Shabani Nashtaei, M; Amidi, F; Sedighi Gilani, M A; Aleyasin, A; Bakhshalizadeh, Sh; Naji, M; Nekoonam, S
2017-03-01
Biochemical and physical modifications during the freeze-thaw process adversely influence the restoration of energy-dependent sperm functions required for fertilization. Resveratrol, a phytoalexin, has been introduced to activate 5' AMP-activated protein kinase which is a cell energy sensor and a cell metabolism regulator. The cryoprotection of resveratrol on sperm cryoinjury via activation of AMP-activated protein kinase also remains to be elucidated. Our aim, thus, was to investigate: (i) the presence and intracellular localization of AMP-activated protein kinase protein; (ii) whether resveratrol may exert a protective effect on certain functional properties of fresh and post-thaw human spermatozoa through modulation of AMP-activated protein kinase. Spermatozoa from normozoospermic men were incubated with or without different concentrations of Compound C as an AMP-activated protein kinase inhibitor or resveratrol as an AMP-activated protein kinase activator for different lengths of time and were then cryopreserved. AMP-activated protein kinase is expressed essentially in the entire flagellum and the post-equatorial region. Viability of fresh spermatozoa was not significantly affected by the presence of Compound C or resveratrol. However, although Compound C caused a potent inhibition of spermatozoa motility parameters, resveratrol did not induce negative effect, except a significant reduction in motility at 25 μm for 1 h. Furthermore, resveratrol significantly increased AMP-activated protein kinase phosphorylation and mitochondrial membrane potential and decreased reactive oxygen species and apoptosis-like changes in frozen-thawed spermatozoa. Nevertheless, it was not able to compensate decreased sperm viability and motility parameters following cryopreservation. In contrast, Compound C showed opposite effects to resveratrol on AMP-activated protein kinase phosphorylation, reactive oxygen species, apoptosis-like changes, mitochondrial membrane potential, and motility parameters. These findings, although preliminary, suggest that resveratrol-induced improvement of cryopreserved sperm functions may be mediated through activation of AMP-activated protein kinase, indicating the importance of AMP-activated protein kinase activity for human spermatozoa functions. Further investigations are required to elucidate the mechanism by which resveratrol ameliorates oxidative stress-mediated damages in an AMP-activated protein kinase-dependent mechanism. © 2016 American Society of Andrology and European Academy of Andrology.
Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.
2013-01-01
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386
USDA-ARS?s Scientific Manuscript database
The 5’-AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine protein kinase and a key part of a kinase signaling cascade that senses cellular energy status (AMP/ATP ratio) and acts to maintain energy homeostasis by coordinately regulating energy-consuming and energy-generating m...
Regulation of cAMP on the first mitotic cell cycle of mouse embryos.
Yu, Aiming; Zhang, Zhe; Bi, Qiang; Sun, Bingqi; Su, Wenhui; Guan, Yifu; Mu, Runqing; Miao, Changsheng; Zhang, Jie; Yu, Bingzhi
2008-03-01
Mitosis promoting factor (MPF) plays a central role during the first mitosis of mouse embryo. We demonstrated that MPF activity increased when one-cell stage mouse embryo initiated G2/M transition following the decrease of cyclic adenosine 3', 5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) activity. When cAMP and PKA activity increases again, MPF activity decreases and mouse embryo starts metaphase-anaphase transition. In the downstream of cAMP/PKA, there are some effectors such as polo-like kinase 1 (Plk1), Cdc25, Mos (mitogen-activated protein kinase kinase kinase), MEK (mitogen-activated protein kinase kinase), mitogen-activated protein kinase (MAPK), Wee1, anaphase-promoting complex (APC), and phosphoprotein phosphatase that are involved in the regulation of MPF activity. Here, we demonstrated that following activation of MPF, MAPK activity was steady, whereas Plk1 activity fluctuated during the first cell cycle. Plk1 activity was the highest at metaphase and decreased at metaphase-anaphase transition. Further, we established a mathematical model using Gepasi algorithm and the simulation was in agreement with the experimental data. Above all the evidences, we suggested that cAMP and PKA might be the upstream factors which were included in the regulation of the first cell cycle development of mouse embryo. Copyright 2007 Wiley-Liss, Inc.
Inhibition of AMP Kinase by the Protein Phosphatase 2A Heterotrimer, PP2APpp2r2d*
Joseph, Biny K.; Liu, Hsing-Yin; Francisco, Jamie; Pandya, Devanshi; Donigan, Melissa; Gallo-Ebert, Christina; Giordano, Caroline; Bata, Adam; Nickels, Joseph T.
2015-01-01
AMP kinase is a heterotrimeric serine/threonine protein kinase that regulates a number of metabolic processes, including lipid biosynthesis and metabolism. AMP kinase activity is regulated by phosphorylation, and the kinases involved have been uncovered. The particular phosphatases counteracting these kinases remain elusive. Here we discovered that the protein phosphatase 2A heterotrimer, PP2APpp2r2d, regulates the phosphorylation state of AMP kinase by dephosphorylating Thr-172, a residue that activates kinase activity when phosphorylated. Co-immunoprecipitation and co-localization studies indicated that PP2APpp2r2d directly interacted with AMP kinase. PP2APpp2r2d dephosphorylated Thr-172 in rat aortic and human vascular smooth muscle cells. A positive correlation existed between decreased phosphorylation, decreased acetyl-CoA carboxylase Acc1 phosphorylation, and sterol response element-binding protein 1c-dependent gene expression. PP2APpp2r2d protein expression was up-regulated in the aortas of mice fed a high fat diet, and the increased expression correlated with increased blood lipid levels. Finally, we found that the aortas of mice fed a high fat diet had decreased AMP kinase Thr-172 phosphorylation, and contained an Ampk-PP2APpp2r2d complex. Thus, PP2APpp2r2d may antagonize the aortic AMP kinase activity necessary for maintaining normal aortic lipid metabolism. Inhibiting PP2APpp2r2d or activating AMP kinase represents a potential pharmacological treatment for many lipid-related diseases. PMID:25694423
Park, Se Won; Schonhoff, Christopher M.; Webster, Cynthia R. L.
2012-01-01
Cyclic AMP stimulates translocation of Na+/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for cAMP-induced MRP2 translocation. PMID:22744337
Park, Se Won; Schonhoff, Christopher M; Webster, Cynthia R L; Anwer, M Sawkat
2012-09-01
Cyclic AMP stimulates translocation of Na(+)/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for cAMP-induced MRP2 translocation.
ERIC Educational Resources Information Center
Gelinas, Jennifer N.; Banko, Jessica L.; Peters, Melinda M.; Klann, Eric; Weeber, Edwin J.; Nguyen, Peter V.
2008-01-01
cAMP is a critical second messenger implicated in synaptic plasticity and memory in the mammalian brain. Substantial evidence links increases in intracellular cAMP to activation of cAMP-dependent protein kinase (PKA) and subsequent phosphorylation of downstream effectors (transcription factors, receptors, protein kinases) necessary for long-term…
Activation of AMP-kinase by Policosanol Requires Peroxisomal Metabolism
Banerjee, Subhashis; Ghoshal, Sarbani
2011-01-01
Policosanol, a well-defined mixture of very long chain primary alcohols that is available as a nutraceutical product, has been reported to lower blood cholesterol levels. The present studies demonstrate that policosanol promotes the phosphorylation of AMP-kinase and HMG-CoA reductase in hepatoma cells and in mouse liver after intragastric administration, providing a possible means by which policosanol might lower blood cholesterol levels. Treatment of hepatoma cells with policosanol produced a 2.5-fold or greater increase in the phosphorylation of AMP-kinase and HMG-CoA reductase, and increased the phosphorylation of Ca++/calmodulin-dependent kinase kinase (CaMKK), an upstream AMP-kinase kinase. Intra-gastric administration of policosanol to mice similarly increased the phosphorylation of hepatic HMG-CoA reductase and AMP-kinase by greater than 2-fold. siRNA-mediated suppression of fatty aldehyde dehydrogenase, fatty acyl-CoA synthetase 4, and acyl-CoA acetyltransferase expression in hepatoma cells prevented the phosphorylation of AMP-kinase and HMG-CoA reductase by policosanol, indicating that metabolism of these very long chain alcohols to activated fatty acids is necessary for the suppression of cholesterol synthesis, presumably by increasing cellular AMP levels. Subsequent peroxisomal β-oxidation probably augments this effect. PMID:21359855
Dalton, George D; Dewey, William L
2006-02-01
Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous system and the rest of the body.
Scott, John W; Ling, Naomi; Issa, Samah M A; Dite, Toby A; O'Brien, Matthew T; Chen, Zhi-Ping; Galic, Sandra; Langendorf, Christopher G; Steinberg, Gregory R; Kemp, Bruce E; Oakhill, Jonathan S
2014-05-22
The AMP-activated protein kinase (AMPK) is a metabolic stress-sensing αβγ heterotrimer responsible for energy homeostasis, making it a therapeutic target for metabolic diseases such as type 2 diabetes and obesity. AMPK signaling is triggered by phosphorylation on the AMPK α subunit activation loop Thr172 by upstream kinases. Dephosphorylated, naive AMPK is thought to be catalytically inactive and insensitive to allosteric regulation by AMP and direct AMPK-activating drugs such as A-769662. Here we show that A-769662 activates AMPK independently of α-Thr172 phosphorylation, provided β-Ser108 is phosphorylated. Although neither A-769662 nor AMP individually stimulate the activity of dephosphorylated AMPK, together they stimulate >1,000-fold, bypassing the requirement for β-Ser108 phosphorylation. Consequently A-769662 and AMP together activate naive AMPK entirely allosterically and independently of upstream kinase signaling. These findings have important implications for development of AMPK-targeting therapeutics and point to possible combinatorial therapeutic strategies based on AMP and AMPK drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Genetics Home Reference: Wolff-Parkinson-White syndrome
... protein that is part of an enzyme called AMP-activated protein kinase (AMPK). This enzyme helps sense ... suggests that these mutations alter the activity of AMP-activated protein kinase in the heart, although it ...
A simple electrostatic switch important in the activation of type I protein kinase A by cyclic AMP.
Vigil, Dominico; Lin, Jung-Hsin; Sotriffer, Christoph A; Pennypacker, Juniper K; McCammon, J Andrew; Taylor, Susan S
2006-01-01
Cyclic AMP activates protein kinase A by binding to an inhibitory regulatory (R) subunit and releasing inhibition of the catalytic (C) subunit. Even though crystal structures of regulatory and catalytic subunits have been solved, the precise molecular mechanism by which cyclic AMP activates the kinase remains unknown. The dynamic properties of the cAMP binding domain in the absence of cAMP or C-subunit are also unknown. Here we report molecular-dynamics simulations and mutational studies of the RIalpha R-subunit that identify the C-helix as a highly dynamic switch which relays cAMP binding to the helical C-subunit binding regions. Furthermore, we identify an important salt bridge which links cAMP binding directly to the C-helix that is necessary for normal activation. Additional mutations show that a hydrophobic "hinge" region is not as critical for the cross-talk in PKA as it is in the homologous EPAC protein, illustrating how cAMP can control diverse functions using the evolutionarily conserved cAMP-binding domains.
Tan, Y; Low, K G; Boccia, C; Grossman, J; Comb, M J
1994-01-01
Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways. Images PMID:7935470
Saito, Takekatsu; Sugimoto, Naotoshi; Ohta, Kunio; Shimizu, Tohru; Ohtani, Kaori; Nakayama, Yuko; Nakamura, Taichi; Hitomi, Yashiaki; Nakamura, Hiroyuki; Koizumi, Shoichi; Yachie, Akihiro
2012-01-01
Specific strains of Lactobacillus have been found to be beneficial in treating some types of diarrhea and vaginosis. However, a high mortality rate results from underlying immunosuppressive conditions in patients with Lactobacillus casei bacteremia. Cyclic AMP (cAMP) is a small second messenger molecule that mediates signal transduction. The onset and progression of inflammatory responses are sensitive to changes in steady-state cAMP levels. L. casei cell wall extract (LCWE) develops arteritis in mice through Toll-like receptor-2 signaling. The purpose of this study was to investigate whether intracellular cAMP affects LCWE-induced pathological signaling. LCWE was shown to induce phosphorylation of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways and cell proliferation in mice fibroblast cells. Theophylline and phosphodiesterase inhibitor increased intracellular cAMP and inhibited LCWE-induced cell proliferation as well as phosphorylation of NF-κB and MAPK. Protein kinase A inhibitor H89 prevented cAMP-induced MAPK inhibition, but not cAMP-induced NF-κB inhibition. An exchange protein activated by cAMP (Epac) agonist inhibited NF-κB activation but not MAPK activation. These results indicate that an increase in intracellular cAMP prevents LCWE induction of pathological signaling pathways dependent on PKA and Epac signaling.
Ali, Nada; Ling, Naomi; Krishnamurthy, Srinath; Oakhill, Jonathan S; Scott, John W; Stapleton, David I; Kemp, Bruce E; Anand, Ganesh Srinivasan; Gooley, Paul R
2016-12-21
The heterotrimeric AMP-activated protein kinase (AMPK), consisting of α, β and γ subunits, is a stress-sensing enzyme that is activated by phosphorylation of its activation loop in response to increases in cellular AMP. N-terminal myristoylation of the β-subunit has been shown to suppress Thr172 phosphorylation, keeping AMPK in an inactive state. Here we use amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) to investigate the structural and dynamic properties of the mammalian myristoylated and non-myristoylated inactivated AMPK (D139A) in the presence and absence of nucleotides. HDX MS data suggests that the myristoyl group binds near the first helix of the C-terminal lobe of the kinase domain similar to other kinases. Our data, however, also shows that ATP.Mg 2+ results in a global stabilization of myristoylated, but not non-myristoylated AMPK, and most notably for peptides of the activation loop of the α-kinase domain, the autoinhibitory sequence (AIS) and the βCBM. AMP does not have that effect and HDX measurements for myristoylated and non-myristoylated AMPK in the presence of AMP are similar. These differences in dynamics may account for a reduced basal rate of phosphorylation of Thr172 in myristoylated AMPK in skeletal muscle where endogenous ATP concentrations are very high.
Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.
Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J
1993-01-01
Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692
Park, Ga Bin; Jeong, Jee-Yeong; Kim, Daejin
2017-01-01
Ampelopsin (Amp) is bioactive natural product and exerts anti-cancer effects against several cancer types. The present study investigated the anti-colon cancer activity of Amp and explored its mechanism of action. The treatment of colon cancer cells with Amp resulted in the dose- and time-dependent induction of apoptosis via the activation of endoplasmic reticulum (ER) stress, 5′ adenosine monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal protein kinase (JNK)/p38 mitogen-activated protein kinases (MAPKs). Salubrinal, an ER stress inhibitor, prevented the upregulation of ER stress-associated proteins, including phosphorylated protein kinase RNA-like ER kinase, phosphorylated eukaryotic translation initiation factor 2α, glucose-regulated protein 78, and CCAAT/enhancer-binding protein homologous protein, as well as suppressing AMPK activation and the MAPK signaling pathway. Knockdown of AMPK by RNA interference failed to block ER stress. Additionally, SP600125 (a JNK inhibitor) and SB203580 (a p38-MAPK inhibitor) effectively inhibited apoptosis and attenuated the expression of X-linked IAP-associated factor 1 (XAF1) and apoptotic Bcl-2 family proteins (BCL2 antagonist/killer 1 and BCL2-associated X protein) in Amp-treated colon cancer cells. Furthermore, reactive oxygen species (ROS)-mediated ER stress/AMPK apoptotic signaling pathway in Amp-treated colon cancer cells were markedly inhibited by treatment with N-acetyl-L-cysteine, a ROS scavenger. These results demonstrate that treatment with Amp induces the apoptotic death of colon cancer cells through ER stress-initiated AMPK/MAPK/XAF1 signaling. These results also provide experimental information for developing Amp as therapeutic drug against colon cancer. PMID:29250183
ERIC Educational Resources Information Center
Ma, Nan; Abel, Ted; Hernandez, Pepe J.
2009-01-01
It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanling; Sato, Masaaki; Guo, Yuan
2014-10-15
The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI{sub 3}K system and the mTOR complexes were all activated by cAMP, but these activations weremore » not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias. - Highlights: • cAMP can mimick norepinephrine-induced proliferation of brown preadipocytes. • The cAMP-induced proliferation can occur in the absence of serum, of any other growth factors, and of insulin. • Erk1/2, PI{sub 3}K and mTOR are cAMP activated but not involved in induction of proliferation. • A Protein Kinase C member may be in the signalling cascade. • This pathway analysis may also be of importance for certain endocrine hyper- and neoplasias.« less
Endou, Katsuaki; Iizuka, Kunihiko; Yoshii, Akihiro; Tsukagoshi, Hideo; Ishizuka, Tamotsu; Dobashi, Kunio; Nakazawa, Tsugio; Mori, Masatomo
2004-10-01
To clarify whether cyclic AMP (cAMP)/cAMP-dependent protein kinase (PKA) activation and Rho-kinase inhibition share a common mechanism to decrease the Ca2+ sensitivity of airway smooth muscle contraction, we examined the effects of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), a stable cAMP analog, and (+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexane carboxamide dihydrochloride, monohydrate (Y-27632), a Rho-kinase inhibitor, on carbachol (CCh)-, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-, 4beta-phorbol 12,13-dibutyrate (PDBu)-, and leukotriene D4 (LTD4)-induced Ca2+ sensitization in alpha-toxin-permeabilized rabbit tracheal and human bronchial smooth muscle. In rabbit trachea, CCh-induced smooth muscle contraction was inhibited by 8-BrcAMP and Y-27632 to a similar extent. However, GTPgammaS-induced smooth muscle contraction was resistant to 8-BrcAMP. In the presence of a saturating concentration of Y-27632, PDBu-induced smooth muscle contraction was completely reversed by 8-BrcAMP. Conversely, PDBu-induced smooth muscle contraction was resistant to Y-27632. In the presence of a saturating concentration of 8-BrcAMP, GTPgammaS-induced Ca2+ sensitization was also reversed by Y-27632. The 8-BrcAMP had no effect on the ATP-triggered contraction of tracheal smooth muscle that had been treated with calyculin A in rigor solutions. The 8-BrcAMP and Y-27632 additively accelerated the relaxation rate of PDBu- and GTPgammaS-treated smooth muscle under myosin light chain kinase-inhibited conditions. In human bronchus, LTD4-induced smooth muscle contraction was inhibited by both 8-BrcAMP and Y-27632. We conclude that cAMP/PKA-induced Ca2+ desensitization contains at least two mechanisms: 1) inhibition of the muscarinic receptor signaling upstream from Rho activation and 2) cAMP/PKA's preferential reversal of PKC-mediated Ca2+ sensitization in airway smooth muscle.
Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.
2015-01-01
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396
Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O
2015-05-29
The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase.
Townley, Robert; Shapiro, Lawrence
2007-03-23
The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Here, we report crystal structures at 2.9 and 2.6 A resolution for ATP- and AMP-bound forms of a core alphabetagamma adenylate-binding domain from the fission yeast AMPK homolog. ATP and AMP bind competitively to a single site in the gamma subunit, with their respective phosphate groups positioned near function-impairing mutants. Unexpectedly, ATP binds without counterions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.
Zhang, Li; He, Huamei; Balschi, James A
2007-07-01
AMP-activated protein kinase (AMPK) acts as a cellular energy sensor: it responds to an increase in AMP concentration ([AMP]) or the AMP-to-ATP ratio (AMP/ATP). Metformin and phenformin, which are biguanides, have been reported to increase AMPK activity without increasing AMP/ATP. This study tests the hypothesis that these biguanides increase AMPK activity in the heart by increasing cytosolic [AMP]. Groups of isolated rat hearts (n = 5-7 each) were perfused with Krebs-Henseleit buffer with or without 0.2 mM phenformin or 10 mM metformin, and (31)P-NMR-measured phosphocreatine, ATP, and intracellular pH were used to calculate cytosolic [AMP]. At various times, hearts were freeze-clamped and assayed for AMPK activity, phosphorylation of Thr(172) on AMPK-alpha, and phosphorylation of Ser(79) on acetyl-CoA carboxylase, an AMPK target. In hearts treated with phenformin for 18 min and then perfused for 20 min with Krebs-Henseleit buffer, [AMP] began to increase at 26 min and AMPK activity was elevated at 36 min. In hearts treated with metformin, [AMP] was increased at 50 min and AMPK activity, phosphorylated AMPK, and phosphorylated acetyl-CoA carboxylase were elevated at 61 min. In metformin-treated hearts, HPLC-measured total AMP content and total AMP/ATP did not increase. In summary, phenformin and metformin increase AMPK activity and phosphorylation in the isolated heart. The increase in AMPK activity was always preceded by and correlated with increased cytosolic [AMP]. Total AMP content and total AMP/ATP did not change. Cytosolic [AMP] reported metabolically active AMP, which triggered increased AMPK activity, but measures of total AMP did not.
Cyclic AMP and protein kinase A rhythmicity in the mammalian suprachiasmatic nuclei.
Ferreyra, G A; Golombek, D A
2000-03-06
The levels of cyclic AMP and protein kinase A, as well as the activity of this enzyme, were measured in the hamster suprachiasmatic nuclei at different time points throughout the daily or circadian cycle. Significant diurnal variations for levels of AMPc and the catalytic subunit of protein kinase A and the activity of this enzyme were found. All of these parameters tended to increase throughout the nocturnal phase, reaching higher values at the end of the night and the beginning of the day and minimal values around the time of lights off. This rhythmicity appears to be under exogenous control, since constant darkness abolished fluctuations throughout the circadian cycle. In vitro incubation in the presence of melatonin during the day significantly decreased cyclic AMP levels and basal protein kinase A activity in the SCN, while neither neuropeptide Y nor light pulses affected these parameters. These results suggest a significant diurnal regulation of the cyclic AMP-dependent system in the hamster circadian clock.
Actions of cAMP on calcium sensitization in human detrusor smooth muscle contraction.
Hayashi, Maya; Kajioka, Shunichi; Itsumi, Momoe; Takahashi, Ryosuke; Shahab, Nouval; Ishigami, Takao; Takeda, Masahiro; Masuda, Noriyuki; Yamaguchi, Akito; Naito, Seiji
2016-01-01
To clarify the effect of cAMP on the Ca(2+) -sensitized smooth muscle contraction in human detrusor, as well as the role of novel exchange protein directly activated by cAMP (Epac) in cAMP-mediated relaxation. All experimental protocols to record isometric tension force were performed using α-toxin-permeabilized human detrusor smooth muscle strips. The mechanisms of cAMP-mediated suppression of Ca(2+) sensitization activated by 10 μm carbachol (CCh) and 100 μm GTP were studied using a selective rho kinase (ROK) inhibitor, Y-27632, and a selective protein kinase C (PKC) inhibitor, GF-109203X. The relaxation mechanisms were further probed using a selective protein kinase A (PKA) activator, 6-Bnz-cAMP and a selective Epac activator, 8-pCPT-2'-O-Me-cAMP. We observed that CCh-induced Ca(2+) sensitization was inhibited by cAMP in a concentration-dependent manner. GF-109203X (10 μm) but not Y-27632 (10 μm) significantly enhanced the relaxation effect induced by cAMP (100 μm). 6-Bnz-cAMP (100 μm) predominantly decreased the tension force in comparison with 8-pCPT-2'-O-Me-cAMP (100 μm). We showed that cAMP predominantly inhibited the ROK pathway but not the PKC pathway. The PKA-dependent pathway is dominant, while Epac plays a minor role in human detrusor smooth muscle Ca(2+) sensitization. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.
Apfeld, Javier; O'Connor, Greg; McDonagh, Tom; DiStefano, Peter S.; Curtis, Rory
2004-01-01
Although limiting energy availability extends lifespan in many organisms, it is not understood how lifespan is coupled to energy levels. We find that the AMP:ATP ratio, a measure of energy levels, increases with age in Caenorhabditis elegans and can be used to predict life expectancy. The C. elegans AMP-activated protein kinase α subunit AAK-2 is activated by AMP and functions to extend lifespan. In addition, either an environmental stressor that increases the AMP:ATP ratio or mutations that lower insulin-like signaling extend lifespan in an aak-2-dependent manner. Thus, AAK-2 is a sensor that couples lifespan to information about energy levels and insulin-like signals. PMID:15574588
Schmidt, Martina; Dekker, Frank J; Maarsingh, Harm
2013-04-01
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Bergold, P J; Sweatt, J D; Winicov, I; Weiss, K R; Kandel, E R; Schwartz, J H
1990-01-01
Depending on the number or the length of exposure, application of serotonin can produce either short-term or long-term presynaptic facilitation of Aplysia sensory-to-motor synapses. The cAMP-dependent protein kinase, a heterodimer of two regulatory and two catalytic subunits, has been shown to become stably activated only during long-term facilitation. Both acquisition of long-term facilitation and persistent activation of the kinase is blocked by anisomycin, an effective, reversible, and specific inhibitor of protein synthesis in Aplysia. We report here that 2-hr exposure of pleural sensory cells to serotonin lowers the concentration of regulatory subunits but does not change the concentration of catalytic subunits, as assayed 24 hr later; 5-min exposure to serotonin has no effect on either type of subunit. Increasing intracellular cAMP with a permeable analog of cAMP together with the phosphodiesterase inhibitor isobutyl methylxanthine also decreased regulatory subunits, suggesting that cAMP is the second messenger mediating serotonin action. Anisomycin blocked the loss of regulatory subunits only when applied with serotonin; application after the 2-hr treatment with serotonin had no effect. In the Aplysia accessory radula contractor muscle, prolonged exposure to serotonin or to the peptide transmitter small cardioactive peptide B, both of which produce large increases in intracellular cAMP, does not decrease regulatory subunits. This mechanism of regulating the cAMP-dependent protein kinase therefore may be specific to the nervous system. We conclude that during long-term facilitation, new protein is synthesized in response to the facilitatory stimulus, which changes the ratio of subunits of the cAMP-dependent protein kinase. This alteration in ratio could persistently activate the kinase and produce the persistent phosphorylation seen in long-term facilitated sensory cells. Images PMID:1692622
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji
2010-08-13
Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by amore » Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.« less
Malki-Feldman, Laura; Jaffe, Charles L
2009-09-01
Effect of modulators on protein kinase A (PKA) activity, promastigote growth and their ability to infect peritoneal macrophages was monitored. PKA inhibitors reduced [Protein Kinase Inhibitor (PKI) - 56%; H89 - 54.5%] kemptide phosphorylation by Leishmania major promastigote lysates, while activators increased phosphorylation (8-CPT-cAMP - 88%; Sp-cAMPS-AM - 152%). Activation was specifically inhibited by PKI. Phosphodiesterase inhibitors also increased kemptide phosphorylation (dipyridamole - 171%; rolipram - 106%; and 3-isobutyl-1-methyl-xanthine - 154%). Parasite proliferation was significantly retarded (200 nM H89; 100 microM myristoylated-PKI) or completely inhibited (500 nM H89) by culturing with PKA inhibitors. Incubation with dipyridamole or Sp-cAMPS-AM also inhibited proliferation. Brief treatment (2h) with either H89, myristoylated-PKI, dipyridamole or Sp-cAMPS-AM reduced initial macrophage infection at days 1 and 2 (>40%) and on day 3 (>78% only for 100 microM myr-PKI). Characterization of leishmanial cAMP mediated signal transduction pathways will serve as the basis for the new drug design.
Structural basis of AMPK regulation by small molecule activators
NASA Astrophysics Data System (ADS)
Xiao, Bing; Sanders, Matthew J.; Carmena, David; Bright, Nicola J.; Haire, Lesley F.; Underwood, Elizabeth; Patel, Bhakti R.; Heath, Richard B.; Walker, Philip A.; Hallen, Stefan; Giordanetto, Fabrizio; Martin, Stephen R.; Carling, David; Gamblin, Steven J.
2013-12-01
AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.
Johansson, C Christian; Dahle, Maria K; Blomqvist, Sandra Rodrigo; Grønning, Line M; Aandahl, Einar M; Enerbäck, Sven; Taskén, Kjetil
2003-05-09
Forkhead/winged helix (FOX) transcription factors are essential for control of the cell cycle and metabolism. Here, we show that spleens from Mf2-/- (FOXD2-/-) mice have reduced mRNA (50%) and protein (35%) levels of the RIalpha subunit of the cAMP-dependent protein kinase. In T cells from Mf2-/- mice, reduced levels of RIalpha translates functionally into approximately 2-fold less sensitivity to cAMP-mediated inhibition of proliferation triggered through the T cell receptor-CD3 complex. In Jurkat T cells, FOXD2 overexpression increased the endogenous levels of RIalpha through induction of the RIalpha1b promoter. FOXD2 overexpression also increased the sensitivity of the promoter to cAMP. Finally, co-expression experiments demonstrated that protein kinase Balpha/Akt1 work together with FOXD2 to induce the RIalpha1b promoter (10-fold) and increase endogenous RIalpha protein levels further. Taken together, our data indicate that FOXD2 is a physiological regulator of the RIalpha1b promoter in vivo working synergistically with protein kinase B to induce cAMP-dependent protein kinase RIalpha expression, which increases cAMP sensitivity and sets the threshold for cAMP-mediated negative modulation of T cell activation.
Vargas, R; Ortega, Y; Bozo, V; Andrade, M; Minuzzi, G; Cornejo, P; Fernandez, V; Videla, L A
2013-01-01
AMP-activated protein kinase (AMPK) is a sensor of energy status supporting cellular energy homeostasis that may represent the metabolic basis for 3,3,,5-triiodo-L-thyronine (T3) liver preconditioning. Functionally transient hyperthyroid state induced by T3 (single dose of 0.1 mg/kg) in fed rats led to upregulation of mRNA expression (RT-PCR) and protein phosphorylation (Western blot) of hepatic AMPK at 8 to 36 h after treatment. AMPK Thr 172 phosphorylation induced by T3 is associated with enhanced mRNA expression of the upstream kinases Ca2+ -calmodulin-dependent protein kinase kinase-beta (CaMKKbeta) and transforming growth-factor-beta-activated kinase-1 (TAK1), with increased protein levels of CaMKKbeta and higher TAK1 phosphorylation, without changes in those of the liver kinase B1 (LKB1) signaling pathway. Liver contents of AMP and ADP were augmented by 291 percent and 44 percent by T3 compared to control values (p less than 0.05), respectively, whereas those of ATP decreased by 64% (p less than 0.05), with no significant changes in the total content of adenine nucleotides (AMP + ADP + ATP) at 24 h after T3 administration. Consequently, hepatic ATP/ADP content ratios exhibited 64 percent diminution (p less than 0.05) and those of AMP/ATP increased by 425 percent (p less than 0.05) in T3-treated rats over controls. It is concluded that in vivoT3 administration triggers liver AMPK upregulation in association with significant enhancements in AMPK mRNA expression, AMPK phosphorylation coupled to CaMKKbeta and TAK1 activation, and in AMP/ATP ratios, which may promote enhanced AMPK activity to support T3-induced energy consuming processes such as those of liver preconditioning.
ADP Regulates SNF1, the Saccharomyces cerevisiae Homolog of AMP-Activated Protein Kinase
Mayer, Faith V.; Heath, Richard; Underwood, Elizabeth; Sanders, Matthew J.; Carmena, David; McCartney, Rhonda R.; Leiper, Fiona C.; Xiao, Bing; Jing, Chun; Walker, Philip A.; Haire, Lesley F.; Ogrodowicz, Roksana; Martin, Stephen R.; Schmidt, Martin C.; Gamblin, Steven J.; Carling, David
2011-01-01
Summary The SNF1 protein kinase complex plays an essential role in regulating gene expression in response to the level of extracellular glucose in budding yeast. SNF1 shares structural and functional similarities with mammalian AMP-activated protein kinase. Both kinases are activated by phosphorylation on a threonine residue within the activation loop segment of the catalytic subunit. Here we show that ADP is the long-sought metabolite that activates SNF1 in response to glucose limitation by protecting the enzyme against dephosphorylation by Glc7, its physiologically relevant protein phosphatase. We also show that the regulatory subunit of SNF1 has two ADP binding sites. The tighter site binds AMP, ADP, and ATP competitively with NADH, whereas the weaker site does not bind NADH, but is responsible for mediating the protective effect of ADP on dephosphorylation. Mutagenesis experiments suggest that the general mechanism by which ADP protects against dephosphorylation is strongly conserved between SNF1 and AMPK. PMID:22019086
Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2.
Zoccarato, Anna; Surdo, Nicoletta C; Aronsen, Jan M; Fields, Laura A; Mancuso, Luisa; Dodoni, Giuliano; Stangherlin, Alessandra; Livie, Craig; Jiang, He; Sin, Yuan Yan; Gesellchen, Frank; Terrin, Anna; Baillie, George S; Nicklin, Stuart A; Graham, Delyth; Szabo-Fresnais, Nicolas; Krall, Judith; Vandeput, Fabrice; Movsesian, Matthew; Furlan, Leonardo; Corsetti, Veronica; Hamilton, Graham; Lefkimmiatis, Konstantinos; Sjaastad, Ivar; Zaccolo, Manuela
2015-09-25
Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodeling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A signaling seems to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signaling microdomains. How individual cAMP microdomains affect cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth. Using pharmacological and genetic manipulation of PDE activity, we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy, whereas increasing cAMP levels via PDE2 inhibition is antihypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of protein kinase A isoforms, we demonstrate that the antihypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a protein kinase A type II subset, leading to phosphorylation of the nuclear factor of activated T cells. Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo, and its inhibition may have therapeutic applications. © 2015 American Heart Association, Inc.
Goldsmith, B A; Abrams, T W
1992-12-01
Enhancement of the defensive withdrawal reflex of Aplysia involves a prolongation of the action potentials of mechanosensory neurons, which contributes to facilitation of transmitter release from these cells. Recent reports have suggested that whereas cAMP-dependent modulation of K+ current increases sensory neuron excitability, a cAMP-independent decrease in K+ current may increase the action potential duration and, thus, facilitate transmitter release. We have tested this proposal using Walsh cAMP-dependent protein kinase inhibitor or activators of the cAMP cascade and found that cAMP plays a major role in the spike-broadening effects of facilitatory transmitter; however, broadening requires higher levels of activation of the cAMP-dependent kinase than does increasing excitability. A steeply voltage-dependent transient K+ current, termed IKV,early, and the slowly activating S-type K+ (S-K+) current are both reduced by activation of the cAMP cascade, although with different sensitivities to the second messenger, enabling excitability and spike duration to be regulated independently. Differences in cAMP sensitivity also suggested that the originally described S-K+ current actually consists of two independent components, a slowly activating component and a time-independent, "steady-state" current that is activated at rest.
Mechanism of cAMP Partial Agonism in Protein Kinase G (PKG)*♦
VanSchouwen, Bryan; Selvaratnam, Rajeevan; Giri, Rajanish; Lorenz, Robin; Herberg, Friedrich W.; Kim, Choel; Melacini, Giuseppe
2015-01-01
Protein kinase G (PKG) is a major receptor of cGMP and controls signaling pathways often distinct from those regulated by cAMP. Hence, the selective activation of PKG by cGMP versus cAMP is critical. However, the mechanism of cGMP-versus-cAMP selectivity is only limitedly understood. Although the C-terminal cyclic nucleotide-binding domain B of PKG binds cGMP with higher affinity than cAMP, the intracellular concentrations of cAMP are typically higher than those of cGMP, suggesting that the cGMP-versus-cAMP selectivity of PKG is not controlled uniquely through affinities. Here, we show that cAMP is a partial agonist for PKG, and we elucidate the mechanism for cAMP partial agonism through the comparative NMR analysis of the apo, cGMP-, and cAMP-bound forms of the PKG cyclic nucleotide-binding domain B. We show that although cGMP activation is adequately explained by a two-state conformational selection model, the partial agonism of cAMP arises from the sampling of a third, partially autoinhibited state. PMID:26370085
Hou, Xiaoying; Arvisais, Edward W; Davis, John S
2010-06-01
LH stimulates the production of cAMP in luteal cells, which leads to the production of progesterone, a hormone critical for the maintenance of pregnancy. The mammalian target of rapamycin (MTOR) signaling cascade has recently been examined in ovarian follicles where it regulates granulosa cell proliferation and differentiation. This study examined the actions of LH on the regulation and possible role of the MTOR signaling pathway in primary cultures of bovine corpus luteum cells. Herein, we demonstrate that activation of the LH receptor stimulates the phosphorylation of the MTOR substrates ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1. The actions of LH were mimicked by forskolin and 8-bromo-cAMP. LH did not increase AKT or MAPK1/3 phosphorylation. Studies with pathway-specific inhibitors demonstrated that the MAPK kinase 1 (MAP2K1)/MAPK or phosphatidylinositol 3-kinase/AKT signaling pathways were not required for LH-stimulated MTOR/S6K1 activity. However, LH decreased the activity of glycogen synthase kinase 3Beta (GSK3B) and AMP-activated protein kinase (AMPK). The actions of LH on MTOR/S6K1 were mimicked by agents that modulated GSK3B and AMPK activity. The ability of LH to stimulate progesterone secretion was not prevented by rapamycin, a MTOR inhibitor. In contrast, activation of AMPK inhibited LH-stimulated MTOR/S6K1 signaling and progesterone secretion. In summary, the LH receptor stimulates a unique series of intracellular signals to activate MTOR/S6K1 signaling. Furthermore, LH-directed changes in AMPK and GSK3B phosphorylation appear to exert a greater impact on progesterone synthesis in the corpus luteum than rapamycin-sensitive MTOR-mediated events.
Stone, Joshua D.; Narine, Avinash; Tulis, David A.
2012-01-01
Abnormal vascular smooth muscle (VSM) growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP)-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remain unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells (VSMC), the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSMC migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashion. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth. PMID:23112775
S6 Kinase Inhibits Intrinsic Axon Regeneration Capacity via AMP Kinase in Caenorhabditis elegans
Hubert, Thomas; Wu, Zilu; Chisholm, Andrew D.
2014-01-01
The ability of axons to regrow after injury is determined by the complex interplay of intrinsic growth programs and external cues. In Caenorhabditis elegans mechanosensory neuron, axons exhibit robust regenerative regrowth following laser axotomy. By surveying conserved metabolic signaling pathways, we have identified the ribosomal S6 kinase RSKS-1 as a new cell-autonomous inhibitor of axon regeneration. RSKS-1 is not required for axonal development but inhibits axon regrowth after injury in multiple neuron types. Loss of function in rsks-1 results in more rapid growth cone formation after injury and accelerates subsequent axon extension. The enhanced regrowth of rsks-1 mutants is partly dependent on the DLK-1 MAPK cascade. An essential output of RSKS-1 in axon regrowth is the metabolic sensor AMP kinase, AAK-2. We further show that the antidiabetic drug phenformin, which activates AMP kinase, can promote axon regrowth. Our data reveal a new function for an S6 kinase acting through an AMP kinase in regenerative growth of injured axons. PMID:24431434
Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R.; Elbing, Karin; Schmidt, Martin C.
2010-01-01
Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic α subunit and regulatory β and γ subunits. In this study, the role of the β subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (α), Snf4 (γ), and one of three alternative β subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three β subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the β subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation. PMID:19897735
Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R; Elbing, Karin; Schmidt, Martin C
2010-01-01
Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic alpha subunit and regulatory beta and gamma subunits. In this study, the role of the beta subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (alpha), Snf4 (gamma), and one of three alternative beta subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three beta subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the beta subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation.
The role of the AMP-activated protein kinase in the regulation of energy homeostasis.
Carling, David
2007-01-01
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that plays a major role in maintaining energy homeostasis. Within individual cells, AMPK is activated by a rise in the AMP:ATP ratio that occurs following a fall in ATP levels. AMPK is also regulated by the adipokines, adiponectin and leptin, hormones that are secreted from adipocytes. Activation of AMPK requires phosphorylation of threonine 172 within the catalytic subunit by either LKB1 or calcium/calmodulin dependent protein kinase kinase beta (CaMKKbeta). AMPK regulates a wide range of metabolic pathways, including fatty acid oxidation, fatty acid synthesis, glycolysis and gluconeogenesis. In peripheral tissues, activation of AMPK leads to responses that are beneficial in counteracting the deleterious effects that arise in the metabolic syndrome. Recent studies have demonstrated that modulation of AMPK activity in the hypothalamus plays a role in feeding. A decrease in hypothalamic AMPK activity is associated with decreased feeding, whereas activation of AMPK leads to increased food intake. Furthermore, signalling pathways in the hypothalamus lead to changes in AMPK activity in peripheral tissues, such as skeletal muscle, via the sympathetic nervous system (SNS). AMPK, therefore, provides a mechanism for monitoring changes in energy metabolism within individual cells and at the level of the whole body.
Machrouhi, Fouzia; Ouhamou, Nouara; Laderoute, Keith; Calaoagan, Joy; Bukhtiyarova, Marina; Ehrlich, Paula J.; Klon, Anthony E.
2010-01-01
We have designed and synthesized analogues of compound C, a non-specific inhibitor of 5’-AMP-activated protein kinase (AMPK), using a computational fragment-based drug design (FBDD) approach. Synthesizing only twenty-seven analogues yielded a compound that was equipotent to compound C in the inhibition of the human AMPK (hAMPK) α2 subunit in the heterotrimeric complex in vitro, exhibited significantly improved selectivity against a subset of relevant kinases, and demonstrated enhanced cellular inhibition of AMPK. PMID:20932747
The role of adenosine monophosphate kinase in remodeling white adipose tissue metabolism.
Gaidhu, Mandeep Pinky; Ceddia, Rolando Bacis
2011-04-01
Recent evidence indicates that the enzyme adenosine monophosphate (AMP) kinase exerts important fat-reducing effects in the adipose tissue, which has created great interest in this enzyme as a potential target for obesity treatment. This review summarizes our findings that chronic AMP kinase activation remodels adipocyte glucose and lipid metabolism and enhances the ability of adipose tissue to dissipate energy within itself and reduce adiposity.
RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation
Lim, Chinten James; Spiegelman, George B.; Weeks, Gerald
2001-01-01
Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC– cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC– cells stimulated by 2′-deoxy-cAMP, but is produced in response to GTPγS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC– cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC– cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC– cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC– cells, suggesting that AleA may activate RasC. PMID:11500376
RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation.
Lim, C J; Spiegelman, G B; Weeks, G
2001-08-15
Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.
Manna, Pulak R; Huhtaniemi, Ilpo T; Stocco, Douglas M
2009-07-01
The protein kinase C (PKC) signaling pathway plays integral roles in the expression of the steroidogenic acute regulatory (StAR) protein that regulates steroid biosynthesis in steroidogenic cells. PKC can modulate the activity of cAMP/protein kinase A signaling involved in steroidogenesis; however, its mechanism remains obscure. In the present study, we demonstrate that activation of the PKC pathway, by phorbol 12-myristate 13-acetate (PMA), was capable of potentiating dibutyryl cAMP [(Bu)(2)cAMP]-stimulated StAR expression, StAR phosphorylation, and progesterone synthesis in both mouse Leydig (MA-10) and granulosa (KK-1) tumor cells. The steroidogenic potential of PMA and (Bu)(2)cAMP was linked with phosphorylation of ERK 1/2; however, inhibition of the latter demonstrated varying effects on steroidogenesis. Transcriptional activation of the StAR gene by PMA and (Bu)(2)cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of the cAMP response element binding protein (CREB). An oligonucleotide probe containing a CREB/activating transcription factor binding region in the StAR promoter was found to bind nuclear proteins in PMA and (Bu)(2)cAMP-treated MA-10 and KK-1 cells. Chromatin immunoprecipitation studies revealed that the induction of phosphorylated CREB was tightly correlated with in vivo protein-DNA interactions and recruitment of CREB binding protein to the StAR promoter. Ectopic expression of CREB binding protein enhanced CREB-mediated transcription of the StAR gene, an event that was markedly repressed by the adenovirus E1A oncoprotein. Further studies demonstrated that the activation of StAR expression and steroid synthesis by PMA and (Bu)(2)cAMP was associated with expression of the nuclear receptor Nur77, indicating its essential role in hormone-regulated steroidogenesis. Collectively, these findings provide insight into the mechanisms by which PKC modulates cAMP/protein kinase A responsiveness involved in regulating the steroidogenic response in mouse gonadal cells.
AKAP-Lbc enhances cyclic AMP control of the ERK1/2 cascade.
Smith, F Donelson; Langeberg, Lorene K; Cellurale, Cristina; Pawson, Tony; Morrison, Deborah K; Davis, Roger J; Scott, John D
2010-12-01
Mitogen-activated protein kinase (MAPK) cascades propagate a variety of cellular activities. Processive relay of signals through RAF-MEK-ERK modulates cell growth and proliferation. Signalling through this ERK cascade is frequently amplified in cancers, and drugs such as sorafenib (which is prescribed to treat renal and hepatic carcinomas) and PLX4720 (which targets melanomas) inhibit RAF kinases. Natural factors that influence ERK1/2 signalling include the second messenger cyclic AMP. However, the mechanisms underlying this cascade have been difficult to elucidate. We demonstrate that the A-kinase-anchoring protein AKAP-Lbc and the scaffolding protein kinase suppressor of Ras (KSR-1) form the core of a signalling network that efficiently relay signals from RAF, through MEK, and on to ERK1/2. AKAP-Lbc functions as an enhancer of ERK signalling by securing RAF in the vicinity of MEK1 and synchronizing protein kinase A (PKA)-mediated phosphorylation of Ser 838 on KSR-1. This offers mechanistic insight into cAMP-responsive control of ERK signalling events.
Kim, Maengjo; Hunter, Roger W; Garcia-Menendez, Lorena; Gong, Guohua; Yang, Yu-Ying; Kolwicz, Stephen C; Xu, Jason; Sakamoto, Kei; Wang, Wang; Tian, Rong
2014-03-14
AMP-activated protein kinase is a master regulator of cell metabolism and an attractive drug target for cancer and metabolic and cardiovascular diseases. Point mutations in the regulatory γ2-subunit of AMP-activated protein kinase (encoded by Prkag2 gene) caused a unique form of human cardiomyopathy characterized by cardiac hypertrophy, ventricular preexcitation, and glycogen storage. Understanding the disease mechanisms of Prkag2 cardiomyopathy is not only beneficial for the patients but also critical to the use of AMP-activated protein kinase as a drug target. We sought to identify the pro-growth-signaling pathway(s) triggered by Prkag2 mutation and to distinguish it from the secondary response to glycogen storage. In a mouse model of N488I mutation of the Prkag2 gene (R2M), we rescued the glycogen storage phenotype by genetic inhibition of glucose-6-phosphate-stimulated glycogen synthase activity. Ablation of glycogen storage eliminated the ventricular preexcitation but did not affect the excessive cardiac growth in R2M mice. The progrowth effect in R2M hearts was mediated via increased insulin sensitivity and hyperactivity of Akt, resulting in activation of mammalian target of rapamycin and inactivation of forkhead box O transcription factor-signaling pathways. Consequently, cardiac myocyte proliferation during the postnatal period was enhanced in R2M hearts followed by hypertrophic growth in adult hearts. Inhibition of mammalian target of rapamycin activity by rapamycin or restoration of forkhead box O transcription factor activity by overexpressing forkhead box O transcription factor 1 rescued the abnormal cardiac growth. Our study reveals a novel mechanism for Prkag2 cardiomyopathy, independent of glycogen storage. The role of γ2-AMP-activated protein kinase in cell growth also has broad implications in cardiac development, growth, and regeneration.
Kumar, Naveen; Gupta, Sonal; Dabral, Surbhi; Singh, Shailja; Sehrawat, Seema
2017-06-01
Despite the current progress in cancer research and therapy, breast cancer remains the leading cause of mortality among half a million women worldwide. Migration and invasion of cancer cells are associated with prevalent tumor metastasis as well as high mortality. Extensive studies have powerfully established the role of prototypic second messenger cAMP and its two ubiquitously expressed intracellular cAMP receptors namely the classic protein kinaseA/cAMP-dependent protein kinase (PKA) and the more recently discovered exchange protein directly activated by cAMP/cAMP-regulated guanine nucleotide exchange factor (EPAC/cAMP-GEF) in cell migration, cell cycle regulation, and cell death. Herein, we performed the analysis of the Cancer Genome Atlas (TCGA) dataset to evaluate the essential role of cAMP molecular network in breast cancer. We report that EPAC1, PKA, and AKAP9 along with other molecular partners are amplified in breast cancer patients, indicating the importance of this signaling network. To evaluate the functional role of few of these proteins, we used pharmacological modulators and analyzed their effect on cell migration and cell death in breast cancer cells. Hence, we report that inhibition of EPAC1 activity using pharmacological modulators leads to inhibition of cell migration and induces cell death. Additionally, we also observed that the inhibition of EPAC1 resulted in disruption of its association with the microtubule cytoskeleton and delocalization of AKAP9 from the centrosome as analyzed by in vitro imaging. Finally, this study suggests for the first time the mechanistic insights of mode of action of a primary cAMP-dependent sensor, Exchange protein activated by cAMP 1 (EPAC1), via its interaction with A-kinase anchoring protein 9 (AKAP9). This study provides a new cell signaling cAMP-EPAC1-AKAP9 direction to the development of additional biotherapeutics for breast cancer.
Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connelly, P.A.; Sisk, R.B.; Johnson, R.M.
1987-05-01
Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent proteinmore » kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.« less
Emodin Regulates Glucose Utilization by Activating AMP-activated Protein Kinase*
Song, Parkyong; Kim, Jong Hyun; Ghim, Jaewang; Yoon, Jong Hyuk; Lee, Areum; Kwon, Yonghoon; Hyun, Hyunjung; Moon, Hyo-Youl; Choi, Hueng-Sik; Berggren, Per-Olof; Suh, Pann-Ghill; Ryu, Sung Ho
2013-01-01
AMP-activated protein kinase has been described as a key signaling protein that can regulate energy homeostasis. Here, we aimed to characterize novel AMP-activated kinase (AMPK)-activating compounds that have a much lower effective concentration than metformin. As a result, emodin, a natural anthraquinone derivative, was shown to stimulate AMPK activity in skeletal muscle and liver cells. Emodin enhanced GLUT4 translocation and [14C]glucose uptake into the myotube in an AMPK-dependent manner. Also, emodin inhibited glucose production by suppressing the expression of key gluconeogenic genes, such as phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, in hepatocytes. Furthermore, we found that emodin can activate AMPK by inhibiting mitochondrial respiratory complex I activity, leading to increased reactive oxygen species and Ca2+/calmodulin-dependent protein kinase kinase activity. Finally, we confirmed that a single dose administration of emodin significantly decreased the fasting plasma glucose levels and improved glucose tolerance in C57Bl/6J mice. Increased insulin sensitivity was also confirmed after daily injection of emodin for 8 days using an insulin tolerance test and insulin-stimulated PI3K phosphorylation in wild type and high fat diet-induced diabetic mouse models. Our study suggests that emodin regulates glucose homeostasis in vivo by AMPK activation and that this may represent a novel therapeutic principle in the treatment of type 2 diabetic models. PMID:23303186
Madiraju, Anila K.; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W.; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T.; Kibbey, Richard G.; Shulman, Gerald I.
2016-01-01
A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419
Rajagopal, Senthilkumar; Kumar, Divya P; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U; Bunnett, Nigel W; Grider, John R; Murthy, Karnam S
2013-03-01
The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5(-/-) mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2'-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser(188). TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids.
Rajagopal, Senthilkumar; Kumar, Divya P.; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U.; Bunnett, Nigel W.; Grider, John R.
2013-01-01
The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5−/− mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2′-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser188. TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids. PMID:23275618
14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs).
Sonntag, Tim; Vaughan, Joan M; Montminy, Marc
2018-02-01
The salt-inducible kinase (SIK) family regulates cellular gene expression via the phosphorylation of cAMP-regulated transcriptional coactivators (CRTCs) and class IIA histone deacetylases, which are sequestered in the cytoplasm by phosphorylation-dependent 14-3-3 interactions. SIK activity toward these substrates is inhibited by increases in cAMP signaling, although the underlying mechanism is unclear. Here, we show that the protein kinase A (PKA)-dependent phosphorylation of SIKs inhibits their catalytic activity by inducing 14-3-3 protein binding. SIK1 and SIK3 contain two functional PKA/14-3-3 sites, while SIK2 has four. In keeping with the dimeric nature of 14-3-3s, the presence of multiple binding sites within target proteins dramatically increases binding affinity. As a result, loss of a single 14-3-3-binding site in SIK1 and SIK3 abolished 14-3-3 association and rendered them insensitive to cAMP. In contrast, mutation of three sites in SIK2 was necessary to fully block cAMP regulation. Superimposed on the effects of PKA phosphorylation and 14-3-3 association, an evolutionary conserved domain in SIK1 and SIK2 (the so called RK-rich region; 595-624 in hSIK2) is also required for the inhibition of SIK2 activity. Collectively, these results point to a dual role for 14-3-3 proteins in repressing a family of Ser/Thr kinases as well as their substrates. © 2017 Federation of European Biochemical Societies.
Fernandez, A; Mery, J; Vandromme, M; Basset, M; Cavadore, J C; Lamb, N J
1991-08-01
In order to obtain a peptide retaining its biological activity following microinjection into living cells, we have modified a synthetic peptide [PKi(m)(6-24)], derived from the specific inhibitor protein of the cAMP-dependent protein kinase (A-kinase) in two ways: (1) substitution of the arginine at position 18 for a D-arginine; (2) blockade of the side chain on the C-terminal aspartic acid by a cyclohexyl ester group. In an in vitro assay, PKi(m) has retained a specific inhibitory activity against A-kinase as assessed against six other kinases, with similar efficiency to that of the unmodified PKi(5-24) peptide. Microinjection of PKi(m) into living fibroblasts reveals its capacity to prevent the changes in cell morphology and cytoskeleton induced by drugs which activate endogenous A-kinase, whereas the original PKi peptide failed to do so. This inhibition of A-kinase in vivo by PKi(m) lasts between 4 and 6 h after injection. In light of its effective half-life, this modified peptide opens a route for the use of biologically active peptides in vivo, an approach which has been hampered until now by the exceedingly short half-life of peptides inside living cells. By providing a direct means of inhibiting A-kinase activity for sufficiently long periods to observe effects on cellular functions in living cells, PKi(m) represents a powerful tool in studying the potential role of cAMP-dependent phosphorylation in vivo.
Yang, Yidai; Ye, Qilu; Jia, Zongchao; Côté, Graham P.
2015-01-01
The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min−1, respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2′/3′-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μm, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg2+ ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3–6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site. PMID:26260792
Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion
Gerbaud, Pascale; Taskén, Kjetil; Pidoux, Guillaume
2015-01-01
During human placentation, mononuclear cytotrophoblasts fuse to form multinucleated syncytia ensuring hormonal production and nutrient exchanges between the maternal and fetal circulation. Syncytial formation is essential for the maintenance of pregnancy and for fetal growth. The cAMP signaling pathway is the major route to trigger trophoblast fusion and its activation results in phosphorylation of specific intracellular target proteins, in transcription of fusogenic genes and assembly of macromolecular protein complexes constituting the fusogenic machinery at the plasma membrane. Specificity in cAMP signaling is ensured by generation of localized pools of cAMP controlled by cAMP phosphodiesterases (PDEs) and by discrete spatial and temporal activation of protein kinase A (PKA) in supramolecular signaling clusters inside the cell organized by A-kinase-anchoring proteins (AKAPs) and by organization of signal termination by protein phosphatases (PPs). Here we present original observations on the available components of the cAMP signaling pathway in the human placenta including PKA, PDE, and PP isoforms as well as AKAPs. We continue to discuss the current knowledge of the spatiotemporal regulation of cAMP signaling triggering trophoblast fusion. PMID:26441659
Tong, Guojun; Meng, Yue; Hao, Song; Hu, Shaoyu; He, Youhua; Yan, Wenjuan; Yang, Dehong
2017-01-01
Background Parathyroid hormone (PTH) is an effective anti-osteoporosis agent, after binding to its receptor PTHR1, several signaling pathways, including cAMP/protein kinase A (PKA) and phospholipase C (PLC)/protein kinase C (PKC), are initiated through G proteins; with the cAMP/PKA pathway as the major pathway. Earlier studies have reported that PTHR1 might also activate PKC via a PLC-independent mechanism, but this pathway remains unclear. Material/Methods In HEK293 cells, cAMP accumulation was measured with ELISA and PKC was measured with fluorescence resonance energy transfer (FRET) analysis using CKAR plasmid. In MC3T3-E1 cells, real-time PCR was performed to examine gene expressions. Then assays for cell apoptosis, cell differentiation, alkaline phosphatase activity, and mineralization were performed. Results The FRET analysis found that PTH(1–34), [G1,R19]PTH(1–34) (GR(1–34), and [G1,R19]PTH(1–28) (GR(1–28) were all activated by PKC. The PKC activation ability of GR(1–28) was blocked by cAMP inhibitor (Rp-cAMP) and rescued with the addition of active PKA-α and PKA-β. The PKC activation ability of GR(1–34) was partially inhibited by Rp-cAMP. In MC3T3-E1 cells, gene expressions of ALP, CITED1, NR4a2, and OSX that was regulated by GR(1–28) were significantly changed by the pan-PKC inhibitor Go6983. After pretreatment with Rp-cAMP, the gene expressions of ALP, CITED1, and OPG were differentially regulated by GR(1–28) or GR(1–34), and the difference was blunted by Go6983. PTH(1–34), GR(1–28), and GR(1–34) significantly decreased early apoptosis and augmented osteoblastic differentiation in accordance with the activities of PKA and PKC. Conclusions PLC-independent PKC activation induced by PTH could be divided into two potential mechanisms: one was PKA-dependent and associated with PTH(1–28); the other was PKA-independent and associated with PTH(29–34). We also found that PTH could activate PLC-independent PKC via PKA-dependent mechanisms. PMID:28424452
Brock, Stephanie E; Rendon, Beatriz E; Yaddanapudi, Kavitha; Mitchell, Robert A
2012-11-02
AMP-activated protein kinase (AMPK) is a nutrient- and metabolic stress-sensing enzyme activated by the tumor suppressor kinase, LKB1. Because macrophage migration inhibitory factor (MIF) and its functional homolog, d-dopachrome tautomerase (d-DT), have protumorigenic functions in non-small cell lung carcinomas (NSCLCs) but have AMPK-activating properties in nonmalignant cell types, we set out to investigate this apparent paradox. Our data now suggest that, in contrast to MIF and d-DTs AMPK-activating properties in nontransformed cells, MIF and d-DT act cooperatively to inhibit steady-state phosphorylation and activation of AMPK in LKB1 wild type and LKB1 mutant human NSCLC cell lines. Our data further indicate that MIF and d-DT, acting through their shared cell surface receptor, CD74, antagonize NSCLC AMPK activation by maintaining glucose uptake, ATP production, and redox balance, resulting in reduced Ca(2+)/calmodulin-dependent kinase kinase β-dependent AMPK activation. Combined, these studies indicate that MIF and d-DT cooperate to inhibit AMPK activation in an LKB1-independent manner.
Purves, Gregor I; Kamishima, Tomoko; Davies, Lowri M; Quayle, John M; Dart, Caroline
2009-01-01
Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2′-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 ± 4.7% inhibition (mean ±s.e.m.; n= 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2′-O-Me-cAMP caused a transient 171.0 ± 18.0 nm (n= 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2′-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow. PMID:19491242
Overcoming Autophagy to Induce Apoptosis in Castration Resistant Prostate Cancer
2015-10-01
degradation via Skp-2 mediated ubiquitination Per the report by Shen et al. [11], activation of AMP - activation protein kinase (AMPK) by metformin...AMPK-dependent apoptosis in prostate cancer cells. Autophagy, 2010. 6(5): p. 670-1. 11. Shen, M., et al., The interplay of AMP -activated protein
Galdieri, Luciano; Gatla, Himavanth; Vancurova, Ivana; Vancura, Ales
2016-01-01
AMP-activated protein kinase (AMPK) is an energy sensor and master regulator of metabolism. AMPK functions as a fuel gauge monitoring systemic and cellular energy status. Activation of AMPK occurs when the intracellular AMP/ATP ratio increases and leads to a metabolic switch from anabolism to catabolism. AMPK phosphorylates and inhibits acetyl-CoA carboxylase (ACC), which catalyzes carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting reaction in de novo synthesis of fatty acids. AMPK thus regulates homeostasis of acetyl-CoA, a key metabolite at the crossroads of metabolism, signaling, chromatin structure, and transcription. Nucleocytosolic concentration of acetyl-CoA affects histone acetylation and links metabolism and chromatin structure. Here we show that activation of AMPK with the widely used antidiabetic drug metformin or with the AMP mimetic 5-aminoimidazole-4-carboxamide ribonucleotide increases the inhibitory phosphorylation of ACC and decreases the conversion of acetyl-CoA to malonyl-CoA, leading to increased protein acetylation and altered gene expression in prostate and ovarian cancer cells. Direct inhibition of ACC with allosteric inhibitor 5-(tetradecyloxy)-2-furoic acid also increases acetylation of histones and non-histone proteins. Because AMPK activation requires liver kinase B1, metformin does not induce protein acetylation in liver kinase B1-deficient cells. Together, our data indicate that AMPK regulates the availability of nucleocytosolic acetyl-CoA for protein acetylation and that AMPK activators, such as metformin, have the capacity to increase protein acetylation and alter patterns of gene expression, further expanding the plethora of metformin's physiological effects. PMID:27733682
Kasi, V S; Kuppuswamy, D
1999-10-01
Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5'-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5'-AMP and to a lesser extent 5'-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including alphaB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5'-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5'-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5'-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state.
