rubble spectral feature is consistent with the amount needed to collisionally produce the fine silica dust [4, 8]. A body rapidly re-accreting in a debris ring after collisional disruption (like the Moon) would have similar behavior (lots of impacts for some time, producing gas and little melt droplets). (3) A single impact onto a silica-rich object with already highly differentiated surface layers. For a very young system at 10 - 20 Myr when we expect planets to be rapidly accreting, a Mercury or larger-sized rocky body covered in an SiO rich magma ocean is very likely by the Jeans energy criterion [9], even without considering additional heating input by 26Al and other radioactives. For the lowest expected impact velocities,v MercuryEscape = 4 km/s, a pre-existing magma ocean in equilibrium with a surrounding SiO atmosphere would be required; at higher velocities the impacting body could be the formative mechanism for the magma ocean [10]. Further evidence for excess circumstellar emission due to silica dust have now been found. The youngest of these, HD154263, at ~20 Myr age shows evidence for SiO gas and amorphous + crystalline silica. The 2 older systems, HD23514 at ~100 Myr age, and HD15407 at ~2 Gyr, conspicuously do not show any evidence for SiO gas while exhibiting strong features mainly due to crystalline silica. HD23514 also shows evidence for large amounts of amorphous carbon, PAHs, and nanodiamonds, due to a strongly enhanced C-atom abundance in impactor or impactee. HD15407, the oldest system, also does not show any conclusive evidence for the presence of large dark particles ('rubble').

  10. Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface.

    PubMed

    Verraedt, Els; Braem, Annabel; Chaudhari, Amol; Thevissen, Karin; Adams, Erwin; Van Mellaert, Lieve; Cammue, Bruno P A; Duyck, Joke; Anné, Jozef; Vleugels, Jef; Martens, Johan A

    2011-10-31

    Amorphous microporous silica (AMS) serving as a reservoir for controlled release of a bioactive agent was applied in the open porosity of a titanium coating on a Ti-6Al-4V metal substrate. The pores of the AMS emptied by calcination were loaded with chlorhexidine diacetate (CHX) via incipient wetness impregnation with CHX solution, followed by solvent evaporation. Using this CHX loaded AMS system on titanium substrate sustained release of CHX into physiological medium was obtained over a 10 day-period. CHX released from the AMS coating was demonstrated to be effective in killing planktonic cultures of the human pathogens Candida albicans and Staphylococcus epidermidis. This surface modification of titanium bodies with AMS controlled release functionality for a bioactive compound potentially can be applied on dental and orthopaedic implants to abate implant-associated microbial infection. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. High-harmonic generation in amorphous solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yong Sing; Yin, Yanchun; Wu, Yi

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  12. High-harmonic generation in amorphous solids

    DOE PAGES

    You, Yong Sing; Yin, Yanchun; Wu, Yi; ...

    2017-09-28

    High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less

  13. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    PubMed

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  14. Adapting BODIPYs to singlet oxygen production on silica nanoparticles.

    PubMed

    Epelde-Elezcano, Nerea; Prieto-Montero, Ruth; Martínez-Martínez, Virginia; Ortiz, María J; Prieto-Castañeda, Alejandro; Peña-Cabrera, Eduardo; Belmonte-Vázquez, José L; López-Arbeloa, Iñigo; Brown, Ross; Lacombe, Sylvie

    2017-05-31

    A modified Stöber method is used to synthesize spherical core-shell silica nanoparticles (NPs) with an external surface functionalized by amino groups and with an average size around 50 nm. Fluorescent dyes and photosensitizers of singlet oxygen were fixed, either separately or conjointly, respectively in the core or in the shell. Rhodamines were encapsulated in the core with relatively high fluorescence quantum yields (Φ fl ≥ 0.3), allowing fluorescence tracking of the particles. Various photosensitizers of singlet oxygen (PS) were covalenty coupled to the shell, allowing singlet oxygen production. The stability of NP suspensions strongly deteriorated upon grafting the PS, affecting their apparent singlet oxygen quantum yields. Agglomeration of NPs depends both on the type and on the amount of grafted photosensitizer. New, lab-made, halogenated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY) grafted to the NPs achieved higher singlet oxygen quantum yields (Φ Δ ∼ 0.35-0.40) than Rose Bengal (RB) grafted NPs (Φ Δ ∼ 0.10-0.27). Finally, we combined both fluorescence and PS functions in the same NP, namely a rhodamine in the silica core and a BODIPY or RB grafted in the shell, achieving the performance Φ fl ∼ 0.10-0.20, Φ Δ ∼ 0.16-0.25 with a single excitation wavelength. Thus, proper choice of the dyes, of their concentrations inside and on the NPs and the grafting method enables fine-tuning of singlet oxygen production and fluorescence emission.

  15. Inverse Photonic Glasses by Packing Bidisperse Hollow Microspheres with Uniform Cores.

    PubMed

    Kim, Seung-Hyun; Magkiriadou, Sofia; Rhee, Do Kyung; Lee, Doo Sung; Yoo, Pil J; Manoharan, Vinothan N; Yi, Gi-Ra

    2017-07-19

    A major fabrication challenge is producing disordered photonic materials with an angle-independent structural red color. Theoretical work has shown that such a color can be produced by fabricating inverse photonic glasses with monodisperse, nontouching voids in a silica matrix. Here, we demonstrate a route toward such materials and show that they have an angle-independent red color. We first synthesize monodisperse hollow silica particles with precisely controlled shell thickness and then make glassy colloidal structures by mixing two types of hollow particles with the same core size and different shell thicknesses. We then infiltrate the interstices with index-matched polymers, producing disordered porous materials with uniform, nontouching air voids. This procedure allows us to control the light-scattering form factor and structure factor of these porous materials independently, which is not possible to do in photonic glasses consisting of packed solid particles. The structure factor can be controlled by the shell thickness, which sets the distance between pores, whereas the pore size determines the peak wave vector of the form factor, which can be set below the visible range to keep the main structural color pure. By using a binary mixture of 246 and 268 nm hollow silica particles with 180 nm cores in an index-matched polymer matrix, we achieve angle-independent red color that can be tuned by controlling the shell thickness. Importantly, the width of the reflection peak can be kept constant, even for larger interparticle distances.

  16. A molecular dynamics study of ambient and high pressure phases of silica: structure and enthalpy variation with molar volume.

    PubMed

    Rajappa, Chitra; Sringeri, S Bhuvaneshwari; Subramanian, Yashonath; Gopalakrishnan, J

    2014-06-28

    Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, α-PbO2-type, and pyrite-type - for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase.

  17. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    NASA Astrophysics Data System (ADS)

    Morris, Richard V.; Vaniman, David T.; Blake, David F.; Gellert, Ralf; Chipera, Steve J.; Rampe, Elizabeth B.; Ming, Douglas W.; Morrison, Shaunna M.; Downs, Robert T.; Treiman, Allan H.; Yen, Albert S.; Grotzinger, John P.; Achilles, Cherie N.; Bristow, Thomas F.; Crisp, Joy A.; Des Marais, David J.; Farmer, Jack D.; Fendrich, Kim V.; Frydenvang, Jens; Graff, Trevor G.; Morookian, John-Michael; Stolper, Edward M.; Schwenzer, Susanne P.

    2016-06-01

    Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ˜40 wt.% crystalline and ˜60 wt.% X-ray amorphous material and a bulk composition with ˜74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (˜17 wt.% of bulk sample), tridymite (˜14 wt.%), sanidine (˜3 wt.%), cation-deficient magnetite (˜3 wt.%), cristobalite (˜2 wt.%), and anhydrite (˜1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (˜39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides-perchlorates-chlorates), and has minor TiO2 and Fe2O3T oxides (˜5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.

  18. Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    PubMed Central

    Morris, Richard V.; Vaniman, David T.; Blake, David F.; Gellert, Ralf; Chipera, Steve J.; Rampe, Elizabeth B.; Ming, Douglas W.; Morrison, Shaunna M.; Downs, Robert T.; Treiman, Allan H.; Yen, Albert S.; Grotzinger, John P.; Achilles, Cherie N.; Bristow, Thomas F.; Crisp, Joy A.; Des Marais, David J.; Farmer, Jack D.; Fendrich, Kim V.; Graff, Trevor G.; Morookian, John-Michael; Stolper, Edward M.; Schwenzer, Susanne P.

    2016-01-01

    Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides−perchlorates−chlorates), and has minor TiO2 and Fe2O3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin’s tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill. PMID:27298370

  19. Synthesis and Manipulation of Biofunctional Magnetic Particles

    DTIC Science & Technology

    2007-06-18

    G. M., J Am. Chem. Soc., 2003, 125, 12704-12705. 6. "Asymmetric Dimers Can be Formed by Dewetting Half-Shells of Gold Deposited on the Surfaces of...Be Formed by Dewetting Half-Shells of Gold Deposited on the Surfaces of Spherical Silica Colloids", Lu, Y., Xiong, H. Jing, X., Xia, Y., Prentiss, M

  20. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications.

    PubMed

    Onesto, V; Villani, M; Coluccio, M L; Majewska, R; Alabastri, A; Battista, E; Schirato, A; Calestani, D; Coppedé, N; Cesarelli, M; Amato, F; Di Fabrizio, E; Gentile, F

    2018-04-10

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin-BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  1. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile

    PubMed Central

    Ruff, Steven W.; Farmer, Jack D.

    2016-01-01

    The Mars rover Spirit encountered outcrops and regolith composed of opaline silica (amorphous SiO2·nH2O) in an ancient volcanic hydrothermal setting in Gusev crater. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate opaline silica structures was not recognized. Here we report remarkably similar features within active hot spring/geyser discharge channels at El Tatio in northern Chile, where halite-encrusted silica yields infrared spectra that are the best match yet to spectra from Spirit. Furthermore, we show that the nodular and digitate silica structures at El Tatio that most closely resemble those on Mars include complex sedimentary structures produced by a combination of biotic and abiotic processes. Although fully abiotic processes are not ruled out for the Martian silica structures, they satisfy an a priori definition of potential biosignatures. PMID:27853166

  2. Red-luminescent europium (III) doped silica nanoshells: synthesis, characterization, and their interaction with HeLa cells

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Sandoval, Sergio; Alfaro, Jesus G.; Aschemeyer, Sharraya; Liberman, Alex; Martin, David T.; Makale, Milan; Kummel, Andrew C.; Trogler, William C.

    2011-06-01

    A simple method to fabricate Eu3+ doped silica nanoshells particles with 100 and 200 nm diameters is reported. Amino polystyrene beads were used as templates, and an 8 to 10 nm thick silica gel coating was formed by the sol-gel reaction. After removing the template by calcination, porous dehydrated silica gel nanoshells of uniform size were obtained. The Eu3+ doped silica nanoshells exhibited a red emission at 615 nm on UV excitation. The porous structure of the silica shell wall was characterized by transmission electron microscopy measurements, while particle size and zeta potentials of the particles suspended in aqueous solution were characterized by dynamic light scattering. Two-photon microscopy was used to image the nanoshells after assimilation by HeLa cancer cells.

  3. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made up of mixed phases (e.g., palagonite) and synthetic single phases to determine their short-range order structures and calculate their XRD patterns to use in models of CheMin data. Finally, to address the timing of the alteration, we need to study rocks on the martian surface of different ages that may contain glass (volcanic or impact) with MSL and future rovers to better understand how glass alters on the martian surface, if that alteration mechanism is universal, and if alteration spans across long periods of time or if there is a time past which unaltered glass remains.

  4. Highly efficient siRNA delivery from core-shell mesoporous silica nanoparticles with multifunctional polymer caps

    NASA Astrophysics Data System (ADS)

    Möller, Karin; Müller, Katharina; Engelke, Hanna; Bräuchle, Christoph; Wagner, Ernst; Bein, Thomas

    2016-02-01

    A new general route for siRNA delivery is presented combining porous core-shell silica nanocarriers with a modularly designed multifunctional block copolymer. Specifically, the internal storage and release of siRNA from mesoporous silica nanoparticles (MSN) with orthogonal core-shell surface chemistry was investigated as a function of pore-size, pore morphology, surface properties and pH. Very high siRNA loading capacities of up to 380 μg per mg MSN were obtained with charge-matched amino-functionalized mesoporous cores, and release profiles show up to 80% siRNA elution after 24 h. We demonstrate that adsorption and desorption of siRNA is mainly driven by electrostatic interactions, which allow for high loading capacities even in medium-sized mesopores with pore diameters down to 4 nm in a stellate pore morphology. The negatively charged MSN shell enabled the association with a block copolymer containing positively charged artificial amino acids and oleic acid blocks, which acts simultaneously as capping and endosomal release agent. The potential of this multifunctional delivery platform is demonstrated by highly effective cell transfection and siRNA delivery into KB-cells. A luciferase reporter gene knock-down of up to 80-90% was possible using extremely low cell exposures with only 2.5 μg MSN containing 0.5 μg siRNA per 100 μL well.A new general route for siRNA delivery is presented combining porous core-shell silica nanocarriers with a modularly designed multifunctional block copolymer. Specifically, the internal storage and release of siRNA from mesoporous silica nanoparticles (MSN) with orthogonal core-shell surface chemistry was investigated as a function of pore-size, pore morphology, surface properties and pH. Very high siRNA loading capacities of up to 380 μg per mg MSN were obtained with charge-matched amino-functionalized mesoporous cores, and release profiles show up to 80% siRNA elution after 24 h. We demonstrate that adsorption and desorption of siRNA is mainly driven by electrostatic interactions, which allow for high loading capacities even in medium-sized mesopores with pore diameters down to 4 nm in a stellate pore morphology. The negatively charged MSN shell enabled the association with a block copolymer containing positively charged artificial amino acids and oleic acid blocks, which acts simultaneously as capping and endosomal release agent. The potential of this multifunctional delivery platform is demonstrated by highly effective cell transfection and siRNA delivery into KB-cells. A luciferase reporter gene knock-down of up to 80-90% was possible using extremely low cell exposures with only 2.5 μg MSN containing 0.5 μg siRNA per 100 μL well. Electronic supplementary information (ESI) available: MSN synthesis and analysis, sample preparation for cell transfections as well as additional studies including experiments with a second cell line and a toxicity assay. See DOI: 10.1039/c5nr06246b

  5. Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro

    NASA Astrophysics Data System (ADS)

    Qiao, Xiao-Fei; Zhou, Jia-Cai; Xiao, Jia-Wen; Wang, Ye-Fu; Sun, Ling-Dong; Yan, Chun-Hua

    2012-07-01

    Upconversion luminescent nanoparticles (UCNPs) have been widely used in many biochemical fields, due to their characteristic large anti-Stokes shifts, narrow emission bands, deep tissue penetration and minimal background interference. UCNPs-derived multifunctional materials that integrate the merits of UCNPs and other functional entities have also attracted extensive attention. Here in this paper we present a core-shell structured nanomaterial, namely, NaGdF4:Yb,Er@CaF2@SiO2-PS, which is multifunctional in the fields of photodynamic therapy (PDT), magnetic resonance imaging (MRI) and fluorescence/luminescence imaging. The NaGdF4:Yb,Er@CaF2 nanophosphors (10 nm in diameter) were prepared via sequential thermolysis, and mesoporous silica was coated as shell layer, in which photosensitizer (PS, hematoporphyrin and silicon phthalocyanine dihydroxide) was covalently grafted. The silica shell improved the dispersibility of hydrophobic PS molecules in aqueous environments, and the covalent linkage stably anchored the PS molecules in the silica shell. Under excitation at 980 nm, the as-fabricated nanomaterial gave luminescence bands at 550 nm and 660 nm. One luminescent peak could be used for fluorescence imaging and the other was suitable for the absorption of PS to generate singlet oxygen for killing cancer cells. The PDT performance was investigated using a singlet oxygen indicator, and was investigated in vitro in HeLa cells using a fluorescent probe. Meanwhile, the nanomaterial displayed low dark cytotoxicity and near-infrared (NIR) image in HeLa cells. Further, benefiting from the paramagnetic Gd3+ ions in the core, the nanomaterial could be used as a contrast agent for magnetic resonance imaging (MRI). Compared with the clinical commercial contrast agent Gd-DTPA, the as-fabricated nanomaterial showed a comparable longitudinal relaxivities value (r1) and similar imaging effect.Upconversion luminescent nanoparticles (UCNPs) have been widely used in many biochemical fields, due to their characteristic large anti-Stokes shifts, narrow emission bands, deep tissue penetration and minimal background interference. UCNPs-derived multifunctional materials that integrate the merits of UCNPs and other functional entities have also attracted extensive attention. Here in this paper we present a core-shell structured nanomaterial, namely, NaGdF4:Yb,Er@CaF2@SiO2-PS, which is multifunctional in the fields of photodynamic therapy (PDT), magnetic resonance imaging (MRI) and fluorescence/luminescence imaging. The NaGdF4:Yb,Er@CaF2 nanophosphors (10 nm in diameter) were prepared via sequential thermolysis, and mesoporous silica was coated as shell layer, in which photosensitizer (PS, hematoporphyrin and silicon phthalocyanine dihydroxide) was covalently grafted. The silica shell improved the dispersibility of hydrophobic PS molecules in aqueous environments, and the covalent linkage stably anchored the PS molecules in the silica shell. Under excitation at 980 nm, the as-fabricated nanomaterial gave luminescence bands at 550 nm and 660 nm. One luminescent peak could be used for fluorescence imaging and the other was suitable for the absorption of PS to generate singlet oxygen for killing cancer cells. The PDT performance was investigated using a singlet oxygen indicator, and was investigated in vitro in HeLa cells using a fluorescent probe. Meanwhile, the nanomaterial displayed low dark cytotoxicity and near-infrared (NIR) image in HeLa cells. Further, benefiting from the paramagnetic Gd3+ ions in the core, the nanomaterial could be used as a contrast agent for magnetic resonance imaging (MRI). Compared with the clinical commercial contrast agent Gd-DTPA, the as-fabricated nanomaterial showed a comparable longitudinal relaxivities value (r1) and similar imaging effect. Electronic supplementary information (ESI) available: More TEM, emission spectra, longitudinal and transverse relaxation times, t2-weighted MR images of the as-prepared nanomaterial, and confocal fluorescent images of HeLa cells. See DOI: 10.1039/c2nr30938f

  6. Creep of Hi-Nicalon S Ceramic Fiber Tows at 800 deg C in Air and in Silicic Acid-Saturated Steam

    DTIC Science & Technology

    2015-12-26

    earliest recorded instances is that of Egyptian brick making. As far back as approximately 1500 BC, Egyptians added straw to clay for bricks [3]. This...The accuracy of this calculation method depends on the accuracy of amorphous silica viscosity data, which, in turn, are affected by impurities in...the SiC fiber. Lack of availability of viscosity data for crystobalite and tridymite pre- cluded calculation of growth stresses in crystallized silica

  7. Role of N-methyl-2-pyrrolidone for preparation of Fe3O4@SiO2 controlled the shell thickness

    NASA Astrophysics Data System (ADS)

    Wee, Sung-Bok; Oh, Hyeon-Cheol; Kim, Tae-Gyun; An, Gye-Seok; Choi, Sung-Churl

    2017-04-01

    We developed a simple and novel approach for the synthesis of Fe3O4@SiO2 nanoparticles with controlled shell thickness, and studied the mechanism. The introduction of N-methyl-2-pyrrolidone (NMP) led to trapping of monomer nuclei in single shell and controlled the shell thickness. Fe3O4@SiO2 controlled the shell thickness, showing a high magnetization value (64.47 emu/g). Our results reveal the role and change in the chemical structure of NMP during the core-shell synthesis process. NMP decomposed to 4-aminobutanoic acid in alkaline condition and decreased the hydrolysis rate of the silica coating process.

