Science.gov

Sample records for amorphous silicon detector

  1. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  2. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  3. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  4. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  5. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  6. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  7. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  8. Charged particle detectors made from thin layers of amorphous silicon

    SciTech Connect

    Morel, J.R.

    1986-05-01

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (..cap alpha..-Si:H) as solid state thin film charged particle detectors. /sup 241/Am alphas were successfully detected with ..cap alpha..-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed.

  9. Flexible amorphous silicon PIN diode x-ray detectors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael; Bawolek, Edward; Smith, Joseph T.; Raupp, Gregory B.; Morton, David

    2013-05-01

    A low temperature amorphous silicon (a-Si) thin film transistor (TFT) and amorphous silicon PIN photodiode technology for flexible passive pixel detector arrays has been developed using active matrix display technology. The flexible detector arrays can be conformed to non-planar surfaces with the potential to detect x-rays or other radiation with an appropriate conversion layer. The thin, lightweight, and robust backplanes may enable the use of highly portable x-ray detectors for use in the battlefield or in remote locations. We have fabricated detector arrays up to 200 millimeters along the diagonal on a Gen II (370 mm x 470 mm rectangular substrate) using plasma enhanced chemical vapor deposition (PECVD) a-Si as the active layer and PECVD silicon nitride (SiN) as the gate dielectric and passivation. The a-Si based TFTs exhibited an effective saturation mobility of 0.7 cm2/V-s, which is adequate for most sensing applications. The PIN diode material was fabricated using a low stress amorphous silicon (a-Si) PECVD process. The PIN diode dark current was 1.7 pA/mm2, the diode ideality factor was 1.36, and the diode fill factor was 0.73. We report on the critical steps in the evolution of the backplane process from qualification of the low temperature (180°C) TFT and PIN diode process on the 150 mm pilot line, the transfer of the process to flexible plastic substrates, and finally a discussion and demonstration of the scale-up to the Gen II (370 x 470 mm) panel scale pilot line.

  10. High efficiency neutron sensitive amorphous silicon pixel detectors

    SciTech Connect

    Mireshghi, A.; Cho, G.; Drewery, J.S.; Hong, W.S.; Jing, T.; Lee, H.; Kaplan, S.N.; Perez-Mendez, V.

    1993-11-01

    A multi-layer a-Si:H based thermal neutron detector was designed, fabricated and simulated by Monte Carlo method. The detector consists of two PECVD deposited a-Si:H pin detectors interfaced with coated layers of Gd, as a thermal neutron converter. Simulation results indicate that a detector consisting of 2 Gd films with thicknesses of 2 and 4 {mu}m, sandwiched properly with two layers of sufficiently thick ({approximately}30{mu}m) amorphous silicon diodes, has the optimum parameters. The detectors have an intrinsic efficiency of about 42% at a threshold setting of 7000 electrons, with an expected average signal size of {approximately}12000 electrons which is well above the noise. This efficiency will be further increased to nearly 63%, if we use Gd with 50% enrichment in {sup 157}Gd. We can fabricate position sensitive detectors with spatial resolution of 300 {mu}m with gamma sensitivity of {approximately}1 {times} 10{sup {minus}5}. These detectors are highly radiation resistant and are good candidates for use in various application, where high efficiency, high resolution, gamma insensitive position sensitive neutron detectors are needed.

  11. Laminated Amorphous Silicon Neutron Detector (pre-print)

    SciTech Connect

    Harry McHugh, Howard Branz, Paul Stradins, and Yueqin Xu

    2009-01-29

    An internal R&D project was conducted at the Special Technologies Laboratory (STL) of National Security Technologies, LLC (NSTec), to determine the feasibility of developing a multi-layer boron-10 based thermal neutron detector using the amorphous silicon (AS) technology currently employed in the manufacture of liquid crystal displays. The boron-10 neutron reaction produces an alpha that can be readily detected. A single layer detector, limited to an approximately 2-micron-thick layer of boron, has a theoretical sensitivity of about 3%; hence a thin multi-layer device with high sensitivity can theoretically be manufactured from single layer detectors. Working with National Renewable Energy Laboratory (NREL), an AS PiN diode alpha detector was developed and tested. The PiN diode was deposited on a boron-10 coated substrate. Testing confirmed that the neutron sensitivity was nearly equal to the theoretical value of 3%. However, adhesion problems with the boron-10 coating prevented successful development of a prototype detector. Future efforts will include boron deposition work and development of integrated AS signal processing circuitry.

  12. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    PubMed

    Marrs, Michael A; Raupp, Gregory B

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  13. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    PubMed Central

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  14. Review of amorphous silicon based particle detectors: the quest for single particle detection

    NASA Astrophysics Data System (ADS)

    Wyrsch, N.; Ballif, C.

    2016-10-01

    Hydrogenated amorphous silicon (a-Si:H) is attractive for radiation detectors because of its radiation resistance and processability over large areas with mature Si microfabrication techniques. While the use of a-Si:H for medical imaging has been very successful, the development of detectors for particle tracking and minimum-ionizing-particle detection has lagged, with almost no practical implementation. This paper reviews the development of various types of a-Si:H-based detectors and discusses their respective achievements and limitations. It also presents more recent developments of detectors that could potentially achieve single particle detection and be integrated in a monolithic fashion into a variety of applications.

  15. Amorphous silicon/crystalline silicon heterojunctions for nuclear radiation detector applications

    SciTech Connect

    Walton, J.T.; Hong, W.S.; Luke, P.N.; Wang, N.W.; Ziemba, F.P.

    1996-10-01

    Results on characterization of electrical properties of amorphous Si films for the 3 different growth methods (RF sputtering, PECVD [plasma enhanced], LPCVD [low pressure]) are reported. Performance of these a-Si films as heterojunctions on high resistivity p-type and n- type crystalline Si is examined by measuring the noise, leakage current, and the alpha particle response of 5mm dia detector structures. It is demonstrated that heterojunction detectors formed by RF sputtered films and PECVD films are comparable in performance with conventional surface barrier detectors. Results indicate that the a-Si/c-Si heterojunctions have the potential to greatly simplify detector fabrication. Directions for future avenues of nuclear particle detector development are indicated.

  16. 3D scanning characteristics of an amorphous silicon position sensitive detector array system.

    PubMed

    Contreras, Javier; Gomes, Luis; Filonovich, Sergej; Correia, Nuno; Fortunato, Elvira; Martins, Rodrigo; Ferreira, Isabel

    2012-02-13

    The 3D scanning electro-optical characteristics of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) were analyzed. The system was mounted on a platform for imaging 3D objects using the triangulation principle with a sheet-of-light laser. New obtained results reveal a minimum possible gap or simulated defect detection of approximately 350 μm. Furthermore, a first study of the angle for 3D scanning was also performed, allowing for a broad range of angles to be used in the process. The relationship between the scanning angle of the incident light onto the object and the image displacement distance on the sensor was determined for the first time in this system setup. Rendering of 3D object profiles was performed at a significantly higher number of frames than in the past and was possible for an incident light angle range of 15 ° to 85 °.

  17. Thermal and Cold Neutron Computed Tomography at the Los Alamos Neutron Scattering Center Using an Amorphous Silicon Detector Array

    SciTech Connect

    Claytor, T.N.; Schwab, M.J.; Farnum, E.H.; McDonald, T.E.; Summa, D.A.; Sheats, M.J.; Stupin, D.M.; Sievers, W.L.

    1998-07-19

    The use of the EG and G-Heimann RTM 128 or dpiX FS20 amorphous silicon (a-Si) detector array for thermal neutron radiography/computed tomography has proven to be a quick and efficient means of producing high quality digital radiographic images. The resolution, although not as good as film, is about 750 pm with the RTM and 127 pm with the dpiX array with a dynamic range in excess of 2,800. In many respects using an amorphous silicon detector is an improvement over other techniques such as imaging with a CCD camera, using a storage phosphor plate or film radiography. Unlike a CCD camera, which is highly susceptible to radiation damage, a-Si detectors can be placed in the beam directly behind the object under examination and do not require any special optics or turning mirrors. The amorphous silicon detector also allows enough data to be acquired to construct a digital image in just a few seconds (minimum gate time 40 ms) whereas film or storage plate exposures can take many minutes and then need to be digitized with a scanner. The flat panel can therefore acquire a complete 3D computed tomography data set in just a few tens of minutes. While a-Si detectors have been proposed for use in imaging neutron beams, this is the first reported implementation of such a detector for neutron imaging.

  18. High spatial resolution radiation detectors based on hydrogenated amorphous silicon and scintillator

    SciTech Connect

    Jing, T

    1995-05-01

    Hydrogenated amorphous silicon (a-Si:H) as a large-area thin film semiconductor with ease of doping and low-cost fabrication capability has given a new impetus to the field of imaging sensors; its high radiation resistance also makes it a good material for radiation detectors. In addition, large-area microelectronics based on a-Si:H or polysilicon can be made with full integration of peripheral circuits, including readout switches and shift registers on the same substrate. Thin a-Si:H p-i-n photodiodes coupled to suitable scintillators are shown to be suitable for detecting charged particles, electrons, and X-rays. The response speed of CsI/a-Si:H diode combinations to individual particulate radiation is limited by the scintillation light decay since the charge collection time of the diode is very short (< 10ns). The reverse current of the detector is analyzed in term of contact injection, thermal generation, field enhanced emission (Poole-Frenkel effect), and edge leakage. A good collection efficiency for a diode is obtained by optimizing the p layer of the diode thickness and composition. The CsI(Tl) scintillator coupled to an a-Si:H photodiode detector shows a capability for detecting minimum ionizing particles with S/N {approximately}20. In such an arrangement a p-i-n diode is operated in a photovoltaic mode (reverse bias). In addition, a p-i-n diode can also work as a photoconductor under forward bias and produces a gain yield of 3--8 for shaping times of 1 {micro}s. The mechanism of the formation of structured CsI scintillator layers is analyzed. Initial nucleation in the deposited layer is sensitive to the type of substrate medium, with imperfections generally catalyzing nucleation. Therefore, the microgeometry of a patterned substrate has a significant effect on the structure of the CsI growth.

  19. Development of radiation detectors based on hydrogenated amorphous silicon and its alloys

    SciTech Connect

    Hong, Wan-Shick

    1995-04-01

    Hydrogenated amorphous silicon and related materials have been applied to radiation detectors, utilizing their good radiation resistance and the feasibility of making deposits over a large area at low cost. Effects of deposition parameters on various material properties of a-Si:H have been studied to produce a material satisfying the requirements for specific detection application. Thick(-{approximately}50 {mu}m), device quality a-Si:H p-i-n diodes for direct detection of minimum ionizing particles have been prepared with low internal stress by a combination of low temperature growth, He-dilution of silane, and post annealing. The structure of the new film contained voids and tiny crystalline inclusions and was different from the one observed in conventional a-Si:H. Deposition on patterned substrates was attempted as an alternative to controlling deposition parameters to minimize substrate bending and delamination of thick a-Si:H films. Growth on an inversed-pyramid pattern reduced the substrate bending by a factor of 3{approximately}4 for the same thickness film. Thin (0.1 {approximately} 0.2 {mu}m) films of a-Si:H and a-SiC:H have been applied to microstrip gas chambers to control gain instabilities due to charges on the substrate. Light sensitivity of the a-Si:H sheet resistance was minimized and the surface resistivity was successfully` controlled in the range of 10{sup 12} {approximately} 10{sup 17} {Omega}/{four_gradient} by carbon alloying and boron doping. Performance of the detectors with boron-doped a-Si:C:H layers was comparable to that of electronic-conducting glass. Hydrogen dilution of silane has been explored to improve electrical transport properties of a-Si:H material for high speed photo-detectors and TFT applications.

  20. Hydrogenated amorphous silicon radiation detectors: Material parameters, radiation hardness, charge collection

    SciTech Connect

    Qureshi, S.

    1991-01-01

    For nearly two decades now hydrogenated amorphous silicon has generated considerable interest for its potential use in various device applications namely, solar cells, electrolithography, large-area electronics etc. The development of efficient and economic solar cells has been on the forefront of this research. This interest in hydrogenated amorphous silicon has been motivated by the fact that amorphous silicon can be deposited over a large area at relatively low cost compared to crystalline silicon. Hydrogenated amorphous silicon, frequently abbreviated as a-Si:H, used in solar-cell applications is a micron or less thick. The basic device structure is a p-i-n diode where the i layer is the active layer for radiation to interact. This is so because intrinsic a-Si:H has superior electrical properties in comparison to doped a-Si:H which serves the purpose of forming a potential barrier on either end of the i layer. The research presented in this dissertation was undertaken to study the properties of a-Si:H for radiation detection applications in physics and medicine.

  1. Optimizing portal dose calculation for an amorphous silicon detector using Swiss Monte Carlo Plan

    NASA Astrophysics Data System (ADS)

    Frauchiger, D.; Fix, M. K.; Frei, D.; Volken, W.; Mini, R.; Manser, P.

    2007-06-01

    higher dose than 3% of the measured maximum dose. Conclusions: The same geometry can be used to compare transport codes within the flexible C++ MC environment. A simplified 8 layer geometry results in similar EPID dose distributions compared with the accurate 24 layer geometry by gaining about a factor of 6 in CPU-time. The implementation of the amorphous silicon detector in our MC system has the potential to perform independent pre-treatment as well as treatment verification.

  2. Multipoint alignment monitoring with amorphous silicon position detectors in a complex light path

    NASA Astrophysics Data System (ADS)

    Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Calderón, A.; Gómez, G.; González-Sánchez, F. J.; Martínez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Árbol, P.; Sobrón, M.; Vila, I.; Virto, A. L.

    2010-12-01

    This document presents an application of the new generation of amorphous silicon position detecting (ASPD) sensors to multipoint alignment. Twelve units are monitored along a 20 m long laser beam, where the light path is deflected by 90° using a pentaprism.

  3. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  4. X-ray tests of a microchannel plate detector and amorphous silicon pixel array readout for neutron radiography

    NASA Astrophysics Data System (ADS)

    Ambrosi, R. M.; Street, R.; Feller, B.; Fraser, G. W.; Watterson, J. I. W.; Lanza, R. C.; Dowson, J.; Ross, D.; Martindale, A.; Abbey, A. F.; Vernon, D.

    2007-03-01

    High-performance large area imaging detectors for fast neutrons in the 5-14 MeV energy range do not exist at present. The aim of this project is to combine microchannel plates or MCPs (or similar electron multiplication structures) traditionally used in image intensifiers and X-ray detectors with amorphous silicon (a-Si) pixel arrays to produce a composite converter and intensifier position sensitive imaging system. This detector will provide an order of magnitude improvement in image resolution when compared with current millimetre resolution limits obtained using phosphor or scintillator-based hydrogen rich converters. In this study we present the results of the initial experimental evaluation of the prototype system. This study was carried out using a medical X-ray source for the proof of concept tests, the next phase will involve neutron imaging tests. The hybrid detector described in this study is a unique development and paves the way for large area position sensitive detectors consisting of MCP or microsphere plate detectors and a-Si or polysilicon pixel arrays. Applications include neutron and X-ray imaging for terrestrial applications. The technology could be extended to space instrumentation for X-ray astronomy.

  5. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  6. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  7. Compensated amorphous silicon solar cell

    DOEpatents

    Devaud, Genevieve

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  8. Utilization of amorphous silicon carbide (a-Si:C:H) as a resistive layer in gas microstrip detectors

    SciTech Connect

    Hong, W.S.; Cho, H.S.; Perez-Mendez, V.; Gong, W.G.

    1995-04-01

    Thin semiconducting films of hydrogenated amorphous silicon (a-Si:H) and its carbon alloy (a-Si:C:H) were applied to gas microstrip detectors in order to control gain instabilities due to charges on the substrate. Thin ({approximately}100nm) layers of a-Si:H or p-doped a-Si:C:H were placed either over or under the electrodes using the plasma enhanced chemical vapor deposition (PECVD) technique to provide the substrate with a suitable surface conductivity. By changing the carbon content and boron doping density, the sheet resistance of the a-Si:C:H coating could be successfully controlled in the range of 10{sup 12} {approximately} 10{sup 17} {Omega}/{four_gradient}, and the light sensitivity, which causes the resistivity to vary with ambient light conditions, was minimized. An avalanche gain of 5000 and energy resolution of 20% FWHM were achieved and the gain remained constant over a week of operation. A-Si:C:H film is an attractive alternative to ion-implanted or semiconducting glass due to the wide range of resistivities possible and the feasibility of making deposits over a large area at low cost.

  9. High-energy and thermal-neutron imaging and modeling with an amorphous silicon flat-panel detector.

    PubMed

    Claytor, Thomas N; Taddeucci, Terry N; Hills, Charles R; Summa, Deborah A; Davis, Anthony W; McDonald, Thomas E; Schwab, Mark J

    2004-10-01

    The Los Alamos Neutron Science Center (LANSCE) operates two spallation neutron sources dedicated to research in materials science, condensed-matter physics, and fundamental and applied nuclear physics. Prior to 1995, all thermal neutron radiography at Los Alamos was done on a beam port attached to the Omega West reactor, a small 8MW research reactor used primarily for radioisotope production and prompt and delayed neutron activation analysis. After the closure of this facility, two largely independent radiography development efforts were begun at LANSCE using moderated cold and thermal neutrons from the Target-1 source and high-energy neutrons from the Target-4 source. Investigations with cold and thermal neutrons employed a neutron converter and film, a scintillation screen and CCD camera system, and a new high-resolution amorphous silicon (a-Si) flat-panel detector system. Recent work with high-energy neutrons (En > 1 MeV) has involved storage-phosphor image plates. Some comparison high-energy images were obtained with both image plates and the a-Si panel and showed equivalent image quality for approximately equal exposure times. PMID:15246402

  10. Characterization of an Indirect-Detection Amorphous Silicon Detector for Dosimetric Measurement of Intensity Modulated Photon Fields

    NASA Astrophysics Data System (ADS)

    Bailey, Daniel Wayne

    Indirect-detection amorphous silicon electronic imagers show much promise for measurement of radiation dose, particularly for pre-treatment verification of patient-specific intensity modulated radiotherapy plans. These instruments, commonly known as Electronic Portal Imaging Devices (EPIDs), have high data density, large detecting area, convenient electronic read-out, excellent positional reproducibility, and are quickly becoming standard equipment on today's medical megavoltage linear accelerators. However, because these devices were originally intended to be digital radiograph imagers and not dosimeters, the modeling, calibration, and prediction of their response to dose carries a number of challenges. For instance, EPID dose images exhibit off-axis dose errors of up to 18% with increasing distance from the central axis of the imager (as compared to dose predictions calculated by a commercially available treatment planning system). Furthermore, these off-axis errors are asymmetric, with higher errors in the in-plane direction than in the cross-plane direction. In this work, methods are proposed to account for EPID off-axis effects by precisely calculating off-axis output factors from experimental measurements to increase the accuracy of EPID absolute dose measurement. Using these methods, dose readings acquired over the entire surface of the detector agree to within 2% accuracy as compared to respective EPID dose predictions. Similarly, the percentage of measured dose points that agree with respective calculated dose points (using 3%, 3 mm criteria) improves by as much as 60% for off-axis intensity modulated photon fields. Furthermore, a number of clinical applications of EPID dosimetry are investigated, including pixel response constancy, the effect of data density on a common metric for quantitatively comparing measured vs. calculated dose, and the implementation of an electronic portal dosimetry program for radiotherapy quality assurance.

  11. Thick amorphous silicon layers suitable for the realization of radiation detectors

    SciTech Connect

    Hong, Wan-Shick; Drewery, J.S.; Jing, Tao; Lee, Hyong-Koo; Perez-Mendez, V.; Petrova-Koch, V.

    1995-04-01

    Thick silicon films with good electronic quality have been prepared by glow discharge of He-diluted SiH{sub 4} at a substrate temperature {approximately} 150{degree}C and subsequent annealing at 160{degree}C for about 100 hours. The stress in the films obtained this way decreased to {approximately} 100 MPa compared to the 350 MPa in conventional a-Si:H. The post-annealing helped to reduce the ionized dangling bond density from 2.5 {times} 10{sup 15} cm{sup {minus}3} to 7 {times} 10{sup 14} cm{sup {minus}3} without changing the internal stress. IR spectroscopy and hydrogen effusion measurements implied the existence of microvoids and tiny crystallites in the material showing satisfactory electronic properties. P-I-N diodes for radiation detection applications have been realized out of the new material.

  12. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  13. Tandem junction amorphous silicon solar cells

    DOEpatents

    Hanak, Joseph J.

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  14. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  15. Narrow band gap amorphous silicon semiconductors

    DOEpatents

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  16. Amorphous silicon solar cell allowing infrared transmission

    DOEpatents

    Carlson, David E.

    1979-01-01

    An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.

  17. Amorphous molybdenum silicon superconducting thin films

    SciTech Connect

    Bosworth, D. Sahonta, S.-L.; Barber, Z. H.; Hadfield, R. H.

    2015-08-15

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using W{sub x}Si{sub 1−x}, though other amorphous superconductors such as molybdenum silicide (Mo{sub x}Si{sub 1−x}) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo{sub 83}Si{sub 17}. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  18. Amorphous molybdenum silicon superconducting thin films

    NASA Astrophysics Data System (ADS)

    Bosworth, D.; Sahonta, S.-L.; Hadfield, R. H.; Barber, Z. H.

    2015-08-01

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WxSi1-x, though other amorphous superconductors such as molybdenum silicide (MoxSi1-x) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo83Si17. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  19. Detection of charged particles in amorphous silicon layers

    SciTech Connect

    Kaplan, S.N.; Morel, J.R.; Mulera, T.A.; Perez-Mendez, V.; Schnurmacher, G.; Street, R.A.

    1985-10-01

    The successful development of radiation detectors made from amorphous silicon could offer the possibility for relatively easy construction of large area position-sensitive detectors. We have conducted a series of measurements with prototype detectors, on signals derived from alpha particles. The measurement results are compared with simple model calculations, and projections are made of potential applications in high-energy and nuclear physics. 4 refs., 7 figs.

  20. Compensated amorphous-silicon solar cell

    DOEpatents

    Devaud, G.

    1982-06-21

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

  1. Method of producing hydrogenated amorphous silicon film

    DOEpatents

    Wiesmann, Harold J.

    1980-01-01

    This invention relates to hydrogenated amorphous silicon produced by thermally decomposing silane (SiH.sub.4) or other gases comprising H and Si, from a tungsten or carbon foil heated to a temperature of about 1400.degree.-1600.degree. C., in a vacuum of about 10.sup.-6 to 19.sup.-4 torr, to form a gaseous mixture of atomic hydrogen and atomic silicon, and depositing said gaseos mixture onto a substrate independent of and outside said source of thermal decomposition, to form hydrogenated amorphous silicon. The presence of an ammonia atmosphere in the vacuum chamber enhances the photoconductivity of the hydrogenated amorphous silicon film.

  2. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  3. Edgeless silicon pad detectors

    NASA Astrophysics Data System (ADS)

    Perea Solano, B.; Abreu, M. C.; Avati, V.; Boccali, T.; Boccone, V.; Bozzo, M.; Capra, R.; Casagrande, L.; Chen, W.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Mirabito, L.; Morelli, A.; Niinikoski, T. O.; Oljemark, F.; Palmieri, V. G.; Rato Mendes, P.; Rodrigues, S.; Siegrist, P.; Silvestris, L.; Sousa, P.; Tapprogge, S.; Trocmé, B.

    2006-05-01

    We report measurements in a high-energy pion beam of the sensitivity of the edge region in "edgeless" planar silicon pad diode detectors diced through their contact implants. A large surface current on such an edge prevents the normal reverse biasing of the device, but the current can be sufficiently reduced by the use of a suitable cutting method, followed by edge treatment, and by operating the detector at low temperature. The depth of the dead layer at the diced edge is measured to be (12.5±8 stat..±6 syst.) μm.

  4. Amorphous silicon x-ray image sensor

    NASA Astrophysics Data System (ADS)

    Chabbal, Jean; Chaussat, Christophe; Ducourant, Thierry; Fritsch, Lionel; Michailos, Jean; Spinnler, Vincent; Vieux, Gerard; Arques, Marc; Hahm, Gerhard; Hoheisel, Martin; Horbaschek, Heinz; Schulz, Reiner F.; Spahn, Martin F.

    1996-04-01

    The design and the performance of a 20 cm by 20 cm flat panel x-ray detector for digital radiography and fluoroscopy is described: Thin film amorphous silicon (aSi) technology has been used to build a 1024 by 1024 photodetector matrix, each pixel including both a photodiode and a switching diode; the pixel size is 196 by 196 micrometers2. A high resolution and high absorption CsI(Tl) scintillator layer covers the top of the photodetector matrix in order to provide for x ray to light conversion. For low electronic noise and 30 fr/s operating rate we developed a custom design charge readout integrated circuit. The detector delivers a 12 bit digital output. The image quality, signal to noise ratio, and DQE are presented and discussed. The flat panel detector provides a MTF in excess of 30% at 2 lp/mm and a high contrast ratio without any distortion on the whole imaging area. The x-ray absorption is 70% for 50 KeV photons. The readout amplifier is optimized to reduce the electronic noise down to 1000 e-. This low noise level, combined with high sensitivity (1150 e-/incident x-ray quantum) provides the capability for fluoroscopic applications. The digital flat panel detector has been integrated in a C-arm system for cardiology and has been used on a regular basis in a European hospital since February 1995. The results are discussed for several operating modes: radiography and fluoroscopy. Conclusions on present detector performances, as well as further improvements, are presented.

  5. Cooling of hot electrons in amorphous silicon

    SciTech Connect

    Vanderhaghen, R.; Hulin, D.; Cuzeau, S.; White, J.O.

    1997-07-01

    Measurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

  6. Atomic-scale disproportionation in amorphous silicon monoxide

    NASA Astrophysics Data System (ADS)

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-05-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

  7. Atomic-scale disproportionation in amorphous silicon monoxide.

    PubMed

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-05-13

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

  8. Atomic-scale disproportionation in amorphous silicon monoxide

    PubMed Central

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  9. Charged particle detectors based on high quality amorphous silicon deposited with hydrogen or helium dilution of silane

    SciTech Connect

    Hong, Wan-Shick; Drewery, J.S.; Jing, Tao; Lee, Hyoung-Koo; Kaplan, S.N.; Perez-Mendez, V.; Mireshghi, Ali; Kitsuno, Yu

    1994-11-01

    Electrical transport properties of the authors PECVD a-Si:H material has been improved by using hydrogen and/or helium dilution of silane and lower substrate temperature for deposition. For hydrogen-diluted material they have measured electron and hole mobilities {approximately} 4 times larger, and {mu}{tau} values 2-3 times higher than for their standard a-Si:H. The density of ionized dangling bonds (N{sub D}*) also showed a factor of 5-10 improvement. Due to its higher conductivity, the improved a- Si:H material is more suitable than conventional a-Si:H for TFT applications. However, it is difficult to make thick layers by H-dilution because of high internal stress. On the other hand, thick detectors can be made at a faster rate and lower stress by low temperature deposition with He-dilution and subsequent annealing. The internal stress, which causes substrate bending and delamination, was reduced by a factor of 4 to {approximately}90 MPa, while the electronic quality was kept as good as that of the standard material. By this technique 35 {mu}m-thick n-i-p diodes were made without significant substrate bending, and the electronic properties, such as electron mobility and ionized dangling bond density, were suitable for detecting minimum ionizing particles.

  10. Neutron irradiation induced amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Hay, J.C.

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  11. Pressure induced crystallization in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Pandey, K. K.; Garg, Nandini; Shanavas, K. V.; Sharma, Surinder M.; Sikka, S. K.

    2011-06-01

    We have investigated the high pressure behavior of amorphous silicon (a-Si) using x-ray diffraction and Raman scattering techniques. Our experiments show that a-Si undergoes a polyamorphous transition from the low density amorphous to the high density amorphous phase, followed by pressure induced crystallization to the primitive hexagonal (ph) phase. On the release path, the sequence of observed phase transitions depends on whether the pressure is reduced slowly or rapidly. Using the results of our first principles calculations, pressure induced preferential crystallization to the ph phase is explained in terms of a thermodynamic model based on phenomenological random nucleation and the growth process.

  12. Inverted amorphous silicon solar cell utilizing cermet layers

    DOEpatents

    Hanak, Joseph J.

    1979-01-01

    An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.

  13. New Amorphous Silicon Alloy Systems

    NASA Astrophysics Data System (ADS)

    Kapur, Mridula N.

    1990-01-01

    The properties of hydrogenated amorphous silicon (a-Si:H) have been modified by alloying with Al, Ga and S respectively. The Al and Ga alloys are in effect quaternary alloys as they were fabricated in a carbon-rich discharge. The alloys were prepared by the plasma assisted chemical vapor deposition (PACVD) method. This method has several advantages, the major one being the relatively low defect densities of the resulting materials. The PACVD system used to grow the alloy films was designed and constructed in the laboratory. It was first tested with known (a-Si:H and a-Si:As:H) materials. Thus, it was established that device quality alloy films could be grown with the home-made PACVD setup. The chemical composition of the alloys was characterized by secondary ion mass spectrometry (SIMS), and electron probe microanalysis (EPMA). The homogeneous nature of hydrogen distribution in the alloys was established by SIMS depth profile analysis. A quantitative analysis of the bulk elemental content was carried out by EPMA. The analysis indicated that the alloying element was incorporated in the films more efficiently at low input gas concentrations than at the higher concentrations. A topological model was proposed to explain the observed behavior. The optical energy gap of the alloys could be varied in the 0.90 to 1.92 eV range. The Al and Ga alloys were low band gap materials, whereas alloying with S had the effect of widening the energy gap. It was observed that although the Si-Al and Si-Ga alloys contained significant amounts of C and H, the magnitude of the energy gap was determined by the metallic component. The various trends in optical properties could be related to the binding characteristics of the respective alloy systems. A quantitative explanation of the results was provided by White's tight binding model. The dark conductivity-temperature dependence of the alloys was examined. A linear dependence was observed for the Al and Ga systems. Electronic conduction in

  14. Metal electrode for amorphous silicon solar cells

    DOEpatents

    Williams, Richard

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  15. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOEpatents

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  16. Amorphization of silicon carbide by carbon displacement

    NASA Astrophysics Data System (ADS)

    Devanathan, R.; Gao, F.; Weber, W. J.

    2004-05-01

    We have used molecular dynamics simulations to examine the possibility of amorphizing silicon carbide (SiC) by exclusively displacing C atoms. At a defect generation corresponding to 0.2 displacements per atom, the enthalpy surpasses the level of melt-quenched SiC, the density decreases by about 15%, and the radial distribution function shows a lack of long-range order. Prior to amorphization, the surviving defects are mainly C Frenkel pairs (67%), but Si Frenkel pairs (18%) and antisite defects (15%) are also present. The results indicate that SiC can be amorphized by C sublattice displacements. Chemical short-range disorder, arising mainly from Frenkel pair production, plays a significant role in the amorphization.

  17. Ion bombardment and disorder in amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Gaspari, F.; Zukotynski, S.

    1997-07-01

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects.

  18. Mechanism for hydrogen diffusion in amorphous silicon

    SciTech Connect

    Biswas, R.; Li, Q.; Pan, B.C.; Yoon, Y.

    1998-01-01

    Tight-binding molecular-dynamics calculations reveal a mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicons and breaking their Si{endash}Si bonds. The diffusing hydrogen carries with it a newly created dangling bond. These intermediate transporting states are densely populated in the network, have lower energies than H at the center of stretched Si{endash}Si bonds, and can play a crucial role in hydrogen diffusion. {copyright} {ital 1998} {ital The American Physical Society}

  19. Self-Diffusion in Amorphous Silicon.

    PubMed

    Strauß, Florian; Dörrer, Lars; Geue, Thomas; Stahn, Jochen; Koutsioubas, Alexandros; Mattauch, Stefan; Schmidt, Harald

    2016-01-15

    The present Letter reports on self-diffusion in amorphous silicon. Experiments were done on ^{29}Si/^{nat}Si heterostructures using neutron reflectometry and secondary ion mass spectrometry. The diffusivities follow the Arrhenius law in the temperature range between 550 and 700 °C with an activation energy of (4.4±0.3)  eV. In comparison with single crystalline silicon the diffusivities are tremendously higher by 5 orders of magnitude at about 700 °C, which can be interpreted as the consequence of a high diffusion entropy. PMID:26824552

  20. Deuterium in crystalline and amorphous silicon

    SciTech Connect

    Borzi, R.; Ma, H.; Fedders, P.A.; Leopold, D.J.; Norberg, R.E.; Boyce, J.B.; Johnson, N.M.; Ready, S.E.; Walker, J.

    1997-07-01

    The authors report deuteron magnetic resonance (DMR) measurements on aged deuterium-implanted single crystal n-type silicon and comparisons with amorphous silicon spectra. The sample film was prepared six years ago by deuteration from a-D{sub 2} plasma and evaluated by a variety of experimental methods. Deuterium has been evolving with time and the present DMR signal shows a smaller deuteron population. A doublet from Si-D configurations along (111) has decreased more than have central molecular DMR components, which include 47 and 12 kHz FWHM gaussians. Transient DMR magnetization recoveries indicate spin lattice relaxation to para-D{sub 2} relaxation centers.

  1. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  2. Superior radiation tolerant materials: Amorphous silicon oxycarbide

    NASA Astrophysics Data System (ADS)

    Nastasi, Michael; Su, Qing; Price, Lloyd; Colón Santana, Juan A.; Chen, Tianyi; Balerio, Robert; Shao, Lin

    2015-06-01

    We studied the radiation tolerance of amorphous silicon oxycarbide (SiOC) alloys by combining ion irradiation, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The amorphous SiOC alloys thin films were grown via co-sputtering from SiO2 and SiC (amorphous phase) targets either on a surface oxidized Si (100) substrate or on a sodium chloride substrate. By controlling the sputtering rate of each target, SiOC alloys with different compositions (1:2, 1:1, 2:1 ratios) were obtained. These alloys were irradiated by 100 keV He+ ions at both room temperature and 600 °C with damage levels ranging from 1 to 20 displacements per atom (dpa). TEM characterization shows no sign of crystallization, void formation or segregation in all irradiated samples. Our findings suggest that SiOC alloys are a class of promising radiation-tolerant materials.

  3. Excess specific heat in evaporated amorphous silicon.

    PubMed

    Queen, D R; Liu, X; Karel, J; Metcalf, T H; Hellman, F

    2013-03-29

    The specific heat C of e-beam evaporated amorphous silicon (a-Si) thin films prepared at various growth temperatures T(S) and thicknesses t was measured from 2 to 300 K, along with sound velocity v, shear modulus G, density n(Si), and Raman spectra. Increasing T(S) results in a more ordered amorphous network with increases in n(Si), v, G, and a decrease in bond angle disorder. Below 20 K, an excess C is seen in films with less than full density where it is typical of an amorphous solid, with both a linear term characteristic of two-level systems (TLS) and an additional (non-Debye) T3 contribution. The excess C is found to be independent of the elastic properties but to depend strongly on density. The density dependence suggests that low energy glassy excitations can form in a-Si but only in microvoids or low density regions and are not intrinsic to the amorphous silicon network. A correlation is found between the density of TLS n0 and the excess T3 specific heat c(ex) suggesting that they have a common origin.

  4. Amorphous silicon/polycrystalline thin film solar cells

    SciTech Connect

    Ullal, H.S.

    1991-03-13

    An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

  5. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, J.L.

    1996-07-23

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

  6. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOEpatents

    Kaschmitter, James L.

    1996-01-01

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

  7. Belle II silicon vertex detector

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-09-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  8. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  9. Medical imaging applications of amorphous silicon

    SciTech Connect

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance.

  10. Radiation resistance studies of amorphous silicon films

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Payson, J. Scott

    1989-01-01

    Hydrogenated amorphous silicon thin films were irradiated with 2.00 MeV helium ions using fluences ranging from 1E11 to 1E15 cm(-2). The films were characterized using photothermal deflection spectroscopy and photoconductivity measurements. The investigations show that the radiation introduces sub-band-gap states 1.35 eV below the conduction band and the states increase supralinearly with fluence. Photoconductivity measurements suggest the density of states above the Fermi energy is not changing drastically with fluence.

  11. Amorphous silicon-based microchannel plates

    NASA Astrophysics Data System (ADS)

    Franco, Andrea; Riesen, Yannick; Wyrsch, Nicolas; Dunand, Sylvain; Powolny, François; Jarron, Pierre; Ballif, Christophe

    2012-12-01

    Microchannel plates (MCP) based on hydrogenated amorphous silicon (a-Si:H) were recently introduced to overcome some of the limitations of crystalline silicon and glass MCP. The typical thickness of a-Si:H based MCPs (AMCP) ranges between 80 and 100 μm and the micromachining of the channels is realized by deep reactive ion etching (DRIE). Advantages and issues regarding the fabrication process are presented and discussed. Electron amplification is demonstrated and analyzed using Electron Beam Induced Current (EBIC) technique. The gain increases as a function of the bias voltage, limited to -340 V on account of high leakage currents across the structure. EBIC maps on 10° tilted samples confirm that the device active area extend to the entire channel opening. AMCP characterization with the electron beam shows gain saturation and signal quenching which depends on the effectiveness of the charge replenishment in the channel walls.

  12. Lithium transport through nanosized amorphous silicon layers.

    PubMed

    Hüger, Erwin; Dörrer, Lars; Rahn, Johanna; Panzner, Tobias; Stahn, Jochen; Lilienkamp, Gerhard; Schmidt, Harald

    2013-03-13

    Lithium migration in nanostructured electrode materials is important for an understanding and improvement of high energy density lithium batteries. An approach to measure lithium transport through nanometer thin layers of relevant electrochemical materials is presented using amorphous silicon as a model system. A multilayer consisting of a repetition of five [(6)LiNbO3(15 nm)/Si (10 nm)/(nat)LiNbO3 (15 nm)/Si (10 nm)] units is used for analysis, where LiNbO3 is a Li tracer reservoir. It is shown that the change of the relative (6)Li/(7)Li isotope fraction in the LiNbO3 layers by lithium diffusion through the nanosized silicon layers can be monitored nondestructively by neutron reflectometry. The results can be used to calculate transport parameters.

  13. Structural relaxation of vacancies in amorphous silicon

    SciTech Connect

    Kim, E.; Lee, Y.H.; Chen, C.; Pang, T.

    1997-07-01

    The authors have studied the structural relaxation of vacancies in amorphous silicon (a-Si) using a tight-binding molecular-dynamics method. The most significant difference between vacancies in a-Si and those in crystalline silicon (c-Si) is that the deep gap states do not show up in a-Si. This difference is explained through the unusual behavior of the structural relaxation near the vacancies in a-Si, which enhances the sp{sup 2} + p bonding near the band edges. They have also observed that the vacancies do not migrate below 450 K although some of them can still be annihilated, particularly at high defect density due to large structural relaxation.

  14. The CDF silicon detector upgrade

    SciTech Connect

    Azzi, P.

    1998-04-01

    A major silicon upgrade project is under way for the CDFII experiment that will operate during Run II of the Tevatron in the year 2000. The innermost detector, SVXII, will cover the interaction region with three barrels of five layers of double sided microstrip detectors. In the radial gap between the SVXII and the new main tracking chamber (COT) will be located the ISL that consists of two planes of double sided miscrostrip detectors at large pseudorapidity and one in the central region. A description of the project design and its motivation is presented here.

  15. The future of amorphous silicon photovoltaic technology

    SciTech Connect

    Crandall, R; Luft, W

    1995-06-01

    Amorphous silicon modules are commercially available. They are the first truly commercial thin-film photovoltaic (PV) devices. Well-defined production processes over very large areas (>1 m{sup 2}) have been implemented. There are few environmental issues during manufacturing, deployment in the field, or with the eventual disposal of the modules. Manufacturing safety issues are well characterized and controllable. The highest measured initial efficiency to date is 13.7% for a small triple-stacked cell and the highest stabilized module efficiency is 10%. There is a consensus among researchers, that in order to achieve a 15% stabilized efficiency, a triple-junction amorphous silicon structure is required. Fundamental improvements in alloys are needed for higher efficiencies. This is being pursued through the DOE/NREL Thin-Film Partnership Program. Cost reductions through improved manufacturing processes are being pursued under the National Renewable Energy Laboratory/US Department of Energy (NREL/DOE)-sponsored research in manufacturing technology (PVMaT). Much of the work in designing a-Si devices is a result of trying to compensate for the Staebler-Wronski effect. Some new deposition techniques hold promise because they have produced materials with lower stabilized defect densities. However, none has yet produced a high efficiency device and shown it to be more stable than those from standard glow discharge deposited material.

  16. Method for improving the stability of amorphous silicon

    DOEpatents

    Branz, Howard M.

    2004-03-30

    A method of producing a metastable degradation resistant amorphous hydrogenated silicon film is provided, which comprises the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.

  17. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOEpatents

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  18. An infrared and luminescence study of tritiated amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Kosteski, T.; Kherani, N.P.; Gaspari, F.; Zukotynski, S.; Shmayda, W.

    1997-07-01

    Tritium has been incorporated into amorphous silicon. Infrared spectroscopy shows new infrared vibration modes due to silicon-tritium (Si-T) bonds in the amorphous silicon network. Si-T vibration frequencies are related to Si-H vibration frequencies by simple mass relationships. Inelastic collisions of {beta} particles, produced as a result of tritium decay, with the amorphous silicon network results in the generation of electron-hole pairs. Radiative recombination of these carriers is observed. Dangling bonds associated with the tritium decay reduce luminescence efficiency.

  19. Theoretical studies of amorphous silicon and hydrogenated amorphous silicon with molecular dynamics simulations

    SciTech Connect

    Kwon, I.

    1991-12-20

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) have been studied with molecular dynamics simulations. The structural, vibrational, and electronic properties of these materials have been studied with computer-generated structural models and compare well with experimental observations. The stability of a-si and a-Si:H have been studied with the aim of understanding microscopic mechanisms underlying light-induced degradation in a-Si:H (the Staebler-Wronski effect). With a view to understanding thin film growth processes, a-Si films have been generated with molecular dynamics simulations by simulating the deposition of Si-clusters on a Si(111) substrate. A new two- and three-body interatomic potential for Si-H interactions has been developed. The structural properties of a-Si:H networks are in good agreement with experimental measurements. The presence of H atoms reduces strain and disorder relative to networks without H.

  20. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  1. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  2. Ultrafast recombination and trapping in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Esser, A.; Seibert, K.; Kurz, H.; Parsons, G. N.; Wang, C.; Davidson, B. N.; Lucovsky, G.; Nemanich, R. J.

    1990-02-01

    We have studied the time-resolved reflectivity and transmission changes induced by femtosecond laser pulses in hydrogenated and nonhydrogenated amorphous silicon thin films, a-Si:H and a-Si, respectively. By varying the pump power, and hence the photoexcited free-carrier densities, by several orders of magnitude, a quadratic, nonradiative recombination process has been identified that controls the density of free carriers on a picosecond time scale for excitation levels above 5×1018 cm-3 in a-Si:H and above 5×1019 cm-3 in a-Si. At lower free-carrier densities, the reflectivity transients display the dynamics expected from a trapping mechanism. We suggest that the process that dominates for the higher free-carrier densities may result from Auger recombination but with a dependence on the carrier density that is different from that which has been observed in crystalline semiconductors where k selection prevails.

  3. Short range atomic migration in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Strauß, F.; Jerliu, B.; Geue, T.; Stahn, J.; Schmidt, H.

    2016-05-01

    Experiments on self-diffusion in amorphous silicon between 400 and 500 °C are presented, which were carried out by neutron reflectometry in combination with 29Si/natSi isotope multilayers. Short range diffusion is detected on a length scale of about 2 nm, while long range diffusion is absent. Diffusivities are in the order of 10-19-10-20 m2/s and decrease with increasing annealing time, reaching an undetectable low value for long annealing times. This behavior is strongly correlated to structural relaxation and can be explained as a result of point defect annihilation. Diffusivities for short annealing times of 60 s follow the Arrhenius law with an activation enthalpy of (0.74 ± 0.21) eV, which is interpreted as the activation enthalpy of Si migration.

  4. Direct-patterned optical waveguides on amorphous silicon films

    DOEpatents

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  5. Structural and Elastic Properties of Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Feldman, Joseph; Papaconstantopoulos, Dimitris; Bernstein, Noam; Mehl, Michael

    2003-03-01

    In this work we study the elastic and structural properties of amorphous silicon using the NRL tight-binding method (N. Bernstein, et al., Phys. Rev. B 62, 4477 (2000).). Using conjugate gradient energy minimization we have relaxed a 216 atom model. The amorphous-crystal energy difference is 0.017 Ryd/atom, similar to a calculation on a related model using the empirical Stillinger-Weber potential and twice the experimental value. The structure of the relaxed model is consistent with diffraction experiments as well as more indirect experimental results. The model is fully four-fold coordinated with an RMS bond angle deviation of only 11^rc, and is expanded 2% in volume with respect to the TB crystalline value. Using the method of homogeneous deformation we have found a relaxed shear modulus of ˜57 GPa (with an estimated 2% uncertainty due to anisotropy) and relaxed bulk modulus of 87.3 GPa, in very good agreement with a previous (ab initio) calculated value of 82.5 GPa (M. Durandurdu and D. A. Drabold, Phys. Rev. B 64, 014101 (2001).). We find that the distribution of relaxation displacements under shear is markedly skewed towards large values. Finally, we discuss the force constants and vacancy energy distributions for several models.

  6. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOEpatents

    Jeffrey, Frank R.; Shanks, Howard R.

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  7. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE PAGESBeta

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  8. Process for producing amorphous and crystalline silicon nitride

    DOEpatents

    Morgan, Peter E. D.; Pugar, Eloise A.

    1985-01-01

    A process for producing amorphous or crystalline silicon nitride is disclosed which comprises reacting silicon disulfide ammonia gas at elevated temperature. In a preferred embodiment silicon disulfide in the form of "whiskers" or needles is heated at temperature ranging from about 900.degree. C. to about 1200.degree. C. to produce silicon nitride which retains the whisker or needle morphological characteristics of the silicon disulfide. Silicon carbide, e.g. in the form of whiskers, also can be prepared by reacting substituted ammonia, e.g. methylamine, or a hydrocarbon containing active hydrogen-containing groups, such as ethylene, with silicon disulfide, at elevated temperature, e.g. 900.degree. C.

  9. Process for producing amorphous and crystalline silicon nitride

    DOEpatents

    Morgan, P.E.D.; Pugar, E.A.

    1985-11-12

    A process for producing amorphous or crystalline silicon nitride is disclosed which comprises reacting silicon disulfide ammonia gas at elevated temperature. In a preferred embodiment silicon disulfide in the form of whiskers'' or needles is heated at temperature ranging from about 900 C to about 1,200 C to produce silicon nitride which retains the whisker or needle morphological characteristics of the silicon disulfide. Silicon carbide, e.g. in the form of whiskers, also can be prepared by reacting substituted ammonia, e.g. methylamine, or a hydrocarbon containing active hydrogen-containing groups, such as ethylene, with silicon disulfide, at elevated temperature, e.g. 900 C. 6 figs.

  10. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    PubMed Central

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  11. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon.

    PubMed

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.

  12. Applications of passivated silicon detectors

    NASA Astrophysics Data System (ADS)

    Kyung, Richard; Park, Chan Ho

    2012-03-01

    We can postulate that dark matter are WIMPS, more specifically, Majorana particles called neutralinos floating through space. Upon neutralino-neutralino annihilation, they create a greater burst of other particles into space: these being all kinds of particles including anti-deuterons which are the indications of the existence of dark matter. For the study of the applications of passivated silicon detectors, this paper shows following procedures in two categories. Painting on little pieces of silicon (Polyimid and Boxcar Red) :Took clean paint brush and painted on Polyimid and Boxcar red samples onto little pieces of sample silicon and dried for a certain number of hours in different conditions. Cooling test : usually done in 7 cycles, cool until usually -35 degrees or -40 degrees Celsius with thermoelectric cooler, dry out, evapate the moisture in the fume hood, take pictures with the microscope and check for irregularities every 1, 4 and 7 times. The results show us how the passivated silicon will act in the real experiment--the vacuum chamber and x-rays (from the radioactive source), and different atmospheric pressures simulate what it will be like in space.