Ma, H; Gamper, M; Parent, C; Firtel, R A
1997-01-01
We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that move through the aggregation domains. However, these cells are unable to undergo chemotaxis properly during aggregation in response to the chemoattractant cAMP or activate guanylyl cyclase, a known regulator of chemotaxis in Dictyostelium. The activation of guanylyl cyclase in response to osmotic stress is, however, normal. Expression of putative constitutively active forms of DdMEK1 in a ddmek1 null background is capable, at least partially, of complementing the small aggregate size defect and the ability to activate guanylyl cyclase. However, this does not result in constitutive activation of guanylyl cyclase, suggesting that DdMEK1 activity is necessary, but not sufficient, for cAMP activation of guanylyl cyclase. Analysis of a temperature-sensitive DdMEK1 mutant suggests that DdMEK1 activity is required throughout aggregation at the time of guanylyl cyclase activation, but is not essential for proper morphogenesis during the later multicellular stages. The activation of the MAP kinase ERK2, which is essential for chemoattractant activation of adenylyl cyclase, is not affected in ddmek1 null strains, indicating that DdMEK1 does not regulate ERK2 and suggesting that at least two independent MAP kinase cascades control aggregation in Dictyostelium. PMID:9250676
Muller, A; Lutz-Bucher, B; Kienlen-Campard, P; Koch, B; Loeffler, J P
1998-04-01
Continuous exposure of cells to agonists develops a process that determines the extent to which the cells eventually respond to further stimuli. Here we used CATH.a cells (a catecholaminergic neuron-like cell line), which express pituitary adenylate cyclase-activating polypeptide (PACAP) receptors linked to both adenylyl cyclase and phospholipase C-beta pathways, to investigate the influence of prolonged hormonal treatment on dual signaling and gene transcription. Prolonged incubation of cells with PACAP failed to down-regulate the density and affinity of membrane binding sites and caused opposite changes in messenger systems: PACAP-stimulated cyclic AMP accumulation was attenuated in a time- and dose-dependent fashion (t(1/2) = 6.7 h and IC50 = 0.1 nM), whereas phosphoinositide turnover was overstimulated. Both effects were insensitive to pertussis toxin, whereas the drop in cyclic AMP concentration was also unchanged in the presence of 3-isobutyl-1-methylxanthine, indicating that neither Gi-like proteins nor cyclic nucleotide phosphodiesterases play a critical role in these processes. Blockade of protein synthesis with cycloheximide, as well as inhibition by H89 of cyclic AMP-dependent protein kinase (but not by bisindolylmaleimide of protein kinase C) antagonized the influences exerted by PACAP on adenylyl cyclase activity and inositol phosphate formation. Transcription of the chimeric GAL4-CREB construct, transiently transfected into CATH.a cells, was stimulated by PACAP, and this effect was potentiated as a result of chronic PACAP treatment. The results of the present investigation provide new insight into the possible differential regulation and cross-talks of transduction signals of receptors linked to multiplex signaling. They demonstrate that prolonged exposure of CATH.a cells to PACAP results in the desensitization of the cyclic AMP pathway and superinduction of the inositol phosphate signal, through protein neosynthesis and cyclic AMP-dependent protein kinase activation. At the same time, they show that desensitization of cyclic AMP signaling not only fails to hamper, but actually amplifies PACAP-stimulated CREB-regulated transcription.
Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK.
Zhang, Chen-Song; Hawley, Simon A; Zong, Yue; Li, Mengqi; Wang, Zhichao; Gray, Alexander; Ma, Teng; Cui, Jiwen; Feng, Jin-Wei; Zhu, Mingjiang; Wu, Yu-Qing; Li, Terytty Yang; Ye, Zhiyun; Lin, Shu-Yong; Yin, Huiyong; Piao, Hai-Long; Hardie, D Grahame; Lin, Sheng-Cai
2017-08-03
The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK), but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.
Lee, Jung Hyun; Han, Ji Seul; Kong, Jinuk; Ji, Yul; Lv, Xuchao; Lee, Junho; Li, Peng; Kim, Jae Bum
2016-01-01
Protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent protein kinase composed of catalytic and regulatory subunits and involved in various physiological phenomena, including lipid metabolism. Here we demonstrated that the stoichiometric balance between catalytic and regulatory subunits is crucial for maintaining basal PKA activity and lipid homeostasis. To uncover the potential roles of each PKA subunit, Caenorhabditis elegans was used to investigate the effects of PKA subunit deficiency. In worms, suppression of PKA via RNAi resulted in severe phenotypes, including shortened life span, decreased egg laying, reduced locomotion, and altered lipid distribution. Similarly, in mammalian adipocytes, suppression of PKA regulatory subunits RIα and RIIβ via siRNAs potently stimulated PKA activity, leading to potentiated lipolysis without increasing cAMP levels. Nevertheless, insulin exerted anti-lipolytic effects and restored lipid droplet integrity by antagonizing PKA action. Together, these data implicate the importance of subunit stoichiometry as another regulatory mechanism of PKA activity and lipid metabolism. PMID:27496951
Ahluwalia, Amrita; Baatar, Dolgor; Jones, Michael K.
2014-01-01
Clinical studies indicate that prostaglandins of E class (PGEs) may promote healing of tissue injury e.g., gastroduodenal and dermal ulcers. However, the precise roles of PGEs, their E-prostanoid (EP) receptors, signaling pathways including cAMP and cAMP response element-binding protein (CREB), and their relation to VEGF and angiogenesis in the tissue injury healing process remain unknown, forming the rationale for this study. Using an esophageal ulcer model in rats, we demonstrated that esophageal mucosa expresses predominantly EP2 receptors and that esophageal ulceration triggers an increase in expression of the EP2 receptor, activation of CREB (the downstream target of the cAMP signaling), and enhanced VEGF gene expression. Treatment of rats with misoprostol, a PGE1 analog capable of activating EP receptors, enhanced phosphorylation of CREB, stimulated VEGF expression and angiogenesis, and accelerated esophageal ulcer healing. In cultured human esophageal epithelial (HET-1A) cells, misoprostol increased intracellular cAMP levels (by 163-fold), induced phosphorylation of CREB, and stimulated VEGF expression. A cAMP analog (Sp-cAMP) mimicked, whereas an inhibitor of cAMP-dependent protein kinase A (Rp-cAMP) blocked, these effects of misoprostol. These results indicate that the EP2/cAMP/protein kinase A pathway mediates the stimulatory effect of PGEs on angiogenesis essential for tissue injury healing via the induction of CREB activity and VEGF expression. PMID:25059824
NASA Technical Reports Server (NTRS)
Cohen, C. R.; Mills, I.; Du, W.; Kamal, K.; Sumpio, B. E.
1997-01-01
The aim of this study was to assess the involvement of the adenylyl cyclase/cyclic AMP/protein kinase A pathway (AC) in endothelial cells (EC) exposed to different levels of mechanical strain. Bovine aortic EC were seeded to confluence on flexible membrane-bottom wells. The membranes were deformed with either 150 mm Hg (average 10% strain) or 37.5 mm Hg (average 6% strain) vacuum at 60 cycles per minute (0.5 s strain; 0.5 s relaxation) for 0-60 min. The results demonstrate that at 10% average strain (but not 6% average strain) there was a 1.5- to 2.2-fold increase in AC, cAMP, and PKA activity by 15 min when compared to unstretched controls. Further studies revealed an increase in cAMP response element binding protein in EC subjected to the 10% average strain (but not 6% average strain). These data support the hypothesis that cyclic strain activates the AC/cAMP/PKA signal transduction pathway in EC which may occur by exceeding a strain threshold and suggest that cyclic strain may stimulate the expression of genes containing cAMP-responsive promoter elements.
Barquilla, Antonio; Lamberto, Ilaria; Noberini, Roberta; Heynen-Genel, Susanne; Brill, Laurence M.; Pasquale, Elena B.
2016-01-01
The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 “canonical” signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 “noncanonical” signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1–induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein–coupled receptors such as the β2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the β2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells. PMID:27385333
Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.
Kutlu, Munir Gunes; Gould, Thomas J
2016-03-01
The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.
Tachibana, Nobuhiko; Yamashita, Yoko; Nagata, Mayuko; Wanezaki, Satoshi; Ashida, Hitoshi; Horio, Fumihiko; Kohno, Mitsutaka
2014-02-01
Although the underlying mechanism is unclear, β-conglycinin (βCG), the major component of soy proteins, regulates blood glucose levels. Here, we hypothesized that consumption of βCG would normalize blood glucose levels by ameliorating insulin resistance and stimulating glucose uptake in skeletal muscles. To test our hypothesis, we investigated the antidiabetic action of βCG in spontaneously diabetic Goto-Kakizaki (GK) rats. Our results revealed that plasma adiponectin levels and adiponectin receptor 1 messenger RNA expression in skeletal muscle were higher in βCG-fed rats than in casein-fed rats. Phosphorylation of adenosine monophosphate-activated protein kinase (AMP kinase) but not phosphatidylinositol-3 kinase was activated in βCG-fed GK rats. Subsequently, βCG increased translocation of glucose transporter 4 to the plasma membrane. Unlike the results in skeletal muscle, the increase in adiponectin receptor 1 did not lead to AMP kinase activation in the liver of βCG-fed rats. The down-regulation of sterol regulatory element-binding factor 1, which is induced by low insulin levels, promoted the increase in hepatic insulin receptor substrate 2 expression. Based on these findings, we concluded that consumption of soy βCG improves glucose uptake in skeletal muscle via AMP kinase activation and ameliorates hepatic insulin resistance and that these actions may help normalize blood glucose levels in GK rats. Copyright © 2014 Elsevier Inc. All rights reserved.
He, Daniel; Lorenz, Robin; Kim, Choel; Herberg, Friedrich W; Lim, Chinten James
2017-12-15
The cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKA and PKG) are key effectors of cyclic nucleotide signaling. Both share structural features that include tandem cyclic nucleotide-binding (CNB) domains, CNB-A and CNB-B, yet their functions are separated through preferential activation by either cAMP or cGMP. Based on structural studies and modeling, key CNB contact residues have been identified for both kinases. In this study, we explored the requirements for conversion of PKA activation from cAMP-dependent to cGMP-dependent. The consequences of the residue substitutions T192R/A212T within CNB-A or G316R/A336T within CNB-B of PKA-RIα on cyclic nucleotide binding and holoenzyme activation were assessed in vitro using purified recombinant proteins, and ex vivo using RIα-deficient mouse embryonic fibroblasts genetically reconstituted with wild-type or mutant PKA-RIα. In vitro, a loss of binding and activation selectivity was observed when residues in either one of the CNB domains were mutated, while mutations in both CNB domains resulted in a complete switch of selectivity from cAMP to cGMP. The switch in selectivity was also recapitulated ex vivo, confirming their functional roles in cells. Our results highlight the importance of key cyclic nucleotide contacts within each CNB domain and suggest that these domains may have evolved from an ancestral gene product to yield two distinct cyclic nucleotide-dependent protein kinases.
Reciprocal regulation of insulin and plasma 5'-AMP in glucose homeostasis in mice.
Xia, Lin; Wang, Zhongqiu; Zhang, Ying; Yang, Xiao; Zhan, Yibei; Cheng, Rui; Wang, Shiming; Zhang, Jianfa
2015-03-01
A previous investigation has demonstrated that plasma 5'-AMP (pAMP) exacerbates and causes hyperglycemia in diabetic mice. However, the crosstalk between pAMP and insulin signaling to regulate glucose homeostasis has not been investigated in depth. In this study, we showed that the blood glucose level was more dependent on the ratio of insulin to pAMP than on the absolute level of these two factors. Administration of 5'-AMP significantly attenuated the insulin-stimulated insulin receptor (IR) autophosphorylation in the liver and muscle tissues, resulting in the inhibition of downstream AKT phosphorylation. A docking analysis indicated that adenosine was a potential inhibitor of IR tyrosine kinase. Moreover, the 5'-AMP treatment elevated the ATP level in the pancreas and in the isolated islets, stimulating insulin secretion and increasing the plasma level of insulin. The insulin administration decreased the 5'-AMP-induced hyper-adenosine level by the up-regulation of adenosine kinase activities. Our results indicate that blood glucose homeostasis is reciprocally regulated by pAMP and insulin. © 2015 Society for Endocrinology.
Kasi, Vijaykumar S.; Kuppuswamy, Dhandapani
1999-01-01
Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5′-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5′-AMP and to a lesser extent 5′-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including αB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5′-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5′-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5′-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state. PMID:10490624
Yang, Liu; Sha, Haibo; Davisson, Robin L.; Qi, Ling
2013-01-01
Activation of the unfolded protein response (UPR) is associated with the disruption of endoplasmic reticulum (ER) homeostasis and has been implicated in the pathogenesis of many human metabolic diseases, including obesity and type 2 diabetes. However, the nature of the signals activating UPR under these conditions remains largely unknown. Using a method that we recently optimized to directly measure UPR sensor activation, we screened the effect of various metabolic drugs on UPR activation and show that the anti-diabetic drug phenformin activates UPR sensors IRE1α and pancreatic endoplasmic reticulum kinase (PERK) in both an ER-dependent and ER-independent manner. Mechanistically, AMP-activated protein kinase (AMPK) activation is required but not sufficient to initiate phenformin-mediated IRE1α and PERK activation, suggesting the involvement of additional factor(s). Interestingly, activation of the IRE1α (but not PERK) pathway is partially responsible for the cytotoxic effect of phenformin. Together, our data show the existence of a non-canonical UPR whose activation requires the cytosolic kinase AMPK, adding another layer of complexity to UPR activation upon metabolic stress. PMID:23548904
AMP-activated protein kinase and metabolic control
Viollet, Benoit; Andreelli, Fabrizio
2011-01-01
AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, is a major regulator of cellular and whole-body energy homeostasis that coordinates metabolic pathways in order to balance nutrient supply with energy demand. It is now recognized that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profile and blood pressure in insulin-resistant rodents. Indeed, AMPK activation mimics the beneficial effects of physical activity or those of calorie restriction by acting on multiple cellular targets. In addition it is now demonstrated that AMPK is one of the probable (albeit indirect) targets of major antidiabetic drugs including, the biguanides (metformin) and thiazolidinediones, as well as of insulin sensitizing adipokines (e.g., adiponectin). Taken together, such findings highlight the logic underlying the concept of targeting the AMPK pathway for the treatment of metabolic syndrome and type 2 diabetes. PMID:21484577
Yang, Xiao; Zhan, Yibei; Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa
2017-01-24
Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5'-monophsphate (5'-AMP). We demonstrated that co-administration of APAP and 5'-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5'-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5'-AMP formulation could prevent APAP-induced hepatotoxicity.
Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa
2017-01-01
Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5′-monophsphate (5′-AMP). We demonstrated that co-administration of APAP and 5′-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5′-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5′-AMP formulation could prevent APAP-induced hepatotoxicity. PMID:28031524
Beyond AICA Riboside: In Search of New Specific AMP-activated Protein Kinase Activators
Guigas, Bruno; Sakamoto, Kei; Taleux, Nellie; Reyna, Sara M.; Musi, Nicolas; Viollet, Benoit; Hue, Louis
2010-01-01
Summary 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICA riboside) has been extensively used in vitro and in vivo to activate the AMP-activated protein kinase (AMPK), a metabolic sensor involved in both cellular and whole body energy homeostasis. However, it has been recently highlighted that AICA riboside also exerts AMPK-independent effects, mainly on AMP-regulated enzymes and mitochondrial oxidative phosphorylation (OXPHOS), leading to the conclusion that new compounds with reduced off target effects are needed to specifically activate AMPK. Here, we review recent findings on newly discovered AMPK activators, notably on A-769662, a nonnucleoside compound from the thienopyridone family. We also report that A-769662 is able to activate AMPK and stimulate glucose uptake in both L6 cells and primary myotubes derived from human satellite cells. In addition, A-769662 increases AMPK activity and phosphorylation of its main downstream targets in primary cultured rat hepatocytes but, by contrast with AICA riboside, does neither affect mitochondrial OXPHOS nor change cellular AMP:ATP ratio. We conclude that A-769662 could be one of the new promising chemical agents to activate AMPK with limited AMPK-independent side effects. PMID:18798311
A dual-specificity isoform of the protein kinase inhibitor PKI produced by alternate gene splicing.
Kumar, Priyadarsini; Walsh, Donal A
2002-03-15
We have previously shown that the protein kinase inhibitor beta (PKIbeta) form of the cAMP-dependent protein kinase inhibitor exists in multiple isoforms, some of which are specific inhibitors of the cAMP-dependent protein kinase, whereas others also inhibit the cGMP-dependent enzyme [Kumar, Van Patten and Walsh (1997), J. Biol. Chem. 272, 20011-20020]. We have now demonstrated that the switch from a cAMP-dependent protein kinase (PKA)-specific inhibitor to one with dual specificity arises as a consequence of alternate gene splicing. We have confirmed using bacterially produced pure protein that a single inhibitor species has dual specificity for both PKA and cGMP-dependent protein kinase (PKG), inhibiting each with very high and closely similar inhibitory potencies. The gene splicing converted a protein with 70 amino acids into one of 109 amino acids, and did not change the inhibitory potency to PKA, but changed it from a protein that had no detectable PKG inhibitory activity to one that now inhibited PKG in the nanomolar range.
Liu, D; Huang, Y; Bu, D; Liu, A D; Holmberg, L; Jia, Y; Tang, C; Du, J; Jin, H
2014-01-01
The present study was designed to investigate the role of endogenous sulfur dioxide (SO2) in vascular smooth muscle cell (VSMC) proliferation, and explore the possible role of cross-talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathways in this action. By cell counting, growth curve depict, flow cytometry and bromodeoxyuridine (BrdU) labeling assays, we found that SO2 inhibited VSMC proliferation by preventing cell cycle progression from G1 to S phase and by reducing DNA synthesis. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) overexpression significantly inhibited serum-induced proliferating cell nuclear antigen (PCNA) protein expression in VSMCs, demonstrated by western blot analysis. Moreover, overexpression of AAT1 or AAT2 markedly reduced incorporation of BrdU in serum-treated VSMCs. By contrast, either AAT1 or AAT2 knockdown significantly exacerbated serum-stimulated VSMC proliferation. Thus, both exogenous- and endogenous-derived SO2 suppressed serum-induced VSMC proliferation. However, annexin V-propidium iodide (PI) staining and cell cycle analysis demonstrated that SO2 did not influence VSMC apoptosis in the serum-induced proliferation model. In a platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation model, SO2 dephosphorylated the active sites of Erk1/2, MAPK kinase 1/2 and RAF proto-oncogene serine/threonine-protein kinase (c-Raf) induced by PDGF-BB. However, the inactivation of the three kinases of the Erk/MAPK pathway was not due to the separate interferences on them by SO2 simultaneously, but a consequence of the influence on the upstream activity of the c-Raf molecule. Hence, we examined the cAMP/PKA pathway, which could inhibit Erk/MAPK transduction in VSMCs. The results showed that SO2 could stimulate the cAMP/PKA pathway to block c-Raf activation, whereas the Ser259 site on c-Raf had an important role in SO2-induced suppression of Erk/MAPK pathway. The present study firstly demonstrated that SO2 exerted a negative regulation of VSMC proliferation via suppressing the Erk/MAPK pathway mediated by cAMP/PKA signaling. PMID:24853429
Computer-aided drug design for AMP-activated protein kinase activators.
Wang, Zhanli; Huo, Jianxin; Sun, Lidan; Wang, Yongfu; Jin, Hongwei; Yu, Hui; Zhang, Liangren; Zhou, Lishe
2011-09-01
AMP-activated protein kinase (AMPK) is an important therapeutic target for the potential treatment of metabolic disorders, cardiovascular disease and cancer. Recently, various classes of compounds that activate AMPK by direct or indirect interactions have been reported. The importance of computer-aided drug design approaches in the search for potent activators of AMPK is now established, including structure-based design, ligand-based design, fragment-based design, as well as structural analysis. This review article highlights the computer-aided drug design approaches utilized to discover of activators targeting AMPK. The principles, advantages or limitation of the different methods are also being discussed together with examples of applications taken from the literatures.
Harford, Terri J.; Linfield, Debra T.; Altawallbeh, Ghaith; Midura, Ronald J.; Ivanov, Andrei I.; Piedimonte, Giovanni
2017-01-01
Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches. PMID:28759570
Wong, A O; Le Drean, Y; Liu, D; Hu, Z Z; Du, S J; Hew, C L
1996-05-01
In this study, the functional role of two cAMP-response elements (CRE) in the promoter of the chinook salmon GH gene and their interactions with the transcription factor Pit-1 in regulating GH gene expression were examined. A chimeric construct of the chloramphenicol acetyltransferase (CAT) reporter gene with the CRE-containing GH promoter (pGH.CAT) was transiently transfected into primary cultures of rainbow trout pituitary cells. The expression of CAT activity was stimulated by an adenylate cyclase activator forskolin as well as a membrane-permeant cAMP analog 8-bromo-cAMP. Furthermore, these stimulatory responses were inhibited by a protein kinase A inhibitor H89, suggesting that these CREs are functionally coupled to the adenylate cyclase-cAMP-protein kinase A cascade. This hypothesis is supported by parallel studies using GH4ZR7 cells, a rat pituitary cell line stably transfected with dopamine D2 receptors. In this cell line, D2 receptor activation is known to inhibit adenylate cyclase activity and cAMP synthesis. Stimulation with a nonselective dopamine agonist, apomorphine, or a D2-specific agonist, Ly171555, suppressed the expression of pGH.CAT in GH4ZR7 cells, and this inhibition was blocked by simultaneous treatment with forskolin. These results indicate that inhibition of the cAMP-dependent pathway reduces the basal promoter activity of the CRE-containing pGH.CAT. The functionality of these CREs was further confirmed by deletion analysis and site-specific mutagenesis. In trout pituitary cells, the cAMP inducibility of pGH.CAT was inhibited after deleting the CRE-containing sequence from the GH promoter. When the CRE-containing sequence was cloned into a CAT construct with a viral thymidine kinase promoter, a significant elevation of cAMP inducibility was observed. This stimulatory response, however, was abolished by mutating the core sequence, CGTCA, in these CREs, suggesting that these cis-acting elements confer cAMP inducibility to the salmon GH gene. The interactions between CREs and the transcription factor Pit-1 in mediating GH gene expression were also examined. In HeLa cells, a human cervical cancer cell line deficient in Pit-1, both basal and cAMP-induced expression of pGH.CAT were apparent only with the cotransfection of a Pit-1 expression vector. These results taken together indicate that the two CREs in the chinook salmon GH gene are functionally associated with the cAMP-dependent pathway and that their promoter activity is dependent on the presence of Pit-1
Choi, Kuicheon; Mollapour, Elahe; Choi, Jae H.; Shears, Stephen B.
2009-01-01
Cells aggressively defend adenosine nucleotide homeostasis; intracellular biosensors detect variations in energetic status and communicate with other cellular networks to initiate adaptive responses. Here, we demonstrate some new elements of this communication process, and we show that this networking is compromised by off-target, bioenergetic effects of some popular pharmacological tools. Treatment of cells with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), so as to simulate elevated AMP levels, reduced the synthesis of bis-diphosphoinositol tetrakisphosphate ([PP]2-InsP4), an intracellular signal that phosphorylates proteins in a kinase-independent reaction. This was a selective effect; levels of other inositol phosphates were unaffected by AICAR. By genetically manipulating cellular AMP-activated protein kinase activity, we showed that it did not mediate these effects of AICAR. Instead, we conclude that the simulation of deteriorating adenosine nucleotide balance itself inhibited [PP]2-InsP4 synthesis. This conclusion is consistent with our demonstrating that oligomycin elevated cellular [AMP] and selectively inhibited [PP]2-InsP4 synthesis without affecting other inositol phosphates. In addition, we report that the short-term increases in [PP]2-InsP4 levels normally seen during hyperosmotic stress were attenuated by 2-(2-chloro-4-iodophenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide (PD184352). The latter is typically considered an exquisitely specific mitogen-activated protein kinase kinase (MEK) inhibitor, but small interfering RNA against MEK or extracellular signal-regulated kinase revealed that this mitogen-activated protein kinase pathway was not involved. Instead, we demonstrate that [PP]2-InsP4 synthesis was inhibited by PD184352 through its nonspecific effects on cellular energy balance. Two other MEK inhibitors, 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) and 2′-amino-3′-methoxyflavone (PD98059), had similar off-target effects. We conclude that the levels and hence the signaling strength of [PP]2-InsP4 is supervised by cellular adenosine nucleotide balance, signifying a new link between signaling and bioenergetic networks. PMID:18460607
Gao, Tong; Knecht, David; Tang, Lei; Hatton, R. Diane; Gomer, Richard H.
2004-01-01
Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of ∼20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin− cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB. PMID:15470246
AMP-activated protein kinase, stress responses and cardiovascular diseases
WANG, Shaobin; SONG, Ping; ZOU, Ming-Hui
2012-01-01
AMPK (AMP-activated protein kinase) is one of the key players in maintaining intracellular homoeostasis. AMPK is well known as an energy sensor and can be activated by increased intracellular AMP levels. Generally, the activation of AMPK turns on catabolic pathways that generate ATP, while inhibiting cell proliferation and biosynthetic processes that consume ATP. In recent years, intensive investigations on the regulation and the function of AMPK indicates that AMPK not only functions as an intracellular energy sensor and regulator, but is also a general stress sensor that is important in maintaining intracellular homoeostasis during many kinds of stress challenges. In the present paper, we will review recent literature showing that AMPK functions far beyond its proposed energy sensor and regulator function. AMPK regulates ROS (reactive oxygen species)/redox balance, autophagy, cell proliferation, cell apoptosis, cellular polarity, mitochondrial function and genotoxic response, either directly or indirectly via numerous downstream pathways under physiological and pathological conditions. PMID:22390198
Polge, Cécile; Ramirez, Sacnicte; Michelland, Sylvie; Sève, Michel; Vertommen, Didier; Rider, Mark; Lentze, Nicolas; Auerbach, Daniel; Schlattner, Uwe
2013-01-01
AMP-activated protein kinase (AMPK) is a cellular and whole body energy sensor with manifold functions in regulating energy homeostasis, cell morphology and proliferation in health and disease. Here we apply multiple, complementary in vitro and in vivo interaction assays to identify several isoforms of glutathione S-transferase (GST) as direct AMPK binding partners: Pi-family member rat GSTP1 and Mu-family members rat GSTM1, as well as Schistosoma japonicum GST. GST/AMPK interaction is direct and involves the N-terminal domain of the AMPK β-subunit. Complex formation of the mammalian GSTP1 and -M1 with AMPK leads to their enzymatic activation and in turn facilitates glutathionylation and activation of AMPK in vitro. GST-facilitated S-glutathionylation of AMPK may be involved in rapid, full activation of the kinase under mildly oxidative physiological conditions. PMID:23741294
Okuno, S; Kitani, T; Fujisawa, H
2001-10-01
Ca(2+)/calmodulin-dependent protein kinases (CaM-kinases) I and IV are activated upon phosphorylation of their Thr(177) and Thr(196), respectively, by the upstream Ca(2+)/calmodulin-dependent protein kinases CaM-kinase kinase alpha and beta, and deactivated upon dephosphorylation by protein phosphatases such as CaM-kinase phosphatase. Recent studies demonstrated that the activity of CaM-kinase kinase alpha is decreased upon phosphorylation by cAMP-dependent protein kinase (PKA), and the relationship between the inhibition and phosphorylation of CaM-kinase kinase alpha by PKA has been studied. In the present study, we demonstrate that the activity of CaM-kinase kinase alpha toward PKIV peptide, which contains the sequence surrounding Thr(196) of CaM-kinase IV, is increased by incubation with PKA in the presence of Ca(2+)/calmodulin but decreased in its absence, while the activity toward CaM-kinase IV is decreased by incubation with PKA in both the presence and absence of Ca(2+)/calmodulin. Six phosphorylation sites on CaM-kinase kinase alpha, Ser(24) for autophosphorylation, and Ser(52), Ser(74), Thr(108), Ser(458), and Ser(475) for phosphorylation by PKA, were identified by amino acid sequence analysis of the phosphopeptides purified from the tryptic digest of the phosphorylated enzymes. The presence of Ca(2+)/calmodulin suppresses phosphorylation on Ser(52), Ser(74), Thr(108), and Ser(458) by PKA, but accelerates phosphorylation on Ser(475). The changes in the activity of the enzyme upon phosphorylation appear to occur as a result of conformational changes induced by phosphorylation on several sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj
2010-08-01
We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase weremore » enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.« less
Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase.
Zheng, D; MacLean, P S; Pohnert, S C; Knight, J B; Olson, A L; Winder, W W; Dohm, G L
2001-09-01
Skeletal muscle GLUT-4 transcription in response to treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), a known activator of AMP-activated protein kinase (AMPK), was studied in rats and mice. The increase in GLUT-4 mRNA levels in response to a single subcutaneous injection of AICAR, peaked at 13 h in white and red quadriceps muscles but not in the soleus muscle. The mRNA level of chloramphenicol acyltransferase reporter gene which is driven by 1,154 or 895 bp of the human GLUT-4 proximal promoter was increased in AICAR-treated transgenic mice, demonstrating the transcriptional upregulation of the GLUT-4 gene by AICAR. However, this induction of transcription was not apparent with 730 bp of the promoter. In addition, nuclear extracts from AICAR-treated mice bound to the consensus sequence of myocyte enhancer factor-2 (from -473 to -464) to a greater extent than from saline-injected mice. Thus AMP-activated protein kinase activation by AICAR increases GLUT-4 transcription by a mechanism that requires response elements within 895 bp of human GLUT-4 proximal promoter and that may be cooperatively mediated by myocyte enhancer factor-2.
Kitani, T; Okuno, S; Fujisawa, H
2001-10-01
We previously reported that rat brain Ca(2+)/calmodulin-dependent protein kinase (CaM-kinase) IV is inactivated by cAMP-dependent protein kinase (PKA) [Kameshita, I. and Fujisawa, H. (1991) Biochem. Biophys. Res. Commun. 180, 191-196]. In the preceding paper, we demonstrated that changes in the activity of CaM-kinase IV by PKA results from the phosphorylation of CaM-kinase kinase alpha by PKA and identified six phosphorylation sites, Ser(24) for autophosphorylation, and Ser(52), Ser(74), Thr(108), Ser(458), and Ser(475) for phosphorylation by PKA. In the present study, a causal relationship between the phosphorylation and change in the activity toward PKIV peptide has been studied using mutant enzymes with amino acid substitutions at the six phosphorylation sites. The following conclusions can be drawn from the experimental results: (i) Phosphorylation of Ser74 and/or unidentified sites causes an increase in activity; (ii) phosphorylation of Thr(108) or Ser(458) causes a decrease in the activity; (iii) the inhibitory effect of the phosphorylation of Thr(108) is canceled by the stimulatory effect of the phosphorylation, but that of Ser(458) is not; and (iv) the inhibitory effects of Thr(108) and Ser(458) are synergistic. In contrast to the activity toward PKIV peptide, the activity toward CaM-kinase IV appears to be decreased by the phosphorylation of Thr(108), but not significantly affected by the phosphorylation of Ser(458).
Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Liu, Ping-Yen; Lee, Cheng-Han; Cho, Chung-Lung; Wu, Hua-Lin; Chen, Jyh-Hong
2016-04-01
Cilostazol is an antiplatelet agent with vasodilatory effects that works by increasing intracellular concentrations of cyclic adenosine monophosphate (cAMP). This study investigated the effects of cilostazol in preventing high glucose (HG)-induced impaired angiogenesis and examined the potential mechanisms involving activation of AMP-activated protein kinase (AMPK). Assays for colony formation, adhesion, proliferation, migration, and vascular tube formation were used to determine the effect of cilostazol in HG-treated endothelial progenitor cells (EPCs) or human umbilical vein endothelial cells (HUVECs). Animal-based assays were performed in hyperglycemic ICR mice undergoing hind limb ischemia. An immnunoblotting assay was used to identify the expression and activation of signaling molecules in vitro and in vivo. Cilostazol treatment significantly restored endothelial function in EPCs and HUVECs through activation of AMPK/acetyl-coenzyme A carboxylase (ACC)-dependent pathways and cAMP/protein kinase A (PKA)-dependent pathways. Recovery of blood flow in the ischemic hind limb and the population of circulating CD34(+) cells were significantly improved in cilostazol-treated mice, and these effects were abolished by local AMPK knockdown. Cilostazol increased the phosphorylation of AMPK/ACC and Akt/endothelial nitric oxide synthase signaling molecules in parallel with or downstream of the cAMP/PKA-dependent signaling pathway in vitro and in vivo. Cilostazol prevents HG-induced endothelial dysfunction in EPCs and HUVECs and enhances angiogenesis in hyperglycemic mice by interactions with a broad signaling network, including activation of AMPK/ACC and probably cAMP/PKA pathways. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Taylor, Emily J. A.; Pantazaka, Evangelia; Shelley, Kathryn L.
2017-01-01
In human aortic smooth muscle cells, prostaglandin E2 (PGE2) stimulates adenylyl cyclase (AC) and attenuates the increase in intracellular free Ca2+ concentration evoked by activation of histamine H1 receptors. The mechanisms are not resolved. We show that cAMP mediates inhibition of histamine-evoked Ca2+ signals by PGE2. Exchange proteins activated by cAMP were not required, but the effects were attenuated by inhibition of cAMP-dependent protein kinase (PKA). PGE2 had no effect on the Ca2+ signals evoked by protease-activated receptors, heterologously expressed muscarinic M3 receptors, or by direct activation of inositol 1,4,5-trisphosphate (IP3) receptors by photolysis of caged IP3. The rate of Ca2+ removal from the cytosol was unaffected by PGE2, but PGE2 attenuated histamine-evoked IP3 accumulation. Substantial inhibition of AC had no effect on the concentration-dependent inhibition of Ca2+ signals by PGE2 or butaprost (to activate EP2 receptors selectively), but it modestly attenuated responses to EP4 receptors, activation of which generated less cAMP than EP2 receptors. We conclude that inhibition of histamine-evoked Ca2+ signals by PGE2 occurs through “hyperactive signaling junctions,” wherein cAMP is locally delivered to PKA at supersaturating concentrations to cause uncoupling of H1 receptors from phospholipase C. This sequence allows digital signaling from PGE2 receptors, through cAMP and PKA, to histamine-evoked Ca2+ signals. PMID:28877931
On the role of calcium ions in the regulation of glycogenolysis in mouse brain cortical slices.
Ververken, D; Van Veldhoven, P; Proost, C; Carton, H; De Wulf, H
1982-05-01
Using mouse brain cortical slices, we investigated the relative roles of cyclic AMP and of calcium ions as the intracellular messengers for the activation of glycogen phosphorylase (EC 2.4.1.1; alpha-1,4-glucan:orthophosphate glucosyltransferase) induced by noradrenaline and by depolarization. Activation of phosphorylase by 100 microM noradrenaline is mediated by beta-adrenergic receptors and does not require the copresence of adenosine. The role of the concomitant small increase in cyclic AMP is questioned. Short-term treatment with EGTA or LaCl3 abolishes the noradrenaline activation of phosphorylase, pointing to a critical role of extracellular calcium. Depolarization by 25 mM K+ or 100 microM veratridine produces a rapid and large (fourfold) activation of phosphorylase. Only veratridine increases the cyclic AMP levels; exogenous adenosine deaminase essentially blocks this cyclic AMP accumulation but not the phosphorylase activation. A half-maximal activation of phosphorylase occurs at about 12 mM K+. Addition of EGTA or LaCl3 reduces the effect of both depolarizations to a slight and transient activation of phosphorylase. These results indicate that activation of glycogen phosphorylase by K+ or veratridine occurs by a cyclic AMP-independent and calcium-dependent mechanism. The calcium dependency of brain phosphorylase kinase renders this kinase the prime target enzyme for regulation of glycogenolysis by calcium ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambon, Alexander C.; Zhang, Lingzhi; Minovitsky, Simon
Although a substantial number of hormones and drugs increase cellular cAMP levels, the global impact of cAMP and its major effector mechanism, protein kinase A (PKA), on gene expression is not known. Here we show that treatment of murine wild-type S49 lymphoma cells for 24 h with 8-(4-chlorophenylthio)-cAMP (8-CPTcAMP), a PKA-selective cAMP analog, alters the expression of approx equal to 4,500 of approx. equal to 13,600 unique genes. By contrast, gene expression was unaltered in Kin- S49 cells (that lack PKA) incubated with 8-CPTcAMP. Changes in mRNA and protein expression of several cell cycle regulators accompanied cAMP-induced G1-phase cell-cycle arrestmore » of wild-type S49 cells. Within 2h, 8-CPT-cAMP altered expression of 152 genes that contain evolutionarily conserved cAMP-response elements within 5 kb of transcriptional start sites, including the circadian clock gene Per1. Thus, cAMP through its activation of PKA produces extensive transcriptional regulation in eukaryotic cells. These transcriptional networks include a primary group of cAMP-response element-containing genes and secondary networks that include the circadian clock.« less
Proximal Tubular Cannabinoid-1 Receptor Regulates Obesity-Induced CKD.
Udi, Shiran; Hinden, Liad; Earley, Brian; Drori, Adi; Reuveni, Noa; Hadar, Rivka; Cinar, Resat; Nemirovski, Alina; Tam, Joseph
2017-12-01
Obesity-related structural and functional changes in the kidney develop early in the course of obesity and occur independently of hypertension, diabetes, and dyslipidemia. Activating the renal cannabinoid-1 receptor (CB 1 R) induces nephropathy, whereas CB 1 R blockade improves kidney function. Whether these effects are mediated via a specific cell type within the kidney remains unknown. Here, we show that specific deletion of CB 1 R in the renal proximal tubule cells did not protect the mice from obesity, but markedly attenuated the obesity-induced lipid accumulation in the kidney and renal dysfunction, injury, inflammation, and fibrosis. These effects associated with increased activation of liver kinase B1 and the energy sensor AMP-activated protein kinase, as well as enhanced fatty acid β -oxidation. Collectively, these findings indicate that renal proximal tubule cell CB 1 R contributes to the pathogenesis of obesity-induced renal lipotoxicity and nephropathy by regulating the liver kinase B1/AMP-activated protein kinase signaling pathway. Copyright © 2017 by the American Society of Nephrology.
Huang, Gilbert Y.; Gerlits, Oksana O.; Blakeley, Matthew P.; ...
2014-10-01
High selectivity of cyclic-nucleotide binding (CNB) domains for cAMP and cGMP are required for segregating signaling pathways; however, the mechanism of selectivity remains unclear. To investigate the mechanism of high selectivity in cGMP-dependent protein kinase (PKG), we determined a room-temperature joint X-ray/neutron (XN) structure of PKG Iβ CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP (2.2 Å), and a low-temperature X-ray structure of CNB-B with cAMP (1.3 Å). Finally, the XN structure directly describes the hydrogen bonding interactions that modulate high selectivity for cGMP, while the structure with cAMP reveals that all these contacts are disrupted,more » explaining its low affinity for cAMP.« less
Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua
Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and themore » PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may enhance Cytokine release, increase NADPH oxidase activation and reduce activities of antioxidant enzymes. • Hydroxysafflor yellow A (HSYA) up regulate cAMP/PKA signal pathway in lung tissue induced by OA. • HSYA attenuate OA mediated lung injury via reducing inflammatory cytokine release and improving antioxidant capacity.« less
Sakamoto, Kei; Göransson, Olga; Hardie, D Grahame; Alessi, Dario R
2004-08-01
Activation of AMP-activated protein kinase (AMPK) by exercise and metformin is beneficial for the treatment of type 2 diabetes. We recently found that, in cultured cells, the LKB1 tumor suppressor protein kinase activates AMPK in response to the metformin analog phenformin and the AMP mimetic drug 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). We have also reported that LKB1 activates 11 other AMPK-related kinases. The activity of LKB1 or the AMPK-related kinases has not previously been studied in a tissue with physiological relevance to diabetes. In this study, we have investigated whether contraction, phenformin, and AICAR influence LKB1 and AMPK-related kinase activity in rat skeletal muscle. Contraction in situ, induced via sciatic nerve stimulation, significantly increased AMPKalpha2 activity and phosphorylation in multiple muscle fiber types without affecting LKB1 activity. Treatment of isolated skeletal muscle with phenformin or AICAR stimulated the phosphorylation and activation of AMPKalpha1 and AMPKalpha2 without altering LKB1 activity. Contraction, phenformin, or AICAR did not significantly increase activities or expression of the AMPK-related kinases QSK, QIK, MARK2/3, and MARK4 in skeletal muscle. The results of this study suggest that muscle contraction, phenformin, or AICAR activates AMPK by a mechanism that does not involve direct activation of LKB1. They also suggest that the effects of excercise, phenformin, and AICAR on metabolic processes in muscle may be mediated through activation of AMPK rather than activation of LKB1 or the AMPK-related kinases.
Liu, Hong; Zhang, Yujin; Wu, Hongyu; D'Alessandro, Angelo; Yegutkin, Gennady G; Song, Anren; Sun, Kaiqi; Li, Jessica; Cheng, Ning-Yuan; Huang, Aji; Edward Wen, Yuan; Weng, Ting Ting; Luo, Fayong; Nemkov, Travis; Sun, Hong; Kellems, Rodney E; Karmouty-Quintana, Harry; Hansen, Kirk C; Zhao, Bihong; Subudhi, Andrew W; Jameson-Van Houten, Sonja; Julian, Colleen G; Lovering, Andrew T; Eltzschig, Holger K; Blackburn, Michael R; Roach, Robert C; Xia, Yang
2016-08-02
High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. Together, human and mouse studies reveal novel mechanisms of hypoxia adaptation and potential therapeutic approaches for counteracting hypoxia-induced tissue damage. © 2016 American Heart Association, Inc.
Microgravity changes in heart structure and cyclic-AMP metabolism
NASA Technical Reports Server (NTRS)
Philpott, D. E.; Fine, A.; Kato, K.; Egnor, R.; Cheng, L.
1985-01-01
The effects of microgravity on cardiac ultrastructure and cyclic AMP metabolism in tissues of rats flown on Spacelab 3 are reported. Light and electron microscope studies of cell structure, measurements of low and high Km phosphodiesterase activity, cyclic AMP-dependent protein kinase activity, and regulatory subunit compartmentation show significant deviations in flight animals when compared to ground controls. The results indicate that some changes have occurred in cellular responses associated with catecholamine receptor interactions and intracellular signal processing.
Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D
2007-04-01
Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.
Lopaczyński, W; Kinalska, I; Gałasiński, W
1987-01-01
Studies in the effect of somatostatin and dopamine on the incorporation of 32P from ATP to casein and ribosomes were carried out using purified protein kinase type II, isolated from the human placental cytosol. Low concentrations of somatostatin inhibited, while high ones of dopamine concentrations stimulated the activity of kinase.
Hu, Yun; Liu, Enkai; Bai, Xiaojia; Zhang, Aili
2010-03-01
The genome of the yeast Saccharomyces cerevisiae encodes two cyclic AMP (cAMP) phosphodiesterases, a low-affinity one, Pde1, and a high-affinity one, Pde2. Pde1 has been ascribed a function for downregulating agonist-induced cAMP accumulation in a protein kinase A (PKA)-governed negative feedback loop, whereas Pde2 controls the basal cAMP level in the cell. Here we show that PKA regulates the localization and protein concentration of Pde2. Pde2 is accumulated in the nucleus in wild-type cells growing on glucose, or in strains with hyperactive PKA. In contrast, in derepressed wild-type cells or cells with attenuated PKA activity, Pde2 is distributed over the nucleus and cytoplasm. We also show evidence indicating that the Pde2 protein level is positively correlated with PKA activity. The increase in the Pde2 protein level in high-PKA strains and in cells growing on glucose was due to its increased half-life. These results suggest that, like its low-affinity counterpart, the high-affinity phosphodiesterase may also play an important role in the PKA-controlled feedback inhibition of intracellular cAMP.
Functional role of AMP-activated protein kinase in the heart during exercise.
Musi, Nicolas; Hirshman, Michael F; Arad, Michael; Xing, Yanqiu; Fujii, Nobuharu; Pomerleau, Jason; Ahmad, Ferhaan; Berul, Charles I; Seidman, Jon G; Tian, Rong; Goodyear, Laurie J
2005-04-11
AMP-activated protein kinase (AMPK) plays a critical role in maintaining energy homeostasis and cardiac function during ischemia in the heart. However, the functional role of AMPK in the heart during exercise is unknown. We examined whether acute exercise increases AMPK activity in mouse hearts and determined the significance of these increases by studying transgenic (TG) mice expressing a cardiac-specific dominant-negative (inactivating) AMPKalpha2 subunit. Exercise increased cardiac AMPKalpha2 activity in the wild type mice but not in TG. We found that inactivation of AMPK did not result in abnormal ATP and glycogen consumption during exercise, cardiac function assessed by heart rhythm telemetry and stress echocardiography, or in maximal exercise capacity.
AMP kinase promotes glioblastoma bioenergetics and tumour growth.
Chhipa, Rishi Raj; Fan, Qiang; Anderson, Jane; Muraleedharan, Ranjithmenon; Huang, Yan; Ciraolo, Georgianne; Chen, Xiaoting; Waclaw, Ronald; Chow, Lionel M; Khuchua, Zaza; Kofron, Matthew; Weirauch, Matthew T; Kendler, Ady; McPherson, Christopher; Ratner, Nancy; Nakano, Ichiro; Dasgupta, Nupur; Komurov, Kakajan; Dasgupta, Biplab
2018-06-18
Stress is integral to tumour evolution, and cancer cell survival depends on stress management. We found that cancer-associated stress chronically activates the bioenergetic sensor AMP kinase (AMPK) and, to survive, tumour cells hijack an AMPK-regulated stress response pathway conserved in normal cells. Analysis of The Cancer Genome Atlas data revealed that AMPK isoforms are highly expressed in the lethal human cancer glioblastoma (GBM). We show that AMPK inhibition reduces viability of patient-derived GBM stem cells (GSCs) and tumours. In stressed (exercised) skeletal muscle, AMPK is activated to cooperate with CREB1 (cAMP response element binding protein-1) and promote glucose metabolism. We demonstrate that oncogenic stress chronically activates AMPK in GSCs that coopt the AMPK-CREB1 pathway to coordinate tumour bioenergetics through the transcription factors HIF1α and GABPA. Finally, we show that adult mice tolerate systemic deletion of AMPK, supporting the use of AMPK pharmacological inhibitors in the treatment of GBM.
Fear memory consolidation in sleep requires protein kinase A.
Cho, Jiyeon; Sypniewski, Krzysztof A; Arai, Shoko; Yamada, Kazuo; Ogawa, Sonoko; Pavlides, Constantine
2018-05-01
It is well established that protein kinase A (PKA) is involved in hippocampal dependent memory consolidation. Sleep is also known to play an important role in this process. However, whether sleep-dependent memory consolidation involves PKA activation has not been clearly determined. Using behavioral observation, animals were categorized into sleep and awake groups. We show that intrahippocampal injections of the PKA inhibitor Rp-cAMPs in post-contextual fear conditioning sleep produced a suppression of long-term fear memory, while injections of Rp-cAMPs during an awake state, at a similar time point, had no effect. In contrast, injections of the PKA activator Sp-cAMPs in awake state, rescued sleep deprivation-induced memory impairments. These results suggest that following learning, PKA activation specifically in sleep is required for the consolidation of long-term memory. © 2018 Cho et al.; Published by Cold Spring Harbor Laboratory Press.
Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, Atsushi; Hashimoto, Naohiro
2008-01-15
Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and themore » lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.« less
cAMP enhances BMP2-signaling through PKA and MKP1-dependent mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghayor, Chafik; Ehrbar, Martin; Miguel, Blanca San
2009-04-03
Recent studies suggest that the elevation of intracellular cyclic adenosine monophosphate (cAMP) and the activation of the protein kinase A regulate BMP-induced osteogenesis. However, the precise mechanisms underlying the enhancing effect of cAMP on BMP2 signaling were not completely revealed. In this study we investigated the effect of elevated cAMP level and PKA activation on the BMP2-induced osteoblastic differentiation in pluripotent C2C12 cells. Alkaline phosphatase activity and its mRNA were consistently induced by BMP2 treatment. The pretreatment of C2C12 cells with Forskolin, a cAMP generating agent, dbcAMP, an analogue of cAMP, or IBMX (3-isobutyl 1-methyl xanthine), and a nonspecific inhibitormore » of phosphodiesterases elicited further activation of alkaline phosphatase. Furthermore, elevated intracellular cAMP level increased BMP2-induced MKP1. On the other hand, BMP2-induced Erk phosphorylation (p44/p42) and cell proliferation were suppressed in the presence of cAMP. Thus, cAMP might enhance BMP2-induced osteoblastic differentiation by a MKP1-Erk-dependent mechanism.« less
Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N
2000-02-18
Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2-benzopyran-3,6,9-trione¿, a PI3-kinase inhibitor, attenuated only calcitonin gene-related peptide-induced ERK and not P38 MAPK activation. Thus, these data suggest that activation of ERK by calcitonin gene-related peptide involves a H89-sensitive protein kinase A and a wortmannin-sensitive PI3-kinase while activation of p38 MAPK by calcitonin gene-related peptide involves only the H89 sensitive pathway and is independent of PI3 kinase. This also suggests that although both ERK and P38 can be activated by protein kinase A, the distal signaling components to protein kinase A in the activation of these two kinases (ERK and P38) are different.
USDA-ARS?s Scientific Manuscript database
In skeletal muscle, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor of AMP: ATP and modulates translation by repressing mammalian target of rapamycin (mTOR) activation. Endotoxin (LPS)-induced sepsis reduces muscle protein synthesis by blunting translation initiation. We hypothe...
Interplay between adenylate metabolizing enzymes and amp-activated protein kinase.
Camici, Marcella; Allegrini, Simone; Tozzi, Maria Grazia
2018-05-18
Purine nucleotides are involved in a variety of cellular functions, such as energy storage and transfer, and signalling, in addition to being the precursors of nucleic acids and cofactors of many biochemical reactions. They can be generated through two separate pathways, the de novo biosynthesis pathway and the salvage pathway. De novo purine biosynthesis leads to the formation of IMP, from which the adenylate and guanylate pools are generated by two additional steps. The salvage pathways utilize hypoxanthine, guanine and adenine to generate the corresponding mononucleotides. Despite several decades of research on the subject, new and surprising findings on purine metabolism are constantly being reported, and some aspects still need to be elucidated. Recently, purine biosynthesis has been linked to the metabolic pathways regulated by AMP-activated protein kinase (AMPK). AMPK is the master regulator of cellular energy homeostasis, and its activity depends on the AMP:ATP ratio. The cellular energy status and AMPK activation are connected by AMP, an allosteric activator of AMPK. Hence, an indirect strategy to affect AMPK activity would be to target the pathways that generate AMP in the cell. Herein, we report an up-to-date review of the interplay between AMPK and adenylate metabolizing enzymes. Some aspects of inborn errors of purine metabolism are also discussed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J
1989-11-25
Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids encoding PKI(1-31) inhibit the expression that is stimulated by the addition of cAMP analogs in both cell lines; basal expression, however, is inhibited by PKI(1-31) only in the JEG-3 cell line and not in the CV-1 cells. These observations indicate that, in JEG-3 cells, PKI(1-31) is a specific inhibitor of kinase A-mediated gene transcription, but it does not modify kinase C-directed transcription.(ABSTRACT TRUNCATED AT 400 WORDS)
Dzhura, Igor; Chepurny, Oleg G; Leech, Colin A; Roe, Michael W; Dzhura, Elvira; Xu, Xin; Lu, Youming; Schwede, Frank; Genieser, Hans-G; Smrcka, Alan V
2011-01-01
Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is potentiated by cAMP-elevating agents, such as the incretin hormone glucagon-like peptide-1 (GLP-1) and cAMP exerts its insulin secretagogue action by activating both protein kinase A (PKA) and the cAMP-regulated guanine nucleotide exchange factor designated as Epac2. Although prior studies of mouse islets demonstrated that Epac2 acts via Rap1 GTPase to potentiate GSIS, it is not understood which downstream targets of Rap1 promote the exocytosis of insulin. Here, we measured insulin secretion stimulated by a cAMP analog that is a selective activator of Epac proteins in order to demonstrate that a Rap1-regulated phospholipase C-epsilon (PLC-ε) links Epac2 activation to the potentiation of GSIS. Our analysis demonstrates that the Epac activator 8-pCPT-2′-O-Me-cAMP-AM potentiates GSIS from the islets of wild-type (WT) mice, whereas it has a greatly reduced insulin secretagogue action in the islets of Epac2 (−/−) and PLC-ε (−/−) knockout (KO) mice. Importantly, the insulin secretagogue action of 8-pCPT-2′-O-Me-cAMP-AM in WT mouse islets cannot be explained by an unexpected action of this cAMP analog to activate PKA, as verified through the use of a FRET-based A-kinase activity reporter (AKAR3) that reports PKA activation. Since the KO of PLC-ε disrupts the ability of 8-pCPT-2′-O-Me-cAMP-AM to potentiate GSIS, while also disrupting its ability to stimulate an increase of β-cell [Ca2+]i, the available evidence indicates that it is a Rap1-regulated PLC-ε that links Epac2 activation to Ca2+-dependent exocytosis of insulin. PMID:21478675
Zogovic, Nevena; Tovilovic-Kovacevic, Gordana; Misirkic-Marjanovic, Maja; Vucicevic, Ljubica; Janjetovic, Kristina; Harhaji-Trajkovic, Ljubica; Trajkovic, Vladimir
2015-04-01
We explored the interplay between the intracellular energy sensor AMP-activated protein kinase (AMPK), extracellular signal-regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)-induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. PMA-triggered expression of neuronal markers (dopamine transporter, microtubule-associated protein 2, β-tubulin) was associated with an autophagic response, measured by the conversion of microtubule-associated protein light chain 3 (LC3)-I to autophagosome-bound LC3-II, increase in autophagic flux, and expression of autophagy-related (Atg) proteins Atg7 and beclin-1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference-mediated silencing of AMPK suppressed PMA-induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA-induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA-induced differentiation of SH-SY5Y cells. Therefore, PMA-induced neuronal differentiation of SH-SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response. Phorbol myristate acetate (PMA) induces the expression of dopamine transporter, microtubule-associated protein 2, and β-tubulin, and subsequent neuronal differentiation of SH-SY5Y neuroblastoma cells through AMP-activated protein kinase (AMPK)-dependent activation of extracellular signal-regulated kinase (ERK). The activation of AMPK/ERK axis also induces the expression of beclin-1 and Atg7, and increases LC3 conversion, thereby triggering the autophagic response that counteracts differentiation process. © 2014 International Society for Neurochemistry.
Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing
Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric
2017-01-01
AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457
Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation
Yu, Fa-Xing; Zhang, Yifan; Park, Hyun Woo; Jewell, Jenna L.; Chen, Qian; Deng, Yaoting; Pan, Duojia; Taylor, Susan S.; Lai, Zhi-Chun; Guan, Kun-Liang
2013-01-01
The Hippo tumor suppressor pathway plays an important role in tissue homeostasis that ensures development of functional organs at proper size. The YAP transcription coactivator is a major effector of the Hippo pathway and is phosphorylated and inactivated by the Hippo pathway kinases Lats1/2. It has recently been shown that YAP activity is regulated by G-protein-coupled receptor signaling. Here we demonstrate that cyclic adenosine monophosphate (cAMP), a second messenger downstream from Gαs-coupled receptors, acts through protein kinase A (PKA) and Rho GTPases to stimulate Lats kinases and YAP phosphorylation. We also show that inactivation of YAP is crucial for PKA-induced adipogenesis. In addition, PKA activation in Drosophila inhibits the expression of Yorki (Yki, a YAP ortholog) target genes involved in cell proliferation and death. Taken together, our study demonstrates that Hippo–YAP is a key signaling branch of cAMP and PKA and reveals new insight into mechanisms of PKA in regulating a broad range of cellular functions. PMID:23752589
Zhu, Xiao-Jing; Dai, Jie-Qiong; Tan, Xin; Zhao, Yang; Yang, Wei-Jun
2009-03-16
Cysts of Artemia can remain in a dormant state for long periods with a very low metabolic rate, and only resume their development with the approach of favorable conditions. The post-diapause development is a very complicated process involving a variety of metabolic and biochemical events. However, the intrinsic mechanisms that regulate this process are unclear. Herein we report the specific activation of an AMP-activated protein kinase (AMPK) in the post-diapause developmental process of Artemia. Using a phospho-AMPKalpha antibody, AMPK was shown to be phosphorylated in the post-diapause developmental process. Results of kinase assay analysis showed that this phosphorylation is essential for AMPK activation. Using whole-mount immunohistochemistry, phosphorylated AMPK was shown to be predominantly located in the ectoderm of the early developed embryos in a ring shape; however, the location and shape of the activation region changed as development proceeded. Additionally, Western blotting analysis on different portions of the cyst extracts showed that phosphorylated AMPKalpha localized to the nuclei and this location was not affected by intracellular pH. Confocal microscopy analysis of immunofluorescent stained cyst nuclei further showed that AMPKalpha localized to the nuclei when activated. Moreover, cellular AMP, ADP, and ATP levels in developing cysts were determined by HPLC, and the results showed that the activation of Artemia AMPK may not be associated with cellular AMP:ATP ratios, suggesting other pathways for regulation of Artemia AMPK activity. Together, we report evidence demonstrating the activation of AMPK in Artemia developing cysts and present an argument for its role in the development-related gene expression and energy control in certain cells during post-diapause development of Artemia.
Peeters, Annelies; Fraisl, Peter; van den Berg, Sjoerd; Ver Loren van Themaat, Emiel; Van Kampen, Antoine; Rider, Mark H.; Takemori, Hiroshi; van Dijk, Ko Willems; Van Veldhoven, Paul P.; Carmeliet, Peter; Baes, Myriam
2011-01-01
Hepatic peroxisomes are essential for lipid conversions that include the formation of mature conjugated bile acids, the degradation of branched chain fatty acids, and the synthesis of docosahexaenoic acid. Through unresolved mechanisms, deletion of functional peroxisomes from mouse hepatocytes (L-Pex5−/− mice) causes severe structural and functional abnormalities at the inner mitochondrial membrane. We now demonstrate that the peroxisomal and mitochondrial anomalies trigger energy deficits, as shown by increased AMP/ATP and decreased NAD+/NADH ratios. This causes suppression of gluconeogenesis and glycogen synthesis and up-regulation of glycolysis. As a consequence, L-Pex5−/− mice combust more carbohydrates resulting in lower body weights despite increased food intake. The perturbation of carbohydrate metabolism does not require a long term adaptation to the absence of functional peroxisomes as similar metabolic changes were also rapidly induced by acute elimination of Pex5 via adenoviral administration of Cre. Despite its marked activation, peroxisome proliferator-activated receptor α (PPARα) was not causally involved in these metabolic perturbations, because all abnormalities still manifested when peroxisomes were eliminated in a peroxisome proliferator-activated receptor α null background. Instead, AMP-activated kinase activation was responsible for the down-regulation of glycogen synthesis and induction of glycolysis. Remarkably, PGC-1α was suppressed despite AMP-activated kinase activation, a paradigm not previously reported, and they jointly contributed to impaired gluconeogenesis. In conclusion, lack of functional peroxisomes from hepatocytes results in marked disturbances of carbohydrate homeostasis, which are consistent with adaptations to an energy deficit. Because this is primarily due to impaired mitochondrial ATP production, these L-Pex5-deficient livers can also be considered as a model for secondary mitochondrial hepatopathies. PMID:22002056
The AMP-activated protein kinase beta 1 subunit modulates erythrocyte integrity.
Cambridge, Emma L; McIntyre, Zoe; Clare, Simon; Arends, Mark J; Goulding, David; Isherwood, Christopher; Caetano, Susana S; Reviriego, Carmen Ballesteros; Swiatkowska, Agnieszka; Kane, Leanne; Harcourt, Katherine; Adams, David J; White, Jacqueline K; Speak, Anneliese O
2017-01-01
Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that acts as a critical regulator of cellular energy balance. Previous roles for the alpha 1 and gamma 1 subunits in the control of erythrocyte survival have been reported. In the work described here, we studied the role of the beta 1 subunit in erythrocytes and observed microcytic anemia with compensatory extramedullary hematopoiesis together with splenomegaly and increased osmotic resistance. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Barquilla, Antonio; Lamberto, Ilaria; Noberini, Roberta; Heynen-Genel, Susanne; Brill, Laurence M; Pasquale, Elena B
2016-09-01
The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 "canonical" signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 "noncanonical" signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1-induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein-coupled receptors such as the β2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the β2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells. © 2016 Barquilla et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes.
Chao, Pin-Zhir; Hsieh, Ming-Shium; Cheng, Chao-Wen; Lin, Yung-Feng; Chen, Chien-Ho
2011-11-25
Osteoarthritis (OA) is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood. We investigated the effects of the CC chemokine eotaxin-1 (CCL11) on the matrix metalloproteinase (MMP) expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes. Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK) and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs), a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA) inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC)-protein kinase C (PKC) cascade and c-Jun N-terminal kinase (JNK)/mitogen-activated protein (MAP) kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities. Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis.