  8. Amphiphilic Block Copolymers Directed Interface Coassembly to Construct Multifunctional Microspheres with Magnetic Core and Monolayer Mesoporous Aluminosilicate Shell.

    PubMed

    Zhang, Yu; Yue, Qin; Yu, Lei; Yang, Xuanyu; Hou, Xiu-Feng; Zhao, Dongyuan; Cheng, Xiaowei; Deng, Yonghui

    2018-05-11

    Core-shell magnetic porous microspheres have wide applications in drug delivery, catalysis and bioseparation, and so on. However, it is great challenge to controllably synthesize magnetic porous microspheres with uniform well-aligned accessible large mesopores (>10 nm) which are highly desired for applications involving immobilization or adsorption of large guest molecules or nanoobjects. In this study, a facile and general amphiphilic block copolymer directed interfacial coassembly strategy is developed to synthesize core-shell magnetic mesoporous microspheres with a monolayer of mesoporous shell of different composition, such as core-shell magnetic mesoporous aluminosilicate (CS-MMAS), silica (CS-MMS), and zirconia-silica (CS-MMZS), open and large pores by employing polystyrene-block-poly (4-vinylpyridine) (PS-b-P4VP) as an interface structure directing agent and aluminum acetylacetonate (Al(acac) 3 ), zirconium acetylacetonate, and tetraethyl orthosilicate as shell precursors. The obtained CS-MMAS microspheres possess magnetic core, perpendicular mesopores (20-32 nm) in the shell, high surface area (244.7 m 2 g -1 ), and abundant acid sites (0.44 mmol g -1 ), and as a result, they exhibit superior performance in removal of organophosphorus pesticides (fenthion) with a fast adsorption dynamics and high adsorption capacity. CS-MMAS microspheres loaded with Au nanoparticles (≈3.5 nm) behavior as a highly active heterogeneous nanocatalyst for N-alkylation reaction for producing N-phenylbenzylamine with a selectivity and yields of over 90% and good magnetic recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation

    PubMed Central

    Lechner, Carolin C.; Becker, Christian F. W.

    2015-01-01

    Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed. PMID:26295401

  10. The Structure and Properties of Silica Glass Nanostructures using Novel Computational Systems

    NASA Astrophysics Data System (ADS)

    Doblack, Benjamin N.

    The structure and properties of silica glass nanostructures are examined using computational methods in this work. Standard synthesis methods of silica and its associated material properties are first discussed in brief. A review of prior experiments on this amorphous material is also presented. Background and methodology for the simulation of mechanical tests on amorphous bulk silica and nanostructures are later presented. A new computational system for the accurate and fast simulation of silica glass is also presented, using an appropriate interatomic potential for this material within the open-source molecular dynamics computer program LAMMPS. This alternative computational method uses modern graphics processors, Nvidia CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model select materials, this enhancement allows the addition of accelerated molecular dynamics simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal of this project is to investigate the structure and size dependent mechanical properties of silica glass nanohelical structures under tensile MD conditions using the innovative computational system. Specifically, silica nanoribbons and nanosprings are evaluated which revealed unique size dependent elastic moduli when compared to the bulk material. For the nanoribbons, the tensile behavior differed widely between the models simulated, with distinct characteristic extended elastic regions. In the case of the nanosprings simulated, more clear trends are observed. In particular, larger nanospring wire cross-sectional radii (r) lead to larger Young's moduli, while larger helical diameters (2R) resulted in smaller Young's moduli. Structural transformations and theoretical models are also analyzed to identify possible factors which might affect the mechanical response of silica nanostructures under tension. The work presented outlines an innovative simulation methodology, and discusses how results can be validated against prior experimental and simulation findings. The ultimate goal is to develop new computational methods for the study of nanostructures which will make the field of materials science more accessible, cost effective and efficient.

  11. Distance-Dependent Plasmon-Enhanced Singlet Oxygen Production and Emission for Bacterial Inactivation.

    PubMed

    Planas, Oriol; Macia, Nicolas; Agut, Montserrat; Nonell, Santi; Heyne, Belinda

    2016-03-02

    Herein, we synthesized a series of 10 core-shell silver-silica nanoparticles with a photosensitizer, Rose Bengal, tethered to their surface. Each nanoparticle possesses an identical silver core of about 67 nm, but presents a different silica shell thickness ranging from 5 to 100 nm. These hybrid plasmonic nanoparticles thus afford a plasmonic nanostructure platform with a source of singlet oxygen ((1)O2) at a well-defined distance from the metallic core. Via time-resolved and steady state spectroscopic techniques, we demonstrate the silver core exerts a dual role of enhancing both the production of (1)O2, through enhanced absorption of light, and its radiative decay, which in turn boosts (1)O2 phosphorescence emission to a greater extent. Furthermore, we show both the production and emission of (1)O2 in vitro to be dependent on proximity to the plasmonic nanostructure. Our results clearly exhibit three distinct regimes as the plasmonic nanostructure moves apart from the (1)O2 source, with a greater enhancement for silica shell thicknesses ranging between 10 and 20 nm. Moreover, these hybrid plasmonic nanoparticles can be delivered to both Gram-positive and Gram-negative bacteria boosting both photoantibacterial activity and detection limit of (1)O2 in cells.

  12. In Situ Hydrothermally Grown TiO2@C Core-Shell Nanowire Coating for Highly Sensitive Solid Phase Microextraction of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Wang, Fuxin; Zheng, Juan; Qiu, Junlang; Liu, Shuqin; Chen, Guosheng; Tong, Yexiang; Zhu, Fang; Ouyang, Gangfeng

    2017-01-18

    Nanostructured materials have great potential for solid phase microextraction (SPME) on account of their tiny size, distinct architectures and superior physical and chemical properties. Herein, a core-shell TiO 2 @C fiber for SPME was successfully fabricated by the simple hydrothermal reaction of a titanium wire and subsequent amorphous carbon coating. The readily hydrothermal procedure afforded in situ synthesis of TiO 2 nanowires on a titanium wire and provided a desirable substrate for further coating of amorphous carbon. Benefiting from the much larger surface area of subsequent TiO 2 and good adsorption property of the amorphous carbon coating, the core-shell TiO 2 @C fiber was utilized for the SPME device for the first time and proved to have better performance in extraction of polycyclic aromatic hydrocarbons. In comparison to the polydimethylsiloxane (PDMS) and PDMS/divinylbenzene (DVB) fiber for commercial use, the TiO 2 @C fiber obtained gas chromatography responses 3-8 times higher than those obtained by the commercial 100 μm PDMS and 1-9 times higher than those obtained by the 65 μm PDMS/DVB fiber. Under the optimized extraction conditions, the low detection limits were obtained in the range of 0.4-7.1 ng L -1 with wider linearity in the range of 10-2000 ng L -1 . Moreover, the fiber was successfully used for the determination of polycyclic aromatic hydrocarbons in Pearl River water, which demonstrated the applicability of the core-shell TiO 2 @C fiber.

  13. Designing Hollow Nano Gold Golf Balls

    PubMed Central

    2015-01-01

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure. PMID:24937196

  14. One-step synthesis of amine-functionalized hollow mesoporous silica nanoparticles as efficient antibacterial and anticancer materials.

    PubMed

    Hao, Nanjing; Jayawardana, Kalana W; Chen, Xuan; Yan, Mingdi

    2015-01-21

    In this study, amine-functionalized hollow mesoporous silica nanoparticles with an average diameter of ∼100 nm and shell thickness of ∼20 nm were prepared by an one-step process. This new nanoparticulate system exhibited excellent killing efficiency against mycobacterial (M. smegmatis strain mc(2) 651) and cancer cells (A549).

  15. Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivas Rojas, P. C.; Tancredi, P.; Moscoso Londoño, O.; Knobel, M.; Socolovsky, L. M.

    2018-04-01

    Single and fixed size core, core-shell nanoparticles of iron oxides coated with a silica layer of tunable thickness were prepared by chemical routes, aiming to generate a frame of study of magnetic nanoparticles with controlled dipolar interactions. The batch of iron oxides nanoparticles of 4.5 nm radii, were employed as cores for all the coated samples. The latter was obtained via thermal decomposition of organic precursors, resulting on nanoparticles covered with an organic layer that was subsequently used to promote the ligand exchange in the inverse microemulsion process, employed to coat each nanoparticle with silica. The amount of precursor and times of reaction was varied to obtain different silica shell thicknesses, ranging from 0.5 nm to 19 nm. The formation of the desired structures was corroborated by TEM and SAXS measurements, the core single-phase spinel structure was confirmed by XRD, and superparamagnetic features with gradual change related to dipolar interaction effects were obtained by the study of the applied field and temperature dependence of the magnetization. To illustrate that dipolar interactions are consistently controlled, the main magnetic properties are presented and analyzed as a function of center to center minimum distance between the magnetic cores.

  16. A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.

    PubMed

    Jin, Renxi; Yang, Yang; Zou, Yongcun; Liu, Xianchun; Xing, Yan

    2014-02-17

    Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare-earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as-prepared hollow rare-earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low-energy-consuming approach to synthesize highly stable and dispersive gold nanoparticle-yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4-nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare-earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk-shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica-coated nanocomposites. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application.

    PubMed

    Prabhakar, Neeraj; Näreoja, Tuomas; von Haartman, Eva; Karaman, Didem Şen; Jiang, Hua; Koho, Sami; Dolenko, Tatiana A; Hänninen, Pekka E; Vlasov, Denis I; Ralchenko, Victor G; Hosomi, Satoru; Vlasov, Igor I; Sahlgren, Cecilia; Rosenholm, Jessica M

    2013-05-07

    Recent advances within materials science and its interdisciplinary applications in biomedicine have emphasized the potential of using a single multifunctional composite material for concurrent drug delivery and biomedical imaging. Here we present a novel composite material consisting of a photoluminescent nanodiamond (ND) core with a porous silica (SiO2) shell. This novel multifunctional probe serves as an alternative nanomaterial to address the existing problems with delivery and subsequent tracing of the particles. Whereas the unique optical properties of ND allows for long-term live cell imaging and tracking of cellular processes, mesoporous silica nanoparticles (MSNs) have proven to be efficient drug carriers. The advantages of both ND and MSNs were hereby integrated in the new composite material, ND@MSN. The optical properties provided by the ND core rendered the nanocomposite suitable for microscopy imaging in fluorescence and reflectance mode, as well as super-resolution microscopy as a STED label; whereas the porous silica coating provided efficient intracellular delivery capacity, especially in surface-functionalized form. This study serves as a demonstration how this novel nanomaterial can be exploited for both bioimaging and drug delivery for future theranostic applications.

  18. Silica Nanoparticles for Intracellular Protein Delivery: a Novel Synthesis Approach Using Green Fluorescent Protein

    NASA Astrophysics Data System (ADS)

    Schmidt, Sarah; Tavernaro, Isabella; Cavelius, Christian; Weber, Eva; Kümper, Alexander; Schmitz, Carmen; Fleddermann, Jana; Kraegeloh, Annette

    2017-09-01

    In this study, a novel approach for preparation of green fluorescent protein (GFP)-doped silica nanoparticles with a narrow size distribution is presented. GFP was chosen as a model protein due to its autofluorescence. Protein-doped nanoparticles have a high application potential in the field of intracellular protein delivery. In addition, fluorescently labelled particles can be used for bioimaging. The size of these protein-doped nanoparticles was adjusted from 15 to 35 nm using a multistep synthesis process, comprising the particle core synthesis followed by shell regrowth steps. GFP was selectively incorporated into the silica matrix of either the core or the shell or both by a one-pot reaction. The obtained nanoparticles were characterised by determination of particle size, hydrodynamic diameter, ζ-potential, fluorescence and quantum yield. The measurements showed that the fluorescence of GFP was maintained during particle synthesis. Cellular uptake experiments demonstrated that the GFP-doped nanoparticles can be used as stable and effective fluorescent probes. The study reveals the potential of the chosen approach for incorporation of functional biological macromolecules into silica nanoparticles, which opens novel application fields like intracellular protein delivery.

  19. Magnetic Core-Shell Silica Nanoparticles with Large Radial Mesopores for siRNA Delivery.

    PubMed

    Xiong, Lin; Bi, Jingxu; Tang, Youhong; Qiao, Shi-Zhang

    2016-09-01

    A novel type of magnetic core-shell silica nanoparticles is developed for small interfering RNA (siRNA) delivery. These nanoparticles are fabricated by coating super-paramagnetic magnetite nanocrystal clusters with radial large-pore mesoporous silica. The amine functionalized nanoparticles have small particle sizes around 150 nm, large radial mesopores of 12 nm, large surface area of 411 m(2) g(-1) , high pore volume of 1.13 cm(3) g(-1) and magnetization of 25 emu g(-1) . Thus, these nanoparticles possess both high loading capacity of siRNA (2 wt%) and strong magnetic response under an external magnetic field. An acid-liable coating composed of tannic acid can further protect the siRNA loaded in these nanoparticles. The coating also increases the dispersion stability of the siRNA-loaded carrier and can serve as a pH-responsive releasing switch. Using the magnetic silica nanoparticles with tannic acid coating as carriers, functional siRNA has been successfully delivered into the cytoplasm of human osteosarcoma cancer cells in vitro. The delivery is significantly enhanced with the aid of the external magnetic field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles.

    PubMed

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-08-25

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  1. Silicon in Imperata cylindrica (L.) P. Beauv: content, distribution, and ultrastructure.

    PubMed

    Rufo, Lourdes; Franco, Alejandro; de la Fuente, Vicenta

    2014-07-01

    Silicon concentration, distribution, and ultrastructure of silicon deposits in the Poaceae Imperata cylindrica (L.) P. Beauv. have been studied. This grass, known for its medicinal uses and also for Fe hyperaccumulation and biomineralization capacities, showed a concentration of silicon of 13,705 ± 9,607 mg/kg dry weight. Silicon was found as an important constituent of cell walls of the epidermis of the whole plant. Silica deposits were found in silica bodies, endodermis, and different cells with silicon-collapsed lumen as bulliforms, cortical, and sclerenchyma cells. Transmission electron microscope observations of these deposits revealed an amorphous material of an ultrastructure similar to that previously reported in silica bodies of other Poaceae.

  2. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    PubMed

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Defined polymer shells on nanoparticles via a continuous aerosol-based process

    NASA Astrophysics Data System (ADS)

    Sigmund, Stephanie; Akgün, Ertan; Meyer, Jörg; Hubbuch, Jürgen; Wörner, Michael; Kasper, Gerhard

    2014-08-01

    A continuous aerosol-based process is described for the encapsulation of nanoparticles with a thin polymer shell. The process is essentially based on directed binary collisions between gas-borne core particles and liquid monomer droplets carrying opposite electrical charges, followed by photo-initiated polymerization. Once the two streams are mixed together, the process runs to completion on a time scale of about 2 min or less, required for coagulation and polymerization. Gold, silica, and sodium chloride nanoparticles were successfully coated by this technique with PHDDA [poly(hexanediol diacrylate)] and/or crosslinked PMMA [poly(methyl methacrylate)]. It was found that all core materials as well as agglomerates were wettable at room temperature and that the spreading kinetics of the monomer were fast enough to cover the core particles uniformly within the time scale provided for coagulation. The shell thickness depends on the volume ratio between core particles and monomer droplets. This was demonstrated for a combination of monodisperse silica spheres ( d = 241 nm) and polydisperse methyl methacrylate droplets, resulting in a theoretical shell thickness of 18 nm. There was very good agreement between measurements by TEM and electrical mobility spectroscopy. The results revealed that about 90 % or more of the core-shell structures were formed from 1:1 collisions between a core particle and a single monomer droplet.

  4. Efficient one-pot sonochemical synthesis of thickness-controlled silica-coated superparamagnetic iron oxide (Fe3O4/SiO2) nanospheres

    NASA Astrophysics Data System (ADS)

    Abbas, Mohamed; Abdel-Hamed, M. O.; Chen, Jiangang

    2017-12-01

    A facile and eco-friendly efficient sonochemical approach was designed for the synthesis of highly crystalline Fe3O4 and Fe3O4/SiO2 core/shell nanospheres in single reaction. The generated physical properties (shock waves, microjets, and turbulent flows) from ultrasonication as a consequence of the collapse of microbubbles and polyvinylpyrrolidone (PVP) as a chemical linker were found to play a crucial role in the successful formation of the core/shell NPs within short time than the previously reported methods. Transmission electron microscopy revealed that a uniform SiO2 shell is successfully coated over Fe3O4 nanospheres, and the thickness of the silica shell could be easily controlled in the range from 5 to 15 nm by adjusting the reaction parameters. X-ray diffraction data were employed to confirm the formation of highly crystalline and pure phase of a cubic inverse spinel structure for magnetite (Fe3O4) nanospheres. The magnetic properties of the as-synthesized Fe3O4 and Fe3O4/SiO2 core/shell nanospheres were measured at room temperature using vibrating sample magnetometer, and the results demonstrated a high magnetic moment values with superparamagnetic properties.

  5. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties

    NASA Astrophysics Data System (ADS)

    Mumin, Md Abdul; Xu, William Z.; Charpentier, Paul A.

    2015-08-01

    The dispersion of light-absorbing inorganic nanomaterials in transparent plastics such as poly(ethylene-co-vinyl acetate) (PEVA) is of enormous current interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Nanocrystalline semiconductor or quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light, which can control plant growth in greenhouses or enhance PV panel efficiencies. This work provides a new and simple approach for loading mesoporous silica-encapsulated QDs into PEVA. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm size were synthesized using a modified facile approach based on pyrolysis of the single-molecule precursors and capping the CdS QDs with a thin layer of ZnS. To make both the bare and core-shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interactions. By careful experimental tuning, this encapsulation technique enhanced the quantum yield (˜65%) and photostability compared to the bare QDs. Both the encapsulated bare and core-shell QDs were then melt-mixed with EVA pellets using a mini twin-screw extruder and pressed into thin films with controlled thickness. The results demonstrated for the first time that mesoporous silica not only enhanced the quantum yield and photostability of the QDs but also improved the compatibility and dispersibility of QDs throughout the PEVA films. The novel light selective films show high visible light transmission (˜90%) and decreased UV transmission (˜75%).