  13. Radiation experience with the CDF silicon detectors

    SciTech Connect

    Husemann, Ulrich; /Rochester U.

    2005-11-01

    The silicon detectors of the CDF experiment at the Tevatron collider are operated in a harsh radiation environment. The lifetime of the silicon detectors is limited by radiation damage, and beam-related incidents are an additional risk. This article describes the impact of beam-related incidents on detector operation and the effects of radiation damage on electronics noise and the silicon sensors. From measurements of the depletion voltage as a function of the integrated luminosity, estimates of the silicon detector lifetime are derived.

  14. Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Bai, Feng; Li, Hong-Jin; Huang, Yuan-Yuan; Fan, Wen-Zhong; Pan, Huai-Hai; Wang, Zhuo; Wang, Cheng-Wei; Qian, Jing; Li, Yang-Bo; Zhao, Quan-Zhong

    2016-10-01

    We have used femtosecond laser pulses to ablate monocrystalline silicon wafer. Raman spectroscopy and X-ray diffraction analysis of ablation surface indicates horizontally polarized laser beam shows an enhancement in amorphization efficiency by a factor of 1.6-1.7 over the circularly polarized laser ablation. This demonstrates that one can tune the amorphization efficiency through the polarization of irradiation laser.

  15. Flexible Protocrystalline Silicon Solar Cells with Amorphous Buffer Layer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yasuaki; Schubert, Markus B.

    2006-09-01

    A low deposition temperature of 110 °C is mandatory for directly growing amorphous-silicon-based solar cells on plastic foil. The optimum absorber material at this low temperature is protocrystalline, i.e., right at the transition between amorphous and crystalline silicon. Polyethylene terephtalate foil of 50 μm thickness form the substrate of our flexible p-i-n single-junction cells. We discuss three peculiar processing techniques for achieving the maximum photovoltaic conversion efficiency of flexible low-temperature solar cells. First, we employ an optimized microcrystalline silicon p-type window layer; second, we use protocrystalline silicon for the i-layer; third, we insert an undoped amorphous silicon buffer layer at the p/i interface. The best flexible cells attain power conversion efficiencies of up to 4.9%.

  16. Electron and hole dynamics in amorphous silicon

    SciTech Connect

    Werner, A.; Kunst, M.

    1988-07-01

    Charge carrier dynamics in doped and undoped hydrogenated amorphous silicon (a-Si:H) films is studied by contactless time-resolved photoconductivity measurements. Subband-gap and above band-gap excitation are used to generate excess mobile charge carriers. In undoped a-Si:H the electron decay at charge carrier concentrations larger than 10/sup 16/ cm/sup -3/ is mainly due to an electron-hole recombination which is controlled by hole dispersion. n doping introduces hole traps which increase the effective electron lifetime drastically as they quench this electron-hole recombination channel. At high n-doping levels the electron decay becomes faster due to an increase of the concentration of recombination centers upon doping. In lightly doped p-type samples the transient photoconductivity reflects the interaction of mobile holes with states in the valence-band tail. In heavily doped p- and n-type films the majority carriers decay by a second-order recombination process with trapped minority charge carriers. The transport parameters deduced agree with time-of-flight data.

  17. Amorphous Silicon: Flexible Backplane and Display Application

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  18. Breakdown analysis of multilayer amorphous silicon photoreceptors

    NASA Astrophysics Data System (ADS)

    Hu, Jian

    1993-06-01

    The breakdown mechanism of hydrogenated amorphous silicon (a-Si:H) has been investigated. It has been shown that the acceptance of the surface potential of an a-Si:H photoreceptor is very sensitive to the micro-roughness of the substrate surface. This is because the junction between the metal substrate (usually aluminum) and the blocking layer (p+ or n+ a-Si:H) is strongly affected by the micro-roughness of the substrate surface. A model is proposed to expound this phenomenon, which indicates that the existence of micro- defects on the substrate surface results in the bending of the metal-semiconductor junction at these defect positions; that is, the original parallel plane junction changes into a spherical abrupt junction. Compared to the former, the curved junction has a lower breakdown voltage, therefore, it will more easily break down at these defect positions during charging. An a-Si:H photoreceptor was prepared on the drum substrate half covered with a thin aluminum film to confirm the model. The experiment result was qualitatively in agreement with the analysis mentioned above. In addition, the effects of PVD-like deposition processes (e.g., high power or high argon diluted silane deposition) on the microstructure and breakdown of a-Si:H photoreceptors are reviewed.

  19. Conductance fluctuations in hydrogenated amorphous silicon

    SciTech Connect

    Parman, C.E.

    1992-01-01

    Measurements of co-planar resistance fluctuations are reported for n-type doped hydrogenated amorphous silicon over the temperature range 190 < T < 450 K. The spectral density of the fluctuations obey a 1/f frequency dependence over the frequency range 1 < f < 10[sup 3] Hz. The noise power displays a non-linear dependence on the applied DC current, that is that noise power S[sub I] [proportional to] I[sup b], where 1.0 < b < 2.5. Random telegraph switching noise is observed with fluctuations as large as [delta]R/R [approx] 10[sup [minus]2] in samples with volumes of 10[sup [minus]7] cm[sup 3]. Statistical analysis of the noise power spectra show the fluctuations to be strongly non-Gaussian. The noise power magnitude and frequency dependence are both time dependent. These results suggest that cooperative dynamics govern the conductance fluctuations, and are discussed in terms of models for noise in composite and inhomogeneous materials.

  20. Metastable Defects in Tritiated Amorphous Silicon

    SciTech Connect

    Ju, T.; Whitaker, J.; Zukotynski, S.; Kherani, N.; Taylor, P. C.; Stradins, P.

    2007-01-01

    The appearance of optically or electrically induced defects in hydrogenated amorphous silicon (a-Si:H), especially those that contribute to the Staebler-Wronski effect, has been the topic of numerous studies, yet the mechanism of defect creation and annealing is far from clarified. We have been observing the growth of defects caused by tritium decay in tritiated a Si-H instead of inducing defects optically. Tritium decays to {sup 3}He, emitting a beta particle (average energy of 5.7 keV) and an antineutrino. This reaction has a half-life of 12.5 years. In these 7 at.% tritium-doped a-Si:H samples each beta decay will create a defect by converting a bonded tritium to an interstitial helium, leaving behind a silicon dangling bond. We use ESR (electron spin resonance) and PDS( photothermal deflection spectroscopy) to track the defects. First we annealed these samples, and then we used ESR to determine the initial defect density around 10{sup 16} to 10{sup 17}/cm{sup 3}, which is mostly a surface spin density. After that we have kept the samples in liquid nitrogen for almost two years. During the two years we have used ESR to track the defect densities of the samples. The defect density increases without saturation to a value of 3 x 10{sup 19}/cm{sup 3} after two years, a number smaller than one would expect if each tritium decay were to create a silicon dangling bond (2 x 10{sup 20}/cm{sup 3}). This result suggests that there might be either an annealing process that remains at liquid nitrogen temperature, or tritium decay in clustered phase not producing a dangling bond due to bond reconstruction and emission of the hydrogen previously paired to Si-bonded tritium atom. After storage in liquid nitrogen for two years, we have annealed the samples. We have stepwise annealed one sample at temperatures up to 200, where all of the defects from beta decay are annealed out, and reconstructed the annealing energy distribution. The second sample, which was grown at 150, has

  1. Silicon heterojunction solar cell and crystallization of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lu, Meijun

    The rapid growth of photovoltaics in the past decade brings on the soaring price and demand for crystalline silicon. Hence it becomes necessary and also profitable to develop solar cells with over 20% efficiency, using thin (˜100mum) silicon wafers. In this respect, diffused junction cells are not the best choice, since the inescapable heating in the diffusion process not only makes it hard to handle thin wafers, but also reduces carriers' bulk lifetime and impairs the crystal quality of the substrate, which could lower cell efficiency. An alternative is the heterojunction cells, such as amorphous silicon/crystalline silicon heterojunction (SHJ) solar cell, where the emitter layer can be grown at low temperature (<200°C). In first part of this dissertation, I will introduce our work on front-junction SHJ solar cell, including the importance of intrinsic buffer layer; the discussion on the often observed anomalous "S"-shaped J-V curve (low fill factor) by using band diagram analysis; the surface passivation quality of intrinsic buffer and its relationship to the performance of front-junction SHJ cells. Although the a-Si:H is found to help to achieve high efficiency in c-Si heterojuntion solar cells, it also absorbs short wavelength (<600 nm) light, leading to non-ideal blue response and lower short circuit currents (JSC) in the front-junction SHJ cells. Considering this, heterojunction with both a-Si:H emitter and base contact on the back side in an interdigitated pattern, i.e. interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell, is developed. This dissertation will show our progress in developing IBC-SHJ solar cells, including the structure design; device fabrication and characterization; two dimensional simulation by using simulator Sentaurus Device; some special features of IBC-SHJ solar cells; and performance of IBC-SHJ cells without and with back surface buffer layers. Another trend for solar cell industry is thin film solar cells, since

  2. Nuclear magnetic resonance studies of hydrogen in amorphous silicon

    SciTech Connect

    Norberg, R.E.; Fedders, P.A.; Leopold, D.J.

    1996-12-31

    Proton and deuteron NMR in hydrogenated amorphous silicon yield quantitative measures of species-specific structural configurations and their dynamics. Populations of silicon-bonded and molecular hydrogens correlate with photovoltaic quality, doping, illumination/dark anneal sequences, and with infrared and other characterizations. High quality films contain substantial populations of nanovoid-trapped molecular hydrogen.

  3. Construction of the CDF silicon vertex detector

    SciTech Connect

    Skarha, J.; Barnett, B.; Boswell, C.; Snider, F.; Spies, A.; Tseng, J.; Vejcik, S.; Carter, H.; Flaugher, B.; Gonzales, B.; Hrycyk, M.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T.; Carithers, W.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester, W.; Wong, M.; Amidei, D.; Derwent, P.; Gold, M.; Matthews, J.; Bacchetta, N.; Bisello, D.; Busetto, G.; Castro, A.; Loreti, M.; Pescara, L.; Bedeschi, F.; Bolognesi, V.; Dell`Agnello, S.; Galeotti, S.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Risotri, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. |; Bailey, M.; Garfinkel, A.; Shaw, N.; Tipton, P.; Watts, G.

    1992-04-01

    Technical details and methods used in constructing the CDF silicon vertex detector are presented. This description includes a discussion of the foam-carbon fiber composite structure used to silicon microstrip detectors and the procedure for achievement of 5 {mu}m detector alignment. The construction of the beryllium barrel structure, which houses the detector assemblies, is also described. In addition, the 10 {mu}m placement accuracy of the detectors in the barrel structure is discussed and the detector cooling and mounting systems are described. 12 refs.

  4. Electrical characteristics of amorphous iron-tungsten contacts on silicon

    NASA Technical Reports Server (NTRS)

    Finetti, M.; Pan, E. T.-S.; Nicolet, M.-A.; Suni, I.

    1983-01-01

    The electrical characteristics of amorphous Fe-W contacts have been determined on both p-type and n-type silicon. The amorphous films were obtained by cosputtering from a composite target. Contact resistivities of 1 x 10 to the -7th and 2.8 x 10 to the -6th were measured on n(+) and p(+) silicon, respectively. These values remain constant after thermal treatment up to at least 500 C. A barrier height of 0.61 V was measured on n-type silicon.

  5. Fabrication process development for high-purity germanium radiation detectors with amorphous semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Looker, Quinn

    minimizing charge injection leakage current, increasing the long-term stability of the contacts, and achieving good charge collection properties in segmented detectors. A systematic study of contact characteristics is presented where amorphous germanium (a-Ge) and amorphous silicon (a-Si) contacts are sputtered with varying sputter gas hydrogen content, sputter gas pressure, and amorphous film thickness. A set of about 45 detectors fabricated from 11 different crystal samples were analyzed for electron barrier height and effective Richardson constant. Most of these detectors were subjected to as many as 10 temperature cycles over a period of up to several months in order to assess their long-term stability. Additionally, 6 double-sided strip detectors were fabricated with a-Ge and a-Si contacts in order to study their inter-electrode charge collection properties. An attempt is made to relate fabrication process parameters such as hydrogen content, sputter pressure, and film thickness to changes observed in detector performance and assess the level of reproducibility using the current methods. Several important results and conclusions were found that enable more reliable and highly performing detectors with amorphous semiconductor contacts. Utilizing the new information should enable consistent production of finely segmented detectors with excellent energy resolution that can be operated reliably for a long period of time. The passivation process could impact planar detectors as well as other designs, such as the p-type point contact detector. It is demonstrated that the long-term stability of amorphous semiconductor contacts is primarily dependent on the time the detector is at room temperature rather than the number of temperature cycles. For a-Ge contacts, higher sputter pressure yields a more stable process that changes little with time, giving a reliable hole-blocking contact. The a-Si contacts form a good electron-blocking contact with decreasing leakage current over

  6. Amorphous and microcrystalline silicon technology--1997. Materials Research Society symposium proceedings, Volume 467

    SciTech Connect

    Wagner, S.; Hack, M.; Schiff, E.A.; Schropp, R.; Shimizu, I.

    1997-07-01

    This book was divided into the following parts: Staebler-Wronski and Fundamental Defect Studies in Amorphous Silicon; The Story of Hydrogen in Amorphous Silicon; Photoelectric Properties of Amorphous Silicon; Deposition and Properties of Microcrystalline Silicon; Deposition Studies for Amorphous Silicon and Related Materials; Solar Cells; Thin-Film Transistors; and Sensors and Novel Device Concepts. Separate abstracts were prepared for most of the papers in the volume.

  7. Transmissive metallic contact for amorphous silicon solar cells

    DOEpatents

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  8. Solution-processed amorphous silicon surface passivation layers

    SciTech Connect

    Mews, Mathias Sontheimer, Tobias; Korte, Lars; Rech, Bernd; Mader, Christoph; Traut, Stephan; Wunnicke, Odo

    2014-09-22

    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120 meV and 200 meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37 ms at an injection level of 10{sup 15}/cm{sup 3} enabling an implied open circuit voltage of 724 mV was achieved, demonstrating excellent silicon surface passivation.

  9. Threshold irradiation dose for amorphization of silicon carbide

    SciTech Connect

    Snead, L.L.; Zinkle, S.J.

    1997-04-01

    The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface of strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56 eV. This model successfully explains the difference in the temperature-dependent amorphization behavior of SiC irradiated with 0.56 MeV silicon ions at 1 x 10{sup {minus}3} dpa/s and with fission neutrons irradiated at 1 x 10{sup {minus}6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340 {+-} 10K.

  10. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    SciTech Connect

    Chowdhury, Zahidur R. Kherani, Nazir P.

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  11. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Chowdhury, Zahidur R.; Kherani, Nazir P.

    2014-12-01

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide-plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are VOC of 666 mV, JSC of 29.5 mA-cm-2, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  12. The application of thick hydrogenated amorphous silicon layers to charged particle and x-ray detection

    SciTech Connect

    Perez-Mendez, V.; Cho, G.; Fujieda, I.; Kaplan, S.N.; Qureshi, S.; Street, R.A.

    1989-04-01

    We outline the characteristics of thick hydrogenated amorphous silicon layers which are optimized for the detection of charged particles, x-rays and ..gamma..-rays. Signal amplitude as a function of the linear energy transfer of various particles are given. Noise sources generated by the detector material and by the thin film electronics - a-Si:H or polysilicon proposed for pixel position sensitive detectors readout are described, and their relative amplitudes are calculated. Temperature and neutron radiation effects on leakage currents and the corresponding noise changes are presented. 17 refs., 12 figs., 2 tabs.

  13. Long-term stability of amorphous-silicon modules

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    The Jet Propulsion Laboratory (JPL) program of developing qualification tests necessary for amorphous silicon modules, including appropriate accelerated environmental tests reveal degradation due to illumination. Data were given which showed the results of temperature-controlled field tests and accelerated tests in an environmental chamber.

  14. Integral bypass diodes in an amorphous silicon alloy photovoltaic module

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Flaisher, H.

    1991-01-01

    Thin-film, tandem-junction, amorphous silicon (a-Si) photovoltaic modules were constructed in which a part of the a-Si alloy cell material is used to form bypass protection diodes. This integral design circumvents the need for incorporating external, conventional diodes, thus simplifying the manufacturing process and reducing module weight.

  15. Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths.

    PubMed

    Safioui, Jassem; Leo, François; Kuyken, Bart; Gorza, Simon-Pierre; Selvaraja, Shankar Kumar; Baets, Roel; Emplit, Philippe; Roelkens, Gunther; Massar, Serge

    2014-02-10

    We report supercontinuum (SC) generation centered on the telecommunication C-band (1550 nm) in CMOS compatible hydrogenated amorphous silicon waveguides. A broadening of more than 550 nm is obtained in 1cm long waveguides of different widths using as pump picosecond pulses with on chip peak power as low as 4 W.

  16. Photocurrent images of amorphous-silicon solar-cell modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Shumka, A.; Trask, J.

    1985-01-01

    Results obtained in applying the unique characteristics of the solar cell laser scanner to investigate the defects and quality of amorphous silicon cells are presented. It is concluded that solar cell laser scanners can be effectively used to nondestructively test not only active defects but also the cell quality and integrity of electrical contacts.

  17. Compton imager using room temperature silicon detectors

    NASA Astrophysics Data System (ADS)

    Kurfess, James D.; Novikova, Elena I.; Phlips, Bernard F.; Wulf, Eric A.

    2007-08-01

    We have been developing a multi-layer Compton Gamma Ray Imager using position-sensitive, intrinsic silicon detectors. Advantages of this approach include room temperature operation, reduced Doppler broadening, and use of conventional silicon fabrication technologies. We have obtained results on the imaging performance of a multi-layer instrument where each layer consists of a 2×2 array of double-sided strip detectors. Each detector is 63 mm×63 mm×2 mm thick and has 64 strips providing a strip pitch of approximately 0.9 mm. The detectors were fabricated by SINTEF ICT (Oslo Norway) from 100 mm diameter wafers. The use of large arrays of silicon detectors appears especially advantageous for applications that require excellent sensitivity, spectral resolution and imaging such as gamma ray astrophysics, detection of special nuclear materials, and medical imaging. The multiple Compton interactions (three or more) in the low-Z silicon enable the energy and direction of the incident gamma ray to be determined without full deposition of the incident gamma-ray energy in the detector. The performance of large volume instruments for various applications are presented, including an instrument under consideration for NASA's Advanced Compton Telescope (ACT) mission and applications to Homeland Security. Technology developments that could further extend the sensitivity and performance of silicon Compton Imagers are presented, including the use of low-energy (few hundred keV) electron tracking within novel silicon detectors and the potential for a wafer-bonding approach to produce thicker, position-sensitive silicon detectors with an associated reduction of required electronics and instrument cost.

  18. The L3 silicon microvertex detector

    NASA Astrophysics Data System (ADS)

    Acciarri, M.; Adam, A.; Adriani, O.; Ahlen, S.; Alcaraz, J.; Ambrosi, G.; Babucci, E.; Baksay, L.; Baschirotto, A.; Battiston, R.; Baur, W.; Bay, A.; Bencze, Gy. L.; Bertucci, B.; Biasini, M.; Bilei, G. M.; Bobbink, G. J.; Boissevain, J. G.; Bosetti, M.; Brooks, M. L.; Burger, W. J.; Busenitz, J.; Camps, C.; Caria, M.; Castellini, G.; Castello, R.; Checcuccl, B.; Chen, A.; Coan, T. E.; Commichau, V.; DiBitonto, D.; Ding, J.; Duinker, P.; Djambazov, L.; Easo, S.; Extermann, P.; Fiandrini, E.; Gabbanini, A.; Goldstein, J.; Gougas, A.; Hangarter, K.; Hauviller, C.; Herve, A.; Hofer, M.; Hofer, T.; Hou, S.; Josa, M. I.; Kapustinsky, J. S.; Kim, D.; Kinnison, W. W.; Kirst, H.; Kornis, J.; Krastev, V. R.; Ladron, P.; Landi, G.; Lebeau, M.; Lecomte, P.; Lee, D. M.; Leiste, R.; Lejeune, E.; Lin, W. T.; Lohmann, W.; Marin, A.; Massetti, R.; Mills, G. B.; Nowak, H.; Okle, M.; Passaleva, G.; Paul, T.; Pauluzzi, M.; Pensotti, S.; Perrin, E.; Produit, N.; Rancoita, P. G.; Rattaggi, M.; Richeux, J.-P.; Santocchia, A.; Siedling, R.; Sachwitz, M.; Schmitz, P.; Schöneich, B.; Servoli, L.; Subham, K.; Susinno, G. F.; Terza, G.; Tesi, M.; Thompson, T.; Tonisch, F.; Toth, J.; Trowitzsch, G.; Viertel, G.; Tuchscherer, H.; Vogt, H.; Wang, S.; Waldmeier, S.; Weill, R.; Xu, J.; Yeh, S. C.; Zhou, B.; Zilizi, G.

    1994-12-01

    The design and construction of the silicon strip microvertex detector (SMD) of the L3 experiment at LEP are described. We present the sensors, readout electronics, data acquisition system, mechanical assembly and support, displacement monitoring systems and radiation monitoring system of the recently installed double-sided, double-layered SMD. This detector utilizes novel and sophisticated techniques for its readout.

  19. Deposition of device quality low H content, amorphous silicon films

    DOEpatents

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  20. Deposition of device quality low H content, amorphous silicon films

    DOEpatents

    Mahan, Archie H.; Carapella, Jeffrey C.; Gallagher, Alan C.

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  1. The Silicon Pixel Detector for ALICE Experiment

    SciTech Connect

    Fabris, D.; Bombonati, C.; Dima, R.; Lunardon, M.; Moretto, S.; Pepato, A.; Bohus, L. Sajo; Scarlassara, F.; Segato, G.; Shen, D.; Turrisi, R.; Viesti, G.; Anelli, G.; Boccardi, A.; Burns, M.; Campbell, M.; Ceresa, S.; Conrad, J.; Kluge, A.; Kral, M.

    2007-10-26

    The Inner Tracking System (ITS) of the ALICE experiment is made of position sensitive detectors which have to operate in a region where the track density may be as high as 50 tracks/cm{sup 2}. To handle such densities detectors with high precision and granularity are mandatory. The Silicon Pixel Detector (SPD), the innermost part of the ITS, has been designed to provide tracking information close to primary interaction point. The assembly of the entire SPD has been completed.

  2. An alternative system for mycotoxin detection based on amorphous silicon sensors

    NASA Astrophysics Data System (ADS)

    Caputo, D.; de Cesare, G.; De Rossi, P.; Fanelli, C.; Nascetti, A.; Ricelli, A.; Scipinotti, R.

    2007-05-01

    In this work we investigate, for the first time, the performances of a system based on hydrogenated amorphous silicon photosensors for the detection of Ochratoxin A. The sensor is a n-type/intrinsic/p-type amorphous silicon stacked structure deposited on a glass substrate. The mycotoxin is deposited on a thin layer chromatographic plate and aligned with the sensor. An ultraviolet radiation excites the ochratoxin A, whose fluorescence produces a photocurrent in the sensor. The photocurrent value is proportional to the deposited mycotoxin quantity. An excellent linearity of the detector response over more than two orders of magnitude of ochratoxin A amount is observed. The minimum detected mycotoxin quantity is equal to 0.1ng, suggesting that the presented detection system could be a good candidate to perform rapid and analytical ochratoxin A analysis in different kind of samples.

  3. Silicon radiation detectors: materials and applications

    SciTech Connect

    Walton, J.T.; Haller, E.E.

    1982-10-01

    Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed - one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented.

  4. Heat-Induced Agglomeration of Amorphous Silicon Nanoparticles Toward the Formation of Silicon Thin Film.

    PubMed

    Jang, Bo Yun; Kim, Ja Young; Seo, Gyeongju; Shin, Chae-Ho; Ko, Chang Hyun

    2016-01-01

    The thermal behavior of silicon nanoparticles (Si NPs) was investigated for the preparation of silicon thin film using a solution process. TEM analysis of Si NPs, synthesized by inductively coupled plasma, revealed that the micro-structure of the Si NPs was amorphous and that the Si NPs had melted and merged at a comparatively low temperature (~750 °C) considering bulk melting temperature of silicon (1414 °C). A silicon ink solution was prepared by dispersing amorphous Si NPs in propylene glycol (PG). It was then coated onto a silicon wafer and a quartz plate to form a thin film. These films were annealed in a vacuum or in an N₂ environment to increase their film density. N2 annealing at 800 °C and 1000 °C induced the crystallization of the amorphous thin film. An elemental analysis by the SIMS depth profile showed that N₂annealing at 1000 °C for 180 min drastically reduced the concentrations of carbon and oxygen inside the silicon thin film. These results indicate that silicon ink prepared using amorphous Si NPs in PG can serve as a proper means of preparing silicon thin film via solution process. PMID:27398566

  5. Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide.

    PubMed

    Chang, Geng-rong; Ma, Fei; Ma, Da-yan; Xu, Ke-wei

    2010-11-19

    Silicon quantum dots embedded in an amorphous matrix of silicon carbide were realized by a magnetron co-sputtering process and post-annealing. X-ray photoelectron spectroscopy, glancing x-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy were used to characterize the chemical composition and the microstructural properties. The results show that the sizes and size distribution of silicon quantum dots can be tuned by changing the annealing atmosphere and the atom ratio of silicon and carbon in the matrix. A physicochemical mechanism is proposed to demonstrate this formation process. Photoluminescence measurements indicate a multi-band configuration due to the quantum confinement effect of silicon quantum dots with different sizes. The PL spectra are further widened as a result of the existence of amorphous silicon quantum dots. This multi-band configuration would be extremely advantageous in improving the photoelectric conversion efficiency of photovoltaic solar cells.

  6. Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide

    NASA Astrophysics Data System (ADS)

    Chang, Geng-rong; Ma, Fei; Ma, Da-yan; Xu, Ke-wei

    2010-11-01

    Silicon quantum dots embedded in an amorphous matrix of silicon carbide were realized by a magnetron co-sputtering process and post-annealing. X-ray photoelectron spectroscopy, glancing x-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy were used to characterize the chemical composition and the microstructural properties. The results show that the sizes and size distribution of silicon quantum dots can be tuned by changing the annealing atmosphere and the atom ratio of silicon and carbon in the matrix. A physicochemical mechanism is proposed to demonstrate this formation process. Photoluminescence measurements indicate a multi-band configuration due to the quantum confinement effect of silicon quantum dots with different sizes. The PL spectra are further widened as a result of the existence of amorphous silicon quantum dots. This multi-band configuration would be extremely advantageous in improving the photoelectric conversion efficiency of photovoltaic solar cells.

  7. Amorphous-silicon solar cells with screen-printed metallization

    NASA Astrophysics Data System (ADS)

    Baert, Kris A.; Roggen, J.; Nijs, Johan F.; Mertens, Robert P.

    1990-03-01

    The use of screen printing for the back-side metallization of amorphous-silicon solar cells on glass is proposed. Compared with the conventional aluminum evaporation process, screen printing is attractive because it offers high throughput and because direct patterning is performed during the printing process. The critical point in realizing a thick-film screen-printed contact on amorphous-silicon solar cells is found to be the contact resistivity between the contact and the n-layer. Contact resistivities below 1 ohm-sq cm have been obtained using a microcrystalline instead of an amorphous n+ layer and a screen-printed contact based on Mo, Ti, or Ni. Amorphous-silicon solar cells with a screen-printed back contact had a performance comparable with that of cells with an evaporated Al contact, resulting in a efficiency of 9.7 percent. Spectral response measurements demonstrated that the screen-printed contact is an efficient reflector of long-wavelength photons, resulting in a high red response due to internal light trapping.

  8. Plasma Deposition of Doped Amorphous Silicon

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1985-01-01

    Pair of reports present further experimental details of investigation of plasma deposition of films of phosphorous-doped amosphous silicon. Probe measurements of electrical resistance of deposited films indicated films not uniform. In general, it appeared that resistance decreased with film thickness.

  9. Light-induced metastable structural changes in hydrogenated amorphous silicon

    SciTech Connect

    Fritzsche, H.

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  10. Excimer laser crystallization of amorphous silicon on metallic substrate

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Antoni, F.; Slaoui, A.; Cayron, C.; Ducros, C.; Lerat, J.-F.; Emeraud, T.; Negru, R.; Huet, K.; Reydet, P.-L.

    2013-06-01

    An attempt has been made to achieve the crystallization of silicon thin film on metallic foils by long pulse duration excimer laser processing. Amorphous silicon thin films (100 nm) were deposited by radiofrequency magnetron sputtering on a commercial metallic alloy (N42-FeNi made of 41 % of Ni) coated by a tantalum nitride (TaN) layer. The TaN coating acts as a barrier layer, preventing the diffusion of metallic impurities in the silicon thin film during the laser annealing. An energy density threshold of 0.3 J cm-2, necessary for surface melting and crystallization of the amorphous silicon, was predicted by a numerical simulation of laser-induced phase transitions and witnessed by Raman analysis. Beyond this fluence, the melt depth increases with the intensification of energy density. A complete crystallization of the layer is achieved for an energy density of 0.9 J cm-2. Scanning electron microscopy unveils the nanostructuring of the silicon after laser irradiation, while cross-sectional transmission electron microscopy reveals the crystallites' columnar growth.

  11. RBS study of amorphous silicon carbide films deposited by PECVD

    NASA Astrophysics Data System (ADS)

    Huran, J.; Hotovy, I.; Kobzev, A. P.; Balalykin, N. I.

    2004-03-01

    We present properties of nitrogen-doped amorphous silicon carbide films that were grown by a plasma enhanced chemical vapour deposition (PECVD) technique and annealed by pulsed electron beam. Samples with different amounts of N were achieved by a small addition of ammonia NH3 into the gas mixture of silane SiH4 and methane CH4, which were directly introduced into the reaction chamber. The actual amount of nitrogen in the SiC films was determined by Rutherford backscattering spectrometry (RBS). A simulation of the RBS spectra was used to calculate the concentration of carbon, silicon and nitrogen.

  12. Use of Tritium in the Study of defects in Amorphous Silicon

    SciTech Connect

    Costea, S.; Pisana, S.; Kherani, N.P.; Gaspari, F.; Kosteski, T.; Shmayda, W.T.; Zukotynski, S.

    2005-11-28

    Hydrogen is known to strongly affect the physical properties of amorphous semiconductors. Indeed hydrogen is introduced during the growth of amorphous silicon films, used in active matrix displays and solar cells, to passivate silicon dangling bonds and to relax the lattice thereby reducing the density of states in the energy gap by several orders of magnitude and giving rise to device grade material. Ideally, hydrogenated amorphous silicon (a-Si:H) is a continuous covalently bonded random network of silicon-silicon and silicon-hydrogen atoms, with the predominant nearest neighbour environment similar to that of crystalline silicon.

  13. High Thermal Conductivity of a Hydrogenated Amorphous Silicon Film

    SciTech Connect

    Liu, X.; Feldman, J. L.; Cahill, D. G.; Crandall, R. S.; Bernstein, N.; Photiadis, D. M.; Mehl, M. J.; Papaconstantopoulos, D. A.

    2009-01-23

    We measured the thermal conductivity {kappa} of an 80 {micro}m thick hydrogenated amorphous silicon film prepared by hot-wire chemical-vapor deposition with the 3{omega} (80-300 K) and the time-domain thermoreflectance (300 K) methods. The {kappa} is higher than any of the previous temperature dependent measurements and shows a strong phonon mean free path dependence. We also applied a Kubo based theory using a tight-binding method on three 1000 atom continuous random network models. The theory gives higher {kappa} for more ordered models, but not high enough to explain our results, even after extrapolating to lower frequencies with a Boltzmann approach. Our results show that this material is more ordered than any amorphous silicon previously studied.

  14. High Thermal Conductivity of a Hydrogenated Amorphous Silicon Film

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Feldman, J. L.; Cahill, D. G.; Crandall, R. S.; Bernstein, N.; Photiadis, D. M.; Mehl, M. J.; Papaconstantopoulos, D. A.

    2009-01-01

    We measured the thermal conductivity κ of an 80μm thick hydrogenated amorphous silicon film prepared by hot-wire chemical-vapor deposition with the 3ω (80-300 K) and the time-domain thermoreflectance (300 K) methods. The κ is higher than any of the previous temperature dependent measurements and shows a strong phonon mean free path dependence. We also applied a Kubo based theory using a tight-binding method on three 1000 atom continuous random network models. The theory gives higher κ for more ordered models, but not high enough to explain our results, even after extrapolating to lower frequencies with a Boltzmann approach. Our results show that this material is more ordered than any amorphous silicon previously studied.

  15. Spherical silicon photonic microcavities: From amorphous to polycrystalline

    NASA Astrophysics Data System (ADS)

    Fenollosa, R.; Garín, M.; Meseguer, F.

    2016-06-01

    Shaping silicon as a spherical object is not an obvious task, especially when the object size is in the micrometer range. This has the important consequence of transforming bare silicon material in a microcavity, so it is able to confine light efficiently. Here, we have explored the inside volume of such microcavities, both in their amorphous and in their polycrystalline versions. The synthesis method, which is based on chemical vapor deposition, causes amorphous microspheres to have a high content of hydrogen that produces an onionlike distributed porous core when the microspheres are crystallized by a fast annealing regime. This substantially influences the resonant modes. However, a slow crystallization regime does not yield pores, and produces higher-quality-factor resonances that could be fitted to the Mie theory. This allows the establishment of a procedure for obtaining size calibration standards with relative errors of the order of 0.1%.

  16. Electrochemical degradation of amorphous-silicon photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Ross, R. G., Jr.

    1985-01-01

    Techniques of module electrochemical corrosion research, developed during reliability studies of crystalline-silicon modules (C-Si), have been applied to this new investigation into amorphous-silicon (a-Si) module reliability. Amorphous-Si cells, encapsulated in the polymers polyvinyl butyral (PVB) and ethylene vinyl acetate (EVA), were exposed for more than 1200 hours in a controlled 85 C/85 percent RH environment, with a constant 500 volts applied between the cells and an aluminum frame. Plotting power output reduction versus charge transferred reveals that about 50 percent a-Si cell failures can be expected with the passage of 0.1 to 1.0 Coulomb/cm of cell-frame edge length; this threshold is somewhat less than that determined for C-Si modules.

  17. The reliability and stability of multijunction amorphous silicon PV modules

    SciTech Connect

    Carlson, D.E.

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  18. Amorphous-silicon thin-film heterojunction solar cells

    SciTech Connect

    Cretella, M. C.; Gregory, J. A.; Sandstrom, D. B.; Paul, W.

    1981-01-01

    The investigation of amorphous silicon materials at MTSEC has had two major thrusts: (1) to improve the amorphous material, i.e., obtain a low state density in the gap, improve the carrier collection depth and diminish non-radiative recombinations; and (2) to attempt to understand and improve on the limitations of the junction devices while evaluating the amorphous silicon materials. In the first of these efforts, the investigation has continued to examine the modifications to the a-Si(H) network by alloying silicon with other group IVA elements, either in binary or ternary compositions, and/or by replacing the hydrogenation for defect compensation with a combination of hydrogenation and alkylation or hydrogenation and halogenation. The doped junction layers are being examined in an attempt to determine the limiting characteristics of the junctions in solar cell devices of these amorphous materials. Amorphous alloys of Si-Ge, Si-C, Si-Sn were prepared as well as ternary compositions of Si-Ge-C and Si-Sn-C. In addition, Na vapor was added to the gas feed to deposit a-Si(Na, H) films, and to prepare Si-Sn, fluoride was added along with the tin by vapor additions of SnF/sub 4/ to the gas feed. The optical properties of these materials were measured, and structural and compositional information was obtained from the IR vibrational spectra using the scanning electron microscope and from analyses using scanning Auger microscopy. Electrical measurements have included the dark conductivity and the photo conductivity under room fluorescent light and at AM1 conditions. With alloys that displayed promising photoconductive properties n-i-p devices were prepared to assess the solar cell properties. Details are presented. (WHK)

  19. Upgrade of the Belle Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Belle SVD Collaboration

    2010-11-01

    The Belle experiment at KEK (Tsukuba, Japan) was inaugurated in 1999 and has delivered excellent physics results since then, which were, for example, recognized in the Nobel Prize award 2008 to Kobayashi and Masukawa. An overall luminosity of 895 fb -1 has been recorded as of December 2008, and the present system will be running until 1 ab -1 is achieved. After that, a major upgrade is foreseen for both the KEK-B machine and the Belle detector. Already in 2004, the Letter of Intent for KEK Super B Factory was published. Intermediate steps of upgrade were considered for the Silicon Vertex Detector (SVD), which performs very well but already got close to its limit regarding the occupancy in the innermost layer and dead time. Eventually it was decided to keep the existing SVD2 system until 1 ab -1 and completely replace the silicon detector as well as its readout system for Super-Belle. The future SVD will be composed of double-sided silicon sensors as the present detector, but equipped with faster readout electronics, namely the APV25 chips originally made for CMS at CERN. Moreover, it will be enlarged by two additional layers and equipped with a double layer of DEPFET pixel detectors surrounding the beam pipe. The silicon sensors will be fabricated from 6 in. wafers (compared to the current 4 in. types) and the readout chain will be completely replaced, including front-end, repeaters and the back-end electronics in the counting house.

  20. Optically induced conductivity changes in amorphous silicon: A historical perspective

    SciTech Connect

    Staebler, D.L.

    1997-07-01

    A historical perspective of the discovery of optically induced changes in amorphous silicon is presented in this paper from my personal point of view. It includes the story of how Chris Wronski and the author discovered the effect, the key elements in the R and D environment that lead to the quick realization that the effect was reversible and reproducible, how the research environment supported the rapid publication of their first paper, and a brief look at the effect from today's perspective.

  1. Enhanced Multiple Exciton Generation in Amorphous Silicon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kryjevski, Andrei; Mihaylov, Deyan; Kilin, Dmitri

    2015-03-01

    Multiple exciton generation (MEG) in nm-sized hydrogen-passivated silicon nanowires (NWs), and quasi two-dimensional nanofilms depends strongly on the degree of the core structural disorder as shown by the many-body perturbation theory (MBPT) calculations based on the DFT simulations. Here, we use the HSE exchange correlation functional. In MBPT, we work to the 2nd order in the electron-photon coupling and in the approximate screened Coulomb interaction. We also include the effect of excitons for which we solve Bethe-Salpeter Equation. We calculate quantum efficiency (QE), the average number of excitons created by a single absorbed photon, in 3D arrays of Si29H36 quantum dots, NWs, and quasi 2D silicon nanofilms, all with both crystalline and amorphous core structures. Efficient MEG with QE of 1.3 up to 1.8 at the photon energy of about 3Eg , where Eg is the gap, is predicted in these nanoparticles except for the crystalline NW and film where QE ~= 1 . MEG in the amorphous nanoparticles is enhanced by the electron localization due to structural disorder. The exciton effects significantly red-shift QE (Ephoton) curves. Nanometer-sized amorphous silicon NWs and films are predicted to have effective MEG within the solar spectrum range. We acknowledge NSF support (CHE-1413614) for method development.

  2. Advantages of gated silicon single photon detectors

    NASA Astrophysics Data System (ADS)

    Legré, Matthieu; Lunghi, Tommaso; Stucki, Damien; Zbinden, Hugo

    2013-05-01

    We present gated silicon single photon detectors based on two commercially available avalanche photodiodes (APDs) and one customised APD from ID Quantique SA. This customised APD is used in a commercially available device called id110. A brief comparison of the two commercial APDs is presented. Then, the charge persistence effect of all of those detectors that occurs just after a strong illumination is shown and discussed.

  3. Status of the CDF silicon detector

    SciTech Connect

    Grinstein, Sebastian; /Harvard U.

    2006-05-01

    The CDF Run II silicon micro-strip detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment. Since the commissioning period ended in 2002, about 85% of the 730 k readout channels have been consistently provided good data. A summary of the recent improvements in the DAQ system as well as experience of maintaining and operating such a large, complex detector are presented.

  4. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    SciTech Connect

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  5. Femtosecond studies of plasma formation in crystalline and amorphous silicon

    NASA Astrophysics Data System (ADS)

    Kuett, Waldemar; Esser, Anton; Seibert, Klaus; Lemmer, Uli; Kurz, Heinrich

    1990-08-01

    Transient pump-probe reflectivity measurements are performed on crystalline and amorphous Silicon samples with 50 fs optical pulses at 2 eV. The excited carrier densities range from 1017cm3 up to a few 1021cm3. In both cases the reflectivity signal is dominated by a Drude-like carrier response. Crystalline Silicon shows a distinct subpicosecond feature due to the cooling of the optically excited hot carriers with a time constant of 200-300 fs. Diffusion and Auger-recombination come into play at higher carrier densities. A superlinear increase of instant reflectivity signal with excitation fluence is due to two-photon absorption (TPA) with a TPA-coeffiecient f:37+-5 cm/GW. In amorphous Silicon the TPA process is not observable. The recovery of the induced negative reflectivity changes is dominated by trapping into bandtail and defect states at lower carrier densities. At higher densities a non-radiative recombination process dominates the relaxation of free carriers in both materials. Comparison with crystalline Silicon clearly demonstrates the enhancement of the Auger-recombination process in disordered materials by more than an order of magnitude.

  6. A programmable, low noise, multichannel asic for readout of pixelated amorphous silicon arrays

    SciTech Connect

    Yarema, R. J.

    1998-08-01

    Pixelated amorphous silicon arrays used for detecting X-rays have a number of special requirements for the readout electronics. Because the pixel detector is a high density array, custom integrated circuits are very desirable for reading out the column signals and addressing the rows of pixels to be read out. In practice, separate chips are used for readout and addressing. This paper discusses a custom integrated circuit for processing the analog column signals. The chip has 32 channels of low noise integrators followed by sample and hold circuits which perform a correlated double sample. The chip has several programmable features including gain, bandwidth, and readout configuration.

  7. Growth model of lantern-like amorphous silicon oxide nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Zou, Xingquan; Chi, Lingfei; Li, Qiang; Xiao, Tan

    2007-03-01

    Silicon oxide nanowire assemblies with lantern-like morphology were synthesized by thermal evaporation of the mixed powder of SnO2 and active carbon at 1000 °C and using the silicon wafer as substrate and source. The nano-lanterns were characterized by a scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), energy-dispersive spectroscope (EDS) and selective area electron diffraction (SAED). The results show that the nano-lantern has symmetrical morphology, with one end connecting with the silicon wafer and the other end being the tin ball. The diameter of the nano-lantern is about 1.5-3.0 µm. Arc silicon oxide nanowire assemblies between the two ends have diameters ranging from 70 to 150 nm. One single catalyst tin ball catalyzes more than one amorphous nanowires' growth. In addition, the growth mechanism of the nano-lantern is discussed and a growth model is proposed. The multi-nucleation sites round the Sn droplet's perimeter are responsible for the formation of many SiOx nanowires. The growing direction of the nanowires is not in the same direction of the movement of the catalyst tin ball, resulting in the bending of the nanowires and forming the lantern-like silicon oxide morphology. The controllable synthesis of the lantern-like silicon oxide nanostructure may have potential applications in the photoelectronic devices field.

  8. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  9. Silicon Detector Letter of Intent

    SciTech Connect

    Aihara, H.; Burrows, P.; Oreglia, M.

    2010-05-26

    This document presents the current status of SiD's effort to develop an optimized design for an experiment at the International Linear Collider. It presents detailed discussions of each of SiD's various subsystems, an overview of the full GEANT4 description of SiD, the status of newly developed tracking and calorimeter reconstruction algorithms, studies of subsystem performance based on these tools, results of physics benchmarking analyses, an estimate of the cost of the detector, and an assessment of the detector R&D needed to provide the technical basis for an optimised SiD.

  10. Development of silicon micropattern pixel detectors

    NASA Astrophysics Data System (ADS)

    Heijne, E. H. M.; Antinori, F.; Beker, H.; Batignani, G.; Beusch, W.; Bonvicini, V.; Bosisio, L.; Boutonnet, C.; Burger, P.; Campbell, M.; Cantoni, P.; Catanesi, M. G.; Chesi, E.; Claeys, C.; Clemens, J. C.; Cohen Solal, M.; Darbo, G.; Da Via, C.; Debusschere, I.; Delpierre, P.; Di Bari, D.; Di Liberto, S.; Dierickx, B.; Enz, C. C.; Focardi, E.; Forti, F.; Gally, Y.; Glaser, M.; Gys, T.; Habrard, M. C.; Hallewell, G.; Hermans, L.; Heuser, J.; Hurst, R.; Inzani, P.; Jæger, J. J.; Jarron, P.; Karttaavi, T.; Kersten, S.; Krummenacher, F.; Leitner, R.; Lemeilleur, F.; Lenti, V.; Letheren, M.; Lokajicek, M.; Loukas, D.; Macdermott, M.; Maggi, G.; Manzari, V.; Martinengo, P.; Meddeler, G.; Meddi, F.; Mekkaoui, A.; Menetrey, A.; Middelkamp, P.; Morando, M.; Munns, A.; Musico, P.; Nava, P.; Navach, F.; Neyer, C.; Pellegrini, F.; Pengg, F.; Perego, R.; Pindo, M.; Pospisil, S.; Potheau, R.; Quercigh, E.; Redaelli, N.; Ridky, J.; Rossi, L.; Sauvage, D.; Segato, G.; Simone, S.; Sopko, B.; Stefanini, G.; Strakos, V.; Tempesta, P.; Tonelli, G.; Vegni, G.; Verweij, H.; Viertel, G. M.; Vrba, V.; Waisbard, J.; CERN RD19 Collaboration

    1994-09-01

    Successive versions of high speed, active silicon pixel detectors with integrated readout electronics have been developed for particle physics experiments using monolithic and hybrid technologies. Various matrices with binary output as well as a linear detector with analog output have been made. The hybrid binary matrix with 1024 cells (dimension 75 μm×500 μm) can capture events at ˜5 MHz and a selected event can then be read out in < 10 μs. In different beam tests at CERN a precision of 25 μm has been achieved and the efficiency was better than 99.2%. Detector thicknesses of 300 μm and 150 μm of silicon have been used. In a test with a 109Cd source a noise level of 170 e - r.m.s. (1.4 keV fwhm) has been measured with a threshold non-uniformity of 750 e - r.m.s. Objectives of the development work are the increase of the size of detecting area without loss of efficiency, the design of an appropriate readout architecture for collider operation, the reduction of material thickness in the detector, understanding of the threshold non-uniformity, study of the sensitivity of the pixel matrices to light and low energy electrons for scintillating fiber detector readout and last but not least, the optimization of cost and yield of the pixel detectors in production.

  11. Electron-beam-induced information storage in hydrogenated amorphous silicon devices

    DOEpatents

    Yacobi, B.G.

    1985-03-18

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge collection efficiency and thus in the charge collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage.

  12. Interference filter with amorphous silicon layer and direct laser recording on it

    NASA Astrophysics Data System (ADS)

    Kutanov, A.; Sydyk uluu, Nurbek; Snimshikov, I.; Kazakbaeva, Z.

    2016-08-01

    The interference spectral filters with amorphous silicon layer deposited by magnetron sputtering on the reflective metal layer on a glass substrate are developed. Interference filter select from white light source components corresponding to quasimonochromatic wavelength with a narrow bandwidth. The thickness of the amorphous silicon layer determines the center wavelength of the pass band of the filter. It proposed to use interference filter with amorphous silicon layer for direct laser recoding on it. Results on direct laser recording on amorphous silicon layer of the interference filter by single-mode Blu Ray laser (X = 405 nm) with high contrast reflected image are demonstrated.