Anand, Ganesh S.; Krishnamurthy, Srinath; Bishnoi, Tanushree; Kornev, Alexandr; Taylor, Susan S.; Johnson, David A.
2010-01-01
We took a discovery approach to explore the actions of cAMP and two of its analogs, one a cAMP mimic ((Sp)-adenosine cyclic 3′:5′-monophosphorothioate ((Sp)-cAMPS)) and the other a diastereoisomeric antagonist ((Rp)-cAMPS), on a model system of the type Iα cyclic AMP-dependent protein kinase holoenzyme, RIα(91–244)·C-subunit, by using fluorescence spectroscopy and amide H/2H exchange mass spectrometry. Specifically, for the fluorescence experiments, fluorescein maleimide was conjugated to three cysteine single residue substitution mutants, R92C, T104C, and R239C, of RIα(91–244), and the effects of cAMP, (Sp)-cAMPS, and (Rp)-cAMPS on the kinetics of R-C binding and the time-resolved anisotropy of the reporter group at each conjugation site were measured. For the amide exchange experiments, ESI-TOF mass spectrometry with pepsin proteolytic fragmentation was used to assess the effects of (Rp)-cAMPS on amide exchange of the RIα(91–244)·C-subunit complex. We found that cAMP and its mimic perturbed at least parts of the C-subunit interaction Sites 2 and 3 but probably not Site 1 via reduced interactions of the linker region and αC of RIα(91–244). Surprisingly, (Rp)-cAMPS not only increased the affinity of RIα(91–244) toward the C-subunit by 5-fold but also produced long range effects that propagated through both the C- and R-subunits to produce limited unfolding and/or enhanced conformational flexibility. This combination of effects is consistent with (Rp)-cAMPS acting by enhancing the internal entropy of the R·C complex. Finally, the (Rp)-cAMPS-induced increase in affinity of RIα(91–244) toward the C-subunit indicates that (Rp)-cAMPS is better described as an inverse agonist because it decreases the fractional dissociation of the cyclic AMP-dependent protein kinase holoenzyme and in turn its basal activity. PMID:20167947
Structural basis of AMPK regulation by adenine nucleotides and glycogen
Li, Xiaodan; Wang, Lili; Zhou, X. Edward; ...
2014-11-21
AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allostericmore » AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.« less
Wang, Li; Burmeister, Brian T; Johnson, Keven R; Baillie, George S; Karginov, Andrei V; Skidgel, Randal A; O'Bryan, John P; Carnegie, Graeme K
2015-05-01
Hypertrophy increases the risk of heart failure and arrhythmia. Prevention or reversal of the maladaptive hypertrophic phenotype has thus been proposed to treat heart failure. Chronic β-adrenergic receptor (β-AR) stimulation induces cardiomyocyte hypertrophy by elevating 3',5'-cyclic adenosine monophosphate (cAMP) levels and activating downstream effectors such protein kinase A (PKA). Conversely, hydrolysis of cAMP by phosphodiesterases (PDEs) spatiotemporally restricts cAMP signaling. Here, we demonstrate that PDE4, but not PDE3, is critical in regulating cardiomyocyte hypertrophy, and may represent a potential target for preventing maladaptive hypertrophy. We identify a sequence within the upstream conserved region 1 of PDE4D, termed UCR1C, as a novel activator of PDE4 long isoforms. UCR1C activates PDE4 in complex with A-kinase anchoring protein (AKAP)-Lbc resulting in decreased PKA signaling facilitated by AKAP-Lbc. Expression of UCR1C in cardiomyocytes inhibits hypertrophy in response to chronic β-AR stimulation. This effect is partially due to inhibition of nuclear PKA activity, which decreases phosphorylation of the transcription factor cAMP response element-binding protein (CREB). In conclusion, PDE4 activation by UCR1C attenuates cardiomyocyte hypertrophy by specifically inhibiting nuclear PKA activity. Published by Elsevier Inc.
Nestler, Eric J
2016-08-15
In 1991 we demonstrated that chronic morphine exposure increased levels of adenylyl cyclase and protein kinase A (PKA) in several regions of the rat central nervous system as inferred from measures of enzyme activity in crude extracts (Terwilliger et al., 1991). These findings led us to hypothesize that a concerted upregulation of the cAMP pathway is a general mechanism of opiate tolerance and dependence. Moreover, in the same study we showed similar induction of adenylyl cyclase and PKA activity in nucleus accumbens (NAc) in response to chronic administration of cocaine, but not of several non-abused psychoactive drugs. Morphine and cocaine also induced equivalent changes in inhibitory G protein subunits in this brain region. We thus extended our hypothesis to suggest that, particularly within brain reward regions such as NAc, cAMP pathway upregulation represents a common mechanism of reward tolerance and dependence shared by several classes of drugs of abuse. Research since that time, by many laboratories, has provided substantial support for these hypotheses. Specifically, opiates in several CNS regions including NAc, and cocaine more selectively in NAc, induce expression of certain adenylyl cyclase isoforms and PKA subunits via the transcription factor, CREB, and these transcriptional adaptations serve a homeostatic function to oppose drug action. In certain brain regions, such as locus coeruleus, these adaptations mediate aspects of physical opiate dependence and withdrawal, whereas in NAc they mediate reward tolerance and dependence that drives increased drug self-administration. This work has had important implications for understanding the molecular basis of addiction. "A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function". Previous studies have shown that chronic morphine increases levels of the G-protein subunits Giα and Goα, adenylate cyclase, cyclic AMP-dependent protein kinase, and certain phosphoproteins in the rat locus coeruleus, but not in several other brain regions studied, and that chronic morphine decreases levels of Giα and increases levels of adenylate cyclase in dorsal root ganglion/spinal cord (DRG-SC) co-cultures. These findings led us to survey the effects of chronic morphine on the G-protein/cyclic AMP system in a large number of brain regions to determine how widespread such regulation might be. We found that while most regions showed no regulation in response to chronic morphine, nucleus accumbens (NAc) and amygdala did show increases in adenylate cyclase and cyclic AMP-dependent protein kinase activity, and thalamus showed an increase in cyclic AMP-dependent protein kinase activity only. An increase in cyclic AMP-dependent protein kinase activity was also observed in DRG-SC co-cultures. Morphine regulation of G-proteins was variable, with decreased levels of Giα seen in the NAc, increased levels of Giα and Goα amygdala, and no change in thalamus or the other brain regions studied. Interestingly, chronic treatment of rats with cocaine, but not with several non-abused drugs, produced similar changes compared to morphine in G-proteins, adenylate cyclase, and cyclic AMP-dependent protein kinase in the NAc, but not in the other brain regions studied. These results indicate that regulation of the G-protein/cyclic AMP system represents a mechanism by which a number of opiate-sensitive neurons adapt to chronic morphine and thereby develop aspects of opiate tolerance and/or dependence. The findings that chronic morphine and cocaine produce similar adaptations in the NAc, a brain region important for the reinforcing actions of many types of abused substances, suggest further that common mechanisms may underlie psychological aspects of drug addiction mediated by this brain region. © 1991. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2015 Elsevier B.V. All rights reserved.
Shindo, Sawako; Numazawa, Satoshi; Yoshida, Takemi
2006-01-01
CAR (constitutive androstane receptor) is a nuclear receptor that regulates the transcription of target genes, including CYP (cytochrome P450) 2B and 3A. The transactivation by CAR is regulated by its subcellular localization; however, the mechanism that governs nuclear translocation has yet to be clarified. It has been reported recently that AMPK (AMP-activated protein kinase) is involved in phenobarbital-mediated CYP2B induction in a particular culture system. We therefore investigated in vivo whether AMPK is involved in the activation of CAR-dependent gene expression. Immunoblot analysis using an antibody which recognizes Thr-172-phosphorylated AMPKα1/2 revealed phenobarbital-induced AMPK activation in rat and mouse livers as well. Phenobarbital, however, failed to increase the liver phospho-AMPK level of tumour-bearing rats in which CAR nuclear translocation had been impaired. In in vivo reporter gene assays employing PBREM (phenobarbital-responsive enhancer module) from CYP2B1, an AMPK inhibitor 8-bromo-AMP abolished phenobarbital-induced transactivation. In addition, Cyp2b10 gene expression was attenuated by 8-bromo-AMP. Forced expression of a dominant-negative mutant and the wild-type of AMPKα2 in the mouse liver suppressed and further enhanced phenobarbital-induced PBREM-reporter activity respectively. Moreover, the AMPK activator AICAR (5-amino-4-imidazolecarboxamide riboside) induced PBREM transactivation and an accumulation of CAR in the nuclear fraction of the mouse liver. However, AICAR and metformin, another AMPK activator, failed to induce hepatic CYP2B in mice and rats. These observations suggest that AMPK is at least partly involved in phenobarbital-originated signalling, but the kinase activation by itself is not sufficient for CYP2B induction in vivo. PMID:17032173
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arana, Maite Rocío, E-mail: arana@ifise-conicet.gov.ar; Tocchetti, Guillermo Nicolás, E-mail: gtocchetti@live.com.ar; Domizi, Pablo, E-mail: domizi@ibr-conicet.gov.ar
2015-09-01
The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent withmore » increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury. • PKA signaling pathway is involved downstream of cAMP. • Transcriptional MRP2 regulation ultimately involved participation of c-JUN and ATF2.« less
Deficient Gene Expression in Protein Kinase Inhibitor α Null Mutant Mice
Gangolli, Esha A.; Belyamani, Mouna; Muchinsky, Sara; Narula, Anita; Burton, Kimberly A.; McKnight, G. Stanley; Uhler, Michael D.; Idzerda, Rejean L.
2000-01-01
Protein kinase inhibitor (PKI) is a potent endogenous inhibitor of the cyclic AMP (cAMP)-dependent protein kinase (PKA). It functions by binding the free catalytic (C) subunit with a high affinity and is also known to export nuclear C subunit to the cytoplasm. The significance of these actions with respect to PKI's physiological role is not well understood. To address this, we have generated by homologous recombination mutant mice that are deficient in PKIα, one of the three isoforms of PKI. The mice completely lack PKI activity in skeletal muscle and, surprisingly, show decreased basal and isoproterenol-induced gene expression in muscle. Further examination revealed reduced levels of the phosphorylated (active) form of the transcription factor CREB (cAMP response element binding protein) in the knockouts. This phenomenon stems, at least in part, from lower basal PKA activity levels in the mutants, arising from a compensatory increase in the level of the RIα subunit of PKA. The deficit in gene induction, however, is not easily explained by current models of PKI function and suggests that PKI may play an as yet undescribed role in PKA signaling. PMID:10779334
Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M
2018-04-01
Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 39;217-230, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Gigante, Eduardo D.; Santerre, Jessica L.; Carter, Jenna M.; Werner, David F.
2014-01-01
Adolescent rats display reduced sensitivity to many dysphoria-related effects of alcohol (ethanol) including motor ataxia and sedative hypnosis, but the underlying neurobiological factors that contribute to these differences remain unknown. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway, particularly the type II regulatory subunit (RII), has been implicated in ethanol-induced molecular and behavioral responses in adults. Therefore, the current study examined cerebral cortical PKA in adolescent and adult ethanol responses. With the exception of early adolescence, PKA RIIα and RIIβ subunit levels largely did not differ from adult levels in either whole cell lysate or P2 synaptosomal expression. However, following acute ethanol exposure, PKA RIIβ P2 synaptosomal expression and activity were increased in adults, but not in adolescents. Behaviorally, intracerebroventricular administration of the PKA activator Sp-cAMP and inhibitor Rp-cAMP prior to ethanol administration increased adolescent sensitivity to the sedative-hypnotic effects of ethanol compared to controls. Sp-cAMP was ineffective in adults whereas Rp-cAMP suggestively reduced loss of righting reflex (LORR) with paralleled increases in blood ethanol concentrations. Overall, these data suggest that PKA activity modulates the sedative/hypnotic effects of ethanol and may potentially play a wider role in the differential ethanol responses observed between adolescents and adults. PMID:24874150
Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes.
Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer; Jensen, Thomas Elbenhardt; Sakamoto, Kei; Göransson, Olga
2011-05-01
AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes remains elusive. Previous studies have identified LKB1 as a major AMPK kinase in muscle, liver, and other tissues. In certain cell types, Ca(2+) /calmodulin-dependent protein kinase kinase β (CaMKKβ) has been shown to activate AMPK in response to increases of intracellular Ca(2+) levels. Our aim was to investigate if LKB1 and/or CaMKK function as AMPK kinases in adipocytes. We used adipose tissue and isolated adipocytes from mice in which the expression of LKB1 was reduced to 10-20% of that of wild-type (LKB1 hypomorphic mice). We show that adipocytes from LKB1 hypomorphic mice display a 40% decrease in basal AMPK activity and a decrease of AMPK activity in the presence of the AMPK activator phenformin. We also demonstrate that stimulation of 3T3L1 adipocytes with intracellular [Ca(2+) ]-raising agents results in an activation of the AMPK pathway. The inhibition of CaMKK isoforms, particularly CaMKKβ, by the inhibitor STO-609 or by siRNAs, blocked Ca(2+) -, but not phenformin-, AICAR-, or forskolin-induced activation of AMPK, indicating that CaMKK activated AMPK in response to Ca(2+) . Collectively, we show that LKB1 is required to maintain normal AMPK-signaling in non-stimulated adipocytes and in the presence of phenformin. In addition, we demonstrate the existence of a Ca(2+) /CaMKK signaling pathway that can also regulate the activity of AMPK in adipocytes. Copyright © 2011 Wiley-Liss, Inc.
Lansdell, K A; Kidd, J F; Delaney, S J; Wainwright, B J; Sheppard, D N
1998-01-01
We investigated the effect of protein kinases and phosphatases on murine cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channels, expressed in Chinese hamster ovary (CHO) cells, using iodide efflux and the excised inside-out configuration of the patch-clamp technique.The protein kinase C (PKC) activator, phorbol dibutyrate, enhanced cAMP-stimulated iodide efflux. However, PKC did not augment the single-channel activity of either human or murine CFTR Cl− channels that had previously been activated by protein kinase A.Fluoride, a non-specific inhibitor of protein phosphatases, stimulated both human and murine CFTR Cl− channels. However, calyculin A, a potent inhibitor of protein phosphatases 1 and 2A, did not enhance cAMP-stimulated iodide efflux.The alkaline phosphatase inhibitor, (−)-bromotetramisole augmented cAMP-stimulated iodide efflux and, by itself, stimulated a larger efflux than that evoked by cAMP agonists. However, (+)-bromotetramisole, the inactive enantiomer, had the same effect. For murine CFTR, neither enantiomer enhanced single-channel activity. In contrast, both enantiomers increased the open probability (Po) of human CFTR, suggesting that bromotetramisole may promote the opening of human CFTR.As murine CFTR had a low Po and was refractory to stimulation by activators of human CFTR, we investigated whether murine CFTR may open to a subconductance state. When single-channel records were filtered at 50 Hz, a very small subconductance state of murine CFTR was observed that had a Po greater than that of human CFTR. The occupancy of this subconductance state may explain the differences in channel regulation observed between human and murine CFTR. PMID:9769419
Germline Ablation of VGF Increases Lipolysis in White Adipose Tissue
Fargali, Samira; Scherer, Thomas; Shin, Andrew C.; Sadahiro, Masato; Buettner, Christoph; Salton, Stephen R.
2012-01-01
Targeted deletion of VGF, a neuronal and endocrine secreted protein and neuropeptide precursor, produces a lean, hypermetabolic mouse that is resistant to diet-, lesion-, and genetically-induced obesity and diabetes. We hypothesized that increased sympathetic nervous system activity in Vgf−/Vgf− knockout mice is responsible for increased energy expenditure and decreased fat storage, and that increased beta-adrenergic receptor stimulation induces lipolysis in white adipose tissue (WAT) of Vgf−/Vgf− mice. We found that fat mass was markedly reduced in Vgf−/Vgf− mice. Within knockout WAT, phosphorylation of protein kinase A (PKA) substrate increased in males and females, phosphorylation of hormone sensitive lipase (HSL) (Ser563) increased in females, and levels of adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58), and phospho-perilipin, were higher in male Vgf−/Vgf− WAT compared to wild type, consistent with increased lipolysis. The phosphorylation of AMP-activated protein kinase (AMPK) (Thr172) and levels of the AMPK kinase, transforming growth factor β-activated kinase 1 (TAK-1), were decreased. This was associated with a decrease in HSL Ser565 phosphorylation, the site phosphorylated by AMPK, in both male and female Vgf−/Vgf− WAT. No significant differences in phosphorylation of cAMP response element binding protein (CREB) or the p42/44 mitogen-activated protein kinase (MAPK) were noted. Despite this evidence supporting increased cAMP signaling and lipolysis, lipogenesis as assessed by fatty acid synthase (FAS) protein expression and phosphorylated acetyl-CoA carboxylase (pACC) was not decreased. Our data suggest that the VGF precursor or selected VGF-derived peptides dampen sympathetic outflow pathway activity to WAT to regulate fat storage and lipolysis. PMID:22942234
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mane, S.D.; Essenberg, R.C.; Sauer, J.R.
1986-05-01
The catalytic subunit of the cAMP dependent protein kinase was purified 100-fold from tick salivary glands. The enzyme mechanism of the phosphotransferase reaction catalyzed by this subunit was investigated. Highly purified enzyme did not show ATP-ase activity in the absence of protein substrates. Initial velocities were measured using histone H-1 or a synthetic heptapeptide, Kemptide, as P/sub i/ acceptors and (..gamma..-/sup 32/P) ATP as a phosphodonor. Patterns were consistent with a sequential, but not a ping pong mechanism. At high concentration (>2Km), histone showed substrate inhibition which was noncompetitive versus ATP. Product inhibition by Mg.ADP was competitive versus ATP andmore » noncompetitive with respect to H-1. Phosphohistone on the other hand was noncompetitive with respect to H-1, but gave parabolic competitive inhibition against ATP. Dead-end inhibition by AMP-PNP, an analogue of ATP, was competitive and noncompetitive against ATP and H-1, respectively. The inhibitory of cAMP dependent protein kinase was noncompetitive with ATP and competitive with histone. These studies strongly suggest that the tick salivary gland protein kinase has a sequential mechanism with primarily ordered addition of ATP followed by protein substrate and ordered release of phosphoprotein and ADP, but some random character.« less
Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying
2015-01-01
AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ. C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ has noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems. PMID:26489410
de Saram, Paulu S. R.; Ressurreição, Margarida; Davies, Angela J.; Rollinson, David; Emery, Aidan M.; Walker, Anthony J.
2013-01-01
Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and ‘smart’ anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology. PMID:23326613
Shepard, A R; Zhang, W; Eberhardt, N L
1994-01-21
We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tachikawa, E.; Tank, A.W.; Weiner, D.H.
1986-03-01
The effects of phorbol ester (4..beta..-phorbol, 12..beta..-myristate, 13..cap alpha..-acetate; TPA), an activator of Ca/sup + +//phospholipid-dependent protein kinase (PK-C), and forskolin, which stimulates adenylate cyclase and cyclic AMP-dependent protein kinase (cAMP-PK), on the activation and phosphorylation of tyrosine hydroxylase (TH) in rat pheochromocytoma (PC 12) cells were examined. Incubation of the cells with TPA (0.01-1 ..mu..M) or forskolin (0.01-0.1 ..mu..M) produces increases in activation and phosphorylation of TH in a concentration-dependent manner. The stimulatory effects of TPA are dependent on extracellular Ca/sup + +/ and are inhibited by pretreatment of the cells with trifluoperazine (TFP). The effects of forskolin aremore » independent of Ca/sup + +/ and are not inhibited by TFP. In cells treated with forskolin, the time course of the increase in cAMP correlates with the increases in TH activity and phosphorylation. cAMP levels do not increase in cells treated with TPA. There is an increase in the phosphorylation of only one tryptic phosphopeptide derived from TH in cells treated with either forskolin or TPA. The peptide phosphorylated in TPA-treated cells exhibits different elution characteristics on HPLC from that in forskolin-treated cells. The authors conclude that TH in PC 12 cells is phosphorylated on different sites by cAMP-PK and PK-C. Phosphorylation of either of these sites is associated with enzyme activation.« less
Han, Ye Eon; Hwang, Sena; Kim, Jin Hee; Byun, Jung Woo; Yoon, Jin Sook; Lee, Eun Jig
2018-04-01
It was hypothesized that the biguanides metformin and phenformin, which are anti-hyperglycemic drugs used for diabetes mellitus, would have therapeutic effects in an in vitro model of Graves' orbitopathy (GO). Because adipogenesis, hyaluronan production, and inflammation are considered important in the pathogenesis of GO, this study aimed to determine the therapeutic effects and underlying mechanisms of biguanides on these parameters. In vitro experiments were performed using primary cultured orbital fibroblasts from patients with GO. Orbital preadipocyte fibroblasts were allowed to differentiate into adipocytes and were treated with various concentrations of metformin or phenformin. Oil Red O staining was performed to evaluate lipid accumulation within the cells. Western blot analysis was used to measure the expression of adipogenic transcription factors and the phosphorylation of AMP-activated protein kinase and mitogen-activated protein kinase signaling proteins. Hyaluronan production was measured using enzyme-linked immunosorbent assay, and mRNA levels of proinflammatory molecules were determined using real-time polymerase chain reaction after interleukin (IL)-1β stimulation with or without biguanide treatment. Lipid accumulation during adipogenesis in GO orbital fibroblasts was dose-dependently suppressed by both metformin and phenformin. Adipocyte differentiation was attenuated, and the adipogenic transcription factors peroxisome proliferator-activated receptor γ and CCAAT-enhancer-binding proteins-α/β were downregulated. Furthermore, metformin and phenformin increased the phosphorylation of AMP-activated protein kinase and suppressed extracellular-regulated kinase activation. The IL-1β-induced hyaluronan production and mRNA expression of IL-6, cyclooxygenase-2, and intercellular adhesion molecule-1 were also significantly suppressed after metformin or phenformin co-treatment. The present study indicates that the biguanides metformin and phenformin exert an anti-adipogenic and inhibitory effect on hyaluronan production and expression of pro-inflammatory molecules in GO orbital fibroblasts, suggesting that they could potentially be used for the treatment of GO.
Li, Longlong; Ge, Chongyang; Wang, Dian; Yu, Lei; Zhao, Jinlong; Ma, Haitian
2018-06-01
Dehydroepiandrosterone (DHEA) is commonly used as a nutritional supplement to control fat deposition, but the mechanism of this action is poorly understood. In this study, we demonstrated that DHEA increased phosphorylation of AMP-activated protein kinase (p-AMPK). Elevated p-AMPK levels resulted in reduced expression of sterol regulatory element binding protein-1c, acetyl CoA carboxylase, fatty acid synthase and enhanced expression of peroxisome proliferators-activated receptor α and carnitine palmitoyl transferase-I, ultimately leading to the reduction of lipid droplet accumulation in primary chicken hepatocytes. We found that DHEA activates the cyclic adenosine 3', 5'-monophosphate/protein kinase A - extracellular signal-regulated kinase 1/2 (cAMP/PKA-ERK1/2) signaling pathway, which regulates the conversion of DHEA into testosterone and estradiol by increasing the 17β-hydroxysteroid dehydrogenase and aromatase protein expression. Importantly, the fat-reducing effects of DHEA are more closely associated with the conversion of DHEA into estradiol than with the action of DHEA itself as an active biomolecule, or to its alternative metabolite, testosterone. Taken together, our results indicate that DHEA is converted into active hormones through activation of the cAMP/PKA-ERK1/2 signaling pathway; the fat-reducing effects of DHEA are achieved through its conversion into estradiol, not testosterone, and not through direct action of DHEA itself, which led to the activation of the p-AMPK in primary chicken hepatocytes. These data provide novel insight into the mechanisms underlying the action of DHEA in preventing fat deposition, and suggest potential applications for DHEA treatment to control fat deposition or as an agent to treat disorders related to lipid metabolism in animals and humans. Copyright © 2018 Elsevier B.V. All rights reserved.
Mohammad, Sameer; Ramos, Lavoisier S.; Buck, Jochen; Levin, Lonny R.; Rubino, Francesco; McGraw, Timothy E.
2011-01-01
Gastric inhibitory peptide (GIP) is an incretin hormone secreted in response to food intake. The best known function of GIP is to enhance glucose-dependent insulin secretion from pancreatic β-cells. Extra-pancreatic effects of GIP primarily occur in adipose tissues. Here, we demonstrate that GIP increases insulin-dependent translocation of the Glut4 glucose transporter to the plasma membrane and exclusion of FoxO1 transcription factor from the nucleus in adipocytes, establishing that GIP has a general effect on insulin action in adipocytes. Stimulation of adipocytes with GIP alone has no effect on these processes. Using pharmacologic and molecular genetic approaches, we show that the effect of GIP on adipocyte insulin sensitivity requires activation of both the cAMP/protein kinase A/CREB signaling module and p110β phosphoinositol-3′ kinase, establishing a novel signal transduction pathway modulating insulin action in adipocytes. This insulin-sensitizing effect is specific for GIP because isoproterenol, which elevates adipocyte cAMP and activates PKA/CREB signaling, does not affect adipocyte insulin sensitivity. The insulin-sensitizing activity points to a more central role for GIP in intestinal regulation of peripheral tissue metabolism, an emerging feature of inter-organ communication in the control of metabolism. PMID:22027830
Rasmussen, Brittany A; Breen, Danna M; Luo, Ping; Cheung, Grace W C; Yang, Clair S; Sun, Biying; Kokorovic, Andrea; Rong, Weifang; Lam, Tony K T
2012-04-01
The duodenum senses nutrients to maintain energy and glucose homeostasis, but little is known about the signaling and neuronal mechanisms involved. We tested whether duodenal activation of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase A (PKA) is sufficient and necessary for cholecystokinin (CCK) signaling to trigger vagal afferent firing and regulate glucose production. In rats, we selectively activated duodenal PKA and evaluated changes in glucose kinetics during the pancreatic (basal insulin) pancreatic clamps and vagal afferent firing. The requirement of duodenal PKA signaling in glucose regulation was evaluated by inhibiting duodenal activation of PKA in the presence of infusion of the intraduodenal PKA agonist (Sp-cAMPS) or CCK1 receptor agonist (CCK-8). We also assessed the involvement of a neuronal network and the metabolic impact of duodenal PKA activation in rats placed on high-fat diets. Intraduodenal infusion of Sp-cAMPS activated duodenal PKA and lowered glucose production, in association with increased vagal afferent firing in control rats. The metabolic and neuronal effects of duodenal Sp-cAMPS were negated by coinfusion with either the PKA inhibitor H89 or Rp-CAMPS. The metabolic effect was also negated by coinfusion with tetracaine, molecular and pharmacologic inhibition of NR1-containing N-methyl-d-aspartate (NMDA) receptors within the dorsal vagal complex, or hepatic vagotomy in rats. Inhibition of duodenal PKA blocked the ability of duodenal CCK-8 to reduce glucose production in control rats, whereas duodenal Sp-cAMPS bypassed duodenal CCK resistance and activated duodenal PKA and lowered glucose production in rats on high-fat diets. We identified a neural glucoregulatory function of duodenal PKA signaling. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Katz, B M; Lundquist, L J; Walsh, D A; Glass, D B
1989-06-01
PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Kimberly L.; Ríos-Hernández, Luis A.; Wofford, Neil Q.
Syntrophus aciditrophicusis a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation byS. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome ofS. aciditrophicusleaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show thatS. aciditrophicususes AMP-forming, acetyl-CoA synthetase (Acs1)more » for ATP synthesis from acetyl-CoA.acs1mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, ofS. aciditrophicusgrown in pure culture and coculture. Cell extracts ofS. aciditrophicushad low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified fromS. aciditrophicusand recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) inS. aciditrophicuscells support the operation of Acs1 in the acetate-forming direction. Thus,S. aciditrophicushas a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. We find bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA.Syntrophus aciditrophicusapparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show thatS. aciditrophicususes an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA.« less
James, Kimberly L.; Ríos-Hernández, Luis A.; Wofford, Neil Q.; ...
2016-08-16
Syntrophus aciditrophicusis a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation byS. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome ofS. aciditrophicusleaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show thatS. aciditrophicususes AMP-forming, acetyl-CoA synthetase (Acs1)more » for ATP synthesis from acetyl-CoA.acs1mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, ofS. aciditrophicusgrown in pure culture and coculture. Cell extracts ofS. aciditrophicushad low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified fromS. aciditrophicusand recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) inS. aciditrophicuscells support the operation of Acs1 in the acetate-forming direction. Thus,S. aciditrophicushas a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. We find bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA.Syntrophus aciditrophicusapparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show thatS. aciditrophicususes an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA.« less
Zhou, Haoming; Wang, Han; Ni, Ming; Yue, Shi; Xia, Yongxiang; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan
2018-07-01
Glycogen synthase kinase 3β (Gsk3β [Gsk3b]) is a ubiquitously expressed kinase with distinctive functions in different types of cells. Although its roles in regulating innate immune activation and ischaemia and reperfusion injuries (IRIs) have been well documented, the underlying mechanisms remain ambiguous, in part because of the lack of cell-specific tools in vivo. We created a myeloid-specific Gsk3b knockout (KO) strain to study the function of Gsk3β in macrophages in a murine liver partial warm ischaemia model. Compared with controls, myeloid Gsk3b KO mice were protected from IRI, with diminished proinflammatory but enhanced anti-inflammatory immune responses in livers. In bone marrow-derived macrophages, Gsk3β deficiency resulted in an early reduction of Tnf gene transcription but sustained increase of Il10 gene transcription on Toll-like receptor 4 stimulation in vitro. These effects were associated with enhanced AMP-activated protein kinase (AMPK) activation, which led to an accelerated and higher level of induction of the novel innate immune negative regulator small heterodimer partner (SHP [Nr0b2]). The regulatory function of Gsk3β on AMPK activation and SHP induction was confirmed in wild-type bone marrow-derived macrophages with a Gsk3 inhibitor. Furthermore, we found that this immune regulatory mechanism was independent of Gsk3β Ser9 phosphorylation and the phosphoinositide 3-kinase-Akt signalling pathway. In vivo, myeloid Gsk3β deficiency facilitated SHP upregulation by ischaemia-reperfusion in liver macrophages. Treatment of Gsk3b KO mice with either AMPK inhibitor or SHP small interfering RNA before the onset of liver ischaemia restored liver proinflammatory immune activation and IRI in these otherwise protected hosts. Additionally, pharmacological activation of AMPK protected wild-type mice from liver IRI, with reduced proinflammatory immune activation. Inhibition of the AMPK-SHP pathway by liver ischaemia was demonstrated in tumour resection patients. Gsk3β promotes innate proinflammatory immune activation by restraining AMPK activation. Glycogen synthase kinase 3β promotes macrophage inflammatory activation by inhibiting the immune regulatory signalling of AMP-activated protein kinase and the induction of small heterodimer partner. Therefore, therapeutic targeting of glycogen synthase kinase 3β enhances innate immune regulation and protects liver from ischaemia and reperfusion injury. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Herwig, S; Su, Q; Tempst, P
1998-10-01
Defensin transcription in HL-60 promyelocytic leukemia cells is greatly enhanced during retinoic acid (RA)-induced differentiation. We have probed this regulatory pathway by selective modulation of various kinase activities. Induction was potentiated by elevated cAMP and attenuated by protein kinase C inhibition, entirely correlated to enhanced or blocked morphological differentiation, respectively. Yet, defensin mRNA was also induced in undifferentiated HL-60 cells, but not in others, by cAMP alone. By contrast, modulators that cooperated with RA had adverse effects on the normal capacity of dimethyl sulfoxide to up regulate these transcripts as well. Thus, defensin mRNA accumulation can be selectively uncoupled from maturation stage; and transcript levels may be regulated by multiple pathways, each independently acted upon by different chemical inducers.
Cicerchi, Christina; Li, Nanxing; Kratzer, James; Garcia, Gabriela; Roncal-Jimenez, Carlos A.; Tanabe, Katsuyuki; Hunter, Brandi; Rivard, Christopher J.; Sautin, Yuri Y.; Gaucher, Eric A.; Johnson, Richard J.; Lanaspa, Miguel A.
2014-01-01
Reduced AMP kinase (AMPK) activity has been shown to play a key deleterious role in increased hepatic gluconeogenesis in diabetes, but the mechanism whereby this occurs remains unclear. In this article, we document that another AMP-dependent enzyme, AMP deaminase (AMPD) is activated in the liver of diabetic mice, which parallels with a significant reduction in AMPK activity and a significant increase in intracellular glucose accumulation in human HepG2 cells. AMPD activation is induced by a reduction in intracellular phosphate levels, which is characteristic of insulin resistance and diabetic states. Increased gluconeogenesis is mediated by reduced TORC2 phosphorylation at Ser171 by AMPK in these cells, as well as by the up-regulation of the rate-limiting enzymes PEPCK and G6Pc. The mechanism whereby AMPD controls AMPK activation depends on the production of a specific AMP downstream metabolite through AMPD, uric acid. In this regard, humans have higher uric acid levels than most mammals due to a mutation in uricase, the enzyme involved in uric acid degradation in most mammals, that developed during a period of famine in Europe 1.5 × 107 yr ago. Here, working with resurrected ancestral uricases obtained from early hominids, we show that their expression on HepG2 cells is enough to blunt gluconeogenesis in parallel with an up-regulation of AMPK activity. These studies identify a key role AMPD and uric acid in mediating hepatic gluconeogenesis in the diabetic state, via a mechanism involving AMPK down-regulation and overexpression of PEPCK and G6Pc. The uricase mutation in the Miocene likely provided a survival advantage to help maintain glucose levels under conditions of near starvation, but today likely has a role in the pathogenesis of diabetes.—Cicerchi, C., Li, N., Kratzer, J., Garcia, G., Roncal-Jimenez, C. A., Tanabe, K., Hunter, B., Rivard, C. J., Sautin, Y. Y., Gaucher, E. A., Johnson, R. J., Lanaspa, M. A. Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: Evolutionary implications of the uricase loss in hominids. PMID:24755741
Aftab, D T; Ballas, L M; Loomis, C R; Hait, W N
1991-11-01
Phenothiazines are known to inhibit the activity of protein kinase C. To identify structural features that determine inhibitory activity against the enzyme, we utilized a semiautomated assay [Anal. Biochem. 187:84-88 (1990)] to compare the potency of greater than 50 phenothiazines and related compounds. Potency was decreased by trifluoro substitution at position 2 on the phenothiazine nucleus and increased by quinoid structures on the nucleus. An alkyl bridge of at least three carbons connecting the terminal amine to the nucleus was required for activity. Primary amines and unsubstituted piperazines were the most potent amino side chains. We selected 7,8-dihydroxychlorpromazine (DHCP) (IC50 = 8.3 microM) and 2-chloro-9-(3-[1-piperazinyl]propylidene)thioxanthene (N751) (IC50 = 14 microM) for further study because of their potency and distinct structural features. Under standard (vesicle) assay conditions, DHCP was noncompetitive with respect to phosphatidylserine and a mixed-type inhibitor with respect to ATP. N751 was competitive with respect to phosphatidylserine and noncompetitive with respect to ATP. Using the mixed micelle assay, DHCP was a competitive inhibitor with respect to both phosphatidylserine and ATP. DHCP was selective for protein kinase C compared with cAMP-dependent protein kinase, calmodulin-dependent protein kinase type II, and casein kinase. N751 was more potent against protein kinase C compared with cAMP-dependent protein kinase and casein kinase but less potent against protein kinase C compared with calmodulin-dependent protein kinase type II. DHCP was analyzed for its ability to inhibit different isoenzymes of protein kinase C, and no significant isozyme selectivity was detected. These data provide important information for the rational design of more potent and selective inhibitors of protein kinase C.
Intravascular low-level laser irradiation in the treatment of psoriasis
NASA Astrophysics Data System (ADS)
Zhu, Jing; Shi, Hong-Min; Zhang, Hui-Guo; Zhang, Mei-Jue; Xu, Jian; Zhou, Min; Hu, Guo-Qiang
1998-11-01
Liu TCY et al have put forward the biological information model on low intensity laser irradiation (BIML): low intensity laser irradiation couples with intracellular messenger through the chromophore absorption in the cell membrane: hot-color laser irradiation activates cAMP phosphodiestererase through Gi protein, or activates phosphoinositide phospholipase C through G protein, or activates one of receptor-associated kinases: cAMP; cold- color laser irradiation activates adenylate cyclase through Gs protein: cAMP$ARUP. In this paper, under the guidance of BIML, we applied the intravascular low intensity He-He laser irradiation on blood to a patient of idiopathic edema, and succeeded.
Cao, Jia; Meng, Shumei; Chang, Evan; Beckwith-Fickas, Katherine; Xiong, Lishou; Cole, Robert N.; Radovick, Sally; Wondisford, Fredric E.; He, Ling
2014-01-01
Metformin is a first-line antidiabetic agent taken by 150 million people across the world every year, yet its mechanism remains only partially understood and controversial. It was proposed that suppression of glucose production in hepatocytes by metformin is AMPK-independent; however, unachievably high concentrations of metformin were employed in these studies. In the current study, we find that metformin, via an AMP-activated protein kinase (AMPK)-dependent mechanism, suppresses glucose production and gluconeogenic gene expression in primary hepatocytes at concentrations found in the portal vein of animals (60–80 μm). Metformin also inhibits gluconeogenic gene expression in the liver of mice administered orally with metformin. Furthermore, the cAMP-PKA pathway negatively regulates AMPK activity through phosphorylation at Ser-485/497 on the α subunit, which in turn reduces net phosphorylation at Thr-172. Because diabetic patients often have hyperglucagonemia, AMPKα phosphorylation at Ser-485/497 is a therapeutic target to improve metformin efficacy. PMID:24928508
Valentine, Rudy J.; Ruderman, Neil B.
2014-01-01
Although a correlation exists between obesity and insulin resistance, roughly 25 % of obese individuals are insulin sensitive. AMP-activated protein kinase (AMPK) is a cellular energy sensor that among its many actions, integrates diverse physiological signals to restore energy balance. In addition, in many situations it also increases insulin sensitivity. In this context, AMPK activity is decreased in very obese individuals undergoing bariatric surgery who are insulin resistant compared to equally obese patients who are insulin sensitive. In this review, we will both explore what distinguishes these individuals, and evaluate the evidence that diminished AMPK is associated with insulin resistance and metabolic syndrome-associated disorders in other circumstances. PMID:24891985
Takuma, K; Lee, E; Enomoto, R; Mori, K; Baba, A; Matsuda, T
2001-01-01
We examined the effect of 3-isobutyryl-2-isopropylpyrazolo[1,5-a]pyridine (ibudilast), which has been clinically used for bronchial asthma and cerebrovascular disorders, on cell viability induced in a model of reperfusion injury. Ibudilast at 10 – 100 μM significantly attenuated the H2O2-induced decrease in cell viability. Ibudilast inhibited the H2O2-induced cytochrome c release, caspase-3 activation, DNA ladder formation and nuclear condensation, suggesting its anti-apoptotic effect. Phosphodiesterase inhibitors such as theophylline, pentoxyfylline, vinpocetine, dipyridamole and zaprinast, which increased the guanosine-3′,5′-cyclic monophosphate (cyclic GMP) level, and dibutyryl cyclic GMP attenuated the H2O2-induced injury in astrocytes. Ibudilast increased the cyclic GMP level in astrocytes. The cyclic GMP-dependent protein kinase inhibitor KT5823 blocked the protective effects of ibudilast and dipyridamole on the H2O2-induced decrease in cell viability, while the cyclic AMP-dependent protein kinase inhibitor KT5720, the cyclic AMP antagonist Rp-cyclic AMPS, the mitogen-activated protein/extracellular signal-regulated kinase inhibitor PD98059 and the leukotriene D4 antagonist LY 171883 did not. KT5823 also blocked the effect of ibudilast on the H2O2-induced cytochrome c release and caspase-3-like protease activation. These findings suggest that ibudilast prevents the H2O2-induced delayed apoptosis of astrocytes via a cyclic GMP, but not cyclic AMP, signalling pathway. PMID:11454657
Calcium/calmodulin and cAMP/protein kinase-A pathways regulate sperm motility in the stallion.
Lasko, Jodi; Schlingmann, Karen; Klocke, Ann; Mengel, Grace Ann; Turner, Regina
2012-06-01
In spite of the importance of sperm motility to fertility in the stallion, little is known about the signaling pathways that regulate motility in this species. In other mammals, calcium/calmodulin signaling and the cyclic AMP/protein kinase-A pathway are involved in sperm motility regulation. We hypothesized that these pathways also were involved in the regulation of sperm motility in the stallion. Using immunoblotting, calmodulin and the calmodulin-dependent protein kinase II β were shown to be present in stallion sperm and with indirect immunofluorescence calmodulin was localized to the acrosome and flagellar principal piece. Additionally, inhibition of either calmodulin or protein kinase-A significantly reduced sperm motility without affecting viability. Following inhibition of calmodulin, motility was not restored with agonists of the cyclic AMP/protein kinase-A pathway. These data suggest that calcium/calmodulin and cyclic AMP/protein kinase-A pathways are involved in the regulation of stallion sperm motility. The failure of cyclic AMP/protein kinase-A agonists to restore motility of calmodulin inhibited sperm suggests that both pathways may be required to support normal motility. Copyright © 2012 Elsevier B.V. All rights reserved.
Chen, Lin; Hernandez, M. Rosario
2009-01-01
Purpose Investigate the effect of hydrostatic pressure (HP) on 3′, 5′-cyclic adenosine monophosphate (cAMP) levels and downstream signaling in cultures of normal optic nerve head (ONH) astrocytes from Caucasian American (CA) and African American (AA) donors. Methods Intracellular cAMP levels were assayed after exposing ONH astrocytes to HP for varying times. Quantitative RT–PCR was used to determine the expression levels of selected cAMP pathway genes in human ONH astrocytes after HP treatment. Western blots were used to measure changes in the phosphorylation state of cAMP response element binding protein (CREB) in astrocytes subjected to HP, ATP, and phosphodiesterase or kinase inhibitors. Results The basal intracellular cAMP level is similar among AA and CA astrocytes. After exposure to HP for 15 min and 30 min in the presence of a phosphodiesterase inhibitor a further increase of intracellular cAMP was observed in AA astrocytes, but not in CA astrocytes. Consistent with activation of the cAMP-dependent protein kinase pathway, CREB phosphorylation (Ser-133) was increased to a greater extent in AA than in CA astrocytes after 3 h of HP. Exposure to elevated HP for 3–6 h differentially altered the expression levels of selected cAMP pathway genes (ADCY3, ADCY9, PTHLH, PDE7B) in AA compared to CA astrocytes. Treatment with ATP increased more CREB phosphorylation in CA than in AA astrocytes, suggesting differential Ca2+ signaling in these populations. Conclusions Activation of the cAMP-dependent signaling pathway by pressure may be an important contributor to increased susceptibility to elevated intraocular pressure and glaucoma in AA, a population at higher risk for the disease. PMID:19710943
Koh, Ho-Jin; Hirshman, Michael F.; He, Huamei; Li, Yangfeng; Manabe, Yasuko; Balschi, James A.; Goodyear, Laurie J.
2007-01-01
Exercise increases AMPK (AMP-activated protein kinase) activity in human and rat adipocytes, but the underlying molecular mechanisms and functional consequences of this activation are not known. Since adrenaline (epinephrine) concentrations increase with exercise, in the present study we hypothesized that adrenaline activates AMPK in adipocytes. We show that a single bout of exercise increases AMPKα1 and α2 activities and ACC (acetyl-CoA carboxylase) Ser79 phosphorylation in rat adipocytes. Similarly to exercise, adrenaline treatment in vivo increased AMPK activities and ACC phosphorylation. Pre-treatment of rats with the β-blocker propranolol fully blocked exercise-induced AMPK activation. Increased AMPK activity with exercise and adrenaline treatment in vivo was accompanied by an increased AMP/ATP ratio. Adrenaline incubation of isolated adipocytes also increased the AMP/ATP ratio and AMPK activities, an effect blocked by propranolol. Adrenaline incubation increased lipolysis in isolated adipocytes, and Compound C, an AMPK inhibitor, attenuated this effect. Finally, a potential role for AMPK in the decreased adiposity associated with chronic exercise was suggested by marked increases in AMPKα1 and α2 activities in adipocytes from rats trained for 6 weeks. In conclusion, both acute and chronic exercise are significant regulators of AMPK activity in rat adipocytes. Our findings suggest that adrenaline plays a critical role in exercise-stimulated AMPKα1 and α2 activities in adipocytes, and that AMPK can function in the regulation of lipolysis. PMID:17253964
AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase
Bang, Sookhee; Kim, Seyun; Dailey, Megan J.; Chen, Yong; Moran, Timothy H.; Snyder, Solomon H.; Kim, Sangwon F.
2012-01-01
The AMP-activated kinase (AMPK) senses the energy status of cells and regulates fuel availability, whereas hypothalamic AMPK regulates food intake. We report that inositol polyphosphate multikinase (IPMK) regulates glucose signaling to AMPK in a pathway whereby glucose activates phosphorylation of IPMK at tyrosine 174 enabling the enzyme to bind to AMPK and regulate its activation. Thus, refeeding fasted mice rapidly and markedly stimulates transcriptional enhancement of IPMK expression while down-regulating AMPK. Also, AMPK is up-regulated in mice with genetic depletion of hypothalamic IPMK. IPMK physiologically binds AMPK, with binding enhanced by glucose treatment. Regulation by glucose of phospho-AMPK in hypothalamic cell lines is prevented by blocking AMPK-IPMK binding. These findings imply that IPMK inhibitors will be beneficial in treating obesity and diabetes. PMID:22203993
Badie-Mahdavi, H; Worsley, M A; Ackley, M A; Asghar, A U; Slack, J R; King, A E
2001-08-01
Expression of the inducible transcription factor Fos in the spinal dorsal horn in vivo is associated with nociceptive afferent activation, but the underlying stimulation-transcription pathway is less clear. This in vitro spinal cord study concerns the role of protein kinase A and C second messengers in substance P receptor (NK1R)-mediated or nociceptive afferent-evoked neuronal excitation and Fos expression. Nociceptive afferent (dorsal root) stimulation of isolated spinal cords (10-14 day old rats) evoked a 'prolonged' excitatory polysynaptic potential (DR-EPSP) that was attenuated (P < 0.05) by: the protein kinase A inhibitor, Rp-cAMP; the protein kinase C inhibitor, bisindolymaleimide I; and the selective NK1R antagonist, GR82334. Neuronal excitations induced by the NK1R agonist [Sar9,Met(O2)11]-SP were attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. Effects of the protein kinase A and C inhibitors on the DR-EPSP or the [Sar9,Met(O2)11]-SP-induced depolarization were nonadditive, suggesting convergence of these intracellular signalling pathways onto a common final target. Nociceptor afferent-induced Fos, detected by immunohistochemistry in superficial and deep dorsal horn laminae, was attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. In spinal cords pretreated with TTX to eliminate indirect neuronal activation, [Sar9,Met(O2)11]-SP (1-20 microM) elicited a dose-related expression of Fos that was reduced by Rp-cAMP, bisindolymaleimide I and GR82334. The effects of these inhibitors were most pronounced in the deep laminae. These data support a causal relationship between protein kinase A- or C-dependent signal transduction, nociceptive afferent- or NK1R-induced neuronal excitation and Fos expression in dorsal horn. Implications for short- versus long-term modulation of nociceptive circuitry are discussed.
[Role of hypothalamic AMP-activated protein kinase in the control of food intake].
Fijałkowski, Franciszek; Jarzyna, Robert
2010-05-21
AMP-activated kinase is an evolutionarily conserved enzyme found in every eukaryotic organism examined for its presence. It plays a critical role in the shift between catabolic and anabolic metabolism. Its activity is under the control of many factors, but basically it integrates the level of intracellular AMP with signals transduced by upstream kinases. It acts through the control of the activities of other enzymes, mitochondrial biogenesis, vesicular transport, and gene expression. From a physiological point of view its effects are pleiotropic and tissue dependent. In 2004, the control of food intake in hypothalamic neurons was added to the long list of its varied functions. Since then, its crucial role in transmitting signals from all important factors that inform the brain about the body's energy level, including leptin, insulin, glucose, ghrelin, and adiponectin, has been well established. Much attention was also paid to the molecular basis of this regulation. It seems that the main targets of hypothalamic AMPK are acetyl-CoA carboxylase and mTOR and the main candidate for upstream kinase is CaMKKbeta. These discoveries seem interesting not only due to their cognitive value, but because they may also carry significant practical aspects, both in the context of AMPK activators, such as the use of metformin in diabetes mellitus therapy, and in the recent trend to look for new ways to deal with the increase in obesity in well-developed countries. A better understanding of the role of AMPK in the control of food intake may create the possibility for new therapeutic approaches in this disease.
Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J
2009-02-15
We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release.
Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni
2016-01-01
The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623
Chang, Chih-Zen; Wu, Shu-Chuan; Kwan, Aij-Lie; Lin, Chih-Lung
2015-10-01
Decreased 3'-5'-cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), and increased N-methyl-d-aspartate (NMDA) related apoptosis were observed in traumatic brain injury (TBI). It is of interest to examine the effect of magnesium lithospermate B (MLB) on cAMP/PKA pathway and NMDAR in TBI. A rodent weight-drop TBI model was used. Administration of MLB was initiated 1 week before (precondition) and 24 hours later (reversal). Cortical homogenates were harvested to measure cAMP (enzyme-linked immunosorbent assay), soluble guanylyl cyclases, PKA and NMDA receptor-2β (Western blot). In addition, cAMP kinase antagonist and H-89 dihydrochloride hydrate were used to test MLB's effect on the cytoplasm cAMP/PKA pathway after TBI. Morphologically, vacuolated neuron and activated microglia were observed in the TBI groups but absent in the MLB preconditioning and healthy controls. Induced cAMP, soluble guanylyl cyclase α1, and PKA were observed in the MLB groups, when compared with the TBI group (P < 0.01) Administration of H-89 dihydrochloride hydrate reversed the effect of MLB on cortical PKA and NMDA-2β expression after TBI. This study showed that MLB exerted an antioxidant effect on the enhancement of cytoplasm cAMP and PKA. This compound also decreased NMDA-2β levels, which may correspond to its neuroprotective effects. This finding lends credence to the presumption that MLB modulates the NMDA-2β neurotoxicity through a cAMP-dependent mechanism in the pathogenesis of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.
Rybakowska, I M; Slominska, E M; Romaszko, P; Olkowicz, M; Kaletha, K; Smolenski, R T
2015-06-01
AMP-regulated protein kinase (AMPK) is involved in regulation of energy-generating pathways in response to the metabolic needs in different organs including the heart. The activity of AMPK is mainly controlled by AMP concentration that in turn could be affected by nucleotide metabolic pathways. This study aimed to develop a procedure for measurement of AMPK activity together with nucleotide metabolic enzymes and its application for studies of mice treated with high-fat diet. The method developed was based on analysis of conversion of AMARA peptide to pAMARA by partially purified heart homogenate by liquid chromatography/mass spectrometry (LC/MS). Activities of the enzymes of nucleotide metabolism were evaluated by analysis of conversion of substrates into products by HPLC. The method was applied for analysis of hearts of mice fed 12 weeks with low- (LFD) or high-fat diet (HFD). The optimized method for AMPK activity analysis (measured in presence of AMP) revealed change of activity from 0.089 ± 0.035 pmol/min/mg protein in LFD to 0.024 ± 0.002 in HFD. This coincided with increase of adenosine deaminase (ADA) activity from 0.11 ± 0.02 to 0.19 ± 0.06 nmol/mg tissue/min and decrease of AMP-deaminase (AMPD) activity from 1.26 ± 0.35 to 0.56 ± 0.15 nmol/mg tissue/min for LFD and HFD, respectively. We have proven quality of our LC/MS method for analysis of AMPK activity. We observed decrease in AMPK activity in the heart of mice treated with high-fat diet. However, physiological consequences of this change could be modulated by decrease in AMPD activity.
Yang, Liu; Sha, Haibo; Davisson, Robin L; Qi, Ling
2013-05-10
The cross-talk between UPR activation and metabolic stress remains largely unclear. Phenformin treatment activates the IRE1α and PERK pathways in an AMPK-dependent manner. AMPK is required for phenformin-mediated IRE1α and PERK activation. Our findings demonstrate the cross-talk between UPR and metabolic signals. Activation of the unfolded protein response (UPR) is associated with the disruption of endoplasmic reticulum (ER) homeostasis and has been implicated in the pathogenesis of many human metabolic diseases, including obesity and type 2 diabetes. However, the nature of the signals activating UPR under these conditions remains largely unknown. Using a method that we recently optimized to directly measure UPR sensor activation, we screened the effect of various metabolic drugs on UPR activation and show that the anti-diabetic drug phenformin activates UPR sensors IRE1α and pancreatic endoplasmic reticulum kinase (PERK) in both an ER-dependent and ER-independent manner. Mechanistically, AMP-activated protein kinase (AMPK) activation is required but not sufficient to initiate phenformin-mediated IRE1α and PERK activation, suggesting the involvement of additional factor(s). Interestingly, activation of the IRE1α (but not PERK) pathway is partially responsible for the cytotoxic effect of phenformin. Together, our data show the existence of a non-canonical UPR whose activation requires the cytosolic kinase AMPK, adding another layer of complexity to UPR activation upon metabolic stress.
Crystal structure of casein kinase-1, a phosphate-directed protein kinase.
Xu, R M; Carmel, G; Sweet, R M; Kuret, J; Cheng, X
1995-01-01
The structure of a truncated variant of casein kinase-1 from Schizosaccharomyces pombe, has been determined in complex with MgATP at 2.0 A resolution. The model resembles the 'closed', ATP-bound conformations of the cyclin-dependent kinase 2 and the cAMP-dependent protein kinase, with clear differences in the structure of surface loops that impart unique features to casein kinase-1. The structure is of unphosphorylated, active conformation of casein kinase-1 and the peptide-binding site is fully accessible to substrate. Images PMID:7889932
Kinetics of acrylodan-labelled cAMP-dependent protein kinase catalytic subunit denaturation.
Kivi, Rait; Loog, Mart; Jemth, Per; Järv, Jaak
2013-10-01
Fluorescence spectroscopy was used to study denaturation of cAMP-dependent protein kinase catalytic subunit labeled with an acrylodan moiety. The dye was covalently bound to a cystein residue introduced into the enzyme by replacement of arginine in position 326 in the native sequence, located near the enzyme active center. This labeling had no effect on catalytic activity of the enzyme, but provided possibility to monitor changes in protein structure through measuring the fluorescence spectrum of the dye, which is sensitive to changes in its environment. This method was used to monitor denaturation of the protein kinase catalytic subunit and study the kinetics of this process as well as influence of specific ligands on stability of the protein. Stabilization of the enzyme structure was observed in the presence of adenosine triphosphate, peptide substrate RRYSV and inhibitor peptide PKI[5-24].
Kurimoto, Yuta; Shibayama, Yuki; Inoue, Seiya; Soga, Minoru; Takikawa, Masahito; Ito, Chiaki; Nanba, Fumio; Yoshida, Tadashi; Yamashita, Yoko; Ashida, Hitoshi; Tsuda, Takanori
2013-06-12
Black soybean seed coat has abundant levels of polyphenols such as anthocyanins (cyanidin 3-glucoside; C3G) and procyanidins (PCs). This study found that dietary black soybean seed coat extract (BE) ameliorates hyperglycemia and insulin sensitivity via the activation of AMP-activated protein kinase (AMPK) in type 2 diabetic mice. Dietary BE significantly reduced blood glucose levels and enhanced insulin sensitivity. AMPK was activated in the skeletal muscle and liver of diabetic mice fed BE. This activation was accompanied by the up-regulation of glucose transporter 4 in skeletal muscle and the down-regulation of gluconeogenesis in the liver. These changes resulted in improved hyperglycemia and insulin sensitivity in type 2 diabetic mice. In vitro studies using L6 myotubes showed that C3G and PCs significantly induced AMPK activation and enhanced glucose uptake into the cells.
Lum, H; Jaffe, H A; Schulz, I T; Masood, A; RayChaudhury, A; Green, R D
1999-09-01
We investigated the hypothesis that cAMP-dependent protein kinase (PKA) protects against endothelial barrier dysfunction in response to proinflammatory mediators. An E1-, E3-, replication-deficient adenovirus (Ad) vector was constructed containing the complete sequence of PKA inhibitor (PKI) gene (AdPKI). Infection of human microvascular endothelial cells (HMEC) with AdPKI resulted in overexpression of PKI. Treatment with 0.5 microM thrombin increased transendothelial albumin clearance rate (0.012 +/- 0.003 and 0.035 +/- 0.005 microl/min for control and thrombin, respectively); the increase was prevented with forskolin + 3-isobutyl-1-methylxanthine (F + I) treatment. Overexpression of PKI resulted in abrogation of the F + I-induced inhibition of the permeability increase. However, with HMEC infected with ultraviolet-inactivated AdPKI, the F + I-induced inhibition was present. Also, F + I treatment of HMEC transfected with reporter plasmid containing the cAMP response element-directed transcription of the luciferase gene resulted in an almost threefold increase in luciferase activity. Overexpression of PKI inhibited this induction of luciferase activity. The results show that Ad-mediated overexpression of PKI in endothelial cells abrogated the cAMP-mediated protection against increased endothelial permeability, providing direct evidence that cAMP-dependent protein kinase promotes endothelial barrier function.
Luo, Jie; Phan, Trongha X.; Yang, Yimei; Garelick, Michael G.; Storm, Daniel R.
2013-01-01
The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Since mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK and phospho-CREB are higher in rapid eye movement (REM) sleep compared to awake mice but are not elevated in non-rapid eye movement (NREM) sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation. PMID:23575844
Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R
2017-07-01
Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels drives accumulation of immunostimulatory ATP versus immunosuppressive adenosine within the tumor microenvironment. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Ozawa, Eijiro
2011-01-01
It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10(-7)-10(-4) M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3',5'-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction.
Regulation of MMP-3 expression and secretion by the chemokine eotaxin-1 in human chondrocytes
2011-01-01
Background Osteoarthritis (OA) is characterized by the degradation of articular cartilage, marked by the breakdown of matrix proteins. Studies demonstrated the involvement of chemokines in this process, and some may potentially serve as diagnostic markers and therapeutic targets; however, the underlying signal transductions are not well understood. Methods We investigated the effects of the CC chemokine eotaxin-1 (CCL11) on the matrix metalloproteinase (MMP) expression and secretion in the human chondrocyte cell line SW1353 and primary chondrocytes. Results Eotaxin-1 significantly induced MMP-3 mRNA expression in a dose-dependent manner. Inhibitors of extracellular signal-regulated kinase (ERK) and p38 kinase were able to repress eotaxin-1-induced MMP-3 expression. On the contrary, Rp-adenosine-3',5'-cyclic monophosphorothioate (Rp-cAMPs), a competitive cAMP antagonist for cAMP receptors, and H-89, a protein kinase A (PKA) inhibitor, markedly enhanced eotaxin-1-induced MMP-3 expression. These results suggest that MMP-3 expression is specifically mediated by the G protein-coupled eotaxin-1 receptor activities. Interestingly, little amount of MMP-3 protein was detected in the cell lysates of eotaxin-1-treated SW1353 cells, and most of MMP-3 protein was in the culture media. Furthermore we found that the eotaxin-1-dependent MMP-3 protein secretion was regulated by phospholipase C (PLC)-protein kinase C (PKC) cascade and c-Jun N-terminal kinase (JNK)/mitogen-activated protein (MAP) kinase pathways. These data indicate a specific regulation of MMP-3 secretion also by eotaxin-1 receptor activities. Conclusions Eotaxin-1 not only induces MMP-3 gene expression but also promotes MMP-3 protein secretion through G protein-coupled eotaxin-1 receptor activities. Chemokines, such as eotaxin-1, could be a potential candidate in the diagnosis and treatment of arthritis. PMID:22114952
Samih, N; Hovsepian, S; Aouani, A; Lombardo, D; Fayet, G
2000-11-01
It was previously demonstrated that insulin or TSH treatment of FRTL-5 cells resulted in an elevation of glucose transport and in an increase of cell surface expression of the glucose transporter Glut-1. However, the signaling mechanisms leading to the insulin or TSH-induced increase in the cell surface expression of Glut-1 were not investigated. In the present study, we demonstrated that wortmannin and LY294002, two specific inhibitors of phosphatidylinositol 3-kinase (PI3-kinase), interfere both in the signaling pathways of insulin and TSH leading to glucose consumption enhancement and Glut-1 translocation. Two hours after insulin treatment, TSH or cAMP analog (Bu)2cAMP stimulation, glucose transport was increased and most of the intracellular Glut-1 pool was translocated to plasma membranes. Wortmannin or LY294002 blocked the insulin, (Bu)2cAMP, and the TSH-induced translocation of Glut-1. Wortmannin or LY294002 alone did not alter the basal ratio between intracellular and cell surface Glut-1 molecules. These results suggest that in FRTL-5 cells wortmannin and LY294002 inhibited the insulin, (Bu)2cAMP and TSH events leading to Glut-1 translocation from an intracellular compartment to the plasma membrane. Likewise, (Bu)2cAMP effects on glucose transport and Glut-1 translocation to plasma membrane were repressed by PI3-kinase inhibitors but not by the protein kinase A (PKA) inhibitor H89. We suggest that (Bu)2cAMP stimulates Glut-1 translocation to plasma membrane through PI3-kinase-dependent and PKA-independent signaling pathways. To further elucidate mechanisms that regulate the translocation of Glut-1 to cell membrane, we extended this study to the role played by the N-glycosylation in the translocation and in the biological activity of Glut-1 in FRTL-5 cells. For this purpose we used tunicamycin, an inhibitor of the N-glycosylation. Our experiments with tunicamycin clearly showed that both the glycosylated and unglycosylated forms of the transporter reached the cell surface. Likewise, a decrease in glucose consumption (-50%) after treatment of cells with tunicamycin was accompanied by a decrease (-70% vs. control) in the membrane expression of a 50-kDa form of Glut-1 and an increase in its unglycosylated 41-kDa form. These results suggest that carbohydrate moiety is essential for the biological activity of glucose transport but is not required for the translocation of Glut-1 from the intracellular membrane pool to the plasma membrane.