  6. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties.

    PubMed

    Mumin, Md Abdul; Xu, William Z; Charpentier, Paul A

    2015-08-07

    The dispersion of light-absorbing inorganic nanomaterials in transparent plastics such as poly(ethylene-co-vinyl acetate) (PEVA) is of enormous current interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Nanocrystalline semiconductor or quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light, which can control plant growth in greenhouses or enhance PV panel efficiencies. This work provides a new and simple approach for loading mesoporous silica-encapsulated QDs into PEVA. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm size were synthesized using a modified facile approach based on pyrolysis of the single-molecule precursors and capping the CdS QDs with a thin layer of ZnS. To make both the bare and core-shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interactions. By careful experimental tuning, this encapsulation technique enhanced the quantum yield (∼65%) and photostability compared to the bare QDs. Both the encapsulated bare and core-shell QDs were then melt-mixed with EVA pellets using a mini twin-screw extruder and pressed into thin films with controlled thickness. The results demonstrated for the first time that mesoporous silica not only enhanced the quantum yield and photostability of the QDs but also improved the compatibility and dispersibility of QDs throughout the PEVA films. The novel light selective films show high visible light transmission (∼90%) and decreased UV transmission (∼75%).

  7. Calcium aluminates hydration in presence of amorphous SiO{sub 2} at temperatures below 90 deg. C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas Mercury, J.M.; Turrillas, X.; Aza, A.H. de

    2006-10-15

    The hydration behaviour of Ca{sub 3}Al{sub 2}O{sub 6}, Ca{sub 12}Al{sub 14}O{sub 33} and CaAl{sub 2}O{sub 4} with added amorphous silica at 40, 65 and 90 deg. C has been studied for periods ranging from 1 to 31 days. In hydrated samples crystalline phases like katoite (Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-} {sub x} (OH){sub 4} {sub x} ) and gibbsite, Al(OH){sub 3}, were identified, likewise amorphous phases like Al(OH) {sub x} , calcium silicate hydrates, C-S-H, and calcium aluminosilicate hydrates, C-S-A-H, were identified. The stoichiometry of Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-} {sub x} (OH){sub 4} {sub x} (0{<=}3-x{<=}0.334), which was themore » main crystalline product, was established by Rietveld refinement of X-ray and neutron diffraction data and by transmission electron microscopy. - Graphical abstract: Katoite, Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-} {sub x} (OH){sub 4} {sub x} (0{<=}3-x{<=}0.334), was identified besides gibbsite, Al(OH){sub 3}, as a crystalline stable hydration products in Ca{sub 3}Al{sub 2}O{sub 6}, Ca{sub 12}Al{sub 14}O{sub 33} and CaAl{sub 2}O{sub 4} hydrated with added amorphous silica between 40 and 90 deg. C.« less

  8. Dual soft-template system based on colloidal chemistry for the synthesis of hollow mesoporous silica nanoparticles.

    PubMed

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Tang, Jing; Aldalbahi, Ali; Torad, Nagy L; Yamauchi, Yusuke

    2015-04-20

    A new dual soft-template system comprising the asymmetric triblock copolymer poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS-b-P2VP-b-PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA(+) ions via negatively charged hydrolyzed silica species. Thus, dual soft-templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    NASA Astrophysics Data System (ADS)

    Bhowmick, Tridib Kumar; Yoon, Diana; Patel, Minal; Fisher, John; Ehrman, Sheryl

    2010-10-01

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m2/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  10. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  11. Highly efficient one-step synthesis of carbon encapsulated nanocrystals by the oxidation of metal π-complexes

    NASA Astrophysics Data System (ADS)

    Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge

    2017-08-01

    Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.

  12. Effects of silica-coated carbon nanotubes on the curing behavior and properties of epoxy composites

    DOE PAGES

    Li, Ao; Li, Weizhen; Ling, Yang; ...

    2016-02-22

    Multi-walled carbon nanotubes (MWCNTs) were coated with silica by a sol–gel method to improve interfacial bonding and dispersion of nanotubes in the diglycidyl ether of bisphenol A (DGEBA) matrix. TEM and FE-SEM measurements showed that the silica shell was successfully coated on the surface of r-MWCNTs (as-received MWCNTs), and that the dispersion of MWCNT@SiO 2 in the epoxy matrix and interfacial adhesion between MWCNTs and epoxy were improved through the silica shell formation. The effects of silica-coated multi-walled carbon nanotube (MWCNT@SiO 2) addition on the curing behavior of epoxy resin, and on the physical and thermomechanical properties of epoxy composites,more » were studied. FT-IR measurements of different blends at different curing times indicated that the curing reaction was accelerated with the presence of MWCNTs and increased with the content of MWCNT@SiO 2. DSC results confirmed that the value of activation energy decreased with the introduction of MWCNTs in the order of MWCNT@SiO 2 < r-MWCNTs < epoxy. It was found that the thermal conductivity of epoxy composites were significantly enhanced by incorporation of MWCNT@SiO 2, relative to composites with r-MWCNTs, while the values of the glass transition temperature slightly increased, and the high electrical resistivity of these composites was retained overall.« less

  13. Lung toxicities of core–shell nanoparticles composed of carbon, cobalt, and silica

    PubMed Central

    Al Samri, Mohammed T; Silva, Rafael; Almarzooqi, Saeeda; Albawardi, Alia; Othman, Aws Rashad Diab; Al Hanjeri, Ruqayya SMS; Al Dawaar, Shaikha KM; Tariq, Saeed; Souid, Abdul-Kader; Asefa, Tewodros

    2013-01-01

    We present here comparative assessments of murine lung toxicity (biocompatibility) after in vitro and in vivo exposures to carbon (C–SiO2-etched), carbon–silica (C–SiO2), carbon–cobalt–silica (C–Co–SiO2), and carbon–cobalt oxide–silica (C–Co3O4–SiO2) nanoparticles. These nanoparticles have potential applications in clinical medicine and bioimaging, and thus their possible adverse events require thorough investigation. The primary aim of this work was to explore whether the nanoparticles are biocompatible with pneumatocyte bioenergetics (cellular respiration and adenosine triphosphate content). Other objectives included assessments of caspase activity, lung structure, and cellular organelles. Pneumatocyte bioenergetics of murine lung remained preserved after treatment with C–SiO2-etched or C–SiO2 nanoparticles. C–SiO2-etched nanoparticles, however, increased caspase activity and altered lung structure more than C–SiO2 did. Consistent with the known mitochondrial toxicity of cobalt, both C–Co–SiO2 and C–Co3O4–SiO2 impaired lung tissue bioenergetics. C–Co–SiO2, however, increased caspase activity and altered lung structure more than C–Co3O4–SiO2. The results indicate that silica shell is essential for biocompatibility. Furthermore, cobalt oxide is the preferred phase over the zerovalent Co(0) phase to impart biocompatibility to cobalt-based nanoparticles. PMID:23658487

  14. Volume-labeled nanoparticles and methods of preparation

    DOEpatents

    Wang, Wei; Gu, Baohua; Retterer, Scott T; Doktycz, Mitchel J

    2015-04-21

    Compositions comprising nanosized objects (i.e., nanoparticles) in which at least one observable marker, such as a radioisotope or fluorophore, is incorporated within the nanosized object. The nanosized objects include, for example, metal or semi-metal oxide (e.g., silica), quantum dot, noble metal, magnetic metal oxide, organic polymer, metal salt, and core-shell nanoparticles, wherein the label is incorporated within the nanoparticle or selectively in a metal oxide shell of a core-shell nanoparticle. Methods of preparing the volume-labeled nanoparticles are also described.

  15. Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel.

    PubMed

    Cerkauskaite, Ausra; Drevinskas, Rokas; Rybaltovskii, Alexey O; Kazansky, Peter G

    2017-04-03

    We compare a femtosecond laser induced modification in silica matrices with three different degrees of porosity. In single pulse regime, the decrease of substrate density from fused silica to high-silica porous glass and to silica aerogel glass results in tenfold increase of laser affected region with the formation of a symmetric cavity surrounded by the compressed silica shell with pearl like structures. In multi-pulse regime, if the cavity produced by the first pulse is relatively large, the subsequent pulses do not cause further modifications. If not, the transition from void to the anisotropic structure with the optical axis oriented parallel to the incident polarization is observed. The maximum retardance value achieved in porous glass is twofold higher than in fused silica, and tenfold greater than in aerogel. The polarization sensitive structuring in porous glass by two pulses of ultrafast laser irradiation is demonstrated, as well as no observable stress is generated at any conditions.

  16. Seed-Surface Grafting Precipitation Polymerization for Preparing Microsized Optically Active Helical Polymer Core/Shell Particles and Their Application in Enantioselective Crystallization.

    PubMed

    Zhao, Biao; Lin, Jiangfeng; Deng, Jianping; Liu, Dong

    2018-05-14

    Core/shell particles constructed by polymer shell and silica core have constituted a significant category of advanced functional materials. However, constructing microsized optically active helical polymer core/shell particles still remains as a big academic challenge due to the lack of effective and universal preparation methods. In this study, a seed-surface grafting precipitation polymerization (SSGPP) strategy is developed for preparing microsized core/shell particles with SiO 2 as core on which helically substituted polyacetylene is covalently bonded as shell. The resulting core/shell particles exhibit fascinating optical activity and efficiently induce enantioselective crystallization of racemic threonine. Taking advantage of the preparation strategy, novel achiral polymeric and hybrid core/shell particles are also expected. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and adsorption of silica gel modified 3-aminopropyltriethoxysilane (APTS) from corn cobs against Cu(II) in water

    NASA Astrophysics Data System (ADS)

    Purwanto, Agung; Yusmaniar, Ferdiani, Fatmawati; Damayanti, Rachma

    2017-03-01

    Silica gel modified APTS was synthesized from silica gel which was obtained from corn cobs via sol-gel process. Silica gel was synthesized from corn cobs and then chemically modified with silane coupling agent which has an amine group (NH2). This process resulting modified silica gel 3-aminopropyltriethoxysilane (APTS). Characterization of silica gel modified APTS by SEM-EDX showed that the size of the particles of silica gel modified APTS was 20µm with mass percentage of individual elements were nitrogen (N) 15.56%, silicon (Si) 50.69% and oxygen (O) 33.75%. In addition, silica gel modified APTS also showed absorption bands of functional groups silanol (Si-OH), siloxane (Si-O-Si), and an aliphatic chain (-CH2-), as well as amine (NH2) from FTIR spectra. Based on the characterization of XRD, silica gel 2θ of 21.094° and 21.32° respectively. It indicated that both material were amorphous. Determination of optimum pH and contact time on adsorption of silica gel 3-aminopropyltriethoxysilane (APTS) against Cu(II). The optimum pH and contact time was measured by using AAS. Optimum pH of adsorption silica gel modified APTS against metal Cu(II) could be obtained at pH 6 while optimum contact time was at 30 minutes, with the process of adsorption metal Cu(II) occured based on the model Freundlich isotherm.

  18. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol

    NASA Astrophysics Data System (ADS)

    Verma, Surbhi; Rani, Saruchi; Kumar, Sushil

    2018-05-01

    Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions ( x)ZrO2-(100 - x)SiO2 were fabricated by a modified sol-gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65-5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.

  19. Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars

    USGS Publications Warehouse

    Ruff, S.W.; Farmer, J.D.; Calvin, W.M.; Herkenhoff, K. E.; Johnson, J. R.; Morris, R.V.; Rice, M.S.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; Squyres, S. W.

    2011-01-01

    The presence of outcrops and soil (regolith) rich in opaline silica (???65-92 wt % SiO2) in association with volcanic materials adjacent to the "Home Plate" feature in Gusev crater is evidence for hydrothermal conditions. The Spirit rover has supplied a diverse set of observations that are used here to better understand the formation of silica and the activity, abundance, and fate of water in the first hydrothermal system to be explored in situ on Mars. We apply spectral, chemical, morphological, textural, and stratigraphic observations to assess whether the silica was produced by acid sulfate leaching of precursor rocks, by precipitation from silica-rich solutions, or by some combination. The apparent lack of S enrichment and the relatively low oxidation state of the Home Plate silica-rich materials appear inconsistent with the originally proposed Hawaiian analog for fumarolic acid sulfate leaching. The stratiform distribution of the silica-rich outcrops and their porous and brecciated microtextures are consistent with sinter produced by silica precipitation. There is no evidence for crystalline quartz phases among the silica occurrences, an indication of the lack of diagenetic maturation following the production of the amorphous opaline phase. Copyright ?? 2011 by the American Geophysical Union.

  20. Kinetics and pathways for crystallization of amorphous mullite and YAG

    NASA Astrophysics Data System (ADS)

    Johnson, Bradley Richard

    The crystallization behavior of quenched mullite (3Al2O 3•2SiO2) and YAG (Y3Al5O 12) composition glasses (made using containerless methods) were characterized with the ultimate goal of producing single crystal, structural, ceramic oxide fibers from these materials. The kinetics for crystallization were determined from thermal analysis experiments. From the results, time-temperature-transformation (TTT) curves were calculated. The crystallization pathways were determined by examining the crystal structure, microstructure, and chemical composition of heat treated specimens using x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A machine was also designed and built to facilitate controlled crystallization of amorphous fibers. Quenched, Y3Al5O12 composition beads crystallized at temperatures as low as 840°C. The as-received specimens contained a few, small YAG crystals, in addition to a mixture of different amorphous phases. The coexistence of two different amorphous phases of the same composition, but having different densities is termed polyamorphism, and this has been reported to occur in Y3Al5O12 composition quenched melts. Although various crystallization pathways have been reported for chemically synthesized YAG precursors, these specimens crystallized directly into YAG, which was the only phase formed. Quenched, 3Al2O3•2SiO2 composition mullite beads and fibers crystallized at temperatures as low as 920°C. Due to phase separation in the quenched melts, multiple phases with slightly different compositions and different crystallization activation energies crystallized. These phases were not equilibrium, 3:2 mullite, but metastable, alumina-rich, pseudotetragonal mullite. The residual, amorphous, silica-rich phase existed as numerous, 7--10 nm sized inclusions embedded within pseudotetragonal mullite. A large amount of internal strain was detected in pseudotetragonal mullite, and the source of this strain was suggested to be the embedded, silica-rich inclusions. Pseudotetragonal mullite gradually converted to equilibrium, orthorhombic, 3:2 mullite between 1000--1400°C. This was characterized by assimilation of the embedded, silica-rich inclusions and the elimination of internal strain. Additionally, recrystallization of numerous, small, strain- and inclusion-free, 3:2 mullite grains was observed to occur as the process proceeded to completion.

  1. Control of Cr6+ emissions from gas metal arc welding using a silica precursor as a shielding gas additive.

    PubMed

    Topham, Nathan; Wang, Jun; Kalivoda, Mark; Huang, Joyce; Yu, Kuei-Min; Hsu, Yu-Mei; Wu, Chang-Yu; Oh, Sewon; Cho, Kuk; Paulson, Kathleen

    2012-03-01

    Hexavalent chromium (Cr(6+)) emitted from welding poses serious health risks to workers exposed to welding fumes. In this study, tetramethylsilane (TMS) was added to shielding gas to control hazardous air pollutants produced during stainless steel welding. The silica precursor acted as an oxidation inhibitor when it decomposed in the high-temperature welding arc, limiting Cr(6+) formation. Additionally, a film of amorphous SiO(2) was deposited on fume particles to insulate them from oxidation. Experiments were conducted following the American Welding Society (AWS) method for fume generation and sampling in an AWS fume hood. The results showed that total shielding gas flow rate impacted the effectiveness of the TMS process. Increasing shielding gas flow rate led to increased reductions in Cr(6+) concentration when TMS was used. When 4.2% of a 30-lpm shielding gas flow was used as TMS carrier gas, Cr(6+) concentration in gas metal arc welding (GMAW) fumes was reduced to below the 2006 Occupational Safety and Health Administration standard (5 μg m(-3)) and the efficiency was >90%. The process also increased fume particle size from a mode size of 20 nm under baseline conditions to 180-300 nm when TMS was added in all shielding gas flow rates tested. SiO(2) particles formed in the process scavenged nanosized fume particles through intercoagulation. Transmission electron microscopy imagery provided visual evidence of an amorphous film of SiO(2) on some fume particles along with the presence of amorphous SiO(2) agglomerates. These results demonstrate the ability of vapor phase silica precursors to increase welding fume particle size and minimize chromium oxidation, thereby preventing the formation of hexavalent chromium.

  2. Optical and Gravimetric Partitioning of Coastal Ocean Suspended Particulate Inorganic Matter (PIM)

    NASA Astrophysics Data System (ADS)

    Stavn, R. H.; Zhang, X.; Falster, A. U.; Gray, D. J.; Rick, J. J.; Gould, R. W., Jr.

    2016-02-01

    Recent work on the composition of suspended particulates of estuarine and coastal waters increases our capabilities to investigate the biogeochemal processes occurring in these waters. The biogeochemical properties associated with the particulates involve primarily sorption/desorption of dissolved matter onto the particle surfaces, which vary with the types of particulates. Therefore, the breakdown into chemical components of suspended matter will greatly expand the biogeochemistry of the coastal ocean region. The gravimetric techniques for these studies are here expanded and refined. In addition, new optical inversions greatly expand our capabilities to study spatial extent of the components of suspended particulate matter. The partitioning of a gravimetric PIM determination into clay minerals and amorphous silica is aided by electron microprobe analysis. The amorphous silica is further partitioned into contributions by detrital material and by the tests of living diatoms based on an empirical formula relating the chlorophyll content of cultured living diatoms in log phase growth to their frustules determined after gravimetric analysis of the ashed diatom residue. The optical inversion of composition of suspended particulates is based on the entire volume scattering function (VSF) measured in the field with a Multispectral Volume Scattering Meter and a LISST 100 meter. The VSF is partitioned into an optimal combination of contributions by particle subpopulations, each of which is uniquely represented by a refractive index and a log-normal size distribution. These subpopulations are aggregated to represent the two components of PIM using the corresponding refractive indices and sizes which also yield a particle size distribution for the two components. The gravimetric results of partitioning PIM into clay minerals and amorphous silica confirm the optical inversions from the VSF.