  13. Improved method of preparing p-i-n junctions in amorphous silicon semiconductors

    DOEpatents

    Madan, A.

    1984-12-10

    A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

  14. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    PubMed Central

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-01-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized. PMID:26558694

  15. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-11-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized.

  16. Grain boundary resistance to amorphization of nanocrystalline silicon carbide.

    PubMed

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-01-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized. PMID:26558694

  17. Development of a silicon carbide radiation detector

    SciTech Connect

    Ruddy, F.H.; Dulloo, A.R.; Seidel, J.G.; Seshadri, S.; Rowland, L.B.

    1998-06-01

    The radiation detection properties of semiconductor detectors made of 4H silicon carbide were evaluated. Both Schottky and p-n junction devices were tested. Exposure to alpha particles from a {sup 238}Pu source led to robust signals from the detectors. The resolution of the Schottky SiC detector was 5.8% (FWHM) at an energy of 294 keV, while that of the p-n junction was 6.6% (FWHM) at 260 keV. No effect of temperature in the range of 22 to 89 C was observed on the characteristics of the {sup 238}Pu alpha-induced signal from the SiC detector. In addition, testing in a gamma field of 10,000 rad-Si h{sup {minus}1} showed that the alpha-induced signal was separable from the gamma signal.

  18. Recombination and metastability in amorphous silicon and silicon germanium alloys

    NASA Astrophysics Data System (ADS)

    Silver, M.

    1992-07-01

    This report describes the first year of a continuing research study to understand how recombination, trapping, and band-mobility modification affecting the electronic properties of amorphous semiconductors can be measured, characterized, and described by an appropriate spectrum of defect states, and how light-induced defects in a-Si:H and native defects in a-SiGe:H affect transport properties in these materials. The objective was to determine how the Staebler-Wronski defects affect the electronic processes in a-Si:H and a-SiGe:H films. To do this, electroluminescence (EL) and forward bias current in p-i-n devices (i-layer thicknesses greater than 2 micron) were studied both experimentally and theoretically before and after light soaking. A simple picture was developed to compare forward bias current to the EL signal. The result was unexpected: the product of the final current times the rise time was not constant before and after light soaking as expected from the concept of gain band width, but instead changed radically. The rise time t(sub x) increased by more than one order of magnitude while the final current I(sub f) did not change significantly with light soaking. On the other hand the I(sub f)t(sub x) product did hold close to a constant when only the applied voltage changed.

  19. Recombination and metastability in amorphous silicon and silicon germanium alloys

    SciTech Connect

    Silver, M. )

    1992-07-01

    This report describes the first year of a continuing research study to understand how recombination, trapping, and band-mobility modification affecting the electronic properties of amorphous semiconductors can be measured, characterized, and described by an appropriate spectrum of defect states, and how light-induced defects in a-Si:H and native defects in a-SiGe:H affect transport properties in these materials. The objective was to determine how the Staebler-Wronski defects affect the electronic processes in a-Si:H and a-SiGe:H films. To do this, electroluminescence (EL) and forward bias current in p-i-n devices (i-layer thickness > 2 {mu}m) were studied both experimentally and theoretically before and after light soaking. A simple picture was developed to compare forward bias current to the EL signal. The result was unexpected: the product of the final current times the rise time was not constant before and after light soaking as expected from the concept of gain band width, but instead changed radically. The rise time t{sub x} increased by more than one order of magnitude while the final current I{sub f} did not change significantly with light soaking. On the other hand the I{sub f}t{sub x} product did hold close to a constant when only the applied voltage changed.

  20. Ultralight amorphous silicon alloy photovoltaic modules for space applications

    NASA Technical Reports Server (NTRS)

    Hanak, J. J.; Chen, Englade; Fulton, C.; Myatt, A.; Woodyard, J. R.

    1987-01-01

    Ultralight and ultrathin, flexible, rollup monolithic PV modules have been developed consisting of multijunction, amorphous silicon alloys for either terrestrial or aerospace applications. The rate of progress in increasing conversion efficiency of stable multijunction and multigap PV cells indicates that arrays of these modules can be available for NASA's high power systems in the 1990's. Because of the extremely light module weight and the highly automated process of manufacture, the monolithic a-Si alloy arrays are expected to be strongly competitive with other systems for use in NASA's space station or in other large aerospace applications.

  1. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    SciTech Connect

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.; Tok, E. S.; Vittone, E.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  2. Structural properties of amorphous silicon produced by electron irradiation

    SciTech Connect

    Yamasaki, J.; Takeda, S.

    1999-07-01

    The structural properties of the amorphous Si (a-Si), which was created from crystalline silicon by 2 MeV electron irradiation at low temperatures about 25 K, are examined in detail by means of transmission electron microscopy and transmission electron diffraction. The peak positions in the radial distribution function (RDF) of the a-Si correspond well to those of a-Si fabricated by other techniques. The electron-irradiation-induced a-Si returns to crystalline Si after annealing at 550 C.

  3. Comment on ``Electron drift mobility in doped amorphous silicon''

    NASA Astrophysics Data System (ADS)

    Overhof, H.; Silver, M.

    1989-05-01

    Experimental drift-mobility data obtained by different methods in doped amorphous silicon are compared. It is shown that the presence of a long-range random potential will lead to a modification of the drift mobility in one experiment while the corresponding values in other experiments are virtually unaffected. It is shown that this effect accounts for the apparent discrepancy between the results of these experiments rather than the shift of the mobility edge upon doping which was recently proposed by Street, Kakalios, and Hack [Phys. Rev. B 38, 5603 (1988)] in order to understand their data.

  4. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    NASA Astrophysics Data System (ADS)

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.; Tok, E. S.; Vittone, E.

    2014-05-01

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  5. Lithium concentration dependent structure and mechanics of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Sitinamaluwa, H. S.; Wang, M. C.; Will, G.; Senadeera, W.; Zhang, S.; Yan, C.

    2016-06-01

    A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of LixSi alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus of elasticity and fracture strength but increase in ductility in tension. For a LixSi system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.

  6. Amorphous silicon-carbon alloys and amorphous carbon from direct methane and ethylene activation by ECR

    SciTech Connect

    Conde, J.P.; Chu, V.; Giorgis, F.; Pirri, C.F.; Arekat, S.

    1997-07-01

    Hydrogenated amorphous silicon-carbon alloys are prepared using electron-cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition. Hydrogen is introduced into the source resonance cavity as an excitation gas. Silane is introduced in the main chamber in the vicinity of the plasma stream, whereas the carbon source gases, methane or ethylene, are introduced either with the silane or with the hydrogen as excitation gases. The effect of the type of carbon-source gas, excitation gas mixture and silane-to-carbon source gas flow ratio on the deposition rate, bandgap, subgap density of states, spin density and hydrogen evolution are studied.

  7. Overview of Silicon Detectors in STAR: Present and Future

    SciTech Connect

    Kabana, Sonia; Collaboration: The SVT, SSD and HFT detector groups of the STAR experiment at RHIC

    2011-12-13

    The STAR experiment at RHIC aims to study the QCD phase transition and the origin of the spin of the proton. Its main detector for charged particle track reconstruction is a Time Projection Chamber, which has been supplemented with a silicon detector involving two different technologies, in particular double-sided silicon strip and silicon drift technology. STAR is preparing now for a new Silicon Vertex Detector, using double-sided silicon strip, single-sided silicon strip-pads, and CMOS monolithic active pixel sensors technology, planned to take data in 2014. We give an overview of the design, calibration and performances of the silicon detectors used by the STAR experiment in the past and the expected performances of the future silicon detector upgrade.

  8. A magnesium/amorphous silicon passivating contact for n-type crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Samundsett, Chris; Yan, Di; Allen, Thomas; Peng, Jun; Cui, Jie; Zhang, Xinyu; Bullock, James; Cuevas, Andres

    2016-09-01

    Among the metals, magnesium has one of the lowest work functions, with a value of 3.7 eV. This makes it very suitable to form an electron-conductive cathode contact for silicon solar cells. We present here the experimental demonstration of an amorphous silicon/magnesium/aluminium (a-Si:H/Mg/Al) passivating contact for silicon solar cells. The conduction properties of a thermally evaporated Mg/Al contact structure on n-type crystalline silicon (c-Si) are investigated, achieving a low resistivity Ohmic contact to moderately doped n-type c-Si (˜5 × 1015 cm-3) of ˜0.31 Ω cm2 and ˜0.22 Ω cm2 for samples with and without an amorphous silicon passivating interlayer, respectively. Application of the passivating cathode to the whole rear surface of n-type front junction c-Si solar cells leads to a power conversion efficiency of 19% in a proof-of-concept device. The low thermal budget of the cathode formation, its dopant-less nature, and the simplicity of the device structure enabled by the Mg/Al contact open up possibilities in designing and fabricating low-cost silicon solar cells.

  9. Commissioning and operation of the CDF silicon detector

    SciTech Connect

    S. D'Auria

    2002-01-18

    The CDF-II silicon detector has been partially commissioned and used for taking preliminary physics data. This paper is a report on commissioning and initial operations of the 5.8m{sup 2} silicon detector. This experience can be useful to the large silicon systems that are presently under construction.

  10. Improved amorphous silicon alloy solar cells for module fabrication

    SciTech Connect

    Banerjee, A.; Yang, J.; Guha, S.

    1997-07-01

    An initial conversion efficiency of 13.5% has been obtained on a triple-junction triple-bandgap device fabricated in a large-area deposition reactor capable of producing one-square-foot modules. The intrinsic layer of the top cell is a wide bandgap amorphous silicon alloy. The middle and bottom cells employ high quality amorphous silicon-germanium alloy. The high efficiency of the triple-junction cell is attributed to the relative reduction of the optical loss in the top tunnel junction and the improvement in the quality of the middle and bottom component cells. Triple-junction devices with initial efficiency of 13.3% have shown saturation at 11.6% after light soaking. Modules of aperture area 909 cm{sup 2} have been fabricated using an assembly process similar to the one being currently used in their manufacturing line. The module design consists of one large-area, high-current monolithic multijunction device. The status of the small-area devices and modules is described.

  11. High thermal conductivity of a hydrogenated amorphous silicon film

    NASA Astrophysics Data System (ADS)

    Feldman, J. L.; Liu, Xiao; Cahill, D. G.; Crandall, R. S.; Bernstein, Noam; Photiadis, D. M.; Mehl, M. J.; Papaconstantopoulos, D. A.; Yang, Ho-Soon

    2009-03-01

    We measured the thermal conductivity κ of an 80 μm thick hydrogenated amorphous silicon (a-Si:H) film from 80,to room temperature with the 3φ method and at room temperature with the time-domain thermoreflectance (TDTR) method. The a-Si:H sample with 1 at.% hydrogen was prepared by hot-wire chemical-vapor deposition (HWCVD), a procedure which was found previously to produce superior material properties with a near absent atomic tunneling states that are ubiquitous in glasses. We find that κ is higher than any of the previous temperature dependent measurements, and shows a strong phonon mean free path dependence. We also performed numerical calculations on three 1000 atom models using Kubo theory and a tight binding electronic structure method. Due to the restraints of the TDTR results on low frequency extrapolations of calculated phonon diffusivities, the Kubo thermal conductivityis seen to be too small to explain our experiments. We conclude that the HWCVD a-Si:H sample has superior structural ordering relative to any amorphous silicon previously studied.

  12. Electrical characteristics of amorphous molybdenum-nickel contacts to silicon

    NASA Technical Reports Server (NTRS)

    Kung, K. T.-Y.; Nicolet, M.-A.; Suni, I.

    1984-01-01

    The electrical characteristics of sputtered, amorphous Mo-Ni contacts have been measured on both p- and n-type Si, as functions of composition (30, 54, and 58 at. percent Mo). The contact resistivity on both p(+) and n(+) Si is in the 0.00000 ohm sq cm range. The barrier height for as-deposited samples varies between phi-bp = 0.47-0.42 V on p-type Si and between phi-bn = 0.63-0.68 V on n-type Si, as the composition of the amorphous layer goes from Ni-rich to Mo-rich. The sum phi-bp + phi-bn always equals 1.12 V, within experimental error. After thermal treatment at 500 C for 1/2 h, the contact resistivity changes by a factor of two or less, while the barrier height changes by at most approximately 0.05 V. In light of these results, the amorphous Mo-Ni film makes good ohmic contacts to silicon.

  13. Sputtered pin amorphous silicon semi-conductor device and method therefor

    DOEpatents

    Moustakas, Theodore D.; Friedman, Robert A.

    1983-11-22

    A high efficiency amorphous silicon PIN semi-conductor device is constructed by the sequential sputtering of N, I and P layers of amorphous silicon and at least one semi-transparent ohmic electrode. A method of construction produces a PIN device, exhibiting enhanced physical integrity and facilitates ease of construction in a singular vacuum system and vacuum pump down procedure.

  14. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors. PMID:27174318

  15. High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells.

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    Thin films of hydrogenated amorphous silicon can be produced at MPa pressures from silane without the use of plasma at temperatures as low as 345 °C. High pressure chemical vapor deposition may open a new way to low cost deposition of amorphous silicon solar cells and other thin film structures over very large areas in very compact, simple reactors.

  16. Microstructured silicon neutron detectors for security applications

    NASA Astrophysics Data System (ADS)

    Esteban, S.; Fleta, C.; Guardiola, C.; Jumilla, C.; Pellegrini, G.; Quirion, D.; Rodriguez, J.; Lozano, M.

    2014-12-01

    In this paper we present the design and performance of a perforated thermal neutron silicon detector with a 6LiF neutron converter. This device was manufactured within the REWARD project workplace whose aim is to develop and enhance technologies for the detection of nuclear and radiological materials. The sensor perforated structure results in a higher efficiency than that obtained with an equivalent planar sensor. The detectors were tested in a thermal neutron beam at the nuclear reactor at the Instituto Superior Técnico in Lisbon and the intrinsic detection efficiency for thermal neutrons and the gamma sensitivity were obtained. The Geant4 Monte Carlo code was used to simulate the experimental conditions, i.e. thermal neutron beam and the whole detector geometry. An intrinsic thermal neutron detection efficiency of 8.6%±0.4% with a discrimination setting of 450 keV was measured.

  17. Electron-beam-induced information storage in hydrogenated amorphous silicon device

    DOEpatents

    Yacobi, Ben G.

    1986-01-01

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge-collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge-collection efficiency; and thus in the charge-collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage, in the device, which darkened areas can be restored to their original charge-collection efficiency by heating the hydrogenated amorphous silicon to a temperature of about 100.degree. C. to 250.degree. C. for a sufficient period of time to provide for such restoration.

  18. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    SciTech Connect

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  19. Radiation damage studies for the D0 silicon detector

    SciTech Connect

    Lehner, F.; /Zurich U.

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current D0 silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10{sup 14} p/cm{sup 2} at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalization techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling.

  20. The CDF Run IIb Silicon Detector: Design, preproduction, and performance

    NASA Astrophysics Data System (ADS)

    Akimoto, T.; Aoki, M.; Azzi, P.; Bacchetta, N.; Behari, S.; Benjamin, D.; Bisello, D.; Bolla, G.; Bortoletto, D.; Burghard, A.; Busetto, G.; Cabrera, S.; Canepa, A.; Cardoso, G.; Chertok, M.; Ciobanu, C. I.; Derylo, G.; Fang, I.; Feng, E. J.; Fernandez, J. P.; Flaugher, B.; Freeman, J.; Galtieri, L.; Galyardt, J.; Garcia-Sciveres, M.; Giurgiu, G.; Gorelov, I.; Haber, C.; Hale, D.; Hara, K.; Harr, R.; Hill, C.; Hoeferkamp, M.; Hoff, J.; Holbrook, B.; Hong, S. C.; Hrycyk, M.; Hsiung, T. H.; Incandela, J.; Jeon, E. J.; Joo, K. K.; Junk, T.; Kahkola, H.; Karjalainen, S.; Kim, S.; Kobayashi, K.; Kong, D. J.; Krieger, B.; Kruse, M.; Kuznetsova, N.; Kyre, S.; Lander, R.; Landry, T.; Lauhakangas, R.; Lee, J.; Lu, R.-S.; Lujan, P.; Lukens, P.; Mandelli, E.; Manea, C.; Maksimovic, P.; Merkel, P.; Min, S. N.; Moccia, S.; Nakano, I.; Naoumov, D.; Nelson, T.; Nord, B.; Novak, J.; Okusawa, T.; Orava, R.; Orlov, Y.; Osterberg, K.; Pantano, D.; Pavlicek, V.; Pellett, D.; Pursley, J.; Riipinen, P.; Schuyler, B.; Seidel, S.; Shenai, A.; Soha, A.; Stuart, D.; Tanaka, R.; Tavi, M.; Von der Lippe, H.; Walder, J.-P.; Wang, Z.; Watje, P.; Weber, Marc; Wester, W.; Yamamoto, K.; Yang, Y. C.; Yao, W.; Yao, W.; Yarema, R.; Yun, J. C.; Zetti, F.; Zimmerman, T.; Zimmermann, S.; Zucchelli, S.

    2006-01-01

    A new silicon microstrip detector was designed by the CDF collaboration for the proposed high-luminosity operation of the Tevatron pp¯ collider (Run IIb). The detector is radiation-tolerant and will still be functional after exposure to particle fluences of 1014 1-MeV equivalent neutrons/cm2 and radiation doses of 20 MRad. The detector will maintain or exceed the performance of the current CDF silicon detector throughout Run IIb. It is based on an innovative silicon "supermodule" design. Critical detector components like the custom radiation-hard SVX4 readout chip, the beryllia hybrids and mini-port (repeater) cards, and the silicon sensors fulfill their specifications and were produced with high yields. The design goals and solutions of the CDF Run IIb silicon detector are described, and the performance of preproduction modules is presented in detail. Results relevant for the development of future silicon systems are emphasized.

  1. Mechanism of the growth of amorphous and microcrystalline silicon from silicon tetrafluoride and hydrogen

    NASA Astrophysics Data System (ADS)

    Okada, Y.; Chen, J.; Campbell, I. H.; Fauchet, P. M.; Wagner, S.

    1990-02-01

    We study the growth of amorphous (a-Si:H,F) and of microcrystalline (μc-Si) silicon over trench patterns in crystalline silicon substrates. We vary the conditions of the SiF4-H2 glow discharge from deposition to etching. All deposited films form lips at the trench mouth and are uniformly thick on the trench walls. Therefore, surface diffusion is not important. The results of a Monte Carlo simulation suggest that film growth is governed by a single growth species with a low (˜0.2) sticking coefficient, in combination with a highly reactive etching species.

  2. Modulation transfer function for a large-area amorphous silicon image receptor

    NASA Astrophysics Data System (ADS)

    Earnhart, Jonathan R. D.; Chaney, Edward L.

    1997-12-01

    The modulation transfer function (MTF) of an amorphous silicon (aSi) sensor array was measured using proper sampling techniques to determine the edge spread function (ESF). The detector under study was a area detector (EG&G Heimann, RTM128) consisting of aSi photodiodes arranged in a square array. Two independent methods for calculating the presampling MTF were implemented, based on finely sampling the ESF measurements produced using 40 kV x-rays from a Faxitron microfocal spot x-ray tube. The two calculations of the detector's presampling MTF are in excellent agreement, and are within 20% at the Nyquist frequency when compared with the ideal MTF based only on the size of the detector elements. ESF measurements were also made at 6 MV on a Siemens MD-2 linear accelerator. A calculation of the system presampling MTF was performed which included effects from the linear accelerator source, the lead block used to create the high contrast edge, and the aSi detector response.

  3. The CDF Run IIb Silicon Detector

    SciTech Connect

    M. Aoki; N. Bacchetta; S. Behari et al.

    2004-02-25

    Fermilab plans to deliver 5-15 fb{sup -1} of integrated luminosity to the CDF and D0 experiments. The current inner silicon detectors at CDF (SVXIIa and L00) will not tolerate the radiation dose associated with high luminosity running and will need to be replaced. A new readout chip (SVX4) has been designed in radiation-hard 0.25 {micro}m CMOS technology. Single sided sensors are arranged in a compact structure, called a stave, with integrated readout and cooling systems. This paper describes the general design of the Run IIb system, testing results of prototype electrical components (staves), and prototype silicon sensor performance before and after irradiation.

  4. Uncooled amorphous silicon IRFPA for high performance and high volume applications

    NASA Astrophysics Data System (ADS)

    Pochic, D.; Durand, A.; Tissot, J. L.; Crastes, A.; Vilain, M.; Legras, O.; Tinnes, S.; Minassian, C.; Robert, P.

    2009-09-01

    For more than 10 years now, uncooled sensors have given new opportunities in the IR field of applications by being able to be produce in large volume. Compared to cooled technology, uncooled detectors offer many interesting advantages: high reliability, lower cost ... whereas the performance is high enough for a lot of applications. Thermography, building inspection, enhanced driver vision and military (thermal weapon sight, low altitude UAV sensor) are applications which can be provided with affordable IR focal plane arrays... As uncooled IR sensors are mainly dedicated to these high volume applications, any uncooled IRFPA technology has to be able to provide high performance sensors but also to be producible in large volume at a minimum cost. The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon layer enables ULIS to develop a full range of IRFPA formats from 160x120 to 1024x768 pixels with 25μm and 17μm pixel-pitch, designed for high end and high volume applications. The detector ROIC designs rely on a simple architecture (detector configuration addressed by a serial link for user defined amplifier gain, windowing capability...) which enables easier systems upgrade and therefore a reduced system development non recurrent cost. The packaging technique depends on the application environment and the production volume in order to fit with the market expectation. Starting from metallic and ceramics package, very advanced new technique is under development in order to reduce uncooled IRFPA production cost. NETD in the range of 30mK (f/1, 300K, 60Hz) as well as operability higher than 99.99%, are routinely achieved with amorphous silicon technology.

  5. Development of the ORRUBA Silicon Detector Array

    SciTech Connect

    Pain, S. D.; Bardayan, Daniel W; Blackmon, Jeff C; Chae, K. Y.; Chipps, K.; Cizewski, J. A.; Hatarik, Robert; Johnson, M. S.; Jones, K. L.; Kapler, R.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D; O'Malley, Patrick; Smith, Michael Scott; Thomas, J. S.

    2009-01-01

    High quality radioactive beams have recently made possible the measurement of (d,p) reactions on unstable nuclei in inverse kinematics, which can yield information on the development of single-neutron structure away from stability, and are of astrophysical interest due to the proximity to suggested r-process paths. The Oak Ridge Rutgers University Barrel Array (ORRUBA) is a new high solid-angular coverage array, composed of two rings of silicon detectors, optimized for measuring (d,p) reactions. A partial implementation has been used to measure (d,p) reactions on nuclei around the N = 82 shell closure.

  6. Fabrication and characterization of monolithically integrated microchannel plates based on amorphous silicon

    PubMed Central

    Franco, Andrea; Geissbühler, Jonas; Wyrsch, Nicolas; Ballif, Christophe

    2014-01-01

    Microchannel plates are vacuum-based electron multipliers for particle—in particular, photon— detection, with applications ranging from image intensifiers to single-photon detectors. Their key strengths are large signal amplification, large active area, micrometric spatial resolution and picosecond temporal resolution. Here, we present the first microchannel plate made of hydrogenated amorphous silicon (a-Si:H) instead of lead glass. The breakthrough lies in the possibility of realizing amorphous silicon-based microchannel plates (AMCPs) on any kind of substrate. This achievement is based on mastering the deposition of an ultra-thick (80–120 μm) stress-controlled a-Si:H layer from the gas phase at temperatures of about 200°C and micromachining the channels by dry etching. We fabricated AMCPs that are vertically integrated on metallic anodes of test structures, proving the feasibility of monolithic integration of, for instance, AMCPs on application-specific integrated circuits for signal processing. We show an electron multiplication factor exceeding 30 for an aspect ratio, namely channel length over aperture, of 12.5:1. This result was achieved for input photoelectron currents up to 100 pA, in the continuous illumination regime, which provides a first evidence of the a-Si:H effectiveness in replenishing the electrons dispensed in the multiplication process. PMID:24698955

  7. Monolithic amorphous silicon modules on continuous polymer substrate

    SciTech Connect

    Grimmer, D.P. )

    1992-03-01

    This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

  8. Staebler-Wronski effect in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Shenoy, Subodh R.

    1996-02-01

    A scenario for the Staebler-Wronski (SW) photoconductivity σ( t) in hydrogenated amorphous silicon is modeled by the kenetics of the dangling bond density d( t). Hydrogen atoms (H) on SiSi bonds are induced to hop by the illumination-triggered breakage of weak neighboring bonds ( d(t) ∼ t {1}/{3}). The breakage leads to enhanced H diffusion over disordered barriers, which breaks further bonds, inducing further diffusion and causing a d( t) rise as a stretched exponential. d( t) then saturates to a temperature-dependent value, as breakage is limited by bond-pair thermal healing. Above a temperature TSW, thermal bond-pair healing beats breakage, and σ( t) recovers.

  9. High Performance Molybdenum Disulfide Amorphous Silicon Heterojunction Photodetector

    PubMed Central

    Esmaeili-Rad, Mohammad R.; Salahuddin, Sayeef

    2013-01-01

    One important use of layered semiconductors such as molybdenum disulfide (MoS2) could be in making novel heterojunction devices leading to functionalities unachievable using conventional semiconductors. Here we demonstrate a metal-semiconductor-metal heterojunction photodetector, made of MoS2 and amorphous silicon (a-Si), with rise and fall times of about 0.3 ms. The transient response does not show persistent (residual) photoconductivity, unlike conventional a-Si devices where it may last 3–5 ms, thus making this heterojunction roughly 10X faster. A photoresponsivity of 210 mA/W is measured at green light, the wavelength used in commercial imaging systems, which is 2−4X larger than that of a-Si and best reported MoS2 devices. The device could find applications in large area electronics, such as biomedical imaging, where a fast response is critical. PMID:23907598

  10. Current noise measurements of surface defect states in amorphous silicon

    SciTech Connect

    West, P.W.; Kakalios, J.

    1999-07-01

    Measurements of conductance fluctuations in coplanar hydrogenated amorphous silicon (a-Si:H) are reported as a function of surface etching treatments. The noise power spectrum displays a broadened Lorentzian peak, associated with surface damage by CF{sub 4} reactive ion etching (RIE), whereas surface etches using ion milling or wet chemicals remove the Lorentzian spectral feature and only a 1/f spectral form for frequency f is observed. The Lorentzian spectral feature can be explained by trapping-detrapping from surface states induced by the RIE etch, which cause fluctuations in the depletion width of the space charge region near the film surface. The thermally activated Lorentzian corner frequency is a measure of the degree of band bending and the Fermi energy at the thin film surface.

  11. Research on stable, high-efficiency amorphous silicon multijunction modules

    SciTech Connect

    Guha, S. )

    1992-09-01

    This report describes research on semiconductor and non-semiconductor materials to enhance the performance of multi-band-gap, multijunction panel with an area greater than 900 cm[sup 2] by 1992. Double-junction and triple-junction cells are mode on a Ag/ZnO back reflector deposited on stainless steel substrates. An a-SiGe alloy is used for the i-layer in the bottom and the middle cells; the top cell uses an amorphous silicon alloy. After the evaporation of an antireflection coating, silver grids and bus bars are put on the top surface and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a 1-ft[sup 2] monolithic module.

  12. Light-Induced Metastability in Pure and Hydrogenated Amorphous Silicon

    SciTech Connect

    Queen, D. R.; Liu, X.; Karel, J.; Wang, Q.; Crandall, Richard S.; Metcalf, T. H.; Hellman, F.

    2015-10-01

    Light soaking is found to increase the specific heat C and internal friction Q-1 of pure (a-Si) and hydrogenated (a-Si:H) amorphous silicon. At the lowest temperatures, the increases in C and Q-1 are consistent with an increased density of two-level systems (TLS). The light-induced increase in C persists to room temperature. Neither the sound velocity nor shear modulus change with light soaking indicating that the Debye specific heat is unchanged which suggests that light soaking creates localized vibrational modes in addition to TLS. The increase can be reversibly added and removed by light soaking and annealing, respectively, suggesting that it is related to the Staebler-Wronski effect (SWE), even in a-Si without H, and involves a reversible nanoscale structural rearrangement that is facilitated by, but does not require, H to occur.

  13. Light-induced metastability in pure and hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Queen, D. R.; Liu, X.; Karel, J.; Wang, Q.; Crandall, R. S.; Metcalf, T. H.; Hellman, F.

    2015-10-01

    Light soaking is found to increase the specific heat C and internal friction Q-1 of pure (a-Si) and hydrogenated (a-Si:H) amorphous silicon. At the lowest temperatures, the increases in C and Q-1 are consistent with an increased density of two-level systems (TLS). The light-induced increase in C persists to room temperature. Neither the sound velocity nor shear modulus change with light soaking indicating that the Debye specific heat is unchanged which suggests that light soaking creates localized vibrational modes in addition to TLS. The increase can be reversibly added and removed by light soaking and annealing, respectively, suggesting that it is related to the Staebler-Wronski effect (SWE), even in a-Si without H, and involves a reversible nanoscale structural rearrangement that is facilitated by, but does not require, H to occur.

  14. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  15. Hydrogenated Amorphous Silicon (a-Si:H) Colloids

    SciTech Connect

    Harris, Justin T.; Hueso, Jose L.; Korgel, Brian A.

    2010-12-14

    Colloidal particles of hydrogenated amorphous silicon (a-Si:H) were synthesized by decomposition of trisilane (Si{sub 3}H{sub 8}) in supercritical n-hexane (sc-hexane) at temperatures ranging from 380 to 550 °C. The reaction temperature, pressure and Si{sub 3}H{sub 8} concentration have a significant influence on the average particle size, Si bond order and hydrogen content. The particle diameter could be varied from 170 nm to 1.7 μm, with hydrogen loadings between 10% and 58%. Raman spectroscopy of the particles revealed significant differences in Si bond order that correlated with hydrogen content, with the lowest reaction temperatures yielding particles with the least structural order and most associated hydrogen. Particles synthesized at temperatures higher than 420 °C had sufficient bond order to allow crystallization under the Raman laser probe.

  16. ESR studies on hot-wire amorphous silicon

    SciTech Connect

    Unold, T.; Mahan, A.H.

    1997-07-01

    The authors measure a series of hot-wire (HW) amorphous silicon films grown with hydrogen contents C{sub H} varying between 0.5--17 at.%. From constant photocurrent method (CPM) measurements and the steady-state photocarrier grating method (SSPG) they find good agreement with previous measurements on similar hot-wire films. Electron spin resonance measurements on the same samples, however, yield significantly higher spin densities than expected. A thickness series indicates a highly defective layer close to the substrate interface. They propose that this defective layer may be due to excessive out diffusion of hydrogen during growth at high temperatures, as seen by secondary ion mass spectroscopy. ESR measurements on light-degraded samples indicate an improved stability of samples with C{sub H} < 9 at.%.

  17. Characterization of Silicon Detector Readout Electronics

    SciTech Connect

    Jones, M.

    2015-07-22

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore the architecture of larger systems such as those currently in use at LHC experiments.

  18. Ultra-fast silicon detectors (UFSD)

    NASA Astrophysics Data System (ADS)

    Sadrozinski, H. F.-W.; Anker, A.; Chen, J.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gruey, B.; Grabas, H.; John, C.; Liang, Z.; Losakul, R.; Mak, S. N.; Ng, C. W.; Seiden, A.; Woods, N.; Zatserklyaniy, A.; Baldassarri, B.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Pellegrini, G.; Hidalgo, S.; Baselga, M.; Carulla, M.; Fernandez-Martinez, P.; Flores, D.; Merlos, A.; Quirion, D.; Mikuž, M.; Kramberger, G.; Cindro, V.; Mandić, I.; Zavrtanik, M.

    2016-09-01

    We report on measurements on Ultra-Fast Silicon Detectors (UFSD) which are based on Low-Gain Avalanche Detectors (LGAD). They are n-on-p sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We have performed several beam tests with LGAD of different gain and report the measured timing resolution, comparing it with laser injection and simulations. For the 300 μm thick LGAD, the timing resolution measured at test beams is 120 ps while it is 57 ps for IR laser, in agreement with simulations using Weightfield2. For the development of thin sensors and their readout electronics, we focused on the understanding of the pulse shapes and point out the pivotal role the sensor capacitance plays.

  19. Status and performance of the CDF Run II silicon detector

    SciTech Connect

    Maki, Tuula; /Helsinki Inst. of Phys.

    2006-10-01

    The CDF silicon detector is one of the largest silicon detectors in operation. It has a total of 722,432 electronic channels, and it covers a sensor surface area of 6 m{sup 2}. The detector has been operating reliably for five years, and it has recorded 1.5 fb{sup -1} of data. This article discusses experiences of operating such a large, complex system as well as the longevity of the detector.

  20. The power supply system of the CLEO III silicon detector

    NASA Astrophysics Data System (ADS)

    von Toerne, E.; Burns, J.; Duboscq, J.; Eckhart, E.; Honscheid, K.; Kagan, H.; Kass, R.; Larsen, D.; Rush, C.; Smith, S.; Thayer, J. B.

    2002-04-01

    The CLEO III detector has recently commenced data taking at the Cornell Electron Storage Ring (CESR). One important component of this detector is a four layer double-sided silicon tracker with 93% solid angle coverage. This detector ranges in size and number of readout channels between the LEP and LHC silicon detectors. In order to reach the detector performance goals of signal-to-noise ratios greater than 15 : 1 low noise front-end electronics together with highly regulated low noise power supplies were used. In this paper, we describe the low-noise power supply system and associated monitoring and safety features used by the CLEO III silicon tracker.

  1. Interstitial trapped hydrogen molecules in PECVD amorphous silicon

    SciTech Connect

    Borzi, R.; Mascarenhas, F.; Fedders, P.A.; Leopold, D.J.; Norberg, R.E.; Wickboldt, P.; Paul, W.

    1999-07-01

    New NMR measurements show that interstitial T site-trapped molecular hydrogen can amount to more than one third of the contained hydrogen in high quality PECVD amorphous silicon. Microvoid-contained dense molecular hydrogen is negligible in these good films. Experiments on a sequence of hydrogenated and/or deuterated a-Si films have characterized individually-trapped molecular HD and D{sub 2} in films deposited from SiD{sub 4}, and from SiH{sub 4}+D{sub 2}. The T site-trapped molecular hydrogen fraction observed here is larger than previously reported because of recent efforts to measure very slowly relaxing molecular components and the employment of radiofrequency pulse sequences to detect ortho-D{sub 2} with nuclear spin I = 2. The population of interstitially trapped molecular hydrogen increases with increasing photovoltaic quality over a range of an order of magnitude in photoresponse product {eta}{mu}{tau}. Above 200 K, hopping transport of molecular hydrogen among the amorphous equivalent of interstitial T sites occurs with an activation energy near 50 meV.

  2. A 140-element Ge detector fabricated using amorphous Ge blocking contacts

    SciTech Connect

    Luke, P.N.; Pehl, R.H.; Dilmanian, F.A.

    1993-10-01

    A 140-element position-sensitive Ge detector has been fabricated as the prototype detector for the development of a monochromatic computed tomography system using synchrotron radiation. The detector was made in very few processing steps that included the use of amorphous Ge blocking contacts. The fabrication process and the results of testing the detector are described.

  3. Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD

    SciTech Connect

    Abdulraheem, Yaser; Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef

    2014-05-15

    An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H) layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si) wafers by plasma enhanced chemical vapor deposition (PECVD). The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc) bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause of the observed

  4. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

    1994-09-13

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

  5. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  6. Temperature dependence of hydrogenated amorphous silicon solar cell performances

    NASA Astrophysics Data System (ADS)

    Riesen, Y.; Stuckelberger, M.; Haug, F.-J.; Ballif, C.; Wyrsch, N.

    2016-01-01

    Thin-film hydrogenated amorphous silicon solar (a-Si:H) cells are known to have better temperature coefficients than crystalline silicon cells. To investigate whether a-Si:H cells that are optimized for standard conditions (STC) also have the highest energy yield, we measured the temperature and irradiance dependence of the maximum power output (Pmpp), the fill factor (FF), the short-circuit current density (Jsc), and the open-circuit voltage (Voc) for four series of cells fabricated with different deposition conditions. The parameters varied during plasma-enhanced chemical vapor deposition (PE-CVD) were the power and frequency of the PE-CVD generator, the hydrogen-to-silane dilution during deposition of the intrinsic absorber layer (i-layer), and the thicknesses of the a-Si:H i-layer and p-type hydrogenated amorphous silicon carbide layer. The results show that the temperature coefficient of the Voc generally varies linearly with the Voc value. The Jsc increases linearly with temperature mainly due to temperature-induced bandgap reduction and reduced recombination. The FF temperature dependence is not linear and reaches a maximum at temperatures between 15 °C and 80 °C. Numerical simulations show that this behavior is due to a more positive space-charge induced by the photogenerated holes in the p-layer and to a recombination decrease with temperature. Due to the FF(T) behavior, the Pmpp (T) curves also have a maximum, but at a lower temperature. Moreover, for most series, the cells with the highest power output at STC also have the best energy yield. However, the Pmpp (T) curves of two cells with different i-layer thicknesses cross each other in the operating cell temperature range, indicating that the cell with the highest power output could, for instance, have a lower energy yield than the other cell. A simple energy-yield simulation for the light-soaked and annealed states shows that for Neuchâtel (Switzerland) the best cell at STC also has the best energy

  7. High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters

    NASA Technical Reports Server (NTRS)

    Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.

    2003-01-01

    Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout

  8. Silicon Detector System for Cross Section Measurements

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to estimate the radiation shielding effectiveness of materials it is necessary to know cosmic ray particles are broken up as they pass though these materials. The breakup of cosmic ray particles is characterized by the nuclear fragmentation cross sections, i.e. an effective geometrical cross section assigned to each target nucleus that represents its apparent size for fragmenting the incident particle. The values of these cross sections depend on the details of nuclear physics and cannot be calculated from first principles owing to the many-body nature of the interactions. The only way to determine them is to measure them. Once a sufficient number of cross sections have been measured, the systematic nature of the interactions allows other cross-sections to be estimated. The number of cross sections that contribute to the estimation of shielding effectiveness is very large 10,000. Fortunately most make minor contributions. These can be estimated from nuclear systematics. Only those who's uncertainties make significant contributions to the error in the shielding effectiveness estimations need to be measured. In the past it has proven difficult to measure light fragment production cross sections from the interactions of heavy cosmic rays owing to the size of the detectors used. We have developed a highly pixilated silicon (Si) detector system that can individually identify these light fragments while making efficient use of costly accelerator time. This system is an outgrowth of detector technology developed under a CDDF and a Code S sponsored cosmic ray experiment.

  9. Studies of pulsed laser melting and rapid solidification using amorphous silicon

    SciTech Connect

    Lowndes, D.H.; Wood, R.F.

    1984-06-01

    Pulsed-laser melting of ion implantation-amorphized silicon layers, and subsequent solidification were studied. Measurements of the onset of melting of amorphous silicon layers and of the duration of melting, and modified melting model calculations demonstrated that the thermal conductivity, K/sub a/, of amorphous silicon is very low (K/sub a/ approx. = 0.02 W/cm-K). K/sub a/ is also the dominant parameter determining the dynamical response of amorphous silicon to pulsed laser radiation. TEM indicates that bulk (volume) nucleation occurs directly from the highly undercooled liquid silicon that can be prepared by pulsed laser melting of amorphous silicon layers at low laser energy densities. A modified thermal melting model is presented. The model calculations demonstrate that the release of latent heat by bulk nucleation occurring during the melt-in process is essential to obtaining agreement with observed depths of melting. These calculations also show that this release of latent heat accompanying bulk nucleation can result in the existence of buried molten layers of silicon in the interior of the sample after the surface has solidified. The bulk nucleation implies that the liquid-to-amorphous phase transition (produced using picosecond or uv nanosecond laser pulses) cannot be explained using purely thermodynamic considerations.

  10. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  11. RF sputtering for controlling dihydride and monohydride bond densities in amorphous silicon hydride

    DOEpatents

    Jeffery, F.R.; Shanks, H.R.

    1980-08-26

    A process is described for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicone produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous solicone hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  12. Optical losses in amorphous silicon solar cells due to back reflectors

    SciTech Connect

    Sopori, B.L.; Madjdpour, J.; Von Roedern, B.; Chen, W.; Hegedus, S.S.

    1997-07-01

    The authors have used a new numerical model and here present initial results on how texturing and backreflectors affect the maximum achievable short-circuit current densities in amorphous silicon solar cells.

  13. Effect of Various Plasmas on Vacuum Deposited Amorphous and Microscrystal Silicon

    NASA Astrophysics Data System (ADS)

    Fang, P. H.; Huan, Zhong; Gao, Yinqun; Schubert, C. C.; Kinnier, J. H.

    1983-03-01

    A gaseous plasma of oxygen, nitrogen, hydrogen and air has been used to treat amorphous and microcrystal silicon. The resultant effect, as measured by the photovoltaic characteristics of solar cells made of these materials, is that all of these gases can be effectively incorporated into the amorphous and microcrystal silicon to produce a beneficial photovoltaic effect. There is some difference in thermal stability; nitrogen is very similar to hydrogen and is higher in stability, and oxygen and air are somewhat lower.

  14. Quantitative assessment of molecular dynamics-grown amorphous silicon and germanium films on silicon (111)

    NASA Astrophysics Data System (ADS)

    Käshammer, Peter; Borgardt, Nikolai I.; Seibt, Michael; Sinno, Talid

    2016-09-01

    Molecular dynamics based on the empirical Tersoff potential was used to simulate the deposition of amorphous silicon and germanium on silicon(111) at various deposition rates and temperatures. The resulting films were analyzed quantitatively by comparing one-dimensional atomic density profiles to experimental measurements. It is found that the simulations are able to capture well the structural features of the deposited films, which exhibit a gradual loss of crystalline order over several monolayers. A simple mechanistic model is used to demonstrate that the simulation temperature may be used to effectively accelerate the surface relaxation processes during deposition, leading to films that are consistent with experimental samples grown at deposition rates many orders-of-magnitude slower than possible in a molecular dynamics simulation.

  15. Recrystallization of silicon-on-sapphire structures at various amorphization-ion-beam energies

    SciTech Connect

    Alexandrov, P. A. Demakov, K. D.; Shemardov, S. G.; Kuznetsov, Yu. Yu.

    2013-02-15

    Silicon films on sapphire substrates are grown via recrystallization from the silicon-sapphire interface. An amorphous layer is formed using ion implantation with silicon ion energies of 90-150 keV. An X-ray rocking curve is used to estimate the crystalline perfection of the silicon films. After recrystallization, the silicon layer consists of two parts with different crystalline quality. The recrystallized silicon-on-sapphire structures have a highly perfect upper layer (for fabricating microelectronic devices) and a lower layer adjacent to the sapphire substrate containing a large number of defects.

  16. Amorphous silicon cell array powered solar tracking apparatus

    DOEpatents

    Hanak, Joseph J.

    1985-01-01

    An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

  17. Hot wire deposited hydrogenated amorphous silicon solar cells

    SciTech Connect

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S.

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  18. The importance of inhomogeneities in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Agarwal, Satish

    2014-03-01

    We shall discuss how the heterogeneities present in hydrogenated amorphous silicon (a-Si:H) can be taken into account by considering the long range potential fluctuations (LRPF), arising from them. Using these ideas we try to understand several challenging puzzles, some of them remaining unresolved till now. These range, from why undoped a-Si:H is n-type, to why the light soaking (LS) degrades boron doped a-Si:H films faster than the undoped or the phosphorous doped films, and why hole injection favors larger degradation than electron injection. Also, the failure of reciprocity and the saturation of the number of dangling bonds created by LS at the low value of about 1017 cm-3 can be explained. The improved stability of a-Si:H containing nc-Si has been attributed to the LRPF assisted diffusion of photo carriers to nc-Si and recombination there. These and other similar observations will be taken up. Work supported by CSIR, New Delhi.

  19. Power change in amorphous silicon technology by low temperature annealing

    NASA Astrophysics Data System (ADS)

    Mittal, Ankit; Rennhofer, Marcus; Dangel, Angelika; Duman, Bogdan; Schlosser, Victor

    2015-07-01

    Amorphous silicon (a-Si) is one of the best established thin-film solar-cell technologies. Despite its long history of research, it still has many critical issues because of its defect rich material and its susceptibility to degrade under light also called as Staebler-Wronski effect (SWE). This leads to an increase in the defect density of a-Si, but as a metastable effect it can be completely healed at temperatures above 170 °C. Our study is focused on investigating the behavior of annealing of different a-Si modules under low temperature conditions below 80 °C indicated by successive change of module power. These conditions reflect the environmental temperature impact of the modules in the field, or integrated in buildings as well. The power changes were followed by STC power rating and investigation of module-power evolution under low irradiance conditions at 50 W/m2. Our samples were recovered close to their initial state of power, reaching as high as 99% from its degraded value. This shows the influence of low temperature annealing and light on metastable module behavior in a-Si thin-film modules.

  20. Tritiated Amorphous Silicon: Insights into the Staebler-Wronski Mechanism

    SciTech Connect

    Stradins, P.; Branz, H. M.; Whitaker, J.; Viner, J.; Taylor, P. C.; Johnson, E.; Kherani, N.; Zukotynski, S.

    2005-01-01

    Hydrogen, though essential for device-quality amorphous silicon, likely contributes to the light-induced degradation process (Staebler-Wronski effect) that reduces the solar cell efficiency by about 4 absolute percent. We are testing the role of hydrogen by using its isotope tritium. When tritium bonded to Si spontaneously decays into inert helium-3, it should leave behind the Si dangling bond defect. We have studied degradation due to tritium and note its resemblance to the Staebler-Wronski effect. Surprisingly, 100x fewer defects are created than expected from the tritium decay rate, suggesting a mechanism that heals most of the defects, even at temperatures down to 4 K. We consider different mechanisms for the thermal and athermal healing processes (e.g. motion of hydrogen, effect of beta-electrons, decay of hydrogen-tritium molecules). Our findings shed new light on the degradation mechanism in a Si:H and help reveal the role of hydrogen and structural rearrangements near a newly created defect.

  1. Temperature dependent deformation mechanisms in pure amorphous silicon

    SciTech Connect

    Kiran, M. S. R. N. Haberl, B.; Williams, J. S.; Bradby, J. E.

    2014-03-21

    High temperature nanoindentation has been performed on pure ion-implanted amorphous silicon (unrelaxed a-Si) and structurally relaxed a-Si to investigate the temperature dependence of mechanical deformation, including pressure-induced phase transformations. Along with the indentation load-depth curves, ex situ measurements such as Raman micro-spectroscopy and cross-sectional transmission electron microscopy analysis on the residual indents reveal the mode of deformation under the indenter. While unrelaxed a-Si deforms entirely via plastic flow up to 200 °C, a clear transition in the mode of deformation is observed in relaxed a-Si with increasing temperature. Up to 100 °C, pressure-induced phase transformation and the observation of either crystalline (r8/bc8) end phases or pressure-induced a-Si occurs in relaxed a-Si. However, with further increase of temperature, plastic flow rather than phase transformation is the dominant mode of deformation. It is believed that the elevated temperature and pressure together induce bond softening and “defect” formation in structurally relaxed a-Si, leading to the inhibition of phase transformation due to pressure-releasing plastic flow under the indenter.

  2. Progress in amorphous silicon solar cells produced by reactive sputtering

    NASA Astrophysics Data System (ADS)

    Moustakas, T. D.