Stevenson, M A; Zhao, M J; Asea, A; Coleman, C N; Calderwood, S K
1999-11-15
Sodium salicylate (NaSal) and other nonsteroidal anti-inflammatory drugs (NSAIDs) coordinately inhibit the activity of NF-kappa B, activate heat shock transcription factor 1 and suppress cytokine gene expression in activated monocytes and macrophages. Because our preliminary studies indicated that these effects could be mimicked by inhibitors of signal transduction, we have studied the effects of NSAIDs on signaling molecules potentially downstream of LPS receptors in activated macrophages. Our findings indicate that ribosomal S6 kinase 2 (RSK2), a 90-kDa ribosomal S6 kinase with a critical role as an effector of the RAS-mitogen-activated protein kinase pathway and a regulator of immediate early gene transcription is a target for inhibition by the NSAIDs. NSAIDs inhibited the activity of purified RSK2 kinase in vitro and of RSK2 in mammalian cells and suppressed the phosphorylation of RSK2 substrates cAMP response element binding protein (CREB) and I-kappa B alpha in vivo. Additionally, NaSal inhibited the phosphorylation by RSK2 of CREB and I-kappa B alpha on residues crucial for their transcriptional activity in vivo and thus repressed CREB and NF-kappa B-dependent transcription. These experiments suggest that RSK2 is a target for NSAIDs in the inhibition of monocyte-specific gene expression and indicate the importance of RSK2 and related kinases in cell regulation, indicating a new area for anti-inflammatory drug discovery.
Zheng, Weiwei; Yang, Bei; Pi, Jingbo; He, Gengsheng; Qu, Weidong
2012-01-01
α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 µM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5′-triphosphate (ATP) levels, 3′-5′-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH. PMID:22916194
Zhang, Hao; Yu, Huan; Wang, Xia; Zheng, Weiwei; Yang, Bei; Pi, Jingbo; He, Gengsheng; Qu, Weidong
2012-01-01
α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 µM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5'-triphosphate (ATP) levels, 3'-5'-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH.
Crosstalk between mTORC1 and cAMP Signaling
2016-09-01
2010). It has been suggested that the low mTOR activity retained under moderate hyper - tonic conditions facilitates the expression of some osmo...member of the MAP kinase (MAPK) subfamily. It is notable that the activation loop ofNLK protein possesses the sequence Thr–Gln–Glu (TQE) motif...Ishitani et al. 2011). Thus, NLK can be activated without being phosphorylated in the activation loop by upstream kinases. Moreover, high levels of
Higashi, K; Hoek, J B
1991-02-05
The effect of ethanol on receptor-mediated phospholipase C-linked signal transduction processes was investigated in isolated rat hepatocytes. Pretreatment of the cells with ethanol (6-300 mM) markedly inhibited a subsequent stimulation of phospholipase C by vasopressin, angiotensin II, or epidermal growth factor. By contrast, the effects of the alpha 1-adrenergic agonist phenylephrine and of glucagon were not affected by ethanol pretreatment. Ethanol inhibited the agonist-induced decrease in polyphosphoinositides, the formation of inositol phosphates, and the increase in cytosolic free Ca2+ levels, as detected with the intracellular Ca2+ indicator indo-1. The effects of ethanol were concentration dependent and were pronounced at low concentrations of agonists but were not significant at saturating levels. Pretreatment of the cells with the protein kinase C inhibitor H7 partly prevented the inhibition by ethanol of vasopressin-induced phospholipase C activation. By contrast, pretreatment of the cells with (Rp)-adenosine cyclic 3':5'-phosphorothioate [Rp)-cAMP-S), a competitive inhibitor of protein kinase A, potentiated the inhibitory effect of ethanol on the Ca2+ mobilization by vasopressin. (Rp)-cAMP-S similarly potentiated the inhibition of phospholipase C by the protein kinase C-activating phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The kinase A inhibitor also made the Ca2+ mobilization by phenylephrine sensitive to ethanol, indicating that the formation of cAMP in the cells played a role in suppressing the sensitivity to ethanol. Pretreatment of the cells with ethanol enhanced the inhibitory effects of TPA on the vasopressin-induced phospholipase C activation at all concentrations of the hormone; however, these synergistic effects were prevented when TPA was added prior to ethanol, a condition that prevents the activation of phospholipase C by ethanol. The data indicate that ethanol causes desensitization of the receptor-mediated phospholipase C secondary to the ethanol-induced activation of phospholipase C and activation of protein kinase C. Ethanol treatment also affects the sensitivity of the phospholipase C system to control by protein kinases A and C. The data indicate that ethanol can affect the control of intracellular signal transduction processes in liver cells under physiologically relevant conditions.
Xie, Zhi; Ding, Sheng-quan; Shen, Ya-fang
2014-11-14
In this study, we explored the cytoprotective potential of silibinin against oxygen-glucose deprivation (OGD)-induced neuronal cell damages, and studied underling mechanisms. In vitro model of ischemic stroke was created by keeping neuronal cells (SH-SY5Y cells and primary mouse cortical neurons) in an OGD condition followed by re-oxygenation. Pre-treatment of silibinin significantly inhibited OGD/re-oxygenation-induced necrosis and apoptosis of neuronal cells. OGD/re-oxygenation-induced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) reduction were also inhibited by silibinin. At the molecular level, silibinin treatment in SH-SY5Y cells and primary cortical neurons led to significant AMP-activated protein kinase (AMPK) signaling activation, detected by phosphorylations of AMPKα1, its upstream kinase liver kinase B1 (LKB1) and the downstream target acetyl-CoA Carboxylase (ACC). Pharmacological inhibition or genetic depletion of AMPK alleviated the neuroprotective ability of silibinin against OGD/re-oxygenation. Further, ROS scavenging ability by silibinin was abolished with AMPK inhibition or silencing. While A-769662, the AMPK activator, mimicked silibinin actions and suppressed ROS production and neuronal cell death following OGD/re-oxygenation. Together, these results show that silibinin-mediated neuroprotection requires activation of AMPK signaling. Copyright © 2014 Elsevier Inc. All rights reserved.
Bernabeu, Ramon; Bevilaqua, Lia; Ardenghi, Patricia; Bromberg, Elke; Schmitz, Paulo; Bianchin, Marino; Izquierdo, Ivan; Medina, Jorge H.
1997-01-01
cAMP/cAMP-dependent protein kinase (PKA) signaling pathway has been recently proposed to participate in both the late phase of long term potentiation in the hippocampus and in the late, protein synthesis-dependent phase of memory formation. Here we report that a late memory consolidation phase of an inhibitory avoidance learning is regulated by an hippocampal cAMP signaling pathway that is activated, at least in part, by D1/D5 receptors. Bilateral infusion of SKF 38393 (7.5 μg/side), a D1/D5 receptor agonist, into the CA1 region of the dorsal hippocampus, enhanced retention of a step-down inhibitory avoidance when given 3 or 6 h, but not immediately (0 h) or 9 h, after training. In contrast, full retrograde amnesia was obtained when SCH 23390 (0.5 μg/side), a D1/D5 receptor antagonist, was infused into the hippocampus 3 or 6 h after training. Intrahippocampal infusion of 8Br-cAMP (1.25 μg/side), or forskolin (0.5 μg/side), an activator of adenylyl cyclase, enhanced memory when given 3 or 6 h after training. KT5720 (0.5 μg/side), a specific inhibitor of PKA, hindered memory consolidation when given immediately or 3 or 6 h posttraining. Rats submitted to the avoidance task showed learning-specific increases in hippocampal 3H-SCH 23390 binding and in the endogenous levels of cAMP 3 and 6 h after training. In addition, PKA activity and P-CREB (phosphorylated form of cAMP responsive element binding protein) immunoreactivity increased in the hippocampus immediately and 3 and 6 h after training. Together, these findings suggest that the late phase of memory consolidation of an inhibitory avoidance is modulated cAMP/PKA signaling pathways in the hippocampus. PMID:9192688
Rochais, Francesca; Vandecasteele, Grégoire; Lefebvre, Florence; Lugnier, Claire; Lum, Hazel; Mazet, Jean-Luc; Cooper, Dermot M F; Fischmeister, Rodolphe
2004-12-10
Intracardiac cAMP levels are modulated by hormones and neuromediators with specific effects on contractility and metabolism. To understand how the same second messenger conveys different information, mutants of the rat olfactory cyclic nucleotide-gated (CNG) channel alpha-subunit CNGA2, encoded into adenoviruses, were used to monitor cAMP in adult rat ventricular myocytes. CNGA2 was not found in native myocytes but was strongly expressed in infected cells. In whole cell patch-clamp experiments, the forskolin analogue L-858051 (L-85) elicited a non-selective, Mg2+ -sensitive current observed only in infected cells, which was thus identified as the CNG current (ICNG). The beta-adrenergic agonist isoprenaline (ISO) also activated ICNG, although the maximal efficiency was approximately 5 times lower than with L-85. However, ISO and L-85 exerted a similar maximal increase of the L-type Ca2+ current. The use of a CNGA2 mutant with a higher sensitivity for cAMP indicated that this difference is caused by the activation of a localized fraction of CNG channels by ISO. cAMP-dependent protein kinase (PKA) blockade with H89 or PKI, or phosphodiesterase (PDE) inhibition with IBMX, dramatically potentiated ISO- and L-85-stimulated ICNG. A similar potentiation of beta-adrenergic stimulation occurred when PDE4 was blocked, whereas PDE3 inhibition had a smaller effect (by 2-fold). ISO and L-85 increased total PDE3 and PDE4 activities in cardiomyocytes, although this effect was insensitive to H89. However, in the presence of IBMX, H89 had no effect on ISO stimulation of ICNG. This study demonstrates that subsarcolemmal cAMP levels are dynamically regulated by a negative feedback involving PKA stimulation of subsarcolemmal cAMP-PDE.
García-Salcedo, Raúl; Lubitz, Timo; Beltran, Gemma; Elbing, Karin; Tian, Ye; Frey, Simone; Wolkenhauer, Olaf; Krantz, Marcus; Klipp, Edda; Hohmann, Stefan
2014-04-01
The AMP-activated protein kinase, AMPK, controls energy homeostasis in eukaryotic cells but little is known about the mechanisms governing the dynamics of its activation/deactivation. The yeast AMPK, SNF1, is activated in response to glucose depletion and mediates glucose de-repression by inactivating the transcriptional repressor Mig1. Here we show that overexpression of the Snf1-activating kinase Sak1 results, in the presence of glucose, in constitutive Snf1 activation without alleviating glucose repression. Co-overexpression of the regulatory subunit Reg1 of the Glc-Reg1 phosphatase complex partly restores glucose regulation of Snf1. We generated a set of 24 kinetic mathematical models based on dynamic data of Snf1 pathway activation and deactivation. The models that reproduced our experimental observations best featured (a) glucose regulation of both Snf1 phosphorylation and dephosphorylation, (b) determination of the Mig1 phosphorylation status in the absence of glucose by Snf1 activity only and (c) a regulatory step directing active Snf1 to Mig1 under glucose limitation. Hence it appears that glucose de-repression via Snf1-Mig1 is regulated by glucose via at least two independent steps: the control of activation of the Snf1 kinase and directing active Snf1 to inactivating its target Mig1. © 2014 FEBS.
Nakanishi, Akihiro; Hatano, Naoya; Fujiwara, Yuya; Sha'ri, Arian; Takabatake, Shota; Akano, Hiroki; Kanayama, Naoki; Magari, Masaki; Nozaki, Naohito; Tokumitsu, Hiroshi
2017-12-01
The Ca 2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ)/5'-AMP-activated protein kinase (AMPK) phosphorylation cascade affects various Ca 2+ -dependent metabolic pathways and cancer growth. Unlike recombinant CaMKKβ that exhibits higher basal activity (autonomous activity), activation of the CaMKKβ/AMPK signaling pathway requires increased intracellular Ca 2+ concentrations. Moreover, the Ca 2+ /CaM dependence of CaMKKβ appears to arise from multiple phosphorylation events, including autophosphorylation and activities furnished by other protein kinases. However, the effects of proximal downstream kinases on CaMKKβ activity have not yet been evaluated. Here, we demonstrate feedback phosphorylation of CaMKKβ at multiple residues by CaMKKβ-activated AMPK in addition to autophosphorylation in vitro , leading to reduced autonomous, but not Ca 2+ /CaM-activated, CaMKKβ activity. MS analysis and site-directed mutagenesis of AMPK phosphorylation sites in CaMKKβ indicated that Thr 144 phosphorylation by activated AMPK converts CaMKKβ into a Ca 2+ /CaM-dependent enzyme as shown by completely Ca 2+ /CaM-dependent CaMKK activity of a phosphomimetic T144E CaMKKβ mutant. CaMKKβ mutant analysis indicated that the C-terminal domain (residues 471-587), including the autoinhibitory region, plays an important role in stabilizing an inactive conformation in a Thr 144 phosphorylation-dependent manner. Furthermore, immunoblot analysis with anti-phospho-Thr 144 antibody revealed phosphorylation of Thr 144 in CaMKKβ in transfected COS-7 cells that was further enhanced by exogenous expression of AMPKα. These results indicate that AMPK-mediated feedback phosphorylation of CaMKKβ regulates the CaMKKβ/AMPK signaling cascade and may be physiologically important for intracellular maintenance of Ca 2+ -dependent AMPK activation by CaMKKβ. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Ca2+-Stimulated Adenylyl Cyclases Regulate ERK-Dependent Activation of MSK1 During Fear Conditioning
Sindreu, Carlos Balet; Scheiner, Zachary S.; Storm, Daniel R.
2007-01-01
The cAMP and ERK/MAP kinase (MAPK) signal transduction pathways are critical for hippocampus-dependent memory, a process that depends on CREB-mediated transcription. However, the extent of crosstalk between these pathways and the downstream CREB kinase activated during memory formation have not been elucidated. Here we report that PKA, MAPK, and MSK1, a CREB kinase, are co-activated in a subset of hippocampal CA1 pyramidal neurons following contextual fear conditioning. Activation of PKA, MAPK, MSK1, and CREB is absolutely dependent on Ca2+-stimulated adenylyl cyclase activity. We conclude that adenylyl cyclase activity supports the activation of MAPK, and that MSK1 is the major CREB kinase activated during training for contextual memory. PMID:17196532
Salt, Ian P; Hardie, D Grahame
2017-05-26
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. © 2017 American Heart Association, Inc.
Lee, Dong-Ha; Kwon, Hyuk-Woo; Kim, Hyun-Hong; Lim, Deok Hwi; Nam, Gi Suk; Shin, Jung-Hae; Kim, Yun-Yi; Kim, Jong-Lae; Lee, Jong-Jin; Kwon, Ho-Kyun; Park, Hwa-Jin
2015-01-01
In this study, we investigated the effect of cordycepin-enriched (CE)-WIB801C from Cordyceps militaris on ADP (20 µM)-stimulated platelet aggregation. CE-WIB801C dose-dependently inhibited ADP-induced platelet aggregation, and its IC50 value was 18.5 μg/mL. CE-WIB801C decreased TXA2 production, but did not inhibit the activities of COX-1 and thromboxane synthase (TXAS) in ADP-activated platelets, which suggests that the inhibition of TXA2 production by CE-WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. CE-WIB801C inhibited ATP release and [Ca(2+)]i mobilization, and increased cAMP level and IP3RI (Ser(1756)) phosphorylation in ADP-activated platelets. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased CE-WIB801C-inhibited [Ca(2+)]i mobilization, and strongly inhibited CE-WIB801C-increased IP3RI (Ser(1756)) phosphorylation. CE-WIB801C elevated the phosphorylation of VASP (Ser(157)), an A-kinase substrate, but inhibited fibrinogen binding to αIIb/β3. These results suggest that CE-WIB801C-elevated cAMP involved in IP3RI (Ser(1756)) phosphorylation to inhibit [Ca(2+)]i mobilization and, VASP (Ser(157)) phosphorylation to inhibit αIIb/β3 activation. Therefore, in this study, we demonstrate that CE-WIB801C may have a preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.
Lai, Hui-Chi; Wu, Ming-Jiuan; Chen, Pei-Yi; Sheu, Ting-Ting; Chiu, Szu-Ping; Lin, Meng-Han; Ho, Chi-Tang; Yen, Jui-Hung
2011-01-01
5-Hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone (5-OH-HxMF), a hydroxylated polymethoxyflavone, is found exclusively in the Citrus genus, particularly in the peels of sweet orange. In this research, we report the first investigation of the neurotrophic effects and mechanism of 5-OH-HxMF in PC12 pheochromocytoma cells. We found that 5-OH-HxMF can effectively induce PC12 neurite outgrowth accompanied with the expression of neuronal differentiation marker protein growth-associated protein-43(GAP-43). 5-OH-HxMF caused the enhancement of cyclic AMP response element binding protein (CREB) phosphorylation, c-fos gene expression and CRE-mediated transcription, which was inhibited by 2-naphthol AS-E phosphate (KG-501), a specific antagonist for the CREB-CBP complex formation. Moreover, 5-OH-HxMF-induced both CRE transcription activity and neurite outgrowth were inhibited by adenylate cyclase and protein kinase A (PKA) inhibitor, but not MEK1/2, protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K) or calcium/calmodulin-dependent protein kinase (CaMK) inhibitor. Consistently, 5-OH-HxMF treatment increased the intracellular cAMP level and downstream component, PKA activity. We also found that addition of K252a, a TrKA antagonist, significantly inhibited NGF- but not 5-OH-HxMF-induced neurite outgrowth. These results reveal for the first time that 5-OH-HxMF is an effective neurotrophic agent and its effect is mainly through a cAMP/PKA-dependent, but TrKA-independent, signaling pathway coupling with CRE-mediated gene transcription. A PKC-dependent and CREB-independent pathway was also involved in its neurotrophic action. PMID:22140566
cAMP signalling in the vasculature: the role of Epac (exchange protein directly activated by cAMP).
Roberts, Owain Llŷr; Dart, Caroline
2014-02-01
The second messenger cAMP plays a central role in mediating vascular smooth muscle relaxation in response to vasoactive transmitters and in strengthening endothelial cell-cell junctions that regulate the movement of solutes, cells and macromolecules between the blood and the surrounding tissue. The vasculature expresses three cAMP effector proteins: PKA (protein kinase A), CNG (cyclic-nucleotide-gated) ion channels, and the most recently discovered Epacs (exchange proteins directly activated by cAMP). Epacs are a family of GEFs (guanine-nucleotide-exchange factors) for the small Ras-related GTPases Rap1 and Rap2, and are being increasingly implicated as important mediators of cAMP signalling, both in their own right and in parallel with the prototypical cAMP target PKA. In the present paper, we review what is currently known about the role of Epac within blood vessels, particularly with regard to the regulation of vascular tone, endothelial barrier function and inflammation.
Chang, Yi; Hsu, Wen-Hsien; Lu, Wan-Jung; Jayakumar, Thanasekaran; Liao, Jiun-Cheng; Lin, Mei-Jiun; Wang, Shwu-Huey; Geraldine, Pitchairaj; Lin, Kuan-Hung; Sheu, Joen-Rong
2015-01-01
CME-1 is a polysaccharide purified from the mycelia of medicinal mushroom Cordyceps sinensis, its molecular weight was determined to be 27.6 kDa by using nuclear magnetic resonance and gas chromatography-mass spectrometry. The initiation of arterial thromboses is relevant to various cardiovascular diseases (CVDs) and is believed to involve platelet activation. Our recent study exhibited that CME-1 has potent antiplatelet activity via the activation of adenylate cyclase/cyclic AMP ex vivo and in vivo. The aggregometry, and immunoblotting were used in this study. In this study, the mechanisms of CME-1 in platelet activation is further investigated and found that CME-1 inhibited platelet aggregation as well as the ATP-release reaction, relative intracellular [Ca(+2)] mobilization, and the phosphorylation of phospholipase C (PLC)γ2 and protein kinase C (PKC) stimulated by collagen. CME-1 has no effects on inhibiting either convulxin, an agonist of glycoprotein VI, or aggretin, an agonist of integrin α2β1 stimulated platelet aggregation. Moreover, this compound markedly diminished thrombin and arachidonic acid (AA) induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 2, c-Jun N-terminal kinase 1, and Akt. Treatment with SQ22536, an inhibitor of adenylate cyclase, markedly diminished the CME-1-mediated increasing of cyclic AMP level and reversed prostaglandin E1- or CME-1-mediated inhibition of platelet aggregation and p38 MAPK and Akt phosphorylation stimulated by thrombin or AA. Furthermore, phosphodiesterase activity of human platelets was not altered by CME-1. The crucial finding of this study is that the antiplatelet activity of CME-1 may initially inhibit the PLCγ2-PKC-p47 cascade, and inhibit PI3-kinase/Akt and MAPK phosphorylation through adenylate cyclase/ cyclic AMP activation, then inhibit intracellular [Ca(+2)] mobilization, and, ultimately, inhibit platelet activation. The novel role of CME-1 in antiplatelet activity indicates that this compound exhibits high therapeutic potential for treating or preventing CVDs.
Sindreu, Carlos Balet; Scheiner, Zachary S; Storm, Daniel R
2007-01-04
The cAMP and ERK/MAP kinase (MAPK) signal transduction pathways are critical for hippocampus-dependent memory, a process that depends on CREB-mediated transcription. However, the extent of crosstalk between these pathways and the downstream CREB kinase activated during memory formation has not been elucidated. Here we report that PKA, MAPK, and MSK1, a CREB kinase, are coactivated in a subset of hippocampal CA1 pyramidal neurons following contextual fear conditioning. Activation of PKA, MAPK, MSK1, and CREB is absolutely dependent on Ca(2+)-stimulated adenylyl cyclase activity. We conclude that adenylyl cyclase activity supports the activation of MAPK, and that MSK1 is the major CREB kinase activated during training for contextual memory.
2013-01-01
X-ray structures of several ternary substrate and product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with different bound metal ions. In the PKAc complexes, Mg2+, Ca2+, Sr2+, and Ba2+ metal ions could bind to the active site and facilitate the phosphoryl transfer reaction. ATP and a substrate peptide (SP20) were modified, and the reaction products ADP and the phosphorylated peptide were found trapped in the enzyme active site. Finally, we determined the structure of a pseudo-Michaelis complex containing Mg2+, nonhydrolyzable AMP-PCP (β,γ-methyleneadenosine 5′-triphosphate) and SP20. The product structures together with the pseudo-Michaelis complex provide snapshots of different stages of the phosphorylation reaction. Comparison of these structures reveals conformational, coordination, and hydrogen bonding changes that might occur during the reaction and shed new light on its mechanism, roles of metals, and active site residues. PMID:23672593
2012-01-01
Background Hepatic metabolic derangements are key components in the development of fatty liver disease. AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and carnitine palmitoyl transferase 1 (CPT-1) pathway. In this study, cyanidin-3-O-β-glucoside (Cy-3-g), a typical anthocyanin pigment was used to examine its effects on AMPK activation and fatty acid metabolism in human HepG2 hepatocytes. Results Anthocyanin Cy-3-g increased cellular AMPK activity in a calmodulin kinase kinase dependent manner. Furthermore, Cy-3-g substantially induced AMPK downstream target ACC phosphorylation and inactivation, and then decreased malonyl CoA contents, leading to stimulation of CPT-1 expression and significant increase of fatty acid oxidation in HepG2 cells. These effects of Cy-3-g are largely abolished by pharmacological and genetic inhibition of AMPK. Conclusion This study demonstrates that Cy-3-g regulates hepatic lipid homeostasis via an AMPK-dependent signaling pathway. Targeting AMPK activation by anthocyanin may represent a promising approach for the prevention and treatment of obesity-related nonalcoholic fatty liver disease. PMID:22243683
Park, Hyun Jin; Lee, Kyung Sook; Zhao, Ting Ting; Lee, Kyung Eun; Lee, Myung Koo
2017-05-01
This study investigated the effects of asarinin on dopamine biosynthesis and 6-hydroxydopamine (6-OHDA)-induced cytotoxicity in rat adrenal pheochromocytoma (PC12) cells. Treatment with asarinin (25-50 μM) increased intracellular dopamine levels and enhanced L-DOPA-induced increases in dopamine levels. Asarinin (25 μM) induced cyclic AMP-dependent protein kinase A (PKA) signaling, leading to increased cyclic AMP-response element binding protein (CREB) and tyrosine hydroxylase (TH) phosphorylation, which in turn stimulated dopamine production. Asarinin (25 μM) also activated transient phosphorylation of extracellular signal-regulated kinase (ERK1/2) and Bad phosphorylation at Ser 112, both of which have been shown to promote cell survival. In contrast, asarinin (25 μM) inhibited sustained ERK1/2, Bax, c-Jun N-terminal kinase (JNK1/2) and p38 mitogen-activated protein kinase (p38MAPK) phosphorylation and caspase-3 activity, which were induced by 6-OHDA (100 μM). These results suggest that asarinin induces dopamine biosynthesis via activation of the PKA-CREB-TH system and protects against 6-OHDA-induced cytotoxicity by inhibiting the sustained activation of the ERK-p38MAPK-JNK1/2-caspase-3 system in PC12 cells.
Blázquez, C; Woods, A; de Ceballos, M L; Carling, D; Guzmán, M
1999-10-01
The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism.
Morales-Garcia, Jose A.; Redondo, Miriam; Alonso-Gil, Sandra; Gil, Carmen; Perez, Concepción; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana
2011-01-01
Background Phosphodiesterase 7 plays a major role in down-regulation of protein kinase A activity by hydrolyzing cAMP in many cell types. This cyclic nucleotide plays a key role in signal transduction in a wide variety of cellular responses. In the brain, cAMP has been implicated in learning, memory processes and other brain functions. Methodology/Principal Findings Here we show a novel function of phosphodiesterase 7 inhibition on nigrostriatal dopaminergic neuronal death. We found that S14, a heterocyclic small molecule inhibitor of phosphodiesterase 7, conferred significant neuronal protection against different insults both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. S14 treatment also reduced microglial activation, protected dopaminergic neurons and improved motor function in the lipopolysaccharide rat model of Parkinson disease. Finally, S14 neuroprotective effects were reversed by blocking the cAMP signaling pathways that operate through cAMP-dependent protein kinase A. Conclusions/Significance Our findings demonstrate that phosphodiesterase 7 inhibition can protect dopaminergic neurons against different insults, and they provide support for the therapeutic potential of phosphodiesterase 7 inhibitors in the treatment of neurodegenerative disorders, particularly Parkinson disease. PMID:21390306
β-Adrenergic induced SR Ca2+ leak is mediated by an Epac-NOS pathway.
Pereira, Laëtitia; Bare, Dan J; Galice, Samuel; Shannon, Thomas R; Bers, Donald M
2017-07-01
Cardiac β-adrenergic receptors (β-AR) and Ca 2+ -Calmodulin dependent protein kinase (CaMKII) regulate both physiological and pathophysiological Ca 2+ signaling. Elevated diastolic Ca 2+ leak from the sarcoplasmic reticulum (SR) contributes to contractile dysfunction in heart failure and to arrhythmogenesis. β-AR activation is known to increase SR Ca 2+ leak via CaMKII-dependent phosphorylation of the ryanodine receptor. Two independent and reportedly parallel pathways have been implicated in this β-AR-CaMKII cascade, one involving exchange protein directly activated by cAMP (Epac2) and another involving nitric oxide synthase 1 (NOS1). Here we tested whether Epac and NOS function in a single series pathway to increase β-AR induced and CaMKII-dependent SR Ca 2+ leak. Leak was measured as both Ca 2+ spark frequency and tetracaine-induced shifts in SR Ca 2+ , in mouse and rabbit ventricular myocytes. Direct Epac activation by 8-CPT (8-(4-chlorophenylthio)-2'-O-methyl-cAMP) mimicked β-AR-induced SR Ca 2+ leak, and both were blocked by NOS inhibition. The same was true for myocyte CaMKII activation (assessed via a FRET-based reporter) and ryanodine receptor phosphorylation. Inhibitor and phosphorylation studies also implicated phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) downstream of Epac and above NOS activation in this pathway. We conclude that these two independently characterized parallel pathways function mainly via a single series arrangement (β-AR-cAMP-Epac-PI3K-Akt-NOS1-CaMKII) to mediate increased SR Ca 2+ leak. Thus, for β-AR activation the cAMP-PKA branch effects inotropy and lusitropy (by effects on Ca 2+ current and SR Ca 2+ -ATPase), this cAMP-Epac-NOS pathway increases pathological diastolic SR Ca 2+ leak. This pathway distinction may allow novel SR Ca 2+ leak therapeutic targeting in treatment of arrhythmias in heart failure that spare the inotropic and lusitropic effects of the PKA branch. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lund, Kaleb C.; Wallace, Kendall B.
2008-01-01
Nucleoside analog reverse transcriptase inhibitors (NRTI) are known to directly inhibit mitochondrial complex I activity as well as various mitochondrial kinases. Recent observations that complex I activity and superoxide production are modulated through cAMP-dependent phosphorylation suggests a mechanism through which NRTIs may affect mitochondrial respiration via kinase-dependent protein phosphorylation. In the current study we examine the potential for NRTIs to inhibit the cAMP-dependent phosphorylation of complex I and the associated NADH:CoQ oxidoreductase activities and rates of superoxide production using HepG2 cells. Phosphoprotein staining of immunocaptured complex I revealed that 3′-azido-3′-deoxythymidine (AZT; 10 and 50 μM), AZT monophosphate (150 μM), and 2′,3′-dideoxycytidine (ddC; 1μM) prevented the phosphorylation of the NDUFB11 subunit of complex I. This was associated with a decrease in complex I activity with AZT and AZT monophosphate only. In the presence of succinate, superoxide production was increased with 2′,3′-dideoxyinosine (ddI; 10 μM) and ddC (1 μM). In the presence of succinate + cAMP AZT showed an inverse dose-dependent effect on superoxide production. None of the NRTIs examined inhibit PKA activity suggesting that the observed effects are due to a direct interaction with complex I. These data demonstrate a direct effect of NRTIs on cAMP-dependent regulation of mitochondrial bioenergetics independent of DNA polymerase-γ activity; in the case of AZT these observations may provide a mechanism for the observed long-term toxicity with this drug. PMID:17904600
Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi
2013-01-01
The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression. PMID:25206732
Pantovic, Aleksandar; Bosnjak, Mihajlo; Arsikin, Katarina; Kosic, Milica; Mandic, Milos; Ristic, Biljana; Tosic, Jelena; Grujicic, Danica; Isakovic, Aleksandra; Micic, Nikola; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica
2017-02-01
We investigated the role of the intracellular energy-sensing AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in the in vitro antiglioma effect of the cyclooxygenase (COX) inhibitor indomethacin. Indomethacin was more potent than COX inhibitors diclofenac, naproxen, and ketoprofen in reducing the viability of U251 human glioma cells. Antiglioma effect of the drug was associated with p21 increase and G 2 M cell cycle arrest, as well as with oxidative stress, mitochondrial depolarization, caspase activation, and the induction of apoptosis. Indomethacin increased the phosphorylation of AMPK and its targets Raptor and acetyl-CoA carboxylase (ACC), and reduced the phosphorylation of mTOR and mTOR complex 1 (mTORC1) substrates p70S6 kinase and PRAS40 (Ser183). AMPK knockdown by RNA interference, as well as the treatment with the mTORC1 activator leucine, prevented indomethacin-mediated mTORC1 inhibition and cytotoxic action, while AMPK activators metformin and AICAR mimicked the effects of the drug. AMPK activation by indomethacin correlated with intracellular ATP depletion and increase in AMP/ATP ratio, and was apparently independent of COX inhibition or the increase in intracellular calcium. Finally, the toxicity of indomethacin towards primary human glioma cells was associated with the activation of AMPK/Raptor/ACC and subsequent suppression of mTORC1/S6K. By demonstrating the involvement of AMPK/mTORC1 pathway in the antiglioma action of indomethacin, our results support its further exploration in glioma therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
17beta-estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression.
Kanda, Naoko; Watanabe, Shinichi
2004-08-01
Estrogen is reported to prevent age-associated epidermal thinning in the skin. We examined if 17beta-estradiol (E2) may enhance the growth of human keratinocytes, focusing on its effects on the expression of cell cycle-regulatory proteins. E2 enhanced proliferation, bromodeoxyuridine incorporation of keratinocytes, and increased the proportion of cells in the S phase. The E2-induced stimulation of proliferation and bromodeoxyuridine incorporation was suppressed by antisense oligonucleotide against cyclin D2, which induces G1 to S phase progression. E2 increased protein and mRNA levels of cyclin D2, and resultantly enhanced assembly and kinase activities of cyclin D2-cyclin-dependent kinases 4 or 6 complexes. E2 enhanced cyclin D2 promoter activity, and the element homologous to cAMP response element (CRE) on the promoter was responsible for the effect. Cyclin D2 expression was enhanced by antiestrogens, ICI 182,780 and 4-hydroxytamoxifen, and membrane-impermeable bovine serum albumin-conjugated E2, indicating the effects via membrane E2-binding sites. E2 increased the enhancer activity of CRE-like element and the amount of phosphorylated cAMP response element binding protein (CREB) binding this element, and the increases were suppressed by H-89, an inhibitor of cAMP-dependent protein kinase A. H-89 also suppressed E2-induced cyclin D2 expression, proliferation, and bromodeoxyuridine incorporation in keratinocytes. Antisense oligonucleotide against G-protein-coupled receptor GPR30 suppressed the E2-induced increases of phosphorylated CREB, cyclin D2 level, proliferation, and bromodeoxyuridine incorporation in keratinocytes. These results suggest that E2 may stimulate the growth of keratinocytes by inducing cyclin D2 expression via CREB phosphorylation by protein kinase A, dependent on cAMP. These effects of E2 may be mediated via cell surface GPR30.
Invited review: Regulation of skeletal muscle GLUT-4 expression by exercise.
Dohm, G Lynis
2002-08-01
The amount of GLUT-4 protein is a primary factor in determining the maximal rate of glucose transport into skeletal muscle. Therefore, it is important that we understand how exercise regulates GLUT-4 expression so that therapeutic strategies can be designed to increase muscle glucose disposal as a treatment for diabetes. Muscle contraction increases the rates of GLUT-4 transcription and translation. Transcriptional control likely requires at least two DNA binding proteins, myocyte enhancer factor-2 and GLUT-4 enhancer factor, which bind to the promoter. Increased GLUT-4 expression may be mediated by the enzyme AMP-activated kinase, which is activated during exercise and has been demonstrated to increase GLUT-4 transcription. Further research needs to be done to investigate whether AMP-activated kinase activates myocyte enhancer factor-2 and GLUT-4 enhancer factor to increase transcription of the GLUT-4 gene.
Zhu, Shenghua; Wang, Junhui; Zhang, Yanbo; Li, Victor; Kong, Jiming; He, Jue; Li, Xin-Min
2014-08-12
The unpredictable chronic mild stress (UCMS) model was developed based upon the stress-diathesis hypothesis of depression. Most effects of UCMS can be reversed by antidepressants, demonstrating a strong predictive validity of this model for depression. However, the mechanisms underlying the effects induced by UCMS remain incompletely understood. Increasing evidence has shown that AMP-activated protein kinase (AMPK) regulates intracellular energy metabolism and is especially important for neurons because neurons are known to have small energy reserves. Abnormalities in the AMPK pathway disturb normal brain functions and synaptic integrity. In the present study, we first investigated the effects of UCMS on a battery of different tests measuring anxiety and depression-like behaviors in female C57BL/6N mice after 4 weeks of UCMS exposure. Stressed mice showed suppressed body weight gain, heightened anxiety, and increased immobility in the forced swim and tail suspension tests. These results are representative of some of the core symptoms of depression. Simultaneously, we observed decrease of synaptic proteins in the cortex of mice subjected to UCMS, which is associated with decreased levels of phosphorylated AMP-activated protein kinase α (AMPKα) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase). Our findings suggest that AMPKα inactivation might be a mechanism by which UCMS causes anxiety/depression-like behaviors in mice. Copyright © 2014 Elsevier B.V. All rights reserved.
Pierce, Jacqueline B; van der Merwe, George; Mangroo, Dev
2014-02-01
The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors.
Pierce, Jacqueline B.; van der Merwe, George
2014-01-01
The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors. PMID:24297441
Rhim, Ji-Heon; Jang, Ik-Soon; Song, Kye-Yong; Ha, Moon-Kyung; Cho, Sung-Chun; Yeo, Eui-Ju; Park, Sang Chul
2008-08-01
This study was designed to elucidate the molecular mechanism underlying lysophosphatidic acid (LPA) and adenylyl cyclase inhibitor SQ22536 (ACI)-induced senescent human diploid fibroblast (HDF) proliferation. Because adenosine monophosphate (AMP)-activated protein kinase (AMPK) is known to inhibit cell proliferation, we examined the phosphorylation status of AMPK and p53 and the expression level of p21(waf1/cip1) after treating HDFs with LPA and ACI. Phosphorylation of AMPKalpha on threonine-172 (p-Thr172-AMPKalpha) increases its catalytic activity but phosphorylation on serine-485/491 (p-Ser485/491-AMPKalpha) reduces the accessibility of the Thr172 phosphorylation site thereby inhibiting its catalytic activity. LPA increased p-Ser485/491-AMPKalpha, presumably by activating cAMP-dependent protein kinase (PKA). However, ACI reduced p-Thr172-AMPKalpha by inhibiting the LKB signaling. Our data demonstrated that both LPA and ACI inhibit the catalytic activity of AMPKalpha and p53 by differentially regulating phosphorylation of AMPKalpha, causing increased senescent cell proliferation. These findings suggest that the proliferation potential of senescent HDFs can be modulated through the regulation of the AMPK signaling pathway.
Structure and Regulation of AMPK.
Kurumbail, Ravi G; Calabrese, Matthew F
AMP-activated protein kinase is a family of heterotrimeric serine/threonine protein kinases that come in twelve different flavors. They serve an essential function in all eukaryotes of conserving cellular energy levels. AMPK complexes are regulated by changes in cellular AMP:ATP or ADP:ATP ratios and by a number of neutraceuticals and some of the widely-used diabetes medications such as metformin and thiazolinonediones. Moreover, biochemical activities of AMPK are tightly regulated by phosphorylation or dephosphorylation by upstream kinases and phosphatases respectively. Efforts are underway in many pharmaceutical companies to discover direct AMPK activators for the treatment of cardiovascular and metabolic diseases such as diabetes, non-alcoholic steatohepatitis (NASH) and diabetic nephropathy. Many advances have been made in the AMPK structural biology arena over the last few years that are beginning to provide detailed molecular insights into the overall topology of these fascinating enzymes and how binding of small molecules elicit subtle conformational changes leading to their activation and protection from dephosphorylation. In the brief review below on AMPK structure and function, we have focused on the recent crystallographic results especially on specific molecular interactions of direct synthetic AMPK activators which lead to biased activation of a sub-family of AMPK isoforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ju Yeon; Park, Seonghee, E-mail: sp@ewha.ac.kr
The intermediate conductance calcium-activated potassium channel (KCa3.1) mediates proliferation of many cell types including fibroblasts, and is a molecular target for intervention in various cell proliferative diseases. Our previous study showed that reduction of KCa3.1 channel expression by lyso-globotriaosylceramide (lyso-Gb3) inhibits differentiation into myofibroblasts and collagen synthesis, which might lead to development of ascending thoracic aortic aneurysm secondary to Fabry disease. However, how lyso-Gb3 downregulates KCa3.1 channel expression is unknown. Therefore, we aimed to investigate the underlying mechanisms of lyso-Gb3-mediated KCa3.1 channel downregulation, focusing on the cAMP signaling pathway. We found that lyso-Gb3 increased the intracellular cAMP concentration by upregulationmore » of adenylyl cyclase 6 and inhibited ERK 1/2 phosphorylation through the protein kinase A (PKA) pathway, leading to the inhibition of KCa3.1 channel synthesis, not the exchange protein directly activated by cAMP (Epac) pathway. Moreover, lyso-Gb3 suppressed expression of class II phosphatidylinositol 3-kinase C2β (PI3KC2β) by PKA activation, which reduces the production of phosphatidylinositol 3-phosphate [PI(3)P], and the reduced membrane surface expression of KCa3.1 channel was recovered by increasing the intracellular levels of PI(3)P. Consequently, our findings that lyso-Gb3 inhibited both KCa3.1 channel synthesis and surface expression by increasing intracellular cAMP, and controlled surface expression through changes in PI3KC2β-mediated PI(3)P production, suggest that modulation of PKA and PI3KC2β activity to control of KCa3.1 channel expression can be an alternative important target to attenuate ascending thoracic aortic aneurysms in Fabry disease. - Highlights: • Lyso-Gb3 causes elevation of intracellular cAMP. • Lyso-Gb3 inhibits the ERK 1/2 phosphorylation through PKA, thereby reducing KCa3.1 channel synthesis. • Lyso-Gb3 reduces PI3KC2β-mediated intracellular PI(3)P production. • Lyso-Gb3 reduces both surface and total expression of the KCa3.1 channel. • Increasing intracellular levels of PI(3)P only recovers the reduced surface expression.« less
Araujo, Carolina Morais; Hermidorff, Milla Marques; Amancio, Gabriela de Cassia Sousa; Lemos, Denise da Silveira; Silva, Marcelo Estáquio; de Assis, Leonardo Vinícius Monteiro; Isoldi, Mauro César
2016-10-01
Aldosterone acts on its target tissue through a classical mechanism or through the rapid pathway through a putative membrane-bound receptor. Our goal here was to better understand the molecular and biochemical rapid mechanisms responsible for aldosterone-induced cardiomyocyte hypertrophy. We have evaluated the hypertrophic process through the levels of ANP, which was confirmed by the analysis of the superficial area of cardiomyocytes. Aldosterone increased the levels of ANP and the cellular area of the cardiomyocytes; spironolactone reduced the aldosterone-increased ANP level and cellular area of cardiomyocytes. Aldosterone or spironolactone alone did not increase the level of cyclic 3',5'-adenosine monophosphate (cAMP), but aldosterone plus spironolactone led to increased cAMP level; the treatment with aldosterone + spironolactone + BAPTA-AM reduced the levels of cAMP. These data suggest that aldosterone-induced cAMP increase is independent of mineralocorticoid receptor (MR) and dependent on Ca(2+). Next, we have evaluated the role of A-kinase anchor proteins (AKAP) in the aldosterone-induced hypertrophic response. We have found that St-Ht31 (AKAP inhibitor) reduced the increased level of ANP which was induced by aldosterone; in addition, we have found an increase on protein kinase C (PKC) and extracellular signal-regulated kinase 5 (ERK5) activity when cells were treated with aldosterone alone, spironolactone alone and with a combination of both. Our data suggest that PKC could be responsible for ERK5 aldosterone-induced phosphorylation. Our study suggests that the aldosterone through its rapid effects promotes a hypertrophic response in cardiomyocytes that is controlled by an AKAP, being dependent on ERK5 and PKC, but not on cAMP/cAMP-dependent protein kinase signaling pathways. Lastly, we provide evidence that the targeting of AKAPs could be relevant in patients with aldosterone-induced cardiac hypertrophy and heart failure.
Li, Kai; Zhang, Haipeng; Qiu, Jianguang; Lin, Yuan; Liang, Jiankai; Xiao, Xiao; Fu, Liwu; Wang, Fang; Cai, Jing; Tan, Yaqian; Zhu, Wenbo; Yin, Wei; Lu, Bingzheng; Xing, Fan; Tang, Lipeng; Yan, Min; Mai, Jialuo; Li, Yuan; Chen, Wenli; Qiu, Pengxin; Su, Xingwen; Gao, Guangping; Tai, Phillip W L; Hu, Jun; Yan, Guangmei
2016-02-01
Oncolytic virotherapy is a novel and emerging treatment modality that uses replication-competent viruses to destroy cancer cells. Although diverse cancer cell types are sensitive to oncolytic viruses, one of the major challenges of oncolytic virotherapy is that the sensitivity to oncolysis ranges among different cancer cell types. Furthermore, the underlying mechanism of action is not fully understood. Here, we report that activation of cyclic adenosine monophosphate (cAMP) signaling significantly sensitizes refractory cancer cells to alphavirus M1 in vitro, in vivo, and ex vivo. We find that activation of the cAMP signaling pathway inhibits M1-induced expression of antiviral factors in refractory cancer cells, leading to prolonged and severe endoplasmic reticulum (ER) stress, and cell apoptosis. We also demonstrate that M1-mediated oncolysis, which is enhanced by cAMP signaling, involves the factor, exchange protein directly activated by cAMP 1 (Epac1), but not the classical cAMP-dependent protein kinase A (PKA). Taken together, cAMP/Epac1 signaling pathway activation inhibits antiviral factors and improves responsiveness of refractory cancer cells to M1-mediated virotherapy.
[Forskolin inhibits spontaneous contraction of gastric antral smooth muscle in rats].
Jiang, Jing-Zhi; Sun, Qian; Xu, Dong-Yuan; Zhang, Mo-Han; Piao, Li-Hua; Cai, Ying-Lan; Jin, Zheng
2013-04-25
The aim of the present study was to investigate the effects of cyclic adenosine monophosphate (cAMP) on rat gastric antral circular smooth muscle function. Forskolin, a direct activator of adenylyl cyclase (AC), was used to observe the influences of cAMP. Multi-channel physiological recorder was used to record spontaneous contraction activity of gastric antral circular muscle from Wistar rats. And ELISA method was used to detect the change of cAMP production in perfusate. The results showed that forskolin concentration-dependently suppressed the amplitude and frequency of the spontaneous contraction of the gastric antral muscle, and lowered the baseline of contraction movement significantly. Forskolin concentration-dependently increased the production of cAMP in the perfusate, which showed a significant negative correlation with the contraction amplitude of gastric antral ring muscle. The inhibitory effect of forskolin on spontaneous contraction activity of rat gastric antral circular muscle could be blocked by cAMP-dependent protein kinase (PKA) inhibitor H-89. These results suggest forskolin increases cAMP production and then activates PKA pathway, resulting in the inhibition of the spontaneous contraction activity of rat gastric antral circular smooth muscle.
Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne; Nikonova, Yulia; Maxwell, Joshua T; Yang, Li-Zhen; Schmidt, Kurt; Edwards, Joshua N; Wakula, Paulina; Groschner, Klaus; Maier, Lars S; Spiess, Joachim; Blatter, Lothar A; Pieske, Burkert; Kockskämper, Jens
2014-09-01
Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling. Copyright © 2014 the American Physiological Society.
Impact of 5'-amp-activated Protein Kinase on Male Gonad and Spermatozoa Functions.
Nguyen, Thi Mong Diep
2017-01-01
As we already know, the male reproductive system requires less energetic investment than the female one. Nevertheless, energy balance is an important feature for spermatozoa production in the testis and for spermatozoa properties after ejaculation. The 5'-AMP-activated protein kinase, AMPK, is a sensor of cell energy, that regulates many metabolic pathways and that has been recently shown to control spermatozoa quality and functions. It is indeed involved in the regulation of spermatozoa quality through its action on the proliferation of testicular somatic cells (Sertoli and Leydig), on spermatozoa motility and acrosome reaction. It also favors spermatozoa quality through the management of lipid peroxidation and antioxidant enzymes. I review here the most recent data available on the roles of AMPK in vertebrate spermatozoa functions.
Salt, Ian P.; Hardie, D. Grahame
2017-01-01
The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last two decades, it has become apparent that AMPK regulates a number of other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function as well as promoting anti-contractile, anti-inflammatory and anti-atherogenic actions in blood vessels. In this review, we will discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. PMID:28546359
Struthers, R S; Vale, W W; Arias, C; Sawchenko, P E; Montminy, M R
1991-04-18
Most of the transcriptional effects of cyclic AMP are mediated by the cAMP response element binding protein (CREB). After activation of cAMP-dependent protein kinase A, the catalytic subunits of this enzyme apparently mediate the phosphorylation and activation of CREB. As cAMP serves as a mitogenic signal for anterior pituitary somatotrophic cells, we investigated whether CREB similarly regulates proliferation of these cells. We prepared transgenic mice expressing a transcriptionally inactive mutant of CREB (CREBM1), which cannot be phosphorylated, in cells of the anterior pituitary. If CREB activity is required for proliferation, the overexpressed mutant protein would effectively compete with wild-type CREB activity and thereby block the response to cAMP. As predicted, the CREBM1 transgenic mice exhibited a dwarf phenotype with atrophied pituitary glands markedly deficient in somatotroph but not other cell types. We conclude that transcriptional activation of CREB is necessary for the normal development of a highly restricted cell type, and that environmental cues, possibly provided by the hypothalamic growth hormone-releasing factor, are necessary for population of the pituitary by somatotrophic cells.
Nie, Jia; Lilley, Brendan N; Pan, Y Albert; Faruque, Omar; Liu, Xiaolei; Zhang, Weiping; Sanes, Joshua R; Han, Xiao; Shi, Yuguang
2013-07-01
Type 2 diabetes is characterized by defective glucose-stimulated insulin secretion (GSIS) from pancreatic β cells, which can be restored by glucagon-like peptide 1 (GLP-1), an incretin hormone commonly used for the treatment of type 2 diabetes. However, molecular mechanisms by which GLP-1 affects glucose responsiveness in islet β cells remain poorly understood. Here we investigated a role of SAD-A, an AMP-activated protein kinase (AMPK)-related kinase, in regulating GSIS in mice with conditional SAD-A deletion. We show that selective deletion of SAD-A in pancreas impaired incretin's effect on GSIS, leading to glucose intolerance. Conversely, overexpression of SAD-A significantly enhanced GSIS and further potentiated GLP-1's effect on GSIS from isolated mouse islets. In support of SAD-A as a mediator of incretin response, SAD-A is expressed exclusively in pancreas and brain, the primary targeting tissues of GLP-1 action. Additionally, SAD-A kinase is activated in response to stimulation by GLP-1 through cyclic AMP (cAMP)/Ca(2+)-dependent signaling pathways in islet β cells. Furthermore, we identified Thr443 as a key autoinhibitory phosphorylation site which mediates SAD-A's effect on incretin response in islet β cells. Consequently, ablation of Thr443 significantly enhanced GLP-1's effect on GSIS from isolated mouse islets. Together, these findings identified SAD-A kinase as a pancreas-specific mediator of incretin response in islet β cells.
Nie, Jia; Lilley, Brendan N.; Pan, Y. Albert; Faruque, Omar; Liu, Xiaolei; Zhang, Weiping; Sanes, Joshua R.
2013-01-01
Type 2 diabetes is characterized by defective glucose-stimulated insulin secretion (GSIS) from pancreatic β cells, which can be restored by glucagon-like peptide 1 (GLP-1), an incretin hormone commonly used for the treatment of type 2 diabetes. However, molecular mechanisms by which GLP-1 affects glucose responsiveness in islet β cells remain poorly understood. Here we investigated a role of SAD-A, an AMP-activated protein kinase (AMPK)-related kinase, in regulating GSIS in mice with conditional SAD-A deletion. We show that selective deletion of SAD-A in pancreas impaired incretin's effect on GSIS, leading to glucose intolerance. Conversely, overexpression of SAD-A significantly enhanced GSIS and further potentiated GLP-1's effect on GSIS from isolated mouse islets. In support of SAD-A as a mediator of incretin response, SAD-A is expressed exclusively in pancreas and brain, the primary targeting tissues of GLP-1 action. Additionally, SAD-A kinase is activated in response to stimulation by GLP-1 through cyclic AMP (cAMP)/Ca2+-dependent signaling pathways in islet β cells. Furthermore, we identified Thr443 as a key autoinhibitory phosphorylation site which mediates SAD-A's effect on incretin response in islet β cells. Consequently, ablation of Thr443 significantly enhanced GLP-1's effect on GSIS from isolated mouse islets. Together, these findings identified SAD-A kinase as a pancreas-specific mediator of incretin response in islet β cells. PMID:23629625
Wang, Yunlong; Zhang, Aihua; Lu, Shulai; Pan, Xinting; Jia, Dongmei; Yu, Wenjuan; Jiang, Yanxia; Li, Xinde; Wang, Xuefeng; Zhang, Jidong; Hou, Lin; Sun, Yunbo
2014-11-01
Many studies have shown that LPS mainly activates four signal transduction pathways to induce inflammation, namely the p38, ERK1/2, JNK and IKK/NF-κB pathways. Studies have demonstrated that 5'-AMP-induced hypothermia (AIH) exhibits high anti-inflammatory capabilities. In this study, we explore that how AIH inhibits the inflammatory response. Wistar rats were divided into five groups: a control group, an LPS group, a 5'-AMP pre-treatment group, a 5'-AMP post-treatment group and a 5'-AMP group. For each group, plasma and lung were collected from the rats at 6h and 12h after LPS injection. ELISA assays were used to detect plasma levels of CD14, CRP and MCP-1. Inflammatory pathway activation and TLR4 expression were assayed separately by Western blot analysis and immunohistochemistry. Our results showed that rats treated with AIH either before or after an LPS-challenge had a significant decrease in plasma levels of CD14, CRP and TLR4 compared with rats that received LPS only. Western blot analysis showed that AIH inhibited the activation of extracellular signal-regulated kinases (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) and NF-κB in inflammatory rats. Our study concluded that AIH attenuated LPS-induced inflammation mainly by inhibiting activation on the ERK1/2, p38, JNK and NF-κB signaling pathways. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Weibo; Han, Wan Fang; Landree, Leslie E; Thupari, Jagan N; Pinn, Michael L; Bililign, Tsion; Kim, Eun Kyoung; Vadlamudi, Aravinda; Medghalchi, Susan M; El Meskini, Rajaa; Ronnett, Gabriele V; Townsend, Craig A; Kuhajda, Francis P
2007-04-01
Fatty acid synthase (FAS), the enzyme responsible for the de novo synthesis of fatty acids, is highly expressed in ovarian cancers and most common human carcinomas. Inhibition of FAS and activation of AMP-activated protein kinase (AMPK) have been shown to be cytotoxic to human cancer cells in vitro and in vivo. In this report, we explore the cytotoxic mechanism of action of FAS inhibition and show that C93, a synthetic FAS inhibitor, increases the AMP/ATP ratio, activating AMPK in SKOV3 human ovarian cancer cells, which leads to cytotoxicity. As a physiologic consequence of AMPK activation, acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid synthesis, was phosphorylated and inhibited whereas glucose oxidation was increased. Despite these attempts to conserve energy, the AMP/ATP ratio increased with worsening cellular redox status. Pretreatment of SKOV3 cells with compound C, an AMPK inhibitor, substantially rescued the cells from C93 cytotoxicity, indicating its dependence on AMPK activation. 5-(Tetradecyloxy)-2-furoic acid, an ACC inhibitor, did not activate AMPK despite inhibiting fatty acid synthesis pathway activity and was not significantly cytotoxic to SKOV3 cells. This indicates that substrate accumulation from FAS inhibition triggering AMPK activation, not end-product depletion of fatty acids, is likely responsible for AMPK activation. C93 also exhibited significant antitumor activity and apoptosis against SKOV3 xenografts in athymic mice without significant weight loss or cytotoxicity to proliferating cellular compartments such as bone marrow, gastrointestinal tract, or skin. Thus, pharmacologic FAS inhibition selectively activates AMPK in ovarian cancer cells, inducing cytotoxicity while sparing most normal human tissues from the pleiotropic effects of AMPK activation.
Huang, Wen-Chin; Xie, Zhihui; Konaka, Hiroyuki; Sodek, Jaro; Zhau, Haiyen E; Chung, Leland W K
2005-03-15
Osteocalcin and bone sialoprotein are the most abundant noncollagenous bone matrix proteins expressed by osteoblasts. Surprisingly, osteocalcin and bone sialoprotein are also expressed by malignant but not normal prostate epithelial cells. The purpose of this study is to investigate how osteocalcin and bone sialoprotein expression is regulated in prostate cancer cells. Our investigation revealed that (a) human osteocalcin and bone sialoprotein promoter activities in an androgen-independent prostate cancer cell line of LNCaP lineage, C4-2B, were markedly enhanced 7- to 12-fold in a concentration-dependent manner by conditioned medium collected from prostate cancer and bone stromal cells. (b) Deletion analysis of human osteocalcin and bone sialoprotein promoter regions identified cyclic AMP (cAMP)-responsive elements (CRE) as the critical determinants for conditioned medium-mediated osteocalcin and bone sialoprotein gene expression in prostate cancer cells. Consistent with these results, the protein kinase A (PKA) pathway activators forskolin and dibutyryl cAMP and the PKA pathway inhibitor H-89, respectively, increased or repressed human osteocalcin and bone sialoprotein promoter activities. (c) Electrophoretic mobility shift assay showed that conditioned medium-mediated stimulation of human osteocalcin and bone sialoprotein promoter activities occurs through increased interaction between CRE and CRE-binding protein. (d) Conditioned medium was found to induce human osteocalcin and bone sialoprotein promoter activities via increased CRE/CRE-binding protein interaction in a cell background-dependent manner, with marked stimulation in selected prostate cancer but not bone stromal cells. Collectively, these results suggest that osteocalcin and bone sialoprotein expression is coordinated and regulated through cAMP-dependent PKA signaling, which may define the molecular basis of the osteomimicry exhibited by prostate cancer cells.
MC1R and cAMP signaling inhibit cdc25B activity and delay cell cycle progression in melanoma cells
Lyons, Jesse; Bastian, Boris C.; McCormick, Frank
2013-01-01
The melanocortin 1 receptor (MC1R) mediates the tanning response through induction of cAMP and downstream pigmentary enzymes. Diminished function alleles of MC1R are associated with decreased tanning and increased melanoma risk, which has been attributed to increased rates of mutation. We have found that MC1R or cAMP signaling also directly decreases proliferation in melanoma cell lines. MC1R overexpression, treatment with the MC1R ligand, or treatment with small-molecule activators of cAMP signaling causes delayed progression from G2 into mitosis. This delay is caused by phosphorylation and inhibition of cdc25B, a cyclin dependent kinase 1-activating phosphatase, and is rescued by expression of a cdc25B mutant that cannot be phosphorylated at the serine 323 residue. These results show that MC1R and cAMP signaling can directly inhibit melanoma growth through regulation of the G2/M checkpoint. PMID:23908401
The cAMP analogs have potent anti-proliferative effects on medullary thyroid cancer cell lines.
Dicitore, Alessandra; Grassi, Elisa Stellaria; Caraglia, Michele; Borghi, Maria Orietta; Gaudenzi, Germano; Hofland, Leo J; Persani, Luca; Vitale, Giovanni
2016-01-01
The oncogenic activation of the rearranged during transfection (RET) proto-oncogene has a main role in the pathogenesis of medullary thyroid cancer (MTC). Several lines of evidence suggest that RET function could be influenced by cyclic AMP (cAMP)-dependent protein kinase A (PKA) activity. We evaluated the in vitro anti-tumor activity of 8-chloroadenosine-3',5'-cyclic monophosphate (8-Cl-cAMP) and PKA type I-selective cAMP analogs [equimolar combination of the 8-piperidinoadenosine-3',5'-cyclic monophosphate (8-PIP-cAMP) and 8-hexylaminoadenosine-3',5'-cyclic monophosphate (8-HA-cAMP) in MTC cell lines (TT and MZ-CRC-1)]. 8-Cl-cAMP and the PKA I-selective cAMP analogs showed a potent anti-proliferative effect in both cell lines. In detail, 8-Cl-cAMP blocked significantly the transition of TT cell population from G2/M to G0/G1 phase and from G0/G1 to S phase and of MZ-CRC-1 cells from G0/G1 to S phase. Moreover, 8-Cl-cAMP induced apoptosis in both cell lines, as demonstrated by FACS analysis for annexin V-FITC/propidium iodide, the activation of caspase-3 and PARP cleavage. On the other hand, the only effect induced by PKA I-selective cAMP analogs was a delay in G0/G1-S and S-G2/M progression in TT and MZ-CRC-1 cells, respectively. In conclusion, these data demonstrate that cAMP analogs, particularly 8-Cl-cAMP, significantly suppress in vitro MTC proliferation and provide rationale for a potential clinical use of cAMP analogs in the treatment of advanced MTC.
AMP-activated protein kinase and type 2 diabetes.