  3. Effect of radiation-induced amorphization on smectite dissolution.

    PubMed

    Fourdrin, C; Allard, T; Monnet, I; Menguy, N; Benedetti, M; Calas, G

    2010-04-01

    Effects of radiation-induced amorphization of smectite were investigated using artificial irradiation. Beams of 925 MeV Xenon ions with radiation dose reaching 73 MGy were used to simulate the effects generated by alpha recoil nuclei or fission products in the context of high level nuclear waste repository. Amorphization was controlled by X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. An important coalescence of the smectite sheets was observed which lead to a loss of interparticle porosity. The amorphization is revealed by a loss of long-range structure and accompanied by dehydroxylation. The dissolution rate far-from-equilibrium shows that the amount of silica in solution is two times larger in the amorphous sample than in the reference clay, a value which may be enhanced by orders of magnitude when considering the relative surface area of the samples. Irradiation-induced amorphization thus facilitates dissolution of the clay-derived material. This has to be taken into account for the safety assessment of high level nuclear waste repository, particularly in a scenario of leakage of the waste package which would deliver alpha emitters able to amorphize smectite after a limited period of time.

  4. Self-assembly of amphiphilic janus particles into monolayer capsules for enhanced enzyme catalysis in organic media.

    PubMed

    Cao, Wei; Huang, Renliang; Qi, Wei; Su, Rongxin; He, Zhimin

    2015-01-14

    Encapsulation of enzymes during the creation of an emulsion is a simple and efficient route for enhancing enzyme catalysis in organic media. Herein, we report a capsule with a shell comprising a monolayer of silica Janus particles (JPs) (referred to as a monolayer capsule) and a Pickering emulsion for the encapsulation of enzyme molecules for catalysis purposes in organic media using amphiphilic silica JPs as building blocks. We demonstrate that the JP capsules had a monolayer shell consisting of closely packed silica JPs (270 nm). The capsules were on average 5-50 μm in diameter. The stability of the JP capsules (Pickering emulsion) was investigated with the use of homogeneous silica nanoparticles as a control. The results show that the emulsion stabilized via amphiphilic silica JPs presented no obvious changes in physical appearance after 15 days, indicating the high stability of the emulsions and JP capsules. Furthermore, the lipase from Candida sp. was chosen as a model enzyme for encapsulation within the JP capsules during their formation. The catalytic performance of lipase was evaluated according to the esterification of 1-hexanol with hexanoic acid. It was found that the specific activity of the encapsulated enzymes (28.7 U mL(-1)) was more than 5.6 times higher than that of free enzymes in a biphasic system (5.1 U mL(-1)). The enzyme activity was further increased by varying the volume ratio of water to oil and the JPs loadings. The enzyme-loaded capsule also exhibited high stability during the reaction process and good recyclability. In particular, the jellification of agarose in the JP capsules further enhanced their operating stability. We believe that the monolayer structure of the JP capsules, together with their high stability, rendered the capsules to be ideal enzyme carriers and microreactors for enzyme catalysis in organic media because they created a large interfacial area and had low mass transfer resistance through the monolayer shell.

  5. The nanosilica hazard: another variable entity

    PubMed Central

    2010-01-01

    Silica nanoparticles (SNPs) are produced on an industrial scale and are an addition to a growing number of commercial products. SNPs also have great potential for a variety of diagnostic and therapeutic applications in medicine. Contrary to the well-studied crystalline micron-sized silica, relatively little information exists on the toxicity of its amorphous and nano-size forms. Because nanoparticles possess novel properties, kinetics and unusual bioactivity, their potential biological effects may differ greatly from those of micron-size bulk materials. In this review, we summarize the physico-chemical properties of the different nano-sized silica materials that can affect their interaction with biological systems, with a specific emphasis on inhalation exposure. We discuss recent in vitro and in vivo investigations into the toxicity of nanosilica, both crystalline and amorphous. Most of the in vitro studies of SNPs report results of cellular uptake, size- and dose-dependent cytotoxicity, increased reactive oxygen species levels and pro-inflammatory stimulation. Evidence from a limited number of in vivo studies demonstrates largely reversible lung inflammation, granuloma formation and focal emphysema, with no progressive lung fibrosis. Clearly, more research with standardized materials is needed to enable comparison of experimental data for the different forms of nanosilicas and to establish which physico-chemical properties are responsible for the observed toxicity of SNPs. PMID:21126379

  6. Facile synthesis of functionalized ionic surfactant templated mesoporous silica for incorporation of poorly water-soluble drug.

    PubMed

    Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-08-15

    The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Study of interaction in silica glass via model potential approach

    NASA Astrophysics Data System (ADS)

    Mann, Sarita; Rani, Pooja

    2016-05-01

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.

  8. Design and basic properties of ternary gypsum-based mortars

    NASA Astrophysics Data System (ADS)

    Doleželová, M.; Vimmrová, A.

    2017-10-01

    Ternary mortars, prepared from gypsum, hydrated lime and three types of pozzolan were designed and tested. As a pozzolan admixture crushed ceramic, silica fume and granulated blast slag were used. The amount of pozzolans in the mixtures was determined according to molar weight of amorphous SiO2 in the material. The samples were stored under the water. The basic physical properties and mechanical properties were measured. The properties were compared with the properties of material without pozzolan. The best results in the water environment were achieved by the samples with silica fume.

  9. Application of DFT-Derived Relationships Between Chemical Environment and 29Si Nuclear Magnetic Resonance Spectroscopy to Determine Structure in Silicon Oxycarbide Ceramics

    NASA Astrophysics Data System (ADS)

    Nimmo, John Paul, II

    Silicon oxycarbide (SiCO) is an amorphous ceramic material widely used in industrial applications, for its useful electronic and biologically-compatible properties. SiCO is resistant to crystallization, remaining amorphous even above temperatures at which amorphous SiO2 would crystallize. Though silica (SiO2) and silicon carbide (SiC) are almost immiscible, it is useful to consider the material as a phase composition of these along with carbon, according to the formula below. The first two terms in braces can be considered as being the "SiCO glass" into which a third term representing excess or "free" carbon is incorporated as graphite-like nano-flakes and bands.

  10. New transformations between crystalline and amorphous ice

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Chen, L. C.; Mao, H. K.

    1989-01-01

    High-pressure optical and spectroscopic techniques were used to obtain directly the ice I(h) - hda-ice transformation in a diamond-anvil cell, and the stability of the amorphous form is examined as functions of pressure and temperature. It is demonstrated that hda-ice transforms abruptly at 4 GPa and 77 K to a crystalline phase close in structure to orientationally disordered ice-VII and to a more highly ordered, ice-VIII-like structure at higher temperatures. This is the first time that an amorphous solid is observed to convert to a crystalline solid at low temperatures by compression alone. Phase transitions of this type may be relevant on icy planetary satellites, and there may also be implications for the high-pressure behavior of silica.

  11. Preparation and Characterization of ZnO Nanoparticles Supported on Amorphous SiO2

    PubMed Central

    Chen, Ying; Ding, Hao; Sun, Sijia

    2017-01-01

    In order to reduce the primary particle size of zinc oxide (ZnO) and eliminate the agglomeration phenomenon to form a monodisperse state, Zn2+ was loaded on the surface of amorphous silica (SiO2) by the hydrogen bond association between hydroxyl groups in the hydrothermal process. After calcining the precursors, dehydration condensation among hydroxyl groups occurred and ZnO nanoparticles supported on amorphous SiO2 (ZnO–SiO2) were prepared. Furthermore, the SEM and TEM observations showed that ZnO nanoparticles with a particle size of 3–8 nm were uniformly and dispersedly loaded on the surface of amorphous SiO2. Compared with pure ZnO, ZnO–SiO2 showed a much better antibacterial performance in the minimum inhibitory concentration (MIC) test and the antibacterial properties of the paint adding ZnO–SiO2 composite. PMID:28796157

  12. How Nano are Nanocomposites (Preprint)

    DTIC Science & Technology

    2007-02-01

    with λ being the wavelength of the radiation . Based on this Fourier transform, r and q are conjugate variables. Although Eqs. (1) and (2) are...generation material is produced from porcellanite, a mineral rich in amorphous silica that is found in the Negev desert in southern Israel (Dimosil

  13. Si-29 NMR spectroscopy of naturally-shocked quartz from Meteor Crater, Arizona: Correlation to Kieffer's classification scheme

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Cygan, R. T.; Kirkpatrick, R. J.

    1993-01-01

    We have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.

  14. Understanding and simulating the material behavior during multi-particle irradiations

    PubMed Central

    Mir, Anamul H.; Toulemonde, M.; Jegou, C.; Miro, S.; Serruys, Y.; Bouffard, S.; Peuget, S.

    2016-01-01

    A number of studies have suggested that the irradiation behavior and damage processes occurring during sequential and simultaneous particle irradiations can significantly differ. Currently, there is no definite answer as to why and when such differences are seen. Additionally, the conventional multi-particle irradiation facilities cannot correctly reproduce the complex irradiation scenarios experienced in a number of environments like space and nuclear reactors. Therefore, a better understanding of multi-particle irradiation problems and possible alternatives are needed. This study shows ionization induced thermal spike and defect recovery during sequential and simultaneous ion irradiation of amorphous silica. The simultaneous irradiation scenario is shown to be equivalent to multiple small sequential irradiation scenarios containing latent damage formation and recovery mechanisms. The results highlight the absence of any new damage mechanism and time-space correlation between various damage events during simultaneous irradiation of amorphous silica. This offers a new and convenient way to simulate and understand complex multi-particle irradiation problems. PMID:27466040

  15. A novel composite material based on antimony(III) oxide and amorphous silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemnukhova, Ludmila A.; Panasenko, Alexander E., E-mail: panasenko@ich.dvo.ru

    2013-05-01

    The composite material nSb₂O₃·mSiO₂·xH₂O was prepared by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. It has been shown that the composition of the material is influenced by the ratio of the initial components and the acidity of the reaction medium. The morphology of the material particles and its specific surface area have been determined. The thermal and optic properties were also investigated. - Graphical abstract: Novel composite material containing amorphous silica and crystal antimony(III) oxide has been synthesized by hydrolysis of SbCl₃ and Na₂SiO₃ in an aqueous medium. Highlights: • The composite material nSb₂O₃·mSiO₂·xH₂O was prepared in anmore » aqueous medium. • The composition of the material is controllable by a synthesis conditions. • The morphology of the material and its optic properties have been determined.« less

  16. Biomimetic Photonic Crystals based on Diatom Algae Frustules

    NASA Astrophysics Data System (ADS)

    Mishler, Jonathan; Alverson, Andrew; Herzog, Joseph

    2015-03-01

    Diatom algae are unicellular, photosynthetic microorganisms with a unique external shell known as a frustule. Frustules, which are composed of amorphous silica, exhibit a unique periodic nano-patterning, distinguishing diatoms from other types of phytoplankton. Diatoms have been studied for their distinctive optical properties due to their resemblance of photonic crystals. In this regard, diatoms are not only considered for their applications as photonic crystals, but also for their use as biomimetic templates for artificially fabricated photonic crystals. Through the examination and measurement of the physical characteristics of many scanning electron microscope (SEM) images of diatom frustules, a biomimetic photonic crystal derived from diatom frustules can be recreated and modeled with the finite element method. In this approach, the average geometries of the diatom frustules are used to recreate a 2-dimensional photonic crystal, after which the electric field distribution and optical transmission through the photonic crystal are both measured. The optical transmission is then compared to the transmission spectra of a regular hexagonal photonic crystal, revealing the effects of diatom geometry on their optical properties. Finally, the dimensions of the photonic crystal are parametrically swept, allowing for further control over the transmission of light through the photonic crystal.

  17. Two-dimensional silica opens new perspectives

    NASA Astrophysics Data System (ADS)

    Büchner, Christin; Heyde, Markus

    2017-12-01

    In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science, catalysis and the field of 2D materials, a large number of theoretical and experimental studies on silica bilayers have been reported in the last years. This review aims to provide an overview on the insights gained on this material and to point out opportunities for further discovery in various fields.

  18. Organically Modified Silicas on Metal Nanowires

    PubMed Central

    2010-01-01

    Organically modified silica coatings were prepared on metal nanowires using a variety of silicon alkoxides with different functional groups (i.e., carboxyl groups, polyethylene oxide, cyano, dihydroimidazole, and hexyl linkers). Organically modified silicas were deposited onto the surface of 6-μm-long, ∼300-nm-wide, cylindrical metal nanowires in suspension by the hydrolysis and polycondensation of silicon alkoxides. Syntheses were performed at several ratios of tetraethoxysilane to an organically modified silicon alkoxide to incorporate desired functional groups into thin organosilica shells on the nanowires. These coatings were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. All of the organically modified silicas prepared here were sufficiently porous to allow the removal of the metal nanowire cores by acid etching to form organically modified silica nanotubes. Additional functionality provided to the modified silicas as compared to unmodified silica prepared using only tetraethoxysilane precursors was demonstrated by chromate adsorption on imidazole-containing silicas and resistance to protein adsorption on polyethyleneoxide-containing silicas. Organically modified silica coatings on nanowires and other nano- and microparticles have potential application in fields such as biosensing or nanoscale therapeutics due to the enhanced properties of the silica coatings, for example, the prevention of biofouling. PMID:20715881

  19. Damage Accumulation in Silica Glass Nanofibers.

    PubMed

    Bonfanti, Silvia; Ferrero, Ezequiel E; Sellerio, Alessandro L; Guerra, Roberto; Zapperi, Stefano

    2018-06-06

    The origin of the brittle-to-ductile transition, experimentally observed in amorphous silica nanofibers as the sample size is reduced, is still debated. Here we investigate the issue by extensive molecular dynamics simulations at low and room temperatures for a broad range of sample sizes, with open and periodic boundary conditions. Our results show that small sample-size enhanced ductility is primarily due to diffuse damage accumulation, that for larger samples leads to brittle catastrophic failure. Surface effects such as boundary fluidization contribute to ductility at room temperature by promoting necking, but are not the main driver of the transition. Our results suggest that the experimentally observed size-induced ductility of silica nanofibers is a manifestation of finite-size criticality, as expected in general for quasi-brittle disordered networks.

  20. Formation and characterization of high surface area thermally stabilized titania/silica composite materials via hydrolysis of titanium(IV) tetra-isopropoxide in sols of spherical silica particles.

    PubMed

    Khalil, Kamal M S; Elsamahy, Ahmed A; Elanany, Mohamed S

    2002-05-15

    A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (Stöber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.

  1. Hierarchical inorganic-organic multi-shell nanospheres for intervention and treatment of lead-contaminated blood

    NASA Astrophysics Data System (ADS)

    Khairy, Mohamed; El-Safty, Sherif A.; Shenashen, Mohamed. A.; Elshehy, Emad A.

    2013-08-01

    The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia.The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia. Electronic supplementary information (ESI) available: The experimental procedures for synthesis of AC-LHT, mesoporous core/double shell silica, and optical core/multi-shell sensors. The adsorption capacity, optical recognition of Pb ions, colorimetric response of Pb ions in ethanol medium, Langmuir adsorption isotherm and reusability of captor are addressed. See DOI: 10.1039/c3nr02403b

  2. Biomimetic synthesis of sericin and silica hybrid colloidosomes for stimuli-responsive anti-cancer drug delivery systems.

    PubMed

    Yang, Ying; Cai, Yurong; Sun, Ning; Li, Ruijing; Li, Wenhua; Kundu, Subhas C; Kong, Xiangdong; Yao, Juming

    2017-03-01

    Colloidosomes are becoming popular due to their significant flexibility with respect to microcapsule functionality. This study reports a facile approach for synthesizing silica colloidosomes by using sericin microcapsule as the matrix in an environment-friendly method. The silica colloid arrangement on the sericin microcapsules are orchestrated by altering the reaction parameters. Doxorubicin (DOX), used as a hydrophilic anti-cancer drug model, is encapsulated into the colloidosomes in a mild aqueous solution and becomes stimuli-responsive to different external environments, including pH values, protease, and ionic strength are also observed. Colloidosomes with sub-monolayers, close-packed monolayers, and close-packed multi-layered SiO 2 colloid shells can be fabricated under the optimized reaction conditions. A flexible DOX release from colloidosomes can be obtained via modulating the SiO 2 colloid layer arrangement and thickness. The close-packed and multi-layered SiO 2 colloid shells can best protect the colloidosomes and delay the rapid cargo release. MG-63 cells are killed when doxorubicin is released from the microcapsules due to degradation in the microenvironment of cancer cells. The drug release period is prolonged as SiO 2 shell thickness and integrity increase. This work suggests that the hybrid colloidosomes can be effective in a bioactive molecule delivery system. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Metal shell technology based upon hollow jet instability. [for inertial confinement fusion

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.; Lee, M. C.; Wang, T. G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. A technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal is described. Shells in the 0.7-2.0 mm size range have been produced using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold-lead-antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise.

  4. Fabrication of Photocatalytic Paper Using TiO2 Nanoparticles Confined in Hollow Silica Capsules.

    PubMed

    Fujiwara, Kensei; Kuwahara, Yasutaka; Sumida, Yuki; Yamashita, Hiromi

    2017-01-10

    TiO 2 nanoparticles (NPs) encapsulated in hollow silica spheres (TiO 2 @HSSs) show a shielding-effect that can insulate photocatalytically active TiO 2 NPs from the surrounding environment and thus prohibit the self-degradation of organic support materials under ultraviolet (UV)-light irradiation. In this study, photocatalytically active papers were fabricated by combining TiO 2 @HSS and cellulose fibers, and their photocatalytic activities and durability under UV-light irradiation were examined. The yolk-shell nanostructured TiO 2 @HSS, which has an ample void space between inner TiO 2 NPs and an outer silica shell, was synthesized using a facile single-step method utilizing an oil-in-water microemulsion as an organic template. The thus-prepared TiO 2 @HSS particles were deposited onto a cellulose paper either by the chemical adhesion process via ionic bonding or by the physical adhesion process using a dual polymer system. The obtained paper containing TiO 2 @HSS particles with high air permeability exhibited a higher photocatalytic activity in the photocatalytic decomposition of volatile organic compounds than unsupported powdery TiO 2 @HSS particles because of the uniform dispersion on the paper with a reticular fiber network. In addition, the paper was hardly damaged under UV-light irradiation, whereas the paper containing naked TiO 2 NPs showed a marked deterioration with a considerably decreased strength, owing to the ability of the silica shell to prevent direct contact between TiO 2 and organic fibers. This study can offer a promising method to fabricate photocatalytically active papers with a photoresistance property available for real air cleaning.