    The photovoltaic properties of reactively sputtered amorphous silicon are reviewed and it is shown that efficient PIN solar cells can be fabricated by the method of sputtering. The photovoltaic properties of the intrinsic films correlate with their structural and compositional inhomogeneities. Hydrogen incorporation and small levels of phosphorus and boron impurities also affect the photovoltaic properties through reduction of residual dangling bond related defects and modification of their occupation. The optical and transport properties of the doped P and N-films were found to depend sensitively on the amount of hydrogen and boron or phosphorus incorporation into the films as well as on their degree of crystallinity. Combination of the best intrinsic and doped films leads to PIN solar cell structures generating J(sc) of 13 mA/sq cm and V(oc) of between 0.85 to 0.95 volts. The efficiency of these devices, 5 to 6 percent, is limited by the low FF, typically about 50 percent. As a further test to the potential of this technology efficient tandem solar cell structures were fabricated, and device design concepts, such as the incorporation of optically reflective back contacts were tested.

  3. Raman spectroscopy of PIN hydrogenated amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Keya, Kimitaka; Torigoe, Yoshihiro; Toko, Susumu; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Light-induced degradation of hydrogenated amorphous silicon (a-Si:H) is a key issue for enhancing competitiveness in solar cell market. A-Si:H films with a lower density of Si-H2 bonds shows higher stability. Here we identified Si-H2 bonds in PIN a-Si:H solar cells fabricated by plasma CVD using Raman spectroscopy. A-Si:H solar cell has a structure of B-doped μc-SiC:H (12.5 nm)/ non-doped a-Si:H (250nm)/ P-doped μc-Si:H (40 nm) on glass substrates (Asahi-VU). By irradiating HeNe laser light from N-layer, peaks correspond to Si-H2 bonds (2100 cm-1) and Si-H bonds (2000 cm-1) have been identified in Raman scattering spectra. The intensity ratio of Si-H2 and Si-H ISiH2/ISiH is found to correlate well to light induced degradation of the cells Therefore, Raman spectroscopy is a promising method for studying origin of light-induced degradation of PIN solar cells.

  4. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    NASA Astrophysics Data System (ADS)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  5. Electron spin resonance in amorphous silicon doped with Gd

    NASA Astrophysics Data System (ADS)

    Castilho, J. H.; Barberis, G. E.; Rettori, C.; Marques, F. C.; Chambouleyron, I.; Alvarez, F.

    1989-04-01

    ESR experiments on Gd impurities in amorphous silicon between liquid-He and room temperatures show three resonances which could be ascribed to paramagnetic dangling bonds (g=2.0055+/-0.0005), to Gd 8S7/2 states (g=1.997+/-0.005), and to a new paramagnetic center (g=2.10+/-0.05) associated with the presence of Gd atoms. For low-Gd-concentration samples the intensity of the resonance due to dangling bonds decreases as the Gd concentration increases and the intensity of the new paramagnetic center is found to increase with increasing temperature. These results indicate, as we recently found for other rare-earth-element impurities in a-Si, that a fraction of the Gd atoms act as acceptor impurities with associated loosely bound holes in the a-Si valence-band tail which are responsible for the resonance of the new paramagnetic center observed at a g value of 2.10+/-0.05.

  6. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    PubMed

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices.

  7. Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.

    PubMed

    Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C

    2016-06-22

    While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices. PMID:27227369

  8. Carrier transport in amorphous silicon utilizing picosecond photoconductivity

    NASA Astrophysics Data System (ADS)

    Johnson, A. M.

    1981-08-01

    The development of a high-speed electronic measurement capability permitted the direct observation of the transient photoresponse of amorphous silicon (a-Si) with a time resolution of approximately 10ps. This technique was used to measure the initial mobility of photogenerated (2.1eV) free carriers in three types of a-Si having widely different densities of structural defects (i.e., as prepared by: (1) RF glow discharge (a-Si:H); (2) chemical vapor deposition; and (3) evaporation in ultra-high vacuum). In all three types of a-Si, the same initial mobility of approximately 1 cu cm/Vs at room temperature was found. This result tends to confirm the often-made suggestion that the free carrier mobility is determined by the influence of shallow states associated with the disorder in the random atomic network, and is an intrinsic property of a-Si which is unaffected by the method of preparation. The rate of decay of the photocurrent correlates with the density of structural defects and varies from 4ps to 200ps for the three types of a-Si investigated. The initial mobility of a-Si:H was found to be thermally activated. The possible application of extended state transport controlled by multiple trapping and small polaron formation is discussed.

  9. Si-H bond dynamics in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( <2.5cm-1 linewidth) of the 0→1 and 1→2 vibrational transitions within the extensively inhomogeneously broadened ( 78cm-1 linewidth) Si-H vibrational band. There is no spectral diffusion evident in correlation spectra obtained at 0.2, 1, and 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  10. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-01

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiNx) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiNx stack, recombination current density J0 values of 9, 11, 47, and 87 fA/cm2 are obtained on 10 Ω.cm n-type, 0.8 Ω.cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J0 on n-type 10 Ω.cm wafers is further reduced to 2.5 ± 0.5 fA/cm2 when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiNx stack is thermally stable at 400 °C in N2 for 60 min on all four c-Si surfaces. Capacitance-voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiNx stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  11. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    SciTech Connect

    Newby, Pascal J.; Canut, Bruno; Bluet, Jean-Marie; Lysenko, Vladimir; Gomes, Severine; Isaiev, Mykola; Burbelo, Roman; Chantrenne, Patrice; Frechette, Luc G.

    2013-07-07

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first time such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 Degree-Sign C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.

  12. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  13. Small area silicon diffused junction x-ray detectors

    SciTech Connect

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm/sup 2/ and a thickness of 100 ..mu..m. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150/sup 0/K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs.

  14. New results on the microstructure of amorphous silicon as observed by internal friction

    SciTech Connect

    Crandall, R.S.; Mahan, A.H.; Iwaniczko, E.; Jones, K.M.; Liu, X.; White, B.E. Jr.; Pohl, R.O.

    1997-07-01

    The authors have measured the low temperature internal friction (Q{sup {minus}1}) of amorphous silicon (a-Si) films. Electron-beam evaporation leads to the well-known temperature-independent Q{sub 0}{sup {minus}1} plateau common to all amorphous solids. For hydrogenated amorphous silicon (a-Si:H) with about 1 at.% H produced by hot wire chemical vapor deposition, however, the value of Q{sub 0}{sup {minus}1} is over two hundred times smaller than for e-beam a-Si. This is the first observation of an amorphous solid without any significant low energy excitations. This finding offers the opportunity to study amorphous solids containing controlled densities of tunneling defects, and thus to explore their nature.

  15. Spectral response of multi-element silicon detectors

    SciTech Connect

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K.

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  16. Stabilization of amorphous structure in silicon thin film by adding germanium

    SciTech Connect

    Makino, Nobuaki; Shigeta, Yukichi

    2015-06-21

    The stabilization of the amorphous structure in amorphous silicon film by adding Ge atoms was studied using Raman spectroscopy. Amorphous Si{sub 1−x}Ge{sub x} (x = 0.0, 0.03, 0.14, and 0.27) films were deposited on glass substrates from electron beam evaporation sources and annealed in N{sub 2} atmosphere. The change in the amorphous states and the phase transition from amorphous to crystalline were characterized using the TO, LO, and LA phonons in the Raman spectra. The temperature of the transition from the amorphous phase to the crystalline phase was higher for the a-Si{sub 1−x}Ge{sub x} (x = 0.03, 0.14) films, and the crystallization was hindered. The reason why the addition of a suitable quantity of Ge atoms into the three-dimensional amorphous silicon network stabilizes its amorphous structure is discussed based on the changes in the Raman signals of the TO, LO, and LA phonons during annealing. The characteristic bond length of the Ge atoms allows them to stabilize the random network of the amorphous Si composed of quasi-tetrahedral Si units, and obstruct its rearrangement.

  17. First test of cold edgeless silicon microstrip detectors

    NASA Astrophysics Data System (ADS)

    Avati, V.; Boccone, V.; Borer, K.; Bozzo, M.; Capra, R.; Casagrande, L.; Eggert, K.; Heijne, E.; Klauke, S.; Li, Z.; Mäki, T.; Morelli, A.; Oljemark, F.; Palmieri, V. G.; Perea-Solano, B.; Tapprogge, S.

    2004-02-01

    Silicon microstrip detectors will provide the forward tracking in the TOTEM experiment at the LHC. To allow efficient tracking closest to the beam (≈1 mm) these detectors should be sensitive up to their physical edge (i.e. edgeless). Edgeless (without guard rings) microstrip planar detectors can be operated at cryogenic temperatures (about 130° K) where leakage currents due to the active edge are drastically reduced. A silicon microstrip prototype, cut perpendicular to the strips, has been tested with a pion beam at CERN to study its efficiency close to the edge by using reference tracks from a simple silicon telescope. Results indicate that the detector measures tracks with good efficiency up to the physical edge of the silicon.

  18. Formation of amorphous silicon by light ion damage

    SciTech Connect

    Shih, Y.C.

    1985-12-01

    Amorphization by implantation of boron ions (which is the lightest element generally used in I.C. fabrication processes) has been systematically studied for various temperatures, various voltages and various dose rates. Based on theoretical considerations and experimental results, a new amorphization model for light and intermediate mass ion damage is proposed consisting of two stages. The role of interstitial type point defects or clusters in amorphization is emphasized. Due to the higher mobility of interstitials out-diffusion to the surface particularly during amorphization with low energy can be significant. From a review of the idealized amorphous structure, diinterstitial-divacancy pairs are suggested to be the embryos of amorphous zones formed during room temperature implantation. The stacking fault loops found in specimens implanted with boron at room temperature are considered to be the origin of secondary defects formed during annealing.

  19. Reaction of amorphous Ni-W and Ni-N-W films with substrate silicon

    NASA Technical Reports Server (NTRS)

    Zhu, M. F.; Suni, I.; Nicolet, M.-A.; Sands, T.

    1984-01-01

    Wiley et al. (1982) have studied sputtered amorphous films of Nb-Ni, Mo-Ni, Si-W, and Si-Mo. Kung et al. (1984) have found that amorphous Ni-Mo films as diffusion barriers between multilayer metallizations on silicon demonstrate good electrical and thermal stability. In the present investigation, the Ni-W system was selected because it is similar to the Ni-Mo system. However, W has a higher silicide formation temperature than Mo. Attention is given to aspects of sample preparation, sample characterization, the interaction between amorphous Ni-W films and Si, the crystallization of amorphous Ni(36)W(64) films on SiO2, amorphous Ni-N-W films, silicide formation and phase separation, and the crystallization of amorphous Ni(36)W(64) and Ni(30)N(21)W(49) layers.

  20. Passivation of c-Si surfaces by sub-nm amorphous silicon capped with silicon nitride

    SciTech Connect

    Wan, Yimao Yan, Di; Bullock, James; Zhang, Xinyu; Cuevas, Andres

    2015-12-07

    A sub-nm hydrogenated amorphous silicon (a-Si:H) film capped with silicon nitride (SiN{sub x}) is shown to provide a high level passivation to crystalline silicon (c-Si) surfaces. When passivated by a 0.8 nm a-Si:H/75 nm SiN{sub x} stack, recombination current density J{sub 0} values of 9, 11, 47, and 87 fA/cm{sup 2} are obtained on 10 Ω·cm n-type, 0.8 Ω·cm p-type, 160 Ω/sq phosphorus-diffused, and 120 Ω/sq boron-diffused silicon surfaces, respectively. The J{sub 0} on n-type 10 Ω·cm wafers is further reduced to 2.5 ± 0.5 fA/cm{sup 2} when the a-Si:H film thickness exceeds 2.5 nm. The passivation by the sub-nm a-Si:H/SiN{sub x} stack is thermally stable at 400 °C in N{sub 2} for 60 min on all four c-Si surfaces. Capacitance–voltage measurements reveal a reduction in interface defect density and film charge density with an increase in a-Si:H thickness. The nearly transparent sub-nm a-Si:H/SiN{sub x} stack is thus demonstrated to be a promising surface passivation and antireflection coating suitable for all types of surfaces encountered in high efficiency c-Si solar cells.

  1. Pressure-induced transformations in amorphous silicon: A computational study

    SciTech Connect

    Garcez, K. M. S.; Antonelli, A.

    2014-02-14

    We study the transformations between amorphous phases of Si through molecular simulations using the environment dependent interatomic potential (EDIP) for Si. Our results show that upon pressure, the material undergoes a transformation from the low density amorphous (LDA) Si to the high density amorphous (HDA) Si. This transformation can be reversed by decompressing the material. This process, however, exhibits clear hysteresis, suggesting that the transformation LDA ↔ HDA is first-order like. The HDA phase is predominantly five-fold coordinated, whereas the LDA phase is the normal tetrahedrally bonded amorphous Si. The HDA phase at 400 K and 20 GPa was submitted to an isobaric annealing up to 800 K, resulting in a denser amorphous phase, which is structurally distinct from the HDA phase. Our results also show that the atomic volume and structure of this new amorphous phase are identical to those of the glass obtained by an isobaric quenching of the liquid in equilibrium at 2000 K and 20 GPa down to 400 K. The similarities between our results and those for amorphous ices suggest that this new phase is the very high density amorphous Si.

  2. Development, prototyping and characterization of double sided silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Topkar, Anita; Singh, Arvind; Aggarwal, Bharti; Kumar, Amit; Kumar, Arvind; Murali Krishna, L. V.; Das, D.

    2016-10-01

    Double sided DC-coupled silicon strip detectors with geometry of 65 mm×65 mm have been developed in India for nuclear physics experiments. The detectors have 64 P+ strips on the front side and 64 N+ strips on the backside with a pitch of 0.9 mm. These detectors were fabricated using a twelve mask layer process involving double sided wafer processing technology. Semiconductor process and device simulations were carried out in order to theoretically estimate the impact of important design and process parameters on the breakdown voltage of detectors. The performance of the first lot of prototype detectors has been studied using static characterization tests and using an alpha source. The characterization results demonstrate that the detectors have low leakage currents and good uniformity over the detector area of about 40 cm2. Overview of the detector design, fabrication process, simulation results and initial characterization results of the detectors are presented in this paper.

  3. Cosmic ray positron research and silicon track detector development

    NASA Technical Reports Server (NTRS)

    Jones, W. Vernon; Wefel, John P.

    1991-01-01

    The purpose was to conduct research on: (1) position sensing detector systems, particularly those based upon silicon detectors, for use in future balloon and satellite experiments; and (2) positrons, electrons, proton, anti-protons, and helium particles as measured by the NASA NMSU Balloon Magnet Facility.

  4. Status of the CDF Run II Silicon Detector

    SciTech Connect

    S. Nahn

    2003-04-10

    A snapshot of the status of the CDF Run II Silicon Detector is presented, with a summary of commissioning issues since the start of Run II, current performance of the detector, and the use of the data in both the trigger and offline reconstruction.

  5. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  6. Fabrication of detectors and transistors on high-resistivity silicon

    SciTech Connect

    Holland, S.

    1988-06-01

    A new process for the fabrication of silicon p-i-n diode radiation detectors is described. The utilization of backside gettering in the fabrication process results in the actual physical removal of detrimental impurities from critical device regions. This reduces the sensitivity of detector properties to processing variables while yielding low diode reverse-leakage currents. In addition, gettering permits the use of processing temperatures compatible with integrated-circuit fabrication. P-channel MOSFETs and silicon p-i-n diodes have been fabricated simultaneously on 10 k..cap omega../center dot/cm<100> silicon using conventional integrated-circuit processing techniques. 25 refs., 5 figs.

  7. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sourice, Julien; Bordes, Arnaud; Boulineau, Adrien; Alper, John P.; Franger, Sylvain; Quinsac, Axelle; Habert, Aurélie; Leconte, Yann; De Vito, Eric; Porcher, Willy; Reynaud, Cécile; Herlin-Boime, Nathalie; Haon, Cédric

    2016-10-01

    Core-shell silicon-carbon nanoparticles are attractive candidates as active material to increase the capacity of Li-ion batteries while mitigating the detrimental effects of volume expansion upon lithiation. However crystalline silicon suffers from amorphization upon the first charge/discharge cycle and improved stability is expected in starting with amorphous silicon. Here we report the synthesis, in a single-step process, of amorphous silicon nanoparticles coated with a carbon shell (a-Si@C), via a two-stage laser pyrolysis where decomposition of silane and ethylene are conducted in two successive reaction zones. Control of experimental conditions mitigates silicon core crystallization as well as formation of silicon carbide. Auger electron spectroscopy and scanning transmission electron microscopy show a carbon shell about 1 nm in thickness, which prevents detrimental oxidation of the a-Si cores. Cyclic voltammetry demonstrates that the core-shell composite reaches its maximal lithiation during the first sweep, thanks to its amorphous core. After 500 charge/discharge cycles, it retains a capacity of 1250 mAh.g-1 at a C/5 rate and 800 mAh.g-1 at 2C, with an outstanding coulombic efficiency of 99.95%. Moreover, post-mortem observations show an electrode volume expansion of less than 20% and preservation of the nanostructuration.

  8. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    SciTech Connect

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C.

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  9. Noise performance of the D0 layer 0 silicon detector

    SciTech Connect

    Johnson, M.; /Fermilab

    2006-11-01

    A new inner detector called Layer 0 has been added to the existing silicon detector for the DZero colliding beams experiment. This detector has an all carbon fiber support structure that employs thin copper clad Kapton sheets embedded in the surface of the carbon fiber structure to improve the grounding of the structure and a readout system that fully isolates the local detector ground from the rest of the detector. Initial measurements show efficiencies greater than 90% and 0.3 ADC count common mode contribution to the signal noise.

  10. Silicon photomultiplier as a detector of Cherenkov photons

    NASA Astrophysics Data System (ADS)

    Korpar, S.; Dolenec, R.; Hara, K.; Iijima, T.; Križan, P.; Mazuka, Y.; Pestotnik, R.; Stanovnik, A.; Yamaoka, M.

    2008-09-01

    A novel photon detector—i.e. the silicon photomultiplier—whose main advantage over conventional photomultiplier tubes is the operation in high magnetic fields, has been tested as a photon detector in a proximity focusing RICH with aerogel radiator. This type of RICH counter is proposed for the upgrade of the Belle detector at the KEK B-factory. Recently produced silicon photomultipliers show less noise and have larger size, which are important issues for a large area photon detector. We measured the single photon pulse height distribution, the timing resolution and the position sensitivity for different silicon photomultipliers (Hamamatsu MPPC HC025, HC050, and HC100). The silicon photomultipliers were then used to detect Cherenkov photons emitted by cosmic ray particles in a proximity focusing aerogel RICH. Various light guides were investigated in order to increase the detection efficiency.

  11. Study of silicon photosensor applicability for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Khilya, V. M.; Voronov, S. A.

    2016-02-01

    The aim of the present work is the creation a prototype of anticoincidence system AC for gamma-telescope GAMMA-400. The detectors of AC are developed on the basis of plastic scintillator and silicon photomultipliers. This work is focuses on research of applicability of silicon photomultipliers SiPM by company SensL, type 60000 with BC-408 plastics for the prototype of anticoincidence system detector ACtop. In frame of project the assembly for measuring of the SiPM characteristics such as the linearity, boundary of saturation, the time resolution was developed. The final stage of work was the integration of the prototype of anticoincidence detector.

  12. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires.

    PubMed

    Yu, Linwei; O'Donnell, Benedict; Foldyna, Martin; Roca i Cabarrocas, Pere

    2012-05-17

    Constructing radial junction hydrogenated amorphous silicon (a-Si:H) solar cells on top of silicon nanowires (SiNWs) represents a promising approach towards high performance and cost-effective thin film photovoltaics. We here develop an all-in situ strategy to grow SiNWs, via a vapour-liquid-solid (VLS) mechanism on top of ZnO-coated glass substrate, in a plasma-enhanced chemical vapour deposition (PECVD) reactor. Controlling the distribution of indium catalyst drops allows us to tailor the as-grown SiNW arrays into suitable size and density, which in turn results in both a sufficient light trapping effect and a suitable arrangement allowing for conformal coverage of SiNWs by subsequent a-Si:H layers. We then demonstrate the fabrication of radial junction solar cells and carry on a parametric study designed to shed light on the absorption and quantum efficiency response, as functions of the intrinsic a-Si:H layer thickness and the density of SiNWs. These results lay a solid foundation for future structural optimization and performance ramp-up of the radial junction thin film a-Si:H photovoltaics.

  13. Silicon network structure and 29Si spin-lattice relaxation in amorphous hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Cheung, Man Ken; Petrich, Mark A.

    1992-04-01

    We report a NMR study of amorphous hydrogenated silicon (a-Si:H) that measures the 29Si spin-lattice relaxation time T1. Measurements of 29Si T1 are useful in learning about the silicon network structure and the localized states within the mobility gap. Coupling to paramagnetic dangling bonds is the predominant 29Si spin-lattice relaxation mechanism in a-Si:H. Spin flipping of paramagnetic electrons, caused by coupling to the lattice, produces fluctuating local fields that stimulate nuclear spin-lattice relaxation. By comparing our experimental results with existing theory, we find that dangling bonds are randomly distributed in device-quality materials but are inhomogeneously distributed in non-device-quality materials. We also find that there are two simultaneously occurring dangling-bond spin-lattice relaxation mechanisms: one through the spin-orbit coupling modulated by thermal excitation of ``two-level systems,'' and the other through hopping conduction between localized states near the Fermi level. Simple chemical-shift measurements are also helpful in characterizing a-Si:H. We find that the 29Si resonance shifts upfield with increasing microstructure in the material.

  14. Performance and modeling of amorphous silicon photovoltaics for building-integrated applications

    SciTech Connect

    Kroposki, B.; Hansen, R.

    1999-07-01

    Amorphous silicon photovoltaic (PV) modules offer several advantages for building-integrated applications. The material can be deposited on glass or flexible substrates, which allows for products like roofing shingles and integrated PV/building glass. The material also has a uniform surface, which is ideal for many architectural applications. Amorphous silicon modules perform well in warm weather and have a small temperature coefficient for power. Depending on the building load, this may be beneficial when compared to crystalline systems. At the National Renewable Energy Laboratory, the authors are monitoring the performance of a triple-junction a-Si system. The system consists of 72 roofing shingles mounted directly to simulated roofing structures. This paper examines the performance of the building-integrated amorphous silicon PV system and applicability for covering residential loads. A simple model of system performance is also developed and is presented.

  15. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    NASA Astrophysics Data System (ADS)

    Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.

    2014-03-01

    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.

  16. In situ observation of shear-driven amorphization in silicon crystals

    NASA Astrophysics Data System (ADS)

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X.

    2016-10-01

    Amorphous materials are used for both structural and functional applications. An amorphous solid usually forms under driven conditions such as melt quenching, irradiation, shock loading or severe mechanical deformation. Such extreme conditions impose significant challenges on the direct observation of the amorphization process. Various experimental techniques have been used to detect how the amorphous phases form, including synchrotron X-ray diffraction, transmission electron microscopy (TEM) and Raman spectroscopy, but a dynamic, atomistic characterization has remained elusive. Here, by using in situ high-resolution TEM (HRTEM), we show the dynamic amorphization process in silicon nanocrystals during mechanical straining on the atomic scale. We find that shear-driven amorphization occurs in a dominant shear band starting with the diamond-cubic (dc) to diamond-hexagonal (dh) phase transition and then proceeds by dislocation nucleation and accumulation in the newly formed dh-Si phase. This process leads to the formation of an amorphous Si (a-Si) band, embedded with dh-Si nanodomains. The amorphization of dc-Si via an intermediate dh-Si phase is a previously unknown pathway of solid-state amorphization.

  17. Amorphization and nanocrystallization of silicon under laser shock compression: bridging experiment with atomic simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Shiteng; Kad, Bimal; Hahn, Eric; Remington, Bruce; Wehrenberg, Christopher; Bringa, Eduardo; Huntington, Channing; Park, Hye-Sook; More, Karren; Meyers, Marc

    Terawatt, nanosecond-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111}slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed by classical nucleation theory. This research is funded by a UC Research Laboratories Grant (09-LR-06-118456-MEYM) and a National Laser Users Facility (NLUF) Grant (PE-FG52-09NA-29043).

  18. Graphene as a transparent electrode for amorphous silicon-based solar cells

    SciTech Connect

    Vaianella, F. Rosolen, G.; Maes, B.

    2015-06-28

    The properties of graphene in terms of transparency and conductivity make it an ideal candidate to replace indium tin oxide (ITO) in a transparent conducting electrode. However, graphene is not always as good as ITO for some applications, due to a non-negligible absorption. For amorphous silicon photovoltaics, we have identified a useful case with a graphene-silica front electrode that improves upon ITO. For both electrode technologies, we simulate the weighted absorption in the active layer of planar amorphous silicon-based solar cells with a silver back-reflector. The graphene device shows a significantly increased absorbance compared to ITO-based cells for a large range of silicon thicknesses (34.4% versus 30.9% for a 300 nm thick silicon layer), and this result persists over a wide range of incidence angles.

  19. Electrically Active Defects In Solar Cells Based On Amorphous Silicon/Crystalline Silicon Heterojunction After Irradiation By Heavy Xe Ions

    NASA Astrophysics Data System (ADS)

    Harmatha, Ladislav; Mikolášek, Miroslav; Stuchlíková, L'ubica; Kósa, Arpád; Žiška, Milan; Hrubčín, Ladislav; Skuratov, Vladimir A.

    2015-11-01

    The contribution is focused on the diagnostics of structures with a heterojunction between amorphous and crystalline silicon prepared by HIT (Heterojunction with an Intrinsic Thin layer) technology. The samples were irradiated by Xe ions with energy 167 MeV and doses from 5 × 108 cm-2 to 5 × 1010 cm-2. Radiation defects induced in the bulk of Si and at the hydrogenated amorphous silicon and crystalline silicon (a-Si:H/c-Si) interface were identified by Deep Level Transient Spectroscopy (DLTS). Radiation induced A-centre traps, boron vacancy traps and different types of divacancies with a high value of activation energy were observed. With an increased fluence of heavy ions the nature and density of the radiation induced defects was changed.

  20. Anode properties of silicon-rich amorphous silicon suboxide films in all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Miyazaki, Reona; Ohta, Narumi; Ohnishi, Tsuyoshi; Takada, Kazunori

    2016-10-01

    This paper reports the effects of introducing oxygen into amorphous silicon films on their anode properties in all-solid-state lithium batteries. Although poor cycling performance is a critical issue in silicon anodes, it has been effectively improved by introducing even a small amount of oxygen, that is, even in Si-rich amorphous silicon suboxide (a-SiOx) films. Because of the small amount of oxygen in the films, high cycling performance has been achieved without lowering the capacity and power density: an a-Si film delivers discharge capacity of 2500 mAh g-1 under high discharge current density of 10 mA cm-2 (35 C). These results demonstrate that a-SiOx is a promising candidate for high-capacity anode materials in solid-state batteries.

  1. Charging/discharging behavior and mechanism of silicon quantum dots embedded in amorphous silicon carbide films

    SciTech Connect

    Wen, Xixing; Zeng, Xiangbin Zheng, Wenjun; Liao, Wugang; Feng, Feng

    2015-01-14

    The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiC{sub x}) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiC{sub x}/SiO{sub 2}/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiC{sub x}, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiC{sub x} can promote the application of Si QDs in low-power consumption semiconductor memory devices.

  2. Method of forming semiconducting amorphous silicon films from the thermal decomposition of fluorohydridodisilanes

    DOEpatents

    Sharp, Kenneth G.; D'Errico, John J.

    1988-01-01

    The invention relates to a method of forming amorphous, photoconductive, and semiconductive silicon films on a substrate by the vapor phase thermal decomposition of a fluorohydridodisilane or a mixture of fluorohydridodisilanes. The invention is useful for the protection of surfaces including electronic devices.

  3. Amorphous silicon research. Annual subcontract report, October 1, 1994--September 30, 1995

    SciTech Connect

    Arya, R R; Bennett, M; Bradley, D

    1996-02-01

    The major effort in this program is to develop cost-effective processes which satisfy efficiency, yield, and material usage criteria for mass production of amorphous silicon-based multijunction modules. New and improved processes were developed for the component cells and a more robust rear contact was developed for better long term stability.

  4. Hybrid method of making an amorphous silicon P-I-N semiconductor device

    DOEpatents

    Moustakas, Theodore D.; Morel, Don L.; Abeles, Benjamin

    1983-10-04

    The invention is directed to a hydrogenated amorphous silicon PIN semiconductor device of hybrid glow discharge/reactive sputtering fabrication. The hybrid fabrication method is of advantage in providing an ability to control the optical band gap of the P and N layers, resulting in increased photogeneration of charge carriers and device output.

  5. A micron resolution optical scanner for characterization of silicon detectors

    SciTech Connect

    Shukla, R. A.; Dugad, S. R. Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.; Garde, C. S.

    2014-02-15

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  6. Size effects on the thermal conductivity of amorphous silicon thin films

    DOE PAGESBeta

    Thomas Edwin Beechem; Braun, Jeffrey L.; Baker, Christopher H.; Elahi, Miraz; Artyushkova, Kateryna; Norris, Pamela M.; Leseman, Zayd Chad; Gaskins, John T.; Hopkins, Patrick E.; Giri, Ashutosh

    2016-04-01

    In this study, we investigate thickness-limited size effects on the thermal conductivity of amorphous silicon thin films ranging from 3 to 1636 nm grown via sputter deposition. While exhibiting a constant value up to ~100 nm, the thermal conductivity increases with film thickness thereafter. The thickness dependence we demonstrate is ascribed to boundary scattering of long wavelength vibrations and an interplay between the energy transfer associated with propagating modes (propagons) and nonpropagating modes (diffusons). A crossover from propagon to diffuson modes is deduced to occur at a frequency of ~1.8 THz via simple analytical arguments. These results provide empirical evidencemore » of size effects on the thermal conductivity of amorphous silicon and systematic experimental insight into the nature of vibrational thermal transport in amorphous solids.« less

  7. High-energy neutron spectroscopy with thick silicon detectors

    NASA Technical Reports Server (NTRS)

    Kinnison, James D.; Maurer, Richard H.; Roth, David R.; Haight, Robert C.

    2003-01-01

    The high-energy neutron component of the space radiation environment in thick structures such as the International Space Station contributes to the total radiation dose received by an astronaut. Detector design constraints such as size and mass have limited the energy range of neutron spectrum measurements in orbit to about 12 MeV in Space Shuttle studies. We present a new method for high-energy neutron spectroscopy using small silicon detectors that can extend these measurements to more than 500 MeV. The methodology is based on measurement of the detector response function for high-energy neutrons and inversion of this response function with measured deposition data to deduce neutron energy spectra. We also present the results of an initial shielding study performed with the thick silicon detector system for high-energy neutrons incident on polyethylene.

  8. Operation of silicon microstrip detectors in a high radiation environment

    SciTech Connect

    Kapustinsky, J.S.; Alde, D.M.; Boissevain, J.G.; Jeppesen, R.G.; Lane, D.W.; Leitch, M.J.; Lillberg, J.W.; Lopez, T.A.; McGaughey, P.L.; Moss, J.M.; Peng, J.C. ); Brooks, B.M.; Isenhower, L.D.; Sadler, M.E. ); Lederman, L.M.; Schub, M.H. ); Brown, C.N.; Cooper, W.E.; Gounder, K.; Hsiung, Y.B.; Mishra, C.S. (Fermi National

    1990-01-01

    A Silicon Microstrip Spectrometer was recently installed and operated in an 800 GeV proton beamline at Fermilab as a major new component of experiment E789. The detectors received an estimated radiation exposure of up to 7.8 {times} 10{sup 12} minimum ionizing particles per cm{sup 2} over a period of two months. We report on the changes in detector performance that we have observed following preliminary data analysis. 5 refs., 4 figs.

  9. Amorphous Silicon Carbide Passivating Layers to Enable Higher Processing Temperature in Crystalline Silicon Heterojunction Solar Cells

    SciTech Connect

    Boccard, Mathieu; Holman, Zachary

    2015-04-06

    "Very efficient crystalline silicon (c-Si) solar cells have been demonstrated when thin layers of intrinsic and doped hydrogenated amorphous silicon (a-Si:H) are used for passivation and carrier selectivity in a heterojunction device. One limitation of this device structure is the (parasitic) absorption in the front passivation/collection a-Si:H layers; another is the degradation of the a-Si:H-based passivation upon temperature, limiting the post-processes to approximately 200°C thus restricting the contacting possibilities and potential tandem device fabrication. To alleviate these two limitations, we explore the potential of amorphous silicon carbide (a-SiC:H), a widely studied material in use in standard a-Si:H thin-film solar cells, which is known for its wider bandgap, increased hydrogen content and stronger hydrogen bonding compared to a-Si:H. We study the surface passivation of solar-grade textured n-type c-Si wafers for symmetrical stacks of 10-nm-thick intrinsic a-SiC:H with various carbon content followed by either p-doped or n-doped a-Si:H (referred to as i/p or i/n stacks). For both doping types, passivation (assessed through carrier lifetime measurements) is degraded by increasing the carbon content in the intrinsic a-SiC:H layer. Yet, this hierarchy is reversed after annealing at 350°C or more due to drastic passivation improvements upon annealing when an a-SiC:H layer is used. After annealing at 350°C, lifetimes of 0.4 ms and 2.0 ms are reported for i/p and i/n stacks, respectively, when using an intrinsic a-SiC:H layer with approximately 10% of carbon (initial lifetimes of 0.3 ms and 0.1 ms, respectively, corresponding to a 30% and 20-fold increase, respectively). For stacks of pure a-Si:H material the lifetimes degrade from 1.2 ms and 2.0 ms for i/p and i/n stacks, respectively, to less than 0.1 ms and 1.1 ms (12-fold and 2-fold decrease, respectively). For complete solar cells using pure a-Si:H i/p and i/n stacks, the open-circuit voltage (Voc

  10. Characterization of silicon detectors through TCT at Delhi University

    NASA Astrophysics Data System (ADS)

    Jain, G.; Lalwani, K.; Dalal, R.; Bhardwaj, A.; Ranjan, K.

    2016-07-01

    Transient Current Technique (TCT) is one of the important methods to characterize silicon detectors and is based on the time evolution of the charge carriers generated when a laser light is shone on it. For red laser, charge is injected only to a small distance from the surface of the detector. For such a system, one of the charge carriers is collected faster than the readout time of the electronics and therefore, the effective signal at the electrodes is decided by the charge carriers that traverse throughout the active volume of the detector, giving insight to the electric field profile, drift velocity, effective doping density, etc. of the detector. Delhi University is actively involved in the silicon detector R&D and has recently installed a TCT setup consisting of a red laser system, a Faraday cage, a SMU (Source Measuring Unit), a bias tee, and an amplifier. Measurements on a few silicon pad detectors have been performed using the developed system, and the results have been found in good agreement with the CERN setup.

  11. EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors

    SciTech Connect

    Arteche, F.; Rivetta, C.; /SLAC

    2006-06-06

    The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

  12. Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators

    PubMed Central

    Vukovic, N.; Healy, N.; Suhailin, F. H.; Mehta, P.; Day, T. D.; Badding, J. V.; Peacock, A. C.

    2013-01-01

    Microresonators are ideal systems for probing nonlinear phenomena at low thresholds due to their small mode volumes and high quality (Q) factors. As such, they have found use both for fundamental studies of light-matter interactions as well as for applications in areas ranging from telecommunications to medicine. In particular, semiconductor-based resonators with large Kerr nonlinearities have great potential for high speed, low power all-optical processing. Here we present experiments to characterize the size of the Kerr induced resonance wavelength shifting in a hydrogenated amorphous silicon resonator and demonstrate its potential for ultrafast all-optical modulation and switching. Large wavelength shifts are observed for low pump powers due to the high nonlinearity of the amorphous silicon material and the strong mode confinement in the microcylindrical resonator. The threshold energy for switching is less than a picojoule, representing a significant step towards advantageous low power silicon-based photonic technologies. PMID:24097126

  13. Amorphous/crystalline silicon interface passivation: Ambient-temperature dependence and implications for solar cell performance

    DOE PAGESBeta

    Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; Ballif, Christophe; Wolf, Stefaan De

    2015-03-02

    Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devicesmore » with high Voc values at 25°C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.« less

  14. Amorphous/crystalline silicon interface passivation: Ambient-temperature dependence and implications for solar cell performance

    SciTech Connect

    Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; Ballif, Christophe; Wolf, Stefaan De

    2015-03-02

    Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devices with high Voc values at 25°C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.

  15. High Resolution Radial Distribution Function of Pure Amorphous Silicon

    SciTech Connect

    Laaziri, K.; Roorda, S.; Chicoine, M.; Kycia, S.; Robertson, J.L.; Wang, J.; Moss, S.C.

    1999-04-01

    The structure factor S(Q) of high purity amorphous Si membranes prepared by ion implantation was measured over an extended Q range (0.03{endash}55 {Angstrom} {sup {minus}1} ). Calculation of the first neighbor shell coordination (C{sub 1} ) as a function of maximum Q indicates that measurement of S(Q) out to at least 40 {Angstrom}{sup {minus}1} is required to reliably determine the radial distribution function (RDF). A 2{percent} change in C{sub 1} and subtle changes in the rest of the RDF were observed upon annealing, consistent with point defect removal. After annealing at 600thinsp{degree}C, C{sub 1}=3.88 , which would explain why amorphous Si is less dense than crystalline Si. {copyright} {ital 1999} {ital The American Physical Society}

  16. Sub-amorphous thermal conductivity in ultrathin crystalline silicon nanotubes.

    PubMed

    Wingert, Matthew C; Kwon, Soonshin; Hu, Ming; Poulikakos, Dimos; Xiang, Jie; Chen, Renkun

    2015-04-01

    Thermal transport behavior in nanostructures has become increasingly important for understanding and designing next generation electronic and energy devices. This has fueled vibrant research targeting both the causes and ability to induce extraordinary reductions of thermal conductivity in crystalline materials, which has predominantly been achieved by understanding that the phonon mean free path (MFP) is limited by the characteristic size of crystalline nanostructures, known as the boundary scattering or Casimir limit. Herein, by using a highly sensitive measurement system, we show that crystalline Si (c-Si) nanotubes (NTs) with shell thickness as thin as ∼5 nm exhibit a low thermal conductivity of ∼1.1 W m(-1) K(-1). Importantly, this value is lower than the apparent boundary scattering limit and is even about 30% lower than the measured value for amorphous Si (a-Si) NTs with similar geometries. This finding diverges from the prevailing general notion that amorphous materials represent the lower limit of thermal transport but can be explained by the strong elastic softening effect observed in the c-Si NTs, measured as a 6-fold reduction in Young's modulus compared to bulk Si and nearly half that of the a-Si NTs. These results illustrate the potent prospect of employing the elastic softening effect to engineer lower than amorphous, or subamorphous, thermal conductivity in ultrathin crystalline nanostructures.

  17. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    PubMed

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition. PMID:26716230

  18. A Comparison of Photo-Induced Hysteresis Between Hydrogenated Amorphous Silicon and Amorphous IGZO Thin-Film Transistors.

    PubMed

    Ha, Tae-Jun; Cho, Won-Ju; Chung, Hong-Bay; Koo, Sang-Mo

    2015-09-01

    We investigate photo-induced instability in thin-film transistors (TFTs) consisting of amorphous indium-gallium-zinc-oxide (a-IGZO) as active semiconducting layers by comparing with hydrogenated amorphous silicon (a-Si:H). An a-IGZO TFT exhibits a large hysteresis window in the illuminated measuring condition but no hysteresis window in the dark condition. On the contrary, a large hysteresis window measured in the dark condition in a-Si:H was not observed in the illuminated condition. Even though such materials possess the structure of amorphous phase, optical responses or photo instability in TFTs looks different from each other. Photo-induced hysteresis results from initially trapped charges at the interface between semiconductor and dielectric films or in the gate dielectric which possess absorption energy to interact with deep trap-states and affect the movement of Fermi energy level. In order to support our claim, we also perform CV characteristics in photo-induced hysteresis and demonstrate thermal-activated hysteresis. We believe that this work can provide important information to understand different material systems for optical engineering which includes charge transport and band transition.

  19. Reactive Infiltration of Silicon Melt Through Microporous Amorphous Carbon Preforms

    NASA Technical Reports Server (NTRS)

    Sangsuwan, P.; Tewari, S. N.; Gatica, J. E.; Singh, M.; Dickerson, R.

    1999-01-01

    The kinetics of unidirectional capillary infiltration of silicon melt into microporous carbon preforms have been investigated as a function of the pore morphology and melt temperature. The infiltrated specimens showed alternating bands of dark and bright regions, which corresponded to the unreacted free carbon and free silicon regions, respectively. The decrease in the infiltration front velocity for increasing infiltration distances, is in qualitative agreement with the closed-form solution of capillarity driven fluid flow through constant cross section cylindrical pores. However, drastic changes in the thermal response and infiltration front morphologies were observed for minute differences in the preforms microstructure. This suggests the need for a dynamic percolation model that would account for the exothermic nature of the silicon-carbon chemical reaction and the associated pore closing phenomenon.

  20. The Silicon Detector (SiD) And Linear Collider Detector R&D in Asia And North America

    SciTech Connect

    Brau, J.E.; Breidenbach, M.; Fujii, Y.; /KEK, Tsukuba

    2005-08-11

    In Asia and North America research and development on a linear collider detector has followed complementary paths to that in Europe. Among the developments in the US has been the conception of a detector built around silicon tracking, which relies heavily on a pixel (CCD) vertex detector, and employs a silicon tungsten calorimeter. Since this detector is quite different from the TESLA detector, we describe it here, along with some of the sub-system specific R&D in these regions.

  1. The development of a silicon multiplicity detector system

    SciTech Connect

    Beuttenmuller, R.H.; Kraner, H.W.; Lissauer, D.; Makowiecki, D.; Polychronakos, V.; Radeka, V.; Sondericker, J.; Stephani, D.; Barrette, J.; Hall, J.; Mark, S.K.; Pruneau, C.A.; Wolfe, D.; Borenstein, S.R.

    1991-12-31

    The physics program and the design criteria for a Silicon Pad Detector at RHIC are reviewed. An end cap double sided readout detector configuration for RHIC is presented. Its performance as an on-line and off-line centrality tagging device is studied by means of simulations with Fritiof as the event generator. The results of an in-beam test of a prototype double-sided Si-detector are presented. Good signal-to-noise ratio are obtained with front junction and the resistive back side readout. Good separation between one and two minimum-ionizing particle signals is achieved.

  2. A 16 x 16 element extrinsic silicon detector array

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two bismuth-doped silicon accumulation-mode charge-injection device (AMCID) infrared detector arrays are studied. The geometry and composition of the arrays, and a description of the cold and warm electronics components of the system are described. Instructions for setting up and operating the array system, plus results of a functional test, are included.

  3. Advanced Silicon Detectors for High Energy Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Ricker, George

    2005-01-01

    A viewgraph presentation on the development of silicon detectors for high energy astrophysics missions is presented. The topics include: 1) Background: Motivation for Event-Driven CCD; 2) Report of Grant Activity; 3) Packaged EDCCD; 4) Measured X-ray Energy Resolution of the Gen1 EDCCDs Operated in "Conventional Mode"; and 5) EDCCD Gen 1.5-Lot 1 Planning.

  4. Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon

    SciTech Connect

    Astakhov, Oleksandr; Carius, Reinhard; Finger, Friedhelm; Petrusenko, Yuri; Borysenko, Valery; Barankov, Dmytro

    2009-03-01

    The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparing intrinsic amorphous and microcrystalline silicon, it is found that the relationship between defect density and photoconductivity is different in both undoped materials, while a similar strong influence of the position of the Fermi level on photoconductivity via the charge carrier lifetime is found in the doped materials. The latter allows a quantitative determination of the value of the transport gap energy in microcrystalline silicon. The photoconductivity in intrinsic microcrystalline silicon is, on one hand, considerably less affected by the bombardment but, on the other hand, does not generally recover with annealing of the defects and is independent from the spin density which itself can be annealed back to the as-deposited level. For amorphous silicon and material prepared close to the crystalline growth regime, the results for nonequilibrium transport fit perfectly to a recombination model based on direct capture into neutral dangling bonds over a wide range of defect densities. For the heterogeneous microcrystalline silicon, this model fails completely. The application of photoconductivity spectroscopy in the constant photocurrent mode (CPM) is explored for the entire structure composition range over a wide variation in defect densities. For amorphous silicon previously reported linear correlation between the spin density and the subgap absorption is confirmed for defect densities below 10{sup 18} cm{sup -3}. Beyond this defect level, a sublinear relation is found i

  5. Porous Silicon-Based Quantum Dot Broad Spectrum Radiation Detector.

    PubMed

    Urdaneta, M; Stepanov, P; Weinberg, I N; Pala, I R; Brock, S

    2011-01-11

    Silicon is a convenient and inexpensive platform for radiation detection, but has low stopping power for x-rays and gamma-rays with high energy (e.g., 100 keV, as used in computed tomography and digital radiography, or 1 MeV, as desired for detection of nuclear materials). We have effectively increased the stopping power of silicon detectors by producing a layer of porous or micro-machined silicon, and infusing this layer with semiconductor quantum dots made of electron-dense materials. Results of prototype detectors show sensitivity to infrared, visible light, and x-rays, with dark current of less than 1 nA/mm(2). PMID:24432047

  6. Portable triple silicon detector telescope spectrometer for skin dosimetry

    NASA Astrophysics Data System (ADS)

    Helt-Hansen, J.; Larsen, H. E.; Christensen, P.

    1999-12-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50μm/150μm/7000μm covered by a 2μm thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEWTM software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in mixed beta/photon radiation fields. It also describes the main features of the digital signal-processing electronics.

  7. Directed dewetting of amorphous silicon film by a donut-shaped laser pulse

    NASA Astrophysics Data System (ADS)

    Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Cheng; Sakellari, Ioanna; Raman, Rajesh N.; Matthews, Manyalibo J.; Elhadj, Selim; Grigoropoulos, Costas P.

    2015-04-01

    Irradiation of a thin film with a beam-shaped laser is proposed to achieve site-selectively controlled dewetting of the film into nanoscale structures. As a proof of concept, the laser-directed dewetting of an amorphous silicon thin film on a glass substrate is demonstrated using a donut-shaped laser beam. Upon irradiation of a single laser pulse, the silicon film melts and dewets on the substrate surface. The irradiation with the donut beam induces an unconventional lateral temperature profile in the film, leading to thermocapillary-induced transport of the molten silicon to the center of the beam spot. Upon solidification, the ultrathin amorphous silicon film is transformed to a crystalline silicon nanodome of increased height. This morphological change enables further dimensional reduction of the nanodome as well as removal of the surrounding film material by isotropic silicon etching. These results suggest that laser-based dewetting of thin films can be an effective way for scalable manufacturing of patterned nanostructures.

  8. Calibration of an amorphous-silicon flat panel portal imager for exit-beam dosimetry

    SciTech Connect

    Chen, Josephine; Chuang, Cynthia F.; Morin, Olivier; Aubin, Michele; Pouliot, Jean

    2006-03-15

    Amorphous-silicon flat panel detectors are currently used to acquire digital portal images with excellent image quality for patient alignment before external beam radiation therapy. As a first step towards interpreting portal images acquired during treatment in terms of the actual dose delivered to the patient, a calibration method is developed to convert flat panel portal images to the equivalent water dose deposited in the detector plane and at a depth of 1.5 cm. The method is based on empirical convolution models of dose deposition in the flat panel detector and in water. A series of calibration experiments comparing the response of the flat panel imager and ion chamber measurements of dose in water determines the model parameters. Kernels derived from field size measurements account for the differences in the production and detection of scattered radiation in the two systems. The dissimilar response as a function of beam energy spectrum is characterized from measurements performed at various off-axis positions and for increasing attenuator thickness in the beam. The flat panel pixel inhomogeneity is corrected by comparing a large open field image with profiles measured in water. To verify the accuracy of the calibration method, calibrated flat panel profiles were compared with measured dose profiles for fields delivered through solid water slabs, a solid water phantom containing an air cavity, and an anthropomorphic head phantom. Open rectangular fields of various sizes and locations as well as a multileaf collimator-shaped field were delivered. For all but the smallest field centered about the central axis, the calibrated flat panel profiles matched the measured dose profiles with little or no systematic deviation and approximately 3% (two standard deviations) accuracy for the in-field region. The calibrated flat panel profiles for fields located off the central axis showed a small -1.7% systematic deviation from the measured profiles for the in-field region

  9. Megavoltage image contrast with low-atomic number target materials and amorphous silicon electronic portal imagers

    NASA Astrophysics Data System (ADS)

    Orton, E. J.; Robar, J. L.