Musi, Nicolas
2006-01-01
AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge, being activated in situations of high-energy phosphate depletion. Upon activation, AMPK functions to restore cellular ATP by modifying diverse metabolic pathways. AMPK is activated robustly by skeletal muscle contraction and myocardial ischemia, and may be involved in the stimulation of glucose transport and fatty acid oxidation produced by these stimuli. In liver, activation of AMPK results in enhanced fatty acid oxidation and in decreased production of glucose, cholesterol, and triglycerides. Recent studies have shown that AMPK is the cellular mediator for many of the metabolic effects of drugs such as metformin and thiazolidinediones, as well as the insulin sensitizing adipocytokines leptin and adiponectin. These data, along with evidence from studies showing that chemical activation of AMPK in vivo with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) improves blood glucose concentrations and lipid profiles, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes and other metabolic disorders.
Diosgenin inhibits superoxide generation in FMLP-activated mouse neutrophils via multiple pathways.
Lin, Y; Jia, R; Liu, Y; Gao, Y; Zeng, X; Kou, J; Yu, B
2014-12-01
Diosgenin possesses anti-inflammatory and anticancer properties. Activated neutrophils produce high concentrations of the superoxide anion which is involved in the pathophysiology of inflammation-related diseases and cancer. In the present study, the inhibitory effect and possible mechanisms of diosgenin on superoxide generation were investigated in mouse bone marrow neutrophils. Diosgenin potently and concentration-dependently inhibited the extracellular and intracellular superoxide anion generation in Formyl-Met-Leu-Phe (FMLP)- activated neutrophils, with IC50 values of 0.50 ± 0.08 μM and 0.66 ± 0.13 μM, respectively. Such inhibition was not mediated by scavenging the superoxide anion or by a cytotoxic effect. Diosgenin inhibited the phosphorylation of p47phox and membrane translocation of p47phox and p67phox, and thus blocking the assembly of nicotinamide adenine dinucleotide phosphate oxidase. Moreover, cellular cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) expression were also effectively increased by diosgenin. It attenuated FMLP-induced increase of phosphorylation of cytosolic phospholipase A (cPLA2), p21-activated kinase (PAK), Akt, p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK1/2), and c-Jun N-terminal kinase (JNK). Our data indicate that diosgenin exhibits inhibitory effects on superoxide anion production through the blockade of cAMP, PKA, cPLA2, PAK, Akt and MAPKs signaling pathways. The results may explain the clinical implications of diosgenin in the treatment of inflammation-related disorders.
More, Kunal R.; Siddiqui, Faiza Amber; Pachikara, Niseema; Ramdani, Ghania; Langsley, Gordon; Chitnis, Chetan E.
2014-01-01
All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria. PMID:25522250
Bimodal antagonism of PKA signalling by ARHGAP36.
Eccles, Rebecca L; Czajkowski, Maciej T; Barth, Carolin; Müller, Paul Markus; McShane, Erik; Grunwald, Stephan; Beaudette, Patrick; Mecklenburg, Nora; Volkmer, Rudolf; Zühlke, Kerstin; Dittmar, Gunnar; Selbach, Matthias; Hammes, Annette; Daumke, Oliver; Klussmann, Enno; Urbé, Sylvie; Rocks, Oliver
2016-10-07
Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease.
Bimodal antagonism of PKA signalling by ARHGAP36
Eccles, Rebecca L.; Czajkowski, Maciej T.; Barth, Carolin; Müller, Paul Markus; McShane, Erik; Grunwald, Stephan; Beaudette, Patrick; Mecklenburg, Nora; Volkmer, Rudolf; Zühlke, Kerstin; Dittmar, Gunnar; Selbach, Matthias; Hammes, Annette; Daumke, Oliver; Klussmann, Enno; Urbé, Sylvie; Rocks, Oliver
2016-01-01
Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease. PMID:27713425
Tunable regulation of CREB DNA binding activity couples genotoxic stress response and metabolism
Kim, Sang Hwa; Trinh, Anthony T.; Larsen, Michele Campaigne; Mastrocola, Adam S.; Jefcoate, Colin R.; Bushel, Pierre R.; Tibbetts, Randal S.
2016-01-01
cAMP response element binding protein (CREB) is a key regulator of glucose metabolism and synaptic plasticity that is canonically regulated through recruitment of transcriptional coactivators. Here we show that phosphorylation of CREB on a conserved cluster of Ser residues (the ATM/CK cluster) by the DNA damage-activated protein kinase ataxia-telangiectasia-mutated (ATM) and casein kinase1 (CK1) and casein kinase2 (CK2) positively and negatively regulates CREB-mediated transcription in a signal dependent manner. In response to genotoxic stress, phosphorylation of the ATM/CK cluster inhibited CREB-mediated gene expression, DNA binding activity and chromatin occupancy proportional to the number of modified Ser residues. Paradoxically, substoichiometric, ATM-independent, phosphorylation of the ATM/CK cluster potentiated bursts in CREB-mediated transcription by promoting recruitment of the CREB coactivator, cAMP-regulated transcriptional coactivators (CRTC2). Livers from mice expressing a non-phosphorylatable CREB allele failed to attenuate gluconeogenic genes in response to DNA damage or fully activate the same genes in response to glucagon. We propose that phosphorylation-dependent regulation of DNA binding activity evolved as a tunable mechanism to control CREB transcriptional output and promote metabolic homeostasis in response to rapidly changing environmental conditions. PMID:27431323
Reynolds, Anna R; Saunders, Meredith A; Berry, Jennifer N; Sharrett-Field, Lynda J; Winchester, Sydney; Prendergast, Mark A
2017-11-01
Chronic, intermittent ethanol (CIE) exposure is known to produce neuroadaptive alterations in excitatory neurotransmission that contribute to the development of dependence. Although activation of protein kinases (e.g., cyclic AMP [cAMP]-dependent protein kinase) is implicated in the synaptic trafficking of these receptors following CIE exposure, the functional consequences of these effects are yet to be fully understood. The present study sought to delineate the influence of protein kinase in regulating cytotoxicity following CIE exposure, as well as to examine the relative roles of ethanol exposure and ethanol withdrawal (EWD) in promoting these effects. Rat hippocampal explants were exposed to a developmental model of CIE with or without co-application of broad-spectrum protein kinase inhibitor KT-5720 (1 μM) either during ethanol exposure or EWD. Hippocampal cytotoxicity was assessed via immunofluorescence (IF) of neuron-specific nuclear protein (NeuN) with thionine staining of Nissl bodies to confirm IF findings. Concomitant application of ethanol and KT-5720 restored the loss of NeuN/Fox-3 IF in pyramidal CA1 and granule DG cell layers produced by CIE, but there was no restoration in CA3. Application of KT-5720 during EWD failed to significantly alter levels of NeuN IF, implying that ethanol exposure activates protein kinases that, in part, mediate the effects of EWD. KT-5720 application during EWD also restored thionine staining in CA1, suggesting kinase regulation of both neurons and non-neuronal cells. These data demonstrate that CIE exposure alters protein kinase activity to promote ethanol withdrawal-associated loss of NeuN/Fox-3 and highlight the influence of kinase signaling on distinct cell types in the developing hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.
Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets.
Herfindal, Lars; Nygaard, Gyrid; Kopperud, Reidun; Krakstad, Camilla; Døskeland, Stein Ove; Selheim, Frode
2013-08-09
The primary target of the cAMP analogue 8-pCPT-2'-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2'-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2'-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2'O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2'-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2'-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2'-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2'-O-Me-cAMP did not affect platelet activation at similar concentrations. Copyright © 2013 Elsevier Inc. All rights reserved.
Sun, Tong; Kim, Bohye; Kim, Lou W.
2013-01-01
Glycogen Synthase Kinase 3 (GSK3) is a multifunctional kinase involved in diverse cellular activities such as metabolism, differentiation, and morphogenesis. Recent studies showed that GSK3 in Dictyostelium affects chemotaxis via TorC2 pathway and Daydreamer. Now we report that GSK3 affects PI3K membrane localization, of which mechanism has remained to be fully understood in Dictyostelium. The membrane localization domain (LD) of Phosphatidylinositol-3-kinase 1 (PI3K1) is phosphorylated on serine residues in a GSK3 dependent mechanism and PI3K1-LD exhibited biased membrane localization in gsk3− cells compared to the wild type cells. Furthermore, multiple GSK3-phosphorylation consensus sites exist in PI3K1-LD, of which phosphomimetic substitutions restored cAMP induced transient membrane localization of PI3K1-LD in gsk3− cells. Serine to alanine substitution mutants of PI3K1-LD, in contrast, displayed constitutive membrane localization in wild type cells. Biochemical analysis revealed that GSK3 dependent serine phosphorylation of PI3K1-LD is constitutive during the course of cAMP stimulation. Together, these data suggest that GSK3 dependent serine phosphorylation is a prerequisite for chemoattractant cAMP induced PI3K membrane localization. PMID:24102085
Sirt2 Deacetylase Is a Novel AKT Binding Partner Critical for AKT Activation by Insulin*
Ramakrishnan, Gopalakrishnan; Davaakhuu, Gantulga; Kaplun, Ludmila; Chung, Wen-Cheng; Rana, Ajay; Atfi, Azeddine; Miele, Lucio; Tzivion, Guri
2014-01-01
AKT/PKB kinases transmit insulin and growth factor signals downstream of phosphatidylinositol 3-kinase (PI3K). AKT activation involves phosphorylation at two residues, Thr308 and Ser473, mediated by PDK1 and the mammalian target of rapamycin complex 2 (mTORC2), respectively. Impaired AKT activation is a key factor in metabolic disorders involving insulin resistance, whereas hyperactivation of AKT is linked to cancer pathogenesis. Here, we identify the cytoplasmic NAD+-dependent deacetylase, Sirt2, as a novel AKT interactor, required for optimal AKT activation. Pharmacological inhibition or genetic down-regulation of Sirt2 diminished AKT activation in insulin and growth factor-responsive cells, whereas Sirt2 overexpression enhanced the activation of AKT and its downstream targets. AKT was prebound with Sirt2 in serum or glucose-deprived cells, and the complex dissociated following insulin treatment. The binding was mediated by the pleckstrin homology and the kinase domains of AKT and was dependent on AMP-activated kinase. This regulation involved a novel AMP-activated kinase-dependent Sirt2 phosphorylation at Thr101. In cells with constitutive PI3K activation, we found that AKT also associated with a nuclear sirtuin, Sirt1; however, inhibition of PI3K resulted in dissociation from Sirt1 and increased association with Sirt2. Sirt1 and Sirt2 inhibitors additively inhibited the constitutive AKT activity in these cells. Our results suggest potential usefulness of Sirt1 and Sirt2 inhibitors in the treatment of cancer cells with up-regulated PI3K activity and of Sirt2 activators in the treatment of insulin-resistant metabolic disorders. PMID:24446434
Schachter, J B; Wolfe, B B
1992-03-01
The activation of adenosine A1 receptors in DDT1-MF2 smooth muscle cells resulted in both the inhibition of agonist-stimulated cAMP accumulation and the potentiation of norepinephrine-stimulated phosphoinositide hydrolysis. Pharmacological analysis indicated the involvement of an A1 adenosine receptor subtype in both of these responses. In the absence of norepinephrine, the activation of the adenosine receptor did not directly stimulate phosphoinositide hydrolysis. The adenosine receptor-mediated augmentation of norepinephrine-stimulated phosphoinositide hydrolysis was pertussis toxin sensitive and was selectively antagonized by agents that mimicked cAMP (8-bromo-cAMP) or raised cellular cAMP levels (forskolin). This initially suggested that cAMP might partially regulate the magnitude of the phospholipase C response to norepinephrine and that adenosine agonists might enhance the phospholipase C response by reducing cAMP levels. However, neither the reduction of cellular cAMP levels by other agents nor the inhibition of cAMP-dependent protein kinase was sufficient to replicate the action of adenosine receptor activation on phosphoinositide hydrolysis. Thus, in the presence of norepinephrine, adenosine receptor agonists appear to stimulate phosphoinositide hydrolysis via a pathway that is separate from, but dependent upon, that of norepinephrine. This second pathway can be distinguished from that which is stimulated by norepinephrine on the basis of its sensitivity to inhibition by both cAMP and pertussis toxin.
Collins, Qu Fan; Liu, Hui-Yu; Pi, Jingbo; Liu, Zhenqi; Quon, Michael J.; Cao, Wenhong
2008-01-01
Epigallocatechin-3-gallate (EGCG), a main catechin of green tea, has been suggested to inhibit hepatic gluconeogenesis. However, the exact role and related mechanism have not been established. In this study, we examined the role of EGCG in hepatic gluconeogenesis at concentrations that are reachable by ingestion of pure EGCG or green tea, and are not toxic to hepatocytes. Our results show in isolated hepatocytes that EGCG at relatively low concentrations (≤ 1 μM) inhibited glucose production via gluconeogenesis and expression of key gluconeogenic genes. EGCG was not toxic at these concentrations while demonstrating significant cytotoxicity at 10 μM and higher concentrations. EGCG at 1 μM or lower concentrations effective in suppressing hepatic gluconeogenesis did not activate the insulin signaling pathway, but activated 5′-AMP-activated protein kinase (AMPK). The EGCG suppression of hepatic gluconeogenesis was prevented by blockade of AMPK activity. In defining the mechanism by which EGCG activates AMPK, we found that the EGCG activation of AMPK was mediated by the Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). Furthermore, our results show that the EGCG activation of AMPK and EGCG suppression of hepatic gluconeogenesis were both dependent on production of reactive oxygen species (ROS), which was a known activator of CaMKK. Together, our results demonstrate an inhibitory role for EGCG in hepatic gluconeogenesis and shed new light on the mechanism by which EGCG suppresses gluconeogenesis. PMID:17724029
Tsai, Yung-Fong; Yu, Huang-Ping; Chung, Pei-Jen; Leu, Yann-Lii; Kuo, Liang-Mou; Chen, Chun-Yu; Hwang, Tsong-Long
2015-12-01
Oxidative stress caused by neutrophils is an important pathogenic factor in trauma/hemorrhagic (T/H)-induced acute lung injury (ALI). Osthol, a natural coumarin found in traditional medicinal plants, has therapeutic potential in various diseases. However, the pharmacological effects of osthol in human neutrophils and its molecular mechanism of action remain elusive. In this study, our data showed that osthol potently inhibited the production of superoxide anion (O2(•-)) and reactive oxidants derived therefrom as well as expression of CD11b in N-formylmethionylleucylphenylalanine (FMLP)-activated human neutrophils. However, osthol inhibited neutrophil degranulation only slightly and it failed to inhibit the activity of subcellular NADPH oxidase. FMLP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) was inhibited by osthol. Notably, osthol increased the cAMP concentration and protein kinase A (PKA) activity in activated neutrophils. PKA inhibitors reversed the inhibitory effects of osthol, suggesting that these are mediated through cAMP/PKA-dependent inhibition of ERK and Akt activation. Furthermore, the activity of cAMP-specific phosphodiesterase (PDE) 4, but not PDE3 or PDE7, was significantly reduced by osthol. In addition, osthol reduced myeloperoxidase activity and pulmonary edema in rats subjected to T/H shock. In conclusion, our data suggest that osthol has effective anti-inflammatory activity in human neutrophils through the suppression of PDE4 and protects significantly against T/H shock-induced ALI in rats. Osthol may have potential for future clinical application as a novel adjunct therapy to treat lung inflammation caused by adverse circulatory conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
AMP-activated protein kinase: Role in metabolism and therapeutic implications.
Schimmack, Greg; Defronzo, Ralph A; Musi, Nicolas
2006-11-01
AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge which becomes activated in situations of energy consumption. AMPK functions to restore cellular ATP levels by modifying diverse metabolic and cellular pathways. In the skeletal muscle, AMPK is activated during exercise and is involved in contraction-stimulated glucose transport and fatty acid oxidation. In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. In the liver, AMPK inhibits the production of glucose, cholesterol and triglycerides and stimulates fatty acid oxidation. Recent studies have shown that AMPK is involved in the mechanism of action of metformin and thiazolidinediones, and the adipocytokines leptin and adiponectin. These data, along with evidence that pharmacological activation of AMPK in vivo improves blood glucose homeostasis, cholesterol concentrations and blood pressure in insulin-resistant rodents, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes, ischaemic heart disease and other metabolic diseases.
Zhang, Liang; Zhang, Song; Maezawa, Izumi; Trushin, Sergey; Minhas, Paras; Pinto, Matthew; Jin, Lee-Way; Prasain, Keshar; Nguyen, Thi D.T.; Yamazaki, Yu; Kanekiyo, Takahisa; Bu, Guojun; Gateno, Benjamin; Chang, Kyeong-Ok; Nath, Karl A.; Nemutlu, Emirhan; Dzeja, Petras; Pang, Yuan-Ping; Hua, Duy H.; Trushina, Eugenia
2015-01-01
Development of therapeutic strategies to prevent Alzheimer's disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3β activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest that metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD. PMID:26086035
cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Rajesh; Xiang, Wenpei; Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
2012-06-22
Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1more » (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF + ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.« less
Zhang, Lingzhi; Insel, Paul A
2004-05-14
The mechanisms by which cAMP mediates apoptosis are not well understood. In the current studies, we used wild-type (WT) S49 T-lymphoma cells and the kin(-) variant (which lacks protein kinase A (PKA)) to examine cAMP/PKA-mediated apoptosis. The cAMP analog, 8-CPT-cAMP, increased phosphorylation of the cAMP response element-binding protein (CREB), activated caspase-3, and induced apoptosis in WT but not in kin(-) S49 cells. Using an array of 96 apoptosis-related genes, we found that treatment of WT cells with 8-CPT-cAMP for 24 h induced expression of mRNA for the pro-apoptotic gene, Bim. Real-time PCR analysis indicated that 8-CPT-cAMP increased Bim RNA in WT cells in <2 h and maintained this increase for >24 h. Bim protein expression increased in WT but not kin(-) cells treated with 8-CPT-cAMP or with the beta-adrenergic receptor agonist isoproterenol. Both apoptosis and Bim expression were reversible with removal of 8-CPT-cAMP after <6 h. The glucocorticoid dexamethasone also promoted apoptosis and Bim expression in S49 cells. In contrast, both UV light and anti-mouse Fas monoclonal antibody promoted apoptosis in S49 cells but did not induce Bim expression. 8-CPT-cAMP also induced Bim expression and enhanced dexamethasone-promoted apoptosis in human T-cell leukemia CEM-C7-14 (glucocorticoid-sensitive) and CEM-C1-15 (glucocorticoid-resistant) cells; increased Bim expression in 8-CPT-cAMP-treated CEM-C1-15 cells correlated with conversion of the cells from resistance to sensitivity to glucocorticoid-promoted apoptosis. Induction of Bim appears to be a key event in cAMP-promoted apoptosis in both murine and human T-cell lymphoma and leukemia cells and thus appears to be a convergence point for the killing of such cells by glucocorticoids and agents that elevate cAMP.
Wang, Ying; Du, Zhiyan; Liu, Daihua; Guo, Hongxia; Shen, Jingkang; Peng, Hongli
2012-01-01
AMP-activated protein kinase (AMPK) plays an important role in mediating energy metabolism and is controlled mainly by two upstream kinases, LKB1 or Ca2+/calmodulin-dependent protein kinase kinase-β (CaMKKβ). Previously, we found that baicalin, one of the major flavonoids in a traditional Chinese herb medicine, Scutellaria baicalensis, protects against the development of hepatic steatosis in rats feeding with a high-fat diet by the activation of AMPK, but, the underlying mechanism for AMPK activation is unknown. Here we show that in two LKB1-deficient cells, HeLa and A549 cells, baicalin activates AMPK by α Thr-172 phosphorylation and subsequent phosphorylation of its downstream target, acetyl CoA carboxylase, at Ser-79, to a similar degree as does in HepG2 cells (that express LKB1). Pharmacologic inhibition of CaMKKβ by its selective inhibitor STO-609 markedly inhibits baicalin-induced AMPK activation in both HeLa and HepG2 cells, indicating that CaMKKβ is the responsible AMPK kinase. We also show that treatment of baicalin causes a larger increase in intracellular Ca2+ concentration ([Ca2+]i), although the maximal level of [Ca2+]i is lower in HepG2 cells compared to HeLa cells. Chelation of intracellular free Ca2+ by EDTA and EGTA, or depletion of intracellular Ca2+ stores by the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin abrogates baicalin-induced activation of AMPK in HeLa cells. Neither cellular ATP nor the production of reactive oxygen species is altered by baicalin. Finally, in HeLa cells, baicalin treatment no longer decreases intracellular lipid accumulation caused by oleic acid after inhibition of CaMKKβ by STO-609. These results demonstrate that a potential Ca2+/CaMKKβ dependent pathway is involved in the activation of AMPK by baicalin and suggest that CaMKKβ likely acts as an upstream kinase of AMPK in response to baicalin. PMID:23110126
Li, Weidong; Hua, Baojin; Saud, Shakir M.; Lin, Hongsheng; Hou, Wei; Matter, Matthias S.; Jia, Libin; Colburn, Nancy H.; Young, Matthew R.
2015-01-01
Colorectal cancer, a leading cause of cancer death, has been linked to inflammation and obesity. Berberine, an isoquinoline alkaloid, possesses anti-inflammatory, anti-diabetes and anti-tumor properties. In the azoxymethane initiated and dextran sulfate sodium (AOM/DSS) promoted colorectal carcinogenesis mouse model, berberine treated mice showed a 60% reduction in tumor number (P=0.009), a 48% reduction in tumors <2 mm, (P=0.05); 94% reduction in tumors 2-4 mm, (P=0.001) and 100% reduction in tumors >4 mm (P=0.02) compared to vehicle treated mice. Berberine also decreased AOM/DSS induced Ki-67 and COX-2 expression. In vitro analysis showed that in addition to its anti-proliferation activity, berberine also induced apoptosis in colorectal cancer cell lines. Berberine activated AMP-activated protein kinase (AMPK), a major regulator of metabolic pathways, and inhibited mammalian target of rapamycin (mTOR), a downstream target of AMPK. Furthermore, 4E-binding protein-1 and p70 ribosomal S6 kinases, downstream targets of mTOR, were down regulated by berberine treatment. Berberine did not affect Liver kinase B1 (LKB1) activity or the mitogen-activated protein kinase pathway. Berberine inhibited Nuclear Factor kappa-B (NF-κB) activity, reduced the expression of cyclin D1 and survivin, induced phosphorylation of p53 and increased caspase-3 cleavage in vitro. Berberine inhibition of mTOR activity and p53 phosphorylation was found to be AMPK dependent, while inhibition NF-κB was AMPK independent. In vivo, berberine also activated AMPK, inhibited mTOR and p65 phosphorylation and activated caspase-3 cleavage. Our data suggests that berberine suppresses colon epithelial proliferation and tumorigenesis via AMPK dependent inhibition of mTOR activity and AMPK independent inhibition of NF-κB. PMID:24838344
Cellular Responses to Beta Blocker Exposures in Marine Bivalves
β blockers are prescription drugs used for medical treatment of hypertension and arrhythmias. They prevent activation of adenylate cyclase and increases in blood pressure by limiting cAMP production and protein kinase A activation. After being taken therapeutically, β b...
OZAWA, Eijiro
2011-01-01
It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10−7–10−4 M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3′,5′-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction. PMID:21986313
Endurance Factors Improve Hippocampal Neurogenesis and Spatial Memory in Mice
ERIC Educational Resources Information Center
Kobilo, Tali; Yuan, Chunyan; van Praag, Henriette
2011-01-01
Physical activity improves learning and hippocampal neurogenesis. It is unknown whether compounds that increase endurance in muscle also enhance cognition. We investigated the effects of endurance factors, peroxisome proliferator-activated receptor [delta] agonist GW501516 and AICAR, activator of AMP-activated protein kinase on memory and…
Woollhead, A M; Sivagnanasundaram, J; Kalsi, K K; Pucovsky, V; Pellatt, L J; Scott, J W; Mustard, K J; Hardie, D G; Baines, D L
2007-08-01
AMP-activated protein kinase (AMPK) is activated by metformin, phenformin, and the AMP mimetic, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). We have completed an extensive study of the pharmacological effects of these drugs on AMPK activation, adenine nucleotide concentration, transepithelial amiloride-sensitive (I(amiloride)) and ouabain-sensitive basolateral (I(ouabain)) short circuit current in H441 lung epithelial cells. H441 cells were grown on permeable filters at air interface. I(amiloride), I(ouabain) and transepithelial resistance were measured in Ussing chambers. AMPK activity was measured as the amount of radiolabelled phosphate transferred to the SAMS peptide. Adenine nucleotide concentration was analysed by reverse phase HPLC and NAD(P)H autofluorescence was measured using confocal microscopy. Phenformin, AICAR and metformin increased AMPK (alpha1) activity and decreased I(amiloride). The AMPK inhibitor Compound C prevented the action of metformin and AICAR but not phenformin. Phenformin and AICAR decreased I(ouabain) across H441 monolayers and decreased monolayer resistance. The decrease in I(amiloride) was closely related to I(ouabain) with phenformin, but not in AICAR treated monolayers. Metformin and phenformin increased the cellular AMP:ATP ratio but only phenformin and AICAR decreased cellular ATP. Activation of alpha1-AMPK is associated with inhibition of apical amiloride-sensitive Na(+) channels (ENaC), which has important implications for the clinical use of metformin. Additional pharmacological effects evoked by AICAR and phenformin on I(ouabain), with potential secondary effects on apical Na+ conductance, ENaC activity and monolayer resistance, have important consequences for their use as pharmacological activators of AMPK in cell systems where Na+K+ATPase is an important component.
Woollhead, A M; Sivagnanasundaram, J; Kalsi, K K; Pucovsky, V; Pellatt, L J; Scott, J W; Mustard, K J; Hardie, D G; Baines, D L
2007-01-01
Background and purpose: AMP-activated protein kinase (AMPK) is activated by metformin, phenformin, and the AMP mimetic, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). We have completed an extensive study of the pharmacological effects of these drugs on AMPK activation, adenine nucleotide concentration, transepithelial amiloride-sensitive (Iamiloride) and ouabain-sensitive basolateral (Iouabain) short circuit current in H441 lung epithelial cells. Experimental approach: H441 cells were grown on permeable filters at air interface. Iamiloride, Iouabain and transepithelial resistance were measured in Ussing chambers. AMPK activity was measured as the amount of radiolabelled phosphate transferred to the SAMS peptide. Adenine nucleotide concentration was analysed by reverse phase HPLC and NAD(P)H autofluorescence was measured using confocal microscopy. Key results: Phenformin, AICAR and metformin increased AMPK (α1) activity and decreased Iamiloride. The AMPK inhibitor Compound C prevented the action of metformin and AICAR but not phenformin. Phenformin and AICAR decreased Iouabain across H441 monolayers and decreased monolayer resistance. The decrease in Iamiloride was closely related to Iouabain with phenformin, but not in AICAR treated monolayers. Metformin and phenformin increased the cellular AMP:ATP ratio but only phenformin and AICAR decreased cellular ATP. Conclusions and implications: Activation of α1-AMPK is associated with inhibition of apical amiloride-sensitive Na+ channels (ENaC), which has important implications for the clinical use of metformin. Additional pharmacological effects evoked by AICAR and phenformin on Iouabain, with potential secondary effects on apical Na+ conductance, ENaC activity and monolayer resistance, have important consequences for their use as pharmacological activators of AMPK in cell systems where Na+K+ATPase is an important component. PMID:17603555
Sands, William A; Woolson, Hayley D; Milne, Gillian R; Rutherford, Claire; Palmer, Timothy M
2006-09-01
Here, we demonstrate that elevation of intracellular cyclic AMP (cAMP) in vascular endothelial cells (ECs) by either a direct activator of adenylyl cyclase or endogenous cAMP-mobilizing G protein-coupled receptors inhibited the tyrosine phosphorylation of STAT proteins by an interleukin 6 (IL-6) receptor trans-signaling complex (soluble IL-6Ralpha/IL-6). This was associated with the induction of suppressor of cytokine signaling 3 (SOCS-3), a bona fide inhibitor in vivo of gp130, the signal-transducing component of the IL-6 receptor complex. Attenuation of SOCS-3 induction in either ECs or SOCS-3-null murine embryonic fibroblasts abolished the inhibitory effect of cAMP, whereas inhibition of SHP-2, another negative regulator of gp130, was without effect. Interestingly, the inhibition of STAT phosphorylation and SOCS-3 induction did not require cAMP-dependent protein kinase activity but could be recapitulated upon selective activation of the alternative cAMP sensor Epac, a guanine nucleotide exchange factor for Rap1. Consistent with this hypothesis, small interfering RNA-mediated knockdown of Epac1 was sufficient to attenuate both cAMP-mediated SOCS-3 induction and inhibition of STAT phosphorylation, suggesting that Epac activation is both necessary and sufficient to observe these effects. Together, these data argue for the existence of a novel cAMP/Epac/Rap1/SOCS-3 pathway for limiting IL-6 receptor signaling in ECs and illuminate a new mechanism by which cAMP may mediate its potent anti-inflammatory effects.
Friedrich, Anke; Thomas, Ulf; Müller, Uli
2004-05-05
Learning and memory formation in intact animals is generally studied under defined parameters, including the control of feeding. We used associative olfactory conditioning of the proboscis extension response in honeybees to address effects of feeding status on processes of learning and memory formation. Comparing groups of animals with different but defined feeding status at the time of conditioning reveals new and characteristic features in memory formation. In animals fed 18 hr earlier, three-trial conditioning induces a stable memory that consists of different phases: a mid-term memory (MTM), translation-dependent early long-term memory (eLTM; 1-2 d), and a transcription-dependent late LTM (lLTM; > or =3 d). Additional feeding of a small amount of sucrose 4 hr before conditioning leads to a loss of all of these memory phases. Interestingly, the basal activity of the cAMP-dependent protein kinase A (PKA), a key player in LTM formation, differs in animals with different satiation levels. Pharmacological rescue of the low basal PKA activity in animals fed 4 hr before conditioning points to a specific function of cAMP-PKA cascade in mediating satiation-dependent memory formation. An increase in PKA activity during conditioning rescues only transcription-dependent lLTM; acquisition, MTM, and eLTM are still impaired. Thus, during conditioning, the cAMP-PKA cascade mediates the induction of the transcription-dependent lLTM, depending on the satiation level. This result provides the first evidence for a central and distinct function of the cAMP-PKA cascade connecting satiation level with learning.
Bilodeau-Goeseels, Sylvie
2011-01-01
Meiotic maturation in mammalian oocytes is initiated during fetal development, and is then arrested at the dictyate stage - possibly for several years. Oocyte meiosis resumes in preovulatory follicles in response to the lutenizing hormone (LH) surge or spontaneously when competent oocytes are removed from follicles and cultured. The mechanisms involved in meiotic arrest and resumption in bovine oocytes are not fully understood, and several studies point to important differences between oocytes from rodent and livestock species. This paper reviews earlier and contemporary studies on the effects of cAMP-elevating agents and phosphodiesterase (PDE) enzyme inhibitors on the maintenance of meiotic arrest in bovine oocytes in vitro. Contrary to results obtained with mouse oocytes, bovine oocyte meiosis is inhibited by activators of the energy sensor adenosine monophosphate-activated protein kinase (AMPK, mammalian gene PRKA), which is activated by AMP, the degradation product of cAMP. It is not clear whether or not the effects were due to AMPK activation, and they may depend on culture conditions. Evidence suggests that other signaling pathways (for example, the cGMP/nitric oxide pathway) are involved in bovine oocyte meiotic arrest, but further studies are needed to understand the interactions between the signaling pathways that lead to maturation promoting factor (MPF) being inactive or active. An improved understanding of the mechanisms involved in the control of bovine oocyte meiosis will facilitate better control of the process in vitro, resulting in increased developmental competence and increased efficiency of in vitro embryo production procedures. Copyright © 2011 Wiley Periodicals, Inc.
Chen, Di; Banerjee, Sanjeev; Cui, Qiuzhi C.; Kong, Dejuan; Sarkar, Fazlul H.; Dou, Q. Ping
2012-01-01
There is a large body of scientific evidence suggesting that 3,3′-Diindolylmethane (DIM), a compound derived from the digestion of indole-3-carbinol, which is abundant in cruciferous vegetables, harbors anti-tumor activity in vitro and in vivo. Accumulating evidence suggests that AMP-activated protein kinase (AMPK) plays an essential role in cellular energy homeostasis and tumor development and that targeting AMPK may be a promising therapeutic option for cancer treatment in the clinic. We previously reported that a formulated DIM (BR-DIM; hereafter referred as B-DIM) with higher bioavailability was able to induce apoptosis and inhibit cell growth, angiogenesis, and invasion of prostate cancer cells. However, the precise molecular mechanism(s) for the anti-cancer effects of B-DIM have not been fully elucidated. In the present study, we investigated whether AMP-activated protein kinase (AMPK) is a molecular target of B-DIM in human prostate cancer cells. Our results showed, for the first time, that B-DIM could activate the AMPK signaling pathway, associated with suppression of the mammalian target of rapamycin (mTOR), down-regulation of androgen receptor (AR) expression, and induction of apoptosis in both androgen-sensitive LNCaP and androgen-insensitive C4-2B prostate cancer cells. B-DIM also activates AMPK and down-regulates AR in androgen-independent C4-2B prostate tumor xenografts in SCID mice. These results suggest that B-DIM could be used as a potential anti-cancer agent in the clinic for prevention and/or treatment of prostate cancer regardless of androgen responsiveness, although functional AR may be required. PMID:23056607
Ferguson, Scott B.; Anderson, Erik S.; Harshaw, Robyn B.; Thate, Tim; Craig, Nancy L.; Nelson, Hillary C. M.
2005-01-01
Hsf1p, the heat-shock transcription factor from Saccharomyces cerevisiae, has a low level of constitutive transcriptional activity and is kept in this state through negative regulation. In an effort to understand this negative regulation, we developed a novel genetic selection that detects altered expression from the HSP26 promoter. Using this reporter strain, we identified mutations and dosage compensators in the Ras/cAMP signaling pathway that decrease cAMP levels and increase expression from the HSP26 promoter. In yeast, low cAMP levels reduce the catalytic activity of the cAMP-dependent kinase PKA. Previous studies had proposed that the stress response transcription factors Msn2p/4p, but not Hsf1p, are repressed by PKA. However, we found that reduction or elimination of PKA activity strongly derepresses transcription of the small heat-shock genes HSP26 and HSP12, even in the absence of MSN2/4. In a strain deleted for MSN2/4 and the PKA catalytic subunits, expression of HSP12 and HSP26 depends on HSF1 expression. Our findings indicate that Hsf1p functions downstream of PKA and suggest that PKA might be involved in negative regulation of Hsf1p activity. These results represent a major change in our understanding of how PKA signaling influences the heat-shock response and heat-shock protein expression. PMID:15545649
NASA Technical Reports Server (NTRS)
Mills, I.; Cohen, C. R.; Kamal, K.; Li, G.; Shin, T.; Du, W.; Sumpio, B. E.
1997-01-01
Smooth muscle cell (SMC) phenotype can be altered by physical forces as demonstrated by cyclic strain-induced changes in proliferation, orientation, and secretion of macromolecules. However, the magnitude of strain required and the intracellular coupling pathways remain ill defined. To examine the strain requirements for SMC proliferation, we selectively seeded bovine aortic SMC either on the center or periphery of silastic membranes which were deformed with 150 mm Hg vacuum (0-7% center; 7-24% periphery). SMC located in either the center or peripheral regions showed enhanced proliferation compared to cells grown under the absence of cyclic strain. Moreover, SMC located in the center region demonstrated significantly (P < 0.005) greater proliferation as compared to those in the periphery. In contrast, SMC exposed to high strain (7-24%) demonstrated alignment perpendicular to the strain gradient, whereas SMC in the center (0-7%) remained aligned randomly. To determine the mechanisms of these phenomena, we examined the effect of cyclic strain on bovine aortic SMC signaling pathways. We observed strain-induced stimulation of the cyclic AMP pathway including adenylate cyclase activity and cyclic AMP accumulation. In addition, exposure of SMC to cyclic strain caused a significant increase in protein kinase C (PKC) activity and enzyme translocation from the cytosol to a particulate fraction. Further study was conducted to examine the effect of strain magnitude on signaling, particularly protein kinase A (PKA) activity as well as cAMP response element (CRE) binding protein levels. We observed significantly (P < 0.05) greater PKA activity and CRE binding protein levels in SMC located in the center as compared to the peripheral region. However, inhibition of PKA (with 10 microM Rp-cAMP) or PKC (with 5-20 ng/ml staurosporine) failed to alter either the strain-induced increase in SMC proliferation or alignment. These data characterize the strain determinants for activation of SMC proliferation and alignment. Although strain activated both the AC/cAMP/PKA and the PKC pathways in SMC, singular inhibition of PKA and PKC failed to prevent strain-induced alignment and proliferation, suggesting either their lack of involvement or the multifactorial nature of these responses.
THE SHARK RECTAL GLAND MODEL: A CHAMPION OF RECEPTOR MEDIATED CHLORIDE SECRETION THROUGH CFTR
FORREST, JOHN N.
2016-01-01
The dogfish shark salt gland was predicted by Smith and discovered by Burger at the Mount Desert Island Biological Laboratory in Salisbury Cove, Maine. It is an epithelial organ in the intestine composed of tubules that serve a single function: the secretion of hypertonic NaCl. Many G protein receptors are present on the basolateral surface of these tubules, including stimulatory receptors for vasoactive intestinal peptide, adenosine A2, growth hormone releasing hormone, and inhibitory receptors for somatostatin and adenosine A1. An entirely different class of stimulatory receptors is present as C-type natriuretic peptide receptors. Each stimulatory receptor evokes powerful NaCl secretion. G protein receptors bind to Gαs to activate the catalytic unit of adenylate cyclase to form cyclic adenosine monophosphate (cAMP) and protein kinase A that phosphorylates the regulatory domain of cystic fibrosis transmembrane conductance regulator, opening the channel. The C-type natriuretic peptide receptor stimulates by activating guanylate cyclase and endogenous cyclic guanosine monophosphate which inhibits type 3 phosphodiesterase, the enzyme that breaks down cAMP, thereby elevating cAMP and activating the protein kinase A pathway. PMID:28066051
cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.
Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin
2009-09-01
The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.
Inhibition of Rho Is Required for cAMP-induced Melanoma Cell Differentiation
Buscà, Roser; Bertolotto, Corine; Abbe, Patricia; Englaro, Walter; Ishizaki, Toshimasa; Narumiya, Shuh; Boquet, Patrice; Ortonne, Jean-Paul; Ballotti, Robert
1998-01-01
Up-regulation of the cAMP pathway by forskolin or α-melanocyte stimulating hormone induces melanocyte and melanoma cell differentiation characterized by stimulation of melanin synthesis and dendrite development. Here we show that forskolin-induced dendricity is associated to a disassembly of actin stress fibers. Since Rho controls actin organization, we studied the role of this guanosine triphosphate (GTP)-binding protein in cAMP-induced dendrite formation. Clostridium botulinum C3 exotransferase, which inhibits Rho, mimicked the effect of forskolin in promoting dendricity and stress fiber disruption, while the Escherichia coli toxin cytotoxic necrotizing factor-1 (CNF-1), which activates Rho and the expression of a constitutively active Rho mutant, blocked forskolin-induced dendrite outgrowth. In addition, overexpression of a constitutively active form of the Rho target p160 Rho-kinase (P160ROCK) prevented the dendritogenic effects of cAMP. Our results suggest that inhibition of Rho and of its target p160ROCK are required events for cAMP-induced dendrite outgrowth in B16 cells. Furthermore, we present evidence that Rho is involved in the regulation of melanogenesis. Indeed, Rho inactivation enhanced the cAMP stimulation of tyrosinase gene transcription and protein expression, while Rho constitutive activation impaired these cAMP-induced effects. This reveals that, in addition to controlling dendricity, Rho also participates in the regulation of melanin synthesis by cAMP. PMID:9614180
Valjent, Emmanuel; Bertran-Gonzalez, Jesus; Bowling, Heather; Lopez, Sébastien; Santini, Emanuela; Matamales, Miriam; Bonito-Oliva, Alessandra; Hervé, Denis; Hoeffer, Charles; Klann, Eric; Girault, Jean-Antoine; Fisone, Gilberto
2011-01-01
Administration of typical antipsychotic drugs, such as haloperidol, promotes cAMP-dependent signaling in the medium spiny neurons (MSNs) of the striatum. In this study, we have examined the effect of haloperidol on the state of phosphorylation of the ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. We found that haloperidol increases the phosphorylation of rpS6 at the dual site Ser235/236, which is involved in the regulation of mRNA translation. This effect was exerted in the MSNs of the indirect pathway, which express specifically dopamine D2 receptors (D2Rs) and adenosine A2 receptors (A2ARs). The effect of haloperidol was decreased by blockade of A2ARs or by genetic attenuation of the Gαolf protein, which couples A2ARs to activation of adenylyl cyclase. Moreover, stimulation of cAMP-dependent protein kinase A (PKA) increased Ser235/236 phosphorylation in cultured striatal neurons. The ability of haloperidol to promote rpS6 phosphorylation was abolished in knock-in mice deficient for PKA activation of the protein phosphatase-1 inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa. In contrast, pharmacological or genetic inactivation of p70 rpS6 kinase 1, or extracellular signal-regulated kinases did not affect haloperidol-induced rpS6 phosphorylation. These results identify PKA as a major rpS6 kinase in neuronal cells and suggest that regulation of protein synthesis through rpS6 may be a potential target of antipsychotic drugs. PMID:21814187
2012-01-01
Introduction Fibrosis in scleroderma is associated with collagen deposition and myofibroblast accumulation. Peroxisome proliferator activated receptor gamma (PPAR-γ), a master regulator of adipogenesis, inhibits profibrotic responses induced by transforming growth factor-ß (TGF-β), and its expression is impaired in scleroderma. The roles of adiponectin, a PPAR-γ regulated pleiotropic adipokine, in regulating the response of fibroblasts and in mediating the effects of PPAR-γ are unknown. Methods Regulation of fibrotic gene expression and TGF-ß signaling by adiponectin and adenosine monophosphate protein-activated (AMP) kinase agonists were examined in normal fibroblasts in monolayer cultures and in three-dimensional skin equivalents. AdipoR1/2 expression on skin fibroblasts was determined by real-time quantitative PCR. Results Adiponectin, an adipokine directly regulated by PPAR-γ, acts as a potent anti-fibrotic signal in normal and scleroderma fibroblasts that abrogates the stimulatory effects of diverse fibrotic stimuli and reduces elevated collagen gene expression in scleroderma fibroblasts. Adiponectin responses are mediated via AMP kinase, a fuel-sensing cellular enzyme that is necessary and sufficient for down-regulation of fibrotic genes by blocking canonical Smad signaling. Moreover, we demonstrate that endogenous adiponectin accounts, at least in part, for the anti-fibrotic effects exerted by ligands of PPAR-γ. Conclusions These findings reveal a novel link between cellular energy metabolism and extracellular matrix homeostasis converging on AMP kinase. Since the levels of adiponectin as well as its receptor are impaired in scleroderma patients with progressive fibrosis, the present results suggest a potential role for defective adiponectin expression or function in progressive fibrogenesis in scleroderma and other chronic fibrosing conditions. Restoring the adiponectin signaling axis in fibroblasts might, therefore, represent a novel pharmacological approach to controlling fibrosis. PMID:23092446
Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.
Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E
2004-01-01
AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.
Optodynamic simulation of β-adrenergic receptor signalling
Siuda, Edward R.; McCall, Jordan G.; Al-Hasani, Ream; Shin, Gunchul; Il Park, Sung; Schmidt, Martin J.; Anderson, Sonya L.; Planer, William J.; Rogers, John A.; Bruchas, Michael R.
2015-01-01
Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo. PMID:26412387
Optodynamic simulation of β-adrenergic receptor signalling.
Siuda, Edward R; McCall, Jordan G; Al-Hasani, Ream; Shin, Gunchul; Il Park, Sung; Schmidt, Martin J; Anderson, Sonya L; Planer, William J; Rogers, John A; Bruchas, Michael R
2015-09-28
Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β2 adrenergic receptor (opto-β2AR) is similar in dynamics to endogenous β2AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β2AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β2ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo.
Ma, Tao; Chen, Yiran; Vingtdeux, Valerie; Zhao, Haitian; Viollet, Benoit; Marambaud, Philippe
2014-01-01
The AMP-activated protein kinase (AMPK) is a Ser/Thr kinase that is activated in response to low-energy states to coordinate multiple signaling pathways to maintain cellular energy homeostasis. Dysregulation of AMPK signaling has been observed in Alzheimer's disease (AD), which is associated with abnormal neuronal energy metabolism. In the current study we tested the hypothesis that aberrant AMPK signaling underlies AD-associated synaptic plasticity impairments by using pharmacological and genetic approaches. We found that amyloid β (Aβ)-induced inhibition of long-term potentiation (LTP) and enhancement of long-term depression were corrected by the AMPK inhibitor compound C (CC). Similarly, LTP impairments in APP/PS1 transgenic mice that model AD were improved by CC treatment. In addition, Aβ-induced LTP failure was prevented in mice with genetic deletion of the AMPK α2-subunit, the predominant AMPK catalytic subunit in the brain. Furthermore, we found that eukaryotic elongation factor 2 (eEF2) and its kinase eEF2K are key downstream effectors that mediate the detrimental effects of hyperactive AMPK in AD pathophysiology. Our findings describe a previously unrecognized role of aberrant AMPK signaling in AD-related synaptic pathophysiology and reveal a potential therapeutic target for AD. PMID:25186765
Moon, Eun-Yi; Lee, Yu-Sun; Choi, Wahn Soo; Lee, Mi-Hee
2011-10-15
B-cell activating factor (BAFF) plays a role in the generation and the maintenance of mature B cells. Lipopolysaccharide (LPS) increased BAFF expression through the activation of toll-like receptor 4 (TLR4)-dependent signal transduction. Here, we investigated the mechanism of action on mouse BAFF (mBAFF) expression by cAMP production in Raw264.7 mouse macrophages. mBAFF expression was increased by the treatment with a cAMP analogue, dibutyryl-cAMP which is the activator of protein kinase A (PKA), cAMP effector protein. PKA activation was measured by the phosphorylation of cAMP-response element binding protein (CREB) on serine 133 (S133). cAMP production and CREB (S133) phosphorylation were augmented by LPS-stimulation. While mBAFF promoter activity was enhanced by the co-transfection with pS6-RSV-CREB, it was reduced by siRNA-CREB. PKA inhibitor, H-89, reduced CREB (S133) phosphorylation and mBAFF expression in control and LPS-stimulated macrophages. Another principal cAMP effector protein is cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor. Epac was activated by the treatment with 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (CPT), Epac activator, as judged by the measurement of Rap1 activation. Basal level of mBAFF expression was increased by CPT treatment. LPS-stimulated mBAFF expression was also slightly enhanced by co-treatment with CPT. In addition, dibutyryl-cAMP and CPT enhanced mBAFF expression in bone marrow-derived macrophages (BMDM). With these data, it suggests that the activation of PKA and cAMP/Epac1/Rap1 pathways could be required for basal mBAFF expression, as well as being up-regulated in the TLR4-induced mBAFF expression. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Past Strategies and Future Directions for Identifying AMP-Activated Protein Kinase (AMPK) Modulators
Sinnett, Sarah E.; Brenman, Jay E.
2014-01-01
AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade, numerous labs have published a range of methods for identifying novel AMPK modulators. The current understanding of AMPK structure and regulation, however, has propelled a paradigm shift in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK. How can the AMPK community apply this new understanding of AMPK signaling to translational research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing the current understanding of AMPK signaling with improved experimental designs. PMID:24583089
Selective disruption of the AKAP signaling complexes.
Kennedy, Eileen J; Scott, John D
2015-01-01
Synthesis of the second messenger cAMP activates a variety of signaling pathways critical for all facets of intracellular regulation. Protein kinase A (PKA) is the major cAMP-responsive effector. Where and when this enzyme is activated has profound implications on the cellular role of PKA. A-Kinase Anchoring Proteins (AKAPs) play a critical role in this process by orchestrating spatial and temporal aspects of PKA action. A popular means of evaluating the impact of these anchored signaling events is to biochemically interfere with the PKA-AKAP interface. Hence, peptide disruptors of PKA anchoring are valuable tools in the investigation of local PKA action. This article outlines the development of PKA isoform-selective disruptor peptides, documents the optimization of cell-soluble peptide derivatives, and introduces alternative cell-based approaches that interrogate other aspects of the PKA-AKAP interface.
Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets.
Makhoul, Stephanie; Walter, Elena; Pagel, Oliver; Walter, Ulrich; Sickmann, Albert; Gambaryan, Stepan; Smolenski, Albert; Zahedi, René P; Jurk, Kerstin
2018-06-01
Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca 2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins. Copyright © 2018 Elsevier Inc. All rights reserved.
Lan, Fan; Weikel, Karen A; Cacicedo, Jose M; Ido, Yasuo
2017-07-14
Despite the promising effects of resveratrol, its efficacy in the clinic remains controversial. We were the first group to report that the SIRT1 activator resveratrol activates AMP-activated protein kinase (AMPK) (Diabetes 2005; 54: A383), and we think that the variability of this cascade may be responsible for the inconsistency of resveratrol's effects. Our current studies suggest that the effect of SIRT1 activators such as resveratrol may not be solely through activation of SIRT1, but also through an integrated effect of SIRT1-liver kinase B1 (LKB1)-AMPK. In this context, resveratrol activates SIRT1 (1) by directly binding to SIRT1; and (2) by increasing NAD⁺ levels by upregulating the salvage pathway through Nampt activation, an effect mediated by AMPK. The first mechanism promotes deacetylation of a limited number of SIRT1 substrate proteins (e.g., PGC-1). The second mechanism (which may be more important than the first) activates other sirtuins in addition to SIRT1, which affects a broad spectrum of substrates. Despite these findings, detailed mechanisms of how resveratrol activates AMPK have not been reported. Here, we show that (1) resveratrol-induced activation of AMPK requires the presence of functional LKB1; (2) Resveratrol increases LKB1 activity, which involves translocation and phosphorylation at T336 and S428; (3) Activation of LKB1 causes proteasomal degradation of LKB1; (4) At high concentrations (50-100 µM), resveratrol also activates AMPK through increasing AMP levels; and (5) The above-mentioned activation mechanisms vary among cell types, and in some cell types, resveratrol fails to activate AMPK. These results suggest that resveratrol-induced activation of AMPK is not a ubiquitous phenomenon. In addition, AMPK-mediated increases in NAD⁺ in the second mechanism require several ATPs, which may not be available in many pathological conditions. These phenomena may explain why resveratrol is not always consistently beneficial in a clinical setting.
Hamm, Jorg; Alessi, Dario R; Biondi, Ricardo M
2002-11-29
The design of specific inhibitors for protein kinases is an important step toward elucidation of intracellular signal transduction pathways and to guide drug discovery programs. We devised a model approach to generate specific, competitive kinase inhibitors by isolating substrate mimics containing two independent binding sites with an anti-idiotype strategy from combinatorial RNA libraries. As a general test for the ability to generate highly specific kinase inhibitors, we selected the transcription factor cAMP-response element-binding protein (CREB) that is phosphorylated on the same serine residue by the protein kinase MSK1 as well as by RSK1. The sequences and structures of these kinases are very similar, about 60% of their amino acids are identical. Nevertheless, we can demonstrate that the selected RNA inhibitors inhibit specifically CREB phosphorylation by MSK1 but do not affect CREB phosphorylation by RSK1. The inhibitors interact preferentially with the inactive form of MSK1. Furthermore, we demonstrate that RNA ligands can be conformation-specific probes, and this feature allowed us to describe magnesium ion-dependent conformational changes of MSK1 upon activation.
Chen, Kung-Yen; Lin, Jui-An; Yao, Han-Yun; Hsu, An-Chih; Tai, Yu-Ting; Chen, Jui-Tai; Hsieh, Mao-Chih; Shen, Tang-Long; Hsu, Ren-Yi; Wu, Hong-Tan; Wang, Guey Horng; Ho, Bing-Ying; Chen, Yu-Pei
2018-04-01
Arctigenin (ATG), a lignin extracted from Arctium lappa (L.), exerts antioxidant and anti-inflammatory effects. We hypothesized that ATG exerts a protective effect on hepatocytes by preventing nonalcoholic fatty liver disease (NAFLD) progression associated with lipid oxidation-associated lipotoxicity and inflammation. We established an in vitro NAFLD cell model by using normal WRL68 hepatocytes to investigate oleic acid (OA) accumulation and the potential bioactive role of ATG. The results revealed that ATG inhibited OA-induced lipid accumulation, lipid peroxidation, and inflammation in WRL68 hepatocytes, as determined using Oil Red O staining, thiobarbituric acid reactive substance assay, and inflammation antibody array assays. Quantitative RT-PCR analysis demonstrated that ATG significantly mitigated the expression of acetylcoenzyme A carboxylase 1 and sterol regulatory element-binding protein-1 and significantly increased the expression of carnitine palmitoyltransferase 1 and peroxisome proliferator-activated receptor alpha. The 40 targets of the Human Inflammation Antibody Array indicated that ATG significantly inhibited the elevation of the U937 lymphocyte chemoattractant, ICAM-1, IL-1β, IL-6, IL-6sR, IL-7, and IL-8. ATG could activate the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and AMP-activated protein kinase (AMPK) pathways and could increase the phosphorylation levels of Akt and AMPK to mediate cell survival, lipid metabolism, oxidation stress, and inflammation. Thus, we demonstrated that ATG could inhibit NAFLD progression associated with lipid oxidation-associated lipotoxicity and inflammation, and we provided insights into the underlying mechanisms and revealed potential targets to enable a thorough understanding of NAFLD progression. Copyright © 2018 Elsevier Inc. All rights reserved.
Parallel Allostery by cAMP and PDE Coordinates Activation and Termination Phases in cAMP Signaling.
Krishnamurthy, Srinath; Tulsian, Nikhil Kumar; Chandramohan, Arun; Anand, Ganesh S
2015-09-15
The second messenger molecule cAMP regulates the activation phase of the cAMP signaling pathway through high-affinity interactions with the cytosolic cAMP receptor, the protein kinase A regulatory subunit (PKAR). Phosphodiesterases (PDEs) are enzymes responsible for catalyzing hydrolysis of cAMP to 5' AMP. It was recently shown that PDEs interact with PKAR to initiate the termination phase of the cAMP signaling pathway. While the steps in the activation phase are well understood, steps in the termination pathway are unknown. Specifically, the binding and allosteric networks that regulate the dynamic interplay between PKAR, PDE, and cAMP are unclear. In this study, PKAR and PDE from Dictyostelium discoideum (RD and RegA, respectively) were used as a model system to monitor complex formation in the presence and absence of cAMP. Amide hydrogen/deuterium exchange mass spectrometry was used to monitor slow conformational transitions in RD, using disordered regions as conformational probes. Our results reveal that RD regulates its interactions with cAMP and RegA at distinct loci by undergoing slow conformational transitions between two metastable states. In the presence of cAMP, RD and RegA form a stable ternary complex, while in the absence of cAMP they maintain transient interactions. RegA and cAMP each bind at orthogonal sites on RD with resultant contrasting effects on its dynamics through parallel allosteric relays at multiple important loci. RD thus serves as an integrative node in cAMP termination by coordinating multiple allosteric relays and governing the output signal response. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Haj Slimane, Zeineb; Bedioune, Ibrahim; Lechêne, Patrick; Varin, Audrey; Lefebvre, Florence; Mateo, Philippe; Domergue-Dupont, Valérie; Dewenter, Matthias; Richter, Wito; Conti, Marco; El-Armouche, Ali; Zhang, Jin; Fischmeister, Rodolphe; Vandecasteele, Grégoire
2014-01-01
Aims The cAMP-dependent protein kinase (PKA) mediates β-adrenoceptor (β-AR) regulation of cardiac contraction and gene expression. Whereas PKA activity is well characterized in various subcellular compartments of adult cardiomyocytes, its regulation in the nucleus remains largely unknown. The aim of the present study was to compare the modalities of PKA regulation in the cytoplasm and nucleus of cardiomyocytes. Methods and results Cytoplasmic and nuclear cAMP and PKA activity were measured with targeted fluorescence resonance energy transfer probes in adult rat ventricular myocytes. β-AR stimulation with isoprenaline (Iso) led to fast cAMP elevation in both compartments, whereas PKA activity was fast in the cytoplasm but markedly slower in the nucleus. Iso was also more potent and efficient in activating cytoplasmic than nuclear PKA. Similar slow kinetics of nuclear PKA activation was observed upon adenylyl cyclase activation with L-858051 or phosphodiesterase (PDE) inhibition with 3-isobutyl-1-methylxantine. Consistently, pulse stimulation with Iso (15 s) maximally induced PKA and myosin-binding protein C phosphorylation in the cytoplasm, but marginally activated PKA and cAMP response element-binding protein phosphorylation in the nucleus. Inhibition of PDE4 or ablation of the Pde4d gene in mice prolonged cytoplasmic PKA activation and enhanced nuclear PKA responses. In the cytoplasm, phosphatase 1 (PP1) and 2A (PP2A) contributed to the termination of PKA responses, whereas only PP1 played a role in the nucleus. Conclusion Our study reveals a differential integration of cytoplasmic and nuclear PKA responses to β-AR stimulation in cardiac myocytes. This may have important implications in the physiological and pathological hypertrophic response to β-AR stimulation. PMID:24550350
Nin, Veronica; Escande, Carlos; Chini, Claudia C.; Giri, Shailendra; Camacho-Pereira, Juliana; Matalonga, Jonathan; Lou, Zhenkun; Chini, Eduardo N.
2012-01-01
The NAD+-dependent deacetylase SIRT1 is a key regulator of several aspects of metabolism and aging. SIRT1 activation is beneficial for several human diseases, including metabolic syndrome, diabetes, obesity, liver steatosis, and Alzheimer disease. We have recently shown that the protein deleted in breast cancer 1 (DBC1) is a key regulator of SIRT1 activity in vivo. Furthermore, SIRT1 and DBC1 form a dynamic complex that is regulated by the energetic state of the organism. Understanding how the interaction between SIRT1 and DBC1 is regulated is therefore essential to design strategies aimed to activate SIRT1. Here, we investigated which pathways can lead to the dissociation of SIRT1 and DBC1 and consequently to SIRT1 activation. We observed that PKA activation leads to a fast and transient activation of SIRT1 that is DBC1-dependent. In fact, an increase in cAMP/PKA activity resulted in the dissociation of SIRT1 and DBC1 in an AMP-activated protein kinase (AMPK)-dependent manner. Pharmacological AMPK activation led to SIRT1 activation by a DBC1-dependent mechanism. Indeed, we found that AMPK activators promote SIRT1-DBC1 dissociation in cells, resulting in an increase in SIRT1 activity. In addition, we observed that the SIRT1 activation promoted by PKA and AMPK occurs without changes in the intracellular levels of NAD+. We propose that PKA and AMPK can acutely activate SIRT1 by inducing dissociation of SIRT1 from its endogenous inhibitor DBC1. Our experiments provide new insight on the in vivo mechanism of SIRT1 regulation and a new avenue for the development of pharmacological SIRT1 activators targeted at the dissociation of the SIRT1-DBC1 complex. PMID:22553202
Nin, Veronica; Escande, Carlos; Chini, Claudia C; Giri, Shailendra; Camacho-Pereira, Juliana; Matalonga, Jonathan; Lou, Zhenkun; Chini, Eduardo N
2012-07-06
The NAD(+)-dependent deacetylase SIRT1 is a key regulator of several aspects of metabolism and aging. SIRT1 activation is beneficial for several human diseases, including metabolic syndrome, diabetes, obesity, liver steatosis, and Alzheimer disease. We have recently shown that the protein deleted in breast cancer 1 (DBC1) is a key regulator of SIRT1 activity in vivo. Furthermore, SIRT1 and DBC1 form a dynamic complex that is regulated by the energetic state of the organism. Understanding how the interaction between SIRT1 and DBC1 is regulated is therefore essential to design strategies aimed to activate SIRT1. Here, we investigated which pathways can lead to the dissociation of SIRT1 and DBC1 and consequently to SIRT1 activation. We observed that PKA activation leads to a fast and transient activation of SIRT1 that is DBC1-dependent. In fact, an increase in cAMP/PKA activity resulted in the dissociation of SIRT1 and DBC1 in an AMP-activated protein kinase (AMPK)-dependent manner. Pharmacological AMPK activation led to SIRT1 activation by a DBC1-dependent mechanism. Indeed, we found that AMPK activators promote SIRT1-DBC1 dissociation in cells, resulting in an increase in SIRT1 activity. In addition, we observed that the SIRT1 activation promoted by PKA and AMPK occurs without changes in the intracellular levels of NAD(+). We propose that PKA and AMPK can acutely activate SIRT1 by inducing dissociation of SIRT1 from its endogenous inhibitor DBC1. Our experiments provide new insight on the in vivo mechanism of SIRT1 regulation and a new avenue for the development of pharmacological SIRT1 activators targeted at the dissociation of the SIRT1-DBC1 complex.
NASA Astrophysics Data System (ADS)
Wagner, John A.; Cozens, Alison L.; Schulman, Howard; Gruenert, Dieter C.; Stryer, Lubert; Gardner, Phyllis
1991-02-01
CYSTIC fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase1,2 and protein kinase C3,4. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels1-4. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2+-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2+-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.