  5. Self-Cooling Gradient Shell for Body Armor

    DTIC Science & Technology

    2012-05-10

    Silica gel 2.1 Filter paper pocket (no absorbent) 2.0 2 g Silica gel (150-Å pore size) + 2 g sodium polyacrylate (SPA) in filter paper pocket 2.7...layer of filter paper improved the temperature difference by an additional 0.5 °C. More-absorbent materials, such as sodium polyacrylate (SPA) or... sodium polyacrylate SPM scanning probe microscopy µm micrometer Wm-2 watts per square meter °C degrees Celsius

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ao; Li, Weizhen; Ling, Yang

    Multi-walled carbon nanotubes (MWCNTs) were coated with silica by a sol–gel method to improve interfacial bonding and dispersion of nanotubes in the diglycidyl ether of bisphenol A (DGEBA) matrix. TEM and FE-SEM measurements showed that the silica shell was successfully coated on the surface of r-MWCNTs (as-received MWCNTs), and that the dispersion of MWCNT@SiO 2 in the epoxy matrix and interfacial adhesion between MWCNTs and epoxy were improved through the silica shell formation. The effects of silica-coated multi-walled carbon nanotube (MWCNT@SiO 2) addition on the curing behavior of epoxy resin, and on the physical and thermomechanical properties of epoxy composites,more » were studied. FT-IR measurements of different blends at different curing times indicated that the curing reaction was accelerated with the presence of MWCNTs and increased with the content of MWCNT@SiO 2. DSC results confirmed that the value of activation energy decreased with the introduction of MWCNTs in the order of MWCNT@SiO 2 < r-MWCNTs < epoxy. It was found that the thermal conductivity of epoxy composites were significantly enhanced by incorporation of MWCNT@SiO 2, relative to composites with r-MWCNTs, while the values of the glass transition temperature slightly increased, and the high electrical resistivity of these composites was retained overall.« less

  7. Agricultural waste as a source for the production of silica nanoparticles.

    PubMed

    Vaibhav, Vineet; Vijayalakshmi, U; Roopan, S Mohana

    2015-03-15

    The major interest of the paper deals with the extraction of silica from four natural sources such as rice husk, bamboo leaves, sugarcane bagasse and groundnut shell. These waste materials in large quantities can create a serious environmental problem. Hence, there is a need to adopt proper strategy to reduce the waste. In the present investigation, all the waste materials are subjected to moisture removal in a hot plate and sintered at 900°C for 7 h. The sintered powder was treated with 1 M NaOH to form sodium silicate and then with 6M H2SO4 to precipitate silica. The prepared silica powders were characterized by FT-IR, XRD and SEM-EDAX analysis. The silica recovered from different sources was found to vary between 52% and 78%. Magnesium substituted silica was formed from the groundnut waste and further treatment is required to precipitate silica. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Self-assembly and graft polymerization route to Monodispersed Fe3O4@SiO2--polyaniline core-shell composite nanoparticles: physical properties.

    PubMed

    Reddy, Kakarla Raghava; Lee, Kwang-Pill; Kim, Ju Young; Lee, Youngil

    2008-11-01

    This study describes the synthesis of monodispersed core-shell composites of silica-modified magnetic nanoparticles and conducting polyaniline by self-assembly and graft polymerization. Magnetic ferrite nanoparticles (Fe3O4) were prepared by coprecipitation of Fe+2 and Fe+3 ions in alkaline solution, and then silananized. The silanation of magnetic particles (Fe3O4@SiO2) was carried out using 3-bromopropyltrichlorosilane (BPTS) as the coupling agent. FT-IR spectra indicated the presence of Fe--O--Si chemical bonds in Fe3O4@SiO2. Core-shell type nanocomposites (Fe3O4@SiO2/PANI) were prepared by grafting polyaniline (PANI) on the surface of silanized magnetic particles through surface initiated in-situ chemical oxidative graft polymerization. The nanocomposites were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), Fourier transform infrared (FTIR) spectra, UV-visible spectroscopy, photoluminescence (PL) spectra, electrical conductivity and magnetic characteristics. HRTEM images of the nanocomposites revealed that the silica-modified magnetic particles made up the core while PANI made up the shell. The XPS spectrum revealed the presence of silica in the composites, and the XRD results showed that the composites were more crystalline than pure PANI. PL spectra show that composites exhibit photoluminescent property. Conductivity of the composites (6.2 to 9.4 x 10(-2) S/cm) was higher than that of pristine PANI (3.7 x 10(-3) S/cm). The nanocomposites exhibited superparamagnetism. Formation mechanism of the core-shell structured nanocomposites and the effect of modified magnetic nanoparticles on the electro-magnetic properties of the Fe3O4@SiO2/PANI nanocomposites are also investigated. This method provides a new strategy for the generation of multi-functional nanocomposites that composed of other conducting polymers and metal nanoparticles.

  9. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions: Impact of Particle Size, Line Tension, and Surface Functionality

    PubMed Central

    2017-01-01

    Core–shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO2-blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO2-philicity. The successful synthesis of core–shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core–shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of designer nucleating particles to enhance the foam cell nucleation efficiency. PMID:28980799

  10. Silica-Assisted Nucleation of Polymer Foam Cells with Nanoscopic Dimensions: Impact of Particle Size, Line Tension, and Surface Functionality.

    PubMed

    Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G Julius

    2017-11-01

    Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO 2 -blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO 2 -philicity. The successful synthesis of core-shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core-shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO 2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO 2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of designer nucleating particles to enhance the foam cell nucleation efficiency.

  11. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Baharin, R.; Hobson, P. R.; Smith, D. R.

    2010-09-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

  12. Composites of silica with immobilized cholinesterase incorporated into polymeric shell

    NASA Astrophysics Data System (ADS)

    Payentko, Victoriya; Matkovsky, Alexander; Matrunchik, Yulia

    2015-02-01

    Synthetic approaches for new nanocomposite materials with relatively high cholinesterase activity have been developed. The peculiarity of the formation of such systems is the introduction of cholinesterase into polymer with subsequent incorporation on the ready-made silica particles and into the polysiloxane matrixes during sol-gel synthesis. Evaluation of the cholinesterase activity has been fulfilled through the imitation of the acetylcholine chloride decomposition reaction. Values of activity for cholinesterase nanocomposites demonstrated in this work are higher than those for the native cholinesterase. The higher activity of cholinesterase contained in nanocomposites was found for those prepared using highly dispersed silica.

  13. Fabrication of silica hollow particles using yeast cells as a template

    NASA Astrophysics Data System (ADS)

    Liao, Shenglan; Lin, Liqin; Chen, Xiaofang; Liu, Jingru; Zhang, Biao

    2018-04-01

    Inorganic hollow particles have attracted great interest in recent years. In this study, silica micro spheres were produced. Yeast cells were used as a biological template. The silica shell was synthesized by the hydrolysis of tetraethoxysilane (TEOS) in water-alcohol mixtures as solvent using ammonia as a catalyst according to the Stoeber process. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the products. The results showed that the thermally treated samples were SiO2 hollow microspheres with a diameter varying between 1-5μm.

  14. Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine

    DOE PAGES

    Sun, Jie; Jakobsson, Eric; Wang, Yingxiao; ...

    2015-01-19

    In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interiormore » structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.« less

  15. Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jie; Jakobsson, Eric; Wang, Yingxiao

    In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interiormore » structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.« less

  16. Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression

    NASA Astrophysics Data System (ADS)

    Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping

    2015-10-01

    Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.

  17. Magnetic and fluorescent glycopolymer hybrid nanoparticles for intranuclear optical imaging.

    PubMed

    Pfaff, André; Schallon, Anja; Ruhland, Thomas M; Majewski, Alexander P; Schmalz, Holger; Freitag, Ruth; Müller, Axel H E

    2011-10-10

    The synthesis of galactose-displaying core-shell nanospheres exhibiting both fluorescent and magnetic properties by grafting a glycocopolymer consisting of 6-O-methacryloylgalactopyranose (MAGal) and 4-(pyrenyl)butyl methacrylate (PyMA) onto magnetic silica particles via thiol-ene chemistry is reported. Magnetization measurements indicated that neither the encapsulation of the iron oxide particles into silica nor the grafting of the glycocopolymer chains had a significant influence on the superparamagnetic properties. This not only simplifies the purification of the particles but may facilitate the use of the particles in applications such as hyperthermia or magnetic resonance imaging (MRI). Furthermore, the hydrophilic glycopolymer shell provided solubility of the particles in aqueous medium and enabled the uptake of the particles into the cytoplasm and nucleus of lung cancer cells via carbohydrate-lectin recognition effects.

  18. The Role of Siliceous Hydrothermal Breccias in the Genesis of Volcanic Massive Sulphide Deposits - Ancient and Recent Systems

    NASA Astrophysics Data System (ADS)

    Costa, I. A.; Barriga, F. J.; Fouquet, Y.

    2014-12-01

    Siliceous hydrothermal breccias were sampled in two Mid-Atlantic Ridge active sites: Lucky Strike and Menez Gwen. These hydrothermal fields are located in the border of the Azorean plateau, southwest of the Azores islands where the alteration processes affecting basaltic rocks are prominent (Costa et al., 2003). The hydrothermal breccias are genetically related with the circulation of low temperature hydrothermal fluids in diffuse vents. The groundmass of these breccias precipitates from the fluid and consolidates the clastic fragments mostly composed of basalt. The main sources are the surrounding volcanic hills. Breccias are found near hydrothermal vents and may play an important role in the protection of subseafloor hydrothermal deposits forming an impermeable cap due to the high content in siliceous material. The amorphous silica tends to precipitate when the fluid is conductively cooled as proposed by Fouquet et al. (1998) after Fournier (1983). The process evolves gradually from an initial stage where we have just the fragments and circulating seawater. The ascending hydrothermal fluid mixes with seawater, which favours the precipitation of the sulphide components. Sealing of the initially loose fragments begins, the temperature rises below this crust, and the processes of mixing fluid circulation and conductive cooling are simultaneous. At this stage the fluid becomes oversaturated with respect to amorphous silica. This form of silica can precipitate in the open spaces of the porous sulphides and seal the system. Normally this can happen at low temperatures. At this stage the hydrothermal breccia is formed creating a progressively less permeable, eventually impermeable cap rock at the surface. Once the fluid is trapped under this impermeable layer, conductive cooling is enhanced and mixing with seawater is restricted, making the precipitation of amorphous silica more efficient. Since the first discovery and description of recent mineralized submarine hydrothermal deposits, comparison with ancient volcanic massive sulphide deposits is appropriate. The proposed model can explain some of the processes taking place in the early phase of formation of old deposits where equivalent siliceous material is found in the hanging wall of the ore bodies (e.g. Barriga and Fyfe, 1988).

  19. Experimental and numerical simulation of dissolution and precipitation: implications for fracture sealing at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

    2003-05-01

    Plugging of flow paths caused by mineral precipitation in fractures above the potential repository at Yucca Mountain, Nevada could reduce the probability of water seeping into the repository. As part of an ongoing effort to evaluate thermal-hydrological-chemical (THC) effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation under anticipated temperature and pressure conditions in the repository. To replicate mineral dissolution by vapor condensate in fractured tuff, water was flowed through crushed Yucca Mountain tuff at 94 °C. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/l; silica was the dominant dissolved constituent. A portion of the steady-state mineralized water was flowed into a vertically oriented planar fracture in a block of welded Topopah Spring Tuff that was maintained at 80 °C at the top and 130 °C at the bottom. The fracture began to seal with amorphous silica within 5 days. A 1-D plug-flow numerical model was used to simulate mineral dissolution, and a similar model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The mineral precipitation simulations predicted the precipitation of amorphous silica at the base of the boiling front, leading to a greater than 50-fold decrease in fracture permeability in 5 days, consistent with the laboratory experiment. These results help validate the use of a numerical model to simulate THC processes at Yucca Mountain. The experiment and simulations indicated that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. However, differences in fluid flow rates and thermal gradients between the experimental setup and anticipated conditions at Yucca Mountain need to be factored into scaling the results of the dissolution/precipitation experiments and associated simulations to THC models for the potential Yucca Mountain repository.

  20. Planktic foraminifera form their shells by attachment of metastable carbonate particles

    NASA Astrophysics Data System (ADS)

    Wirth, R.; Jacob, D. E.; Eggins, S.

    2016-12-01

    Planktic foraminifera shells contribute up to half the inorganic carbon exported from the surface ocean to the seafloor. Their tiny calcium carbonate shells are preserved in sediments as calcite, and provide our most valuable geochemical archive of changes surface ocean conditions and climate spanning the last 100 million years. Here we show the shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei consist of nano-particulate vaterite and amorphous calcium carbonate. This indicates formation via a non-classical crystallization pathway involving metastable carbonate intermediate phases before transforming to calcite, and requires a new perspective on how geochemical proxies are incorporated into planktic foraminifer shells. Our findings indicate planktic foraminifer shells could be far more susceptible to dissolution and ocean acidification than previously thought, and account for unexpected shell dissolution above the calcite saturation horizon in the ocean, which is a major uncertainty in modelling oceanic carbon fluxes.

  1. Nano Titanium Monoxide Crystals and Unusual Superconductivity at 11 K.

    PubMed

    Xu, Jijian; Wang, Dong; Yao, Heliang; Bu, Kejun; Pan, Jie; He, Jianqiao; Xu, Fangfang; Hong, Zhanglian; Chen, Xiaobo; Huang, Fuqiang

    2018-03-01

    Nano TiO 2 is investigated intensely due to extraordinary photoelectric performances in photocatalysis, new-type solar cells, etc., but only very few synthesis and physical properties have been reported on nanostructured TiO or other low valent titanium-containing oxides. Here, a core-shell nanoparticle made of TiO core covered with a ≈5 nm shell of amorphous TiO 1+ x is newly constructed via a controllable reduction method to synthesize nano TiO core and subsequent soft oxidation to form the shell (TiO 1+ x ). The physical properties measurements of electrical transport and magnetism indicate these TiO@TiO 1+ x nanocrystals are a type-ІІ superconductor of a recorded T c onset = 11 K in the binary Ti-O system. This unusual superconductivity could be attributed to the interfacial effect due to the nearly linear gradient of O/Ti ratio across the outer amorphous layer. This novel synthetic method and enhanced superconductivity could open up possibilities in interface superconductivity of nanostructured composites with well-controlled interfaces. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1-xZnxSe Shell.

    PubMed

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-02-07

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd 1-x Zn x Se shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd 1-x Zn x Se core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.

  3. Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability

    PubMed Central

    Cui, Jiandong; Jia, Shiru; Liang, Longhao; Zhao, Yamin; Feng, Yuxiao

    2015-01-01

    A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance. PMID:26374188

  4. Paleozoic and Mesozoic silica-rich seawater: Evidence from hematitic chert (jasper) deposits

    USGS Publications Warehouse

    Grenne, Tor; Slack, J.F.

    2003-01-01

    Laterally extensive beds of highly siliceous, hematitic chert (jasper) are associated with many volcanogenic massive sulfide (VMS) deposits of Late Cambrian to Early Cretaceous age, yet are unknown in analogous younger (including modern) settings. Textural studies suggest that VMS-related jaspers in the Ordovician Løkken ophiolite of Norway were originally deposited as Si- and Fe-rich gels that precipitated from hydrothermal plumes as colloidal silica and iron-oxyhydroxide particles. Rare earth element patterns and Ge/Si ratios of the jaspers reflect precipitation from plumes having seawater dilution factors of 103 to 104, similar to modern examples. We propose that silica in the ancient jaspers is not derived from submarine hydrothermal fluids-as suggested by previous workers-but instead was deposited from silic-rich sea-water. Flocculation and precipitation of the silica were triggered inorganically by the bridging effect of positively charged iron oxyhydroxides in the hydrothermal plume. A model involving amorphous silica (opal-A) precursors to the jaspers suggests that silica contents of Cambrian-Early Cretaceous oceans were at least 110 mg/L SiO2, compared to values of 40-60 mg/L SiO2 estimated in other studies. The evolution of ancient silica-rich to modern Fe-rich precipitates in submarine-hydrothermal plumes reflects a changeover from silica-saturated to silica-depleted seawater through Phanerozoic time, due mainly to ocean-wide emergence of diatoms in the Cretaceous.

  5. Advances in Understanding of Swift Heavy-Ion Tracks in Complex Ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Maik; Devanathan, Ram; Toulemonde, Marcel

    2015-02-01

    Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A2B2O7, the track structure and radiation sensitivity shows a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss andmore » with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system).Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike.« less

  6. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations.

    PubMed

    Deng, Jiushuai; Li, Shimei; Zhou, Yuanyuan; Liang, Luyang; Zhao, Biao; Zhang, Xi; Zhang, Rui

    2018-01-01

    Core-shell flower-like composites were successfully prepared by a simple polyol method. These composites were formed by coating dual-phased (face-centered cubic [fcc] and hexagonal close-packed [hcp]) Co with amorphous CoO nanosheets. The microwave absorption properties of the flower-like Co@CoO paraffin composites with various Co@CoO amounts were then investigated. Results showed that the paraffin-based composite containing 70wt% flower-like Co@CoO displayed excellent microwave absorption properties (R E =24.74dB·GHz/mm). The minimum reflection loss of -30.4dB was obtained at 16.1GHz with a small thickness of 1.5mm, and 1.5mm bandwidth reached 4.6GHz (13.4-18GHz) below -10dB (90% microwave absorption). The excellent microwave absorption properties of flower-like Co@CoO are attributed to the synergetic effect between magnetic loss and dielectric loss, and the magnetic loss makes a main contribution to absorption. The core-shell flower-like structures with dual Co phases also contributed to microwave absorption. The amorphous CoO nanosheets were able to generate multiple reflections and exhibit scattering. In addition, the novel absorption mechanism that enhanced interfacial polarization was proposed. This enhancement resulted from the presence of interfaces between the hcp and fcc phases and between the core-shell Co@CoO composites. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    EPA Science Inventory

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  8. Graphene as a transparent electrode for amorphous silicon-based solar cells

    NASA Astrophysics Data System (ADS)

    Vaianella, F.; Rosolen, G.; Maes, B.

    2015-06-01

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  9. High-Quality Hollow Closed-Pore Silica Antireflection Coatings Based on Styrene-Acrylate Emulsion @ Organic-Inorganic Silica Precursor.

    PubMed

    Guo, Zhaolong; Zhao, Haixin; Zhao, Wei; Wang, Tao; Kong, Depeng; Chen, Taojing; Zhang, Xiaoyan

    2016-05-11

    Making use of a facile and low-cost way for the preparation of a hierarchically organized novel hollow closed-pore silica antireflective coating (CHAR) with tailored optical properties and a mechanical reliability is of great interest in the field of solar photovoltaic technology. The process mainly contains two aspects: (1) a styrene-acrylate emulsion @ organic-inorganic silica precursor (SA@OISP) core/shell hierarchical nanostructure, consisting of a sacrificial styrene-acrylate (SA) primary template, was fabricated using a sol-gel method; (2) the self-assembly of the nanostructures leads to SA@OISP nanospheres forming the high-quality hollow closed-pore silica antireflection coating (CHAR) by a dip-coating process and a subsequent calcination treatment. The resulting SA@OISP nanospheres have a mean diameter of 65.2 nm and contained a SA soft core with a mean diameter of approximately 54.8 nm and an organic-inorganic silica precursor (OISP) shell with a thickness of approximately 6-10 nm. Furthermore, the prepared CHAR film exhibited a high transmittance and good ruggedness. An average transmittance (TAV) of 97.64% was obtained, and the value is close to the ideal single-layered antireflection coating (98.09%) over a broad range of wavelengths (from 380 to 1100 nm). The CHAR film showed a stable TAV, with attenuation values of less than 0.8% and 0.43% after the abrasion test and the damp heat test, respectively. The conversion efficiency of the CHAR coating cover solar modules tends to be increased by 3.75%. The promising results obtained in this study suggest that the CHAR film was considered as an essential component of the solar module and were expected to provide additional solar energy harvest under extreme outdoor climates.