    2009-03-01

    Low-atomic number (Z) targets have been shown to improve contrast in megavoltage (MV) images when using film-screen detection systems. This research aims to quantify the effect of low-Z targets on MV image contrast using an amorphous silicon electronic portal image detector (a-Si EPID) through both experimental measurement and Monte Carlo (MC) simulation. Experimental beams were produced with the linac running in the 6 MeV electron mode and with a 1.0 cm aluminum (Al, Z = 13) target replacing flattening filtration in the carousel, (6 MeV/Al). A 2100EX Varian linac equipped with an aS500 EPID was used with the QC3 MV phantom for the majority of contrast measurements. The BEAMnrc/EGSnrc MC package was used to build a model of the full imaging system including beam generation (linac head), the a-Si detector and the contrast phantom. The model accurately reproduces contrast measurements to within 2.5% for both the standard 6 MV therapy beam and the 6 MeV/Al beam. The contrast advantage of 6 MeV/Al over 6 MV, as quantified with the QC3 phantom, ranged from a factor increase of 1.6 ± 0.1 to 2.8 ± 0.2. Only a modest improvement in contrast was seen when the incident electron energy was reduced to 4 MeV (up to factor of 1.2 ± 0.1 over 6 MeV/Al) or with removal of the copper build-up layer in the detector, (up to factor of 1.2 ± 0.1 over 6 MeV/Al). Further decreasing the target Z, to beryllium (Be, Z = 4), at 4 MeV showed no significant improvement over 4 MeV/Al. Experimentally, the contrast advantage of 6 MeV/Al over 6 MV was found to decrease with increasing patient thickness, as can be expected due to selective attenuation of low-energy photons. At head and neck-like thicknesses, the low-Z advantage is a factor increase of 1.7 ± 0.1.

  10. A new detector concept for silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Sadigov, A.; Ahmadov, F.; Ahmadov, G.; Ariffin, A.; Khorev, S.; Sadygov, Z.; Suleymanov, S.; Zerrouk, F.; Madatov, R.

    2016-07-01

    A new design and principle of operation of silicon photomultipliers are presented. The new design comprises a semiconductor substrate and an array of independent micro-phototransistors formed on the substrate. Each micro-phototransistor comprises a photosensitive base operating in Geiger mode and an individual micro-emitter covering a small part of the base layer, thereby creating, together with this latter, a micro-transistor. Both micro-emitters and photosensitive base layers are connected with two respective independent metal grids via their individual micro-resistors. The total value of signal gain in the proposed silicon photomultiplier is a result of both the avalanche gain in the base layer and the corresponding gain in the micro-transistor. The main goals of the new design are: significantly lower both optical crosstalk and after-pulse effects at high signal amplification, improve speed of single photoelectron pulse formation, and significantly reduce the device capacitance.

  11. Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes.

    PubMed

    Cui, Li-Feng; Ruffo, Riccardo; Chan, Candace K; Peng, Hailin; Cui, Yi

    2009-01-01

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon's large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline-amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li(+) ions. We demonstrate here that these core-shell nanowires have high charge storage capacity ( approximately 1000 mAh/g, 3 times of carbon) with approximately 90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, approximately 20 times of carbon at 1 h rate).

  12. Ultrasmooth growth of amorphous silicon films through ion-induced long-range surface correlations

    SciTech Connect

    Redondo-Cubero, A.; Gago, R.; Vazquez, L.

    2011-01-03

    Ultrasmooth amorphous silicon films with a constant roughness below 0.2 nm were produced for film thickness up to {approx}1 {mu}m by magnetron sputtering under negative voltage substrate biasing (100-400 V). In contrast, under unbiased conditions the roughness of the resulting mounded films increased linearly with growth time due to shadowing effects. A detailed analysis of the amorphous film growth dynamics proves that the bias-induced ultrasmoothness is produced by a downhill mass transport process that leads to an extreme surface leveling inducing surface height correlations up to lateral distances close to 0.5 {mu}m.

  13. Absence of amorphous phase in high power femtosecond laser-ablated silicon

    SciTech Connect

    Rogers, Matthew S.; Grigoropoulos, Costas P.; Minor, Andrew M.; Mao, Samuel S.

    2009-01-05

    As femtosecond lasers emerge as viable tools for advanced microscale materials processing, it becomes increasingly important to understand the characteristics of materials resulting from femtosecond laser microablation or micromachining. We conducted transmission electron microscopy experiments to investigate crater structures in silicon produced by repetitive high power femtosecond laser ablation. Comparable experiments of nanosecond laser ablation of silicon were also performed. We found that an amorphous silicon layer that is typically produced in nanosecond laser ablation is absent when the material is irradiated by high power femtosecond laser pulses. Instead, only a defective single crystalline layer was observed in the high power femtosecond laser-ablated silicon crater. Possible mechanisms underlying the formation of the defective single crystalline phase are discussed.

  14. High energy density amorphous silicon anodes for lithium ion batteries deposited by DC sputtering

    NASA Astrophysics Data System (ADS)

    Farmakis, Filippos; Elmasides, Costas; Fanz, Patrik; Hagen, Markus; Georgoulas, Nikolaos

    2015-10-01

    As more and more applications require high energy density electrochemical storage systems that deliver more than 200 Wh/kg, Lithium-ion batteries with silicon-based anodes provide promising electrochemical properties especially high specific capacity. In this paper, we present micro-grain structured silicon deposited by DC sputtering on special copper foil that serves as current collector. It is demonstrated that high-density silicon anodes are obtained with more than 2000 mAh g-1 and 2.0 mAh cm-2 that can be considered as a commercial value. In addition, irreversible capacity during the first galvanostatic cycle can be lower than 20% for such anodes. Finally, it is found that there exists a clear correlation between the grain-size and the texture of the amorphous silicon to the electrochemical performance of half-cells.

  15. Silicon as an unconventional detector in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Clinthorne, Neal; Brzezinski, Karol; Chesi, Enrico; Cochran, Eric; Grkovski, Milan; Grošičar, Borut; Honscheid, Klaus; Huh, Sam; Kagan, Harris; Lacasta, Carlos; Linhart, Vladimir; Mikuž, Marko; Smith, D. Shane; Stankova, Vera; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2013-01-01

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving ˜5 mm FWHM spatial resolution in human studies and ˜1 mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET "magnifying glass" configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of 22Na having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a 18F-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration.

  16. Innovative Characterization of Amorphous and Thin-Film Silicon for Improved Module Performance: 1 February 2005 - 31 July 2008

    SciTech Connect

    Taylor, P. C.; Williams, G. A.

    2009-09-01

    Electron spin resonance and nuclear magnetic resonance was done on amorphous silicon samples (modules with a-Si:H and a-SixGe1-x:H intrinsic layer) to study defects that contribute to Staebler-Wronski effect.

  17. Plasma-initiated rehydrogenation of amorphous silicon to increase the temperature processing window of silicon heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Shi, Jianwei; Boccard, Mathieu; Holman, Zachary

    2016-07-01

    The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300 °C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline silicon wafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450 °C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450 °C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltage of over 710 mV and an efficiency of over 19%.

  18. Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices

    NASA Astrophysics Data System (ADS)

    Kamei, Toshihiro; Wada, Takehito

    2006-09-01

    A 5.8-μm-thick SiO2/Ta2O5 multilayer optical interference filter was monolithically integrated and micromachined on a hydrogenated amorphous Si (a-Si :H) pin photodiode to form a fluorescence detector. A microfluidic electrophoresis device was mounted on a detection platform comprising a fluorescence-collecting half-ball lens and the micromachined fluorescence detector. The central aperture of the fluorescence detector allows semiconductor laser light to pass up through the detector and to irradiate an electrophoretic separation channel. The limit of detection is as low as 7nM of the fluorescein solution, and high-speed DNA fragment sizing can be achieved with high separation efficiency. The micromachined a-Si :H fluorescence detector exhibits high sensitivity for practical fluorescent labeling dyes as well as integration flexibility on various substances, making it ideal for application to portable microfluidic bioanalysis devices.

  19. Silicon sensors for HL-LHC tracking detectors

    NASA Astrophysics Data System (ADS)

    Mandić, Igor

    2013-12-01

    It is foreseen to significantly increase the luminosity of the LHC by upgrading towards the HL-LHC (High Luminosity LHC) in 2021 in order to harvest the maximum physics potential. After the upgrade, unprecedented levels of radiation will require the experiments to upgrade their tracking detectors to withstand hadron fluences equivalent to over 1016 1 MeV neutrons per cm2. Within the RD50 Collaboration, a massive R&D program is underway to develop silicon sensors with sufficient radiation tolerance. Recent defect characterization and Edge-TCT measurement results improved the understanding of irradiated detector performance. RD50 results show that sensors with n-side readout, easiest made with p-type silicon, have a superior radiation hardness due to the high overlap of electric and weighting field after irradiation, larger contribution of electrons to the total signal and finally due to charge multiplication which may enhance the collected charge at high bias voltages in this type of detector. A further area of activity is the development of advanced sensor types like 3D silicon and thin pixel detectors designed for the extreme radiation levels expected for the inner layers.

  20. Inelastic electron scattering in amorphous silicon nitride and aluminum oxide with multiple-scattering corrections

    NASA Astrophysics Data System (ADS)

    Livins, Peteris; Aton, T.; Schnatterly, S. E.

    1988-09-01

    Electron-energy-loss measurements for an amorphous chemical-vapor-deposited silicon nitride film and evaporated sapphire in the broad energy range 1-200 eV are investigated. A method, not requiring the zero-loss peak, to remove the multiple scattering is discussed, applied, and the optical constants obtained. An Elliot-type model used with aluminum oxide gives a valence-exciton binding energy of 1.36+/-0.2 eV with a band gap of 9.8+/-0.2 eV. The unexpected strength of the nitrogen 2s transition is noted in silicon nitride.

  1. Solid-phase epitaxy of silicon amorphized by implantation of the alkali elements rubidium and cesium

    SciTech Connect

    Maier, R.; Haeublein, V.; Ryssel, H.; Voellm, H.; Feili, D.; Seidel, H.; Frey, L.

    2012-11-06

    The redistribution of implanted Rb and Cs profiles in amorphous silicon during solid-phase epitaxial recrystallization has been investigated by Rutherford backscattering spectroscopy and secondary ion mass spectroscopy. For the implantation dose used in these experiments, the alkali atoms segregate at the a-Si/c-Si interface during annealing resulting in concentration peaks near the interface. In this way, the alkali atoms are moved towards the surface. Rutherford backscattering spectroscopy in ion channeling configuration was performed to measure average recrystallization rates of the amorphous silicon layers. Preliminary studies on the influence of the alkali atoms on the solid-phase epitaxial regrowth rate reveal a strong retardation compared to the intrinsic recrystallization rate.

  2. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    SciTech Connect

    Yan, Wensheng Gu, Min; Tao, Zhikuo; Ong, Thiam Min Brian

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer.

  3. Carbon nanotube-amorphous silicon hybrid solar cell with improved conversion efficiency

    NASA Astrophysics Data System (ADS)

    Funde, Adinath M.; Nasibulin, Albert G.; Gufran Syed, Hashmi; Anisimov, Anton S.; Tsapenko, Alexey; Lund, Peter; Santos, J. D.; Torres, I.; Gandía, J. J.; Cárabe, J.; Rozenberg, A. D.; Levitsky, Igor A.

    2016-05-01

    We report a hybrid solar cell based on single walled carbon nanotubes (SWNTs) interfaced with amorphous silicon (a-Si). The high quality carbon nanotube network was dry transferred onto intrinsic a-Si forming Schottky junction for metallic SWNT bundles and heterojunctions for semiconducting SWNT bundles. The nanotube chemical doping and a-Si surface treatment minimized the hysteresis effect in current-voltage characteristics allowing an increase in the conversion efficiency to 1.5% under an air mass 1.5 solar spectrum simulator. We demonstrated that the thin SWNT film is able to replace a simultaneously p-doped a-Si layer and transparent conductive electrode in conventional amorphous silicon thin film photovoltaics.

  4. Efficient Crystalline Si Solar Cell with Amorphous/Crystalline Silicon Heterojunction as Back Contact: Preprint

    SciTech Connect

    Nemeth, B.; Wang, Q.; Shan, W.

    2012-06-01

    We study an amorphous/crystalline silicon heterojunction (Si HJ) as a back contact in industrial standard p-type five-inch pseudo-square wafer to replace Al back surface field (BSF) contact. The best efficiency in this study is over 17% with open-circuit (Voc) of 0.623 V, which is very similar to the control cell with Al BSF. We found that Voc has not been improved with the heterojunction structure in the back. The typical minority carrier lifetime of these wafers is on the order of 10 us. We also found that the doping levels of p-layer affect the FF due to conductivity and band gap shifting, and an optimized layer is identified. We conclude that an amorphous/crystalline silicon heterojunction can be a very promising structure to replace Al BSF back contact.

  5. Nanoscale solely amorphous layer in silicon wafers induced by a newly developed diamond wheel

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Guo, Liangchao; Cui, Junfeng; Wang, Bo; Kang, Renke; Guo, Dongming

    2016-10-01

    Nanoscale solely amorphous layer is achieved in silicon (Si) wafers, using a developed diamond wheel with ceria, which is confirmed by high resolution transmission electron microscopy (HRTEM). This is different from previous reports of ultraprecision grinding, nanoindentation and nanoscratch, in which an amorphous layer at the top, followed by a crystalline damaged layer beneath. The thicknesses of amorphous layer are 43 and 48 nm at infeed rates of 8 and 15 μm/min, respectively, which is verified using HRTEM. Diamond-cubic Si-I phase is verified in Si wafers using selected area electron diffraction patterns, indicating the absence of high pressure phases. Ceria plays an important role in the diamond wheel for achieving ultrasmooth and bright surfaces using ultraprecision grinding.

  6. Nanoscale solely amorphous layer in silicon wafers induced by a newly developed diamond wheel

    PubMed Central

    Zhang, Zhenyu; Guo, Liangchao; Cui, Junfeng; Wang, Bo; Kang, Renke; Guo, Dongming

    2016-01-01

    Nanoscale solely amorphous layer is achieved in silicon (Si) wafers, using a developed diamond wheel with ceria, which is confirmed by high resolution transmission electron microscopy (HRTEM). This is different from previous reports of ultraprecision grinding, nanoindentation and nanoscratch, in which an amorphous layer at the top, followed by a crystalline damaged layer beneath. The thicknesses of amorphous layer are 43 and 48 nm at infeed rates of 8 and 15 μm/min, respectively, which is verified using HRTEM. Diamond-cubic Si-I phase is verified in Si wafers using selected area electron diffraction patterns, indicating the absence of high pressure phases. Ceria plays an important role in the diamond wheel for achieving ultrasmooth and bright surfaces using ultraprecision grinding. PMID:27734934

  7. A universal feature in the optical absorption spectrum associated with hydrogenated amorphous silicon: A dimensionless joint density of states analysis

    NASA Astrophysics Data System (ADS)

    Thevaril, Jasmin J.; O'Leary, Stephen K.

    2016-10-01

    Using a dimensionless joint density of states formalism for the quantitative characterization of the optical response associated with hydrogenated amorphous silicon, a critical comparative analysis of a large number of different optical absorption data sets is considered. When these data sets are cast into this dimensionless framework, we observe a trend that is almost completely coincident for all of the data sets considered. This suggests that there is a universal feature associated with the optical absorption spectrum of hydrogenated amorphous silicon.

  8. Scan equalization digital radiography (SEDR) implemented with an amorphous Selenium flat-panel detector: initial experience

    PubMed Central

    Liu, Xinming; Lai, Chao-Jen; Chen, Lingyun; Han, Tao; Zhong, Yuncheng; Shen, Youtao; Wang, Tianpeng; Shaw, Chris C.

    2010-01-01

    It is well recognized in projection radiography that low-contrast detectability suffered in heavily attenuating regions due to excessively low x-ray fluence to the image receptor and higher noise levels. Exposure equalization can improve image quality by increasing the x-ray exposure to heavily attenuating regions, resulting in a more uniform distribution of exposure to the detector. Image quality is also expected to be improved by using the slot-scan geometry to reject scattered radiation effectively without degrading primary x-rays. This paper describes the design of prototype scan equalization digital radiography (SEDR) system implemented with an amorphous silicon (a-Si) thin-film transistor (TFT) array based flat-panel detector. With this system, the slot-scan geometry with the alternate line erasure and readout (ALER) technique was used to achieve scatter rejection. A seven-segment beam height modulator assembly was mounted onto the fore-collimator to regulate exposure regionally for chest radiography. The beam modulator assembly, consisting of micro linear motors, lead screw cartridge with lead beam blocks attached, position feedback sensors, and motor driver circuitry, has been tested and found to have an acceptable response for exposure equalization in chest radiography. An anthropomorphic chest phantom was imaged in the posterior-anterior (PA) view under clinical conditions. Scatter component, primary x-rays, scatter-to-primary ratios (SPRs), and primary signal-to-noise ratios (PSNRs) were measured in the SEDR images to evaluate the rejection and redistribution of scattered radiation, and compared with those for conventional full-field imaging with and without anti-scatter grid methods. SPR reduction ratios (SPRRRs, defined as the differences between the non-grid full-field SPRs and the reduced SPRs divided by the former) yielded approximately 59% for the full-field imaging with grid and 82% for SEDR technique in the lungs; and 77% for the full

  9. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    NASA Astrophysics Data System (ADS)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach-Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  10. The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots.

    PubMed

    Askari, Sadegh; Svrcek, Vladmir; Maguire, Paul; Mariotti, Davide

    2015-12-22

    Hydrogenation in amorphous silicon quantum dots (QDs) has a dramatic impact on the corresponding optical properties and band energy structure, leading to a quantum-confined composite material with unique characteristics. The synthesis of a-Si:H QDs is demonstrated with an atmospheric-pressure plasma process, which allows for accurate control of a highly chemically reactive non-equilibrium environment with temperatures well below the crystallization temperature of Si QDs.

  11. Highly Efficient Hybrid Polymer and Amorphous Silicon Multijunction Solar Cells with Effective Optical Management.

    PubMed

    Tan, Hairen; Furlan, Alice; Li, Weiwei; Arapov, Kirill; Santbergen, Rudi; Wienk, Martijn M; Zeman, Miro; Smets, Arno H M; Janssen, René A J

    2016-03-16

    Highly efficient hybrid multijunction solar cells are constructed with a wide-bandgap amorphous silicon for the front subcell and a low-bandgap polymer for the back subcell. Power conversion efficiencies of 11.6% and 13.2% are achieved in tandem and triple-junction configurations, respectively. The high efficiencies are enabled by deploying effective optical management and by using photoactive materials with complementary absorption. PMID:26780260

  12. Estimation of the adequacy of the fractal model of the atomic structure of amorphous silicon

    SciTech Connect

    Golodenko, A. B.

    2010-01-15

    A method of constructing a fractal model of noncrystalline solid substance is considered using the example of amorphous silicon. In systems of iteration functions, the physical meaning of dihedral and valence angles of the elementary crystallographic cell is assigned to arguments. The model adequacy is estimated by the radial distribution function, the atomic structure density, the distribution of valence and dihedral angles, and the density of dangling interatomic bonds.

  13. Improved stability of hydrogenated amorphous-silicon photosensitivity by ultraviolet illumination

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.; Xu, Yueqin; Heck, Stephan; Gao, Wei

    2002-10-01

    Postdeposition ultraviolet (UV) illumination, followed by etching, improves the stability of hydrogenated amorphous-silicon thin films against subsequent light-induced degradation of photosensitivity. The etch removes a heavily damaged layer extending about 100 nm below the surface, but beneath the damage, the UV has improved the stability of 200 to 300 nm of bulk film. The open-circuit voltage of Schottky solar cells is also stabilized by UV-etch treatment. Possible mechanisms are discussed.

  14. Factors affecting light-induced excess conductivity in doping-modulated amorphous silicon superlattices

    SciTech Connect

    Su, F.; Levine, S.; Vanier, P.E.; Kampas, F.J.

    1986-03-15

    Doping-modulated amorphous silicon semiconducting films which exhibit the phenomenon of light-induced excess conductivity (LEC) have been made by silane glow discharge in a single-chamber system. This phenomenon shows a strong dependence on substrate temperature and process gas composition. The LEC effect decreases for very small and very large layer thickness. There also seems to be an optimum defect density for producing large effects.

  15. Magneto-optical switch with amorphous silicon waveguides on magneto-optical garnet

    NASA Astrophysics Data System (ADS)

    Ishida, Eiichi; Miura, Kengo; Shoji, Yuya; Mizumoto, Tetsuya; Nishiyama, Nobuhiko; Arai, Shigehisa

    2016-08-01

    We fabricated a magneto-optical (MO) switch with a hydrogenated amorphous silicon waveguide on an MO garnet. The switch is composed of a 2 × 2 Mach–Zehnder interferometer (MZI). The switch state is controlled by an MO phase shift through a magnetic field generated by a current flowing in an electrode located on the MZI. The switching operation was successfully demonstrated with an extinction ratio of 11.7 dB at a wavelength of 1550 nm.

  16. Failure analysis of thin-film amorphous-silicon solar-cell modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.

    1984-01-01

    A failure analysis of thin film amorphous silicon solar cell modules was conducted. The purpose of this analysis is to provide information and data for appropriate corrective action that could result in improvements in product quality and reliability. Existing techniques were expanded in order to evaluate and characterize degradational performance of a-Si solar cells. Microscopic and macroscopic defects and flaws that significantly contribute to performance degradation were investigated.

  17. Tandem solar cells made from amorphous silicon and polymer bulk heterojunction sub-cells.

    PubMed

    Park, Sung Heum; Shin, Insoo; Kim, Kwang Ho; Street, Robert; Roy, Anshuman; Heeger, Alan J

    2015-01-14

    A tandem solar cell based on a combination of an amorphous silicon (a-Si) and polymer solar cell (PSC) is demonstrated. As these tandem devices can be readily fabricated by low-cost methods, they require only a minor increase in the total manufacturing cost. Therefore, a combination of a-Si and PSC provides a compelling solution to reduce the cost of electricity produced by photovoltaics.

  18. Tandem solar cells made from amorphous silicon and polymer bulk heterojunction sub-cells.

    PubMed

    Park, Sung Heum; Shin, Insoo; Kim, Kwang Ho; Street, Robert; Roy, Anshuman; Heeger, Alan J

    2015-01-14

    A tandem solar cell based on a combination of an amorphous silicon (a-Si) and polymer solar cell (PSC) is demonstrated. As these tandem devices can be readily fabricated by low-cost methods, they require only a minor increase in the total manufacturing cost. Therefore, a combination of a-Si and PSC provides a compelling solution to reduce the cost of electricity produced by photovoltaics. PMID:25410395

  19. Photocapacitance and hole drift mobility measurements in hydrogenated amorphous silicon (a-Si:H)

    SciTech Connect

    Nurdjaja, I.; Schiff, E.A.

    1997-07-01

    The authors present measurements of the photocapacitance in hydrogenated amorphous silicon (a-Si:H) Schottky barrier diodes under reverse bias. A calculation relating photocapacitance to hole drift mobility measurements is also presented; the calculation incorporates the prominent dispersion effect for holes in a-Si:H usually attributed to valence bandtail trapping. The calculation accounts quantitatively for the magnitude and voltage-dependence of the photocapacitance.

  20. Fluctuating defect density probed with noise spectroscopy in hydrogenated amorphous silicon

    SciTech Connect

    Verleg, P.A.W.E.; Uca, O.; Dijkhuis, J.I.

    1997-07-01

    Resistance fluctuations have been studied in hydrogenated amorphous silicon in the temperature range between 300 K and 450 K. The primary noise source has a power spectrum of approximately 1/f and is ascribed to hydrogen motion. Hopping of weakly bound hydrogen is thermally activated at such low temperatures with an average activation energy of 0.85 eV. The attempt rate amounts to 7 {center_dot} 10{sup 12} s{sup {minus}1}.

  1. High electric field effects on the thermal generation in hydrogenated amorphous silicon

    SciTech Connect

    Ilie, A.; Equer, B.

    1997-07-01

    The authors have studied the electric field dependence of the electron-hole thermal generation process in hydrogenated amorphous silicon. A model was developed which takes into account the Poole-Frenkel effect and the thermally assisted tunneling. In order to explain the experimental results it was necessary to consider a strong electron-lattice interaction describing the carrier tunneling mechanism. Deep defects relaxation is also discussed.

  2. Method of controllong the deposition of hydrogenated amorphous silicon and apparatus therefor

    DOEpatents

    Hanak, Joseph J.

    1985-06-25

    An improved method and apparatus for the controlled deposition of a layer of hydrogenated amorphous silicon on a substrate. Means is provided for the illumination of the coated surface of the substrate and measurement of the resulting photovoltage at the outermost layer of the coating. Means is further provided for admixing amounts of p type and n type dopants to the reactant gas in response to the measured photovoltage to achieve a desired level and type of doping of the deposited layer.

  3. Beam tests of ATLAS SCT silicon strip detector modules

    SciTech Connect

    Campabadal, F.; Fleta, C.; Key, M.; Lozano, M.; Martinez, C.; Pellegrini, G.; Rafi, J.M.; Ullan, M.; Johansen, L.; Pommeresche, B.; Stugu, B.; Ciocio, A.; Fadeyev, V.; Gilchriese, M.; Haber, C.; Siegrist,J.; Spieler, H.; Vu, C.; Bell, P.J.; Charlton, D.G.; Dowell, J.D.; Gallop, B.J.; Homer, R.J.; Jovanovic, P.; Mahout, G.; McMahon, T.J.; Wilson, J.A.; Barr, A.J.; Carter, J.R.; Fromant, B.P.; Goodrick, M.J.; Hill, J.C.; Lester, C.G.; Palmer, M.J.; Parker, M.A.; Robinson, D.; Sabetfakhri, A.; Shaw, R.J.; Anghinolfi, F.; Chesi, E.; Chouridou, S.; Fortin, R.; Grosse-Knetter, M.; Gruwe, M.; Ferrari, P.; Jarron, P.; Kaplon, J.; Macpherson, A.; Niinikoski, T.; Pernegger, H.; Roe, S.; Rudge, A.; Ruggiero, G.; Wallny, R.; Weilhammer, P.; Bialas, W.; Dabrowski, W.; Grybos, P.; Koperny, S.; Blocki, J.; Bruckman, P.; Gadomski, S.; Godlewski, J.; Gornicki, E.; Malecki, P.; Moszczynski, A.; Stanecka, E.; Stodulski, M.; Szczygiel, R.; Turala, M.; Wolter, M.; Ahmad, A.; Benes, J.; Carpentieri, C.; Feld, L.; Ketterer, C.; Ludwig,J.; Meinhardt, J.; Runge, K.; Mikulec, B.; Mangin-Brinet, M.; D'Onofrio,M.; Donega, M.; Moed, S.; Sfyrla, A.; Ferrere, D.; Clark, A.G.; Perrin,E.; Weber, M.; Bates, R.L.; Cheplakov, A.; Saxon, D.H.; O'Shea, V.; Smith, K.M.; Iwata, Y.; Ohsugi, T.; Kohriki, T.; Kondo, T.; Terada, S.; Ujiie, N.; Ikegami, Y.; Unno, Y.; Takashima, R.; Brodbeck, T.; Chilingarov, A.; Hughes, G.; Ratoff, P.; Sloan, T.; Allport, P.P.; Casse,G.-L.; Greenall, A.; Jackson, J.N.; Jones, T.J.; King, B.T.; Maxfield,S.J.; Smith, N.A.; Sutcliffe, P.; Vossebeld, J.; Beck, G.A.; Carter,A.A.; Lloyd, S.L.; Martin, A.J.; Morris, J.; Morin, J.; Nagai, K.; Pritchard, T.W.; Anderson, B.E.; Butterworth, J.M.; Fraser, T.J.; Jones,T.W.; Lane, J.B.; Postranecky, M.; Warren, M.R.M.; Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.; Duerdoth, I.P.; Freestone, J.; Foster, J.M.; Ibbotson, M.; Loebinger, F.K.; Pater, J.; Snow, S.W.; Thompson, R.J.; Atkinson, T.M.; et al.

    2004-08-18

    The design and technology of the silicon strip detector modules for the Semiconductor Tracker (SCT) of the ATLAS experiment have been finalized in the last several years. Integral to this process has been the measurement and verification of the tracking performance of the different module types in test beams at the CERN SPS and the KEK PS. Tests have been performed to explore the module performance under various operating conditions including detector bias voltage, magnetic field, incidence angle, and state of irradiation up to 3 1014 protons per square centimeter. A particular emphasis has been the understanding of the operational consequences of the binary readout scheme.

  4. Detectors based on silicon photomultiplier arrays for medical imaging applications

    SciTech Connect

    Llosa, G.; Barrio, J.; Cabello, J.; Lacasta, C.; Oliver, J. F.; Stankova, V.; Solaz, C.

    2011-07-01

    Silicon photomultipliers (SiPMs) have experienced a fast development and are now employed in different research fields. The availability of 2D arrays that provide information of the interaction position in the detector has had a high interest for medical imaging. Continuous crystals combined with segmented photodetectors can provide higher efficiency than pixellated crystals and very high spatial resolution. The IRIS group at IFIC is working on the development of detector heads based on continuous crystals coupled to SiPM arrays for different applications, including a small animal PET scanner in collaboration with the Univ. of Pisa and INFN Pisa, and a Compton telescope for dose monitoring in hadron therapy. (authors)

  5. Initial experience with the CDF layer 00 silicon detector

    SciTech Connect

    C. Hill

    2003-03-17

    We report on initial experience with the CDF Layer 00 Detector. Layer 00 is an innovative, low-mass, silicon detector installed in CDF during the upgrade for Run 2A of the Tevatron. Noise pickup present during operation at CDF is discussed. An event-by-event pedestal correction implemented by CDF is presented. This off-line solution prevents L00 from being used in the current incarnation of the on-line displaced track trigger. Preliminary performance of Layer 00 is described.

  6. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  7. PIN silicon diode fast neutron detector.

    PubMed

    Zhou, Chunzhi; Zhao, Jianxing; Xiao, Wuyun

    2005-01-01

    Two batches of diodes, with different structural ratios (the ratio of area and thickness), were made using different manufacturing processes. The energy response of the first batch to 15 kinds of monoenergetic neutrons ranging from 180 keV to 17.56 MeV was tested, and the neutron source response of both batches to 239Pu-Be neutron source was measured. The energy deposition in the diodes irradiated by 1 keV to 20 MeV monoenergetic neutrons was calculated with simulation procedure. The response curve of the experimental results showed an approximately similar trend to that of theoretical computation. Based on the results of the neutron source response experiments, it was concluded that the response of fast neutron varied linearly with the structural ratio of the detectors. PMID:15972359

  8. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    SciTech Connect

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  9. Amorphous silicon thin films: The ultimate lightweight space solar cell

    NASA Technical Reports Server (NTRS)

    Vendura, G. J., Jr.; Kruer, M. A.; Schurig, H. H.; Bianchi, M. A.; Roth, J. A.

    1994-01-01

    Progress is reported with respect to the development of thin film amorphous (alpha-Si) terrestrial solar cells for space applications. Such devices promise to result in very lightweight, low cost, flexible arrays with superior end of life (EOL) performance. Each alpha-Si cell consists of a tandem arrangement of three very thin p-i-n junctions vapor deposited between film electrodes. The thickness of this entire stack is approximately 2.0 microns, resulting in a device of negligible weight, but one that must be mechanically supported for handling and fabrication into arrays. The stack is therefore presently deposited onto a large area (12 by 13 in), rigid, glass superstrate, 40 mil thick, and preliminary space qualification testing of modules so configured is underway. At the same time, a more advanced version is under development in which the thin film stack is transferred from the glass onto a thin (2.0 mil) polymer substrate to create large arrays that are truly flexible and significantly lighter than either the glassed alpha-Si version or present conventional crystalline technologies. In this paper the key processes for such effective transfer are described. In addition, both glassed (rigid) and unglassed (flexible) alpha-Si cells are studied when integrated with various advanced structures to form lightweight systems. EOL predictions are generated for the case of a 1000 W array in a standard, 10 year geosynchronous (GEO) orbit. Specific powers (W/kg), power densities (W/sq m) and total array costs ($/sq ft) are compared.

  10. Low energy x-ray response of Ge detectors with amorphous Ge entrance contacts

    SciTech Connect

    Luke, P.N.; Rossington, C.S.; Wesela, M.F.

    1993-10-01

    The low energy x-ray response of GI detectors with amorphous GI entrance contacts has been evaluated. The spectral background due to near contact incomplete charge collection was found to consist of two components: a low level component which is insensitive to applied voltage and a high level step-like component which is voltage dependent. At high operating voltages, the high level component can be completely suppressed, resulting in background levels which are much lower than those previously observed using GI detectors with Pd surface barrier or B ion implanted contacts, and which also compare favorably to those obtained with Si(Li) x-ray detectors. The response of these detectors to {sup 55}Fe and 1.77 keV x-rays is shown. A qualitative explanation of the origins of the observed background components is presented.

  11. A field-shaping multi-well avalanche detector for direct conversion amorphous selenium

    SciTech Connect

    Goldan, A. H.; Zhao, W.

    2013-01-15

    Purpose: A practical detector structure is proposed to achieve stable avalanche multiplication gain in direct-conversion amorphous selenium radiation detectors. Methods: The detector structure is referred to as a field-shaping multi-well avalanche detector. Stable avalanche multiplication gain is achieved by eliminating field hot spots using high-density avalanche wells with insulated walls and field-shaping inside each well. Results: The authors demonstrate the impact of high-density insulated wells and field-shaping to eliminate the formation of both field hot spots in the avalanche region and high fields at the metal-semiconductor interface. Results show a semi-Gaussian field distribution inside each well using the field-shaping electrodes, and the electric field at the metal-semiconductor interface can be one order-of-magnitude lower than the peak value where avalanche occurs. Conclusions: This is the first attempt to design a practical direct-conversion amorphous selenium detector with avalanche gain.

  12. Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation.

    PubMed

    Bachman, Daniel; Chen, Zhijiang; Fedosejevs, Robert; Tsui, Ying Y; Van, Vien

    2013-05-01

    We demonstrate the fine tuning capability of femtosecond laser surface modification as a permanent trimming mechanism for silicon photonic components. Silicon microring resonators with a 15 µm radius were irradiated with single 400 nm wavelength laser pulses at varying fluences. Below the laser ablation threshold, surface amorphization of the crystalline silicon waveguides yielded a tuning rate of 20 ± 2 nm/J · cm(-2)with a minimum resonance wavelength shift of 0.10nm. Above that threshold, ablation yielded a minimum resonance shift of -1.7 nm. There was some increase in waveguide loss for both trimming mechanisms. We also demonstrated the application of the method by using it to permanently correct the resonance mismatch of a second-order microring filter.

  13. Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon.

    PubMed

    Yang, Jun; Bhattacharya, Pallab

    2008-03-31

    The monolithic integration of epitaxially-grown InGaAs/GaAs self-organized quantum dot lasers with hydrogenated amorphous silicon (a:Si-H) waveguides on silicon substrates is demonstrated. Hydrogenated amorphous silicon waveguides, formed by plasma-enhanced-chemical-vapor deposition (PECVD), exhibit a propagation loss of approximately 10 dB/cm at a wavelength of 1.05 microm. The laser-waveguide coupling, with coupling coefficient of 22%, is achieved through a 3.2 microm-width groove etched by focused-ion-beam (FIB) milling which creates high-quality etched GaAs facets.

  14. Surface roughening during plasma-enhanced chemical-vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates

    NASA Astrophysics Data System (ADS)

    Tanenbaum, D. M.; Laracuente, A. L.; Gallagher, Alan

    1997-08-01

    The morphology of a series of thin films of hydrogenated amorphous silicon (a-Si:H) grown by plasma-enhanced chemical-vapor deposition (PECVD) is studied using scanning tunneling microscopy. The substrates were atomically flat, oxide-free, single-crystal silicon. Films were grown in a PECVD chamber directly connected to a surface analysis chamber with no air exposure between growth and measurement. The homogeneous roughness of the films increases with film thickness. The quantification of this roughening is achieved by calculation of both rms roughness and lateral correlation lengths of the a-Si:H film surface from the height difference correlation functions of the measured topographs. Homogeneous roughening occurs over the film surface due to the collective behavior of the flux of depositing radical species and their interactions with the growth surface.

  15. Surface roughening during plasma-enhanced chemical-vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates

    SciTech Connect

    Tanenbaum, D.M.; Laracuente, A.L.; Gallagher, A.

    1997-08-01

    The morphology of a series of thin films of hydrogenated amorphous silicon (a-Si:H) grown by plasma-enhanced chemical-vapor deposition (PECVD) is studied using scanning tunneling microscopy. The substrates were atomically flat, oxide-free, single-crystal silicon. Films were grown in a PECVD chamber directly connected to a surface analysis chamber with no air exposure between growth and measurement. The homogeneous roughness of the films increases with film thickness. The quantification of this roughening is achieved by calculation of both rms roughness and lateral correlation lengths of the a-Si:H film surface from the height difference correlation functions of the measured topographs. Homogeneous roughening occurs over the film surface due to the collective behavior of the flux of depositing radical species and their interactions with the growth surface. {copyright} {ital 1997} {ital The American Physical Society}

  16. Percolation network in resistive switching devices with the structure of silver/amorphous silicon/p-type silicon

    SciTech Connect

    Liu, Yanhong; Gao, Ping; Bi, Kaifeng; Peng, Wei; Jiang, Xuening; Xu, Hongxia

    2014-01-27

    Conducting pathway of percolation network was identified in resistive switching devices (RSDs) with the structure of silver/amorphous silicon/p-type silicon (Ag/a-Si/p-Si) based on its gradual RESET-process and the stochastic complex impedance spectroscopy characteristics (CIS). The formation of the percolation network is attributed to amounts of nanocrystalline Si particles as well as defect sites embedded in a-Si layer, in which the defect sites supply positions for Ag ions to nucleate and grow. The similar percolation network has been only observed in Ag-Ge-Se based RSD before. This report provides a better understanding for electric properties of RSD based on the percolation network.

  17. A Proposal to Upgrade the Silicon Strip Detector

    SciTech Connect

    Matis, Howard; Michael, LeVine; Jonathan, Bouchet; Stephane, Bouvier; Artemios, Geromitsos; Gerard, Guilloux; Sonia, Kabana; Christophe, Renard; Howard, Matis; Jim, Thomas; Vi Nham, Tram

    2007-11-05

    The STAR Silicon Strip Detector (SSD) was built by a collaboration of Nantes, Strasbourg and Warsaw collaborators. It is a beautiful detector; it can provide 500 mu m scale pointing resolution at the vertex when working in combination with the TPC. It was first used in Run 4, when half the SSD was installed in an engineering run. The full detector was installed for Run 5 (the Cu-Cu run) and the operation and performance of the detector was very successful. However, in preparation for Run 6, two noisy ladders (out of 20) were replaced and this required that the SSD be removed from the STAR detector. The re-installation of the SSD was not fully successful and so for the next two Runs, 6 and 7, the SSD suffered a cooling system failure that allowed a large fraction of the ladders to overheat and become noisy, or fail. (The cause of the SSD cooling failure was rather trivial but the SSD could not be removed betweens Runs 6 and 7 due to the inability of the STAR detector to roll along its tracks at that time.)

  18. Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films

    SciTech Connect

    Wen, Guozhi; Zeng, Xiangbin Wen, Xixin; Liao, Wugang

    2014-04-28

    Silicon quantum dots (QDs) embedded in hydrogenated amorphous Si-rich silicon carbide (α-SiC:H) thin films were realized by plasma-enhanced chemical vapor deposition process and post-annealing. Fluorescence spectroscopy was used to characterize the room-temperature photoluminescence properties. X-ray photoelectron spectroscopy was used to analyze the element compositions and bonding configurations. Ultraviolet visible spectroscopy, Raman scattering, and high-resolution transmission electron microscopy were used to display the microstructural properties. Photoluminescence measurements reveal that there are six emission sub-bands, which behave in different ways. The peak wavelengths of sub-bands P1, P2, P3, and P6 are pinned at about 425.0, 437.3, 465.0, and 591.0 nm, respectively. Other two sub-bands, P4 is red-shifted from 494.6 to 512.4 nm and P5 from 570.2 to 587.8 nm with temperature increasing from 600 to 900 °C. But then are both blue-shifted, P4 to 500.2 nm and P5 to 573.8 nm from 900 to 1200 °C. The X-ray photoelectron spectroscopy analysis shows that the samples are in Si-rich nature, Si-O and Si-N bonds consumed some silicon atoms. The structure characterization displays that a separation between silicon phase and SiC phase happened; amorphous and crystalline silicon QDs synthesized with increasing the annealing temperature. P1, P2, P3, and P6 sub-bands are explained in terms of defect-related emission, while P4 and P5 sub-bands are explained in terms of quantum confinement effect. A correlation between the peak wavelength shift, as well as the integral intensity of the spectrum and crystallization of silicon QDs is supposed. These results help clarify the probable luminescence mechanisms and provide the possibility to optimize the optical properties of silicon QDs in Si-rich α-SiC: H materials.

  19. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial

    NASA Astrophysics Data System (ADS)

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-01

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 106 and 3.72 × 106 respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications.

  20. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial.

    PubMed

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-20

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 10(6) and 3.72 × 10(6) respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications.

  1. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial

    PubMed Central

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-01

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 106 and 3.72 × 106 respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications. PMID:26785682

  2. Programmable SERS active substrates for chemical and biosensing applications using amorphous/crystalline hybrid silicon nanomaterial.

    PubMed

    Powell, Jeffery Alexander; Venkatakrishnan, Krishnan; Tan, Bo

    2016-01-01

    We present the creation of a unique nanostructured amorphous/crystalline hybrid silicon material that exhibits surface enhanced Raman scattering (SERS) activity. This nanomaterial is an interconnected network of amorphous/crystalline nanospheroids which form a nanoweb structure; to our knowledge this material has not been previously observed nor has it been applied for use as a SERS sensing material. This material is formed using a femtosecond synthesis technique which facilitates a laser plume ion condensation formation mechanism. By fine-tuning the laser plume temperature and ion interaction mechanisms within the plume, we are able to precisely program the relative proportion of crystalline Si to amorphous Si content in the nanospheroids as well as the size distribution of individual nanospheroids and the size of Raman hotspot nanogaps. With the use of Rhodamine 6G (R6G) and Crystal Violet (CV) chemical dyes, we have been able to observe a maximum enhancement factor of 5.38 × 10(6) and 3.72 × 10(6) respectively, for the hybrid nanomaterial compared to a bulk Si wafer substrate. With the creation of a silicon-based nanomaterial capable of SERS detection of analytes, this work demonstrates a redefinition of the role of nanostructured Si from an inactive to SERS active role in nano-Raman sensing applications. PMID:26785682

  3. A silicon strip detector dose magnifying glass for IMRT dosimetry

    SciTech Connect

    Wong, J. H. D.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Khanna, S.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.

    2010-02-15

    Purpose: Intensity modulated radiation therapy (IMRT) allows the delivery of escalated radiation dose to tumor while sparing adjacent critical organs. In doing so, IMRT plans tend to incorporate steep dose gradients at interfaces between the target and the organs at risk. Current quality assurance (QA) verification tools such as 2D diode arrays, are limited by their spatial resolution and conventional films are nonreal time. In this article, the authors describe a novel silicon strip detector (CMRP DMG) of high spatial resolution (200 {mu}m) suitable for measuring the high dose gradients in an IMRT delivery. Methods: A full characterization of the detector was performed, including dose per pulse effect, percent depth dose comparison with Farmer ion chamber measurements, stem effect, dose linearity, uniformity, energy response, angular response, and penumbra measurements. They also present the application of the CMRP DMG in the dosimetric verification of a clinical IMRT plan. Results: The detector response changed by 23% for a 390-fold change in the dose per pulse. A correction function is derived to correct for this effect. The strip detector depth dose curve agrees with the Farmer ion chamber within 0.8%. The stem effect was negligible (0.2%). The dose linearity was excellent for the dose range of 3-300 cGy. A uniformity correction method is described to correct for variations in the individual detector pixel responses. The detector showed an over-response relative to tissue dose at lower photon energies with the maximum dose response at 75 kVp nominal photon energy. Penumbra studies using a Varian Clinac 21EX at 1.5 and 10.0 cm depths were measured to be 2.77 and 3.94 mm for the secondary collimators, 3.52 and 5.60 mm for the multileaf collimator rounded leaf ends, respectively. Point doses measured with the strip detector were compared to doses measured with EBT film and doses predicted by the Philips Pinnacle treatment planning system. The differences were 1

  4. Influence of ion induced amorphicity on the diffusion of gold into silicon

    SciTech Connect

    Ehrhardt, J.; Klimmer, A.; Eisenmenger, J.; Mueller, Th.; Boyen, H.-G.; Ziemann, P.; Biskupek, J.; Kaiser, U.

    2006-09-15

    It is experimentally demonstrated that, after ion irradiating 60 nm thick Au films on Si substrates with 230 keV Ar{sup +} ions, annealing conditions can be found leading to strong diffusional contrasts between bombarded and unbombarded areas. While Au readily diffuses into the bombarded part of the sample at 310 deg. C, its diffusion is still completely blocked under identical conditions in the unbombarded parts. Clear evidence is provided that this diffusional contrast is due to bombardment induced amorphization of the underlying Si substrate. The amorphous Silicon (a-Si), however, has to extend right to the Au/Si interface, since any intermediate crystalline layer will suppress the diffusional contrast. An example for this latter situation is realized by performing the ion bombardment prior to the evaporation of the top Au layer leading to a still crystalline Si surface layer, which is found to act as a barrier against Au diffusion at 310 deg. C. In accordance with the idea that a-Si, independent of its specific preparation, causes the observed Au diffusion enhancement, the effect is also found for a-Si prepared by evaporation at ambient temperature. In that case an even higher Au diffusion coefficient is obtained than for Si amorphized by ion bombardment pointing to subtle structural differences between both types of amorphous Si.