Metformin targets multiple signaling pathways in cancer.
Lei, Yong; Yi, Yanhua; Liu, Yang; Liu, Xia; Keller, Evan T; Qian, Chao-Nan; Zhang, Jian; Lu, Yi
2017-01-26
Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 diabetes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addition, cutting-edge targeting of cancer stem cells by metformin is summarized.
Grochowska, Ewa; Jarzyna, Robert
2014-09-12
In developed countries, we can observe an increasing number of people with obesity, type 2 diabetes, dyslipidemia, hypertension and arteriosclerosis. The main reason for this phenomenon is the abnormal energy balance due to sedentary lifestyles. Cardiovascular diseases are the leading cause of death in many countries around the world, nowadays. In this paper, the impact of physical activity on the effectiveness of treatment and prevention of metabolic diseases and cancer is considered. Exercise is one of the factors activating 5'AMP-activated protein kinase (AMPK). This enzyme is crucial in maintaining the energy balance of the cell and the entire organism, and its activation results in excluding the anabolic and switching on the catabolic processes. It is believed that the activation of AMPK is responsible for most of the positive effects resulting from physical exercise. Although there are pharmacological methods of activation of this enzyme, they seem to be not as effective as physical exercise. Therefore, physical activity should be the most important form of prevention and treatment of metabolic diseases.
Koinuma, Shingo; Takeuchi, Kohei; Wada, Naoyuki; Nakamura, Takeshi
2017-11-01
Cyclic AMP plays a pivotal role in neurite growth. During outgrowth, a trafficking system supplies membrane at growth cones. However, the cAMP-induced signaling leading to the regulation of membrane trafficking remains unknown. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking. Recent studies have shown a role of TC10 in neurite growth in NGF-treated PC12 cells. Here, we investigated a mechanical linkage between cAMP and TC10 in neuritogenesis. Plasmalemmal TC10 activity decreased abruptly after cAMP addition in neuronal cells. TC10 was locally inactivated at extending neurite tips in cAMP-treated PC12 cells. TC10 depletion led to a decrease in cAMP-induced neurite outgrowth. Constitutively active TC10 could not rescue this growth reduction, supporting our model for a role of GTP hydrolysis of TC10 in neuritogenesis by accelerating vesicle fusion. The cAMP-induced TC10 inactivation was mediated by PKA. Considering cAMP-induced RhoA inactivation, we found that p190B, but not p190A, mediated inactivation of TC10 and RhoA. Upon cAMP treatment, p190B was recruited to the plasma membrane. STEF depletion and Rac1-N17 expression reduced cAMP-induced TC10 inactivation. Together, the PKA-STEF-Rac1-p190B pathway leading to inactivation of TC10 and RhoA at the plasma membrane plays an important role in cAMP-induced neurite outgrowth. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Tachado, S D; Zhang, Y; Abdel-Latif, A A
1993-05-01
To examine the mechanisms underlying the effects of PGF2 alpha receptor desensitization on agonist-induced second messenger formation and contraction in bovine iris sphincter. Short-term PGF2 alpha receptor desensitization of the bovine iris sphincter was carried out by incubating the tissue in Krebs-Ringer bicarbonate buffer containing 25 microM PGF2 alpha for 45 min at 37 degrees C. The effects of PGF2 alpha and other pharmacologic agents on inositol 1,4,5-triphosphate (IP3) production and cyclic adenosine monophosphate (cAMP) formation in desensitized and nondesensitized tissues were monitored by anion-exchange chromatography and radioimmunoassay. In the isolated bovine iris sphincter, protein kinase C (PKC) is involved in the activation of adenylate cyclase and the desensitization of prostaglandin F2 alpha receptor-mediated responses supported by these findings. (A) Exposure of the tissue to phorbol 12,13-dibutyrate, used to activate PKC, enhanced basal cAMP formation in a dose (EC50 = 8.8 x 10(-8) M) and time (t1/2 = 7.5 min) dependent manner. Phorbol 12,13-dibutyrate increased cAMP levels by twofold and it potentiated the isoproterenol-induced cAMP formation. The biologically inactive phorbol ester, 4 alpha-phorbol had no effect. Staurosporine, a potent PKC inhibitor, inhibited phorbol 12,13-dibutyrate-induced cAMP formation in a dose-dependent manner (IC50 of 0.25 microM). The increase in cAMP levels by phorbol 12,13-dibutyrate results from stimulation of adenylate cyclase, rather than from inhibition of cAMP phosphodiesterase, and it is not mediated through Ca2+ mobilization. Pretreatment of the tissue with phorbol 12,13-dibutyrate inhibited IP3 production in response to PGF2 alpha. (B) Desensitization of the sphincter with PGF2 alpha for 45 min increased cAMP formation and attenuated IP3 production and contraction. The effects of PGF2 alpha desensitization were reversed by pretreatment of the tissue with staurosporine. Down-regulation of PKC prevented the PGF2 alpha-stimulated increase in cAMP formation. In the desensitized tissue, diacylglycerol, the endogenous activator of PKC, may arise from phosphatidylcholine, via phospholipase D. (A) Activation of PKC in the bovine iris sphincter leads to stimulation of adenylate cyclase and to an increase in cAMP formation. The cAMP formed inhibits IP3 production and muscle contraction. (B) PGF2 alpha desensitization results in adenylate cyclase activation, mediated through PKC. (C) PGF2 alpha desensitization could uncouple the receptor from the Gq and Gi proteins and enhance PG stimulation of adenylate cyclase activity through the Gs protein. (D) Uncoupling of the G proteins from the PG receptor and activation of PKC, both of which result in enhanced cAMP formation, may underlie the mechanism of PGF2 alpha desensitization. (E) These observations demonstrate "cross talk" between the two second messenger systems and their physiologic consequences.
Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK
Wang, Zhichao; Gray, Alexander; Ma, Teng; Cui, Jiwen; Feng, Jin-Wei; Zhu, Mingjiang; Wu, Yu-Qing; Li, Terytty Yang; Ye, Zhiyun; Lin, Shu-Yong; Yin, Huiyong; Piao, Hai-Long; Hardie, D. Grahame; Lin, Sheng-Cai
2017-01-01
The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK)1, but it has been unclear whether this occurs solely via changes in AMP or ADP, the classical activators of AMPK2–5. Here, we uncover a mechanism that triggers AMPK activation via an AMP/ADP-independent mechanism sensing absence of FBP, with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of lysosomal complexes containing the v-ATPase, Ragulator, AXIN, LKB1 and AMPK, previously shown to be required for AMPK activation6,7. Knockdown of aldolases activates AMPK even in cells with abundant glucose, while the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts association of AXIN/LKB1 with v-ATPase/Ragulator. Importantly, in some cell types AMP:ATP/ADP:ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK. PMID:28723898
The role of c-Jun in controlling the EPAC1-dependent induction of the SOCS3 gene in HUVECs
Wiejak, Jolanta; Dunlop, Julia; Yarwood, Stephen J.
2014-01-01
The cyclic AMP sensor, EPAC1, activates AP1-mediated transcription in HUVECs. Correspondingly, induction of the SOCS3 minimal promoter by EPAC1 requires a single AP1 site that constitutively binds phosphorylated (Ser63) c-Jun in DNA-pull-down assays. c-Jun (Ser63) becomes further phosphorylated following cyclic AMP stimulation and specific activation of protein kinase A (PKA), but not through selective activation of EPAC1. Moreover, despite a requirement for c-Jun for SOCS3 induction in fibroblasts, phospho-null c-Jun (Ser63/73Ala) had little effect on SOCS3 induction by cyclic AMP in HUVECs. AP1 activation and SOCS3 induction by EPAC1 in HUVECs therefore occur independently of c-Jun phosphorylation on Ser63. PMID:24631457
Wang, Shuangxi; Liang, Bin; Viollet, Benoit; Zou, Ming-Hui
2011-05-01
The aim of the present study was to determine the effects and molecular mechanisms by which AMP-activated protein kinase (AMPK) regulates smooth muscle contraction and blood pressure in mice. In cultured human vascular smooth muscle cells, we observed that activation of AMPK by 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited agonist-induced phosphorylation of myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1). Conversely, AMPK inhibition with pharmacological or genetic means potentiated agonist-induced the phosphorylation of MLC and MYPT1, whereas it inhibited both Ras homolog gene family member A and Rho-associated kinase activity. In addition, AMPK activation or Rho-associated kinase inhibition with Y27632 abolished agonist-induced phosphorylation of MLC and MYPT1. Gene silencing of p190-guanosine triphosphatase-activating protein abolished the effects of AMPK activation on MLC, MYPT1, and Ras homolog gene family member A in human smooth muscle cells. Ex vivo analyses revealed that agonist-induced contractions of the mesenteric artery and aortas were stronger in both AMPKα1(-/-) and AMPKα2(-/-) knockout mice than in wild-type mice. Inhibition of Rho-associated kinase with Y27632 normalized agonist-induced contractions of AMPKα1(-/-) and AMPKα2(-/-) vessels. AMPKα2(-/-) mice had higher blood pressure along with decreased serine phosphorylation of p190-guanosine triphosphatase-activating protein. Finally, inhibition of the Ras homolog gene family member A/Rho-associated kinase pathway with Y27632, which suppressed MYPT1 and MLC phosphorylation, lowered blood pressure in AMPKα2(-/-) mice. In conclusion, AMPK decreases vascular smooth muscle cell contractility by inhibiting p190-GTP-activating protein-dependent Ras homolog gene family member A activation, indicating that AMPK may be a new therapeutic target in lowering high blood pressure.
Dzhura, Igor; Chepurny, Oleg G; Kelley, Grant G; Leech, Colin A; Roe, Michael W; Dzhura, Elvira; Afshari, Parisa; Malik, Sundeep; Rindler, Michael J; Xu, Xin; Lu, Youming; Smrcka, Alan V; Holz, George G
2010-01-01
Calcium can be mobilized in pancreatic β-cells via a mechanism of Ca2+-induced Ca2+ release (CICR), and cAMP-elevating agents such as exendin-4 facilitate CICR in β-cells by activating both protein kinase A and Epac2. Here we provide the first report that a novel phosphoinositide-specific phospholipase C-ɛ (PLC-ɛ) is expressed in the islets of Langerhans, and that the knockout (KO) of PLC-ɛ gene expression in mice disrupts the action of exendin-4 to facilitate CICR in the β-cells of these mice. Thus, in the present study, in which wild-type (WT) C57BL/6 mouse β-cells were loaded with the photolabile Ca2+ chelator NP-EGTA, the UV flash photolysis-catalysed uncaging of Ca2+ generated CICR in only 9% of the β-cells tested, whereas CICR was generated in 82% of the β-cells pretreated with exendin-4. This action of exendin-4 to facilitate CICR was reproduced by cAMP analogues that activate protein kinase A (6-Bnz-cAMP-AM) or Epac2 (8-pCPT-2′-O-Me-cAMP-AM) selectively. However, in β-cells of PLC-ɛ KO mice, and also Epac2 KO mice, these test substances exhibited differential efficacies in the CICR assay such that exendin-4 was partly effective, 6-Bnz-cAMP-AM was fully effective, and 8-pCPT-2′-O-Me-cAMP-AM was without significant effect. Importantly, transduction of PLC-ɛ KO β-cells with recombinant PLC-ɛ rescued the action of 8-pCPT-2′-O-Me-cAMP-AM to facilitate CICR, whereas a K2150E PLC-ɛ with a mutated Ras association (RA) domain, or a H1640L PLC-ɛ that is catalytically dead, were both ineffective. Since 8-pCPT-2′-O-Me-cAMP-AM failed to facilitate CICR in WT β-cells transduced with a GTPase activating protein (RapGAP) that downregulates Rap activity, the available evidence indicates that a signal transduction ‘module’ comprised of Epac2, Rap and PLC-ɛ exists in β-cells, and that the activities of Epac2 and PLC-ɛ are key determinants of CICR in this cell type. PMID:21041529
Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K
2017-02-01
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
Giampieri, Francesca; Alvarez-Suarez, Josè M; Cordero, Mario D; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Afrin, Sadia; Santos-Buelga, Celestino; González-Paramás, Ana M; Astolfi, Paola; Rubini, Corrado; Zizzi, Antonio; Tulipani, Sara; Quiles, Josè L; Mezzetti, Bruno; Battino, Maurizio
2017-11-01
Dietary polyphenols have been recently proposed as activators of the AMP-activated protein kinase (AMPK) signaling pathway and this fact might explain the relationship between the consumption of polyphenol-rich foods and the slowdown of the progression of aging. In the present work, the effects of strawberry consumption were evaluated on biomarkers of oxidative damage and on aging-associated reductions in mitochondrial function and biogenesis for 8weeks in old rats. Strawberry supplementation increased antioxidant enzyme activities, mitochondrial biomass and functionality, and decreased intracellular ROS levels and biomarkers of protein, lipid and DNA damage (P<0.05). Furthermore, a significant (P<0.05) increase in the expression of the AMPK cascade genes, involved in mitochondrial biogenesis and antioxidant defences, was also detected after strawberry intake. These in vivo results were then verified in vitro on HepG2 cells, confirming the involvement of AMPK in the beneficial effects exerted by strawberry against aging progression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pedruzzi, Ivo; Bürckert, Niels; Egger, Pascal; De Virgilio, Claudio
2000-01-01
The Saccharomyces cerevisiae protein kinase Rim15 was identified previously as a component of the Ras/cAMP pathway acting immediately downstream of cAMP-dependent protein kinase (cAPK) to control a broad range of adaptations in response to nutrient limitation. Here, we show that the zinc finger protein Gis1 acts as a dosage-dependent suppressor of the rim15Δ defect in nutrient limitation-induced transcriptional derepression of SSA3. Loss of Gis1 results in a defect in transcriptional derepression upon nutrient limitation of various genes that are negatively regulated by the Ras/cAMP pathway (e.g. SSA3, HSP12 and HSP26). Tests of epistasis as well as transcriptional analyses of Gis1-dependent expression indicate that Gis1 acts in this pathway downstream of Rim15 to mediate transcription from the previously identified post-diauxic shift (PDS) element. Accordingly, deletion of GIS1 partially suppresses, and overexpression of GIS1 exacerbates the growth defect of mutant cells that are compromised for cAPK activity. Moreover, PDS element-driven expression, which is negatively regulated by the Ras/cAMP pathway and which is induced upon nutrient limitation, is almost entirely dependent on the presence of Gis1. PMID:10835355
Demuyser, Liesbeth; Van Genechten, Wouter; Mizuno, Hideaki; Colombo, Sonia; Van Dijck, Patrick
2018-05-29
The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway is central to signal transduction in many organisms. In pathogenic fungi such as Candida albicans, this signalling cascade has proven to be involved in several processes, such as virulence, indicating its potential importance in antifungal drug discovery. Candida glabrata is an upcoming pathogen of the same species, yet information regarding the role of cAMP-PKA signalling in virulence is largely lacking. To enable efficient monitoring of cAMP-PKA activity in this pathogen, we here present the usage of two FRET-based biosensors. Both variations in the activity of PKA and the quantity of cAMP can be detected in a time-resolved manner, as we exemplify by glucose-induced activation of the pathway. We also present information on how to adequately process and analyse the data in a mathematically correct and physiologically relevant manner. These sensors will be of great benefit for scientists interested in linking the cAMP-PKA signalling cascade to downstream processes, such as virulence, possibly in a host environment. © 2018 John Wiley & Sons Ltd.
Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik
2014-08-08
GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Fructose 2,6-bisphosphate and 6-phosphofructo-2-kinase during liver regeneration.
Rosa, J L; Ventura, F; Carreras, J; Bartrons, R
1990-01-01
Glycogen and fructose 2,6-bisphosphate levels in rat liver decreased quickly after partial hepatectomy. After 7 days the glycogen level was normalized and fructose 2,6-bisphosphate concentration still remained low. The 'active' (non-phosphorylated) form of 6-phosphofructo-2-kinase varied in parallel with fructose 2,6-bisphosphate levels, whereas the 'total' activity of the enzyme decreased only after 24 h, similarly to glucokinase. The response of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from hepatectomized rats (96 h) to sn-glycerol 3-phosphate and to cyclic AMP-dependent protein kinase was different from that of the enzyme from control animals and similar to that of the foetal isoenzyme. PMID:2173548
Kaihara, Kelly A.; Dickson, Lorna M.; Jacobson, David A.; Tamarina, Natalia; Roe, Michael W.; Philipson, Louis H.; Wicksteed, Barton
2013-01-01
Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose. PMID:23349500
Prakasam, Gopinath; Singh, Rajnish Kumar; Iqbal, Mohammad Askandar; Saini, Sunil Kumar; Tiku, Ashu Bhan; Bamezai, Rameshwar N K
2017-09-15
Preferential expression of the low-activity (dimeric) M2 isoform of pyruvate kinase (PK) over its constitutively active splice variant M1 isoform is considered critical for aerobic glycolysis in cancer cells. However, our results reported here indicate co-expression of PKM1 and PKM2 and their possible physical interaction in cancer cells. We show that knockdown of either PKM1 or PKM2 differentially affects net PK activity, viability, and cellular ATP levels of the lung carcinoma cell lines H1299 and A549. The stable knockdown of PK isoforms in A549 cells significantly reduced the cellular ATP level, whereas in H1299 cells the level of ATP was unaltered. Interestingly, the PKM1/2 knockdown in H1299 cells activated AMP-activated protein kinase (AMPK) signaling and stimulated mitochondrial biogenesis and autophagy to maintain energy homeostasis. In contrast, knocking down either of the PKM isoforms in A549 cells lacking LKB1, a serine/threonine protein kinase upstream of AMPK, failed to activate AMPK and sustain energy homeostasis and resulted in apoptosis. Moreover, in a similar genetic background of silenced PKM1 or PKM2, the knocking down of AMPKα1/2 catalytic subunit in H1299 cells induced apoptosis. Our findings help explain why previous targeting of PKM2 in cancer cells to control tumor growth has not met with the expected success. We suggest that this lack of success is because of AMPK-mediated energy metabolism rewiring, protecting cancer cell viability. On the basis of our observations, we propose an alternative therapeutic strategy of silencing either of the PKM isoforms along with AMPK in tumors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Avni, Dorit; Philosoph, Amir; Meijler, Michael M; Zor, Tsaffrir
2010-03-01
The synthetic phospho-ceramide analogue-1 (PCERA-1) down-regulates production of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) and up-regulates production of the anti-inflammatory cytokine interleukin-10 (IL-10) in lipopolysaccharide (LPS) -stimulated macrophages. We have previously reported that PCERA-1 increases cyclic adenosine monophosphate (cAMP) levels. The objective of this study was to delineate the signalling pathway leading from PCERA-1 via cAMP to modulation of TNF-alpha and IL-10 production. We show here that PCERA-1 elevates intra-cellular cAMP level in a guanosine triphosphate-dependent manner in RAW264.7 macrophages. The cell-permeable dibutyryl cAMP was able to mimic the effects of PCERA-1 on cytokine production, whereas 8-chloro-phenylthio-methyladenosine-cAMP, which specifically activates the exchange protein directly activated by cAMP (EPAC) but not protein kinase A (PKA), failed to mimic PCERA-1 activities. Consistently, the PKA inhibitor H89 efficiently blocked PCERA-1-driven cytokine modulation as well as PCERA-1-stimulated phosphorylation of cAMP response element binding protein (CREB) on Ser-133. Finally, PCERA-1 activated cAMP-responsive transcription of a luciferase reporter, in synergism with the phosphodiesterase (PDE)-4 inhibitor rolipram. Our results suggest that PCERA-1 activates a G(s) protein-coupled receptor, leading to elevation of cAMP, which acts via the PKA-CREB pathway to promote TNF-alpha suppression and IL-10 induction in LPS-stimulated macrophages. Identification of the PCERA-1 receptor is expected to set up a new target for development of novel anti-inflammatory drugs.
Mackenzie, Ruth M; Salt, Ian P; Miller, William H; Logan, Angela; Ibrahim, Hagar A; Degasperi, Andrea; Dymott, Jane A; Hamilton, Carlene A; Murphy, Michael P; Delles, Christian; Dominiczak, Anna F
2013-03-01
The aim of the present study was to determine whether the endothelial dysfunction associated with CAD (coronary artery disease) and T2D (Type 2 diabetes mellitus) is concomitant with elevated mtROS (mitochondrial reactive oxygen species) production in the endothelium and establish if this, in turn, regulates the activity of endothelial AMPK (AMP-activated protein kinase). We investigated endothelial function, mtROS production and AMPK activation in saphenous veins from patients with advanced CAD. Endothelium-dependent vasodilation was impaired in patients with CAD and T2D relative to those with CAD alone. Levels of mitochondrial H(2)O(2) and activity of AMPK were significantly elevated in primary HSVECs (human saphenous vein endothelial cells) from patients with CAD and T2D compared with those from patients with CAD alone. Incubation with the mitochondria-targeted antioxidant, MitoQ(10) significantly reduced AMPK activity in HSVECs from patients with CAD and T2D but not in cells from patients with CAD alone. Elevated mtROS production in the endothelium of patients with CAD and T2D increases AMPK activation, supporting a role for the kinase in defence against oxidative stress. Further investigation is required to determine whether pharmacological activators of AMPK will prove beneficial in the attenuation of endothelial dysfunction in patients with CAD and T2D.
Michael, Dan; Martin, Kelsey C.; Seger, Rony; Ning, Ming-Ming; Baston, Rene; Kandel, Eric R.
1998-01-01
Long-term facilitation of the connections between the sensory and motor neurons of the gill-withdrawal reflex in Aplysia requires five repeated pulses of serotonin (5-HT). The repeated pulses of 5-HT initiate a cascade of gene activation that leads ultimately to the growth of new synaptic connections. Several genes in this process have been identified, including the transcriptional regulators apCREB-1, apCREB-2, apC/EBP, and the cell adhesion molecule apCAM, which is thought to be involved in the formation of new synaptic connections. Here we report that the transcriptional regulators apCREB-2 and apC/EBP, as well as a peptide derived from the cytoplasmic domain of apCAM, are phosphorylated in vitro by Aplysia mitogen-activated protein kinase (apMAPK). We have cloned the cDNA encoding apMAPK and show that apMAPK activity is increased in sensory neurons treated with repeated pulses of 5-HT and by the cAMP pathway. These results suggest that apMAPK may participate with cAMP-dependent protein kinase during long-term facilitation in sensory cells by modifying some of the key elements involved in the consolidation of short- to long-lasting changes in synaptic strength. PMID:9465108
Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan
2015-03-25
This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.
McNicholl, E. Tyler; Das, Rahul; SilDas, Soumita; Taylor, Susan S.; Melacini, Giuseppe
2010-01-01
Protein kinase A (PKA) is the main receptor for the universal cAMP second messenger. PKA is a tetramer with two catalytic (C) and two regulatory (R) subunits, each including two tandem cAMP binding domains, i.e. CBD-A and -B. Structural investigations of RIα have revealed that although CBD-A plays a pivotal role in the cAMP-dependent inhibition of C, the main function of CBD-B is to regulate the access of cAMP to site A. To further understand the mechanism underlying the cross-talk between CBD-A and -B, we report here the NMR investigation of a construct of R, RIα-(119–379), which unlike previous fragments characterized by NMR, spans in full both CBDs. Our NMR studies were also extended to two mutants, R209K and the corresponding R333K, which severely reduce the affinity of cAMP for CBD-A and -B, respectively. The comparative NMR analysis of wild-type RIα-(119–379) and of the two domain silencing mutations has led to the definition at an unprecedented level of detail of both intra- and interdomain allosteric networks, revealing several striking differences between the two CBDs. First, the two domains, although homologous in sequence and structure, exhibit remarkably different responses to the R/K mutations especially at the β2-3 allosteric “hot spot.” Second, although the two CBDs are reciprocally coupled at the level of local unfolding of the hinge, the A-to-B and B-to-A pathways are dramatically asymmetrical at the level of global unfolding. Such an asymmetric interdomain cross-talk ensures efficiency and robustness in both the activation and de-activation of PKA. PMID:20202931
Dolz, Manuel; Bailbé, Danielle; Giroix, Marie-Hélène; Calderari, Sophie; Gangnerau, Marie-Noelle; Serradas, Patricia; Rickenbach, Katharina; Irminger, Jean-Claude; Portha, Bernard
2005-11-01
Because acetylcholine (ACh) is a recognized potentiator of glucose-stimulated insulin release in the normal beta-cell, we have studied ACh's effect on islets of the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes. We first verified that ACh was able to restore the insulin secretory glucose competence of the GK beta-cell. Then, we demonstrated that in GK islets 1) ACh elicited a first-phase insulin release at low glucose, whereas it had no effect in Wistar; 2) total phospholipase C activity, ACh-induced inositol phosphate production, and intracellular free calcium concentration ([Ca2+]i) elevation were normal; 3) ACh triggered insulin release, even in the presence of thapsigargin, which induced a reduction of the ACh-induced [Ca2+]i response (suggesting that ACh produces amplification signals that augment the efficacy of elevated [Ca2+]i on GK exocytosis); 4) inhibition of protein kinase C did not affect [Ca2+]i nor the insulin release responses to ACh; and 5) inhibition of cAMP-dependent protein kinases (PKAs), adenylyl cyclases, or cAMP generation, while not affecting the [Ca2+]i response, significantly lowered the insulinotropic response to ACh (at low and high glucose). In conclusion, ACh acts mainly through activation of the cAMP/PKA pathway to potently enhance Ca2+-stimulated insulin release in the GK beta-cell and, in doing so, normalizes its defective glucose responsiveness.
Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases.
Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Rodrigues, Américo; Martinho, Cláudia; Adamo, Mattia; Elias, Carlos A; Baena-González, Elena
2014-01-01
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.
Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases
Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Rodrigues, Américo; Martinho, Cláudia; Adamo, Mattia; Elias, Carlos A.; Baena-González, Elena
2014-01-01
The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems. PMID:24904600
Iacovelli, L; Capobianco, L; Iula, M; Di Giorgi Gerevini, V; Picascia, A; Blahos, J; Melchiorri, D; Nicoletti, F; De Blasi, A
2004-05-01
We examined the role of G-protein coupled receptor kinase-2 (GRK2) in the homologous desensitization of mGlu4 metabotropic glutamate receptors transiently expressed in human embryonic kidney (HEK) 293 cells. Receptor activation with the agonist l-2-amino-4-phosphonobutanoate (l-AP4) stimulated at least two distinct signaling pathways: inhibition of cAMP formation and activation of the mitogen-activated protein kinase (MAPK) pathway [assessed by Western blot analysis of phosphorylated extracellular signal-regulated kinase (ERK) 1 and 2]. Activation of both pathways was attenuated by pertussis toxin. Overexpression of GRK2 (but not GRK4) largely attenuated the stimulation of the MAPK pathway by l-AP4, whereas it slightly potentiated the inhibition of FSK-stimulated cAMP formation. Transfection with a kinase-dead mutant of GRK2 (GRK2-K220R) or with the C-terminal fragment of GRK2 also reduced the mGlu4-mediated stimulation of MAPK, suggesting that GRK2 binds to the Gbetagamma subunits to inhibit signal propagation toward the MAPK pathway. This was confirmed by the evidence that GRK2 coimmunoprecipitated with Gbetagamma subunits in an agonist-dependent manner. Finally, neither GRK2 nor its kinase-dead mutant had any effect on agonist-induced mGlu4 receptor internalization in HEK293 cells transiently transfected with GFP-tagged receptors. Agonist-dependent internalization was instead abolished by a negative-dominant mutant of dynamin, which also reduced the stimulation of MAPK pathway by l-AP4. We speculate that GRK2 acts as a "switch molecule" by inhibiting the mGlu4 receptor-mediated stimulation of MAPK and therefore directing the signal propagation toward the inhibition of adenylyl cyclase.
3-phosphoglycerate kinase from Hydrogenomonas facilis.
NASA Technical Reports Server (NTRS)
Mcfadden, B. A.; Schuster, E.
1972-01-01
Description of studies of the kinetics of heat inactivation of phosphoglycerate kinase in the soluble fraction from Hydrogenomonas facilis, its extensive purification, and inhibition by adenosine monophosphate (AMP). No evidence was found for an enzyme which catalyzes adenosine-triphosphate-dependent conversion of 3-phosphoglycerate to 1,3-diphosphoglycerate, AMP, and phosphate.
Identification and characterization of an alternative promoter of the human PGC-1{alpha} gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshioka, Toyo; Inagaki, Kenjiro; Noguchi, Tetsuya, E-mail: noguchi@med.kobe-u.ac.jp
2009-04-17
The transcriptional regulator peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1{alpha} expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1{alpha} transcript (designated PGC-1{alpha}-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1{alpha}-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca{sup 2+}- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated proteinmore » kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1{alpha}-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1{alpha} expression in contracting muscle.« less
Puukila, Stephanie; Bryan, Sean; Laakso, Anna; Abdel-Malak, Jessica; Gurney, Carli; Agostino, Adrian; Belló-Klein, Adriane; Prasad, Kailash; Khaper, Neelam
2015-01-01
Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload. PMID:25822525
Puukila, Stephanie; Bryan, Sean; Laakso, Anna; Abdel-Malak, Jessica; Gurney, Carli; Agostino, Adrian; Belló-Klein, Adriane; Prasad, Kailash; Khaper, Neelam
2015-01-01
Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG), a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.
Ogata, Junichi; Minami, Kouichiro; Segawa, Kayoko; Yamamoto, Chieko; Kim, Sung-Teh; Shigematsu, Akio
2003-11-01
A forskolin derivative, colforsin daropate hydrochloride (CDH), has been introduced as an inotropic agent that acts directly on adenylate cyclase to increase intracellular cyclic AMP (cAMP) levels and ventricular contractility, resulting in positive inotropic activity. We investigated the effects of CDH on rat mesangial cell (MC) proliferation. CDH (10(-7)-10(-5) mol/l) inhibited [(3)H]thymidine incorporation into cultured rat MCs in a concentration-dependent manner. CDH (10(-7)-10(-5) mol/l) also decreased cell numbers in a similar manner, and stimulated cAMP accumulation in MCs in a concentration-dependent manner. A protein kinase A inhibitor, H-89, abolished the inhibitory effects of CDH on MC mitogenesis. These findings suggest that CDH would inhibit the proliferation of rat MCs via the cAMP pathway. Copyright 2003 S. Karger AG, Basel
YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages.
Hwang, Tsong-Long; Tang, Ming-Chi; Kuo, Liang-Mou; Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching
2012-04-15
Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E₁ (a stable PGE₂ analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE₁- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE₁ significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE₁-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE₁ also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE₁-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Copyright © 2012 Elsevier Inc. All rights reserved.
Anchored phosphatases modulate glucose homeostasis
Hinke, Simon A; Navedo, Manuel F; Ulman, Allison; Whiting, Jennifer L; Nygren, Patrick J; Tian, Geng; Jimenez-Caliani, Antonio J; Langeberg, Lorene K; Cirulli, Vincenzo; Tengholm, Anders; Dell'Acqua, Mark L; Santana, L Fernando; Scott, John D
2012-01-01
Endocrine release of insulin principally controls glucose homeostasis. Nutrient-induced exocytosis of insulin granules from pancreatic β-cells involves ion channels and mobilization of Ca2+ and cyclic AMP (cAMP) signalling pathways. Whole-animal physiology, islet studies and live-β-cell imaging approaches reveal that ablation of the kinase/phosphatase anchoring protein AKAP150 impairs insulin secretion in mice. Loss of AKAP150 impacts L-type Ca2+ currents, and attenuates cytoplasmic accumulation of Ca2+ and cAMP in β-cells. Yet surprisingly AKAP150 null animals display improved glucose handling and heightened insulin sensitivity in skeletal muscle. More refined analyses of AKAP150 knock-in mice unable to anchor protein kinase A or protein phosphatase 2B uncover an unexpected observation that tethering of phosphatases to a seven-residue sequence of the anchoring protein is the predominant molecular event underlying these metabolic phenotypes. Thus anchored signalling events that facilitate insulin secretion and glucose homeostasis may be set by AKAP150 associated phosphatase activity. PMID:22940692
Regulation of renal urea transport by vasopressin.
Sands, Jeff M; Blount, Mitsi A; Klein, Janet D
2011-01-01
Terrestrial life would be miserable without the ability to concentrate urine. Production of concentrated urine requires complex interactions among the nephron segments and vasculature in the kidney medulla. In addition to water channels (aquaporins) and sodium transporters, urea transporters are critically important to the theories proposed to explain the physiologic processes occurring when urine is concentrated. Vasopressin (anti-diuretic hormone) is the key hormone regulating the production of concentrated urine. Vasopressin rapidly increases water and urea transport in the terminal inner medullary collecting duct (IMCD). Vasopressin rapidly increases urea permeability in the IMCD through increases in phosphorylation and apical plasma-membrane accumulation of the urea transporter A1 (UT-A1). Vasopressin acts through two cAMP-dependent signaling pathways in the IMCD: protein kinase A and exchange protein activated by cAMP Epac. Protein kinase A phosphorylates UT-A1 at serines 486 and 499. In summary, vasopressin regulates urea transport acutely by increasing UT-A1 phosphorylation and the apical plasma-membrane accumulation of UT-A1 through two cAMP-dependent pathways.
Cellular progesterone receptor phosphorylation in response to ligands activating protein kinases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, K.V.; Peralta, W.D.; Greene, G.L.
1987-08-14
Progesterone receptors were immunoprecipitated with monoclonal antibodies KD68 from lysates of human breast carcinoma T47D cells labelled to steady state specific activity with /sup 32/Pi. The 120 kDa /sup 32/P-labelled progesterone receptor band was resolved by polyacrylamide gel electrophoresis and identified by autoradiography. Phosphoamino acid analysis revealed serine phosphorylation, but no threonine or tyrosine phosphorylation. Treatment of the /sup 32/Pi-labelled cells with EGF, TPA or dibutyryl cAMP had no significant quantitative effect on progesterone receptor phosphorylation, though the EGF receptor and the cAMP-dependent protein kinases have been reported to catalyze phosphorylation of purified avian progesterone receptor preparations in cell freemore » systems. Progesterone receptor phosphorylation on serine residues was increased by 2-fold in cells treated with 10 nM progesterone; EGF had no effect on progesterone-mediated progesterone receptor phosphorylation.« less
The ABCD's of 5'-adenosine monophosphate-activated protein kinase and adrenoleukodystrophy.
Weidling, Ian; Swerdlow, Russell H
2016-07-01
This Editorial highlights a study by Singh and coworkers in the current issue of Journal of Neurochemistry, in which the authors present additional evidence that AMPKα1 is reduced in X-linked adrenoleukodystrophy (X-ALD). They make a case for increasing AMPKα1 activity for therapeutic purposes in this disease, and indicate how this goal may be achieved. Read the highlighted article 'Metformin-induced mitochondrial function and ABCD2 up regulation in X-linked adrenoleukodystrophy involves AMP activated protein kinase' on page 86. © 2016 International Society for Neurochemistry.
Kang, Seong-Il; Shin, Hye-Sun; Kim, Se-Jae
2015-01-01
Sinensetin is a rare polymethoxylated flavone (PMF) found in certain citrus fruits. In this study, we investigated the effects of sinensetin on lipid metabolism in 3T3-L1 cells. Sinensetin promoted adipogenesis in 3T3-L1 preadipocytes growing in incomplete differentiation medium, which did not contain 3-isobutyl-1-methylxanthine. Sinensetin up-regulated expression of the adipogenic transcription factors peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and sterol regulatory element-binding protein 1c. It also potentiated expression of C/EBPβ and activation of cAMP-responsive element-binding protein. Sinensetin enhanced activation of protein kinase A and increased intracellular cAMP levels in 3T3-L1 preadipocytes. In mature 3T3-L1 adipocytes, sinensetin stimulated lipolysis via a cAMP pathway. Taken together, these results suggest that sinensetin enhances adipogenesis and lipolysis by increasing cAMP levels in adipocytes.
NASA Technical Reports Server (NTRS)
Datta, N.; Schell, M. B.; Roux, S. J.
1987-01-01
We have previously demonstrated that spermine stimulates the phosphorylation of a 47 kilodalton nuclear polypeptide from pea plumules (N Datta, LK Hardison, SJ Roux 1986 Plant Physiol 82: 681-684). In this paper we report that spermine stimulates the activity of a cyclic AMP independent casein kinase, partially purified from a chromatin fraction of pea plumule nuclei. This effect of spermine was substrate specific; i.e. with casein as substrate, spermine stimulated the kinase activity, and with phosvitin as substrate, spermine completely inhibited the activity. The stimulation by spermine of the casein kinase was, in part, due to the lowering of the Mg2+ requirement of the kinase. Heparin could partially inhibit this casein kinase activity and spermine completely overcame this inhibition. By further purification of the casein kinase extract on high performance liquid chromatography, we fractionated it into an NI and an NII kinase. Spermine stimulated the NII kinase by 5- to 6-fold but had no effect on the NI kinase. Using [gamma-32P]GTP, we have shown that spermine promotes the phosphorylation of the 47 kilodalton polypeptide(s) in isolated nuclei, at least in part by stimulating an NII kinase.
AMPK Agonist AICAR Improves Cognition and Motor Coordination in Young and Aged Mice
ERIC Educational Resources Information Center
Kobilo, Tali; Guerrieri, Davide; Zhang, Yongqing; Collica, Sarah C.; Becker, Kevin G.; van Praag, Henriette
2014-01-01
Normal aging can result in a decline of memory and muscle function. Exercise may prevent or delay these changes. However, aging-associated frailty can preclude physical activity. In young sedentary animals, pharmacological activation of AMP-activated protein kinase (AMPK), a transcriptional regulator important for muscle physiology, enhanced…
Regulation of AMP-activated protein kinase by natural and synthetic activators
Grahame Hardie, David
2015-01-01
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function. PMID:26904394
Queiroz, Glória; Quintas, Clara; Talaia, Carlos; Gonçalves, Jorge
2004-08-01
In the prostatic portion of rat vas deferens, the non-selective adenosine receptor agonist NECA (0.1-30 microM), but not the A(2A) agonist CGS 21680 (0.001-10 microM), caused a facilitation of electrically evoked noradrenaline release (up to 43 +/- 4%), when inhibitory adenosine A(1) receptors were blocked. NECA-elicited facilitation of noradrenaline release was prevented by the A(2B) receptor-antagonist MRS 1754, enhanced by preventing cyclic-AMP degradation with rolipram, abolished by the protein kinase A inhibitors H-89, KT 5720 and cyclic-AMPS-Rp and attenuated by the protein kinase C inhibitors Ro 32-0432 and calphostin C. The adenosine uptake inhibitor NBTI also elicited a facilitation of noradrenaline release; an effect that was abolished by adenosine deaminase and attenuated by MRS 1754, by inhibitors of the extracellular nucleotide metabolism and by blockade of alpha(1)-adrenoceptors and P2X receptors with prazosin and NF023, respectively. It was concluded that adenosine A(2B) receptors are involved in a facilitation of noradrenaline release in the prostatic portion of rat vas deferens that can be activated by adenosine formed by extracellular catabolism of nucleotides. The receptors seem to be coupled to the adenylyl cyclase-protein kinase A pathway but activation of the protein kinase C by protein kinase A, may also contribute to the adenosine A(2B) receptor-mediated facilitation of noradrenaline release.
A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).
Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F
1996-01-01
Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.
Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion
Schwede, Frank; Chepurny, Oleg G.; Kaufholz, Melanie; Bertinetti, Daniela; Leech, Colin A.; Cabrera, Over; Zhu, Yingmin; Mei, Fang; Cheng, Xiaodong; Manning Fox, Jocelyn E.; MacDonald, Patrick E.; Genieser, Hans-G.; Herberg, Friedrich W.
2015-01-01
cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3′,5′-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells. PMID:26061564
Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao
2018-01-01
A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea. A novel pathogenicity-related gene BcKMO, which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO-complementing mutant (BCG183/BcKMO) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/BcKMO. Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H2O2, and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1, Pka2, PkaR, Bcg2, Bcg3, bmp1, and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea. Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea. PMID:29867912
Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao
2018-01-01
A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea . A novel pathogenicity-related gene BcKMO , which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO -complementing mutant (BCG183/ BcKMO ) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/ BcKMO . Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H 2 O 2 , and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1 , Pka2 , PkaR , Bcg2 , Bcg3 , bmp1 , and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea . Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea .
Modulation of PPAR activity via phosphorylation
Burns, Katherine A.; Vanden Heuvel, John P.
2009-01-01
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of transcription factors that respond to specific ligands by altering gene expression in a cell-, developmental- and sex-specific manner. Three subtypes of this receptor have been discovered (PPARα, β and γ), each apparently evolving to fulfill different biological niches. PPARs control a variety of target genes involved in lipid homeostasis, diabetes and cancer. Similar to other nuclear receptors, the PPARs are phosphoproteins and their transcriptional activity is affected by cross-talk with kinases and phosphatases. Phosphorylation by the mitogen-activated protein kinases (ERK- and p38-MAPK), Protein Kinase A and C (PKA, PKC), AMP Kinase (AMPK) and glycogen synthase kinase-3 (GSK3) affect their activity in a ligand-dependent or -independent manner. The effects of phosphorylation depend on the cellular context, receptor subtype and residue metabolized which can be manifested at several steps in the PPAR activation sequence including ligand affinity, DNA binding, coactivator recruitment and proteasomal degradation. The review will summarize the known PPAR kinases that directly act on these receptors, the sites affected and the result of this modification on receptor activity. PMID:17560826
Chay, Andrew; Zamparo, Ilaria; Koschinski, Andreas; Zaccolo, Manuela; Blackwell, Kim T.
2016-01-01
Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory. PMID:26901880
The role of c-Jun in controlling the EPAC1-dependent induction of the SOCS3 gene in HUVECs.
Wiejak, Jolanta; Dunlop, Julia; Yarwood, Stephen J
2014-05-02
The cyclic AMP sensor, EPAC1, activates AP1-mediated transcription in HUVECs. Correspondingly, induction of the SOCS3 minimal promoter by EPAC1 requires a single AP1 site that constitutively binds phosphorylated (Ser63) c-Jun in DNA-pull-down assays. c-Jun (Ser63) becomes further phosphorylated following cyclic AMP stimulation and specific activation of protein kinase A (PKA), but not through selective activation of EPAC1. Moreover, despite a requirement for c-Jun for SOCS3 induction in fibroblasts, phospho-null c-Jun (Ser63/73Ala) had little effect on SOCS3 induction by cyclic AMP in HUVECs. AP1 activation and SOCS3 induction by EPAC1 in HUVECs therefore occur independently of c-Jun phosphorylation on Ser63. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Tain, You-Lin; Hsu, Chien-Ning
2018-06-12
Suboptimal early-life conditions affect the developing kidney, resulting in long-term programming effects, namely renal programming. Adverse renal programming increases the risk for developing hypertension and kidney disease in adulthood. Conversely, reprogramming is a strategy aimed at reversing the programming processes in early life. AMP-activated protein kinase (AMPK) plays a key role in normal renal physiology and the pathogenesis of hypertension and kidney disease. This review discusses the regulation of AMPK in the kidney and provides hypothetical mechanisms linking AMPK to renal programming. This will be followed by studies targeting AMPK activators like metformin, resveratrol, thiazolidinediones, and polyphenols as reprogramming strategies to prevent hypertension and kidney disease. Further studies that broaden our understanding of AMPK isoform- and tissue-specific effects on renal programming are needed to ultimately develop reprogramming strategies. Despite the fact that animal models have provided interesting results with regard to reprogramming strategies targeting AMPK signaling to protect against hypertension and kidney disease with developmental origins, these results await further clinical translation.
Hippe, Hans-Joerg; Wieland, Thomas
2006-08-01
The activation of heterotrimeric G proteins induced by G protein coupled receptors (GPCR) is generally believed to occur by a GDP/GTP exchange at the G protein alpha -subunit. Nevertheless, nucleoside diphosphate kinase (NDPK) and the beta-subunit of G proteins (Gbeta) participate in G protein activation by phosphate transfer reactions leading to the formation of GTP from GDP. Recent work elucidated the role of these reactions. Apparently, the NDPK isoform B (NDPK B) forms a complex with Gbetagamma dimers in which NDPK B acts as a histidine kinase phosphorylating Gbeta at His266. Out of this high energetic phosphoamidate bond the phosphate can be transferred specifically onto GDP. The formed GTP binds to the G protein alpha-subunit and thus activates the respective G protein. Evidence is presented, that this process occurs independent of the classical GPCR-induced GTP/GTP exchange und thus contributes, e.g. to the regulation of basal cAMP synthesis in cells.
Kapas, S; Hinson, J P
1996-01-01
1. The experiments described in this study were carried out to investigate the role of tyrosine kinase in the acute adrenal response to peptide hormone stimulation, and to determine whether the activity of this kinase may be subject to regulation by other intracellular signalling mechanisms in the adrenal zona glomerulosa. 2. Previous studies from this laboratory have shown that angiotensin II stimulates tyrosine kinase activity in the rat adrenal cortex. This study has shown, for the first time, that endothelin-1 also stimulates tyrosine kinase activity in this tissue. 3. Using the specific inhibitor of protein kinase C (PKC) activity, Ro 31-8220, we have shown that stimulation of tyrosine kinase activity, in response to endothelin-1, angiotensin II or the phorbol ester phorbol 12-myristate 13-acetate, is at least partly dependent on increased PKC activity. 4. The data presented also provide further evidence of cross-talk between signalling systems in the adrenal cortex. Corticotrophin and its intracellular second messenger, cyclic AMP, significantly attenuate the increment in tyrosine kinase activity seen in response to each of the effectors used. 5. The results of this study provide important new evidence for the regulation of protein kinases by other intracellular second messenger systems. PMID:8611168
Chang, Chao C; Lu, Wan J; Chiang, Cheng W; Jayakumar, Thanasekaran; Ong, Eng T; Hsiao, George; Fong, Tsorng H; Chou, Duen S; Sheu, Joen R
2010-12-01
Sesamol is a potent phenolic antioxidant which possesses antimutagenic, antihepatotoxic and antiaging properties. Platelet activation is relevant to a variety of acute thrombotic events and coronary heart diseases. There have been few studies on the effect of sesamol on platelets. Therefore, the aim of this study was to systematically examine the detailed mechanisms of sesamol in preventing platelet activation in vitro and in vivo. Sesamol (2.5-5 μM) exhibited more potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists. Sesamol inhibited collagen-stimulated platelet activation accompanied by [Ca(2+)](i) mobilization, thromboxane A(2) (TxA(2)) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) phosphorylation in washed platelets. Sesamol markedly increased cAMP and cGMP levels, endothelial nitric oxide synthase (eNOS) expression and NO release, as well as vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the sesamol-mediated inhibitory effects on platelet aggregation and p38 MAPK phosphorylation, and sesamol-mediated stimulatory effects on VASP and eNOS phosphorylation, and NO release. Sesamol also reduced hydroxyl radical (OH(●)) formation in platelets. In an in vivo study, sesamol (5 mg/kg) significantly prolonged platelet plug formation in mice. The most important findings of this study demonstrate for the first time that sesamol possesses potent antiplatelet activity, which may involve activation of the cAMP-eNOS/NO-cGMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA(2) cascade, and, finally, inhibition of platelet aggregation. Sesamol treatment may represent a novel approach to lowering the risk of or improving function in thromboembolism-related disorders. Copyright © 2010 Elsevier Inc. All rights reserved.
Priyatno, Tri Puji; Abu Bakar, Farah Diba; Kamaruddin, Nurhaida; Mahadi, Nor Muhammad; Abdul Murad, Abdul Munir
2012-01-01
The cyclic AMP- (cAMP-) dependent protein kinase A signaling pathway is one of the major signaling pathways responsible for regulation of the morphogenesis and pathogenesis of several pathogenic fungi. To evaluate the role of this pathway in the plant pathogenic fungus, Colletotrichum gloeosporioides, the gene encoding the catalytic subunit of cAMP-dependent protein kinase A, CgPKAC, was cloned, inactivated, and the mutant was analyzed. Analysis of the Cgpkac mutant generated via gene replacement showed that the mutants were able to form appressoria; however, their formation was delayed compared to the wild type. In addition, the mutant conidia underwent bipolar germination after appressoria formation, but no appressoria were generated from the second germ tube. The mutants also showed reduced ability to adhere to a hydrophobic surface and to degrade lipids localized in the appressoria. Based on the number of lesions produced during a pathogenicity test, the mutant's ability to cause disease in healthy mango fruits was reduced, which may be due to failure to penetrate into the fruit. These findings indicate that cAMP-dependent protein kinase A has an important role in regulating morphogenesis and is required for pathogenicity of C. gloeosporioides. PMID:22666136
Lin, Hsiao-Hsien; Lee, Tsung-Yih; Liu, Ting-Wei; Tseng, Ching-Ping
2017-07-01
Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27 kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells. Copyright © 2017. Published by Elsevier B.V.
Resveratrol stimulates AMP kinase activity in neurons.
Dasgupta, Biplab; Milbrandt, Jeffrey
2007-04-24
Resveratrol is a polyphenol produced by plants that has multiple beneficial activities similar to those associated with caloric restriction (CR), such as increased life span and delay in the onset of diseases associated with aging. CR improves neuronal health, and the global beneficial effects of CR have been postulated to be mediated by the nervous system. One key enzyme thought to be activated during CR is the AMP-activated kinase (AMPK), a sensor of cellular energy levels. AMPK is activated by increases in the cellular AMP:ATP ratio, whereupon it functions to help preserve cellular energy. In this regard, the regulation of dietary food intake by hypothalamic neurons is mediated by AMPK. The suppression of nonessential energy expenditure by activated AMPK along with the CR mimetic and neuroprotective properties of resveratrol led us to hypothesize that neuronal activation of AMPK could be an important component of resveratrol activity. Here, we show that resveratrol activated AMPK in Neuro2a cells and primary neurons in vitro as well as in the brain. Resveratrol and the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) promoted robust neurite outgrowth in Neuro2a cells, which was blocked by genetic and pharmacologic inhibition of AMPK. Resveratrol also stimulated mitochondrial biogenesis in an AMPK-dependent manner. Resveratrol-stimulated AMPK activity in neurons depended on LKB1 activity but did not require the NAD-dependent protein deacetylase SIRT1 during this time frame. These findings suggest that neuronal activation of AMPK by resveratrol could affect neuronal energy homeostasis and contribute to the neuroprotective effects of resveratrol.
Jun, Hee-jin; Lee, Ji Hae; Cho, Bo-Ram; Seo, Woo-Duck; Kang, Hang-Won; Kim, Dong-Woo; Cho, Kang-Jin; Lee, Sung-Joon
2012-10-26
The in vitro effects on melanogenesis of γ-oryzanol (1), a rice bran-derived phytosterol, were investigated. The melanin content in B16F1 cells was significantly and dose-dependently reduced (-13% and -28% at 3 and 30 μM, respectively). Tyrosinase enzyme activity was inhibited by 1 both in a cell-free assay and when analyzed based on the measurement of cellular tyrosinase activity. Transcriptome analysis was performed to investigate the biological pathways altered by 1, and it was found that gene expression involving protein kinase A (PKA) signaling was markedly altered. Subsequent analyses revealed that 1 stimulation in B16 cells reduced cytosolic cAMP concentrations, PKA activity (-13% for cAMP levels and -40% for PKA activity), and phosphorylation of the cAMP-response element binding protein (-57%), which, in turn, downregulated the expression of microphthalmia-associated transcription factor (MITF; -59% for mRNA and -64% for protein), a key melanogenic gene transcription factor. Accordingly, tyrosinase-related protein 1 (TRP-1; -69% for mRNA and -82% for protein) and dopachrome tautomerase (-51% for mRNA and -92% for protein) in 1-stimulated B16F1 cells were also downregulated. These results suggest that 1 has dual inhibitory activities for cellular melanogenesis by inhibiting tyrosinase enzyme activity and reducing MITF and target genes in the PKA-dependent pathway.
Nixon, Benjamin R.; Thawornkaiwong, Ariyoporn; Jin, Janel; Brundage, Elizabeth A.; Little, Sean C.; Davis, Jonathan P.; Solaro, R. John; Biesiadecki, Brandon J.
2012-01-01
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme central to the regulation of metabolic homeostasis. In the heart AMPK is activated during cardiac stress-induced ATP depletion and functions to stimulate metabolic pathways that restore the AMP/ATP balance. Recently it was demonstrated that AMPK phosphorylates cardiac troponin I (cTnI) at Ser-150 in vitro. We sought to determine if the metabolic regulatory kinase AMPK phosphorylates cTnI at Ser-150 in vivo to alter cardiac contractile function directly at the level of the myofilament. Rabbit cardiac myofibrils separated by two-dimensional isoelectric focusing subjected to a Western blot with a cTnI phosphorylation-specific antibody demonstrates that cTnI is endogenously phosphorylated at Ser-150 in the heart. Treatment of myofibrils with the AMPK holoenzyme increased cTnI Ser-150 phosphorylation within the constraints of the muscle lattice. Compared with controls, cardiac fiber bundles exchanged with troponin containing cTnI pseudo-phosphorylated at Ser-150 demonstrate increased sensitivity of calcium-dependent force development, blunting of both PKA-dependent calcium desensitization, and PKA-dependent increases in length dependent activation. Thus, in addition to the defined role of AMPK as a cardiac metabolic energy gauge, these data demonstrate AMPK Ser-150 phosphorylation of cTnI directly links the regulation of cardiac metabolic demand to myofilament contractile energetics. Furthermore, the blunting effect of cTnI Ser-150 phosphorylation cross-talk can uncouple the effects of myofilament PKA-dependent phosphorylation from β-adrenergic signaling as a novel thin filament contractile regulatory signaling mechanism. PMID:22493448
Shang, Hung-Sheng; Liu, Jia-You; Lu, Hsu-Feng; Chiang, Han-Sun; Lin, Chia-Hain; Chen, Ann; Lin, Yuh-Feng; Chung, Jing-Gung
2017-08-01
Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca 2+ productions, level of mitochondria membrane potential (ΔΨ m ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨ m , and Ca 2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells. © 2016 Wiley Periodicals, Inc.
Liu, Yan-Jin; Shieh, Po-Chuen; Lee, Jang-Chang; Chen, Fu-An; Lee, Chih-Hung; Kuo, Sheng-Chu; Ho, Chi-Tang; Kuo, Daih-Huang; Huang, Li-Jiau; Way, Tzong-Der
2014-08-01
This study investigated the hypolipidemic effect and potential mechanisms of T. mongolicum extracts. T. mongolicum was extracted by refluxing three times with water (TM-1), 50% ethanol (TM-2) and 95% ethanol (TM-3). TM-2 contained components with the most effective hypolipidemic potentials in HepG2 cells. Extended administration of TM-2 stimulated a significant reduction in body weight and levels of serum triglyceride LDL-C and total cholesterol in rats. To evaluate the bioactive compounds, we successively fractionated TM-2 with n-hexane (TM-4), dichloromethane (TM-5), ethyl acetate (TM-6), and water (TM-7). TM-4 fraction had the most effective hypolipidemic potential in HepG2 cells, and it decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) through the phosphorylation of AMP-activated protein kinase (AMPK). Linoleic acid, phytol and tetracosanol are bioactive compounds identified from TM-4. These results suggest that T. mongolicum is expected to be useful for hypolipidemic effects.
Kuo, Daih-Huang; Hung, Ming-Chi; Hung, Chao-Ming; Liu, Li-Min; Chen, Fu-An; Shieh, Po-Chuen; Ho, Chi-Tang; Way, Tzong-Der
2012-10-01
Burdock (Arcticum lappa L.) root is used in folk medicine and also as a vegetable in Asian countries. In the present study, burdock root treatment significantly reduced body weight in rats. To evaluate the bioactive compounds, we successively extracted the burdock root with ethanol (AL-1), and fractionated it with n-hexane (AL-2), ethyl acetate (AL-3), n-butanol (AL-4), and water (AL-5). Among these fractions, AL-2 contained components with the most effective hypolipidemic potential in human hepatoma HepG2 cells. AL-2 decreased the expression of fatty acid synthase (FASN) and inhibited the activity of acetyl-coenzyme A carboxylase (ACC) by stimulating AMP-activated protein kinase (AMPK) through the LKB1 pathway. Three active compounds were identified from the AL-2, namely α-linolenic acid, methyl α-linolenate, and methyl oleate. These results suggest that burdock root is expected to be useful for body weight management. Copyright © 2012 Elsevier Ltd. All rights reserved.
Germline ablation of VGF increases lipolysis in white adipose tissue.
Fargali, Samira; Scherer, Thomas; Shin, Andrew C; Sadahiro, Masato; Buettner, Christoph; Salton, Stephen R
2012-11-01
Targeted deletion of VGF, a neuronal and endocrine secreted protein and neuropeptide precursor, produces a lean, hypermetabolic mouse that is resistant to diet-, lesion-, and genetically induced obesity and diabetes. We hypothesized that increased sympathetic nervous system activity in Vgf-/Vgf- knockout mice is responsible for increased energy expenditure and decreased fat storage and that increased β-adrenergic receptor stimulation induces lipolysis in white adipose tissue (WAT) of Vgf-/Vgf- mice. We found that fat mass was markedly reduced in Vgf-/Vgf- mice. Within knockout WAT, phosphorylation of protein kinase A substrate increased in males and females, phosphorylation of hormone-sensitive lipase (HSL) (ser563) increased in females, and levels of adipose triglyceride lipase, comparative gene identification-58, and phospho-perilipin were higher in male Vgf-/Vgf- WAT compared with wild-type, consistent with increased lipolysis. The phosphorylation of AMP-activated protein kinase (AMPK) (Thr172) and levels of the AMPK kinase, transforming growth factor β-activated kinase 1, were decreased. This was associated with a decrease in HSL ser565 phosphorylation, the site phosphorylated by AMPK, in both male and female Vgf-/Vgf- WAT. No significant differences in phosphorylation of CREB or the p42/44 MAPK were noted. Despite this evidence supporting increased cAMP signaling and lipolysis, lipogenesis as assessed by fatty acid synthase protein expression and phosphorylated acetyl-CoA carboxylase was not decreased. Our data suggest that the VGF precursor or selected VGF-derived peptides dampen sympathetic outflow pathway activity to WAT to regulate fat storage and lipolysis.
Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K
2016-01-01
Obesity induced low-grade inflammation (metaflammation) impairs insulin receptor signaling (IRS). This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), inhibitor of NF-kB kinase complex beta (IKKβ), AMP activated protein kinase (AMPK), protein kinase C (PKC), Rho associated coiled-coil containing protein kinase (ROCK) and RNA-activated protein kinase (PKR), etc. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor (IR) and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in Type II Diabetes Mellitus (T2-DM). Identifying the specific protein kinases involved in obesity induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity induced T2-DM. PMID:27868170
Golinska, Monika; Troy, Helen; Chung, Yuen-Li; McSheehy, Paul M; Mayr, Manuel; Yin, Xiaoke; Ly, Lucy; Williams, Kaye J; Airley, Rachel E; Harris, Adrian L; Latigo, John; Perumal, Meg; Aboagye, Eric O; Perrett, David; Stubbs, Marion; Griffiths, John R
2011-05-25
HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1β-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target. Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity. HIF-1β deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1β deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours. Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis functioning and also result in activation of AMP-Kinase and growth inhibition; it may have major implications for the therapeutic activity of HIF inhibitors in vivo. Interestingly, this control mechanism does not involve transcriptional control or proteomics, but rather the classical activation and inhibition mechanisms of glycolytic enzymes.
2011-07-01
control MDCK cells treated with IBMX and forskolin and then CFTR-Inh172 at the indicated times is shown. (c) A similar representative trace of mock...initiate CFTR-mediated secretion, CFTR-expressing and mock-transduced MDCK cells were treated with the cAMP agonists IBMX and forskolin , and the...2c. In CFTR-expressing cells there was generally an early peak in Isc within 1-2 min following forskolin /IBMX treatment, followed by a lower plateau
Zhou, Xiaomei; Cao, Yongjun; Ao, Guizhen; Hu, Lifang; Liu, Hui; Wu, Jian; Wang, Xiaoyu; Jin, Mengmeng; Zheng, Shuli; Zhen, Xuechu; Alkayed, Nabil J.
2014-01-01
Abstract Aims: The manner in which hydrogen sulfide (H2S) suppresses neuroinflammation is poorly understood. We investigated whether H2S polarized microglia to an anti-inflammatory (M2) phenotype by activating AMP-activated protein kinase (AMPK). Results: Three structurally unrelated H2S donors (5-(4-hydroxyphenyl)-3H-1,2-dithiocyclopentene-3-thione [ADT-OH], (p-methoxyphenyl) morpholino-phosphinodithioic acid [GYY4137], and sodium hydrosulfide [NaHS]) enhanced AMPK activation in BV2 microglial cells in the presence and absence of lipopolysaccharide (LPS). The overexpression of the H2S synthase cystathionine β-synthase (CBS) in BV2 cells enhanced endogenous H2S production and AMPK activation regardless of LPS stimulation. On LPS stimulation, overexpression of both ADT-OH and CBS promoted M2 polarization of BV2 cells, as evidenced by suppressed M1 and elevated M2 signature gene expression. The promoting effects of ADT-OH on M2 polarization were attenuated by an AMPK inhibitor or AMPK knockdown. Liver kinase B1 (LKB1) and calmodulin-dependent protein kinase kinase β (CaMKKβ) are upstream kinases that activate AMPK. ADT-OH activated AMPK in Hela cells lacking LKB1. In contrast, both the CaMKKβ inhibitor and siRNA abolished ADT-OH activation of AMPK in LPS-stimulated BV2 cells. Moreover, the CaMKKβ inhibitor and siRNA blunted ADT-OH suppression on M1 gene expression and enhancement of M2 gene expression in LPS-stimulated BV2 cells. Moreover, ADT-OH promoted M2 polarization of primary microglia in an AMPK activation- and CaMKKβ-dependent manner. Finally, in an LPS-induced in vivo neuroinflammation model, both ADT-OH and NaHS enhanced AMPK activation in the brain area where microglia were over-activated on LPS stimulation. Furthermore, ADT-OH suppressed M1 and promoted M2 gene expression in this in vivo model. Innovation and Conclusion: CaMKKβ-dependent AMPK activation is an unrecognized mechanism underlying H2S suppression on neuroinflammation. Antioxid. Redox Signal. 21, 1741–1758. PMID:24624937
Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts
NASA Technical Reports Server (NTRS)
Fitzgerald, J.; Hughes-Fulford, M.