  10. Tailoring Silica-alumina Supported Pt-Pd As Poison Tolerant Catalyst For Aromatics Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yanzhe; Gutierrez, Oliver Y.; Haller, Gary L.

    2013-08-01

    The tailoring of the physicochemical and catalytic properties of mono- and bimetallic Pt-Pd catalysts supported on amorphous silica-alumina is studied. Electron energy loss spectroscopy and extended X-ray absorption fine structure analyses indicated that bimetallic Pt-Pd and relatively large monometallic Pd particles were formed, whereas the X-ray absorption near edge structure provided direct evidence for the electronic deficiency of the Pt atoms. The heterogeneous distribution of metal particles was also shown by high resolution transmission electron microscopy. The average structure of the bimetallic particles (Pt-rich core and Pd-rich shell) and the presence of Pd particles led to surface Pd enrichment, whichmore » was independently shown by IR spectra of adsorbed CO. The specific metal distribution, average size, and surface composition of the Pt-Pd particles depend to a large extent on the metal precursors. In the presence of NH3 ligands, Pt-Pd particles with a fairly homogeneous bulk and surface metal distribution were formed. Also high Lewis acid site concentration of the carrier leads to more homogeneous bimetallic particles. All catalysts were active for the hydrogenation of tetralin in the absence and presence of quinoline and dibenzothiophene (DBT). Monometallic Pt catalysts had the highest hydrogenation activity in poison-free and quinoline-containing feed. When DBT was present, bimetallic Pt-Pd catalysts with the most homogenous metal distribution showed the highest activity. The higher resistance of bimetallic catalysts towards sulfur poisoning compared to their monometallic Pt counterparts results from the weakened metal-sulfur bond on the electron deficient Pt atoms. Thus, increasing the fraction of electron deficient Pt on the surface of the bimetallic particles increases the efficiency of the catalyst in the presence of sulfur.« less

  11. High-pressure-induced structural changes, amorphization and molecule penetration in MFI microporous materials: a review.

    PubMed

    Vezzalini, Giovanna; Arletti, Rossella; Quartieri, Simona

    2014-06-01

    This is a comparative study on the high-pressure behavior of microporous materials with an MFI framework type (i.e. natural mutinaite, ZSM-5 and the all-silica phase silicalite-1), based on in-situ experiments in which penetrating and non-penetrating pressure-transmitting media were used. Different pressure-induced phenomena and deformation mechanisms (e.g. pressure-induced over-hydration, pressure-induced amorphization) are discussed. The influence of framework and extra-framework composition and of the presence of silanol defects on the response to the high pressure of MFI-type zeolites is discussed.

  12. Design, fabrication, and tests of a metallic shell tile thermal protection system for space transportation

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O.; Kelly, H. Neale

    1989-01-01

    A thermal protection tile for earth-to-orbit transports is described. The tiles consist of a rigid external shell filled with a flexible insulation. The tiles tend to be thicker than the current Shuttle rigidized silica tiles for the same entry heat load but are projected to be more durable and lighter. The tiles were thermally tested for several simulated entry trajectories.

  13. Correlated evolution of structure and mechanical loss of a sputtered silica film

    NASA Astrophysics Data System (ADS)

    Granata, Massimo; Coillet, Elodie; Martinez, Valérie; Dolique, Vincent; Amato, Alex; Canepa, Maurizio; Margueritat, Jérémie; Martinet, Christine; Mermet, Alain; Michel, Christophe; Pinard, Laurent; Sassolas, Benoît; Cagnoli, Gianpietro

    2018-05-01

    Energy dissipation in amorphous coatings severely affects high-precision optical and quantum transducers. In order to isolate the source of coating loss, we performed an extensive study of Raman scattering and mechanical loss of a thermally treated sputtered silica coating. Our results show that loss is correlated with the population of three-membered rings of Si-O4 tetrahedral units and support the evidence that thermal treatment reduces the density of metastable states separated by a characteristic energy of about 0.5 eV in favor of an increase of the density of states separated by smaller activation energies.

  14. Enhanced linear photonic nanojet generated by core-shell optical microfibers

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen

    2017-05-01

    The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.

  15. Multishell Au/Ag/SiO 2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes

    DOE PAGES

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier; ...

    2015-04-07

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO 2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of themore » hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less

  16. Confined Ultrathin Pd-Ce Nanowires with Outstanding Moisture and SO2 Tolerance in Methane Combustion.

    PubMed

    Peng, Honggen; Rao, Cheng; Zhang, Ning; Wang, Xiang; Liu, Wenming; Mao, Wenting; Han, Lu; Zhang, Pengfei; Dai, Sheng

    2018-05-22

    An efficient strategy (enhanced metal oxide interaction and core-shell confinement to inhibit the sintering of noble metal) is presented confined ultrathin Pd-CeO x nanowire (2.4 nm) catalysts for methane combustion, which enable CH 4 total oxidation at a low temperature of 350 °C, much lower than that of a commercial Pd/Al 2 O 3 catalyst (425 °C). Importantly, unexpected stability was observed even under harsh conditions (800 °C, water vapor, and SO 2 ), owing to the confinement and shielding effect of the porous silica shell together with the promotion of CeO 2 . Pd-CeO x solid solution nanowires (Pd-Ce NW) as cores and porous silica as shells (Pd-CeNW@SiO 2 ) were rationally prepared by a facile and direct self-assembly strategy for the first time. This strategy is expected to inspire more active and stable catalysts for use under severe conditions (vehicle emissions control, reforming, and water-gas shift reaction). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions

    PubMed Central

    2011-01-01

    Background Reactive-transport simulation is a tool that is being used to estimate long-term trapping of CO2, and wellbore and cap rock integrity for geologic CO2 storage. We reacted end member components of a heterolithic sandstone and shale unit that forms the upper section of the In Salah Gas Project carbon storage reservoir in Krechba, Algeria with supercritical CO2, brine, and with/without cement at reservoir conditions to develop experimentally constrained geochemical models for use in reactive transport simulations. Results We observe marked changes in solution composition when CO2 reacted with cement, sandstone, and shale components at reservoir conditions. The geochemical model for the reaction of sandstone and shale with CO2 and brine is a simple one in which albite, chlorite, illite and carbonate minerals partially dissolve and boehmite, smectite, and amorphous silica precipitate. The geochemical model for the wellbore environment is also fairly simple, in which alkaline cements and rock react with CO2-rich brines to form an Fe containing calcite, amorphous silica, smectite and boehmite or amorphous Al(OH)3. Conclusions Our research shows that relatively simple geochemical models can describe the dominant reactions that are likely to occur when CO2 is stored in deep saline aquifers sealed with overlying shale cap rocks, as well as the dominant reactions for cement carbonation at the wellbore interface. PMID:22078161

  18. Escaping the Tyranny of Carbothermal Reduction: Fumed Silica from Sustainable, Green Sources without First Having to Make SiCl4.

    PubMed

    Yi, Eongyu; Hyde, Clare E; Sun, Kai; Laine, Richard M

    2016-02-12

    Fumed silica is produced in 1000 tons per year quantities by combusting SiCl4 in H2 /O2 flames. Given that both SiCl4 and combustion byproduct HCl are corrosive, toxic and polluting, this route to fumed silica requires extensive safeguards that may be obviated if an alternate route were found. Silica, including rice hull ash (RHA) can be directly depolymerized using hindered diols to generate distillable spirocyclic alkoxysilanes or Si(OEt)4 . We report here the use of liquid-feed flame spray pyrolysis (LF-FSP) to combust the aforementioned precursors to produce fumed silica very similar to SiCl4 -derived products. The resulting powders are amorphous, necked, <50 nm average particle sizes, with specific surface areas (SSAs) of 140-230 m(2)  g(-1) . The LF-FSP approach does not require the containment constraints of the SiCl4 process and given that the RHA silica source is produced in million ton per year quantities worldwide, the reported approach represents a sustainable, green and potentially lower-cost alternative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The radiolysis and radioracemization of amino acids on silica surfaces

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Lemmon, R. M.

    1981-01-01

    Results are presented of experiments on the radioracemization of amino acids in the presence of silica surfaces such as may have been found on the prebiotic earth. L-leucine and a DL-leucine mixture deposited on samples of 1-quartz and an amorphous silica preparation (Syloid 63) was subjected to Co-60 gamma-ray irradiation, then analyzed by gas chromatography to determine the radiolysis and racemization rates. The quartz surface is found to have a marginal efficacy in enhancing radiolysis when compared with a crystalline L-leucine control, although enhancing radioracemization symmetrically by a factor of two. Both the radiolysis and radioracemization of L-leucine and DL-leucine on a Syloid-63 silica surface are observed to increase with increasing radiation dose, and to be substantially greater than in the crystalline controls. Additional experiments with the nonprotein amino acid isovaline deposited on Syloid 63 confirm the greater radiolysis susceptibility of amino acids deposited on silica with respect to the crystalline state, although racemization is not observed. The observations suggest that the presence of a silica surface would have a deleterious effect on any mechanism for the origin of molecular chirality relying on stereoselective beta-radiolysis.

  20. Increased dissolution rate and oral bioavailability of hydrophobic drug glyburide tablets produced using supercritical CO₂ silica dispersion technology.

    PubMed

    Guan, Jibin; Han, Jihong; Zhang, Dong; Chu, Chunxia; Liu, Hongzhuo; Sun, Jin; He, Zhonggui; Zhang, Tianhong

    2014-04-01

    The aim of this study was to design a silica-supported solid dispersion of a water-insoluble drug, glyburide, to increase its dissolution rate and oral absorption using supercritical fluid (SCF) technology. DSC and PXRD results indicated that the encapsulated drug in the optimal solid dispersion was in an amorphous state and the product was stable for 6 months. Glyburide was adsorbed onto the porous silica, as confirmed by the SEM images and BET analysis. Furthermore, FT-IR spectroscopy confirmed that there was no change in the chemical structure of glyburide after the application of SCF. The glyburide silica-based dispersion could also be compressed into tablet form. In vitro drug release analysis of the silica solid dispersion tablets demonstrated faster release of glyburide compared with the commercial micronized tablet. In an in vivo test, the AUC of the tablets composed of the new glyburide silica-based solid dispersion was 2.01 times greater than that of the commercial micronized glyburide tablets. In conclusion, SCF technology presents a promising approach to prepare silica-based solid dispersions of hydrophobic drugs because of its ability to increase their release and oral bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Size-Tunable and Functional Core-Shell Structured Silica Nanoparticles for Drug Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Fangli; Guo, Ya Nan; Liu, Jun

    2010-02-18

    Size-tunable silica cross-linked micellar core-shell nanoparticles (SCMCSNs) were successfully synthesized from a Pluronic nonionic surfactant (F127) template system with organic swelling agents such as 1,3,5-trimethylbenzene (TMB) and octanoic acid at room temperature. The size and morphology of SCMCSNs were directly evidenced by TEM imaging and DLS measurements (up to ~90 nm). Pyrene and coumarin 153 (C153) were used as fluorescent probe molecules to investigate the effect and location of swelling agent molecules. Papaverine as a model drug was used to measure the loading capacity and release property of nanoparticles. The swelling agents can enlarge the nanoparticle size and improve themore » drug loading capacity of nanoparticles. Moreover, the carboxylic acid group of fatty acid can adjust the release behavior of the nanoparticles.« less

  2. Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis.

    PubMed

    d'Orlyé, Fanny; Varenne, Anne; Georgelin, Thomas; Siaugue, Jean-Michel; Teste, Bruno; Descroix, Stéphanie; Gareil, Pierre

    2009-07-01

    In view of employing functionalized nanoparticles (NPs) in the context of an immunodiagnostic, aminated maghemite/silica core/shell particles were synthesized so as to be further coated with an antibody or an antigen via the amino groups at their surface. Different functionalization rates were obtained by coating these maghemite/silica core/shell particles with 3-(aminopropyl)triethoxysilane and 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane at different molar ratios. Adequate analytical performances with CE coupled with UV-visible detection were obtained through semi-permanent capillary coating with didodecyldimethyl-ammonium bromide, thus preventing particle adsorption. First, the influence of experimental conditions such as electric field strength, injected particle amount as well as electrolyte ionic strength and pH, was evaluated. A charge-dependent electrophoretic mobility was evidenced and the separation selectivity was tuned according to electrolyte ionic strength and pH. The best resolutions were obtained at pH 8.0, high ionic strength (ca. 100 mM), and low total particle volume fraction (ca. 0.055%), thus eliminating interference effects between different particle populations in mixtures. A protocol derived from Kaiser's original description was performed for quantitation of the primary amino groups attached onto the NP surface. Thereafter a correlation between particle electrophoretic mobility and the density of amino groups at their surface was established. Eventually, CE proved to be an easy, fast, and reliable method for the determination of NP effective surface charge density.

  3. Direct ink writing of silica-bonded calcite scaffolds from preceramic polymers and fillers.

    PubMed

    Fiocco, L; Elsayed, H; Badocco, D; Pastore, P; Bellucci, D; Cannillo, V; Detsch, R; Boccaccini, A R; Bernardo, E

    2017-05-11

    Silica-bonded calcite scaffolds have been successfully 3D-printed by direct ink writing, starting from a paste comprising a silicone polymer and calcite powders, calibrated in order to match a SiO 2 /CaCO 3 weight balance of 35/65. The scaffolds, fabricated with two slightly different geometries, were first cross-linked at 350 °C, then fired at 600 °C, in air. The low temperature adopted for the conversion of the polymer into amorphous silica, by thermo-oxidative decomposition, prevented the decomposition of calcite. The obtained silica-bonded calcite scaffolds featured open porosity of about 56%-64% and compressive strength of about 2.9-5.5 MPa, depending on the geometry. Dissolution studies in SBF and preliminary cell culture tests, with bone marrow stromal cells, confirmed the in vitro bioactivity of the scaffolds and their biocompatibility. The seeded cells were found to be alive, well anchored and spread on the samples surface. The new silica-calcite composites are expected to be suitable candidates as tissue-engineering 3D scaffolds for regeneration of cancellous bone defects.

  4. Stabilization and Amorphization of Lovastatin Using Different Types of Silica.

    PubMed

    Khanfar, Mai; Al-Nimry, Suhair

    2017-08-01

    Lovastatin (LOV), an antihyperlipidimic agent, is characterized by low solubility/poor dissolution and, thus, low bioavailability (<5%). A beneficial effect on its bioavailability could result from improving its dissolution. One of the most common methods used to enhance dissolution is the preparation of solid dispersions. Solid dispersions of LOV and silica with different surface areas were prepared. The effects of the type of silica, ratio of drug/silica, incubation period with silica, and the effect of surface area were all studied. Characterization of the prepared formulae for possible interaction between drug and polymer was carried out using differential scanning calorimetery, Fourier transform infrared spectroscopy, powder X-ray diffraction, surface area determination, and scanning electron microscopy. The dissolution profiles of all prepared formulae were constructed and evaluated. It was found that the formula made of LOV and Sylysia 350 FCP in a ratio of 1:5 after an incubation period of 48 h resulted in the best release, and it was stable after 3 months storage at 75% RH and 40°C.

  5. Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends.

    PubMed

    Grabowski, Christopher A; Koerner, Hilmar; Meth, Jeffrey S; Dang, Alei; Hui, Chin Ming; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Durstock, Michael F; Vaia, Richard A

    2014-12-10

    Demands to increase the stored energy density of electrostatic capacitors have spurred the development of materials with enhanced dielectric breakdown, improved permittivity, and reduced dielectric loss. Polymer nanocomposites (PNCs), consisting of a blend of amorphous polymer and dielectric nanofillers, have been studied intensely to satisfy these goals; however, nanoparticle aggregates, field localization due to dielectric mismatch between particle and matrix, and the poorly understood role of interface compatibilization have challenged progress. To expand the understanding of the inter-relation between these factors and, thus, enable rational optimization of low and high contrast PNC dielectrics, we compare the dielectric performance of matrix-free hairy nanoparticle assemblies (aHNPs) to blended PNCs in the regime of low dielectric contrast to establish how morphology and interface impact energy storage and breakdown across different polymer matrices (polystyrene, PS, and poly(methyl methacrylate), PMMA) and nanoparticle loadings (0-50% (v/v) silica). The findings indicate that the route (aHNP versus blending) to well-dispersed morphology has, at most, a minor impact on breakdown strength trends with nanoparticle volume fraction; the only exception being at intermediate loadings of silica in PMMA (15% (v/v)). Conversely, aHNPs show substantial improvements in reducing dielectric loss and maintaining charge/discharge efficiency. For example, low-frequency dielectric loss (1 Hz-1 kHz) of PS and PMMA aHNP films was essentially unchanged up to a silica content of 50% (v/v), whereas traditional blends showed a monotonically increasing loss with silica loading. Similar benefits are seen via high-field polarization loop measurements where energy storage for ∼15% (v/v) silica loaded PMMA and PS aHNPs were 50% and 200% greater than respective comparable PNC blends. Overall, these findings on low dielectric contrast PNCs clearly point to the performance benefits of functionalizing the nanoparticle surface with high-molecular-weight polymers for polymer nanostructured dielectrics.

  6. Synthesis and properties of nickel cobalt boron nanoparticles

    NASA Astrophysics Data System (ADS)

    Patel, J.; Pankhurst, Q. A.; Parkin, I. P.

    2005-01-01

    Amorphous cobalt nickel boride nanoparticles were synthesised by chemical reduction synthesis in aqueous solution. Careful control of synthesis conditions and post reaction oxidation enabled the nanoparticles to be converted into a core-shell structure comprising of an amorphous Co-Ni-B core and an outer metal oxide sheet. These particles had interesting magnetic properties including saturation magnetisations and coercivities of the order of 80 emu/g and 170 Oe respectively, making them suitable for a potential use as an exchange-pinned magnetic material.

  7. Characterisation of silica derived from rice husk (Muar, Johor, Malaysia) decomposition at different temperatures

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; W. M. Hasif. A. A., K.; Taib, H.

    2016-07-01

    Rice husk was thermally decomposed to yield powder composed of silica (SiO2). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO2) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO2) and Amorphous Rice Husk Silica (A-RHSiO2). Moreover, it was found that SS-SiO2 was of Quartz phase, C-RHSiO2 was of Trydimite and Cristobalite. Through XRF detection, the highest SiO2 purity was detected in SS-SiO2 followed by C-RHSiO2 and A-RHSiO2 with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO2) bonding 1056, 1064, 1047, 777, 790 and 798 cm-1) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO2 at the wavelength of 620 cm-1. Morphological features as observed by FESEM analyses confirmed that, SS-SiO2 and C-RH SiO2 showed prominent coarse granular morphology.