  5. Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics

    PubMed Central

    Rao, Sandro; Pangallo, Giovanni; Della Corte, Francesco Giuseppe

    2016-01-01

    Hydrogenated amorphous silicon (a-Si:H) shows interesting optoelectronic and technological properties that make it suitable for the fabrication of passive and active micro-photonic devices, compatible moreover with standard microelectronic devices on a microchip. A temperature sensor based on a hydrogenated amorphous silicon p-i-n diode integrated in an optical waveguide for silicon photonics applications is presented here. The linear dependence of the voltage drop across the forward-biased diode on temperature, in a range from 30 °C up to 170 °C, has been used for thermal sensing. A high sensitivity of 11.9 mV/°C in the bias current range of 34–40 nA has been measured. The proposed device is particularly suitable for the continuous temperature monitoring of CMOS-compatible photonic integrated circuits, where the behavior of the on-chip active and passive devices are strongly dependent on their operating temperature. PMID:26751446

  6. Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates

    PubMed Central

    2014-01-01

    We propose the use of bimetallic non-alloyed nanoparticles (BNNPs) to improve the broadband optical absorption of thin amorphous silicon substrates. Isolated bimetallic NPs with uniform size distribution on glass and silicon are obtained by depositing a 10-nm Au film and annealing it at 600°C; this is followed by an 8-nm Ag film annealed at 400°C. We experimentally demonstrate that the deposition of gold (Au)-silver (Ag) bimetallic non-alloyed NPs (BNNPs) on a thin amorphous silicon (a-Si) film increases the film's average absorption and forward scattering over a broad spectrum, thus significantly reducing its total reflection performance. Experimental results show that Au-Ag BNNPs fabricated on a glass substrate exhibit resonant peaks at 437 and 540 nm and a 14-fold increase in average forward scattering over the wavelength range of 300 to 1,100 nm in comparison with bare glass. When deposited on a 100-nm-thin a-Si film, Au-Ag BNNPs increase the average absorption and forward scattering by 19.6% and 95.9% compared to those values for Au NPs on thin a-Si and plain a-Si without MNPs, respectively, over the 300- to 1,100-nm range. PMID:24725390

  7. Band offsets at the crystalline / hydrogenated amorphous silicon interface from first-principles

    NASA Astrophysics Data System (ADS)

    Hazrati, Ebrahim; Jarolimek, Karol; de Wijs, Gilles A.; InstituteMolecules; Materials Team

    2015-03-01

    The heterojunction formed between crystalline silicon (c-Si) and hydrogenated amorphous silicon (a-Si:H) is a key component of a new type of high-efficiency silicon solar cell. Since a-Si:H has a larger band gap than c-Si, band offsets are formed at the interface. A band offset at the minority carrier band will mitigate recombination and lead to an increased efficiency. Experimental values of band offsets scatter in a broad range. However, a recent meta-analysis of the results (W. van Sark et al.pp. 405, Springer 2012) gives a larger valence offset (0.40 eV) than the conduction offset (0.15 eV). In light of the conflicting reports our goal is to calculate the band offsets at the c-Si/a-Si:H interface from first-principles. We have prepared several atomistic models of the interface. The crystalline part is terminated with (111) surfaces on both sides. The amorphous structure is generated by simulating an annealing process at 1100 K, with DFT molecular dynamics. Once the atomistic is ready it can be used to calculate the electronic structure of the interface. Our preliminary results show that the valence offset is larger than the conduction band offset.

  8. Strip interpolation in silicon and germanium strip detectors.

    SciTech Connect

    Wulf, E. A.; Phlips, B. F.; Johnson, W. N.; Kurfess, J. D.; Lister, C. J.; Kondev, F.; Physics; Naval Research Lab.

    2004-01-01

    The position resolution of double-sided strip detectors is limited by the strip pitch and a reduction in strip pitch necessitates more electronics. Improved position resolution would improve the imaging capabilities of Compton telescopes and PET detectors. Digitizing the preamplifier waveform yields more information than can be extracted with regular shaping electronics. In addition to the energy, depth of interaction, and which strip was hit, the digitized preamplifier signals can locate the interaction position to less than the strip pitch of the detector by looking at induced signals in neighboring strips. This allows the position of the interaction to be interpolated in three dimensions and improve the imaging capabilities of the system. In a 2 mm thick silicon strip detector with a strip pitch of 0.891 mm, strip interpolation located the interaction of 356 keV gamma rays to 0.3 mm FWHM. In a 2 cm thick germanium detector with a strip pitch of 5 mm, strip interpolation of 356 keV gamma rays yielded a position resolution of 1.5 mm FWHM.

  9. Development of Ultra-High Sensivity Silicon Carbide Detectors

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Xin, Xiao-Bin; Alexandrov, Petre; Stahle, Carl M.; Guan, Bing; Zhao, Jian H.

    2005-01-01

    A variety of silicon carbide (SiC) detectors have been developed to study the sensitivity of SiC ultraviolet (UV) detectors, including Schottky photodiodes, p-i-n photodiodes, avalanche photodiodes (APDs), and single photon-counting APDs. Due to the very wide bandgap and thus extremely low leakage current, Sic photo-detectors showed excellent sensitivity. The specific detectivity, D*, of SiC photodiodes are orders of magnitude higher than that of their competitors, such as Si photodiodes, and comparable to the D* of photomultiplier tubes (PMTs). To pursue the ultimate detection sensitivity, SiC APDs and single photon-counting avalanche diodes (SPADs) have also been fabricated. By operating the SiC APDs at a linear mode gain over 10(exp 6), SPADs in UV have been demonstrated. SiC UV detectors have great potential for use in solar blind UV detection and biosensing. Moreover, SiC detectors have excellent radiation hardness and high temperature tolerance which makes them ideal for extreme environment applications such as in space or on the surface of the Moon or Mars.

  10. Effect of surface morphology on laser-induced crystallization of amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jin, Jing; Wang, Guohua; Shi, Weimin; Yang, Weiguang; Yuan, Zhijun; Cao, Zechun; Zhou, Jun; Lou, Qihong; Liu, Jin; Wei, Guangpu

    2013-12-01

    The effect of surface morphology on laser-induced crystallization of hydrogenated intrinsic amorphous silicon (a-Si:H) thin films deposited by PECVD is studied in this paper. The thin films are irritated by a frequency-doubled (λ=532 nm) Nd:YAG pulsed nanosecond laser. An effective melting model is built to identify the variation of melting regime influenced by laser crystallization. Based on the experimental results, the established correlation between the grain growth characterized by AFM and the crystalline fraction (Xc) obtained from Raman spectroscopy suggests that the crystallized process form amorphous phase to polycrystalline phase. Therefore, the highest crystalline fraction (Xc) is obtained by a optimized laser energy density.

  11. Can the crystallization rate be independent from the crystallization enthalpy? The case of amorphous silicon.

    PubMed

    Kail, F; Molera, J; Farjas, J; Roura, P; Secouard, C; Roca i Cabarrocas, P

    2012-03-01

    The crystallization enthalpy measured in a large series of amorphous silicon (a-Si) materials varies within a factor of 2 from sample to sample (Kail et al 2011 Phys. Status Solidi RRL 5 361). According to the classical theory of nucleation, this variation should produce large differences in the crystallization kinetics leading to crystallization temperatures and activation energies exceeding 550 °C and 1.7 eV, respectively, the 'standard' values measured for a-Si obtained by self-implantation. In contrast, the observed crystallization kinetics is very similar for all the samples studied and has no correlation with the crystallization enthalpy. This discrepancy has led us to propose that crystallization in a-Si begins in microscopic domains that are almost identical in all samples, independently of their crystallization enthalpy. Probably the existence of microscopic inhomogeneities also plays a crucial role in the crystallization kinetics of other amorphous materials and glasses.

  12. Can the crystallization rate be independent from the crystallization enthalpy? The case of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Kail, F.; Molera, J.; Farjas, J.; Roura, P.; Secouard, C.; Cabarrocas, P. Roca i.

    2012-03-01

    The crystallization enthalpy measured in a large series of amorphous silicon (a-Si) materials varies within a factor of 2 from sample to sample (Kail et al 2011 Phys. Status Solidi RRL 5 361). According to the classical theory of nucleation, this variation should produce large differences in the crystallization kinetics leading to crystallization temperatures and activation energies exceeding 550 °C and 1.7 eV, respectively, the ‘standard’ values measured for a-Si obtained by self-implantation. In contrast, the observed crystallization kinetics is very similar for all the samples studied and has no correlation with the crystallization enthalpy. This discrepancy has led us to propose that crystallization in a-Si begins in microscopic domains that are almost identical in all samples, independently of their crystallization enthalpy. Probably the existence of microscopic inhomogeneities also plays a crucial role in the crystallization kinetics of other amorphous materials and glasses.

  13. The silicon vertex detector of the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaya, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The silicon vertex detector of the Belle II experiment, structured in a lantern shape, consists of four layers of ladders, fabricated from two to five silicon sensors. The APV25 readout ASIC chips are mounted on one side of the ladder to minimize the signal path for reducing the capacitive noise; signals from the sensor backside are transmitted to the chip by bent flexible fan-out circuits. The ladder is assembled using several dedicated jigs. Sensor motion on the jig is minimized by vacuum chucking. The gluing procedure provides such a rigid foundation that later leads to the desired wire bonding performance. The full ladder with electrically functional sensors is consistently completed with a fully developed assembly procedure, and its sensor offsets from the design values are found to be less than 200 μm. The potential functionality of the ladder is also demonstrated by the radioactive source test.

  14. Silicon photodiode as the two-color detector

    NASA Astrophysics Data System (ADS)

    Ponomarev, D. B.; Zakharenko, V. A.

    2015-11-01

    This paper describes a silicon photodiode as the two-color photodetector. The work of one photodiode in two spectral ranges is achieved due to the changes of the spectral sensitivity of the photodiodes in the transition from photodiode mode for photovoltaic in the short circuit mode. On the basis of silicon photodiode FD-256 the layout of the spectral ratio pyrometer was assembled and the results of theoretical calculations was confirmed experimentally. The calculated dependences of the coefficient of error of the spectral ratio pyrometer from temperature reverse voltage 10 and 100 V was presented. The calculated dependence of the instrumental error and the assessment of methodological errors of the proposed photodetector spectral ratio was done. According to the results of the presented research was set the task of development photodiode detectors which change the spectral sensitivity depending on the applied voltage.

  15. Fractal and spherulitic morphology of silicon nitride crystallized from amorphous films

    SciTech Connect

    Kahn, A.D.; Grabowski, K.S.; Donovan, E.P.; Carosella, C.A.; Hubler, G.K.

    1988-01-01

    Thin films of substoichiometric silicon nitride were grown by the use of ion beam assisted deposition. The amorphous films were annealed at high temperatures (1017-1200C) to produce crystalline alpha-Si3N4. Both highly symmetric spherulitic crystal morphologies and irregular fractal aggregates were seen. In the latter case, a fractal dimension of 1.2 was measured. These two macroscopically different forms possessed correspondingly different microstructures. The morphologies were found to be determined by the temperature of the anneal.

  16. Structural evolution and electronic properties of n-type doped hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong

    2011-12-01

    The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.

  17. Hydrogenated amorphous silicon formation by flux control and hydrogen effects on the growth mechanism

    NASA Astrophysics Data System (ADS)

    Toyoda, H.; Sugai, H.; Kato, K.; Yoshida, A.; Okuda, T.

    1986-06-01

    The composition of particle flux to deposit hydrogenated amorphous silicon films in a glow discharge is controlled by a combined electrostatic-magnetic deflection technique. As a result, the films are formed firstly without hydrogen ion flux, secondly by neutral flux only, and thirdly by all species fluxes. Comparison of these films reveals the significant role of hydrogen in the surface reactions. Hydrogen breaks the Si-Si bond, decreases the sticking probability of the Si atom, and replaces the SiH bond by a SiH2 bond to increase the hydrogen content of the films.

  18. Novel photochemical vapor deposition reactor for amorphous silicon solar cell deposition

    NASA Astrophysics Data System (ADS)

    Rocheleau, Richard E.; Hegedus, Steven S.; Buchanan, Wayne A.; Jackson, Scott C.

    1987-07-01

    A novel photochemical vapor deposition (photo-CVD) reactor having a flexible ultraviolet-transparent Teflon curtain and a secondary gas flow to eliminate deposition on the window has been used to deposit amorphous silicon films and p-i-n solar cells. The background levels of atmospheric contaminants (H2O, CO2, N2) depend strongly on the vacuum procedures but not on the presence of a Teflon curtain in the reactor. Intrinsic films with a midgap density of states of 3×1015 eV-1 cm-3 and all-photo-CVD pin solar cells with efficiencies of 8.5% have been deposited.

  19. High efficiency multijunction amorphous silicon alloy-based solar cells and modules

    SciTech Connect

    Guha, S.; Yang, J.; Banerjeee, A.; Glatfelter, T.; Hoffman, K.; Xu, X. )

    1994-06-30

    We have achieved initial efficiency of 11.4% as confirmed by National Renewable Energy Laboratory (NREL) on a multijunction amorphous silicon alloy photovoltaic module of one-square-foot-area. [bold This] [bold is] [bold the] [bold highest] [bold initial] [bold efficiency] [bold confirmed] [bold by] [bold NREL] [bold for] [bold any] [bold thin] [bold film] [bold photovoltaic] [bold module]. After light soaking for 1000 hours at 50 [degree]C under one-sun illumination, a module with initial efficiency of 11.1% shows a stabilized efficiency of 9.5%. Key factors that led to this high performance are discussed.

  20. Experimental observation of light trapping in hydrogenated amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Faughnan, B. W.

    1985-10-01

    Experimental evidence for light trapping in glass/conductive transparent oxide/p-i-n/ metal hydrogenated amorphous silicon solar cell structures is presented. A short-circuit current of 17.8 mA/sq cm has previously been reported for a cell made with this structure. The light trapping is treated by a modification of the Yablonovitch-Cody (YC) statistical theory of light trapping in textured layers (Yablonovitch and Cody, 1982). Reflection measurements show that 80 percent of the incident light is trapped. Quantum efficiency measurements made on cells with back electrode metals of different reflectivity are shown to be in agreement with the predictions of the YC theory.

  1. Study of the electronic properties of hydrogenated amorphous silicon films by femtosecond spectroscopy

    SciTech Connect

    Sevastyanov, M. G.; Lobkov, V. S.; Shmelev, A. G.; Leontev, A. V.; Matuhin, V. L.; Bobyl, A. V.; Terukov, E. I.; Kukin, A. V.

    2013-10-15

    Experimental results on the electron relaxation time and diffusion coefficient in hydrogenated amorphous silicon films that exhibit intrinsic and electronic conductivity at room temperature are reported. It is found that, for these two types of films, the relaxation times are 1 ns and 465 ps and the diffusion coefficients are 0.54 and 0.83 cm{sup 2} s{sup -1}. It is established that, as the pulse intensity is increased, the decay time of the induced-grating signal shortens.

  2. Influence of deposition conditions on the 1/f noise in hydrogenated amorphous silicon

    SciTech Connect

    West, P.W.; Quicker, D.; Dyalsingh, H.M.; Kakalios, J.

    1997-07-01

    The electronic properties of a series of n-type doped hydrogenated amorphous silicon (a-Si:H) films grown with deposition rates ranging from 2 {angstrom}/s to 33 {angstrom}/s have been studied. Infrared absorption spectroscopy shows an increase in Si-H{sub 2} content with deposition rate, concurrent with a decreasing conductivity, increasing thermal equilibration relaxation time, and increasing disorder at the mobility edge as measured by the difference in thermopower and dark conductivity activation energies. The current 1/f noise properties become highly nonstationary, with increased variability and inapplicability of statistical analysis as the deposition rate increases.

  3. Readout of silicon strip detectors with position and timing information

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Irmler, C.; Pernicka, M.

    2009-01-01

    Low-noise front-end amplifiers for silicon strip detectors are already available for decades, providing excellent signal-to-noise ratio and thus very precise spatial resolution, but at the cost of a long shaping time in the microsecond range. Due to occupancy and pile-up issues, modern experiments need much faster electronics. With submicron ASICs, adequate readout and data processing, it is possible to obtain not only spatial hit data, but also accurate timing information—a feature which is rarely exploited so far. We present the concept of a silicon vertex detector readout system intended for an upgrade of the Belle experiment at KEK (Tsukuba, Japan). The APV25 front-end chip, originally developed for CMS at CERN, is used in a way where it delivers multiple samples along the shaped waveform, such that not only the analog pulse height, but also the timing of each particle hit can be determined. We developed a complete readout system including an FADC +Processor VME module which performs zero-suppression in FPGAs. The hit time measurement is also planned on the same module. As fast amplifiers are inherently more susceptible to noise, which largely depends on the load capacitance, the front-end chips should be located as close to the detector as possible. On the other hand, the material budget, especially in a low-energy electron-positron machine such as Belle, should be minimized. We tried to merge those demands with a fully functional "Flex_Module", where thinned APV25 readout chips are mounted on the silicon sensor.

  4. DETECTORS AND EXPERIMENTAL METHODS: New test and analysis of position-sensitive-silicon-detector

    NASA Astrophysics Data System (ADS)

    Feng, Lang; Ge, Yu-Cheng; Wang, He; Fan, Feng-Ying; Qiao, Rui; Lu, Fei; Song, Yu-Shou; Zheng, Tao; Ye, Yan-Lin

    2009-01-01

    We have tested and analyzed the properties of two-dimensional Position-Sensitive-silicon-Detector (PSD) with new integrated preamplifiers. The test demonstrates that the best position resolution for 5.5 MeV α particles is 1.7 mm (FWHM), and the best energy resolution is 2.1%, which are notably better than the previously reported results. A scaling formula is introduced to make the absolute position calibration.

  5. Silicon photomultiplier based photon detector module as a detector of Cherenkov photons

    NASA Astrophysics Data System (ADS)

    Korpar, Samo; Chagani, Hassan; Dolenec, Rok; Križan, Peter; Pestotnik, Rok; Stanovnik, Aleš

    2010-11-01

    We have constructed and tested a module, consisting of 64 (= 8×8) Hamamatsu MPPC S10362-11-100P silicon photomultipliers, for position sensitive detection of Cherenkov photons. Suitable light concentrators were produced to increase the efficiency and to improve the signal to noise ratio. The results of our measurements indicate that the performance of such a Cherenkov counter with aerogel radiator could meet the requirements of particle identification at the foreseen upgraded Belle detector.

  6. The Belle II Silicon Vertex Detector readout chain

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Bergauer, T.; Frankenberger, A.; Gfall, I.; Irmler, C.; Valentan, M.

    2013-02-01

    The Silicon Vertex Detector of the future Belle II experiment at KEK (Japan) will consist of 6'' double-sided strip sensors. Those are read out by APV25 chips (originally developed for CMS) which are powered by DC/DC converters with low voltages tied to the sensor bias potentials. The signals are transmitted by cable links of about 12 meters. In the back-end, the data are digitized and processed by FADC modules with powerful FPGAs, which are also capable of precisely measuring the hit time of each particle in order to discard off-time background.

  7. Identification of infrared absorption peaks of amorphous silicon-carbon alloy by thermal annealing

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Liang; Tsai, Hsiung-Kuang; Lee, Si-Chen; Sah, Wen-Jyh; Tzeng, Wen-Jer

    1987-12-01

    Amorphous silicon-carbon hydrogen alloy was prepared by radio frequency glow discharge decomposition of a silane-methane mixture. The infrared absorption spectra were measured at various stages of thermal annealing. By observing the change of relative intensities between these peaks the hydrogen bonding responsible for the absorption peaks could be assigned more accurately, for example, the stretching mode of monohydride Si-H is determined by its local environment, which supports H. Wagner's and W. Beyer's results [Solid State Commun. 48, 585 (1983)] but is inconsistent with the commonly believed view. It is also found that a significant fraction of carbon atoms are introduced into the film in -CH3 configuration which forms a local void and enhances the formation of polysilane chain and dangling bond defects. Only after high-temperature annealing are the hydrogen atoms driven out, and Si and C start to form a better silicon carbide network.

  8. Electrical Characterization of Amorphous Silicon MIS-Based Structures for HIT Solar Cell Applications.

    PubMed

    García, Héctor; Castán, Helena; Dueñas, Salvador; Bailón, Luis; García-Hernansanz, Rodrigo; Olea, Javier; Del Prado, Álvaro; Mártil, Ignacio

    2016-12-01

    A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100-150 °C) might be the best choice. PMID:27423876

  9. Study of the amorphization of surface silicon layers implanted by low-energy helium ions

    NASA Astrophysics Data System (ADS)

    Lomov, A. A.; Myakon'kikh, A. V.; Oreshko, A. P.; Shemukhin, A. A.

    2016-03-01

    The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2-5)-keV helium ions to a dose of D = 6 × 1015-5 × 1017 cm-2 have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ( z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 1016 cm-2 leads to the formation of a 20- to 30-nm-thick amorphized surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer.

  10. Electrical Characterization of Amorphous Silicon MIS-Based Structures for HIT Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    García, Héctor; Castán, Helena; Dueñas, Salvador; Bailón, Luis; García-Hernansanz, Rodrigo; Olea, Javier; del Prado, Álvaro; Mártil, Ignacio

    2016-07-01

    A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100-150 °C) might be the best choice.

  11. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    NASA Astrophysics Data System (ADS)

    Mutch, Michael J.; Lenahan, Patrick M.; King, Sean W.

    2016-08-01

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  12. Direct laser writing of amorphous silicon on Si-substrate induced by high repetition femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2010-10-01

    This research aimed to study the effects of laser parameters on direct silicon amorphorization. It was found that higher repetition rate of laser pulses gives smooth morphology with better repeatability. Increasing pulse duration and number of pulses were seen to increase the line width. However, increasing the number of pulses does not result in ablation of the target area. An analytical model is developed for the calculation of the average surface temperature after n-pulses; it was found that for a constant power and a constant repetition rate, an increase in the pulse number does not correspond to a significant increase in the surface temperature. Moreover, at the controlled laser power level, the surface temperature will not exceed the melting point of silicon. Therefore, thermal induced damage is not observed during the amorphization.

  13. The response of covered silicon detectors to monoenergetic gamma rays

    NASA Technical Reports Server (NTRS)

    Reier, M.

    1972-01-01

    Measurements were made of the efficiency in detecting gamma rays of a 0.3-mm, a 3-mm, and a 5-mm silicon detector covered with different absorbers. Calibrated sources covering the range from 279 KeV to 2.75 MeV were used. The need for the absorbers in order to obtain meaningful results, and their contribution to detector response at electron biases from 50 to 200 KeV, are discussed in detail. It is shown that the results are independent of the atomic number of the absorber. In addition, the role of the absorber in increasing the efficiency with increasing photon energy for low bias setting is demonstrated for the 0.3-mm crystal. Qualitative explanations are given for the shapes of all curves of efficiency versus energy at each bias.

  14. Recombination and thin film properties of silicon nitride and amorphous silicon passivated c-Si following ammonia plasma exposure

    SciTech Connect

    Wan, Yimao; Thomson, Andrew F.; Cuevas, Andres; McIntosh, Keith R.

    2015-01-26

    Recombination at silicon nitride (SiN{sub x}) and amorphous silicon (a-Si) passivated crystalline silicon (c-Si) surfaces is shown to increase significantly following an ammonia (NH{sub 3}) plasma exposure at room temperature. The effect of plasma exposure on chemical structure, refractive index, permittivity, and electronic properties of the thin films is also investigated. It is found that the NH{sub 3} plasma exposure causes (i) an increase in the density of Si≡N{sub 3} groups in both SiN{sub x} and a-Si films, (ii) a reduction in refractive index and permittivity, (iii) an increase in the density of defects at the SiN{sub x}/c-Si interface, and (iv) a reduction in the density of positive charge in SiN{sub x}. The changes in recombination and thin film properties are likely due to an insertion of N–H radicals into the bulk of SiN{sub x} or a-Si. It is therefore important for device performance to minimize NH{sub 3} plasma exposure of SiN{sub x} or a-Si passivating films during subsequent fabrication steps.

  15. SVX II a silicon vertex detector for run II of the tevatron

    SciTech Connect

    Bortoletto, D.

    1994-11-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of the vertex detector of the CDF experiment to be installed for run II of the Tevatron in 1998. Three barrels of four layers of double sided detectors will cover the interaction region. The requirement of the silicon tracker and the specification of the sensors are discussed together with the proposed R&D to verify the performance of the prototypes detectors produced by Sintef, Micron and Hamamatsu.

  16. Gated Silicon Drift Detector Fabricated from a Low-Cost Silicon Wafer

    PubMed Central

    Matsuura, Hideharu; Sakurai, Shungo; Oda, Yuya; Fukushima, Shinya; Ishikawa, Shohei; Takeshita, Akinobu; Hidaka, Atsuki

    2015-01-01

    Inexpensive high-resolution silicon (Si) X-ray detectors are required for on-site surveys of traces of hazardous elements in food and soil by measuring the energies and counts of X-ray fluorescence photons radially emitted from these elements. Gated silicon drift detectors (GSDDs) are much cheaper to fabricate than commercial silicon drift detectors (SDDs). However, previous GSDDs were fabricated from 10-kΩ·cm Si wafers, which are more expensive than 2-kΩ·cm Si wafers used in commercial SDDs. To fabricate cheaper portable X-ray fluorescence instruments, we investigate GSDDs formed from 2-kΩ·cm Si wafers. The thicknesses of commercial SDDs are up to 0.5 mm, which can detect photons with energies up to 27 keV, whereas we describe GSDDs that can detect photons with energies of up to 35 keV. We simulate the electric potential distributions in GSDDs with Si thicknesses of 0.5 and 1 mm at a single high reverse bias. GSDDs with one gate pattern using any resistivity Si wafer can work well for changing the reverse bias that is inversely proportional to the resistivity of the Si wafer. PMID:26007742

  17. Investigation of Self Triggered Cosmic Ray Detectors using Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Knox, Adrian; Niduaza, Rommel; Hernandez, Victor; Ruiz, Daniel; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is a highly sensitive light detector capable of measuring single photons. It costs a fraction of the photomultiplier tube and operates slightly above the breakdown voltage. At this conference we describe our investigation of SiPM, the multipixel photon counters (MPPC) from Hamamatsu as readout detectors for plastic scintillators working for detecting cosmic ray particles. Our setup consists of scintillator sheets embedded with blue to green wavelength shifting fibers optically coupled to MPPCs to detect scintillating light. Four detector assemblies would be constructed and arranged to work in self triggered mode. Using custom matching tee boxes, the amplified MPPC signals are fed to discriminators with threshold set to give a reasonable coincidence count rate. Moreover, the detector waveforms are digitized using a 5 Giga Samples per second waveform digitizer, the DRS4, and triggered with the coincidence logic to capture the MPPC waveforms. Offline analysis of the digitized waveforms is accomplished using the CERN package PAW and results of our experiments and the data analysis would also be discussed. US Department of Education Title V Grant Number PO31S090007.

  18. Timing Measurements of Scintillator Bars with Silicon Phtotomultiplier Light Detectors

    NASA Astrophysics Data System (ADS)

    Shelor, Mark; Elizondo, Leonardo; Ritt, Stefan

    2016-03-01

    To track and analyze cosmic rays via precise measurements of muon and similarly penetrating particle's airshower axes directions, we constructed a prototype consisting of two 1-meter long scintillator bars. Each bar is embedded with green wavelength shifting fibers to increase detection rate of two silicon photomultiplier, SiPM, light detectors to record light produced by cosmic rays via scintillation. The focus of the experiment was to determine the performance of these devices. Evaluation was performed for two makes of SiPM models - from AdvanSiD and Hamamatsu. Timing measurements of the apparatus were performed under several trigger conditions to filter out noise such as coincidence trigger with 2 photomultiplier detectors, as well as SiPM detectors in self-triggered mode. The SiPM detector waveforms were digitized using a 4-channel fast waveform sampler, the DRS4 digitizer. Signals were analyzed with the CERN PAW package. From our results, we deduced the speed of light in the scintillator using the SiPM modules to be about 66% of the speed of light in a vacuum which is in accordance with the specifications of the index of refraction for the fibers given by the manufacturer's specifications. The results of our timing measurements would be presented. Dept. of Ed. Title V Grant PO31S090007.

  19. Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-04-02

    A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

  20. Enhanced amorphous silicon technology for 320 x 240 microbolometer arrays with a pitch of 35 μm

    NASA Astrophysics Data System (ADS)

    Mottin, Eric; Martin, Jean-Luc; Ouvrier-Buffet, Jean-Louis; Vilain, Michel; Bain, Astrid; Yon, Jean-Jacques; Tissot, Jean-Luc; Chatard, Jean-Pierre

    2001-10-01

    LETI LIR has been involved in Amorphous Silicon uncooled microbolometer development for years. This technology is now in production at Sofradir and first delivery have already been done to customers. From our background in modeling and material mastering LETI/LIR concentrate now on performance enhancement. This is a key point for cost reduction due to the fact that signal to noise ratio enhancement will allow us to decrease the pitch. A new approach of packaging is also described in this paper and first results are displayed. A new technological stack of amorphous silicon fully compatible with industrial process is presented. Electro-optical results obtained from an IRCMOS 320 X 240 with 35 μm pitch are presented. NETD close to 35 mK has been obtained with our new embodiment of amorphous silicon microbolometer technology.

  1. Performance and Modeling of Amorphous Silicon Photovoltaics for Building-Integrated Applications (Preprint prepared for Solar 99)

    SciTech Connect

    Kroposki, B.; Hansen, R.

    1998-06-07

    Amorphous silicon photovoltaic (PV) modules offer several advantages for building-integrated applications. The material can be deposited on glass or flexible substrates, which allows for products like roofing shingles and integrated PV/building glass. The material also has a uniform surface, which is ideal for many architectural applications. Amorphous silicon modules perform well in warm weather and have a small temperature coefficient for power. Depending on the building load, this may be beneficial when compared to crystalline systems. At the National Renewable Energy Laboratory, we are monitoring the performance of a triple-junction a-Si system. The system consists of 72 roofing shingles mounted directly to simulated roofing structures. This paper examines the performance of the building-integrated amorphous silicon PV system and applicability for covering residential loads. A simple model of system performance is also developed and is presented.

  2. Modeling of photocurrent and lag signals in amorphous selenium x-ray detectors

    SciTech Connect

    Siddiquee, Sinchita; Kabir, M. Z.

    2015-07-15

    A mathematical model for transient photocurrent and lag signal in x-ray imaging detectors has been developed by considering charge carrier trapping and detrapping in the energy distributed defect states under exponentially distributed carrier generation across the photoconductor. The model for the transient and steady-state carrier distributions and hence the photocurrent has been developed by solving the carrier continuity equation for both holes and electrons. The residual (commonly known as lag signal) current is modeled by solving the trapping rate equations considering the thermal release and trap filling effects. The model is applied to amorphous selenium (a-Se) detectors for both chest radiography and mammography. The authors analyze the dependence of the residual current on various factors, such as x-ray exposure, applied electric field, and temperature. The electron trapping and detrapping mostly determines the residual current in a-Se detectors. The lag signal is more prominent in chest radiographic detector than in mammographic detectors. The model calculations are compared with the published experimental data and show a very good agreement.

  3. Resistivity measurements on the neutron irradiated detector grade silicon materials

    SciTech Connect

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  4. Achieving thermography with a thermal security camera using uncooled amorphous silicon microbolometer image sensors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Wei; Tesdahl, Curtis; Owens, Jim; Dorn, David

    2012-06-01

    Advancements in uncooled microbolometer technology over the last several years have opened up many commercial applications which had been previously cost prohibitive. Thermal technology is no longer limited to the military and government market segments. One type of thermal sensor with low NETD which is available in the commercial market segment is the uncooled amorphous silicon (α-Si) microbolometer image sensor. Typical thermal security cameras focus on providing the best image quality by auto tonemaping (contrast enhancing) the image, which provides the best contrast depending on the temperature range of the scene. While this may provide enough information to detect objects and activities, there are further benefits of being able to estimate the actual object temperatures in a scene. This thermographic ability can provide functionality beyond typical security cameras by being able to monitor processes. Example applications of thermography[2] with thermal camera include: monitoring electrical circuits, industrial machinery, building thermal leaks, oil/gas pipelines, power substations, etc...[3][5] This paper discusses the methodology of estimating object temperatures by characterizing/calibrating different components inside a thermal camera utilizing an uncooled amorphous silicon microbolometer image sensor. Plots of system performance across camera operating temperatures will be shown.

  5. Label-free photonic biosensors fabricated with low-loss hydrogenated amorphous silicon resonators

    NASA Astrophysics Data System (ADS)

    Lipka, Timo; Wahn, Lennart; Trieu, Hoc Khiem; Hilterhaus, Lutz; Müller, Jörg

    2013-01-01

    The precise detection of chemicals and biomolecules is of great interest in the areas of biotechnology and medical diagnostics. Thus, there is a need for highly sensitive, small area, and low-cost sensors. We fabricated and optically characterized hydrogenated amorphous silicon photonic resonators for label-free lab-on-chip biosensors. The sensing was performed with small-footprint microdisk and microring resonators that detect a refractive-index change via the evanescent electric field. Homogeneous sensing with NaCl and surface-sensing experiments with immobilized bovine serum albumin (BSA) were carried out. A sensitivity as high as 460 nm/RIU was measured for NaCl dissolved in deionized water for the disk, whereas about 50 nm/RIU was determined for the ring resonator. The intrinsic limits of detection were calculated to be 3.3×10 and 3.2×10 at 1550-nm wavelength. We measured the binding of BSA to functionalized ring resonators and found that molecular masses can be detected down to the clinically relevant femtogram regime. The detection and quantification of related analytes with hydrogenated amorphous silicon photonic sensors can be used in medical healthcare diagnostics like point-of-care-testing and biotechnological screening.

  6. Friction and wear of plasma-deposited amorphous hydrogenated films on silicon nitride

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1991-01-01

    An investigation was conducted to examine the friction and wear behavior of amorphous hydrogenated carbon (a-C:H) films in sliding contact with silicon nitride pins in both dry nitrogen and humid air environments. Amorphous hydrogenated carbon films approximately 0.06 micron thick were deposited on silicon nitride flat substrates by using the 30 kHz ac glow discharge of a planar plasma reactor. The results indicate that an increase in plasma deposition power gives an increase in film density and hardness. The high-density a-C:H films deposited behaved tribologically much like bulk diamond. In the dry nitrogen environment, a tribochemical reaction produced a substance, probably a hydrocarbon-rich layer, that decreased the coefficient of friction. In the humid air environment, tribochemical interactions drastically reduced the wear life of a-C:H films and water vapor greatly increased the friction. Even in humid air, effective lubrication is possible with vacuum-annealed a-C:H films. The vacuum-annealed high-density a-C:H film formed an outermost superficial graphitic layer, which behaved like graphite, on the bulk a-C:H film. Like graphite, the annealed a-C:H film with the superficial graphitic layer showed low friction when adsorbed water vapor was present.

  7. Properties of amorphous carbon-silicon alloys deposited by a high plasma density source

    NASA Astrophysics Data System (ADS)

    Racine, B.; Ferrari, A. C.; Morrison, N. A.; Hutchings, I.; Milne, W. I.; Robertson, J.

    2001-11-01

    The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen, and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on hydrogenated amorphous carbon-silicon alloys (a-C1-xSix:H) deposited by rf plasma enhanced chemical vapor deposition. This method gives alloys with sizeable hydrogen content and only moderate hardness. Here we use a high plasma density source known as the electron cyclotron wave resonance source to prepare films with higher sp3 content and lower hydrogen content. The composition and bonding in the alloys is determined by x-ray photoelectron spectroscopy, Rutherford backscattering, elastic recoil detection analysis, visible and ultraviolet (UV) Raman spectroscopy, infrared spectroscopy, and x-ray reflectivity. We find that it is possible to produce relatively hard, low stress, low friction, almost humidity insensitive a-C1-xSix:H alloys with a good optical transparency and a band gap well over 2.5 eV. The friction behavior and friction mechanism of these alloys are studied and compared with that of a-C:H, ta-C:H, and ta-C. We show how UV Raman spectroscopy allows the direct detection of Si-C, Si-Hx, and C-Hx vibrations, not seen in visible Raman spectra.

  8. Comparative Study of Low-temperature PECVD of Amorphous Silicon using Mono-, Di-, Trisilane and Cyclohexasilane

    SciTech Connect

    Konstantin Pokhodnya; Joseph Sandstrom; Xuliang Dai; Philip Boudjouk; Douglas L. Schulz

    2009-06-08

    The hydrogenated amorphous silicon a-Si:H films were grown by plasma-enhanced chemical vapor deposition (PECVD) using liquid cyclohexasilane Si{sub 6}H{sub 12} (CHS). The growth rate of a-Si:H was studied as a function of substrate temperatures in the range of 30 C < T < 450 C using deposition conditions that were optimized for monosilane SiH{sub 4}. The same parameters were used for a-Si:H films grown using disilane (Si{sub 2}H{sub 6}) and trisilane (Si{sub 3}H{sub 8}) precursors. It was found that the a-Si:H film growth rate for CHS is lower with respect to those for mono-, di- and trisilane in an Ar plasma. Addition of {approx}10% of H{sub 2} dramatically increases the deposition rate for CHS-based films to {_}nm/min - a 700% increase. The as-deposited films were characterized by FTIR and Raman spectroscopy to probe the hydrogen content and local bonding environment. It was found that the films grown using Ar/H{sub 2} mixtures as carrier gas have a reduced hydrogen content relative to polysilane fragments indicating higher quality amorphous silicon.

  9. Carbon-assisted growth and high visible-light optical reflectivity of amorphous silicon oxynitride nanowires

    PubMed Central

    2011-01-01

    Large amounts of amorphous silicon oxynitride nanowires have been synthesized on silicon wafer through carbon-assisted vapor-solid growth avoiding the contamination from metallic catalysts. These nanowires have the length of up to 100 μm, with a diameter ranging from 50 to 150 nm. Around 3-nm-sized nanostructures are observed to be homogeneously distributed within a nanowire cross-section matrix. The unique configuration might determine the growth of ternary amorphous structure and its special splitting behavior. Optical properties of the nanowires have also been investigated. The obtained nanowires were attractive for their exceptional whiteness, perceived brightness, and optical brilliance. These nanowires display greatly enhanced reflection over the whole visible wavelength, with more than 80% of light reflected on most of the wavelength ranging from 400 to 700 nm and the lowest reflectivity exceeding 70%, exhibiting performance superior to that of the reported white beetle. Intense visible photoluminescence is also observed over a broad spectrum ranging from 320 to 500 nm with two shoulders centered at around 444 and 468 nm, respectively. PMID:21787429

  10. Solid state photochemistry. Subpanel A-2(b): Metastability in hydrogenated amorphous silicon

    SciTech Connect

    Carlson, D.

    1996-09-01

    All device quality amorphous silicon based materials exhibit degradation in electronic properties when exposed to sunlight. The photo-induced defects are associated with Si dangling bonds that are created by the recombination and/or trapping of photogenerated carriers. The defects are metastable and can be annealed out at temperatures of about 150 to 200 degrees Centigrade. The density of metastable defects is larger in films that are contaminated with > 10{sup 19} per cubic cm of impurities such as oxygen, carbon and nitrogen. However, recent experimental results indicate that some metastable defects are still present in films with very low impurity concentrations. The photo-induced defects typically saturate after 100 to 1000 hours of exposure to one sun illumination depending on the deposition conditions. There is also experimental evidence that photo-induced structural changes are occurring in the amorphous silicon based materials and that hydrogen may be playing an important role in both the photo-induced structural changes and in the creation of metastable defects.

  11. Heterogeneous immunoassays in microfluidic format using fluorescence detection with integrated amorphous silicon photodiodes

    PubMed Central

    Pereira, A. T.; Novo, P.; Prazeres, D. M. F.; Chu, V.; Conde, J. P.

    2011-01-01

    Miniaturization of immunoassays through microfluidic technology has the potential to decrease the time and the quantity of reactants required for analysis, together with the potential of achieving multiplexing and portability. A lab-on-chip system incorporating a thin-film amorphous silicon (a-Si:H) photodiode microfabricated on a glass substrate with a thin-film amorphous silicon-carbon alloy directly deposited above the photodiode and acting as a fluorescence filter is integrated with a polydimethylsiloxane-based microfluidic network for the direct detection of antibody-antigen molecular recognition reactions using fluorescence. The model immunoassay used consists of primary antibody adsorption to the microchannel walls followed by its recognition by a secondary antibody labeled with a fluorescent quantum-dot tag. The conditions for the flow-through analysis in the microfluidic format were defined and the total assay time was 30 min. Specific molecular recognition was quantitatively detected. The measurements made with the a-Si:H photodiode are consistent with that obtained with a fluorescence microscope and both show a linear dependence on the antibody concentration in the nanomolar-micromolar range. PMID:21403847

  12. Solar-to-Hydrogen Photovoltaic/Photoelectrochemical Devices Using Amorphous Silicon Carbide as the Photoelectrode

    SciTech Connect

    Hu, J.; Zhu, F.; Matulionis, I.; Kunrath, A.; Deutsch, T.; Kuritzky, L.; Miller, E.; Madan, A.

    2008-01-01

    We report the use of hydrogenated amorphous silicon carbide (a-SiC:H) prepared by plasma enhanced chemical vapor deposition (PECVD) as the photoelectrode in an integrated 'hybrid' photoelectrochemical (PEC) cell to produce hydrogen directly from water using sunlight. Results on the durability of hydrogenated amorphous silicon carbide (a-SiC:H) photoelectrodes in an electrolyte are presented. In a pH2 electrolyte, the a-SiC:H photoelectrode exhibits excellent stability for 100 hour test so far performed. A photocurrent onset shift (anodically) after a 24- or 100-hour durability test in electrolyte is observed, likely due to changes in the surface chemical structure of the a-SiC:H photoelectrode. It is also observed that a thin SiOx layer native to the air exposed surface of the a-SiC:H affects the photocurrent and the its onset shift. Finally, approaches for eliminating the external bias voltage and enhancing the solar-to-hydrogen efficiency in a PV/PEC hybrid structure to achieve {>=} 10% are presented.

  13. Silica nanoparticles on front glass for efficiency enhancement in superstrate-type amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Das, Sonali; Banerjee, Chandan; Kundu, Avra; Dey, Prasenjit; Saha, Hiranmay; Datta, Swapan K.

    2013-10-01

    Antireflective coating on front glass of superstrate-type single junction amorphous silicon solar cells (SCs) has been applied using highly monodispersed and stable silica nanoparticles (NPs). The silica NPs having 300 nm diameter were synthesized by Stober technique where the size of the NPs was controlled by varying the alcohol medium. The synthesized silica NPs were analysed by dynamic light scattering technique and Fourier transform infrared spectroscopy. The NPs were spin coated on glass side of fluorinated tin oxide (SnO2: F) coated glass superstrate and optimization of the concentration of the colloidal solution, spin speed and number of coated layers was done to achieve minimum reflection characteristics. An estimation of the distribution of the NPs for different optimization parameters has been done using field-emission scanning electron microscopy. Subsequently, the transparent conducting oxide coated glass with the layer having the minimum reflectance is used for fabrication of amorphous silicon SC. Electrical analysis of the fabricated cell indicates an improvement of 6.5% in short-circuit current density from a reference of 12.40 mA cm-2 while the open circuit voltage and the fill factor remains unaltered. A realistic optical model has also been proposed to gain an insight into the system.

  14. Non-negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide

    PubMed Central

    Lv, Wei; Henry, Asegun

    2016-01-01

    Thermal conductivity is important for almost all applications involving heat transfer. The theory and modeling of crystalline materials is in some sense a solved problem, where one can now calculate their thermal conductivity from first principles using expressions based on the phonon gas model (PGM). However, modeling of amorphous materials still has many open questions, because the PGM itself becomes questionable when one cannot rigorously define the phonon velocities. In this report, we used our recently developed Green-Kubo modal analysis (GKMA) method to study amorphous silicon dioxide (a-SiO2). The predicted thermal conductivities exhibit excellent agreement with experiments and anharmonic effects are included in the thermal conductivity calculation for all the modes in a-SiO2 for the first time. Previously, localized modes (locons) have been thought to have a negligible contribution to thermal conductivity, due to their highly localized nature. However, in a-SiO2 our results indicate that locons contribute more than 10% to the total thermal conductivity from 400 K to 800 K and they are largely responsible for the increase in thermal conductivity of a-SiO2 above room temperature. This is an effect that cannot be explained by previous methods and therefore offers new insight into the nature of phonon transport in amorphous/glassy materials. PMID:27767082

  15. Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems.

    PubMed

    Qian, Ken K; Bogner, Robin H

    2012-02-01

    Aqueous solubility of an active pharmaceutical ingredient is an important consideration to ensure successful drug development. Mesoporous materials have been investigated as an amorphous drug delivery system owing to their nanosized capillaries and large surface areas. The complex interactions of crystalline compounds with mesoporous media and their implication in drug delivery are not well understood. Molecules interacting with porous media behave very differently than those in bulk phase. Their altered dynamics and thermodynamics play an important role in the properties and product performance of the amorphous system. In this review, application of mesoporous silicon dioxide and silicates in drug amorphization is the main focus. First, as background, the nature of gas-porous media interactions is summarized. The synthesis of various types of mesoporous silica, which are used by many investigators in this field, is described. Second, the behavior of molecules confined in mesopores is compared with those in bulk, crystalline phase. The molecular dynamics of compounds due to confinement, analyzed using various techniques, and their consequences in drug delivery are discussed. Finally, the preparation and performance of drug delivery systems using mesoporous silica are examined.

  16. Direct measurement of free-energy barrier to nucleation of crystallites in amorphous silicon thin films

    NASA Technical Reports Server (NTRS)

    Shi, Frank G.

    1994-01-01

    A method is introduced to measure the free-energy barrier W(sup *), the activation energy, and activation entropy to nucleation of crystallites in amorphous solids, independent of the energy barrier to growth. The method allows one to determine the temperature dependence of W(sup *), and the effect of the preparation conditions of the initial amorphous phase, the dopants, and the crystallization methds on W(sup *). The method is applied to determine the free-energy barrier to nucleation of crystallites in amorphous silicon (a-Si) thin films. For thermally induced nucleation in a-Si thin films with annealing temperatures in the range of from 824 to 983 K, the free-energy barrier W(sup *) to nucleation of silicon crystals is about 2.0 - 2.1 eV regardless of the preparation conditions of the films. The observation supports the idea that a-Si transforms into an intermediate amorphous state through the structural relaxation prior to the onset of nucleation of crystallites in a-Si. The observation also indicates that the activation entropy may be an insignificant part of the free-energy barrier for the nucleation of crystallites in a-Si. Compared with the free-energy barrier to nucleation of crystallites in undoped a-Si films, a significant reduction is observed in the free-energy barrier to nucleation in Cu-doped a-Si films. For a-Si under irradiation of Xe(2+) at 10(exp 5) eV, the free-energy barrier to ion-induced nucleation of crystallites is shown to be about half of the value associated with thermal-induced nucleation of crystallites in a-Si under the otherwise same conditions, which is much more significant than previously expected. The present method has a general kinetic basis; it thus should be equally applicable to nucleation of crystallites in any amorphous elemental semiconductors and semiconductor alloys, metallic and polymeric glasses, and to nucleation of crystallites in melts and solutions.

  17. Transient and steady-state dark current mechanisms in amorphous selenium avalanche radiation detectors

    SciTech Connect

    Kabir, M. Z.; Imam, Safayat-Al

    2013-04-15

    A theoretical model for describing bias-dependent transient and steady-state behaviors of dark current in amorphous selenium (a-Se) avalanche detector structures has been developed. The analytical model considers bulk thermal generation current from mid-gap sates, transient carrier depletion, and carrier injection from the electrodes incorporating avalanche multiplication. The proposed physics-based dark current model is compared with the published experimental results on three potential a-Se avalanche detector structures. The steady-state dark current is the minimum for the structures that have effective blocking layers for both holes and electrons. The transient decay time to reach a plateau decreases considerably with increasing electric field.

  18. Formation of high conductive nano-crystalline silicon embedded in amorphous silicon-carbide films with large optical band gap

    NASA Astrophysics Data System (ADS)

    Ji, Yang; Shan, Dan; Qian, Mingqing; Xu, Jun; Li, Wei; Chen, Kunji

    2016-10-01

    High conductive phosphorus-doped nano-crystalline Si embedded in Silicon-Carbide (SiC) host matrix (nc-Si:SiC) films were obtained by thermally annealing doped amorphous Si-rich SiC materials. It was found that the room conductivity is increased significantly accompanying with the increase of doping concentrations as well as the enhanced crystallizations. The conductivity can be as high as 630 S/cm for samples with the optical band gap around 2.7 eV, while the carrier mobility is about 17.9 cm2/ V.s. Temperature-dependent conductivity and mobility measurements were performed which suggested that the carrier transport process is strongly affected by both the grain boundaries and the doping concentrations.

  19. High-energy x-ray diffraction study of pure amorphous silicon

    SciTech Connect

    Laaziri, K.; Kycia, S.; Roorda, S.; Chicoine, M.; Robertson, J.L.; Wang, J.; Moss, S.C.