1999-01-01
In serum-deprived MC3T3-E1 osteoblasts, mechanical stimulation caused by mild (287 x g) centrifugation induced a 10-fold increase in mRNA levels of the proto-oncogene, c-fos. Induction of c-fos was abolished by the cAMP-dependent protein kinase inhibitor H-89, suggesting that the transient c-fos mRNA increase is mediated by cAMP. Down-regulation of protein kinase C (PKC) activity by chronic TPA treatment failed to significantly reduce c-fos induction, suggesting that TPA-sensitive isoforms of PKC are not responsible for c-fos up-regulation. In addition, 287 x g centrifugation increased intracellular prostaglandin E2 (PGE2) levels 2.8-fold (P<0. 005). Since we have previously shown that prostaglandin E2 (PGE2) can induce c-fos expression via a cAMP-mediated mechanism, we asked whether the increase in c-fos mRNA was due to centrifugation-induced PGE2 release. Pretreatment with the cyclooxygenase inhibitors indomethacin and flurbiprofen did not hinder the early induction of c-fos by mechanical stimulation. We conclude that c-fos expression induced by mild mechanical loading is dependent primarily on cAMP, not PKC, and initial induction of c-fos is not necessarily dependent on the action of newly synthesized PGE2.
Zhang, Zhong-Rong; Leung, Wing Nang; Li, Gang; Kong, Siu Kai; Lu, Xiong; Wong, Yin Mei; Chan, Chun Wai
2017-06-08
Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression.
Zhang, Zhong-Rong; Leung, Wing Nang; Li, Gang; Kong, Siu Kai; Lu, Xiong; Wong, Yin Mei; Chan, Chun Wai
2017-01-01
Anabolic anti-osteoporotic agents are desirable for treatment and prevention of osteoporosis and fragility fractures. Osthole is a coumarin derivative extracted from the medicinal herbs Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim.f. Osthole has been reported with osteogenic and anti-osteoporotic properties, whereas the underlying mechanism of its benefit still remains unclear. The objective of the present study was to investigate the osteopromotive action of osthole on mouse osteoblastic MC3T3-E1 cells and on mouse femoral fracture repair, and to explore the interaction between osthole-induced osteopromotive effect and cyclic adenosine monophosphate (cAMP) elevating effect. Osthole treatment promoted osteogenesis in osteoblasts by enhancing alkaline phosphatase (ALP) activity and mineralization. Oral gavage of osthole enhanced fracture repair and increased bone strength. Mechanistic study showed osthole triggered the cAMP/CREB pathway through the elevation of the intracellular cAMP level and activation of the phosphorylation of the cAMP response element-binding protein (CREB). Blockage of cAMP/CREB downstream signals with protein kinase A (PKA) inhibitor KT5720 partially suppressed osthole-mediated osteogenesis by inhibiting the elevation of transcription factor, osterix. In conclusion, osthole shows osteopromotive effect on osteoblasts in vitro and in vivo. Osthole-mediated osteogenesis is related to activation of the cAMP/CREB signaling pathway and downstream osterix expression. PMID:28629115
Shozu, M; Sumitani, H; Murakami, K; Segawa, T; Yang, H J; Inoue, M
2001-12-01
Fetal human osteoblast-like cells and the THP-1 cell line that differentiates into macrophage/osteoblast-like cells in the presence of Vitamin D3 and which possesses high aromatase activity, constitute a useful model with which to study the regulation of aromatase in bone. We showed that dexamethasone (DEX)-induced aromatase activity in the THP-1 cell line is completely suppressed by forskolin and by dibutyryl cAMP. We therefore investigated the contribution of mitogen-activated protein kinase (MAPK) to the regulation of aromatase, because cAMP inhibits MAPK in many cells. We examined the role of MAPK on aromatase activity using PD98059, a selective inhibitor of MEK-1. PD98059 (100 microM) reduced DEX+interleukin (IL)-1beta-induced aromatase activity in human osteoblast-like cells by more than 90%, whereas 50% of the aromatase mRNA concentration was retained compared with the control incubated with DEX+IL-1beta. PD98059 (50 microM) reduced the activity of aromatase in THP-1 cells by 80% without significantly affecting the mRNA level. These results indicated that MAPK plays an important role in aromatase activation at the post-transcriptional level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Yoshikazu; Matsui, Hisao
2006-11-01
Oral administration of triphenyltin chloride (TPT) (60 mg/kg body weight) inhibits the insulin secretion by decreasing the cytoplasmic Ca{sup 2+} concentration ([Ca{sup 2+}] {sub i}) induced by glucose-dependent insulinotropic polypeptide (GIP) in pancreatic {beta}-cells of the hamster. To test the possibility that the abnormal level of [Ca{sup 2+}] {sub i} induced by TPT administration could be due to a defect in the cAMP-dependent cytoplasmic Na{sup +} concentration ([Na{sup +}] {sub i}) in the {beta}-cells, we investigated the effects of TPT administration on the changes of [Na{sup +}] {sub i} induced by GIP, glucagon-like peptide-1 (GLP-1), or forskolin, an activator ofmore » adenylyl cyclase, and on the changes of [Na{sup +}] {sub i} or [Ca{sup 2+}] {sub i} induced by 6-Bnz-cAMP, an activator of protein kinase A (PKA), and 8-pCPT-2'-O-Me-cAMP, an activator of Epac. The [Na{sup +}] {sub i} and [Ca{sup 2+}] {sub i} were measured in islet cells loaded with sodium-binding benzofuran isophthalate (SBFI) and fura-2, respectively. In the presence of 135 mM Na{sup +}, TPT administration significantly reduced the rise in [Na{sup +}] {sub i} by 10 nM GLP-1, 10 {mu}M forskolin, and 50 {mu}M 6-Bnz-cAMP, but had not effect in a Na{sup +}-free medium. In the presence of 135 mM Na{sup +}, TPT administration also reduced the rise in [Ca{sup 2+}] {sub i} by 8-pCPT-2'-O-Me-cAMP plus10 {mu}M H-89, a inhibitor of PKA, and 6-Bnz-cAMP. Moreover, TPT administration significantly reduced the insulin secretion by 2 mM db-cAMP, GLP-1, GIP, and 8-pCPT-2'-O-Me-cAMP with and without H-89, and that by 6-Bnz-cAMP and forskolin. Our study suggested that TPT has inhibitory effects on the cellular Ca{sup 2+} response due to a reduced Na{sup +} permeability through PKA-dependent mechanisms in hamster islet cells. Also TPT has the reduction of [Ca{sup 2+}] {sub i} related to Na{sup +}-dependent insulin secretion after an activation of Epac.« less
Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Yung Hyun; Kim, Byung Woo; Shin, Hwa Kyoung; Choi, Byung Tae
2012-05-07
Semen cuscutae has been used traditionally to treat pimples and alleviate freckles and melasma in Korea. The present study aimed to investigate the inhibitory effect of Cuscuta japonica Choisy seeds on alpha-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. The aqueous fraction from Semen cuscutae (AFSC) was used to determine anti-melanogenic effects by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay and Western blot analysis for melanin synthesis-related signaling proteins in B16F10 mouse melanoma cells. AFSC markedly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related proteins (TRPs). Moreover, AFSC significantly decreased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK) signaling through the down-regulation of α-MSH-induced cAMP. Furthermore, we confirmed that the specific inhibitor of p38 MAPK (SB203580)-mediated suppressed melanin synthesis and tyrosinase activity was further attenuated by AFSC. AFSC also further decreased SB203580-mediated suppression of MITF and TRP expression. These results indicate that AFSC inhibits p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression, which results in a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Woollhead, Alison M; Scott, John W; Hardie, D Grahame; Baines, Deborah L
2005-08-01
Active re-absorption of Na+ across the alveolar epithelium is essential to maintain lung fluid balance. Na+ entry at the luminal membrane is predominantly via the amiloride-sensitive Na+ channel (ENaC) down its electrochemical gradient. This gradient is generated and maintained by basolateral Na+ extrusion via Na+,K+-ATPase an energy-dependent process. Several kinases and factors that activate them are known to regulate these processes; however, the role of AMP-activated protein kinase (AMPK) in the lung is unknown. AMPK is an ultra-sensitive cellular energy sensor that monitors energy consumption and down-regulates ATP-consuming processes when activated. The biguanide phenformin has been shown to independently decrease ion transport processes, influence cellular metabolism and activate AMPK. The AMP mimetic drug 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) also activates AMPK in intact cells. Western blotting revealed that both the alpha1 and alpha2 catalytic subunits of AMPK are present in Na+ transporting H441 human lung epithelial cells. Phenformin and AICAR increased AMPK activity in H441 cells in a dose-dependent fashion, stimulating the kinase maximally at 5-10 mm (P = 0.001, n = 3) and 2 mm (P < 0.005, n = 3), respectively. Both agents significantly decreased basal ion transport (measured as short circuit current) across H441 monolayers by approximately 50% compared with that of controls (P < 0.05, n = 4). Neither treatment altered the resistance of the monolayers. Phenformin and AICAR significantly reduced amiloride-sensitive transepithelial Na+ transport compared with controls (P < 0.05, n = 4). This was a result of both decreased Na+,K+-ATPase activity and amiloride-sensitive apical Na+ conductance. Transepithelial Na+ transport decreased with increasing concentrations of phenformin (0.1-10 mm) and showed a significant correlation with AMPK activity. Taken together, these results show that phenformin and AICAR suppress amiloride-sensitive Na+ transport across H441 cells via a pathway that includes activation of AMPK and inhibition of both apical Na+ entry through ENaC and basolateral Na+ extrusion via the Na+,K+-ATPase. These are the first studies to provide a cellular signalling mechanism for the action of phenformin on ion transport processes, and also the first studies showing AMPK as a regulator of Na+ absorption in the lung.
Woollhead, Alison M; Scott, John W; Hardie, D Grahame; Baines, Deborah L
2005-01-01
Active re-absorption of Na+ across the alveolar epithelium is essential to maintain lung fluid balance. Na+ entry at the luminal membrane is predominantly via the amiloride-sensitive Na+ channel (ENaC) down its electrochemical gradient. This gradient is generated and maintained by basolateral Na+ extrusion via Na+,K+-ATPase an energy-dependent process. Several kinases and factors that activate them are known to regulate these processes; however, the role of AMP-activated protein kinase (AMPK) in the lung is unknown. AMPK is an ultra-sensitive cellular energy sensor that monitors energy consumption and down-regulates ATP-consuming processes when activated. The biguanide phenformin has been shown to independently decrease ion transport processes, influence cellular metabolism and activate AMPK. The AMP mimetic drug 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) also activates AMPK in intact cells. Western blotting revealed that both the α1 and α2 catalytic subunits of AMPK are present in Na+ transporting H441 human lung epithelial cells. Phenformin and AICAR increased AMPK activity in H441 cells in a dose-dependent fashion, stimulating the kinase maximally at 5–10 mm (P = 0.001, n = 3) and 2 mm (P < 0.005, n = 3), respectively. Both agents significantly decreased basal ion transport (measured as short circuit current) across H441 monolayers by approximately 50% compared with that of controls (P < 0.05, n = 4). Neither treatment altered the resistance of the monolayers. Phenformin and AICAR significantly reduced amiloride-sensitive transepithelial Na+ transport compared with controls (P < 0.05, n = 4). This was a result of both decreased Na+,K+-ATPase activity and amiloride-sensitive apical Na+ conductance. Transepithelial Na+ transport decreased with increasing concentrations of phenformin (0.1–10 mm) and showed a significant correlation with AMPK activity. Taken together, these results show that phenformin and AICAR suppress amiloride-sensitive Na+ transport across H441 cells via a pathway that includes activation of AMPK and inhibition of both apical Na+ entry through ENaC and basolateral Na+ extrusion via the Na+,K+-ATPase. These are the first studies to provide a cellular signalling mechanism for the action of phenformin on ion transport processes, and also the first studies showing AMPK as a regulator of Na+ absorption in the lung. PMID:15919715
Akimoto, Madoka; McNicholl, Eric Tyler; Ramkissoon, Avinash; Moleschi, Kody; Taylor, Susan S.; Melacini, Giuseppe
2015-01-01
Protein Kinase A (PKA) is the major receptor for the cyclic adenosine monophosphate (cAMP) secondary messenger in eukaryotes. cAMP binds to two tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunit of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A in RIα is required for PKA inhibition and activation, CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. Preliminary evidence suggests that CBD-B dynamics are critical for its gatekeeper function. To test this hypothesis, here we investigate by Nuclear Magnetic Resonance (NMR) the two-domain construct RIα (91–379) in its apo, cAMP2, and C-bound forms. Our comparative NMR analyses lead to a double conformational selection model in which each apo CBD dynamically samples both active and inactive states independently of the adjacent CBD within a nearly degenerate free energy landscape. Such degeneracy is critical to explain the sensitivity of CBD-B to weak interactions with C and its high affinity for cAMP. Binding of cAMP eliminates this degeneracy, as it selectively stabilizes the active conformation within each CBD and inter-CBD contacts, which require both cAMP and W260. The latter is contributed by CBD-B and mediates capping of the cAMP bound to CBD-A. The inter-CBD interface is dispensable for intra-CBD conformational selection, but is indispensable for full activation of PKA as it occludes C-subunit recognition sites within CBD-A. In addition, the two structurally homologous cAMP-bound CBDs exhibit marked differences in their residual dynamics profiles, supporting the notion that conservation of structure does not necessarily imply conservation of dynamics. PMID:26618408
PKA- and PKC-dependent regulation of angiopoietin 2 mRNA in human granulosa lutein cells.
Witt, P S; Pietrowski, D; Keck, C
2004-02-01
New blood vessels develop from preexisting vessels in response to growth factors or hypoxic conditions. Recent studies have shown that angiopoietin 2 (ANGPT-2) plays an important role in the modulation of angiogenesis and vasculogenesis in humans and mice. The signaling pathways that lead to the regulation of ANGPT-2 are largely unclear. Here, we report that protein kinase C and protein kinase A activators (ADMB, 8-Cl-cAMP) increased the mRNA levels of ANGPT-2 in human Granulosa cells, whereas PKC and PKA Inhibitors (Rp-cAMP, GO 6983) decreased markedly the level of ANGPT-2 mRNA. Due to varying specificity of the modulators for certain protein kinases subunits, we conclude that the conventional PKCs, but not PKC alpha and beta1, the atypical PKCs and the PKA I, are involved in the regulation of ANGPT-2. These findings may help to explain the role of both PKA and PKC dependent signaling cascades in the regulation of ANGPT-2 mRNA.
Akhkha, A; Curtis, R; Kennedy, M; Kusel, J
2004-05-01
It has been demonstrated that the surface lipophilicity of the plant-parasitic nematode Globodera rostochiensis decreases when infective larvae are exposed to the phytohormones indole-3-acetic acid (auxin) or kinetin (cytokinin). In the present study, it was shown that inhibition of phospholipase C (PLC) or phosphatidylinositol 3 kinase (PI3-kinase) reversed the effect of phytohormones on surface lipophilicity. The signalling pathway(s) involved in surface modification were investigated using 'caged' signalling molecules and stimulators or inhibitors of different signalling enzymes. Photolysis of the 'caged' signalling molecules, NPE-caged Ins 1,4,5-P3, NITR-5/AM or caged-cAMP to liberate IP3, Ca2+ or cAMP respectively, decreased the surface lipophilicity. Activation of adenylate cyclase also decreased the surface lipophilicity. In contrast, inhibition of PI3-kinase using Wortmannin, LY-294002 or Quercetin, and inhibition of PLC using U-73122 all increased the surface lipophilicity. Two possible signalling pathways involved in phytohormone-induced surface modification are proposed.
Epac2 Mediates cAMP-Dependent Potentiation of Neurotransmission in the Hippocampus
Fernandes, Herman B.; Riordan, Sean; Nomura, Toshihiro; Remmers, Christine L.; Kraniotis, Stephen; Marshall, John J.; Kukreja, Lokesh; Vassar, Robert
2015-01-01
Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2−/− mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2−/− mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus. PMID:25904804
Yu, Xuan; Zhang, Qiao; Zhao, Yan; Schwarz, Benjamin J; Stallone, John N; Heaps, Cristine L; Han, Guichun
2017-01-01
Previously, we reported that cAMP/PKA signaling is involved in GPER-mediated coronary relaxation by activating MLCP via inhibition of RhoA pathway. In the current study, we tested the hypothesis that activation of GPER induces coronary artery relaxation via inhibition of RhoA/Rho kinase pathway by cAMP downstream targets, exchange proteins directly activated by cAMP (Epac) as well as PKA. Our results show that Epac inhibitors, brefeldin A (BFA, 50 μM), or ESI-09 (20 μM), or CE3F4 (100 μM), all partially inhibited porcine coronary artery relaxation response to the selective GPER agonist, G-1 (0.3-3 μM); while concurrent administration of BFA and PKI (5 μM), a PKA inhibitor, almost completely blocked the relaxation effect of G-1. The Epac specific agonist, 8-CPT-2Me-cAMP (007, 1-100 μM), induced a concentration-dependent relaxation response. Furthermore, the activity of Ras-related protein 1 (Rap1) was up regulated by G-1 (1 μM) treatment of porcine coronary artery smooth muscle cells (CASMCs). Phosphorylation of vasodilator-stimulated phosphoprotein (p-VASP) was elevated by G-1 (1 μM) treatment, but not by 007 (50 μM); and the effect of G-1 on p-VASP was blocked by PKI, but not by ESI-09, an Epac antagonist. RhoA activity was similarly down regulated by G-1 and 007, whereas ESI-09 restored most of the reduced RhoA activity by G-1 treatment. Furthermore, G-1 decreased PGF2α-induced p-MYPT1, which was partially reversed with either ESI-09 or PKI; whereas, concurrent administration of ESI-09 and PKI totally prevented the inhibitory effect of G-1. The inhibitory effects of G-1 on p- MLC levels in CASMCs were mostly restored by either ESI-09 or PKI. These results demonstrate that activation of GPER induces coronary artery relaxation via concurrent inhibition of RhoA/Rho kinase by Epac/Rap1 and PKA. GPER could be a potential drug target for preventing and treating cardiovascular diseases.
The role of ventral striatal cAMP signaling in stress-induced behaviors
Plattner, Florian; Hayashi, Kanehiro; Hernandez, Adan; Benavides, David R.; Tassin, Tara C.; Tan, Chunfeng; Day, Jonathan; Fina, Maggy W.; Yuen, Eunice Y.; Yan, Zhen; Goldberg, Matthew S.; Nairn, Angus C.; Greengard, Paul; Nestler, Eric J.; Taussig, Ronald; Nishi, Akinori; Houslay, Miles D.; Bibb, James A.
2015-01-01
The cAMP/PKA signaling cascade is a ubiquitous pathway acting downstream of multiple neuromodulators. We found that the phosphorylation of phosphodiesterase-4 (PDE4) by cyclin-dependent protein kinase 5 (Cdk5) facilitates cAMP degradation and homeostasis of cAMP/PKA signaling. In mice, loss of Cdk5 throughout the forebrain elevated cAMP levels and increased PKA activity in striatal neurons, and altered behavioral responses to acute or chronic stressors. Ventral striatum- or D1 dopamine receptor-specific conditional knockout of Cdk5, or ventral striatum infusion of a small interfering peptide that selectively targets the regulation of PDE4 by Cdk5, all produced analogical effects on stress-induced behavioral responses. Together, our results demonstrate that altering cAMP signaling in medium spiny neurons of the ventral striatum can effectively modulate stress-induced behavioral states. We propose that targeting the Cdk5 regulation of PDE4 could be a new therapeutic approach for clinical conditions associated with stress, such as depression. PMID:26192746
Myostatin regulates energy homeostasis in the heart and prevents heart failure.
Biesemann, Nadine; Mendler, Luca; Wietelmann, Astrid; Hermann, Sven; Schäfers, Michael; Krüger, Marcus; Boettger, Thomas; Borchardt, Thilo; Braun, Thomas
2014-07-07
Myostatin is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes, including enhanced insulin sensitivity. However, the function of myostatin in the heart is barely understood, although it is upregulated in the myocardium under several pathological conditions. Here, we aimed to decipher the role of myostatin and myostatin-dependent signaling pathways for cardiac function and cardiac metabolism in adult mice. To avoid potential counterregulatory mechanisms occurring in constitutive and germ-line-based myostatin mutants, we generated a mouse model that allows myostatin inactivation in adult cardiomyocytes. Cardiac MRI revealed that genetic inactivation of myostatin signaling in the adult murine heart caused cardiac hypertrophy and heart failure, partially recapitulating effects of the age-dependent decline of the myostatin paralog growth and differentiation factor 11. We found that myostatin represses AMP-activated kinase activation in the heart via transforming growth factor-β-activated kinase 1, thereby preventing a metabolic switch toward glycolysis and glycogen accumulation. Furthermore, myostatin stimulated expression of regulator of G-protein signaling 2, a GTPase-activating protein that restricts Gaq and Gas signaling and thereby protects against cardiac failure. Inhibition of AMP-activated kinase in vivo rescued cardiac hypertrophy and prevented enhanced glycolytic flow and glycogen accumulation after inactivation of myostatin in cardiomyocytes. Our results uncover an important role of myostatin in the heart for maintaining cardiac energy homeostasis and preventing cardiac hypertrophy. © 2014 American Heart Association, Inc.
Jin, Chun Mei; Yang, Yoo Jung; Huang, Hai Shan; Lim, Sung Cil; Kai, Masaaki; Lee, Myung Koo
2008-09-04
The effects of 3,4-dihydroxyphenylalanine (l-DOPA) on dopamine biosynthesis and cytotoxicity were investigated in PC12 cells. l-DOPA treatment (20-200 microM) increased the levels of dopamine by 226%-504% after 3-6 h of treatment and enhanced the activities of tyrosine hydroxylase (TH) and aromatic l-amino acid decarboxylase (AADC). l-DOPA (20-200 muM) treatment led to a 562%-937% increase in l-DOPA influx at 1 h, which inhibited the activity of TH, but not AADC, during the same period. The extracellular releases of dopamine were also increased by 231%-570% after treatment with 20 and 200 microM l-DOPA for 0.5-3 h. l-DOPA at a concentration of 100-200 microM, but not 20 microM, exerted apoptotic cytotoxicity towards PC12 cells for 24-48 h. l-DOPA (20-200 microM) increased the intracellular cyclic AMP levels by 318%-557% after 0.5-1 h in a concentration-dependent manner. However, the elevated cyclic AMP levels by l-DOPA could not protect against l-DOPA (100-200 microM)-induced cytotoxicity after 24-48 h. In addition, l-DOPA (20-200 microM)-induced increases in cyclic AMP and dopamine were significantly reduced by treatment with SCH23390 (dopamine D(1) receptor antagonist). The increased levels of dopamine by l-DOPA were also reduced by H89 (protein kinase A, PKA, inhibitor) and GF109203X (protein kinase C inhibitor); however, the reduction by GF109203X was not significant. l-DOPA at 20-200 microM stimulated the phosphorylation of PKA and cyclic AMP-response element binding protein and induced the biosynthesis of the TH protein. These results indicate that 20-200 microM l-DOPA induces dopamine biosynthesis by two pathways. One pathway involves l-DOPA directly entering the cells to convert dopamine through AADC activity (l-DOPA decarboxylation). The other pathway involves l-DOPA and/or released dopamine activating TH to enhance dopamine biosynthesis by the dopamine D(1) receptor-cyclic AMP-PKA signaling system (dopamine biosynthesis by TH).
Intact LKB1 activity is required for survival of dormant ovarian cancer spheroids.
Peart, Teresa; Ramos Valdes, Yudith; Correa, Rohann J M; Fazio, Elena; Bertrand, Monique; McGee, Jacob; Préfontaine, Michel; Sugimoto, Akira; DiMattia, Gabriel E; Shepherd, Trevor G
2015-09-08
Metastatic epithelial ovarian cancer (EOC) cells can form multicellular spheroids while in suspension and disperse directly throughout the peritoneum to seed secondary lesions. There is growing evidence that EOC spheroids are key mediators of metastasis, and they use specific intracellular signalling pathways to control cancer cell growth and metabolism for increased survival. Our laboratory discovered that AKT signalling is reduced during spheroid formation leading to cellular quiescence and autophagy, and these may be defining features of tumour cell dormancy. To further define the phenotype of EOC spheroids, we have initiated studies of the Liver kinase B1 (LKB1)-5'-AMP-activated protein kinase (AMPK) pathway as a master controller of the metabolic stress response. We demonstrate that activity of AMPK and its upstream kinase LKB1 are increased in quiescent EOC spheroids as compared with proliferating adherent EOC cells. We also show elevated AMPK activity in spheroids isolated directly from patient ascites. Functional studies reveal that treatment with the AMP mimetic AICAR or allosteric AMPK activator A-769662 led to a cytostatic response in proliferative adherent ovarian cancer cells, but they fail to elicit an effect in spheroids. Targeted knockdown of STK11 by RNAi to reduce LKB1 expression led to reduced viability and increased sensitivity to carboplatin treatment in spheroids only, a phenomenon which was AMPK-independent. Thus, our results demonstrate a direct impact of altered LKB1-AMPK signalling function in EOC. In addition, this is the first evidence in cancer cells demonstrating a pro-survival function for LKB1, a kinase traditionally thought to act as a tumour suppressor.
AMP-activated Protein Kinase As a Target For Pathogens: Friends Or Foes?
Moreira, Diana; Silvestre, Ricardo; Cordeiro-da-Silva, Anabela; Estaquier, Jérôme; Foretz, Marc; Viollet, Benoit
2016-01-01
Intracellular pathogens are known to manipulate host cell regulatory pathways to establish an optimal environment for their growth and survival. Pathogens employ active mechanisms to hijack host cell metabolism and acquire existing nutrient and energy store. The role of the cellular energy sensor AMP-activated protein kinase (AMPK) in the regulation of cellular energy homeostasis is well documented. Here, we highlight recent advances showing the importance of AMPK signaling in pathogen-host interactions. Pathogens interact with AMPK by a variety of mechanisms aimed at reprogramming host cell metabolism to their own benefit. Stimulation of AMPK activity provides an efficient process to rapidly adapt pathogen metabolism to the major nutritional changes often encountered during the different phases of infection. However, inhibition of AMPK is also used by pathogens to manipulate innate host response, indicating that AMPK appears relevant to restriction of pathogen infection. We also document the effects of pharmacological AMPK modulators on pathogen proliferation and survival. This review illustrates intricate pathogen-AMPK interactions that may be exploited to the development of novel anti-pathogen therapies.
AMP-activated protein kinase as a target for pathogens: friends or foes?
Moreira, Diana; Silvestre, Ricardo; Cordeiro-Da-Silva, Anabela; Estaquier, Jérôme; Foretz, Marc; Viollet, Benoit
2016-01-01
Intracellular pathogens are known to manipulate host cell regulatory pathways to establish an optimal environment for their growth and survival. Pathogens employ active mechanisms to hijack host cell metabolism and acquire existing nutrient and energy store. The role of the cellular energy sensor AMP-activated protein kinase (AMPK) in the regulation of cellular energy homeostasis is well documented. Here, we highlight recent advances showing the importance of AMPK signaling in pathogen-host interactions. Pathogens interact with AMPK by a variety of mechanisms aimed at reprogramming host cell metabolism to their own benefit. Stimulation of AMPK activity provides an efficient process to rapidly adapt pathogen metabolism to the major nutritional changes often encountered during the different phases of infection. However, inhibition of AMPK is also used by pathogens to manipulate innate host response, indicating that AMPK appears relevant to restriction of pathogen infection. We also document the effects of pharmacological AMPK modulators on pathogen proliferation and survival. This review illustrates intricate pathogen-AMPK interactions that maybe exploited to the development of novel anti-pathogen therapies. PMID:25882224
Brand, Thomas; Schindler, Roland
2017-12-01
The cyclic 3',5'-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
cAMP Regulation of Airway Smooth Muscle Function
Billington, Charlotte K.; Ojo, Oluwaseun O.; Penn, Raymond B.; Ito, Satoru
2013-01-01
Agonists activating β2-adrenoceptors (β2ARs) on airway smooth muscle (ASM) are the drug of choice for rescue from acute bronchoconstriction in patients with both asthma and chronic obstructive pulmonary disease (COPD). Moreover, the use of long-acting β-agonists combined with inhaled corticosteroids constitutes an important maintenance therapy for these diseases. β-Agonists are effective bronchodilators due primarily to their ability to antagonize ASM contraction. The presumed cellular mechanism of action involves the generation of intracellular cAMP, which in turn can activate the effector molecules cAMP-dependent protein kinase (PKA) and Epac. Other agents such as prostaglandin E2 and phosphodiesterase inhibitors that also increase intracellular cAMP levels in ASM, can also antagonize ASM contraction, and inhibit other ASM functions including proliferation and migration. Therefore, β2ARs and cAMP are key players in combating the pathophysiology of airway narrowing and remodeling. However, limitations of β-agonist therapy due to drug tachyphylaxis related to β2AR desensitization, and recent findings regarding the manner in which β2ARs and cAMP signal, have raised new and interesting questions about these well-studied molecules. In this review we discuss current concepts regarding β2ARs and cAMP in the regulation of ASM cell functions and their therapeutic roles in asthma and COPD. PMID:22634112
2013-07-01
phenotype (3). mTOR is a serine/ threonine kinase that regulates cell growth and proliferation, as well as transcription and protein synthesis...proliferative components of cyst expansion. Metformin, a drug in wide clinical use for both non-insulin dependent diabetes mellitus and Polycystic Ovary...current maximum dose prescribed for patients with diabetes or Polycystic Ovary Syndrome. However, human equivalent dose extrapolation is more accurately
Singhal, Radhey L.; Parulekar, M. R.; Vijayvargiya, R.; Robison, G. Alan
1971-01-01
1. The ability of exogenously administered cyclic AMP (adenosine 3′:5′-monophosphate) to exert andromimetic action on certain carbohydrate-metabolizing enzymes was investigated in the rat prostate gland and seminal vesicles. 2. Cyclic AMP, when injected concurrently with theophylline, produced marked increases in hexokinase, phosphofructokinase, glyceraldehyde phosphate dehydrogenase, pyruvate kinase, and two hexose monophosphate-shunt enzymes, as well as α-glycerophosphate dehydrogenase activity in accessory sexual tissues of castrated rats. The 6-N,2′-O-dibutyryl analogue of cyclic AMP caused increases of enzyme activity that were greater than those induced by the parent compound. 3. Time-course studies demonstrated that, whereas significant increases in the activities of most enzymes occurred within 4h after the injection of cyclic AMP, maximal increases were attained at 16–24h. 4. Increase in the activity of the various prostatic and vesicular enzymes was dependent on the dose of cyclic AMP; in most instances, 2.5mg of the cyclic nucleotide/rat was sufficient to elicit a statistically significant response. 5. Administration of cyclic AMP and theophylline also produced stimulation of enzyme activities in secondary sexual tissues of immature rats. 6. Cyclic AMP and theophylline did not affect significantly any of the enzymes studied in hepatic tissue. 7. Stimulation of various carbohydrate-metabolizing enzymes in the prostate gland and seminal vesicles by cyclic AMP was independent of adrenal function. 8. Concurrent treatment with actinomycin or cycloheximide prevented the cyclic AMP- and theophylline-induced increases in enzyme activities in both castrated and adrenalectomized–castrated animals. 9. Administration of a single dose of testosterone propionate (5.0mg/100g) to castrated rats caused a significant increase in cyclic AMP concentration in both accessory sexual tissues. 10. In addition, treatment with theophylline potentiated the effects of a submaximal dose of testosterone (1.0mg/100g) on all those prostatic and seminal-vesicular enzymes that are increased by exogenous cyclic AMP. 11. The evidence indicates that cyclic AMP may be involved in triggering the known metabolic actions of androgens on secondary sexual tissues of the rat. PMID:4110460
Regulatory crosstalk by protein kinases on CFTR trafficking and activity
NASA Astrophysics Data System (ADS)
Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter
2016-01-01
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.
Wu, Jian; Jones, John M; Nguyen-Huu, Xuong; Ten Eyck, Lynn F; Taylor, Susan S
2004-06-01
Cyclic adenosine 5'-monophosphate (cAMP) is an ancient signaling molecule, and in vertebrates, a primary target for cAMP is cAMP-dependent protein kinase (PKA). (R(p))-adenosine 3',5'-cyclic monophosphothioate ((R(p))-cAMPS) and its analogues are the only known competitive inhibitors and antagonists for cAMP activation of PKA, while (S(p))-adenosine 3',5'-cyclic monophosphothioate ((S(p))-cAMPS) functions as an agonist. The crystal structures of a Delta(1-91) deletion mutant of the RIalpha regulatory subunit of PKA bound to (R(p))-cAMPS and (S(p))-cAMPS were determined at 2.4 and 2.3 A resolution, respectively. While the structures are similar to each other and to the crystal structure of RIalpha bound to cAMP, differences in the dynamical properties of the protein when (R(p))-cAMPS is bound are apparent. The structures highlight the critical importance of the exocyclic oxygen's interaction with the invariant arginine in the phosphate binding cassette (PBC) and the importance of this interaction for the dynamical properties of the interactions that radiate out from the PBC. The conformations of the phosphate binding cassettes containing two invariant arginine residues (Arg209 on domain A, and Arg333 on domain B) are somewhat different due to the sulfur interacting with this arginine. Furthermore, the B-site ligand together with the entire domain B show significant differences in their overall dynamic properties in the crystal structure of Delta(1-91) RIalpha complexed with (R(p))-cAMPS phosphothioate analogue ((R(p))-RIalpha) compared to the cAMP- and (S(p))-cAMPS-bound type I and II regulatory subunits, based on the temperature factors. In all structures, two structural solvent molecules exist within the A-site ligand binding pocket; both mediate water-bridged interactions between the ligand and the protein. No structured waters are in the B-site pocket. Owing to the higher resolution data, the N-terminal segment (109-117) of the RIalpha subunit can also be traced. This strand forms an intermolecular antiparallel beta-sheet with the same strand in an adjacent molecule and implies that the RIalpha subunit can form a weak homodimer even in the absence of its dimerization domain.
Ko, Seok-Chun; Lee, Myoungsook; Lee, Ji-Hyeok; Lee, Seung-Hong; Lim, Yunsook; Jeon, You-Jin
2013-11-01
In this study, we assessed the potential inhibitory effect of 5 species of brown seaweeds on adipogenesis the differentiation of 3T3-L1 preadipocytes into mature adipocytes by measuring Oil-Red O staining. The Ecklonia cava extract tested herein evidenced profound adipogenesis inhibitory effect, compared to that exhibited by the other four brown seaweed extracts. Thus, E. cava was selected for isolation of active compounds and finally the three polyphenol compounds of phlorotannins were obtained and their inhibitory effect on adipogenesis was observed. Among the phlorotannins, dieckol exhibited greatest potential adipogenesis inhibition and down-regulated the expression of peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer-binding proteins (C/EBPα), sterol regulatory element-binding protein 1 (SREBP1) and fatty acid binding protein 4 (FABP4) in a dose-dependent manner. The specific mechanism mediating the effects of dieckol was confirmed by AMP-activated protein kinase (AMPK) activation. These results demonstrate inhibitory effect of dieckol compound on adipogenesis through the activation of the AMPK signal pathway. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Chunying; Reif, Michaella M; Craige, Siobhan; Kant, Shashi; Keaney, John F.
2016-01-01
Metabolic stress sensors like AMP-activated protein kinase (AMPK) are known to confer stress adaptation and promote longevity in lower organisms. This study demonstrates that activating the metabolic stress sensor AMP-activated protein kinase (AMPK) in endothelial cells helps maintain normal cellular function by promoting mitochondrial biogenesis and stress adaptation. To better define the mechanisms whereby AMPK promotes endothelial stress resistance, we used 5-aminoimidazole-4-carboxamide riboside (AICAR) to chronically activate AMPK and observed stimulation of mitochondrial biogenesis in wild type mouse endothelium, but not in endothelium from endothelial nitric oxide synthase knockout (eNOS-null) mice. Interestingly, AICAR-enhanced mitochondrial biogenesis was blocked by pretreatment with the mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin. Further, AICAR stimulated mTORC1 as determined by phosphorylation of its known downstream effectors in wild type, but not eNOS-null, endothelial cells. Together these data indicate that eNOS is needed to couple AMPK activation to mTORC1 and thus promote mitochondrial biogenesis and stress adaptation in the endothelium. These data suggest a novel mechanism for mTORC1 activation that is significant for investigations in vascular dysfunction. PMID:26989010
Wang, Qiurong; Yang, Lifang; Hua, Yinan; Nair, Sreejayan; Xu, Xihui; Ren, Jun
2014-01-01
Aim: Paraquat, a quaternary nitrogen herbicide, is a highly toxic prooxidant resulting in multi-organ failure including the heart although the underlying mechanism still remains elusive. This study was designed to examine the role of the cellular fuel sensor AMP-activated protein kinase (AMPK) in paraquat-induced cardiac contractile and mitochondrial injury. Results: Wild-type and transgenic mice with overexpression of a mutant AMPK α2 subunit (kinase dead, KD), with reduced activity in both α1 and α2 subunits, were administered with paraquat (45 mg/kg) for 48 h. Paraquat elicited cardiac mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic diameter and reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca2+ handling, reduced cell survival, and overt mitochondrial damage (loss in mitochondrial membrane potential). In addition, paraquat treatment promoted phosphorylation of AMPK and autophagy. Interestingly, deficiency in AMPK attenuated paraquat-induced cardiac contractile and intracellular Ca2+ derangement. The beneficial effect of AMPK inhibition was associated with inhibition of the AMPK-TSC-mTOR-ULK1 signaling cascade. In vitro study revealed that inhibitors for AMPK and autophagy attenuated paraquat-induced cardiomyocyte contractile dysfunction. Conclusion: Taken together, our findings revealed that AMPK may mediate paraquat-induced myocardial anomalies possibly by regulating the AMPK/mTOR-dependent autophagy. PMID:25092649
Anti-inflammatory effects of the extract of indigo naturalis in human neutrophils.
Lin, Yin-Ku; Leu, Yann-Lii; Huang, Tse-Hung; Wu, Yi-Hsiu; Chung, Pei-Jen; Su Pang, Jong-Hwei; Hwang, Tsong-Long
2009-08-17
Indigo naturalis is used by traditional Chinese medicine to treat various inflammatory diseases. Topical indigo naturalis ointment showed efficacy in treating psoriasis in our previous clinical studies. In this study, we investigated the anti-inflammatory effects of the extract of indigo naturalis (QD) and its main components indirubin, indigo, and tryptanthrin in human neutrophils. Superoxide anion (O2(.-)) generation and elastase release were measured by spectrophotometry. Some important signals including mitogen-activated protein kinase (MAPK), cAMP, and calcium were studied by Western blot analysis, an enzyme immunoassay, and spectrofluorometry. QD significantly inhibited O2(.-) generation and elastase release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils in a concentration-dependent fashion, while neither indirubin, indigo, nor tryptanthrin produced a comparable result. QD attenuated the FMLP-induced phosphorylation of extracellular regulated kinase, p38 MAPK, and c-Jun N-terminal kinase. Furthermore, QD inhibited calcium mobilization caused by FMLP. However, QD did not affect cellular cAMP levels. On the other hand, neither indirubin, indigo, nor tryptanthrin produced similar changes in human neutrophils. Taken collectively, these findings indicate that QD, but not indirubin, indigo, or tryptanthrin, inhibited O2(.-) generation and elastase release in FMLP-induced human neutrophils, which was at least partially mediated by the inhibition of MAPK activation and regulation of calcium mobilization.
Sudden substrate dilution induces a higher rate of citric acid production by Aspergillus niger.
Legisa, M; Gradisnik-Grapulin, M
1995-01-01
On the basis of the present knowledge of Aspergillus niger metabolism during citric acid fermentation, an idea on how to improve the process was formed. Initially, a higher sucrose concentration was used for the germination of spores, which caused a higher intracellular level of the osmoregulator, glycerol, to be present. When citric acid started to be excreted into the medium, the substrate was suddenly diluted. Optimization of this procedure resulted in a nearly tripled volumetric rate (grams per liter per hour) of acid production, while the overall fermentation time was halved compared with the usual batch process. Yet, a characteristic delay was observed at the start of the acid excretion after the dilution. Hypo-osmotic shock caused a prominent elevation of intracellular cyclic AMP levels. Simultaneously, the specific activity of 6-phosphofructo-1-kinase increased significantly, probably due to phosphorylation of the protein molecule by cyclic AMP-dependent protein kinase. Specific 6-phosphofructo-1-kinase activity was much higher in the treated than in the normally growing mycelium. The metabolic flow through glycolysis was expected to be higher, which should contribute to a higher volumetric rate of acid production. PMID:7618885
Sudden substrate dilution induces a higher rate of citric acid production by Aspergillus niger.
Legisa, M; Gradisnik-Grapulin, M
1995-07-01
On the basis of the present knowledge of Aspergillus niger metabolism during citric acid fermentation, an idea on how to improve the process was formed. Initially, a higher sucrose concentration was used for the germination of spores, which caused a higher intracellular level of the osmoregulator, glycerol, to be present. When citric acid started to be excreted into the medium, the substrate was suddenly diluted. Optimization of this procedure resulted in a nearly tripled volumetric rate (grams per liter per hour) of acid production, while the overall fermentation time was halved compared with the usual batch process. Yet, a characteristic delay was observed at the start of the acid excretion after the dilution. Hypo-osmotic shock caused a prominent elevation of intracellular cyclic AMP levels. Simultaneously, the specific activity of 6-phosphofructo-1-kinase increased significantly, probably due to phosphorylation of the protein molecule by cyclic AMP-dependent protein kinase. Specific 6-phosphofructo-1-kinase activity was much higher in the treated than in the normally growing mycelium. The metabolic flow through glycolysis was expected to be higher, which should contribute to a higher volumetric rate of acid production.
Brette, Fabien; Lacampagne, Alain; Sallé, Laurent; Findlay, Ian; Le Guennec, Jean-Yves
2003-08-01
Inactivation of the L-type Ca2+ current (ICaL) was studied in isolated guinea pig ventricular myocytes with different ionic solutions. Under basal conditions, ICaL of 82% of cells infused with Cs+-based intracellular solutions showed enhanced amplitude with multiphasic decay and diastolic depolarization-induced facilitation. The characteristics of ICaL in this population of cells were not due to contamination by other currents or an artifact. These phenomena were reduced by ryanodine, caffeine, cyclopiazonic acid, the protein kinase A inhibitor H-89, and the cAMP-dependent protein kinase inhibitor. Forskolin and isoproterenol increased ICaL by only approximately 60% in these cells. Cells infused with either N-methyl-d-glucamine or K+-based intracellular solutions did not show multiphasic decay or facilitation under basal conditions. Isoproterenol increased ICaL by approximately 200% in these cells. In conclusion, we show that multiphasic inactivation of ICaL is due to Ca2+-dependent inactivation that is reversible on a time scale of tens of milliseconds. Cs+ seems to activate the cAMP-dependent protein kinase pathway when used as a substitute for K+ in the pipette solution.
Kim, Jeong Joo; Lorenz, Robin; Arold, Stefan T.; ...
2016-04-07
Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Here, although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-raymore » scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG.« less
Xu, Yanchun; Gray, A; Hardie, D Grahame; Uzun, Alper; Shaw, Sunil; Padbury, James; Phornphutkul, Chanika; Tseng, Yi-Tang
2017-08-01
PRKAG2 encodes the γ 2 -subunit isoform of 5'-AMP-activated protein kinase (AMPK), a heterotrimeric enzyme with major roles in the regulation of energy metabolism in response to cellular stress. Mutations in PRKAG2 have been implicated in a unique hypertrophic cardiomyopathy (HCM) characterized by cardiac glycogen overload, ventricular preexcitation, and hypertrophy. We identified a novel, de novo PRKAG2 mutation (K475E) in a neonate with prenatal onset of HCM. We aimed to investigate the cellular impact, signaling pathways involved, and therapeutic options for K475E mutation using cells stably expressing human wild-type (WT) or the K475E mutant. In human embryonic kidney-293 cells, the K475E mutation induced a marked increase in the basal phosphorylation of T172 and AMPK activity, reduced sensitivity to AMP in allosteric activation, and a loss of response to phenformin. In H9c2 cardiomyocytes, the K475E mutation induced inhibition of AMPK and reduced the response to phenformin and increases in the phosphorylation of p70S6 kinase (p70S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). Primary fibroblasts from the patient with the K475E mutation also showed marked increases in the phosphorylation of p70S6K and 4E-BP1 compared with those from age-matched, nondiseased controls. Moreover, overexpression of K475E induced hypertrophy in H9c2 cells, which was effectively reversed by treatment with rapamycin. Taken together, we have identified a novel, de novo infantile-onset PRKAG2 mutation causing HCM. Our study suggests the K475E mutation induces alteration in basal AMPK activity and results in a hypertrophy phenotype involving the mechanistic target of rapamycin signaling pathway, which can be reversed with rapamycin. NEW & NOTEWORTHY We identified a novel, de novo PRKAG2 mutation (K475E) in the cystathionine β-synthase 3 repeat, a region critical for AMP binding but with no previous reported mutation. Our data suggest the mutation affects AMP-activated protein kinase activity, activates cell growth pathways, and results in cardiac hypertrophy, which can be reversed with rapamycin. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Yu, Zhiwen; Jin, Tianru
2008-01-01
Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.
Ppm1E is an in cellulo AMP-activated protein kinase phosphatase.
Voss, Martin; Paterson, James; Kelsall, Ian R; Martín-Granados, Cristina; Hastie, C James; Peggie, Mark W; Cohen, Patricia T W
2011-01-01
Activation of 5'-AMP-activated protein kinase (AMPK) is believed to be the mechanism by which the pharmaceuticals, metformin and phenformin, exert their beneficial effects for treatment of type 2 diabetes. These biguanide drugs elevate 5'-AMP, which allosterically activates AMPK and promotes phosphorylation on Thr172 of AMPK catalytic α subunits. Although kinases phosphorylating this site have been identified, phosphatases that dephosphorylate it are unknown. The aim of this study is to identify protein phosphatase(s) that dephosphorylate AMPKα-Thr172 within cells. Our initial data indicated that members of the protein phosphatase Mg/Mn(2+)-dependent [corrected] (PPM) family and not those of the PPP family of protein serine/threonine phosphatases may be directly or indirectly inhibited by phenformin. Using antibodies raised to individual Ppm phosphatases that facilitated the assessment of their activities, phenformin stimulation of cells was found to decrease the Mg(2+)/Mn(2+)-dependent [corrected] protein serine/threonine phosphatase activity of Ppm1E and Ppm1F, but not that attributable to other PPM family members, including Ppm1A/PP2Cα. Depletion of Ppm1E, but not Ppm1A, using lentiviral-mediated stable gene silencing, increased AMPKα-Thr172 phosphorylation approximately three fold in HEK293 cells. In addition, incubation of cells with low concentrations of phenformin and depletion of Ppm1E increased AMPK phosphorylation synergistically. Ppm1E and the closely related Ppm1F interact weakly with AMPK and assays with lysates of cells stably depleted of Ppm1F suggest [corrected] that this phosphatase contributes to dephosphorylation of AMPK. The data indicate that Ppm1E and probably PpM1F are in cellulo AMPK phosphatases and that Ppm1E is a potential anti-diabetic drug target. Copyright © 2010 Elsevier Inc. All rights reserved.
Interaction of AIP with protein kinase A (cAMP-dependent protein kinase).
Schernthaner-Reiter, Marie Helene; Trivellin, Giampaolo; Stratakis, Constantine A
2018-05-02
Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene cause mostly somatotropinomas and/or prolactinomas in a subset of familial isolated pituitary adenomas (FIPA). AIP has been shown to interact with phosphodiesterases (PDEs) and G proteins, suggesting a link to the cyclic AMP (cAMP)-dependent protein kinase (PKA) pathway. Upregulation of PKA is seen in sporadic somatotropinomas that carry GNAS1 mutations, and those in Carney complex that are due to PRKAR1A mutations. To elucidate the mechanism of AIP-dependent pituitary tumorigenesis, we studied potential functional and physical interactions of AIP with PKA's main subunits PRKAR1A (R1α) and PRKACA (Cα). We found that AIP physically interacts with both R1α and Cα; this interaction is enhanced when all three components are present, but maintained during Cα-R1α dissociation by PKA pathway activation, indicating that AIP binds Cα/R1α both in complex and separately. The interaction between AIP and R1α/Cα is reduced when the frequent AIP pathogenic mutation p.R304* is present. AIP protein levels are regulated both by translation and the ubiquitin/proteasome pathway and Cα stabilizes both AIP and R1α protein levels. AIP reduction by siRNA leads to an increase of PKA pathway activity, which is disproportionately enhanced during PDE4-inhibition. We show that AIP interacts with the PKA pathway on multiple levels, including a physical interaction with both the main regulatory (R1α) and catalytic (Cα) PKA subunits and a functional interaction with PDE4-dependent PKA activation. These findings provide novel insights on the mechanisms of AIP-dependent pituitary tumorigenesis.
Chang, Mei-Chi; Lin, Szu-I; Lin, Li-Deh; Chan, Chiu-Po; Lee, Ming-Shu; Wang, Tong-Mei; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei
2016-04-01
Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Meena, Abha; Tovey, Stephen C.; Taylor, Colin W.
2015-01-01
ABSTRACT Parathyroid hormone (PTH) stimulates adenylyl cyclase through type 1 PTH receptors (PTH1R) and potentiates the Ca2+ signals evoked by carbachol, which stimulates formation of inositol 1,4,5-trisphosphate (IP3). We confirmed that in HEK cells expressing PTH1R, acute stimulation with PTH(1-34) potentiated carbachol-evoked Ca2+ release. This was mediated by locally delivered cyclic AMP (cAMP), but unaffected by inhibition of protein kinase A (PKA), exchange proteins activated by cAMP, cAMP phosphodiesterases (PDEs) or substantial inhibition of adenylyl cyclase. Sustained stimulation with PTH(1-34) causes internalization of PTH1R–adenylyl cyclase signalling complexes, but the consequences for delivery of cAMP to IP3R within cAMP signalling junctions are unknown. Here, we show that sustained stimulation with PTH(1-34) or with PTH analogues that do not evoke receptor internalization reduced the potentiated Ca2+ signals and attenuated carbachol-evoked increases in cytosolic IP3. Similar results were obtained after sustained stimulation with NKH477 to directly activate adenylyl cyclase, or with the membrane-permeant analogue of cAMP, 8-Br-cAMP. These responses were independent of PKA and unaffected by substantial inhibition of adenylyl cyclase. During prolonged stimulation with PTH(1-34), hyperactive cAMP signalling junctions, within which cAMP is delivered directly and at saturating concentrations to its targets, mediate sensitization of IP3R and a more slowly developing inhibition of IP3 accumulation. PMID:25431134
Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang
2012-01-01
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. PMID:22669945
Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang
2012-07-27
The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.
Regulation of Renal Urea Transport by Vasopressin
Sands, Jeff M.; Blount, Mitsi A.; Klein, Janet D.
2011-01-01
Terrestrial life would be miserable without the ability to concentrate urine. Production of concentrated urine requires complex interactions among the nephron segments and vasculature in the kidney medulla. In addition to water channels (aquaporins) and sodium transporters, urea transporters are critically important to the theories proposed to explain the physiologic processes occurring when urine is concentrated. Vasopressin (anti-diuretic hormone) is the key hormone regulating the production of concentrated urine. Vasopressin rapidly increases water and urea transport in the terminal inner medullary collecting duct (IMCD). Vasopressin rapidly increases urea permeability in the IMCD through increases in phosphorylation and apical plasma-membrane accumulation of the urea transporter A1 (UT-A1). Vasopressin acts through two cAMP-dependent signaling pathways in the IMCD: protein kinase A and exchange protein activated by cAMP Epac. Protein kinase A phosphorylates UT-A1 at serines 486 and 499. In summary, vasopressin regulates urea transport acutely by increasing UT-A1 phosphorylation and the apical plasma-membrane accumulation of UT-A1 through two cAMP-dependent pathways. PMID:21686211
Hara, Shuichi; Kobayashi, Masamune; Kuriiwa, Fumi; Mukai, Toshiji; Mizukami, Hajime
2012-03-15
Studies have suggested that cAMP signaling pathways may be associated with the production of reactive oxygen species. In this study, we examined how modifications in cAMP signaling affected the production of hydroxyl radicals in rat striatum using microdialysis to measure extracellular 2,3-dihydroxybenzoic acid (2,3-DHBA), which is a hydroxyl radical adduct of salicylate. Up to 50 nmol of the cell-permeative cAMP mimetic 8-bromo-cAMP (8-Br-cAMP) increased 2,3-DHBA in a dose-dependent manner (there was no additional increase in 2,3-DHBA at 100 nmol). Another cAMP mimetic, dibutyryl cAMP (db-cAMP), caused a nonsignificant increase in 2,3-DHBA at 50 nmol and a significant decrease at 100 nmol. Up to 20 nmol of forskolin, which is a direct activator of adenylyl cyclase, increased 2,3-DHBA, similar to the effect of 8-Br-cAMP; however, forskolin resulted in a much greater increase in 2,3-DHBA. A potent inhibitor of protein kinase A (PKA), H89 (500 μM), potentiated the 8-Br-cAMP- and forskolin-induced increases in 2,3-DHBA and antagonized the inhibitory effect of 100 nmol of db-cAMP. Interestingly, the administration of 100 nmol of 8-bromo-cGMP alone or in combination with H89 had no significant effect on 2,3-DHBA levels. Doses of 100 nmol of a preferential PKA activator (6-phenyl-cAMP) or a preferential PKA inhibitor (8-bromoadenosine-3',5'-cyclic monophosphorothionate, Rp-isomer; Rp-8-Br-cAMPS), which also inhibits the cAMP-mediated activation of Epac (the exchange protein directly activated by cAMP), suppressed or enhanced, respectively, the formation of 2,3-DHBA. Up to 100 nmol of 8-(4-chlorophenylthio)-2'-O-methyladenosine-cAMP, which is a selective activator of Epac, dose-dependently stimulated the formation of 2,3-DHBA. These findings suggest that cAMP signaling plays contradictory roles (stimulation and inhibition) in the production of hydroxyl radicals in rat striatum by differential actions of Epac and PKA. These roles might contribute to the production of hydroxyl radicals concomitant with cAMP in carbon monoxide poisoning, because the formation of 2,3-DHBA was potentiated by the PKA inhibitor H89 and suppressed by Rp-8-Br-cAMPS, which inhibits PKA and Epac. Copyright © 2012 Elsevier Inc. All rights reserved.
Wu, Yong; Zhang, Cheng; Dong, Yunzhou; Wang, Shuangxi; Song, Ping; Viollet, Benoit; Zou, Ming-Hui
2012-01-01
The aim of the present study was to test the hypothesis that the cardiovascular-protective effects of eicosapentaenoic acid (EPA) may be due, in part, to its ability to stimulate the AMP-activated protein kinase (AMPK)-induced endothelial nitric oxide synthase (eNOS) activation. The role of AMPK in EPA-induced eNOS phosphorylation was investigated in bovine aortic endothelial cells (BAEC), in mice deficient of either AMPKα1 or AMPKα2, in eNOS knockout (KO) mice, or in Apo-E/AMPKα1 dual KO mice. EPA-treatment of BAEC increased both AMPK-Thr172 phosphorylation and AMPK activity, which was accompanied by increased eNOS phosphorylation, NO release, and upregulation of mitochondrial uncoupling protein-2 (UCP-2). Pharmacologic or genetic inhibition of AMPK abolished EPA-enhanced NO release and eNOS phosphorylation in HUVEC. This effect of EPA was absent in the aortas isolated from either eNOS KO mice or AMPKα1 KO mice fed a high-fat, high-cholesterol (HFHC) diet. EPA via upregulation of UCP-2 activates AMPKα1 resulting in increased eNOS phosphorylation and consequent improvement of endothelial function in vivo. PMID:22532857
Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK
Hill, Kayla; Yuan, Hu; Wang, Xianren
2016-01-01
Noise-induced hearing loss (NIHL) is a major unresolved public health problem. Here, we investigate pathomechanisms of sensory hair cell death and suggest a novel target for protective intervention. Cellular survival depends upon maintenance of energy homeostasis, largely by AMP-activated protein kinase (AMPK). In response to a noise exposure in CBA/J mice, the levels of phosphorylated AMPKα increased in hair cells in a noise intensity-dependent manner. Inhibition of AMPK via siRNA or the pharmacological inhibitor compound C attenuated noise-induced loss of outer hair cells (OHCs) and synaptic ribbons, and preserved auditory function. Additionally, noise exposure increased the activity of the upstream AMPK kinase liver kinase B1 (LKB1) in cochlear tissues. The inhibition of LKB1 by siRNA attenuated the noise-increased phosphorylation of AMPKα in OHCs, reduced the loss of inner hair cell synaptic ribbons and OHCs, and protected against NIHL. These results indicate that noise exposure induces hair cell death and synaptopathy by activating AMPK via LKB1-mediated pathways. Targeting these pathways may provide a novel route to prevent NIHL. SIGNIFICANCE STATEMENT Our results demonstrate for the first time that the activation of AMP-activated protein kinase (AMPK) α in sensory hair cells is noise intensity dependent and contributes to noise-induced hearing loss by mediating the loss of inner hair cell synaptic ribbons and outer hair cells. Noise induces the phosphorylation of AMPKα1 by liver kinase B1 (LKB1), triggered by changes in intracellular ATP levels. The inhibition of AMPK activation by silencing AMPK or LKB1, or with the pharmacological inhibitor compound C, reduced outer hair cell and synaptic ribbon loss as well as noise-induced hearing loss. This study provides new insights into mechanisms of noise-induced hearing loss and suggests novel interventions for the prevention of the loss of sensory hair cells and cochlear synaptopathy. PMID:27413159
Zhao, Peng; Wang, Jingying; Ma, Heng; Xiao, Yao; He, Leilei; Tong, Chao; Wang, Zhenhua; Zheng, Qiusheng; Dolence, E Kurt; Nair, Sreejayan; Ren, Jun; Li, Ji
2009-03-15
We synthesized the chromium (phenylalanine)(3) [Cr(D-phe)(3)] by chelating chromium(III) with D-phenylalanine ligand in aqueous solution to improve the bioavailability of chromium, and reported that Cr(D-phe)(3) improved insulin sensitivity. AMP-activated protein kinase (AMPK) is a key mediator for glucose uptake and insulin sensitivity. To address the molecular mechanisms by which Cr(d-phe)(3) increases insulin sensitivity, we investigated whether Cr(D-phe)(3) stimulates glucose uptake via activation of AMPK signaling pathway. H9c2 myoblasts and isolated cardiomyocytes were treated with Cr(D-phe)(3) (25microM). Western blotting was used for signaling determination. The glucose uptake was determined by 2-deoxy-D-glucose-(3)H accumulation. HPLC measured concentrations of AMP. The mitochondrial membrane potential (Deltapsi) was detected by JC-1 fluorescence assay. Cr(D-phe)(3) stimulated the phosphorylation of alpha catalytic subunit of AMPK at Thr(172), as well the downstream targets of AMPK, acetyl-CoA carboxylase (ACC, Ser(212)) and eNOS (Ser(1177)). Moreover, Cr(D-phe)(3) significantly stimulated glucose uptake in both H9c2 cells and cardiomyocytes. AMPK inhibitor compound C (10microM) dramatically inhibited the glucose uptake stimulated by Cr(D-phe)(3), while it did not affect insulin stimulation of glucose uptake. Furthermore, in vivo studies showed that Cr(D-phe)(3) also activated cardiac AMPK signaling pathway. The increase of cardiac AMP concentration and the decrease of mitochondrial membrane potential (Deltapsi) may contribute to the activation of AMPK induced by Cr(D-phe)(3). Cr(D-phe)(3) is a novel compound that activates AMPK signaling pathway, which contributes to the regulation of glucose transport during stress conditions that may be associated the role of AMPK in increasing insulin sensitivity.