  8. Adsorption of Amorphous Silica Nanoparticles onto Hydroxyapatite Surfaces Differentially Alters Surfaces Properties and Adhesion of Human Osteoblast Cells

    PubMed Central

    Kalia, Priya; Brooks, Roger A.; Kinrade, Stephen D.; Morgan, David J.; Brown, Andrew P.; Rushton, Neil; Jugdaohsingh, Ravin

    2016-01-01

    Silicon (Si) is suggested to be an important/essential nutrient for bone and connective tissue health. Silicon-substituted hydroxyapatite (Si-HA) has silicate ions incorporated into its lattice structure and was developed to improve attachment to bone and increase new bone formation. Here we investigated the direct adsorption of silicate species onto an HA coated surface as a cost effective method of incorporating silicon on to HA surfaces for improved implant osseointegration, and determined changes in surface characteristics and osteoblast cell adhesion. Plasma-sprayed HA-coated stainless steel discs were incubated in silica dispersions of different concentrations (0–42 mM Si), at neutral pH for 12 h. Adsorbed Si was confirmed by XPS analysis and quantified by ICP-OES analysis following release from the HA surface. Changes in surface characteristics were determined by AFM and measurement of surface wettability. Osteoblast cell adhesion was determined by vinculin plaque staining. Maximum Si adsorption to the HA coated disc occurred after incubation in the 6 mM silica dispersion and decreased progressively with higher silica concentrations, while no adsorption was observed with dispersions below 6 mM Si. Comparison of the Si dispersions that produced the highest and lowest Si adsorption to the HA surface, by TEM-based analysis, revealed an abundance of small amorphous nanosilica species (NSP) of ~1.5 nm in diameter in the 6 mM Si dispersion, with much fewer and larger NSP in the 42 mM Si dispersions. 29Si-NMR confirmed that the NSPs in the 6 mM silica dispersion were polymeric and similar in composition to the larger NSPs in the 42 mM Si dispersion, suggesting that the latter were aggregates of the former. Amorphous NSP adsorbed from the 6 mM dispersion on to a HA-coated disc surface increased the surface’s water contact angle by 53°, whereas that adsorbed from the 42 mM dispersion decreased the contact angle by 18°, indicating increased and decreased hydrophobicity, respectively. AFM showed an increase in surface roughness of the 6 mM Si treated surface, which correlated well with an increase in number of vinculin plaques. These findings suggest that NSP of the right size (relative to charge) adsorb readily to the HA surface, changing the surface characteristics and, thus, improving osteoblast cell adhesion. This treatment provides a simple way to modify plasma-coated HA surfaces that may enable improved osseointegration of bone implants. PMID:26863624

  9. Mechanism of formation and nanostructure of Stöber silica particles

    NASA Astrophysics Data System (ADS)

    Masalov, V. M.; Sukhinina, N. S.; Kudrenko, E. A.; Emelchenko, G. A.

    2011-07-01

    The formation of silica nano- and microparticles has been studied during growth by the modified Stöber-Fink-Bohn (SFB) method. It has been experimentally found that the density and fractal structure of particles vary with size as they grow from 70 to 2200 nm. We propose a model of particle structure which is a dense primary particle core and is composed of concentric secondary particle shells terminating in dense primary particle layers.

  10. Multifunctional hybrid materials for combined photo and chemotherapy of cancer.

    PubMed

    Botella, Pablo; Ortega, Ilida; Quesada, Manuel; Madrigal, Roque F; Muniesa, Carlos; Fimia, Antonio; Fernández, Eduardo; Corma, Avelino

    2012-08-21

    Combined chemo and photothermal therapy in in vitro testing has been achieved by means of multifunctional nanoparticles formed by plasmonic gold nanoclusters with a protecting shell of porous silica that contains an antitumor drug. We propose a therapeutic nanoplatform that associates the optical activity of small gold nanoparticles aggregates with the cytotoxic activity of 20(S)-camptothecin simultaneously released for the efficient destruction of cancer cells. For this purpose, a method was used for the controlled assembly of gold nanoparticles into stable clusters with a tailored absorption cross-section in the vis/NIR spectrum, which involves aggregation in alkaline medium of 15 nm diameter gold colloids protected with a thin silica layer. Clusters were further encapsulated in an ordered homogeneous mesoporous silica coating that provides biocompatibility and stability in physiological fluids. After internalization in 42-MG-BA human glioma cells, these protected gold nanoclusters were able to produce effective photothermolysis under femtosecond pulse laser irradiation of 790 nm. Cell death occurred by combination of a thermal mechanism and mechanical disruption of the membrane cell due to induced generation of micrometer-scale bubbles by vaporizing the water inside the channels of the mesoporous silica coating. Moreover, the incorporation of 20(S)-camptothecin within the pores of the external shell, which was released during the process, provoked significant cell death increase. This therapeutic model could be of interest for application in the treatment and suppression of non-solid tumors.

  11. Fluorescent magnetic nanoparticles for cell labeling: flux synthesis of manganite particles and novel functionalization of silica shell.

    PubMed

    Kačenka, Michal; Kaman, Ondřej; Kikerlová, Soňa; Pavlů, Barbora; Jirák, Zdeněk; Jirák, Daniel; Herynek, Vít; Černý, Jan; Chaput, Frédéric; Laurent, Sophie; Lukeš, Ivan

    2015-06-01

    Novel synthetic approaches for the development of multimodal imaging agents with high chemical stability are demonstrated. The magnetic cores are based on La0.63Sr0.37MnO3 manganite prepared as individual grains using a flux method followed by additional thermal treatment in a protective silica shell allowing to enhance their magnetic properties. The cores are then isolated and covered de novo with a hybrid silica layer formed through the hydrolysis and polycondensation of tetraethoxysilane and a fluorescent silane synthesized from rhodamine, piperazine spacer, and 3-iodopropyltrimethoxysilane. The aminoalkyltrialkoxysilanes are strictly avoided and the resulting particles are hydrolytically stable and do not release dye. The high colloidal stability of the material and the long durability of the fluorescence are reinforced by an additional silica layer on the surface of the particles. Structural and magnetic studies of the products using XRD, TEM, and SQUID magnetometry confirm the importance of the thermal treatment and demonstrate that no mechanical treatment is required for the flux-synthesized manganite. Detailed cell viability tests show negligible or very low toxicity at concentrations at which excellent labeling is achieved. Predominant localization of nanoparticles in lysosomes is confirmed by immunofluorescence staining. Relaxometric and biological studies suggest that the functionalized nanoparticles are suitable for imaging applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Target-triggered signal turn-on detection of prostate specific antigen based on metal-enhanced fluorescence of Ag@SiO2@SiO2-RuBpy composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Deng, Yun-Liang; Xu, Dang-Dang; Pang, Dai-Wen; Tang, Hong-Wu

    2017-02-01

    A three-layer core-shell nanostructure consisting of a silver core, a silica spacer, and a fluorescent dye RuBpy-doped outer silica layer was fabricated, and the optimal metal-enhanced fluorescence (MEF) distance was explored through adjusting the thickness of the silica spacer. The results show that the optimal distance is ˜10.4 nm with the maximum fluorescence enhancement factor 2.12. Then a new target-triggered MEF ‘turn-on’ strategy based on the optimized composite nanoparticles was successfully constructed for quantitative detection of prostate specific antigen (PSA), by using RuBpy as the energy donor and BHQ-2 as the acceptor. The hybridization of the complementary DNA of PSA-aptamer immobilized on the surface of the MEF nanoparticles with PSA-aptamer modified with BHQ-2, brought BHQ-2 in close proximity to RuBpy-doped silica shell and resulted in the decrease of fluorescence. In the presence of target PSA molecules, the BHQ-PSA aptamer is dissociated from the surface of the nanoparticles with the fluorescence switched on. Therefore, the assay of PSA was achieved by measuring the varying fluorescence intensity. The results show that PSA can be detected in the range of 1-100 ng ml-1 with a detection limit of 0.20 ng ml-1 (6.1 pM), which is 6.7-fold increase of that using hollow RuBpy-doped silica nanoparticles. Moreover, satisfactory results were obtained when PSA was detected in 1% serum.

  13. Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe(3)O(4)@SiO(2) particles.

    PubMed

    Wang, Chunlei; Yan, Juntao; Cui, Xuejun; Wang, Hongyan

    2011-02-01

    In this paper, we present a novel method for the preparation of raspberry-like monodisperse magnetic hollow hybrid nanospheres with γ-Fe(2)O(3)@SiO(2) particles as the outer shell. PS@Fe(3)O(4)@SiO(2) composite nanoparticles were successfully prepared on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene, and then raspberry-like magnetic hollow hybrid nanospheres with large cavities were achieved by means of calcinations, simultaneously, the magnetite (Fe(3)O(4)) was transformed into maghemite (γ-Fe(2)O(3)). Transmission electron microscopy (TEM) demonstrated that the obtained magnetic hollow silica nanospheres with the perfect spherical profile were well monodisperse and uniform with the mean size of 253nm. The Fourier transform infrared (FTIR) spectrometry, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) provided the sufficient evidences for the presence of Fe(3)O(4) in the silica shell. Moreover, the magnetic hollow silica nanospheres possessed a characteristic of superparamagnetic with saturation magnetization value of about 7.84emu/g by the magnetization curve measurement. In addition, the nitrogen adsorption-desorption measurement exhibited that the pore size, BET surface area, pore volume of magnetic hollow silica nanospheres were 3.5-5.5nm, 307m(2)g(-1) and 1.33cm(3)g(-1), respectively. Therefore, the magnetic hollow nanospheres possess a promising future in controlled drug delivery and targeted drug applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    DOE PAGES

    Sutter, E.; Tong, X.; Medina-Plaza, C.; ...

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated withmore » the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10 –5 – 10 –6 M and were lower than those obtained using bulk Au.« less

  15. Preparation and characterization of CdS/Si coaxial nanowires

    NASA Astrophysics Data System (ADS)

    Fu, X. L.; Li, L. H.; Tang, W. H.

    2006-04-01

    CdS/Si coaxial nanowires were fabricated via a simple one-step thermal evaporation of CdS powder in mass scale. Their crystallinities, general morphologies and detailed microstructures were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope and Raman spectra. The CdS core crystallizes in a hexagonal wurtzite structure with lattice constants of a=0.4140 nm and c=0.6719 nm, and the Si shell is amorphous. Five Raman peaks from the CdS core were observed. They are 1LO at 305 cm -1, 2LO at 601 cm -1, A 1-TO at 212 cm -1, E 1-TO at 234 cm -1, and E 2 at 252 cm -1. Photoluminescence measurements show that the nanowires have two emission bands around 510 and 590 nm, which originate from the intrinsic transitions of CdS cores and the amorphous Si shells, respectively.

  16. An individually coated near-infrared fluorescent protein as a safe and robust nanoprobe for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Xiang, Kun; Yang, Yi-Xin; Wang, Yan-Wen; Zhang, Xin; Cui, Yangdong; Wang, Haifang; Zhu, Qing-Qing; Fan, Liqiang; Liu, Yuanfang; Cao, Aoneng

    2013-10-01

    A prerequisite for in vivo fluorescence imaging is the safety of fluorescent probes. Among all fluorescent probes, fluorescent proteins (FPs) might be the safest ones, which have been widely used in biological sciences at the gene level. But FPs have not been used in vivo in the purified form yet due to the instability of proteins. Here, we individually coat near-infrared (NIR) FPs (NIRFPs) with a silica nanoshell, resulting in NIRFP@silica, one of the safest and brightest NIR fluorescent nanoprobes with a quantum yield of 0.33 for in vivo imaging. The silica shell not only protects NIRFPs from denaturation and metabolic digestion, but also enhances the quantum yield and photostability of the coated NIRFPs. When injected via the tail vein, NIRFP@silica NPs can distribute all over the mouse body, and then can be efficiently eliminated through urine in 24 h, demonstrating its potential applications as a safe and robust NIR fluorescence probe for whole body imaging.A prerequisite for in vivo fluorescence imaging is the safety of fluorescent probes. Among all fluorescent probes, fluorescent proteins (FPs) might be the safest ones, which have been widely used in biological sciences at the gene level. But FPs have not been used in vivo in the purified form yet due to the instability of proteins. Here, we individually coat near-infrared (NIR) FPs (NIRFPs) with a silica nanoshell, resulting in NIRFP@silica, one of the safest and brightest NIR fluorescent nanoprobes with a quantum yield of 0.33 for in vivo imaging. The silica shell not only protects NIRFPs from denaturation and metabolic digestion, but also enhances the quantum yield and photostability of the coated NIRFPs. When injected via the tail vein, NIRFP@silica NPs can distribute all over the mouse body, and then can be efficiently eliminated through urine in 24 h, demonstrating its potential applications as a safe and robust NIR fluorescence probe for whole body imaging. Electronic supplementary information (ESI) available: A chromatogram of APTS-NIRFP, a TEM image of 40 nm NIRFP@silica, dispersion stability of NIRFP@silica, more whole body fluorescent images, serum biochemical parameters, and optical images of HE stained organ slices. See DOI: 10.1039/c3nr02508j

  17. Silica-supported, single-site titanium catalysts for olefin epoxidation. A molecular precursor strategy for control of catalyst structure.

    PubMed

    Jarupatrakorn, Jonggol; Don Tilley, T

    2002-07-17

    A molecular precursor approach involving simple grafting procedures was used to produce site-isolated titanium-supported epoxidation catalysts of high activity and selectivity. The tris(tert-butoxy)siloxy titanium complexes Ti[OSi(O(t)Bu)(3)](4) (TiSi4), ((i)PrO)Ti[OSi(O(t)Bu)(3)](3) (TiSi3), and ((t)BuO)(3)TiOSi(O(t)Bu)(3) (TiSi) react with the hydroxyl groups of amorphous Aerosil, mesoporous MCM-41, and SBA-15 via loss of HO(t)Bu and/or HOSi(O(t)Bu)(3) and introduction of titanium species onto the silica surface. Powder X-ray diffraction, nitrogen adsorption/desorption, infrared, and diffuse reflectance ultraviolet spectroscopies were used to investigate the structures and chemical natures of the surface-bound titanium species. The titanium species exist mainly in isolated, tetrahedral coordination environments. Increasing the number of siloxide ligands in the molecular precursor decreases the amount of titanium that can be introduced this way, but also enhances the catalytic activity and selectivity for the epoxidation of cyclohexene with cumene hydroperoxide as oxidant. In addition, the high surface area mesoporous silicas (MCM-41 and SBA-15) are more effective than amorphous silica as supports for these catalysts. Supporting TiSi3 on the SBA-15 affords highly active cyclohexene epoxidation catalysts (0.25-1.77 wt % Ti loading) that provide turnover frequencies (TOFs) of 500-1500 h(-1) after 1 h (TOFs are reduced by about half after calcination). These results demonstrate that oxygen-rich siloxide complexes of titanium are useful as precursors to supported epoxidation catalysts.

  18. High Pressure Response of Siliceous Materials

    DTIC Science & Technology

    2013-02-01

    quartz, Starphire soda lime silicate glass, hydrated Starphire, BOROFLOAT borosilicate glass, an iron-containing soda lime silicate glass, opal (a hydrated... Opal (hydrated amorphous silica). .............................................................................. 10 2.7. ROBAX glass ceramic...spectrum as a function of stress for BOROFLOAT borosilicate glass. .......... 29 4.8. Raman spectrum as a function of stress for opal (hydrated

  19. Simultaneous removal of colour, phosphorus and disinfection from treated wastewater using an agent synthesized from amorphous silica and hydrated lime.

    PubMed

    Yamashita, Takahiro; Aketo, Tsuyoshi; Minowa, Nobutaka; Sugimoto, Kiyomi; Yokoyama, Hiroshi; Ogino, Akifumi; Tanaka, Yasuo

    2013-01-01

    An agent synthesized from amorphous silica and hydrated lime (CSH-lime) was investigated for its ability to simultaneously remove the colour, phosphorus and disinfection from the effluents from wastewater treatment plants on swine farms. CSH-lime removed the colour and phosphate from the effluents, with the colour-removal effects especially high at pH 12, and phosphorous removal was more effective in strongly alkaline conditions (pH > 10). Colour decreased from 432 +/-111 (mean +/- SD) to 107 +/- 41 colour units and PO4(3-)P was reduced from 45 +/- 39 mg/L to undetectable levels at the CSH-lime dose of 2.0% w/v. Moreover, CSH-lime reduced the total organic carbon from 99.0 to 37.9 mg/L at the dose of 2.0% w/v and was effective at inactivating total heterotrophic and coliform bacteria. However, CSH-lime did not remove nitrogen compounds such as nitrite, nitrate and ammonium. Colour was also removed from dye solutions by CSH-lime, at the same dose.

  20. Oral two-generation reproduction toxicity study with NM-200 synthetic amorphous silica in Wistar rats.

    PubMed

    Wolterbeek, André; Oosterwijk, Thies; Schneider, Steffen; Landsiedel, Robert; de Groot, Didima; van Ee, Renz; Wouters, Mariëlle; van de Sandt, Han

    2015-08-15

    Synthetic amorphous silica (SAS) like NM-200 is used in a wide variety of technological applications and consumer products. Although SAS has been widely investigated the available reproductive toxicity studies are old and do not cover all requirements of current OECD Guidelines. As part of a CEFIC-LRI project, NM-200 was tested in a two-generation reproduction toxicity study according to OECD guideline 416. Male and female rats were treated by oral gavage with NM-200 at dose levels of 0, 100, 300 and 1000mg/kg bw/day for two generations. Body weight and food consumption were measured throughout the study. Reproductive and developmental parameters were measured and at sacrifice (reproductive) organs and tissues were sampled for histopathological analysis. Oral administration of NM-200 up to 1000mg/kg bw/day had no adverse effects on the reproductive performance of rats or on the growth and development of the offspring into adulthood for two consecutive generations. The NOAEL was 1000mg/kg body weight per day. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Reduction of calcium flux from the extracellular region and endoplasmic reticulum by amorphous nano-silica particles owing to carboxy group addition on their surface.