    1999-11-01

    Medium and high-energy x-ray diffraction has been used to study the atomic structure of pure amorphous Si prepared by MeV Si implantation into crystalline silicon. Both as-implanted and annealed samples were studied. The inelastically scattered x rays were removed by fitting the energy spectrum for the scattered x rays. The atomic scattering factor of silicon, previously known reliably up to 20 {Angstrom}{sup {minus}1}, has been extended to 55 {Angstrom}{sup {minus}1}. The radial distribution function of amorphous Si, before and after annealing, has been determined through an unbiased Fourier transformation of the normalized scattering data. Gaussian fits to the first neighbor peak in these functions shows that scattering data out to at least 40 {Angstrom}{sup {minus}1} is required to reliably determine the radial distribution function. The first-shell coordination number increases from 3.79 to 3.88 upon thermal annealing at 600{degree}C, whereas that of crystalline Si determined from similar measurements on a Si powder analyzed using the same technique is 4.0. Amorphous Si is therefore under coordinated relative to crystalline Si. Noise in the distribution function, caused by statistical variations in the scattering data at high-momentum transfer, has been reduced without affecting the experimental resolution through filtering of the interference function after subtracting the contribution of the first-neighbor peak. The difference induced by thermal annealing in the remainder of the radial distribution functions, thus revealed, is much smaller than previously believed. {copyright} {ital 1999} {ital The American Physical Society}

  20. Method of enhancing the electronic properties of an undoped and/or N-type hydrogenated amorphous silicon film

    DOEpatents

    Carlson, David E.

    1980-01-01

    The dark conductivity and photoconductivity of an N-type and/or undoped hydrogenated amorphous silicon layer fabricated by an AC or DC proximity glow discharge in silane can be increased through the incorporation of argon in an amount from 10 to about 90 percent by volume of the glow discharge atmosphere which contains a silicon-hydrogen containing compound in an amount of from about 90 to about 10 volume percent.

  1. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  2. Superlattice-doped silicon detectors: progress and prospects

    NASA Astrophysics Data System (ADS)

    Hoenk, Michael E.; Nikzad, Shouleh; Carver, Alexander G.; Jones, Todd J.; Hennessy, John; Jewell, April D.; Sgro, Joseph; Tsur, Shraga; McClish, Mickel; Farrell, Richard

    2014-07-01

    In this paper we review the physics and performance of silicon detectors passivated with wafer-scale molecular beam epitaxy (MBE) and atomic layer deposition (ALD). MBE growth of a two-dimensional (2D) doping superlattice on backside-illuminated (BSI) detectors provides nearly perfect protection from interface traps, even at trap densities in excess of 1014 cm-2. Superlattice-doped, BSI CMOS imaging detectors show no measurable degradation of quantum efficiency or dark current from long-term exposure to pulsed DUV lasers. Wafer-scale superlattice-doping has been used to passivate CMOS and CCD imaging arrays, fully-depleted CCDs and photodiodes, and large-area avalanche photodiodes. Superlattice-doped CCDs with ALD-grown antireflection coatings achieved world record quantum efficiency at deep and far ultraviolet wavelengths (100-300nm). Recently we have demonstrated solar-blind, superlattice doped avalanche photodiodes using integrated metal-dielectric coatings to achieve selective detection of ultraviolet light in the 200-250 nm spectral range with high out-of-band rejection.

  3. The Synthesis and Structural Properties of Crystalline Silicon Quantum Dots upon Thermal Annealing of Hydrogenated Amorphous Si-Rich Silicon Carbide Films

    NASA Astrophysics Data System (ADS)

    Wen, Guozhi; Zeng, Xiangbin; Li, Xianghu

    2016-08-01

    Silicon quantum dots (QDs) embedded in non-stoichiometric hydrogenated silicon carbide (SiC:H) thin films have been successfully synthesized by plasma-enhanced chemical vapor deposition and post-annealing. The chemical composition analyses have been carried out by x-ray photoelectron spectroscopy (XPS). The bonding configurations have been deduced from Fourier transform infrared absorption measurements (FTIR). The evolution of microstructure with temperature has been characterized by glancing incident x-ray diffraction (XRD) and Raman diffraction spectroscopy. XPS and FTIR show that it is in Si-rich feature and there are a few hydrogenated silicon clusters in the as-grown sample. XRD and Raman diffraction spectroscopy show that it is in amorphous for the as-grown sample, while crystalline silicon QDs have been synthesized in the 900°C annealed sample. Silicon atoms precipitation from the SiC matrix or silicon phase transition from amorphous SiC is enhanced with annealing temperature increase. The average sizes of silicon QDs are about 5.1 nm and 5.6 nm, the number densities are as high as 1.7 × 1012 cm-2 and 3.2 × 1012 cm-2, and the crystalline volume fractions are about 58.3% and 61.3% for the 900°C and 1050°C annealed samples, respectively. These structural properties analyses provide an understanding about the synthesis of silicon QDs upon thermal annealing for applications in next generation optoelectronic and photovoltaic devices.

  4. Analysis of metal/film and novel metal/amorphous selenium portal detectors

    NASA Astrophysics Data System (ADS)

    Falco, Tony

    Measurements of modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) for metal/film portal detectors are reported for the Cobalt-60 and 10 MV spectra. The detectors consist of a double-emulsion portal film secured between plates of aluminum, copper, brass or lead with thicknesses from 0 to 4.81 mm. The study of MTF, NPS, and DQE shows that both photons and secondary electrons produced within the front-plate and backscattered electrons from the back- plate affect metal/film portal imaging. Study of DQE indicates that the best portal detectors are those without back-plates, and with high density front-plates with thicknesses less than the maximum electron range. This MTF data was modeled with the logit analysis. It is shown that the parameters resulting from the logit analysis depend on the mass thickness and the atomic number of the metal plates. Metal/amorphous selenium (a-Se) electrostatic-based detectors have been developed for portal imaging. The detectors consist of a-Se photoconductive layers of varied thicknesses deposited on plates of varying thicknesses of aluminum, copper, and stainless steel. The metal-plates of the detectors face the incident 6 MV and Co-60 photon spectra during imaging. The sensitivity of the a-Se detectors to dose, electric field across the a- Se layer, plate type, and a-Se thickness is studied. A model showing a cubic relationship between the a-Se latent surface voltage and dose is derived and experimentally verified. A contrast-detail phantom is used to study the image quality and contrast-resolution characteristics of the metal/a-Se detectors. The metal/a- Se detectors produce better quality contrast-detailed images at a considerably lower dose than that offered by the other commercial available portal systems, mainly due to the low inherent noise of the novel detectors. A semi-automatic technique for the direct set-up alignment of radiosurgical circular fields from an isocentric

  5. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Adjallah, Yves Gbemonde

    The opto-electronic properties of amorphous/nanocrystalline hydrogenated silicon (a/nc-Si:H) mixed-phase thin films are investigated. Small crystalline silicon particles (3-5 nm diameter) synthesized in a flow-through reactor are injected into a separate capacitively-coupled plasma (CCP) chamber where mixed-phase hydrogenated amorphous silicon is grown by Plasma Enhanced Chemical Vapor Deposition (PECVD) deposition techniques. This dual-chamber co-deposition system enables the variation of crystallite concentration incorporated into a series of a-Si:H films deposited simultaneously. The structural, optical and electronic properties of these mixed-phase materials are studied as a function of the silicon nanocrystal concentration. That is, we compare a sequence of films deposited in a single run, where the location of the substrate in the CCP chamber determines the density of embedded nanocrystals. Raman spectroscopy is used to determine the volume fraction of nanocrystals in the mixed phase thin films. At a moderate concentration of silicon crystallites, the dark conductivity and photoconductivity are consistently found to be up to several orders of magnitude higher than in mixed phase films with either low or heavy nanocrystalline inclusions. These results are interpreted in terms of a model whereby for low nanocrystal concentrations conduction is influenced by the disorder introduced into the a-Si:H film by the inclusions, while at high nanocrystal densities electronic transport is described by a heterojunction quantum dot model. The thermopower of the undoped a/nc-Si:H has a lower Seebeck coefficient, and similar temperature dependence, to that observed for undoped a-Si:H. In contrast, the addition of nanoparticles in doped a/nc-Si:H thin films leads to a negative Seebeck coefficient (consistent with n-type doping) with a positive temperature dependence, that is, the Seebeck coefficient becomes larger at higher temperatures. The temperature dependence of the

  6. Efficient visible luminescence of nanocrystalline silicon prepared from amorphous silicon films by thermal annealing and stain etching

    PubMed Central

    2011-01-01

    Films of nanocrystalline silicon (nc-Si) were prepared from hydrogenated amorphous silicon (a-Si:H) by using rapid thermal annealing. The formed nc-Si films were subjected to stain etching in hydrofluoric acid solutions in order to passivate surfaces of nc-Si. The optical reflectance spectroscopy revealed the nc-Si formation as well as the high optical quality of the formed films. The Raman scattering spectroscopy was used to estimate the mean size and volume fraction of nc-Si in the annealed films, which were about 4 to 8 nm and 44 to 90%, respectively, depending on the annealing regime. In contrast to as-deposited a-Si:H films, the nc-Si films after stain etching exhibited efficient photoluminescence in the spectral range of 600 to 950 nm at room temperature. The photoluminescence intensity and lifetimes of the stain etched nc-Si films were similar to those for conventional porous Si formed by electrochemical etching. The obtained results indicate new possibilities to prepare luminescent thin films for Si-based optoelectronics. PMID:21711891

  7. Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells

    SciTech Connect

    Ayra, R.R.; Bennett, M.S.; Dickson, C.R.; Fieselmann, B.; Fortmann, C.; Goldstein, B.; Morris, J.; O'Dowd, J.G.; Oswald, R.S.; Wiedeman, S.; Yang, L. . Thin Film Div.)

    1989-10-01

    This document describes efforts to improve the quality of candidate photovoltaic materials used in amorphous wide- and narrow-band-gap materials, namely, a-Si{sub 1-x}C{sub x} and a-Si{sub 1-x}Ge{sub x}. Although these alloys show a decrease in mobility-lifetime product as the fraction of silicon decreases, their optical properties show marked differences. Microcrystalline p-layer films containing carbon were prepared to evaluate their importance for achieving high open-circuit voltages. Silicon-germanium cells were studied to optimize their performance in multijunction, stacked cell structures. The best cells fabricated from the silicon-germanium alloys yielded a conversion efficiency of 10.1% with a band gap of 1.55 eV. Several alloy-based stacked cells had conversion efficiencies of more than 10%: an a-SiC/a-SiGe cell yielded 10.5% and an a-SiC:H/a-Si:H structure yielded 10.2%. Stacked-junction cells showed far less susceptibility to light-induced degradation.

  8. Evaluation of Segmented Amorphous-Contact Planar Germanium Detectors for Heavy-Element Research

    NASA Astrophysics Data System (ADS)

    Jackson, Emily G.

    The challenge of improving our understanding of the very heaviest nuclei is at the forefront of contemporary low-energy nuclear physics. In the last two decades, "in-beam" spectroscopy experiments have advanced from Z=98 to Z=104, Rutherfordium, allowing insights into the dynamics of the fission barrier, high-order deformations, and pairing correlations. However, new detector technologies are needed to advance to even heavier nuclei. This dissertation is aimed at evaluating one promising new technology; large segmented planar germanium wafers for this area of research. The current frontier in gamma-ray spectroscopy involves large-volume (>9 cm thick) coaxial detectors that are position sensitive and employ gamma-ray "tracking". In contrast, the detectors assessed in this dissertation are relatively thin (~1 cm) segmented planar wafers with amorphous-germanium strip contacts that can tolerate extremely high gamma-ray count rates, and can accommodate hostile neutron fluxes. They may be the only path to heavier "in-beam" spectroscopy with production rates below 1 nanobarn. The resiliency of these detectors against neutron-induced damage is examined. Two detectors were deliberately subjected to a non-uniform neutron fluence leading to considerable degradation of performance. The neutrons were produced using the 7Li(p, n)7Be reaction at the UMass Lowell Van-de-Graaff accelerator with a 3.7-MeV proton beam incident on a natural Li target. The energy of the neutrons emitted at zero degrees was 2.0 MeV, close to the mean energy of the fission neutron spectrum, and each detector was exposed to a fluence >3.6 x109 n/cm2. A 3-D software "trap-corrector" gain-matching algorithm considerably restored the overall performance. Other neutron damage mitigation tactics were explored including over biasing the detector and flooding the detector with a high gamma-ray count rate. Various annealing processes to remove neutron damage were investigated. An array of very large diameter

  9. Testing of the KRI-developed Silicon PIN Radioxenon Detector

    SciTech Connect

    Foxe, Michael P.; McIntyre, Justin I.

    2015-01-23

    Radioxenon detectors are used for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in a network of detectors throughout the world called the International Monitoring System (IMS). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Provisional Technical Secretariat (PTS) has tasked Pacific Northwest National Laboratory (PNNL) with testing a V.G. Khlopin Radium Institute (KRI) and Lares Ltd-developed Silicon PIN detector for radioxenon detection. PNNL measured radioxenon with the silicon PIN detector and determined its potential compared to current plastic scintillator beta cells. While the PNNL tested Si detector experienced noise issues, a second detector was tested in Russia at Lares Ltd, which did not exhibit the noise issues. Without the noise issues, the Si detector produces much better energy resolution and isomer peak separation than a conventional plastic scintillator cell used in the SAUNA systems in the IMS. Under the assumption of 1 cm3 of Xe in laboratory-like conditions, 24-hr count time (12-hr count time for the SAUNA), with the respective shielding the minimum detectable concentrations for the Si detector tested by Lares Ltd (and a conventional SAUNA system) were calculated to be: 131mXe – 0.12 mBq/m3 (0.12 mBq/m3); 133Xe – 0.18 mBq/m3 (0.21 mBq/m3); 133mXe – 0.07 mBq/m3 (0.15 mBq/m3); 135Xe – 0.45 mBq/m3 (0.67 mBq/m3). Detection limits, which are one of the important factors in choosing the best detection technique for radioxenon in field conditions, are significantly better than for SAUNA-like detection systems for 131mXe and 133mXe, but similar for 133Xe and 135Xe. Another important factor is the amount of “memory effect” or carry over signal from one radioxenon measurement to the subsequent sample. The memory effect is

  10. Performance of a double sided silicon strip detector as a transmission detector for heavy ions

    NASA Astrophysics Data System (ADS)

    Han, Jian-Long; Ma, Jun-Bing; Cao, Xi-Guang; Wang, Qi; Wang, Jian-Song; Yang, Yan-Yun; Ma, Peng; Huang, Mei-Rong; Jin, Shi-Lun; Rong, Xin-Juan; Bai, Zhen; Fu, Fen; Hu, Qiang; Chen, Ruo-Fu; Xu, Shi-Wei; Chen, Jiang-Bo; Jin, Lei; Li, Yong; Zhao, Ming-Hui; Xu, Hu-Shan

    2014-05-01

    The performance of a double sided silicon strip detector (DSSSD), which is used for the position and energy detection of heavy ions, is reported. The analysis shows that although the incomplete charge collection (ICC) and charge sharing (CS) effects of the DSSSD give rise to a loss of energy resolution, the position information is recorded without ambiguity. Representations of ICC/CS events in the energy spectra are shown and their origins are confirmed by correlation analysis of the spectra from both the junction side and ohmic side of the DSSSD.

  11. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    SciTech Connect

    Mouro, J.; Gualdino, A.; Chu, V.; Conde, J. P.

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  12. CDF Run-II Silicon Detector: Operations and Aging

    SciTech Connect

    Stancari, Michelle; /Fermilab

    2011-09-10

    The CDF Run-II silicon microstrip detector has seen almost 12 fb{sup -1} of proton-antiproton collisions over the last 10 years. It has shown remarkable performance, with 80% of its channels still operating error-free, and only one of its eight layers approaching the operational limits for full depletion. The measured depletion voltage and signal-to-noise ratio of these sensors give unique information about the behavior of sensors irradiated slowly over a long period of time. Data from heavily irradiated, double-sided sensors excludes a monotonic electric field inside the sensor and is instead consistent with a doubly-peaked field that is lower in the center of the sensor and higher at the edges.

  13. Efficient data transmission from silicon wafer strip detectors

    SciTech Connect

    Cooke, B.J.; Lackner, K.S.; Palounek, A.P.T.; Sharp, D.H.; Winter, L.; Ziock, H.J.

    1991-12-31

    An architecture for on-wafer processing is proposed for central silicon-strip tracker systems as they are currently designed for high energy physics experiments at the SSC, and for heavy ion experiments at RHIC. The data compression achievable with on-wafer processing would make it possible to transmit all data generated to the outside of the detector system. A set of data which completely describes the state of the wafer for low occupancy events and which contains important statistical information for more complex events can be transmitted immediately. This information could be used in early trigger decisions. Additional data packages which complete the description of the state of the wafer vary in size and are sent through a second channel. By buffering this channel the required bandwidth can be kept far below the peak data rates which occur in rate but interesting events. 18 refs.

  14. System software design for the CDF Silicon Vertex Detector

    SciTech Connect

    Tkaczyk, S.; Bailey, M.

    1991-11-01

    An automated system for testing and performance evaluation of the CDF Silicon Vertex Detector (SVX) data acquisition electronics is described. The SVX data acquisition chain includes the Fastbus Sequencer and the Rabbit Crate Controller and Digitizers. The Sequencer is a programmable device for which we developed a high level assembly language. Diagnostic, calibration and data acquisition programs have been developed. A distributed software package was developed in order to operate the modules. The package includes programs written in assembly and Fortran languages that are executed concurrently on the SVX Sequencer modules and either a microvax or an SSP. Test software was included to assist technical personnel during the production and maintenance of the modules. Details of the design of different components of the package are reported.

  15. Thin film silicon by a microwave plasma deposition technique: Growth and devices, and, interface effects in amorphous silicon/crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jagannathan, Basanth

    Thin film silicon (Si) was deposited by a microwave plasma CVD technique, employing double dilution of silane, for the growth of low hydrogen content Si films with a controllable microstructure on amorphous substrates at low temperatures (<400sp°C). The double dilution was achieved by using a Ar (He) carrier for silane and its subsequent dilution by Hsb2. Structural and electrical properties of the films have been investigated over a wide growth space (temperature, power, pressure and dilution). Amorphous Si films deposited by silane diluted in He showed a compact nature and a hydrogen content of ˜8 at.% with a photo/dark conductivity ratio of 10sp4. Thin film transistors (W/L = 500/25) fabricated on these films, showed an on/off ratio of ˜10sp6 and a low threshold voltage of 2.92 volts. Microcrystalline Si films with a high crystalline content (˜80%) were also prepared by this technique. Such films showed a dark conductivity ˜10sp{-6} S/cm, with a conduction activation energy of 0.49 eV. Film growth and properties have been compared for deposition in Ar and He carrier systems and growth models have been proposed. Low temperature junction formation by undoped thin film silicon was examined through a thin film silicon/p-type crystalline silicon heterojunctions. The thin film silicon layers were deposited by rf glow discharge, dc magnetron sputtering and microwave plasma CVD. The hetero-interface was identified by current transport analysis and high frequency capacitance methods as the key parameter controlling the photovoltaic (PV) response. The effect of the interface on the device properties (PV, junction, and carrier transport) was examined with respect to modifications created by chemical treatment, type of plasma species, their energy and film microstructure interacting with the substrate. Thermally stimulated capacitance was used to determine the interfacial trap parameters. Plasma deposition of thin film silicon on chemically clean c-Si created electron

  16. Ultrafast all-optical arithmetic logic based on hydrogenated amorphous silicon microring resonators

    NASA Astrophysics Data System (ADS)

    Gostimirovic, Dusan; Ye, Winnie N.

    2016-03-01

    For decades, the semiconductor industry has been steadily shrinking transistor sizes to fit more performance into a single silicon-based integrated chip. This technology has become the driving force for advances in education, transportation, and health, among others. However, transistor sizes are quickly approaching their physical limits (channel lengths are now only a few silicon atoms in length), and Moore's law will likely soon be brought to a stand-still despite many unique attempts to keep it going (FinFETs, high-k dielectrics, etc.). This technology must then be pushed further by exploring (almost) entirely new methodologies. Given the explosive growth of optical-based long-haul telecommunications, we look to apply the use of high-speed optics as a substitute to the digital model; where slow, lossy, and noisy metal interconnections act as a major bottleneck to performance. We combine the (nonlinear) optical Kerr effect with a single add-drop microring resonator to perform the fundamental AND-XOR logical operations of a half adder, by all-optical means. This process is also applied to subtraction, higher-order addition, and the realization of an all-optical arithmetic logic unit (ALU). The rings use hydrogenated amorphous silicon as a material with superior nonlinear properties to crystalline silicon, while still maintaining CMOS-compatibility and the many benefits that come with it (low cost, ease of fabrication, etc.). Our method allows for multi-gigabit-per-second data rates while maintaining simplicity and spatial minimalism in design for high-capacity manufacturing potential.

  17. Analytical energy-barrier-dependent Voc model for amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Castro-Carranza, A.; Nolasco, J. C.; Reininghaus, N.; Geißendörfer, S.; Vehse, M.; Parisi, J.; Gutowski, J.; Voss, T.

    2016-07-01

    We show that the open circuit voltage (Voc) in hydrogenated amorphous silicon (a-Si:H) solar cells can be described by an analytical energy-barrier-dependent equation, considering thermionic emission as the physical mechanism determining the recombination current. For this purpose, the current-voltage characteristics of two device structures, i.e., a-Si:H(n)/a-Si:H(i)/a-Si:H(p)/AZO p-i-n solar cells with different p-doping concentrations and a-Si:H(n)/a-Si:H(i)/AZO Schottky structures with different intrinsic layer thicknesses, were analyzed in dark and under illumination, respectively. The calculated barrier in the p-i-n devices is consistent with the difference between the work function of the p-layer and the conduction band edge of the i-layer at the interface in thermal equilibrium.

  18. Mapping between atomistic simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model

    NASA Astrophysics Data System (ADS)

    Albaret, T.; Tanguy, A.; Boioli, F.; Rodney, D.

    2016-05-01

    In this paper we perform quasistatic shear simulations of model amorphous silicon bulk samples with Stillinger-Weber-type potentials. Local plastic rearrangements identified based on local energy variations are fitted through their displacement fields on collections of Eshelby spherical inclusions, allowing determination of their transformation strain tensors. The latter are then used to quantitatively reproduce atomistic stress-strain curves, in terms of both shear and pressure components. We demonstrate that our methodology is able to capture the plastic behavior predicted by different Stillinger-Weber potentials, in particular, their different shear tension coupling. These calculations justify the decomposition of plasticity into shear transformations used so far in mesoscale models and provide atomic-scale parameters that can be used to limit the empiricism needed in such models up to now.

  19. Critical oxygen concentration in hydrogenated amorphous silicon solar cells dependent on the contamination source

    SciTech Connect

    Woerdenweber, Jan; Merdzhanova, Tsvetelina; Gordijn, Aad; Stiebig, Helmut; Beyer, Wolfhard

    2010-03-08

    For hydrogenated amorphous silicon (a-Si:H) solar cells, the critical concentration of a given impurity defines the lowest concentration which causes a decay of solar cell efficiency. Values of 2-5x10{sup 19} cm{sup -3} are commonly found for the critical oxygen concentration (C{sub O}{sup crit}) of a-Si:H. Here we report a dependence of C{sub O}{sup crit} on the contamination source. For state-of-the-art a-Si:H solar cells prepared at the same plasma deposition conditions, we obtain with a (controllable) chamber wall leak C{sub O}{sup crit} approx2x10{sup 19} cm{sup -3} while for a leak in the gas supply line a higher C{sub O}{sup crit} of approx2x10{sup 20} cm{sup -3} is measured. No such dependence is observed for nitrogen.

  20. Amorphous silicon-carbon alloys deposited by electron-cyclotron resonance PECVD

    SciTech Connect

    Chu, V.; Conde, J.P.

    1996-12-31

    Hydrogenated amorphous silicon-carbon alloys are prepared using electron-cyclotron resonance (ECR) plasma-enhanced chemical-vapor deposition. Hydrogen is used as the excitation gas in the resonance chamber while silane and methane (or ethylene) are introduced in the main chamber. A minimum of 95% hydrogen dilution is used. The microwave power is kept constant at 150 W. The effect of the type of carbon source gas, silane to carbon source gas ratio, deposition pressure, substrate temperature and hydrogen dilution on the deposition rate, bandgap and Urbach energy are studied. The photoconductivity and the Urbach energy of the ECR-deposited films are compared to those prepared with glow discharge with the same bandgap.

  1. Hydrogen-induced modification of the medium-range structural order in amorphous silicon films

    SciTech Connect

    Nittala, L.N.; Jayaraman, S.; Sperling, B.A.; Abelson, J.R.

    2005-12-12

    We use fluctuation electron microscopy to determine changes in the medium-range structural order of un-hydrogenated amorphous silicon thin films after they are exposed to atomic hydrogen at a substrate temperature of 230 deg. C. The films are deposited by magnetron sputtering at either 230 or 350 deg. C substrate temperature to obtain starting states with small or large initial medium-range order, respectively. The in-diffusion of atomic hydrogen causes the medium-range order to decrease for the small initial order but to increase for the large initial order. We suggest that this behavior can be understood in terms of classical nucleation theory: The ordered regions of small diameter are energetically unstable and can lower their energy by evolving towards a continuous random network, whereas the ordered regions of large diameter are energetically stable and can lower their energy by coarsening towards the nanocrystalline state.

  2. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Theodorakos, I.; Zergioti, I.; Vamvakas, V.; Tsoukalas, D.; Raptis, Y. S.

    2014-01-01

    In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.

  3. Optical properties of protocrystalline silicon/amorphous SiC multilayer films

    NASA Astrophysics Data System (ADS)

    Fu, Guangsheng; Ma, Luo; Lu, Wanbing; Zhang, Zicai; Yu, Wei

    2008-11-01

    Protocrystalline silicon/amorphous SiC multilayer films were fabricated by helicon wave plasma enhanced chemical vapour deposition (HW-PECVD). Atom force microscopy, Raman scattering and optical absorption measurements were used to analyze the microstructure and optical properties of the multilayer films. Experiment analyses reveal that through inserting transient a-SiC layer into film depositing process, well-controlled pc-Si:H films have been obtained in the growth condition of the μc-Si:H. The optical gap is observed being tuned from 2.15 to 2.43 eV by varying single pc-Si:H layer thickness. Such multilayer structure should have potential application in constructing high efficiency and stable Si-based solar cells.

  4. Hydrogen-Induced Rupture of Strained Si-O Bonds in Amorphous Silicon Dioxide

    NASA Astrophysics Data System (ADS)

    El-Sayed, Al-Moatasem; Watkins, Matthew B.; Grasser, Tibor; Afanas'ev, Valery V.; Shluger, Alexander L.

    2015-03-01

    Using ab initio modeling we demonstrate that H atoms can break strained Si-O bonds in continuous amorphous silicon dioxide (a -SiO2 ) networks, resulting in a new defect consisting of a threefold-coordinated Si atom with an unpaired electron facing a hydroxyl group, adding to the density of dangling bond defects, such as E' centers. The energy barriers to form this defect from interstitial H atoms range between 0.5 and 1.3 eV. This discovery of unexpected reactivity of atomic hydrogen may have significant implications for our understanding of processes in silica glass and nanoscaled silica, e.g., in porous low-permittivity insulators, and strained variants of a -SiO2 .

  5. Hydrogen reverses the clustering tendency of carbon in amorphous silicon oxycarbide

    PubMed Central

    Ding, Hepeng; Demkowicz, Michael J.

    2015-01-01

    Amorphous silicon oxycarbide (SiOC) is of great technological interest. However, its atomic-level structure is not well understood. Using density functional theory calculations, we show that the clustering tendency of C atoms in SiOC is extremely sensitive to hydrogen (H): without H, the C-C interaction is attractive, leading to enrichment of aggregated SiC4 tetrahedral units; with hydrogen, the C-C interaction is repulsive, leading to enrichment of randomly distributed SiCO3 tetrahedral units. Our results suggest that conflicting experimental characterizations of C distributions may be due to differing amounts of H present in the samples investigated. Our work also opens a path for tailoring the properties of SiOC by using the total H content to control the C distribution. PMID:26269200

  6. Sputtered amorphous silicon solar cells. Quarterly report No. 2, October 22, 1980-January 22, 1981

    SciTech Connect

    Moustakas, T.D.; Morel, D.L.; Wronski, C.R.

    1981-01-01

    The mechanism of hydrogen incorporation during the film growth was investigated through hydrogen content studies. The data are consistent with a kinetic model of hydrogen incorporation. The hole mobility-lifetime products were measured on a-SiH/sub x//metal Schottky barrier structures with a new method utilizing optical absorption, collection efficiency, and capacitance voltage measurements. The diode properties of reactively sputtered hydrogenated amorphous silicon Schottky barrier structures (a-SiH/sub x//Pt) were investigated as a function of hydrogen content. The data are interpreted in terms of hydrogen modification of the valence band edge and interfacial oxide effects. The fabrication by the method of sputtering of P-I-N/ITO solar cell structures is reported. (MHR)

  7. Laser annealing of amorphous/poly: Silicon solar cell material flight experiment

    NASA Technical Reports Server (NTRS)

    Cole, Eric E.

    1990-01-01

    The preliminary design proposed for the microelectronics materials processing equipment is presented. An overall mission profile, description of all processing steps, analysis methods and measurement techniques, data acquisition and storage, and a preview of the experimental hardware are included. The goal of the project is to investigate the viability of material processing of semiconductor microelectronics materials in a micro-gravity environment. The two key processes are examined: (1) Rapid Thermal Annealing (RTA) of semiconductor thin films and damaged solar cells, and (2) thin film deposition using a filament evaporator. The RTA process will be used to obtain higher quality crystalline properties from amorphous/poly-silicon films. RTA methods can also be used to repair radiation-damaged solar cells. On earth this technique is commonly used to anneal semiconductor films after ion-implantation. The damage to the crystal lattice is similar to the defects found in solar cells which have been exposed to high-energy particle bombardment.

  8. Preparation of superior lubricious amorphous carbon films co-doped by silicon and aluminum

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Yang, Jun; Zheng, Jianyun; Liang, Yongmin; Liu, Weimin

    2011-09-01

    Silicon (Si) and aluminum (Al) co-doped amorphous carbon films ((Si, Al)-C:H) were deposited on Si and stainless steel substrates by radio frequency (13.56 MHz) magnetron sputtering. The Al and Si were found to jointly regulate the hybridized carbon bonds. Mechanical properties of the films were detected by nano-indention and scratch tests. The nano-indention results revealed that all the samples exhibited good elastic recovery rate, among which the highest one was beyond 84%. Besides co-regulating the hybridizations of carbon, the co-doped Si and Al also had a common regulation on the mechanical and tribological properties. Especially, the film containing 1.6 at. % of Si and 0.9 at. % of Al showed a super-low friction (< 0.01) and a superior wear resistance in ambient air.

  9. Risk assessment of amorphous silicon dioxide nanoparticles in a glass cleaner formulation.

    PubMed

    Michel, Karin; Scheel, Julia; Karsten, Stefan; Stelter, Norbert; Wind, Thorsten

    2013-08-01

    Since nanomaterials are a heterogeneous group of substances used in various applications, risk assessment needs to be done on a case-by-case basis. Here the authors assess the risk (hazard and exposure) of a glass cleaner with synthetic amorphous silicon dioxide (SAS) nanoparticles during production and consumer use (spray application). As the colloidal material used is similar to previously investigated SAS, the hazard profile was considered to be comparable. Overall, SAS has a low toxicity. Worker exposure was analysed to be well controlled. The particle size distribution indicated that the aerosol droplets were in a size range not expected to reach the alveoli. Predictive modelling was used to approximate external exposure concentrations. Consumer and environmental exposure were estimated conservatively and were not of concern. It was concluded based on the available weight-of-evidence that the production and application of the glass cleaner is safe for humans and the environment under intended use conditions.

  10. Periodic molybdenum disc array for light trapping in amorphous silicon layer

    NASA Astrophysics Data System (ADS)

    Wang, Jiwei; Yang, Kang; Chen, Haiyan; Deng, Changkai; Li, Dongdong; Chen, Xiaoyuan; Ren, Wei

    2016-05-01

    We demonstrate the light trapping effect in amorphous silicon (a-Si:H) layer by inserting a layer of periodic molybdenum disc array (MDA) between the a-Si:H layer and the quartz substrate, which forms a three-layer structure of Si/MDA/SiO2. The MDA layer was fabricated by a new cost-effective method based on nano-imprint technology. Further light absorption enhancement was realized through altering the topography of MDA by annealing it at 700°C. The mechanism of light absorption enhancement in a-Si:H interfaced with MDA was analyzed, and the electric field distribution and light absorption curve of the different layers in the Si/MDA structure under light illumination of different wavelengths were simulated by employing numerical finite difference time domain (FDTD) solutions.

  11. Deposited amorphous silicon-on-insulator technology for nano-photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Kumar Selvaraja, Shankar; Schaekers, Marc; Bogaerts, Wim; Van Thourhout, Dries

    2014-02-01

    Low-loss deposited amorphous silicon (α-Si:H) layers for nano-photonic integrated circuit have been prepared using complementary-metal-oxide-semiconductor (CMOS) compatible technology. Waveguide loss as low as 3.45 dB/cm is reported for films deposited at a low temperature (300 °C) using plasma enhanced chemical vapour deposition process. The influence of the deposition parameters such as gas dilution, plasma power and pressure on the quality of the deposited material is thoroughly characterized using Fourier transform infrared spectroscopy (FTIR), spectroscopic ellipsometry, X-ray diffraction and atomic force microscopy. We show that the optical quality of the deposited film can be directly assessed from distinct frequency bands (2090, 2000 and 840 cm-1) using FTIR, without the need for further waveguide loss measurements.

  12. High-speed light valve using an amorphous silicon photosensor and ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Takahashi, N. Shin-Ichi; Asada, Hideki; Miyahara, Masaki; Kurita, Shoichi; Kuriyama, Hiroyuki

    1987-10-01

    A novel high-speed response light valve composed of a hydrogenated amorphous silicon (a-Si:H) photosensor and a chiral smectic C phase liquid crystal is presented for the first time. This device is optically addressed. The switching between on and off states is caused by reversing the polarity of the applied voltage across the liquid crystal due to the photocurrent from the a-Si photosensor. The response time measured is about 400 microsec. The switching speed of this device is one to two orders of magnitude faster than that of the nematic liquid-crystal light valve. This device can be applied to optical bistable devices without optical feedback, using an electro-optic memory effect of the ferroelectric liquid crystal.

  13. Mapping between atomistic simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model.

    PubMed

    Albaret, T; Tanguy, A; Boioli, F; Rodney, D

    2016-05-01

    In this paper we perform quasistatic shear simulations of model amorphous silicon bulk samples with Stillinger-Weber-type potentials. Local plastic rearrangements identified based on local energy variations are fitted through their displacement fields on collections of Eshelby spherical inclusions, allowing determination of their transformation strain tensors. The latter are then used to quantitatively reproduce atomistic stress-strain curves, in terms of both shear and pressure components. We demonstrate that our methodology is able to capture the plastic behavior predicted by different Stillinger-Weber potentials, in particular, their different shear tension coupling. These calculations justify the decomposition of plasticity into shear transformations used so far in mesoscale models and provide atomic-scale parameters that can be used to limit the empiricism needed in such models up to now. PMID:27300968

  14. Test beam results of Silicon Drift Detector prototypes for the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Nouais, D.; Bonvicini, V.; Busso, L.; Cerello, P.; Giubellino, P.; Gregorio, A.; Hernández-Ontoya, R.; Idzik, M.; Kolojvari, A.; Mazza, G.; Montano, L. M.; Nilsen, B. S.; Petta, C.; Randazzo, N.; Rashevsky, A.; Reito, S.; Rivetti, A.; Tosello, F.; Trzaska, W. H.; Vacchi, A.; Alice Collaboration

    1999-08-01

    We report preliminary beam test results of linear Silicon Draft Detector prototypes for the ALICE experiment. Linearity, resolution, charge transport and collection, and efficiency have been studied using a minimum ionizing particle beam for a very large area detector prototype read out with the OLA preamplifier/shaper and for another detector read out using a new transimpedance amplifier with a non linear response.

  15. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.

    PubMed

    Mughal, A; El Demellawi, J K; Chaieb, Sahraoui

    2014-12-14

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.

  16. Research on stable, high-efficiency, large-area, amorphous-silicon-based submodules

    SciTech Connect

    Delahoy, A.E.; Tonon, T.; Macneil, J. )

    1991-06-01

    The primary objective of this subcontract is to develop the technology for same bandgap, amorphous silicon tandem junction photovoltaic modules having an area of at least 900 cm{sup 2} with the goal of achieving an aperture area efficiency of 9%. A further objective is to demonstrate modules that retain 95% of their under standard light soaking conditions. Our approach to the attainment of these objective is based on the following distinctive technologies: (a) in-house deposition of SiO{sub 2}/SnO{sub 2}:F onto soda lime glass by APCVD to provide a textured, transparent electrode, (b) single chamber r.f. flow discharge deposition of the a-Si:H layers onto vertical substrates contained with high package density in a box carrier'' to which the discharge is confined (c) sputter deposition of highly reflecting, ZnO-based back contacts, and (d) laser scribing of the a-Si:H and electrodes with real-time scribe tracking to minimize area loss. Continued development of single junction amorphous silicon was aggressively pursued as proving ground for various optical enhancement schemes, new p-layers, and i-layers quality. We have rigorously demonstrated that the introduction of a transitional i-layer does not impair stability and that the initial gain in performance is retained. We have demonstrated a small improvement in cell stability through a post-fabrication treatment consisting of multiple, intense light flashes followed by sufficient annealing. Finally, several experiments have indicated that long term stability can be improved by overcoating the SnO{sub 2} with ZnO. 25 refs., 17 figs.

  17. Silicon and aluminum doping effects on the microstructure and properties of polymeric amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqiang; Hao, Junying; Xie, Yuntao

    2016-08-01

    Polymeric amorphous carbon films were prepared by radio frequency (R.F. 13.56 MHz) magnetron sputtering deposition. The microstructure evolution of the deposited polymeric films induced by silicon (Si) and aluminum(Al) doping were scrutinized through infrared spectroscopy, multi-wavelength Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The comparative results show that Si doping can enhance polymerization and Al doping results in an increase in the ordered carbon clusters. Si and Al co-doping into polymeric films leads to the formation of an unusual dual nanostructure consisting of cross-linked polymer-like hydrocarbon chains and fullerene-like carbon clusters. The super-high elasticity and super-low friction coefficients (<0.002) under a high vacuum were obtained through Si and Al co-doping into the films. Unconventionally, the co-doped polymeric films exhibited a superior wear resistance even though they were very soft. The relationship between the microstructure and properties of the polymeric amorphous carbon films with different elements doping are also discussed in detail.

  18. [Physical mechanisms of solid-protein interactions in the interface between amorphous silicon carbide and fibrinogen].

    PubMed

    Bolz, A; Schaldach, M

    1992-11-01

    State of the art in biomaterial research and implant design is a compromise between functionality and biocompatibility. Consequently the results often have disadvantages with respect to both aspects. In regard to biocompatibility the activation of the clotting system by alloplastic materials is of great significance, because it necessitates anticoagulant therapy. Further improvements of implant technology require an understanding of the interactions between blood and implants. Therefore a microscopic model of thrombogenesis at alloplastic surfaces will shortly be presented, which relates thrombogenicity of a material to the electronic structure of its surface. The requirements for high hemocompatibility, which result from this model--especially in regard to the density of states and the conductivity at the surface--are fulfilled by an amorphous alloy of silicon and carbon (a-SiC:H). The advantage of amorphous materials is that they do not obey stoichiometric rules. Thus they allow a continuous adjustment of the electronic parameters without fundamental changes of their mechanical and chemical properties. The theoretical results where checked by total internal reflection intrinsic fluorescence spectroscopy (TIRIF) as well as thrombelastography experiments (TEG). In comparison to conventional materials like titanium or LTI carbon the TEG-clotting time of a-SiC:H-coatings is prolonged in excess of 200%. As a consequence a-SiC:H is well suited as a hemocompatible coating material for hybrid structuring of cardiovascular implants.

  19. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Arezki, Hakim; Boutchich, Mohamed; Alamarguy, David; Madouri, Ali; Alvarez, José; Cabarrocas, Pere Roca i.; Kleider, Jean-Paul; Yao, Fei; Lee, Young Hee

    2016-10-01

    Large-area graphene film is of great interest for a wide spectrum of electronic applications, such as field effect devices, displays, and solar cells, among many others. Here, we fabricated heterostructures composed of graphene (Gr) grown by chemical vapor deposition (CVD) on copper substrate and transferred to SiO2/Si substrates, capped by n- or p-type doped amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition. Using Raman scattering we show that despite the mechanical strain induced by the a-Si:H deposition, the structural integrity of the graphene is preserved. Moreover, Hall effect measurements directly on the embedded graphene show that the electronic properties of CVD graphene can be modulated according to the doping type of the a-Si:H as well as its phase i.e. amorphous or nanocrystalline. The sheet resistance varies from 360 Ω sq-1 to 1260 Ω sq-1 for the (p)-a-Si:H/Gr (n)-a-Si:H/Gr, respectively. We observed a temperature independent hole mobility of up to 1400 cm2 V-1 s-1 indicating that charge impurity is the principal mechanism limiting the transport in this heterostructure. We have demonstrated that embedding CVD graphene under a-Si:H is a viable route for large scale graphene based solar cells or display applications.

  20. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures.

    PubMed

    Arezki, Hakim; Boutchich, Mohamed; Alamarguy, David; Madouri, Ali; Alvarez, José; Cabarrocas, Pere Roca I; Kleider, Jean-Paul; Yao, Fei; Hee Lee, Young

    2016-10-12

    Large-area graphene film is of great interest for a wide spectrum of electronic applications, such as field effect devices, displays, and solar cells, among many others. Here, we fabricated heterostructures composed of graphene (Gr) grown by chemical vapor deposition (CVD) on copper substrate and transferred to SiO2/Si substrates, capped by n‑ or p-type doped amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition. Using Raman scattering we show that despite the mechanical strain induced by the a-Si:H deposition, the structural integrity of the graphene is preserved. Moreover, Hall effect measurements directly on the embedded graphene show that the electronic properties of CVD graphene can be modulated according to the doping type of the a-Si:H as well as its phase i.e. amorphous or nanocrystalline. The sheet resistance varies from 360 Ω sq(-1) to 1260 Ω sq(-1) for the (p)-a-Si:H/Gr (n)-a-Si:H/Gr, respectively. We observed a temperature independent hole mobility of up to 1400 cm(2) V(-1) s(-1) indicating that charge impurity is the principal mechanism limiting the transport in this heterostructure. We have demonstrated that embedding CVD graphene under a-Si:H is a viable route for large scale graphene based solar cells or display applications. PMID:27506254

  1. 3D micro- and nano-machining of hydrogenated amorphous silicon films on SiO2/Si and glass substrates

    NASA Astrophysics Data System (ADS)

    Soleimani-Amiri, S.; Zanganeh, S.; Ramzani, R.; Talei, R.; Mohajerzadeh, S.; Azimi, S.; Sanaee, Z.

    2015-07-01

    We report on the hydrogen-assisted deep reactive ion etching of hydrogenated amorphous silicon (a-Si:H) films deposited using radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD). High aspect-ratio vertical and 3D amorphous silicon features, with the desired control over the shaping of the sidewalls, in micro and nano scales, were fabricated in ordered arrays. The suitable adhesion of amorphous Si film to the underlayer allows one to apply deep micro- and nano-machining to these layers. By means of a second deposition of amorphous silicon on highly curved 3D structures and subsequent etching, the fabrication of amorphous silicon rings is feasible. In addition to photolithography, nanosphere colloidal lithography and electron beam lithography were exploited to realize ultra-small features of amorphous silicon. We have also investigated the optical properties of fabricated hexagonally patterned a-Si nanowire arrays on glass substrates and demonstrated their high potential as active layers for solar cells. This etching process presents an inexpensive method for the formation of highly featured arrays of vertical and 3D amorphous silicon rods on both glass and silicon substrates, suitable for large-area applications.

  2. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bullock, J.; Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-01

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n+ and p+ surfaces are passivated with SiO2/a-Si:H and Al2O3/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n+) contacts, with SiO2 thicknesses of ˜1.55 nm, achieve the best carrier-selectivity producing a contact resistivity ρc of ˜3 mΩ cm2 and a recombination current density J0c of ˜40 fA/cm2. These characteristics are shown to be stable at temperatures up to 350 °C. The MIS(p+) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  3. New development of large-area direct conversion detector for digital radiography using amorphous selenium with a C60-doped polymer layer

    NASA Astrophysics Data System (ADS)

    Nariyuki, F.; Imai, S.; Watano, H.; Nabeta, T.; Hosoi, Y.

    2010-04-01

    We have developed a novel direct conversion detector for digital radiography by using a fullerene (C60)-doped polymer layer added on a thick amorphous selenium (a-Se) layer coupled to an amorphous silicon thin-film transistor (a-Si TFT) array. This detector exhibits considerable improvement in the lag characteristics and durability in high ambient temperatures. The C60-doped polymer layer, which is directly and uniformly solution cast on the a-Se layer and followed by an inorganic electron-transporting layer, smoothly changes the electronic junction between the a-Se layer and the inorganic layer. It lubricates the emission of photocurrents from the a-Se photo-conversion layer and leads to the improved lag characteristics. Another merit of using a C60-doped polymer is that it is stabile in high-temperature ambient conditions and is not degraded by humidity or a large amount of X-ray exposure. The polymer layer prevents the crystallization of a-Se, which otherwise occurs on exposure of a-Se to high temperature not only during the deposition of the inorganic layer or the metal electrode layer in the manufacturing process but also in actual use. A prototype detector, with a size of 17 in × 17 in and a pixel pitch of 150 μm, exhibited a good resolution; its DQE is approximately 48% at 1 cy/mm in 258 μC/kg (RQA5). This new development can simplify cooling apparatus and detector modules and also make a wide range of operational environments available. In addition, the improved lag characteristics make it possible to reduce the exposure intervals for static imaging, tomosynthesis, and other various exposure techniques.

  4. An amorphous phase formation at palladium / silicon oxide (Pd/SiO{sub x}) interface through electron irradiation - electronic excitation process

    SciTech Connect

    Nagase, Takeshi; Yamashita, Ryo; Yabuuchi, Atsushi; Lee, Jung-Goo

    2015-11-15

    A Pd-Si amorphous phase was formed at a palladium/silicon oxide (Pd/SiO{sub x}) interface at room temperature by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Solid-state amorphization was stimulated without the electron knock-on effects. The total dose required for the solid-state amorphization decreases with decreasing acceleration voltage. This is the first report on electron irradiation induced metallic amorphous formation caused by the electronic excitation at metal/silicon oxide interface.

  5. Optical properties of amorphous silicon thin films fabricated by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Liu, Benfeng; Zhao, Qingnan; Zheng, Pan

    2008-12-01

    Hydrogenated amorphous silicon (a-Si:H) thin films have been prepared by radio frequency magnetron sputtering. The effects of hydrogen pressure, substrate temperature and sputtering power on deposition rate of a-Si:H thin films and optical characteristics have been investigated. The films are studied by ultraviolet-visible spectrophotometer and NKD7000w thin film analysis system. The results show that the hydrogen pressure, substrate temperature and sputtering power will affect the deposition rate respectively; The refractive index, extinctive index and optical bandgap of hydrogenated silicon thin films vary regularly with the change of one of the deposition parameters. The optical bandgap, absorption coefficient and extinctive index of the films are evaluated. The absorption coefficient values range from 1.1×104cm-1 to 8.3×104cm-1 and the corresponding extinctive index vary from 0.23 to 0.35 at the wavelength of 400nm, and the optical bandgap of a-Si:H vary from 1.77 to 1.89eV.

  6. Microstructure from joint analysis of experimental data and ab initio interactions: Hydrogenated amorphous silicon

    SciTech Connect

    Biswas, Parthapratim; Drabold, D. A.; Atta-Fynn, Raymond

    2014-12-28

    A study of the formation of voids and molecular hydrogen in hydrogenated amorphous silicon is presented based upon a hybrid approach that involves inversion of experimental nuclear magnetic resonance data in conjunction with ab initio total-energy relaxations in an augmented solution space. The novelty of this approach is that the voids and molecular hydrogen appear naturally in the model networks unlike conventional approaches, where voids are created artificially by removing silicon atoms from the networks. Two representative models with 16 and 18 at. % of hydrogen are studied in this work. The result shows that the microstructure of the a-Si:H network consists of several microvoids and few molecular hydrogen for concentration above 15 at. % H. The microvoids are highly irregular in shape and size, and have a linear dimension of 5–7 Å. The internal surface of a microvoid is found to be decorated with 4–9 hydrogen atoms in the form of monohydride Si–H configurations as observed in nuclear magnetic resonance experiments. The microstructure consists of (0.9–1.4)% hydrogen molecules of total hydrogen in the networks. These observations are consistent with the outcome of infrared spectroscopy, nuclear magnetic resonance, and calorimetry experiments.

  7. Deposition of amorphous silicon using a tubular reactor with concentric-electrode confinement

    NASA Astrophysics Data System (ADS)

    Conde, J. P.; Chan, K. K.; Blum, J. M.; Arienzo, M.; Cuomo, J. J.

    1992-04-01

    High-quality, hydrogenated amorphous silicon (a-Si:H) is deposited at room temperature by rf glow discharge at a high deposition rate using a tubular reactor with cylindrical symmetry (concentric-electrode plasma-enhanced chemical vapor deposition, CE-PECVD). Using the novel CE-PECVD design, room-temperature deposition of a-Si:H with growth rates up to 14 Å s-1, low hydrogen concentration (≲10%), and the bonded hydrogen in the Si-H monohydride configuration, is achieved for the first time using an rf glow-discharge technique. The influence of the deposition parameters (silane flow rate, pressure, and power density) on the growth rate, optical band gap, and silicon-hydrogen bonding configuration, is quantitatively predicted using a deposition mechanism based on the additive contribution of three growth precursors, SiH2, SiH3, and Si2H6, with decreasing sticking coefficients of 0.7, 0.1, and 0.001, respectively. The low hydrogen concentration is due to the enhanced ion bombardment resulting from the concentric electrode design.

  8. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    NASA Astrophysics Data System (ADS)

    Guo, Anran; Zhong, Hao; Li, Wei; Gu, Deen; Jiang, Xiangdong; Jiang, Yadong

    2016-10-01

    Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si1-xRux) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si1-xRux thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si1-xRux thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  9. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    SciTech Connect

    Bullock, J. Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-28

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ∼1.55 nm, achieve the best carrier-selectivity producing a contact resistivity ρ{sub c} of ∼3 mΩ cm{sup 2} and a recombination current density J{sub 0c} of ∼40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350 °C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  10. A Silicon UCN Detector With Large Area and With Analysis of UCN Polarization

    PubMed Central

    Lasakov, M.; Serebrov, A.; Khusainov, A.; Pustovoit, A.; Borisov, Yu.; Fomin, A.; Geltenbort, P.; Kon’kov, O.; Kotina, I.; Shablii, A.; Solovei, V.; Vasiliev, A.

    2005-01-01

    A silicon ultracold neutron (UCN) detector with an area of 45 cm2 and with a 6LiF converter is developed at St. Petersburg Nuclear Physics Institute (PNPI). The spectral efficiency of the silicon UCN detector was measured by means of a gravitational spectrometer at Institut Max von Laue – Paul Langevin (ILL). The sandwich-type detector from two silicon plates with a 6LiF converter placed between them was also studied. Using this type of technology the UCN detector with analysis of polarization was developed and tested. The analyzing power of this detector assembly reaches up 75 % for the main part of UCN spectrum. This UCN detector with analysis of UCN polarization can be used in the new electric dipole moment (EDM) spectrometer. PMID:27308138

  11. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor–liquid–solid technique

    SciTech Connect

    LeBoeuf, J. L. Brodusch, N.; Gauvin, R.; Quitoriano, N. J.

    2014-12-28

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the (1 0 0) surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.

  12. Digital radiography: Present detectors and future developments

    SciTech Connect

    Perez-Mendez, V.

    1990-08-01

    Present detectors for digital radiography are of two classes: real time detectors and storage (non real time) types. Present real time detectors consist of image intensifier tubes with an internal cesium iodide layer x-ray converter. Non real time detectors involve linear sweep arrays or storage detectors such as film. Future detectors discussed here can be of both types utilizing new technologies such as hydrogenated amorphous silicon photodiode arrays coupled to thin film transistor arrays. 17 refs., 10 figs.

  13. A large area, silicon photomultiplier-based PET detector module

    NASA Astrophysics Data System (ADS)

    Raylman, R. R.; Stolin, A.; Majewski, S.; Proffitt, J.

    2014-01-01

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26×58 array of 1.5×1.5 mm2 LYSO elements (spanning 41×91 mm2) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ~45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (~2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3 T clinical magnetic resonance imaging scanner.

  14. A large area, silicon photomultiplier-based PET detector module.

    PubMed

    Raylman, Rr; Stolin, A; Majewski, S; Proffitt, J

    2014-01-21

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26 × 58 array of 1.5 × 1.5mm(2) LYSO elements (spanning 41 × 91mm(2)) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3T clinical magnetic resonance imaging scanner. PMID:24319305

  15. A large area, silicon photomultiplier-based PET detector module.

    PubMed

    Raylman, Rr; Stolin, A; Majewski, S; Proffitt, J

    2014-01-21

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26 × 58 array of 1.5 × 1.5mm(2) LYSO elements (spanning 41 × 91mm(2)) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3T clinical magnetic resonance imaging scanner.

  16. Stacked silicide/silicon mid- to long-wavelength infrared detector

    DOEpatents

    Maserjian, Joseph

    1990-03-13

    The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

  17. Fine Grained Silicon-Tungsten Calorimetry for a Linear Collider Detector

    SciTech Connect

    Strom, D.; Frey, R.; Breidenbach, M.; Freytag, D.; Graf, N.; Haller, G.; Milgrome, O.; Radeka, V.; /Brookhaven

    2006-02-08

    A fine grained silicon-tungsten calorimeter is ideal for use as the electromagnetic calorimeter in a linear collider detector optimized for particle-flow reconstruction. We are designing a calorimeter that is based on readout chips which are bump bonded to the silicon wafers that serve as the active medium in the calorimeter. By using integrated electronics we plan to demonstrate that fine granularity can be achieved at a reasonable price. Our design minimizes the gap between tungsten layers leading to a small Moliere radius, an important figure of merit for particle-flow detectors. Tests of the silicon detectors to be used in a test beam prototype as well as timing measurements based on similar silicon detectors are discussed.

  18. Development of a large-area silicon α-particle detector.

    PubMed

    Tran, Linh T; Prokopovich, Dale A; Lerch, Michael L F; Petasecca, Marco; Siegele, Rainer; Reinhard, Mark I; Perevertaylo, Vladimir; Rosenfeld, Anatoly B

    2014-09-01

    Circular ion-implanted silicon detector of α-particles with a large, 5-cm(2), sensitive area has been developed. An advantage of the detector is that the detector surface is easily cleanable with chemicals. The hardened surface of the detector shows no signs of deterioration of the spectroscopic and electrical characteristics upon repeated cleaning. The energy resolution along the diameters of the detector was (1.0±0.1)% for the 5.486-MeV α-particles. Detailed tests of the charge collection efficiency and uniformity of the detector entrance window were also performed with a 5.5-MeV He(2+) microbeam.

  19. SWAD: inherent photon counting performance of amorphous selenium multi-well avalanche detector

    NASA Astrophysics Data System (ADS)

    Stavro, Jann; Goldan, Amir H.; Zhao, Wei

    2016-03-01

    Photon counting detectors (PCDs) have the potential to improve x-ray imaging, however they are still hindered by several performance limitations and high production cost. By using amorphous Selenium (a-Se) the cost of PCDs can be significantly reduced compared to crystalline materials and enable large area detector fabrication. To overcome the problem of low carrier mobility and low charge conversion gain in a-Se, we are developing a novel direct conversion a- Se field-Shaping multi-Well Avalanche Detector (SWAD). SWAD circumvents the charge transport limitation by using a Frisch grid built within the readout circuit, reducing charge collection time to ~200 ns. Field shaping permits depth independent avalanche gain in wells, resulting in total conversion gain that is comparable to Si and CdTe. In the present work we investigate the effects of charge sharing and energy loss to understand the inherent photon counting performance for SWAD at x-ray energies used in breast imaging applications (20-50keV). The energy deposition profile for each interacting x-ray was determined with Monte Carlo simulation. For the energy ranges we are interested in, photoelectric interaction dominates, with a k-fluorescence yield of approximately 60%. Using a monoenergetic 45 keV beam incident on a target pixel in 400um of a-Se, our results show that only 20.42 % and 22.4 % of primary interacting photons have kfluorescence emissions which escape the target pixel for 100um and 85um pixel sizes respectively, demonstrating SWAD's potential for high spatial resolution applications.

  20. Developments in megavoltage cone beam CT with an amorphous silicon EPID: reduction of exposure and synchronization with respiratory gating.

    PubMed

    Sillanpaa, J; Chang, J; Mageras, G; Riem, H; Ford, E; Todor, D; Ling, C C; Amols, H

    2005-03-01

    We have studied the feasibility of a low-dose megavoltage cone beam computed tomography (MV CBCT) system for visualizing the gross tumor volume in respiratory gated radiation treatments of nonsmall-cell lung cancer. The system consists of a commercially available linear accelerator (LINAC), an amorphous silicon electronic portal imaging device, and a respiratory gating system. The gantry movement and beam delivery are controlled using dynamic beam delivery toolbox, a commercial software package for executing scripts to control the LINAC. A specially designed interface box synchronizes the LINAC, image acquisition electronics, and the respiratory gating system. Images are preprocessed to remove artifacts due to detector sag and LINAC output fluctuations. We report on the output, flatness, and symmetry of the images acquired using different imaging parameters. We also examine the quality of three-dimensional (3D) tomographic reconstruction with projection images of anthropomorphic thorax, contrast detail, and motion phantoms. The results show that, with the proper choice of imaging parameters, the flatness and symmetry are reasonably good with as low as three beam pulses per projection image. Resolution of 5% electron density differences is possible in a contrast detail phantom using 100 projections and 30 MU. Synchronization of image acquisition with simulated respiration also eliminated motion artifacts in a moving phantom, demonstrating the system's capability for imaging patients undergoing gated radiation therapy. The acquisition time is limited by the patient's respiration (only one image per breathing cycle) and is under 10 min for a scan of 100 projections. In conclusion, we have developed a MV CBCT system using commercially available components to produce 3D reconstructions, with sufficient contrast resolution for localizing a simulated lung tumor, using a dose comparable to portal imaging. PMID:15839355

  1. High Mobility and Stability of Thin-Film Transistors Using Silicon-Doped Amorphous Indium Tin Oxide Semiconductors

    NASA Astrophysics Data System (ADS)

    Seo, T. W.; Kim, Hyun-Suk; Lee, Kwang-Ho; Chung, Kwun-Bum; Park, Jin-Seong

    2014-09-01

    We report the fabrication of high-performance thin-film transistors (TFTs) with an amorphous silicon indium tin oxide ( a-SITO) channel, which was deposited by cosputtering a silicon dioxide and an indium tin oxide target. The effect of the silicon doping on the device performance and stability of the a-SITO TFTs was investigated. The field-effect mobility and stability under positive bias stress of the a-SITO TFTs with optimized Si content (0.22 at.% Si) dramatically improved to 28.7 cm2/Vs and 1.5 V shift of threshold voltage, respectively, compared with the values (0.72 cm2/Vs and 8.9 V shift) for a-SITO TFTs with 4.22 at.% Si. The role of silicon in a-SITO TFTs is discussed based on various physical and chemical analyses, including x-ray absorption spectroscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry measurements.

  2. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    NASA Technical Reports Server (NTRS)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  3. A novel self-biased linear silicon drift detector

    SciTech Connect

    Corsi, F.; Gramegna, G.; Marzocca, C.; De Venuto, D.; Vacchi, A.; Bonvicini, V.; Rashevsky, A.; Zampa, N.; Burger, P.

    1999-02-01

    A novel linear silicon drift detector (SDD) is proposed in which the proper potential profile is established by the voltage drop along a unique p{sup +} cathode implanted across the surfaces. This p{sup +} implant, arranged in a zigzag shape, acts at the same time as voltage divider and field cathode and allows one to increase the sensitive area, improving also the uniformity of the thermal distribution and thus minimizing the fluctuation of the electron mobility on the sensitive zone of the SDD. The perturbations of the drift field due to the asymmetry of the strips constituting the zigzag cathode have been evaluated by solving analytically Poisson`s equation for a simplified model of the structure. Three-dimensional numerical simulations have been carried out to prove the negligible amount of the perturbation and the effectiveness of the proposed structure. Based on this principle, a prototype has been manufactured at Canberra Semiconductor Company. Dynamic measurements of the time-of-flight of an injected charge prove that the linearity of the prototype and the drift uniformity in the anode direction are very high.

  4. Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon

    NASA Astrophysics Data System (ADS)

    Puerto, Daniel; Garcia-Lechuga, Mario; Hernandez-Rueda, Javier; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan

    2016-07-01

    Self-assembly (SA) of molecular units to form regular, periodic extended structures is a powerful bottom-up technique for nanopatterning, inspired by nature. SA can be triggered in all classes of solid materials, for instance, by femtosecond laser pulses leading to the formation of laser-induced periodic surface structures (LIPSS) with a period slightly shorter than the laser wavelength. This approach, though, typically involves considerable material ablation, which leads to an unwanted increase of the surface roughness. We present a new strategy to fabricate high-precision nanograting structures in silicon, consisting of alternating amorphous and crystalline lines, with almost no material removal. The strategy can be applied to static irradiation experiments and can be extended into one and two dimensions by scanning the laser beam over the sample surface. We demonstrate that lines and areas with parallel nanofringe patterns can be written by an adequate choice of spot size, repetition rate and scan velocity, keeping a constant effective pulse number (N eff) per area for a given laser wavelength. A deviation from this pulse number leads either to inhomogeneous or ablative structures. Furthermore, we demonstrate that this approach can be used with different laser systems having widely different wavelengths (1030 nm, 800 nm, 400 nm), pulse durations (370 fs, 100 fs) and repetition rates (500 kHz, 100 Hz, single pulse) and that the grating period can also be tuned by changing the angle of laser beam incidence. The grating structures can be erased by irradiation with a single nanosecond laser pulse, triggering recrystallization of the amorphous stripes. Given the large differences in electrical conductivity between the two phases, our structures could find new applications in nanoelectronics.

  5. Effects of irradiation of energetic heavy ions on digital pulse shape analysis with silicon detectors

    NASA Astrophysics Data System (ADS)

    Barlini, S.; Carboni, S.; Bardelli, L.; Le Neindre, N.; Bini, M.; Borderie, B.; Bougault, R.; Casini, G.; Edelbruck, P.; Olmi, A.; Pasquali, G.; Poggi, G.; Rivet, M. F.; Stefanini, A. A.; Baiocco, G.; Berjillos, R.; Bonnet, E.; Bruno, M.; Chbihi, A.; Cruceru, I.; Degerlier, M.; Dueñas, J. A.; Galichet, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lopez, O.; Marchi, T.; Martel, I.; Morelli, L.; Parlog, M.; Piantelli, S.; Petrascu, H.; Rosato, E.; Seredov, V.; Vient, E.; Vigilante, M.; Fazia Collaboration

    2013-04-01

    The next generation of 4π detector arrays for heavy ion studies will largely use Pulse Shape Analysis to push the performance of silicon detectors with respect to ion identification. Energy resolution and pulse shape identification capabilities of silicon detectors under prolonged irradiation by energetic heavy ions have thus become a major issue. In this framework, we have studied the effects of irradiation by energetic heavy ions on the response of neutron transmutation doped (nTD) silicon detectors. Sizeable effects on the amplitude and the risetime of the charge signal have been found for detectors irradiated with large fluences of stopped heavy ions, while much weaker effects were observed by punching-through ions. The robustness of ion identification based on digital pulse shape techniques has been evaluated.

  6. Quantitative comparison using generalized relative object detectability (G-ROD) metrics of an amorphous selenium detector with high resolution microangiographic fluoroscopes (MAF) and standard flat panel detectors (FPD)

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-pre-whitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal- spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide break- through abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  7. Improving IMRT quality control efficiency using an amorphous silicon electronic portal imager

    SciTech Connect

    Budgell, G.J.; Zhang, Q.; Trouncer, R.J.; Mackay, R.I.

    2005-11-15

    An amorphous silicon electronic portal imaging device (EPID) has been investigated to determine its usefulness and efficiency for performing linear accelerator quality control checks specific to step and shoot intensity modulated radiation therapy (IMRT). Several dosimetric parameters were measured using the EPID: dose linearity and segment to segment reproducibility of low dose segments, and delivery accuracy of fractions of monitor units. Results were compared to ion chamber measurements. Low dose beam flatness and symmetry were tested by overlaying low dose beam profiles onto the profile from a stable high-dose exposure and visually checking for differences. Beam flatness and symmetry were also calculated and plotted against dose. Start-up reproducibility was tested by overlaying profiles from twenty successive two monitor unit segments. A method for checking the MLC leaf calibration was also tested, designed to be used on a daily or weekly basis, which consisted of summing the images from a series of matched fields. Daily images were co-registered with, then subtracted from, a reference image. A threshold image showing dose differences corresponding to >0.5 mm positional errors was generated and the number of pixels with such dose differences used as numerical parameter to which a tolerance can be applied. The EPID was found to be a sensitive relative dosemeter, able to resolve dose differences of 0.01 cGy. However, at low absolute doses a reproducible dosimetric nonlinearity of up to 7% due to image lag/ghosting effects was measured. It was concluded that although the EPID is suitable to measure segment to segment reproducibility and fractional monitor unit delivery accuracy, it is still less useful than an ion chamber as a tool for dosimetric checks. The symmetry/flatness test proved to be an efficient method of checking low dose profiles, much faster than any of the alternative methods. The MLC test was found to be extremely sensitive to sudden changes in

  8. Use of an amorphous silicon electronic portal imaging device for multileaf collimator quality control and calibration.

    PubMed

    Baker, S J K; Budgell, G J; MacKay, R I

    2005-04-01

    Multileaf collimator (MLC) calibration and quality control is a time-consuming procedure typically involving the processing, scanning and analysis of films to measure leaf and collimator positions. Faster and more reliable calibration procedures are required for these tasks, especially with the introduction of intensity modulated radiotherapy which requires more frequent checking and finer positional leaf tolerances than previously. A routine quality control (QC) technique to measure MLC leaf bank gain and offset, as well as minor offsets (individual leaf position relative to a reference leaf), using an amorphous silicon electronic portal imaging device (EPID) has been developed. The technique also tests the calibration of the primary and back-up collimators. A detailed comparison between film and EPID measurements has been performed for six linear accelerators (linacs) equipped with MLC and amorphous silicon EPIDs. Measurements of field size from 4 to 24 cm with the EPID were systematically smaller than film measurements over all field sizes by 0.4 mm for leaves/back-up collimators and by 0.2 mm for conventional collimators. This effect is due to the gain calibration correction applied by the EPID, resulting in a 'flattening' of primary beam profiles. Linac dependent systematic differences of up to 0.5 mm in individual leaf/collimator positions were also found between EPID and film measurements due to the difference between the mechanical and radiation axes of rotation. When corrections for these systematic differences were applied, the residual random differences between EPID and film were 0.23 mm and 0.26 mm (1 standard deviation) for field size and individual leaf/back-up collimator position, respectively. Measured gains (over a distance of 220 mm) always agreed within 0.4 mm with a standard deviation of 0.17 mm. Minor offset measurements gave a mean agreement between EPID and film of 0.01+/-0.10 mm (1 standard deviation) after correction for the tilt of the

  9. Performance characteristics and radiation damage results from the Fermilab E706 silicon microstrip detector system

    NASA Astrophysics Data System (ADS)

    Engels, E.; Mani, S.; Orris, D.; Shepard, P. F.; Weerasundara, P. D.; Choudhary, B. C.; Joshi, U.; Kapoor, V.; Shivpuri, R.; Baker, W.; Berg, D.; Carey, D.; Johnstone, C.; Nelson, C.; Bromberg, C.; Brown, D.; Huston, J.; Miller, R.; Nguyen, A.; Benson, R.; Lukens, P.; Ruddick, K.; Alverson, G.; Faissler, W.; Garelick, D.; Glaubman, M.; Kourbanis, I.; Lirakis, C.; Pothier, E.; Sinanidis, A.; Wu, G.-H.; Yasuda, T.; Yosef, C.; Easo, S.; Hartman, K.; Oh, B. Y.; Toothacker, W.; Whitmore, J.; Ballocchi, G.; Debarbaro, L.; Desoi, W.; Fanourakis, G.; Ferbel, T.; Ginther, G.; Gutierrez, P.; Lanaro, A.; Lobkowicz, F.; Mansour, J.; Pedeville, G.; Prebys, E.; Skow, D.; Slattery, P.; Varelas, N.; Zielinski, M.

    1989-07-01

    A charged particle spectrometer containing a 7120-channel silicon microstrip detector system, one component of Fermilab experiment E706 to study direct photon production in hadron-hadron collisions, was utilized in a run in which 6 million events were recorded. We describe the silicon system, provide early results of track and vertex reconstruction, and present data on the radiation damage to the silicon wafers resulting from the narrow high intensity beam.

  10. Microcrystallinity of Undoped Amorphous Silicon Films and Its Effects on the Transfer Characteristics of Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Liang, Chia-Wen; Chiang, Wen-Chuan; Feng, Ming-Shiann

    1995-11-01

    The microcrystallinity of hydrogenated amorphous silicon films deposited by the conventional radio-frequency plasma-enhanced chemical vapor deposition (rf-PECVD) method and its dependence on chamber pressure are discussed. In a wide range of pressure at which the microcrystalline film can be formed, a critical pressure (500 mT) is found. Films deposited at this critical pressure possess the highest crystalline volume fraction and the smallest grain size. An ion-bombardment-assisted model is proposed to explain the experimental results. Concerning the applications of microcrystalline films to thin-film transistors (TFTs), the subthreshold swing and the field effect mobility are studied, both of which are found to be smaller than those of the hydrogenated amorphous silicon (a-Si:H) TFTs.

  11. Experimental and ab initio study of enhanced resistance to amorphization of nanocrystalline silicon carbide under electron irradiation

    NASA Astrophysics Data System (ADS)

    Jamison, Laura; Zheng, Ming-Jie; Shannon, Steve; Allen, Todd; Morgan, Dane; Szlufarska, Izabela

    2014-02-01

    The crystalline-to-amorphous transition in nanocrystalline silicon carbide (ncSiC) has been studied using 1.25 MeV electron irradiation. When compared to literature values for single crystal silicon carbide under electron irradiation, an increase in the dose to amorphization (DTA) was observed, indicative of an increase in radiation resistance. Factors that contribute to this improvement are grain refinement, grain texture, and a high density of stacking faults (SFs) in this sample of ncSiC. To test the effect of SFs on the DTA, density functional theory simulations were conducted. It was found that SFs reduced the energy barriers for both Si interstitial migration and the rate-limiting defect recovery reaction, which may explain the increased DTA.

  12. Effect of the femtosecond laser treatment of hydrogenated amorphous silicon films on their structural, optical, and photoelectric properties

    SciTech Connect

    Emelyanov, A. V. Kazanskii, A. G.; Kashkarov, P. K.; Konkov, O. I.; Terukov, E. I.; Forsh, P. A.; Khenkin, M. V.; Kukin, A. V.; Beresna, M.; Kazansky, P.

    2012-06-15

    The effect of the femtosecond laser treatment of hydrogenated amorphous silicon (a-Si:H) films on their structural, optical, and photoelectric properties is studied. Under the experimental conditions applied in the study, laser treatment of the film with different radiation intensities induces structural changes that are nonuniform over the film surface. An increase in the radiation intensity yields an increase in the contribution of the nanocrystalline phase to the structure, averaged over the sample surface, as well as an increase in the conductance and photoconductance of the samples. At the same time, for all of the samples, the absorption spectrum obtained by the constant-photocurrent method has a shape typical for those of amorphous silicon. Obtained results indicate the possibility of a-Si:H films photoconductance increase by femtosecond pulse laser treatment.

  13. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Annual technical report, April 1, 1995--March 31, 1996

    SciTech Connect

    Gordon, R.G.; Sato, H.; Liang, H.; Liu, X.; Thornton, J.

    1996-08-01

    The general objective is to develop methods to deposit materials which can be used to make more efficient solar cells. The work is organized into three general tasks: Task 1. Develop improved methods for depositing and using transparent conductors of fluorine-doped zinc oxide in amorphous silicon solar cells Task 2. Deposit and evaluate titanium oxide as a reflection-enhancing diffusion barrier between amorphous silicon and an aluminum or silver back-reflector. Task 3. Deposit and evaluate electrically conductive titanium oxide as a transparent conducting layer on which more efficient and more stable superstrate cells can be deposited. About one-third of the current project resources are allocated to each of these three objectives.

  14. Integrated detection of intrinsic fluorophores in live microbial cells using an array of thin film amorphous silicon photodetectors.

    PubMed

    Jóskowiak, A; Stasio, N; Chu, V; Prazeres, D M F; Conde, J P

    2012-01-01

    Two-dimensional fluorescence spectroscopy (2D FS) provides a non-invasive means to assess cell condition without the introduction of changes to the cell environment. The method relies on the measurement of the excitation-emission fluorescence intensity matrix of key intrinsic fluorophores, like aromatic amino acids, enzyme cofactors, and vitamins. Commonly used detection systems are complex, with multiple bandpass filters, and are hard to miniaturize. Here, an amorphous silicon photodetector array system integrated with amorphous silicon-carbon alloy filters designed to detect three key fluorophores - tryptophan (Trp), reduced nicotine adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) - is demonstrated. These intrinsic fluorophores were detected in pure solutions and also in suspended yeast cells. The array system was used to monitor changes in intrinsic fluorophore concentration when a yeast cell solution was subject to a thermal shock stress. PMID:22565094

  15. Behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic modules under outdoor long term exposure.

    PubMed

    Kichou, Sofiane; Silvestre, Santiago; Nofuentes, Gustavo; Torres-Ramírez, Miguel; Chouder, Aissa; Guasch, Daniel

    2016-06-01

    Four years׳ behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic (PV) modules installed in a relatively dry and sunny inland site with a Continental-Mediterranean climate (in the city of Jaén, Spain) are presented in this article. The shared data contributes to clarify how the Light Induced Degradation (LID) impacts the output power generated by the PV array, especially in the first days of exposure under outdoor conditions. Furthermore, a valuable methodology is provided in this data article permitting the assessment of the degradation rate and the stabilization period of the PV modules. Further discussions and interpretations concerning the data shared in this article can be found in the research paper "Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure" (Kichou et al., 2016) [1].

  16. Investigation of epitaxial silicon layers as a material for radiation hardened silicon detectors

    SciTech Connect

    Li, Z.; Eremin, V.; Ilyashenko, I.; Ivanov, A.; Verbitskaya, E.; CERN RD-48 ROSE Collaboration

    1997-12-01

    Epitaxial grown thick layers ({ge} 100 micrometers) of high resistivity silicon (Epi-Si) have been investigated as a possible candidate of radiation hardened material for detectors for high-energy physics. As grown Epi-Si layers contain high concentration (up to 2 {times} 10{sup 12} cm{sup {minus}3}) of deep levels compared with that in standard high resistivity bulk Si. After irradiation of test diodes by protons (E{sub p} = 24 GeV) with a fluence of 1.5 {times} 10{sup 11} cm{sup {minus}2}, no additional radiation induced deep traps have been detected. A reasonable explanation is that there is a sink of primary radiation induced defects (interstitial and vacancies), possibly by as-grown defects, in epitaxial layers. The ``sinking`` process, however, becomes non-effective at high radiation fluences (10{sup 14} cm{sup {minus}2}) due to saturation of epitaxial defects by high concentration of radiation induced ones. As a result, at neutron fluence of 1 {times} 10{sup 14} cm{sup {minus}2} the deep level spectrum corresponds to well-known spectrum of radiation induced defects in high resistivity bulk Si. The net effective concentration in the space charge region equals to 3 {times} 10{sup 12} cm{sup {minus}3} after 3 months of room temperature storage and reveals similar annealing behavior for epitaxial as compared to bulk silicon.

  17. High-Performance and Omnidirectional Thin-Film Amorphous Silicon Solar Cell Modules Achieved by 3D Geometry Design.

    PubMed

    Yu, Dongliang; Yin, Min; Lu, Linfeng; Zhang, Hanzhong; Chen, Xiaoyuan; Zhu, Xufei; Che, Jianfei; Li, Dongdong

    2015-11-01

    High-performance thin-film hydrogenated amorphous silicon solar cells are achieved by combining macroscale 3D tubular substrates and nanoscaled 3D cone-like antireflective films. The tubular geometry delivers a series of advantages for large-scale deployment of photovoltaics, such as omnidirectional performance, easier encapsulation, decreased wind resistance, and easy integration with a second device inside the glass tube. PMID:26418573

  18. Kinetic model for photoinduced and thermally induced creation and annihilation of metastable defects in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    1995-03-01

    A microscopic many-body model is proposed for the kinetics of metastable defects (MSDs) in hydrogenated amorphous silicon (a-Si:H). It is based on the existence of short-lived large energy fluctuations which induce transient traps for carriers that release their energy and enhance the creation or annihilation of MSDs. The expressions found for the photoinduced and thermally induced creation and annihilation rates' coefficients explain the dependence on the variety of parameters.

  19. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures.

  20. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    PubMed

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures. PMID:27442970

  1. Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-07-09

    A high efficiency amorphous silicon PIN semiconductor device having partially crystallized (microcrystalline) P and N layers is constructed by the sequential sputtering of N, I and P layers and at least one semi-transparent ohmic electrode. The method of construction produces a PIN device, exhibiting enhanced electrical and optical properties, improved physical integrity, and facilitates the preparation in a singular vacuum system and vacuum pump down procedure.

  2. Increased Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1997-07-08

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  3. Increasing Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1999-08-24

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  4. Microstructures of the silicon carbide nanowires obtained by annealing the mechanically-alloyed amorphous powders

    SciTech Connect

    Zhang, Pengfei Li, Xinli

    2015-07-15

    Silicon, graphite and boron nitride powders were mechanically alloyed for 40 h in argon. The as-milled powders were annealed at 1700 °C in nitrogen for 30 min. The annealed powders are covered by a thick layer of gray–green SiC nanowires, which are 300 nm to 1000 nm in diameter and several hundred microns in length. Trace iron in the raw powders acts as a catalyst, promoting the V–L–S process. It follows that the actual substances contributing to the growth of the SiC nanowires may be silicon, graphite and the metal impurities in the raw powders. The results from HRTEM and XRD reveal that the products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. It is interestingly found that 6H–SiC coexists with 3C–SiC in one nodular nanowire. This novel structure may introduce periodic potential field along the longitudinal direction of the nanowires, and may find applications in the highly integrated optoelectronic devices. - Graphical abstract: Display Omitted - Highlights: • SiC nanowires were prepared by annealing the mechanically alloyed amorphous powders. • SiC nanowires are 300 nm to 1000 nm in diameter and several hundred microns in length. • The products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. • Trace Fe in the raw powders acts as a catalyst, promoting the V–L–S process. • 6H–SiC coexists with 3C–SiC in one nodular SiC nanowire.

  5. Deposition of Amorphous Silicon and Silicon-Based Dielectrics by Remote Plasma-Enhanced Chemical Vapor Deposition: Application to the Fabrication of Tft's and Mosfet's.

    NASA Astrophysics Data System (ADS)

    Kim, Sang Soo

    1990-01-01

    This thesis discusses the deposition of device quality silicon dioxide (SiO_2), silicon nitride (Si_3N_4 ), and hydrogenated amorphous silicon (a-Si:H) by the remote plasma enhanced chemical vapor deposition (Remote PECVD) technique at low substrate temperature (100 ^circC < T _{rm s} < 450^ circC). An ultra-high-vacuum (UHV) compatible, multi-chamber integrated processing system has been built and used for this study. This system provides: (1) in -situ substrate processing; (2) surface analysis by Auger electron spectroscopy (AES) and reflected high energy electron diffraction (RHEED); and (3) thin film deposition by Remote PECVD. Six issues are addressed: (1) in-situ semiconductor surface cleaning for Si, Ge, GaAs, and CdTe; (2) substrate surface characterization by using RHEED and AES; (3) process gas-substrate interactions (subcutaneous oxidation) occurring during the thin film deposition; (4) the thin film deposition process for silicon-based dielectrics and for doped and intrinsic amorphous silicon; (5) physical properties of the thin films deposited by Remote PECVD using in-situ AES, and ex-situ infrared (ir) spectroscopy and ellipsometry; and (6) electrical performance of thin films in device structures including metal-oxide/or insulator-semiconductor (MOS or MIS) capacitors formed on silicon, and hydrogenated -amorphous silicon thin film transistors (a-Si:H TFT's). Atomically clean semiconductor surfaces are obtained by a remote hydrogen plasma treatment prior to thin film deposition. In the remote PECVD process the process gases are selectively excited, the silane reactant, the source of silicon atoms in the films is never directly plasma excited, and the substrate is also remote from the plasma discharge region. These differences between the remote PECVD process and the conventional direct PECVD process, result in improved control of the insulator stoichiometry, and a reduction in level of chemical impurities such as hydrogen. We find that the

  6. 3D simulations and modeling of new low capacitance silicon pixel detectors

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Li, Yu Yun; Li, Zheng

    2016-09-01

    With signal to noise ratio (S/N) being a key parameter of a high performance detector, reducing the detector noise has been one of the main tasks in detector development. A new low capacitance silicon pixel detector is proposed, which is based on a new electrode geometry with reduced effective electrode area while keeping the sensitive volume unchanged. Detector electrical characteristics including electrostatic potential, electric field, full depletion voltage, and capacitance have been simulated in detail using a 3D TCAD tool. From these simulations and calculations, we confirm that the new detector structure has a much reduced capacitance (by a factor of 3) as compared to the traditional pixel detectors with the same sensitive volume. This reduction in detector capacitance can certainly improve the detector signal to noise ratio. However, the full depletion voltage for the new structure is larger than that of the traditional one due to the small electrode effect.

  7. Power detectors for integrated microwave/mm-wave imaging systems in mainstream silicon technologies

    NASA Astrophysics Data System (ADS)

    Gu, Qun Jane; Li, James C.; Tang, Adrian

    2016-04-01

    This paper analyzes and compares three different types of detectors, including CMOS power detectors, bipolar power detectors, and super-regenerative detectors, deployed in the literature for integrated microwave/mm-wave imaging systems in mainstream silicon technologies. Each detector has unique working mechanism and demonstrates different behavior with respects to bias conditions, input signal power, as well as bandwidth responses. Two Figure-of-Merits for both wideband and narrowband imaging have been defined to quantify the detector performance comparison. CMOS and Bipolar detectors are good for passive imaging, while super regenerative detectors are superior for active imaging. The analytical results have been verified by both simulation and measurement results. These analyses intend to provide design insights and guidance for integrated microwave/mm-wave imaging power detectors.

  8. Light-induced V{sub oc} increase and decrease in high-efficiency amorphous silicon solar cells

    SciTech Connect

    Stuckelberger, M. Riesen, Y.; Despeisse, M.; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C.

    2014-09-07

    High-efficiency amorphous silicon (a-Si:H) solar cells were deposited with different thicknesses of the p-type amorphous silicon carbide layer on substrates of varying roughness. We observed a light-induced open-circuit voltage (V{sub oc}) increase upon light soaking for thin p-layers, but a decrease for thick p-layers. Further, the V{sub oc} increase is enhanced with increasing substrate roughness. After correction of the p-layer thickness for the increased surface area of rough substrates, we can exclude varying the effective p-layer thickness as the cause of the substrate roughness dependence. Instead, we explain the observations by an increase of the dangling-bond density in both the p-layer—causing a V{sub oc} increase—and in the intrinsic absorber layer, causing a V{sub oc} decrease. We present a mechanism for the light-induced increase and decrease, justified by the investigation of light-induced changes of the p-layer and supported by Advanced Semiconductor Analysis simulation. We conclude that a shift of the electron quasi-Fermi level towards the conduction band is the reason for the observed V{sub oc} enhancements, and poor amorphous silicon quality on rough substrates enhances this effect.

  9. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał

    2013-07-01

    The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.

  10. Beam test results for the BTeV silicon pixel detector

    SciTech Connect

    Jeffrey A. Appel, G. Chiodini et al.

    2000-09-28

    The authors report the results of the BTeV silicon pixel detector tests carried out in the MTest beam at Fermilab in 1999--2000. The pixel detector spatial resolution has been studied as a function of track inclination, sensor bias, and readout threshold.

  11. Reactions induced by {sup 7}Li beam and optimization of silicon detector telescope

    SciTech Connect

    Uroic, M.; Milin, M.; Di Pietro, A.; Figuera, P.; Fisichella, M.; Lattuada, M.; Martel, I.; Miljanic, D.; Pellegriti, M. G.; Prepolec, L.; Sanchez Benitez, A. M.; Scuderi, V.; Soic, N.; Strano, E.; Torresi, D.

    2012-10-20

    Focus of this article is put on a method of compensating for non-uniformity of 50{mu}m thin silicon detectors, rather than measurement results. The same high sensitivity of particle identification on thin-detector thickness enables to accurately model thickness variation using the measurement data, rather than measuring the thickness separately.

  12. SPY: A monitoring system for the silicon vertex detector of CDF

    SciTech Connect

    Bedeschi, F.; Galeotti, S.; Gherarducci, F.; Mariotti, M.; Morsani, F.; Passuello, D.; Tartarelli, F.; Grieco, G.M.; Nelson, C.; Tkaczyk, S.; Harber, C.; Ristori, L.; Bailey, M.; Sciacca, G.F.; Turini, N.; Cei, M.

    1993-12-01

    The authors describe the basic principles and the fundamentals of the design of the system of monitoring the CDF silicon vertex detector. Also described are some results and possible future developments of this promising way of checking complex detectors with high amount of channels.

  13. Amorphous silicon photovoltaic modules and test devices design, fabrication and testing

    NASA Astrophysics Data System (ADS)

    Vanleeuwen, M.

    1985-10-01

    In July of 1984, Hughes and JPL initiated a contract for Hughes to design, fabricate and test 10 thin film Amorphous Silicon (a-Si) photovoltaic power modules. These modules were to be 1 ft x 4 ft in size. They were to be preceded by the delivery of 10 a-Si 4 in. square test devices. This effort is very timely since thin film PV development has progressed to the point where intermediate load power applications are on the horizon. It is important to know if current a-Si submodule design and manufacturing processes yield a product that is compatible with the packaging needed to meet a 20 to 30 year life span expectancy. The term submodule is assigned to an interconnected assembly of 28 a-Si cells deposited on a 1 foot square glass superstrate. These assemblies are equipped with electrical terminations, i.e., copper tabs at the four corners of the inverted submodules. It is these submodules that are to be interconnected and packaged into power modules, as opposed to the interconnected individual crystalline cells packaged into todays PV modules. A discussion of the fabrication methods and results follows.

  14. Field collapse due to band-tail charge in amorphous silicon solar cells

    SciTech Connect

    Wang, Qi; Crandall, R.S.; Schiff, E.A.

    1996-05-01

    It is common for the fill factor to decrease with increasing illumination intensity in hydrogenated amorphous silicon solar cells. This is especially critical for thicker solar cells, because the decrease is more severe than in thinner cells. Usually, the fill factor under uniformly absorbed red light changes much more than under strongly absorbed blue light. The cause of this is usually assumed to arise from space charge trapped in deep defect states. The authors model this behavior of solar cells using the Analysis of Microelectronic and Photonic Structures (AMPS) simulation program. The simulation shows that the decrease in fill factor is caused by photogenerated space charge trapped in the band-tail states rather than in defects. This charge screens the applied field, reducing the internal field. Owing to its lower drift mobility, the space charge due to holes exceeds that due to electrons and is the main cause of the field screening. The space charge in midgap states is small compared with that in the tails and can be ignored under normal solar-cell operating conditions. Experimentally, the authors measured the photocapacitance as a means to probe the collapsed field. They also explored the light intensity dependence of photocapacitance and explain the decrease of FF with the increasing light intensity.

  15. In vivo Characterization of Amorphous Silicon Carbide As a Biomaterial for Chronic Neural Interfaces

    PubMed Central

    Knaack, Gretchen L.; McHail, Daniel G.; Borda, German; Koo, Beomseo; Peixoto, Nathalia; Cogan, Stuart F.; Dumas, Theodore C.; Pancrazio, Joseph J.

    2016-01-01

    Implantable microelectrode arrays (MEAs) offer clinical promise for prosthetic devices by enabling restoration of communication and control of artificial limbs. While proof-of-concept recordings from MEAs have been promising, work in animal models demonstrates that the obtained signals degrade over time. Both material robustness and tissue response are acknowledged to have a role in device lifetime. Amorphous Silicon carbide (a-SiC), a robust material that is corrosion resistant, has emerged as an alternative encapsulation layer for implantable devices. We systematically examined the impact of a-SiC coating on Si probes by immunohistochemical characterization of key markers implicated in tissue-device response. After implantation, we performed device capture immunohistochemical labeling of neurons, astrocytes, and activated microglia/macrophages after 4 and 8 weeks of implantation. Neuron loss and microglia activation were similar between Si and a-SiC coated probes, while tissue implanted with a-SiC displayed a reduction in astrocytes adjacent to the probe. These results suggest that a-SiC has a similar biocompatibility profile as Si, and may be suitable for implantable MEA applications as a hermetic coating to prevent material degradation. PMID:27445672

  16. Comparison of amorphous silicon absorber materials: Light-induced degradation and solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Stuckelberger, M.; Despeisse, M.; Bugnon, G.; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C.

    2013-10-01

    Several amorphous silicon (a-Si:H) deposition conditions have been reported to produce films that degrade least under light soaking when incorporated into a-Si:H solar cells. However, a systematic comparison of these a-Si:H materials has never been presented. In the present study, different plasma-enhanced chemical vapor deposition conditions, yielding standard low-pressure VHF a-Si:H, protocrystalline, polymorphous, and high-pressure RF a-Si:H materials, are compared with respect to their optical properties and their behavior when incorporated into single-junction solar cells. A wide deposition parameter space has been explored in the same deposition system varying hydrogen dilution, deposition pressure, temperature, frequency, and power. From the physics of layer growth, to layer properties, to solar cell performance and light-induced degradation, a consistent picture of a-Si:H materials that are currently used for a-Si:H solar cells emerges. The applications of these materials in single-junction, tandem, and triple-junction solar cells are discussed, as well as their deposition compatibility with rough substrates, taking into account aspects of voltage, current, and charge collection. In sum, this contributes to answering the question, "Which material is best for which type of solar cell?"

  17. The boron-tailing myth in hydrogenated amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Stuckelberger, M.; Park, B.-S.; Bugnon, G.; Despeisse, M.; Schüttauf, J.-W.; Haug, F.-J.; Ballif, C.

    2015-11-01

    The boron-tailing effect in hydrogenated amorphous silicon (a-Si:H) solar cells describes the reduced charge collection specifically in the blue part of the spectrum for absorber layers deposited above a critical temperature. This effect limits the device performance of state-of-the art solar cells: For enhanced current density (reduced bandgap), the deposition temperature should be as high as possible, but boron tailing gets detrimental above 200 °C. To investigate this limitation and to show potential paths to overcome it, we deposited high-efficiency a-Si:H solar cells, varying the deposition temperatures of the p-type and the intrinsic absorber (i) layers between 150 and 250 °C. Using secondary ion mass spectroscopy, we study dedicated stacks of i-p-i layers deposited at different temperatures. This allows us to track boron diffusion at the p-i and i-p interfaces as they occur in the p-i-n and n-i-p configurations of a-Si:H solar cells for different deposition conditions. Finally, we prove step-by-step that the common explanation for boron tailing—boron diffusion from the p layer into the i layer leading to enhanced recombination—is not generally true and propose an alternative explanation for the experimentally observed drop in the external quantum efficiency at short wavelengths.

  18. Amorphous Silicon p-i-n Structure Acting as Light and Temperature Sensor

    PubMed Central

    de Cesare, Giampiero; Nascetti, Augusto; Caputo, Domenico

    2015-01-01

    In this work, we propose a multi-parametric sensor able to measure both temperature and radiation intensity, suitable to increase the level of integration and miniaturization in Lab-on-Chip applications. The device is based on amorphous silicon p-doped/intrinsic/n-doped thin film junction. The device is first characterized as radiation and temperature sensor independently. We found a maximum value of responsivity equal to 350 mA/W at 510 nm and temperature sensitivity equal to 3.2 mV/K. We then investigated the effects of the temperature variation on light intensity measurement and of the light intensity variation on the accuracy of the temperature measurement. We found that the temperature variation induces an error lower than 0.55 pW/K in the light intensity measurement at 550 nm when the diode is biased in short circuit condition, while an error below 1 K/µW results in the temperature measurement when a forward bias current higher than 25 µA/cm2 is applied. PMID:26016913

  19. Electron cyclotron resonance deposition of amorphous silicon alloy films and devices

    SciTech Connect

    Shing, Y.H. )

    1992-10-01

    This report describes work to develop a state-of-the-art electron cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition (PECVD) system. The objective was to understand the deposition processes of amorphous silicon (a-Si:H) and related alloys, with a best-effort improvement of optoelectronic material properties and best-effort stabilization of solar cell performance. ECR growth parameters were systematically and extensively investigated; materials characterization included constant photocurrent measurement (CPM), junction capacitance, drive-level capacitance profiling (DLCP), optical transmission, light and dark photoconductivity, and small-angle X-ray scattering (SAXS). Conventional ECR-deposited a-Si:H was compared to a new form, a-Si:(Xe, H), in which xenon gas was added to the ECR plasma. a-Si:(Xe,H) possessed low, stable dark conductivities and high photosensitivites. Light-soaking revealed photodegradation rates about 35% lower than those of comparable radio frequency (rf)-deposited material. ECR-deposited p-type a SiC:H and intrinsic a-Si:H films underwent evaluation as components of p-i-n solar cells with standard rf films for the remaining layers.

  20. Deposition of device quality amorphous silicon and solar cell from argon dilution of silane

    NASA Astrophysics Data System (ADS)

    Layek, Animesh; Middya, Somnath; Ray, Partha Pratim

    2012-11-01

    In our present study hydrogenated amorphous silicon (a-Si:H) thin films and solar cells have been prepared in a conventional single chamber rf-PECVD unit from silane-argon mixture by varying radio frequency (rf) power densities from 6 mW/cm2 to 50 mW/cm2. By optimizing the properties of the intrinsic material we have chosen a material which is deposited at 6 mW/cm2 rf power density, 0.2 Torr pressure, 175 oC substrate temperature and by 97% argon dilution. For this material minority carriers (holes) diffusion length (Ld) measured in the as deposited state is 180 nm and it degrades by 15% after light soaking. This high Ld value indicates that the material is of device quality. We have fabricated a single junction solar cell having the structure p-a-SiC:H/i-a-Si:H/n-a-Si:H without optimizing the doped layers. This set exhibits a mean open circuit voltage of 0.8 V and conversion efficiency of 7.7%. After light soaking conversion efficiency decreases by 15% which demonstrates that it is possible to deposit device grade material and solar cells from silane-argon mixture.