    PubMed

    Onodera, Akira; Yayama, Katsutoshi; Morosawa, Hideto; Ishii, Yukina; Tsutsumi, Yasuo; Kawai, Yuichi

    2017-03-01

    Several studies have reported that amorphous nano-silica particles (nano-SPs) modulate calcium flux, although the mechanism remains incompletely understood. We thus analyzed the relationship between calcium flux and particle surface properties and determined the calcium flux route. Treatment of Balb/c 3T3 fibroblasts with nano-SPs with a diameter of 70 nm (nSP70) increased cytosolic calcium concentration, but that with SPs with a diameter of 300 or 1000 nm did not. Surface modification of nSP70 with a carboxy group also did not modulate calcium flux. Pretreatment with a general calcium entry blocker almost completely suppressed calcium flux by nSP70. Preconditioning by emptying the endoplasmic reticulum (ER) calcium stores slightly suppressed calcium flux by nSP70. These results indicate that nSP70 mainly modulates calcium flux across plasma membrane calcium channels, with subsequent activation of the ER calcium pump, and that the potential of calcium flux by nano-SPs is determined by the particle surface charge.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying

    Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less

  3. Quantitative Phase Analysis of Plasma-Treated High-Silica Materials

    NASA Astrophysics Data System (ADS)

    Kosmachev, P. V.; Abzaev, Yu. A.; Vlasov, V. A.

    2018-06-01

    The paper presents the X-ray diffraction (XRD) analysis of the crystal structure of SiO2 in two modifications, namely quartzite and quartz sand before and after plasma treatment. Plasma treatment enables the raw material to melt and evaporate after which the material quenches and condenses to form nanoparticles. The Rietveld refinement method is used to identify the lattice parameters of SiO2 phases. It is found that after plasma treatment SiO2 oxides are in the amorphous state, which are modeled within the microcanonical ensemble. Experiments show that amorphous phases are stable, and model X-ray reflection intensities approximate the experimental XRD patterns with fine precision. Within the modeling, full information is obtained for SiO2 crystalline and amorphous phases, which includes atom arrangement, structural parameters, atomic population of silicon and oxygen atoms in lattice sites.

  4. Molecular dynamics simulation of potentiometric sensor response: the effect of biomolecules, surface morphology and surface charge.

    PubMed

    Lowe, B M; Skylaris, C-K; Green, N G; Shibuta, Y; Sakata, T

    2018-05-10

    The silica-water interface is critical to many modern technologies in chemical engineering and biosensing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of this response caused by surface binding of biomolecules remains highly challenging. In this work, through the most extensive molecular dynamics simulation of the silica-water interfacial potential and electric field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline silica model due to increased sodium adsorption, in agreement with experiments showing improved sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be used as a complementary tool for potentiometric biosensor response prediction. Effects that are conventionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size effects, are explicitly modelled.

  5. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    NASA Astrophysics Data System (ADS)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  6. Supercritical fluid technology of nanoparticle coating for new ceramic materials.

    PubMed

    Aymonier, Cyril; Elissalde, Catherine; Reveron, Helen; Weill, François; Maglione, Mario; Cansell, François

    2005-06-01

    This work highlights, for the first time, the coating of ferroelectric nanoparticles with a chemical fluid deposition process in supercritical fluids. BaTiO3 nanoparticles of about 50 nm are coated with a shell of a few nanometers of amorphous alumina and can be recovered as a dry powder for processing. The sintering of these core-shell nanoparticles gives access to a ceramic material with very interesting ferroelectric properties, in particular, dielectric losses below 1%.

  7. Opaline silica in young deposits on Mars

    USGS Publications Warehouse

    Milliken, Ralph E.; Swayze, Gregg A.; Arvidson, Raymond E.; Bishop, Janice L; Clark, Roger N.; Ehlmann, Bethany L.; Green, Robert O.; Grotzinger, John P.; Morris, R.V.; Murchie, Scott L.; Mustard, John F.; Weitz, C.

    2008-01-01

    High spatial and spectral resolution reflectance data acquired by the Mars Reconnaissance Orbiter Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument reveal the presence of H2O- and SiOH-bearing phases on the Martian surface. The spectra are most consistent with opaline silica and glass altered to various degrees, confirming predictions based on geochemical experiments and models that amorphous silica should be a common weathering product of the basaltic Martian crust. These materials are associated with hydrated Fe sulfates, including H3O-bearing jarosite, and are found in finely stratified deposits exposed on the floor of and on the plains surrounding the Valles Marineris canyon system. Stratigraphic relationships place the formation age of these deposits in the late Hesperian or possibly the Amazonian, implying that aqueous alteration continued to be an important and regionally extensive process on Mars during that time.

  8. Core-shell CoFe2O4@Co-Fe-Bi nanoarray: a surface-amorphization water oxidation catalyst operating at near-neutral pH.

    PubMed

    Ji, Xuqiang; Hao, Shuai; Qu, Fengli; Liu, Jingquan; Du, Gu; Asiri, Abdullah M; Chen, Liang; Sun, Xuping

    2017-06-14

    The exploration of high-performance and earth-abundant water oxidation catalysts operating under mild conditions is highly attractive and challenging. In this communication, core-shell CoFe 2 O 4 @Co-Fe-Bi nanoarray on carbon cloth (CoFe 2 O 4 @Co-Fe-Bi/CC) was successfully fabricated by in situ surface amorphization of CoFe 2 O 4 nanoarray on CC (CoFe 2 O 4 /CC). As a 3D water oxidation electrode, CoFe 2 O 4 @Co-Fe-Bi/CC shows outstanding activity with an overpotential of 460 mV to drive a geometrical catalytic current density of 10 mA cm -2 in 0.1 M potassium borate (pH 9.2). Notably, it also demonstrates superior long-term durability for at least 20 h with 96% Faradic efficiency. Density functional theory calculations indicate that the conversion from OOH* to O 2 is the rate-limiting step and the high water oxidation activity of CoFe 2 O 4 @Co-Fe-Bi/CC is associated with the lower free energy of 1.84 eV on a Co-Fe-Bi shell.

  9. Swift heavy ion track formation in Gd2Zr2-xTixO7 pyrochlore: Effect of electronic energy loss

    NASA Astrophysics Data System (ADS)

    Lang, Maik; Toulemonde, Marcel; Zhang, Jiaming; Zhang, Fuxiang; Tracy, Cameron L.; Lian, Jie; Wang, Zhongwu; Weber, William J.; Severin, Daniel; Bender, Markus; Trautmann, Christina; Ewing, Rodney C.

    2014-10-01

    The morphology of swift heavy ion tracks in the Gd2Zr2-xTixO7 pyrochlore system has been investigated as a function of the variation in chemical composition and electronic energy loss, dE/dx, over a range of energetic ions: 58Ni, 101Ru, 129Xe, 181Ta, 197Au, 208Pb, and 238U of 11.1 MeV/u specific energy. Bright-field transmission electron microscopy, synchrotron X-ray diffraction, and Raman spectroscopy reveal an increasing degree of amorphization with increasing Ti-content and dE/dx. The size and morphology of individual ion tracks in Gd2Ti2O7 were characterized by high-resolution transmission electron microscopy revealing a core-shell structure with an outer defect-fluorite dominated shell at low dE/dx to predominantly amorphous tracks at high dE/dx. Inelastic thermal-spike calculations have been used together with atomic-scale characterization of ion tracks in Gd2Ti2O7 by high resolution transmission electron microscopy to deduce critical energy densities for the complex core-shell morphologies induced by ions of different dE/dx.

  10. TRANSIENT AMORPHOUS CALCIUM PHOSPHATE IN FORMING ENAMEL

    PubMed Central

    Beniash, Elia; Metzler, Rebecca A.; Lam, Raymond S.K.; Gilbert, P.U.P.A.

    2009-01-01

    Enamel, the hardest tissue in the body, begins as a three-dimensional network of nanometer size mineral particles, suspended in a protein gel. This mineral network serves as a template for mature enamel formation. To further understand the mechanisms of enamel formation we characterized the forming enamel mineral at an early secretory stage using x-ray absorption near-edge structure (XANES) spectromicroscopy, transmission electron microscopy (TEM), FTIR microspectroscopy and polarized light microscopy. We show that the newly formed enamel mineral is amorphous calcium phosphate (ACP), which eventually transforms into apatitic crystals. Interestingly, the size, shape and spatial organization of these amorphous mineral particles and older crystals are essentially the same, indicating that the mineral morphology and organization in enamel is determined prior to its crystallization. Mineralization via transient amorphous phases has been previously reported in chiton teeth, mollusk shells, echinoderm spicules and spines, and recent reports strongly suggest the presence transient amorphous mineral in forming vertebrate bones. The present finding of transient ACP in murine tooth enamel suggests that this strategy might be universal. PMID:19217943

  11. Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO4 Nanoparticles

    PubMed Central

    2017-01-01

    Lanthanide-doped nanocrystals (NCs) differ from their bulk counterparts due to their large surface to volume ratio. It is generally assumed that the optical properties are not affected by size effects as electronic transitions occur within the well-shielded 4f shell of the lanthanide dopant ions. However, defects and disorder in the surface layer can affect the luminescence properties. Trivalent europium is a suitable ion to investigate the subtle influence of the surface, because of its characteristic luminescence and high sensitivity to the local environment. Here, we investigate the influence of disorder in NCs on the optical properties of lanthanide dopants by studying the inhomogeneous linewidth, emission intensity ratios, and luminescence decay curves for LaPO4:Eu3+ samples of different sizes (4 nm to bulk) and core–shell configurations (core, core–isocrystalline shell, and core–silica shell). We show that the emission linewidths increase strongly for NCs. The ratio of the intensities of the forced electric dipole (ED) and magnetic dipole (MD) transitions, a measure for the local symmetry distortion around Eu3+ ions, is higher for samples with a large fraction of Eu3+ ions close to the surface. Finally, we present luminescence decay curves revealing an increased nonradiative decay rate for Eu3+ in NCs. The effects are strongest in core and core–silica shell NCs and can be reduced by growth of an isocrystalline LaPO4 shell. The present systematic study provides quantitative insight into the role of surface disorder on the optical properties of lanthanide-doped NCs. These insights are important in emerging applications of lanthanide-doped nanocrystals. PMID:28919934

  12. Shell-isolated nanoparticle-enhanced Raman spectroscopy: principle and applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Li, Jian-Feng; Tian, Zhong-Qun

    2015-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a powerful technique that yields fingerprint vibrational information with ultra-high sensitivity. However, only roughened Ag, Au and Cu surfaces can generate strong SERS effect. The lack of materials and morphology generality has severely limited the breadth of SERS practical applications on surface science, electrochemistry and catalysis. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was therefore invented to break the long-standing limitation of SERS. In SHINERS, Au@SiO2 core-shell nanoparticles were rationally designed. The gold core acts as plasmonic antenna and encapsulated by an ultra-thin, uniform and pinhole-free silica shell, can provide high electromagnetic field to enhance the Raman signals of probed molecules. The inert silica shell acts as tunneling barrier prevents the core from interacting with the environment. SHINERS has already been applied to a number of challenging systems, such as hydrogen and CO on Pt(hkl) and Rh(hkl), which can't be realized by traditional SERS. Combining with electrochemical methods, we has investigated the adsorption processes of pyridine at the Au(hkl) single crystal/solution interface, and in-situ monitored the surface electro-oxidation at Au(hkl) electrodes. These pioneering studies demonstrate convincingly the ability of SHINERS in exploring correlations between structure and reactivity as well as in monitoring intermediates at the interfaces. SHINERS was also explored from semiconductor surface for industry, to living bacteria for life science, and to pesticide residue detection for food safety. The concept of shell-isolated nanoparticle-enhancement is being applied to other spectroscopies such as infrared absorption, sum frequency generation and fluorescence. Jian-Feng Li et al., Nature, 2010, 464, 392-395.

  13. The potential use of silica sand as nanomaterials for mortar

    NASA Astrophysics Data System (ADS)

    Setiati, N. Retno

    2017-11-01

    The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.

  14. Mesoporous silica nanoparticles engineered for ultrasound-induced uptake by cancer cells.

    PubMed

    Paris, Juan L; Manzano, Miguel; Cabañas, M Victoria; Vallet-Regí, María

    2018-04-05

    A novel smart hierarchical ultrasound-responsive mesoporous silica nanocarrier for cancer therapy is presented here. This dynamic nanosystem has been designed to display different surface characteristics during its journey towards tumor cells. Initially, the anticancer-loaded nanocarriers are shielded with a polyethylene glycol layer. Upon exposure to high frequency ultrasound, the polymer shell detaches from the nanoparticles, exposing a positively charged surface. This favors the internalization in human osteosarcoma cells, where the release of topotecan takes place, drastically enhancing the cytotoxic effect.

  15. Effect of a core-softened O-O interatomic interaction on the shock compression of fused silica

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Weingarten, N. Scott; Byrd, Edward F. C.

    2018-03-01

    Isotropic soft-core potentials have attracted considerable attention due to their ability to reproduce thermodynamic, dynamic, and structural anomalies observed in tetrahedral network-forming compounds such as water and silica. The aim of the present work is to assess the relevance of effective core-softening pertinent to the oxygen-oxygen interaction in silica to the thermodynamics and phase change mechanisms that occur in shock compressed fused silica. We utilize the MD simulation method with a recently published numerical interatomic potential derived from an ab initio MD simulation of liquid silica via force-matching. The resulting potential indicates an effective shoulder-like core-softening of the oxygen-oxygen repulsion. To better understand the role of the core-softening we analyze two derivative force-matching potentials in which the soft-core is replaced with a repulsive core either in the three-body potential term or in all the potential terms. Our analysis is further augmented by a comparison with several popular empirical models for silica that lack an explicit core-softening. The first outstanding feature of shock compressed glass reproduced with the soft-core models but not with the other models is that the shock compression values at pressures above 20 GPa are larger than those observed under hydrostatic compression (an anomalous shock Hugoniot densification). Our calculations indicate the occurrence of a phase transformation along the shock Hugoniot that we link to the O-O repulsion core-softening. The phase transformation is associated with a Hugoniot temperature reversal similar to that observed experimentally. With the soft-core models, the phase change is an isostructural transformation between amorphous polymorphs with no associated melting event. We further examine the nature of the structural transformation by comparing it to the Hugoniot calculations for stishovite. For stishovite, the Hugoniot exhibits temperature reversal and associated phase transformation, which is a transition to a disordered phase (liquid or dense amorphous), regardless of whether or not the model accounts for core-softening. The onset pressures of the transformation predicted by different models show a wide scatter within 60-110 GPa; for potentials without core-softening, the onset pressure is much higher than 110 GPa. Our results show that the core-softening of the interaction in the oxygen subsystem of silica is the key mechanism for the structural transformation and thermodynamics in shock compressed silica. These results may provide an important contribution to a unified picture of anomalous response to shock compression observed in other network-forming oxides and single-component systems with core-softening of effective interactions.

  16. Preparation of epoxy-acrylate copolymer/nano-silica via Pickering emulsion polymerization and its application as printing binder

    NASA Astrophysics Data System (ADS)

    Gao, Dangge; Chang, Rui; Lyu, Bin; Ma, Jianzhong; Duan, Xiying

    2018-03-01

    This paper presents a facile and efficient synthesis method to fabricate epoxy-acrylate copolymer/nano-silica latex via Pickering emulsion polymerization stabilized by silica sol. The effects of solid contents, silica concentration and polymerization time on emulsion polymerization were studied. The core-shell epoxy-acrylate copolymer/nano-silica was obtained with average diameter 690 nm, was observed by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). The formation mechanism of epoxy-acrylate copolymer/nano-silica emulsion polymerization was proposed through observing the morphology of latex particles at different polymerization time. Fourier Transformation Infrared (FT-IR) and Thermogravimetric Analysis (TGA) were used to study structure and thermostability of the composites. Morphology of the latex film was characterized by Scanning Electron Microscope (SEM). The results indicated that nano-silica particles existed in the composite emulsion and could improve the thermal stability of the film. The epoxy-acrylate copolymer/nano-silica latex was used as binder applied to cotton fabric for pigment printing. The application results demonstrated that Pickering emulsion stabilized by silica sol has good effects in the pigment printing binder without surfactant. Compared with commodity binder, the resistance to wet rubbing fastness and soaping fastness were improved half grade.

  17. In vitro cytotoxicity and quantitative silica analysis of diatomaceous earth products.

    PubMed

    Bye, E; Davies, R; Griffiths, D M; Gylseth, B; Moncrieff, C B

    1984-05-01

    Mouse peritoneal macrophages were used to evaluate the relative cytotoxicity of a series of diatomaceous earth products in vitro. The amorphous and crystalline silica content of the products was determined by a combination of infrared spectroscopy and x ray powder diffraction techniques. The cytotoxicities of the high cristobalite content flux calcined materials were similar to that of the standard cristobalite ; both the natural and straight calcined materials had significantly greater activities than the flux calcined materials. Thus within the limitations of the macrophage cytotoxicity test the hypothesis that crystalline content is the only determinant of fibrogenicity of diatomaceous earth is not supported.

  18. Magnetic stability of oxygen defects on the SiO 2 surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelstein, Nicole; Lee, Donghwa; DuBois, Jonathan L.

    2017-02-21

    The magnetic stability of E' centers and the peroxy radical on the surface of α-quartz is investigated with first-principles calculations to understand their role in magnetic flux noise in superconducting qubits (SQs) and superconducting quantum interference devices (SQUIDs) fabricated on amorphous silica substrates. Paramagnetic E' centers are common in both stoichiometric and oxygen deficient silica and quartz, and we calculate that they are more common on the surface than the bulk. However, we find the surface defects are magnetically stable in their paramagnetic ground state and thus will not contribute to 1/f noise through fluctuation at millikelvin temperatures.

  19. In vitro cytotoxicity and quantitative silica analysis of diatomaceous earth products.

    PubMed Central

    Bye, E; Davies, R; Griffiths, D M; Gylseth, B; Moncrieff, C B

    1984-01-01

    Mouse peritoneal macrophages were used to evaluate the relative cytotoxicity of a series of diatomaceous earth products in vitro. The amorphous and crystalline silica content of the products was determined by a combination of infrared spectroscopy and x ray powder diffraction techniques. The cytotoxicities of the high cristobalite content flux calcined materials were similar to that of the standard cristobalite ; both the natural and straight calcined materials had significantly greater activities than the flux calcined materials. Thus within the limitations of the macrophage cytotoxicity test the hypothesis that crystalline content is the only determinant of fibrogenicity of diatomaceous earth is not supported. Images PMID:6326795

  20. W-containing oxide layers obtained on aluminum and titanium by PEO as catalysts in thiophene oxidation

    NASA Astrophysics Data System (ADS)

    Rudnev, V. S.; Lukiyanchuk, I. V.; Vasilyeva, M. S.; Morozova, V. P.; Zelikman, V. M.; Tarkhanova, I. G.

    2017-11-01

    W-containing oxide layers fabricated on titanium and aluminum alloys by Plasma electrolytic oxidation (PEO) have been tested in the reaction of the peroxide oxidation of thiophene. Samples with two types of coatings have been investigated. Coatings I contained tungsten oxide in the matrix and on the surface of amorphous silica-titania or silica-alumina layers, while coatings II comprised crystalline WO3 and/or Al2(WO4)3. Aluminum-supported catalyst containing a smallest amount of transition metals in the form of tungsten oxides and manganese oxides in low oxidation levels showed high activity and stability.

Top