Wang, Hong-Mei; Zheng, Nai-Gang; Wu, Jing-Lan; Gong, Cui-Cui; Wang, Yi-Ling
2005-01-01
AIM: To investigate the effects of 8-Br-cAMP on differentiation and apoptosis of human esophageal cancer cell line Eca-109, and the related gene expression. METHODS: The cultured Eca-109 cells were divided into four groups: E1 group (co-cultured with 8-Br-cAMP for 24 h); E2 group (co-cultured with 8-Br-cAMP for 48 h); C1 group (treated without 8-Br-cAMP for 24 h); and C2 group (treated without 8-Br-cAMP for 48 h). The same concentration of cell suspension of each group was dropped separately onto the slides and nitrocellulose membranes (NCM). The biotin-labeled cDNA probes for c-myc, wild-type (wt) p53, bcl-2 and iNOS were prepared for in situ hybridization. The expressions of epidermal growth factor receptor (EGFR), p38 kinase, FAS, FasL and caspase-3 were detected using immunocytochemistry, and the NOS activity and the ratio of differentiated cells/proliferating cells were examined by cytochemistry. Immunocytochemistry, cytochemistry, and in situ hybridization were separately carried out on both slides and NCM specimens for each group. In addition, TUNEL was used to detect the cell apoptosis rate in each group. RESULTS: The apoptotic rate of E2 group was significantly higher compared to E1 group, while there was no difference in the ratio of differentiated cells/proliferating cells between E1 and E2 groups. The signals of wt p53 and iNOS were markedly stronger, while the signals of c-myc and EGFR were obviously weaker in E1 group than those in C1 group (P<0.05). Moreover, the signals of wt p53, iNOS, p38 kinase, caspase-3 and NOS activity were significantly stronger, whereas, the signals of bcl-2, c-myc and Fas/FasL were markedly weaker in E2 group than those in C2 group (P<0.05). CONCLUSION: The differentiation and apoptosis of human esophageal cancer cell Eca-109 can be induced after 24- and 48-h treatment with 8-Br-cAMP, respectively. Upregulation of wt p53, iNOS and downregulation of c-myc may be associated with differentiation and apoptosis of Eca-109 cells. Furthermore, upregulation of FasL, p38 kinase and caspase-3 as well as downregulation of bcl-2, and Fas may be involved in the apoptosis of Eca-109 cells. PMID:16425431
Park, Sung-Jun; Ahmad, Faiyaz; Um, Jee-Hyun; Brown, Alexandra L; Xu, Xihui; Kang, Hyeog; Ke, Hengming; Feng, Xuesong; Ryall, James; Philp, Andrew; Schenk, Simon; Kim, Myung K; Sartorelli, Vittorio; Chung, Jay H
2017-04-01
The specific Sirt1 activator SRT1720 increases mitochondrial function in skeletal muscle, presumably by activating Sirt1. However, Sirt1 gain of function does not increase mitochondrial function, which raises a question about the central role of Sirt1 in SRT1720 action. Moreover, it is believed that the metabolic effects of SRT1720 occur independently of AMP-activated protein kinase (AMPK), an important metabolic regulator that increases mitochondrial function. Here, we show that SRT1720 activates AMPK in a Sirt1-independent manner and SRT1720 activates AMPK by inhibiting a cAMP degrading phosphodiesterase (PDE) in a competitive manner. Inhibiting the cAMP effector protein Epac prevents SRT1720 from activating AMPK or Sirt1 in myotubes. Moreover, SRT1720 does not increase mitochondrial function or improve glucose tolerance in AMPKα2 knockout mice. Interestingly, weight loss induced by SRT1720 is not sufficient to improve glucose tolerance. Therefore, contrary to current belief, the metabolic effects produced by SRT1720 require AMPK, which can be activated independently of Sirt1. Published by Elsevier B.V.
Tan, CD; Smolenski, RT; Harhun, MI; Patel, HK; Ahmed, SG; Wanisch, K; Yáñez-Muñoz, RJ; Baines, DL
2012-01-01
BACKGROUND AND PURPOSE Pulmonary transepithelial Na+ transport is reduced by hypoxia, but in the airway the regulatory mechanisms remain unclear. We investigated the role of AMPK and ROS in the hypoxic regulation of apical amiloride-sensitive Na+ channels and basolateral Na+K+ ATPase activity. EXPERIMENTAL APPROACH H441 human airway epithelial cells were used to examine the effects of hypoxia on Na+ transport, AMP : ATP ratio and AMPK activity. Lentiviral constructs were used to modify cellular AMPK abundance and activity; pharmacological agents were used to modify cellular ROS. KEY RESULTS AMPK was activated by exposure to 3% or 0.2% O2 for 60 min in cells grown in submerged culture or when fluid (0.1 mL·cm−2) was added to the apical surface of cells grown at the air–liquid interface. Only 0.2% O2 activated AMPK in cells grown at the air–liquid interface. AMPK activation was associated with elevation of cellular AMP : ATP ratio and activity of the upstream kinase LKB1. Hypoxia inhibited basolateral ouabain-sensitive Isc (Iouabain) and apical amiloride-sensitive Na+ conductance (GNa+). Modification of AMPK activity prevented the effect of hypoxia on Iouabain (Na+K+ ATPase) but not apical GNa+. Scavenging of superoxide and inhibition of NADPH oxidase prevented the effect of hypoxia on apical GNa+ (epithelial Na+ channels). CONCLUSIONS AND IMPLICATIONS Hypoxia activates AMPK-dependent and -independent pathways in airway epithelial cells. Importantly, these pathways differentially regulate apical Na+ channels and basolateral Na+K+ ATPase activity to decrease transepithelial Na+ transport. Luminal fluid potentiated the effect of hypoxia and activated AMPK, which could have important consequences in lung disease conditions. PMID:22509822
Synthesis and Release of Cyclic Adenosine 3′:5′-Monophosphate by Ochromonas malhamensis1
Bressan, Ray A.; Handa, Avtar K.; Quader, Hartmut; Filner, Philip
1980-01-01
The chrysophycean alga, Ochromonas malhamensis Pringsheim, was shown to synthesize cyclic adenosine 3′:5′-monophosphate (cAMP) and to release it into the culture medium. Cells contained 3 to 3,000 picomoles per gram fresh weight; medium contained up to 20 times the amount in the cells. Putative [32P]cAMP was purified from cultures supplied [32P]phosphate. The compound was identified as [32P]cAMP by co-chromatography with authentic cAMP through 10 serial steps; by chemical deamination at the same rate as authentic cAMP, to a 32P compound with the chromatographic behavior of cIMP; and by its conversion through the action of cyclic nucleotide phosphodiesterase to a 32P compound with the chromatographic behavior of 5′-AMP. A two-step procedure involving chromatography on alumina and on Dowex 50 purified the unlabeled compound from cells or medium sufficiently for it to be assayable by competitive inhibition of binding of [3H]cAMP to cAMP-binding protein (Gilman assay) or by stimulation of cAMP-dependent protein kinase. The activity was destroyed by cyclic nucleotide phosphodiesterase with the same kinetics as authentic cAMP, provided that an endogenous inhibitor of the phosphodiesterase was first removed by an additional purification step. Images PMID:16661154
Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan
2014-06-05
The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
cAMP-dependent protein kinase phosphorylates and activates nuclear Ca2+-ATPase
Rogue, Patrick J.; Humbert, Jean-Paul; Meyer, Alphonse; Freyermuth, Solange; Krady, Marie-Marthe; Malviya, Anant N.
1998-01-01
A Ca2+-pump ATPase, similar to that in the endoplasmic reticulum, has been located on the outer membrane of rat liver nuclei. The effect of cAMP-dependent protein kinase (PKA) on nuclear Ca2+-ATPase (NCA) was studied by using purified rat liver nuclei. Treatment of isolated nuclei with the catalytic unit of PKA resulted in the phosphorylation of a 105-kDa band that was recognized by antibodies specific for sarcoplasmic reticulum Ca2+-ATPase type 2b. Partial purification and immunoblotting confirmed that the 105-kDa protein band phosphorylated by PKA is NCA. The stoichiometry of phosphorylation was 0.76 mol of phosphate incorporated/mol of partially purified enzyme. Measurement of ATP-dependent 45Ca2+ uptake into purified nuclei showed that PKA phosphorylation enhanced the Ca2+-pumping activity of NCA. We show that PKA phosphorylation of Ca2+-ATPase enhances the transport of 10-kDa fluorescent-labeled dextrans across the nuclear envelope. The findings reported in this paper are consistent with the notion that the crosstalk between the cAMP/PKA- and Ca2+-dependent signaling pathways identified at the cytoplasmic level extends to the nucleus. Furthermore, these data support a function for crosstalk in the regulation of calcium-dependent transport across the nuclear envelope. PMID:9689054
Harada, Shinichi; Fujita-Hamabe, Wakako; Tokuyama, Shogo
2010-09-10
5'-AMP-activated protein kinase (AMPK) is a serine/threonine kinase that plays a key role in energy homeostasis. Recently, it was reported that centrally activated AMPK is involved in the development of ischemic neuronal damage, while the effect of peripherally activated AMPK on ischemic neuronal damage is not known. In addition, we have previously reported that the development of post-ischemic glucose intolerance could be one of the triggers for the aggravation of neuronal damage. In this study, we focused on effect of activation of peripheral or central AMPK on the development of ischemic neuronal damage. Male ddY mice were subjected to 2 h of middle cerebral artery occlusion (MCAO). Neuronal damage was estimated by histological and behavioral analysis after MCAO. In the liver and skeletal muscle, AMPK activity was not affected by MCAO. But, application of intraperitoneal metformin (250 mg/kg), an AMPK activator, significantly suppressed the development of post-ischemic glucose intolerance and ischemic neuronal damage without alteration of central AMPK activity. On the other hand, application of intracerebroventricular metformin (25, 100 microg/mouse) significantly exacerbated the development of neuronal damage observed on day 1 after MCAO, in a dose-dependent manner. These effects were significantly blocked by compound C, a specific AMPK inhibitor. These results suggest that central AMPK was activated by ischemic stress per se, however, peripheral AMPK was not altered. Furthermore, the regulation of post-ischemic glucose intolerance by activation of peripheral AMPK is of assistance for the suppression of cerebral ischemic neuronal damage. 2010 Elsevier B.V. All rights reserved.
2014-07-01
be responsible, at least in part, for this hyperproliferative phenotype (3). mTOR is a serine/ threonine kinase that regulates cell growth and...both non-insulin dependent diabetes mellitus and Polycystic Ovary Syndrome, stimulates AMPK (10, 11). We therefore wish to examine whether metformin...considered on a simple mg/kg basis, this dose appears considerably higher than the current maximum dose prescribed for patients with diabetes or Polycystic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szymańska, Paulina; Martin, Katie R.; MacKeigan, Jeffrey P.
We constructed a mechanistic, computational model for regulation of (macro)autophagy and protein synthesis (at the level of translation). The model was formulated to study the system-level consequences of interactions among the following proteins: two key components of MTOR complex 1 (MTORC1), namely the protein kinase MTOR (mechanistic target of rapamycin) and the scaffold protein RPTOR; the autophagy-initiating protein kinase ULK1; and the multimeric energy-sensing AMP-activated protein kinase (AMPK). Inputs of the model include intrinsic AMPK kinase activity, which is taken as an adjustable surrogate parameter for cellular energy level or AMP:ATP ratio, and rapamycin dose, which controls MTORC1 activity. Outputsmore » of the model include the phosphorylation level of the translational repressor EIF4EBP1, a substrate of MTORC1, and the phosphorylation level of AMBRA1 (activating molecule in BECN1-regulated autophagy), a substrate of ULK1 critical for autophagosome formation. The model incorporates reciprocal regulation of mTORC1 and ULK1 by AMPK, mutual inhibition of MTORC1 and ULK1, and ULK1-mediated negative feedback regulation of AMPK. Through analysis of the model, we find that these processes may be responsible, depending on conditions, for graded responses to stress inputs, for bistable switching between autophagy and protein synthesis, or relaxation oscillations, comprising alternating periods of autophagy and protein synthesis. A sensitivity analysis indicates that the prediction of oscillatory behavior is robust to changes of the parameter values of the model. The model provides testable predictions about the behavior of the AMPK-MTORC1-ULK1 network, which plays a central role in maintaining cellular energy and nutrient homeostasis.« less
Gaillard, Anne R.; Fox, Laura A.; Rhea, Jeanne M.; Craige, Branch
2006-01-01
Biochemical studies of Chlamydomonas flagellar axonemes revealed that radial spoke protein (RSP) 3 is an A-kinase anchoring protein (AKAP). To determine the physiological role of PKA anchoring in the axoneme, an RSP3 mutant, pf14, was transformed with an RSP3 gene containing a mutation in the PKA-binding domain. Analysis of several independent transformants revealed that the transformed cells exhibit an unusual phenotype: a fraction of the cells swim normally; the remainder of the cells twitch feebly or are paralyzed. The abnormal/paralyzed motility is not due to an obvious deficiency of radial spoke assembly, and the phenotype cosegregates with the mutant RSP3. We postulated that paralysis was due to failure in targeting and regulation of axonemal cAMP-dependent protein kinase (PKA). To test this, reactivation experiments of demembranated cells were performed in the absence or presence of PKA inhibitors. Importantly, motility in reactivated cell models mimicked the live cell phenotype with nearly equal fractions of motile and paralyzed cells. PKA inhibitors resulted in a twofold increase in the number of motile cells, rescuing paralysis. These results confirm that flagellar RSP3 is an AKAP and reveal that a mutation in the PKA binding domain results in unregulated axonemal PKA activity and inhibition of normal motility. PMID:16571668
Shi, Yu; Liu, Rui; Zhang, Si; Xia, Yin-Yan; Yang, Hai-Jie; Guo, Ke; Zeng, Qi; Feng, Zhi-Wei
2011-04-01
Neural cell adhesion molecule (NCAM) has been implicated in tumor metastasis yet its function in melanoma progression remains unclear. Here, we demonstrate that stably silencing NCAM expression in mouse melanoma B16F0 cells perturbs their cellular invasion and metastatic dissemination in vivo. The pro-invasive function of NCAM is exerted via dual mechanisms involving both cAMP-dependent protein kinase (PKA) and phosphatidylinositol 3-kinase (PI3K) pathways. Pharmacologic inhibition of PKA and PI3K leads to impaired cellular invasion. In contrast, forced expression of constitutively activated Akt, the major downstream target of PI3K, restores the defective cellular invasiveness of NCAM knock-down (KD) B16F0 cells. Furthermore, attenuation of either PKA or Akt activity in NCAM KD cells is shown to affect their common downstream target, transcription factor cAMP response element binding protein (CREB), which in turn down-regulates mRNA expression of matrix metalloproteinase-2 (MMP-2), thus contributes to impaired cellular invasion and metastasis of melanoma cells. Together, these findings indicate that NCAM potentiates cellular invasion and metastasis of melanoma cells through stimulation of PKA and PI3K signaling pathways thus suggesting the potential implication of anti-NCAM strategy in melanoma treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Miallau, Linda; Hunter, William N; McSweeney, Sean M; Leonard, Gordon A
2007-07-06
High resolution structures of Staphylococcus aureus d-tagatose-6-phosphate kinase (LacC) in two crystal forms are herein reported. The structures define LacC in apoform, in binary complexes with ADP or the co-factor analogue AMP-PNP, and in a ternary complex with AMP-PNP and D-tagatose-6-phosphate. The tertiary structure of the LacC monomer, which is closely related to other members of the pfkB subfamily of carbohydrate kinases, is composed of a large alpha/beta core domain and a smaller, largely beta "lid." Four extended polypeptide segments connect these two domains. Dimerization of LacC occurs via interactions between lid domains, which come together to form a beta-clasp structure. Residues from both subunits contribute to substrate binding. LacC adopts a closed structure required for phosphoryl transfer only when both substrate and co-factor are bound. A reaction mechanism similar to that used by other phosphoryl transferases is proposed, although unusually, when both substrate and co-factor are bound to the enzyme two Mg(2+) ions are observed in the active site. A new motif of amino acid sequence conservation common to the pfkB subfamily of carbohydrate kinases is identified.
AKAPs: The Architectural Underpinnings of Local cAMP signaling
Kritzer, Michael D.; Li, Jinliang; Dodge-Kafka, Kimberly; Kapiloff, Michael S.
2011-01-01
The cAMP-dependent protein kinase A (PKA) is targeted to specific compartments in the cardiac myocyte by A-kinase anchoring proteins (AKAPs), a diverse set of scaffold proteins that have been implicated in the regulation of excitation-contraction coupling and cardiac remodeling. AKAPs bind not only PKA, but also a large variety of structural and signaling molecules. In this review, we discuss the basic concepts underlying compartmentation of cAMP and PKA signaling, as well as a few of the individual AKAPs that have been shown to be functionally relevant in the heart. PMID:21600214
Mahboubi, Hicham; Koromilas, Antonis E; Stochaj, Ursula
2016-10-01
Eukaryotic cells assemble stress granules (SGs) when translation initiation is inhibited. Different cell signaling pathways regulate SG production. Particularly relevant to this process is 5'-AMP-activated protein kinase (AMPK), which functions as a stress sensor and is transiently activated by adverse physiologic conditions. Here, we dissected the role of AMPK for oxidant-induced SG formation. Our studies identified multiple steps of de novo SG assembly that are controlled by the kinase. Single-cell analyses demonstrated that pharmacological AMPK activation prior to stress exposure changed SG properties, because the granules became more abundant and smaller in size. These altered SG characteristics correlated with specific changes in cell survival, cell signaling, cytoskeletal organization, and the abundance of translation initiation factors. Specifically, AMPK activation increased stress-induced eukaryotic initiation factor (eIF) 2α phosphorylation and reduced the concentration of eIF4F complex subunits eIF4G and eIF4E. At the same time, the abundance of histone deacetylase 6 (HDAC6) was diminished. This loss of HDAC6 was accompanied by increased acetylation of α-tubulin on Lys40. Pharmacological studies further confirmed this novel AMPK-HDAC6 interplay and its importance for SG biology. Taken together, we provide mechanistic insights into the regulation of SG formation. We propose that AMPK activation stimulates oxidant-induced SG formation but limits their fusion into larger granules. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
USDA-ARS?s Scientific Manuscript database
Although mutations in the gamma-subunit of AMP-activated protein kinase (AMPK) can result in excessive glycogen accumulation and cardiac hypertrophy, the mechanisms by which this occurs have not been well defined. Because >65% of cardiac AMPK activity is associated with the gamma1-subunit of AMPK, w...
Forskolin enhances in vivo bone formation by human mesenchymal stromal cells.
Doorn, Joyce; Siddappa, Ramakrishnaiah; van Blitterswijk, Clemens A; de Boer, Jan
2012-03-01
Activation of the protein kinase A (PKA) pathway with dibutyryl cyclic adenosine monophosphate (db-cAMP) was recently shown to enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs) in vitro and bone formation in vivo. The major drawback of this compound is its inhibitory effect on proliferation of hMSCs. Therefore, we investigated whether fine-tuning of the dose and timing of PKA activation could enhance bone formation even further, with minimum effects on proliferation. To test this, we selected two different PKA activators (8-bromo-cAMP (8-br-cAMP) and forskolin) and compared their effects on proliferation and osteogenic differentiation with those of db-cAMP. We found that all three compounds induced alkaline phosphatase levels, bone-specific target genes, and secretion of insulin-like growth factor-1, although 8-br-cAMP induced adipogenic differentiation in long-term cultures and was thus considered unsuitable for further in vivo testing. All three compounds inhibited proliferation of hMSCs in a dose-dependent manner, with forskolin inhibiting proliferation most. The effect of forskolin on in vivo bone formation was tested by pretreating hMSCs before implantation, and we observed greater amounts of bone using forskolin than db-cAMP. Our data show forskolin to be a novel agent that can be used to increase bone formation and also suggests a role for PKA in the delicate balance between adipogenic and osteogenic differentiation.
Rubin-Bejerano, Ifat; Sagee, Shira; Friedman, Osnat; Pnueli, Lilach; Kassir, Yona
2004-01-01
Phosphorylation is the main mode by which signals are transmitted to key regulators of developmental pathways. The glycogen synthase kinase 3 family plays pivotal roles in the development and well-being of all eukaryotic organisms. Similarly, the budding yeast homolog Rim11 is essential for the exit of diploid cells from the cell cycle and for entry into the meiotic developmental pathway. In this report we show that in vivo, in cells grown in a medium promoting vegetative growth with acetate as the sole carbon source (SA medium), Rim11 phosphorylates Ime1, the master transcriptional activator required for entry into the meiotic cycle and for the transcription of early meiosis-specific genes. We demonstrate that in the presence of glucose, the kinase activity of Rim11 is inhibited. This inhibition could be due to phosphorylation on Ser-5, Ser-8, and/or Ser-12 because in the rim11S5AS8AS12A mutant, Ime1 is incorrectly phosphorylated in the presence of glucose and cells undergo sporulation. We further show that this nutrient signal is transmitted to Rim11 and consequently to Ime1 by the cyclic AMP/protein kinase A signal transduction pathway. Ime1 is phosphorylated in SA medium on at least two residues, Tyr-359 and Ser-302 and/or Ser-306. Ser-302 and Ser-306 are part of a consensus site for the mammalian homolog of Rim11, glycogen synthase kinase 3-β. Phosphorylation on Tyr-359 but not Ser-302 or Ser-306 is essential for the transcription of early meiosis-specific genes and sporulation. We show that Tyr-359 is phosphorylated by Rim11. PMID:15282298
NASA Technical Reports Server (NTRS)
Suzuki, Kazuhiro; Grinnell, Alan D.; Kidokoro, Yoshiaki
2002-01-01
The frequency of quantal transmitter release increases upon application of hypertonic solutions. This effect bypasses the Ca(2+) triggering step, but requires the presence of key molecules involved in vesicle fusion, and hence could be a useful tool for dissecting the molecular process of vesicle fusion. We have examined the hypertonicity response at neuromuscular junctions of Drosophila embryos in Ca(2+)-free saline. Relative to wild-type, the response induced by puff application of hypertonic solution was enhanced in a mutant, dunce, in which the cAMP level is elevated, or in wild-type embryos treated with forskolin, an activator of adenylyl cyclase, while protein kinase A (PKA) inhibitors decreased it. The response was also smaller in a mutant, DC0, which lacks the major subunit of PKA. Thus the cAMP/PKA cascade is involved in the hypertonicity response. Peptides containing the sequence Arg-Gly-Asp (RGD), which inhibit binding of integrins to natural ligands, reduced the response, whereas a peptide containing the non-binding sequence Arg-Gly-Glu (RGE) did not. A reduced response persisted in a mutant, myospheroid, which expresses no integrins, and the response in DC0 was unaffected by RGD peptides. These data indicate that there are at lease two components in the hypertonicity response: one that is integrin mediated and involves the cAMP/PKA cascade, and another that is not integrin mediated and does not involve the cAMP/PKA cascade.
Sejima, Ei; Yamauchi, Atsushi; Nishioku, Tsuyoshi; Koga, Mitsuhisa; Nakagama, Kengo; Dohgu, Shinya; Futagami, Kojiro; Kataoka, Yasufumi
2011-10-01
Olanzapine is known to be advantageous with respect to outcome and drug compliance in patients with schizophrenia. However, olanzapine has adverse effects, including a higher incidence of weight gain and metabolic disturbances, when compared with those of other antipsychotic agents. The mechanisms underlying these adverse events remain obscure. Female rats were orally administered olanzapine (2 mg/kg) or vehicle once a day for 2 weeks to ascertain if hypothalamic AMP-activated protein kinase (AMPK) mediates olanzapine-induced weight gain and hyperphagia. Body weight and food intake in each rat were evaluated every day and every two days, respectively. After the termination of drug treatment, we measured the protein levels of AMPK and phosphorylated AMPK in the hypothalamus using western blot analyses. Olanzapine significantly increased body weight and food intake. The phosphorylation levels of AMPK were significantly elevated by olanzapine. These results suggest that activation of hypothalamic AMPK may mediate hyperphagia and weight gain induced by chronic treatment with olanzapine.
Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry
2015-01-01
AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload.
Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry
2015-01-01
AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload. PMID:26098914
Nguyen, Thi Mong Diep; Combarnous, Yves; Praud, Christophe; Duittoz, Anne; Blesbois, Elisabeth
2016-01-01
Sperm require high levels of energy to ensure motility and acrosome reaction (AR) accomplishment. The AMP-activated protein kinase (AMPK) has been demonstrated to be strongly involved in the control of these properties. We address here the question of the potential role of calcium mobilization on AMPK activation and function in chicken sperm through the Ca(2+)/calmodulin-dependent protein kinase kinases (CaMKKs) mediated pathway. The presence of CaMKKs and their substrates CaMKI and CaMKIV was evaluated by western-blotting and indirect immunofluorescence. Sperm were incubated in presence or absence of extracellular Ca(2+), or of CaMKKs inhibitor (STO-609). Phosphorylations of AMPK, CaMKI, and CaMKIV, as well as sperm functions were evaluated. We demonstrate the presence of both CaMKKs (α and β), CaMKI and CaMKIV in chicken sperm. CaMKKα and CaMKI were localized in the acrosome, the midpiece, and at much lower fluorescence in the flagellum, whereas CaMKKβ was mostly localized in the flagellum and much less in the midpiece and the acrosome. CaMKIV was only present in the flagellum. The presence of extracellular calcium induced an increase in kinases phosphorylation and sperm activity. STO-609 reduced AMPK phosphorylation in the presence of extracellular Ca(2+) but not in its absence. STO-609 did not affect CaMKIV phosphorylation but decreased CaMKI phosphorylation and this inhibition was quicker in the presence of extracellular Ca(2+) than in its absence. STO-609 efficiently inhibited sperm motility and AR, both in the presence and absence of extracellular Ca(2+). Our results show for the first time the presence of CaMKKs (α and β) and one of its substrate, CaMKI in different subcellular compartments in germ cells, as well as the changes in the AMPK regulation pathway, sperm motility and AR related to Ca(2+) entry in sperm through the Ca(2+)/CaM/CaMKKs/CaMKI pathway. The Ca(2+)/CaMKKs/AMPK pathway is activated only under conditions of extracellular Ca(2+) entry in the cells.
Viollet, Benoit; Foretz, Marc; Guigas, Bruno; Horman, Sandrine; Dentin, Renaud; Bertrand, Luc; Hue, Louis; Andreelli, Fabrizio
2006-01-01
It is now becoming evident that the liver has an important role in the control of whole body metabolism of energy nutrients. In this review, we focus on recent findings showing that AMP-activated protein kinase (AMPK) plays a major role in the control of hepatic metabolism. AMPK integrates nutritional and hormonal signals to promote energy balance by switching on catabolic pathways and switching off ATP-consuming pathways, both by short-term effects on phosphorylation of regulatory proteins and by long-term effects on gene expression. Activation of AMPK in the liver leads to the stimulation of fatty acid oxidation and inhibition of lipogenesis, glucose production and protein synthesis. Medical interest in the AMPK system has recently increased with the demonstration that AMPK could mediate some of the effects of the fat cell-derived adiponectin and the antidiabetic drugs metformin and thiazolidinediones. These findings reinforce the idea that pharmacological activation of AMPK may provide, through signalling and metabolic and gene expression effects, a new strategy for the management of metabolic hepatic disorders linked to type 2 diabetes and obesity. PMID:16644802
Schonhoff, Christopher M; Webster, Cynthia R L; Anwer, M Sawkat
2013-07-01
Taurolithocholate (TLC) acutely inhibits the biliary excretion of multidrug-resistant associated protein 2 (Mrp2) substrates by inducing Mrp2 retrieval from the canalicular membrane, whereas cyclic adenosine monophosphate (cAMP) increases plasma membrane (PM)-MRP2. The effect of TLC may be mediated via protein kinase Cϵ (PKCϵ). Myristoylated alanine-rich C kinase substrate (MARCKS) is a membrane-bound F-actin crosslinking protein and is phosphorylated by PKCs. MARCKS phosphorylation has been implicated in endocytosis, and the underlying mechanism appears to be the detachment of phosphorylated myristoylated alanine-rich C kinase substrate (pMARCKS) from the membrane. The aim of the present study was to test the hypothesis that TLC-induced MRP2 retrieval involves PKCϵ-mediated MARCKS phosphorylation. Studies were conducted in HuH7 cells stably transfected with sodium taurocholate cotransporting polypeptide (HuH-NTCP cells) and in rat hepatocytes. TLC increased PM-PKCϵ and decreased PM-MRP2 in both HuH-NTCP cells and hepatocytes. cAMP did not affect PM-PKCϵ and increased PM-MRP2 in these cells. In HuH-NTCP cells, dominant-negative (DN) PKCϵ reversed TLC-induced decreases in PM-MRP2 without affecting cAMP-induced increases in PM-MRP2. TLC, but not cAMP, increased MARCKS phosphorylation in HuH-NTCP cells and hepatocytes. TLC and phorbol myristate acetate increased cytosolic pMARCKS and decreased PM-MARCKS in HuH-NTCP cells. TLC failed to increase MARCKS phosphorylation in HuH-NTCP cells transfected with DN-PKCϵ, and this suggested PKCϵ-mediated phosphorylation of MARCKS by TLC. In HuH-NTCP cells transfected with phosphorylation-deficient MARCKS, TLC failed to increase MARCKS phosphorylation or decrease PM-MRP2. Taken together, these results support the hypothesis that TLC-induced MRP2 retrieval involves TLC-mediated activation of PKCϵ followed by MARCKS phosphorylation and consequent detachment of MARCKS from the membrane. Copyright © 2013 American Association for the Study of Liver Diseases.
Keeping the home fires burning†: AMP-activated protein kinase
2018-01-01
Living cells obtain energy either by oxidizing reduced compounds of organic or mineral origin or by absorbing light. Whichever energy source is used, some of the energy released is conserved by converting adenosine diphosphate (ADP) to adenosine triphosphate (ATP), which are analogous to the chemicals in a rechargeable battery. The energy released by the conversion of ATP back to ADP is used to drive most energy-requiring processes, including cell growth, cell division, communication and movement. It is clearly essential to life that the production and consumption of ATP are always maintained in balance, and the AMP-activated protein kinase (AMPK) is one of the key cellular regulatory systems that ensures this. In eukaryotic cells (cells with nuclei and other internal membrane-bound structures, including human cells), most ATP is produced in mitochondria, which are thought to have been derived by the engulfment of oxidative bacteria by a host cell not previously able to use molecular oxygen. AMPK is activated by increasing AMP or ADP (AMP being generated from ADP whenever ADP rises) coupled with falling ATP. Relatives of AMPK are found in essentially all eukaryotes, and it may have evolved to allow the host cell to monitor the output of the newly acquired mitochondria and step their ATP production up or down according to the demand. Structural studies have illuminated how AMPK achieves the task of detecting small changes in AMP and ADP, despite the presence of much higher concentrations of ATP. Recently, it has been shown that AMPK can also sense the availability of glucose, the primary carbon source for most eukaryotic cells, via a mechanism independent of changes in AMP or ADP. Once activated by energy imbalance or glucose lack, AMPK modifies many target proteins by transferring phosphate groups to them from ATP. By this means, numerous ATP-producing processes are switched on (including the production of new mitochondria) and ATP-consuming processes are switched off, thus restoring energy homeostasis. Drugs that modulate AMPK have great potential in the treatment of metabolic disorders such as obesity and Type 2 diabetes, and even cancer. Indeed, some existing drugs such as metformin and aspirin, which were derived from traditional herbal remedies, appear to work, in part, by activating AMPK. PMID:29343628
Worrell, V E; Nagle, D P
1990-01-01
The enzymes involved in the purine interconversion pathway of wild-type and purine analog-resistant strains of Methanobacterium thermoautotrophicum Marburg were assayed by radiometric and spectrophotometric methods. Wild-type cells incorporated labeled adenine, guanine, and hypoxanthine, whereas mutant strains varied in their ability to incorporate these bases. Adenine, guanine, hypoxanthine, and xanthine were activated by phosphoribosyltransferase activities present in wild-type cell extracts. Some mutant strains simultaneously lost the ability to convert both guanine and hypoxanthine to the respective nucleotide, suggesting that the same enzyme activates both bases. Adenosine, guanosine, and inosine phosphorylase activities were detected for the conversion of base to nucleoside. Adenine deaminase activity was detected at low levels. Guanine deaminase activity was not detected. Nucleoside kinase activities for the conversion of adenosine, guanosine, and inosine to the respective nucleotides were detected by a new assay. The nucleotide-interconverting enzymes AMP deaminase, succinyl-AMP synthetase, succinyl-AMP lyase, IMP dehydrogenase, and GMP synthetase were present in extracts; GMP reductase was not detected. The results indicate that this autotrophic methanogen has a complex system for the utilization of exogenous purines. PMID:2345148
Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets.
Mizunami, Makoto; Nemoto, Yuko; Terao, Kanta; Hamanaka, Yoshitaka; Matsumoto, Yukihisa
2014-01-01
Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca(2+)/CaM and cAMP signaling participates in long-term memory (LTM) formation in olfactory conditioning in crickets, and here we show participation of CaMKII in LTM formation and propose its site of action in the biochemical cascades. Crickets subjected to 3-trial conditioning to associate an odor with reward exhibited memory that lasts for a few days, which is characterized as protein synthesis-dependent LTM. In contrast, animals subjected to 1-trial conditioning exhibited memory that lasts for only several hours (mid-term memory, MTM). Injection of a CaMKII inhibitor prior to 3-trial conditioning impaired 1-day memory retention but not 1-hour memory retention, suggesting that CaMKII participates in LTM formation but not in MTM formation. Animals injected with a cGMP analogue, calcium ionophore or cAMP analogue prior to 1-trial conditioning exhibited 1-day retention, and co-injection of a CaMKII inhibitor impaired induction of LTM by the cGMP analogue or that by the calcium ionophore but not that by the cAMP analogue, suggesting that CaMKII is downstream of cGMP production and Ca(2+) influx and upstream of cAMP production in biochemical cascades for LTM formation. Animals injected with an adenylyl cyclase (AC) activator prior to 1-trial conditioning exhibited 1-day retention. Interestingly, a CaMKII inhibitor impaired LTM induction by the AC activator, although AC is expected to be a downstream target of CaMKII. The results suggest that CaMKII interacts with AC to facilitate cAMP production for LTM formation. We propose that CaMKII serves as a key molecule for interplay between Ca(2+) signaling and cAMP signaling for LTM formation, a new role of CaMKII in learning and memory.
1994-01-01
Elevation of cAMP can cause gene-specific inhibition of interleukin 2 (IL-2) expression. To investigate the mechanism of this effect, we have combined electrophoretic mobility shift assays and in vivo genomic footprinting to assess both the availability of putative IL-2 transcription factors in forskolin-treated cells and the functional capacity of these factors to engage their sites in vivo. All observed effects of forskolin depended upon protein kinase A, for they were blocked by introduction of a dominant negative mutant subunit of protein kinase A. In the EL4.E1 cell line, we report specific inhibitory effects of cAMP elevation both on NF-kappa B/Rel family factors binding at -200 bp, and on a novel, biochemically distinct "TGGGC" factor binding at -225 bp with respect to the IL-2 transcriptional start site. Neither NF-AT nor AP-1 binding activities are detectably inhibited in gel mobility shift assays. Elevation of cAMP inhibits NF-kappa B activity with delayed kinetics in association with a delayed inhibition of IL-2 RNA accumulation. Activation of cells in the presence of forskolin prevents the maintenance of stable protein- DNA interactions in vivo, not only at the NF-kappa B and TGGGC sites of the IL-2 enhancer, but also at the NF-AT, AP-1, and other sites. This result, and similar results in cyclosporin A-treated cells, imply that individual IL-2 transcription factors cannot stably bind their target sequences in vivo without coengagement of all other distinct factors at neighboring sites. It is proposed that nonhierarchical, cooperative enhancement of binding is a structural basis of combinatorial transcription factor action at the IL-2 locus. PMID:8113685
Zaremberg, V; Moreno, S
1996-04-01
Spontaneous mutations in the gene which encodes the regulatory subunit of cAMP-dependent protein kinase (PKA) of Saccharomyces cerevisiae (BCY1) have been isolated previously [Cannon, J. F., Gibbs, J. B. & Tatchell, K. (1986) Genetics 113, 247-264] by selection of ras2::LEU2 revertants that grew on non-fermentable carbon sources. The revertants were placed into groups of increasing severity based on the number of PKA-dependent traits affected [Cannon, J. F., Gitan, R. & Tatchell, K. (1990) J. Biol. Chem. 265, 11897-11904]. In this work the ras2 mutation has been crossed out in each bcy1 allele and the phenotypes of these mutants have been assessed. The order of severity of the mutants in both genetic backgrounds is maintained but the severity of each mutant in the normal background is higher than in the ras2::LEU2 background. Total catalytic-subunit and regulatory-subunit activities were measured in crude extracts of the bcy1 ras2::LEU2 mutants. With one exception (bcy1-6) the calculated regulatory subunit/catalytic subunit ratios of the bcy1 mutants relative to that of wild-type cells were greater than one. The dependence of PKA activity on cAMP was measured in permeabilized cells. The strains show an activity ratio in the absence and presence of cAMP in the range 0.5-1 for Kemptide phosphorylation. Overexpression of the high-affinity cAMP phosphodiesterase gene (PDE2) in the bcy1 ras2::LEU2 strains did not alter their PKA-dependent phenotypes. However, transformants were not observed from the parental ras2::LEU2 strain and the bcy1-6 ras2::LEU2 strain. The results are discussed with respect to a hypothesis for the molecular mechanism of the differential reversal of ras2 phenotypes by the bcy1 alleles. Mutations in the regulatory subunit are predicted to affect the structure of the holoenzyme such that the catalytic subunit is capable of maintaining an active catalytic state, without the need to dissociate from the regulatory subunit.
Inhibition of the KCa3.1 channels by AMP-activated protein kinase in human airway epithelial cells
Klein, Hélène; Garneau, Line; Trinh, Nguyen Thu Ngan; Privé, Anik; Dionne, François; Goupil, Eugénie; Thuringer, Dominique; Parent, Lucie; Brochiero, Emmanuelle; Sauvé, Rémy
2009-01-01
The vectorial transport of ions and water across epithelial cells depends to a large extent on the coordination of the apical and basolateral ion fluxes with energy supply. In this work we provide the first evidence for a regulation by the 5′-AMP-activated protein kinase (AMPK) of the calcium-activated potassium channel KCa3.1 expressed at the basolateral membrane of a large variety of epithelial cells. Inside-out patch-clamp experiments performed on human embryonic kidney (HEK) cells stably transfected with KCa3.1 first revealed a decrease in KCa3.1 activity following the internal addition of AMP at a fixed ATP concentration. This effect was dose dependent with half inhibition at 140 μM AMP in 1 mM ATP. Evidence for an interaction between the COOH-terminal region of KCa3.1 and the γ1-subunit of AMPK was next obtained by two-hybrid screening and pull-down experiments. Our two-hybrid analysis confirmed in addition that the amino acids extending from Asp380 to Ala400 in COOH-terminal were essential for the interaction AMPK-γ1/KCa3.1. Inside-out experiments on cells coexpressing KCa3.1 with the dominant negative AMPK-γ1-R299G mutant showed a reduced sensitivity of KCa3.1 to AMP, arguing for a functional link between KCa3.1 and the γ1-subunit of AMPK. More importantly, coimmunoprecipitation experiments carried out on bronchial epithelial NuLi cells provided direct evidence for the formation of a KCa3.1/AMPK-γ1 complex at endogenous AMPK and KCa3.1 expression levels. Finally, treating NuLi monolayers with the membrane permeant AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) caused a significant decrease of the KCa3.1-mediated short-circuit currents, an effect reversible by coincubation with the AMPK inhibitor Compound C. These observations argue for a regulation of KCa3.1 by AMPK in a functional epithelium through protein/protein interactions involving the γ1-subunit of AMPK. PMID:19052260
Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao
2015-04-01
Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Berberine Promotes Glucose Consumption Independently of AMP-Activated Protein Kinase Activation
Xiao, Yuanyuan; Hou, Wolin; Yu, Xueying; Shen, Li; Liu, Fang; Wei, Li; Jia, Weiping
2014-01-01
Berberine is a plant alkaloid with anti-diabetic action. Activation of AMP-activated protein kinase (AMPK) pathway has been proposed as mechanism for berberine’s action. This study aimed to examine whether AMPK activation was necessary for berberine’s glucose-lowering effect. We found that in HepG2 hepatocytes and C2C12 myotubes, berberine significantly increased glucose consumption and lactate release in a dose-dependent manner. AMPK and acetyl coenzyme A synthetase (ACC) phosphorylation were stimulated by 20 µmol/L berberine. Nevertheless, berberine was still effective on stimulating glucose utilization and lactate production, when the AMPK activation was blocked by (1) inhibition of AMPK activity by Compound C, (2) suppression of AMPKα expression by siRNA, and (3) blockade of AMPK pathway by adenoviruses containing dominant-negative forms of AMPKα1/α2. To test the effect of berberine on oxygen consumption, extracellular flux analysis was performed in Seahorse XF24 analyzer. The activity of respiratory chain complex I was almost fully blocked in C2C12 myotubes by berberine. Metformin, as a positive control, showed similar effects as berberine. These results suggest that berberine and metformin promote glucose metabolism by stimulating glycolysis, which probably results from inhibition of mitochondrial respiratory chain complex I, independent of AMPK activation. PMID:25072399
1985-01-01
An immunocolloidal gold electron microscopy method is described allowing the ultrastructural localization and quantitation of the regulatory subunits RI and RII and the catalytic subunit C of cAMP- dependent protein kinase. Using a postembedding indirect immunogold labeling procedure that employs specific antisera, the catalytic and regulatory subunits were localized in electron-dense regions of the nucleus and in cytoplasmic areas with a minimum of nonspecific staining. Antigenic domains were localized in regions of the heterochromatin, nucleolus, interchromatin granules, and in the endoplasmic reticulum of different cell types, such as rat hepatocytes, ovarian granulosa cells, and spermatogonia, as well as cultured H4IIE hepatoma cells. Morphometric quantitation of the relative staining density of nuclear antigens indicated a marked modulation of the number of subunits per unit area under various physiologic conditions. For instance, following partial hepatectomy in rats, the staining density of the nuclear RI and C subunits was markedly increased 16 h after surgery. Glucagon treatment of rats increased the staining density of only the nuclear catalytic subunit. Dibutyryl cAMP treatment of H4IIE hepatoma cells led to a marked increase in the nuclear staining density of all three subunits of cAMP-dependent protein kinase. These studies demonstrate that specific antisera against cAMP-dependent protein kinase subunits may be used in combination with immunogold electron microscopy to identify the ultrastructural location of the subunits and to provide a semi-quantitative estimate of their relative cellular density. PMID:2993318
Epac2 Mediates cAMP-Dependent Potentiation of Neurotransmission in the Hippocampus.
Fernandes, Herman B; Riordan, Sean; Nomura, Toshihiro; Remmers, Christine L; Kraniotis, Stephen; Marshall, John J; Kukreja, Lokesh; Vassar, Robert; Contractor, Anis
2015-04-22
Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2(-/-) mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2(-/-) mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus. Copyright © 2015 the authors 0270-6474/15/356544-10$15.00/0.
Intact LKB1 activity is required for survival of dormant ovarian cancer spheroids
Peart, Teresa; Valdes, Yudith Ramos; Correa, Rohann J. M.; Fazio, Elena; Bertrand, Monique; McGee, Jacob; Préfontaine, Michel; Sugimoto, Akira; DiMattia, Gabriel E.; Shepherd, Trevor G.
2015-01-01
Metastatic epithelial ovarian cancer (EOC) cells can form multicellular spheroids while in suspension and disperse directly throughout the peritoneum to seed secondary lesions. There is growing evidence that EOC spheroids are key mediators of metastasis, and they use specific intracellular signalling pathways to control cancer cell growth and metabolism for increased survival. Our laboratory discovered that AKT signalling is reduced during spheroid formation leading to cellular quiescence and autophagy, and these may be defining features of tumour cell dormancy. To further define the phenotype of EOC spheroids, we have initiated studies of the Liver kinase B1 (LKB1)-5′-AMP-activated protein kinase (AMPK) pathway as a master controller of the metabolic stress response. We demonstrate that activity of AMPK and its upstream kinase LKB1 are increased in quiescent EOC spheroids as compared with proliferating adherent EOC cells. We also show elevated AMPK activity in spheroids isolated directly from patient ascites. Functional studies reveal that treatment with the AMP mimetic AICAR or allosteric AMPK activator A-769662 led to a cytostatic response in proliferative adherent ovarian cancer cells, but they fail to elicit an effect in spheroids. Targeted knockdown of STK11 by RNAi to reduce LKB1 expression led to reduced viability and increased sensitivity to carboplatin treatment in spheroids only, a phenomenon which was AMPK-independent. Thus, our results demonstrate a direct impact of altered LKB1-AMPK signalling function in EOC. In addition, this is the first evidence in cancer cells demonstrating a pro-survival function for LKB1, a kinase traditionally thought to act as a tumour suppressor. PMID:26068970
cAMP regulation of airway smooth muscle function.
Billington, Charlotte K; Ojo, Oluwaseun O; Penn, Raymond B; Ito, Satoru
2013-02-01
Agonists activating β(2)-adrenoceptors (β(2)ARs) on airway smooth muscle (ASM) are the drug of choice for rescue from acute bronchoconstriction in patients with both asthma and chronic obstructive pulmonary disease (COPD). Moreover, the use of long-acting β-agonists combined with inhaled corticosteroids constitutes an important maintenance therapy for these diseases. β-Agonists are effective bronchodilators due primarily to their ability to antagonize ASM contraction. The presumed cellular mechanism of action involves the generation of intracellular cAMP, which in turn can activate the effector molecules cAMP-dependent protein kinase (PKA) and Epac. Other agents such as prostaglandin E(2) and phosphodiesterase inhibitors that also increase intracellular cAMP levels in ASM, can also antagonize ASM contraction, and inhibit other ASM functions including proliferation and migration. Therefore, β(2)ARs and cAMP are key players in combating the pathophysiology of airway narrowing and remodeling. However, limitations of β-agonist therapy due to drug tachyphylaxis related to β(2)AR desensitization, and recent findings regarding the manner in which β(2)ARs and cAMP signal, have raised new and interesting questions about these well-studied molecules. In this review we discuss current concepts regarding β(2)ARs and cAMP in the regulation of ASM cell functions and their therapeutic roles in asthma and COPD. Copyright © 2012 Elsevier Ltd. All rights reserved.
Stenesen, Drew; Suh, Jae Myoung; Seo, Jin; Yu, Kweon; Lee, Kyu-Sun; Kim, Jong-Seok; Min, Kyung-Jin; Graff, Jonathan M.
2012-01-01
SUMMARY A common thread among conserved lifespan regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of adenosine monophosphate (AMP) biosynthetic enzymes extend Drosophila lifespan. The lifespan benefit of these mutations depends upon increased AMP to adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended lifespan, while AMPK RNAi reduced lifespan. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed lifespan extension. Remarkably, this simple change in diet also blocked the pro-longevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult lifespan, provide a mechanistic link between cellular anabolism and energy sensing pathways, and indicate that dietary adenine manipulations might alter metabolism to influence animal lifespan. PMID:23312286
Misra, Uma Kant; Pizzo, Salvatore Vincent
2013-01-01
Objective In human prostate cancer cells, a selective Epac agonist, 8-CPT-2Me-cAMP, upregulates cell proliferation and survival via activation of Ras-MAPK and PI- 3-kinase-Akt-mTOR signaling cascades. Here we examine the role of inflammatory mediators in Epac1-induced cellular proliferation by determining the expression of the pro-inflammatory markers p-cPLA2, COX-2, and PGE2 in prostate cancer cells treated with 8-CPT-2Me-cAMP. Methods We employed inhibitors of COX-2, mTORC1, and mTORC2 to probe cyclic AMP-dependent pathways in human prostate cancer cells. RNAi targeting Epac1, Raptor, and Rictor was also employed in these studies. Results 8-CPT-2Me-cAMP treatment caused a 2–2.5-fold increase of p-cPLA2S505, COX-2, and PGE2 levels in human prostate cancer cell lines. Pretreatment of cells with the COX-2 inhibitor SC-58125 or the EP4 antagonist AH-23848, or with an inhibitor of mTORC1 and mTORC2, Torin1, significantly reduced the Epac1-dependent increase of p-cPLA2 and COX-2, p-S6-kinaseT389, and p-AKTS473. In addition, Epac1-induced protein and DNA synthesis were greatly reduced upon pretreatment of cells with either COX-2, EP4, or mTOR inhibitors. Transfection of prostate cancer cells with Epac1 dsRNA, Raptor dsRNA, or Rictor dsRNA profoundly reduced Epac1-dependent increases in p-cPLA2 and COX-2. Conclusion We show that Epac1, a downstream effector of cAMP, functions as a pro-inflammatory modulator in prostate cancer cells and promotes cell proliferation and survival by upregulating Ras-MAPK, and PI 3-kinase-Akt-mTOR signaling. PMID:23646189
DARPP-32 Is a Robust Integrator of Dopamine and Glutamate Signals
Fernandez, Éric; Schiappa, Renaud; Girault, Jean-Antoine; Novère, Nicolas Le
2006-01-01
Integration of neurotransmitter and neuromodulator signals in the striatum plays a central role in the functions and dysfunctions of the basal ganglia. DARPP-32 is a key actor of this integration in the GABAergic medium-size spiny neurons, in particular in response to dopamine and glutamate. When phosphorylated by cAMP-dependent protein kinase (PKA), DARPP-32 inhibits protein phosphatase-1 (PP1), whereas when phosphorylated by cyclin-dependent kinase 5 (CDK5) it inhibits PKA. DARPP-32 is also regulated by casein kinases and by several protein phosphatases. These complex and intricate regulations make simple predictions of DARPP-32 dynamic behaviour virtually impossible. We used detailed quantitative modelling of the regulation of DARPP-32 phosphorylation to improve our understanding of its function. The models included all the combinations of the three best-characterized phosphorylation sites of DARPP-32, their regulation by kinases and phosphatases, and the regulation of those enzymes by cAMP and Ca2+ signals. Dynamic simulations allowed us to observe the temporal relationships between cAMP and Ca2+ signals. We confirmed that the proposed regulation of protein phosphatase-2A (PP2A) by calcium can account for the observed decrease of Threonine 75 phosphorylation upon glutamate receptor activation. DARPP-32 is not simply a switch between PP1-inhibiting and PKA-inhibiting states. Sensitivity analysis showed that CDK5 activity is a major regulator of the response, as previously suggested. Conversely, the strength of the regulation of PP2A by PKA or by calcium had little effect on the PP1-inhibiting function of DARPP-32 in these conditions. The simulations showed that DARPP-32 is not only a robust signal integrator, but that its response also depends on the delay between cAMP and calcium signals affecting the response to the latter. This integration did not depend on the concentration of DARPP-32, while the absolute effect on PP1 varied linearly. In silico mutants showed that Ser137 phosphorylation affects the influence of the delay between dopamine and glutamate, and that constitutive phosphorylation in Ser137 transforms DARPP-32 in a quasi-irreversible switch. This work is a first attempt to better understand the complex interactions between cAMP and Ca2+ regulation of DARPP-32. Progressive inclusion of additional components should lead to a realistic model of signalling networks underlying the function of striatal neurons. PMID:17194217
Kong, Dong; Dagon, Yossi; Campbell, John N; Guo, Yikun; Yang, Zongfang; Yi, Xinchi; Aryal, Pratik; Wellenstein, Kerry; Kahn, Barbara B; Sabatini, Bernardo L; Lowell, Bradford B
2016-07-06
AMP-activated protein kinase (AMPK) plays an important role in regulating food intake. The downstream AMPK substrates and neurobiological mechanisms responsible for this, however, are ill defined. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus regulate hunger. Their firing increases with fasting, and once engaged they cause feeding. AgRP neuron activity is regulated by state-dependent synaptic plasticity: fasting increases dendritic spines and excitatory synaptic activity; feeding does the opposite. The signaling mechanisms underlying this, however, are also unknown. Using neuron-specific approaches to measure and manipulate kinase activity specifically within AgRP neurons, we establish that fasting increases AMPK activity in AgRP neurons, that increased AMPK activity in AgRP neurons is both necessary and sufficient for fasting-induced spinogenesis and excitatory synaptic activity, and that the AMPK phosphorylation target mediating this plasticity is p21-activated kinase. This provides a signaling and neurobiological basis for both AMPK regulation of energy balance and AgRP neuron state-dependent plasticity. Copyright © 2016 Elsevier Inc. All rights reserved.
Hong, Sang-Hyuk; Lee, Hyemin; Lee, Hyo-Jung; Kim, Bonglee; Nam, Min-Ho; Shim, Bum-Sang; Kim, Sung-Hoon
2017-05-01
Although Pinus koraiensis leaf (PKL) was reported for its anti-diabetes, anti-obesity and anticancer effects as a folk remedy, the inhibitory effect of PKL on alcoholic fatty liver has never been elucidated yet. This study investigated the molecular mechanisms of PKL on alcoholic fatty liver in HepG2 cells, Sprague Dawley (SD) rats and Imprinting Control Region (ICR) mice. Pinus koraiensis leaf increased phosphorylation of liver kinase B1 (LKB1)/AMP-activated protein kinase signaling, low-density lipoprotein receptor and decreased fatty acid biosynthesis-related proteins such as sterol regulatory element-binding protein 1c, fatty acid synthase, 3-hydroxy-3-methylglutaryl-CoA reductase in HepG2 cells. In SD rats with 25% alcohol-induced fatty liver, PKL suppressed the levels of aspartate aminotransferase and triglyceride and also enhanced the activities of antioxidant enzymes including superoxide dismutase, glutathione peroxidase and glutathione s-transferase compared with untreated control. Furthermore, PKL increased serum alcohol dehydrogenase and serum aldehyde dehydrogenase, but decreased serum alcohol concentration in ICR mice after alcohol administration. Consistently, histochemical analysis revealed that PKL attenuated alcohol-induced fatty liver in SD rats. Overall, these findings suggest that PKL ameliorates alcohol-induced fatty liver via activation of LKB1-AMP-activated protein kinase and modulation of proteins related to lipogenesis synthesis, cholesterol synthesis and fatty acid oxidation. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Sucharov, Carmen C; Mariner, Peter D; Nunley, Karin R; Long, Carlin; Leinwand, Leslie; Bristow, Michael R
2006-09-01
Beta-adrenergic signaling plays an important role in the natural history of dilated cardiomyopathies. Chronic activation of beta-adrenergic receptors (beta1-AR and beta2-AR) during periods of cardiac stress ultimately harms the failing heart by mechanisms that include alterations in gene expression. Here, we show that stimulation of beta-ARs with isoproterenol in neonate rat ventricular myocytes causes a "fetal" response in the relative activities of the human cardiac fetal and/or adult gene promoters that includes repression of the human and rat alpha-myosin heavy chain (alpha-MyHC) promoters with simultaneous activation of the human atrial natriuretic peptide (ANP) and rat beta-MyHC promoters. We also show that the promoter changes correlate with changes in endogenous gene expression as measured by mRNA expression. Furthermore, we show that these changes are specifically mediated by the beta1-AR, but not the beta2-AR, and are independent of alpha1-AR stimulation. We also demonstrate that the fetal gene response is independent of cAMP and protein kinase A, whereas inhibition of Ca2+/calmodulin-dependent protein kinase (CaMK) pathway blocks isoproterenol-mediated fetal gene program induction. Finally, we show that induction of the fetal program is dependent on activation of the L-type Ca2+ channel. We conclude that in neonatal rat cardiac myocytes, agonist-occupied beta1-AR mobilizes Ca2+ stores to activate fetal gene induction through cAMP independent pathways that involve CaMK.
Salehi, Forouz; Hosseini-Zare, Mahshid S; Aghajani, Haleh; Seyedi, Seyedeh Yalda; Hosseini-Zare, Maryam S; Sharifzadeh, Mohammad
2017-08-01
The aim of this study was to determine the effects of cyclic adenosine monophosphate (cAMP) and its dependent pathway on thermal nociception in a mouse model of acute pain. Here, we studied the effect of H-89 (protein kinase A inhibitor), bucladesine (Db-cAMP) (membrane-permeable analog of cAMP), and pentoxifylline (PTX; nonspecific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1, and 0.5 mg/100 g), PTX (5, 10, and 20 mg/100 g), and Db-cAMP (50, 100, and 300 nm/mouse) were administered intraperitoneally (I.p.) 15 min before a tail-flick test. In combination groups, we injected the first and the second compounds 30 and 15 min before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Db-cAMP, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100 g) attenuated the antinociceptive effect of Db-cAMP in doses of 50 and 100 nm/mouse. Surprisingly, Db-cAMP decreased the antinociceptive effect of the lowest dose of H-89 (0.05 mg/100 g). All applied doses of PTX reduced the effect of 0.05 mg/100 g H-89 on pain sensation; however, the highest dose of H-89 compromised the antinociceptive effect of 20 mg/100 g dose of PTX. Co-administration of Db-cAMP and PTX increased the antinociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases. © 2017 Société Française de Pharmacologie et de Thérapeutique.
Thompson, Eloise; Breil, Florence; Lorthiois, Audrey; Dupuy, Florian; Cummings, Ross; Duffier, Yoann; Corbett, Yolanda; Mercereau-Puijalon, Odile; Vernick, Kenneth; Taramelli, Donatella; Baker, David A.; Langsley, Gordon; Lavazec, Catherine
2015-01-01
Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites. PMID:25951195
Miyamoto, Satoshi; Hsu, Cheng-Chih; Hamm, Gregory; Darshi, Manjula; Diamond-Stanic, Maggie; Declèves, Anne-Emilie; Slater, Larkin; Pennathur, Subramaniam; Stauber, Jonathan; Dorrestein, Pieter C; Sharma, Kumar
2016-05-01
AMP-activated protein kinase (AMPK) is suppressed in diabetes and may be due to a high ATP/AMP ratio, however the quantitation of nucleotides in vivo has been extremely difficult. Via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to localize renal nucleotides we found that the diabetic kidney had a significant increase in glomerular ATP/AMP ratio. Untargeted MALDI-MSI analysis revealed that a specific sphingomyelin species (SM(d18:1/16:0)) accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with wild-type controls. In vitro studies in mesangial cells revealed that exogenous addition of SM(d18:1/16:0) significantly elevated ATP via increased glucose consumption and lactate production with a consequent reduction of AMPK and PGC1α. Furthermore, inhibition of sphingomyelin synthases reversed these effects. Our findings suggest that AMPK is reduced in the diabetic kidney due to an increase in the ATP/AMP ratio and that SM(d18:1/16:0) could be responsible for the enhanced ATP production via activation of the glycolytic pathway. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Metabolic benefits of inhibiting cAMP-PDEs with resveratrol.
Chung, Jay H
2012-10-01
Calorie restriction (CR) extends lifespan in species ranging from yeast to mammals. There is evidence that CR also protects against aging-related diseases in non-human primates. This has led to an intense interest in the development of CR-mimetics to harness the beneficial effects of CR to treat aging-related diseases. One CR-mimetic that has received a great deal of attention is resveratrol. Resveratrol extends the lifespan of obese mice and protects against obesity-related diseases such as type 2 diabetes. The specific mechanism of resveratrol action has been difficult to elucidate because resveratrol has a promiscuous target profile. A recent finding indicates that the metabolic effects of resveratrol may result from competitive inhibition of cAMP-degrading phosphodiesterases (PDEs), which increases cAMP levels. The cAMP-dependent pathways activate AMP-activated protein kinase (AMPK), which is essential for the metabolic effects of resveratrol. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including protection against diet-induced obesity and an increase in mitochondrial function, physical stamina and glucose tolerance in mice. This discovery suggests that PDE inhibitors may be useful for treating metabolic diseases associated with aging.
Park, Hwayong; Song, Kwang Hoon; Jung, Pil Mun; Kim, Ji-Eun; Kim, Mi Yoon; Ma, Jin Yeul
2013-01-01
To identify the active compound arctigenin in Fructus Arctii (dried seed of medicinal plant Arctium lappa) and to elucidate the inhibitory mechanism in melanogenesis, we analyzed melanin content and tyrosinase activity on B16BL6 murine melanoma and melan-A cell cultures. Water extracts of Fructus Arctii were shown to inhibit tyrosinase activity in vitro and melanin content in α-melanocyte stimulating hormone-stimulated cells to similar levels as the well-known kojic acid and arbutin, respectively. The active compound arctigenin of Fructus Arctii displayed little or no cytotoxicity at all concentrations examined and decreased the relative melanin content and tyrosinase activity in a dose-dependent manner. Melanogenic inhibitory activity was also identified in vivo with zebrafish embryo. To determine the mechanism of inhibition, the effects of arctigenin on tyrosinase gene expression and tyrosinase promoter activity were examined. Also in addition, in the signaling cascade, arctigenin dose dependently decreased the cAMP level and promoted the phosphorylation of extracellular signal-regulated kinase. This result suggests that arctigenin downregulates cAMP and the tyrosinase enzyme through its gene promoter and subsequently upregulates extracellular signal-regulated kinase activity by increasing phosphorylation in the melanogenesis signaling pathway, which leads to a lower melanin content. PMID:23781272
AMPK-mediated regulation of neuronal metabolism and function in brain diseases.
Liu, Yu-Ju; Chern, Yijuang
2015-01-01
The AMP-activated protein kinase (AMPK) is a serine/threonine kinase that functions as a key energy sensor in a wide variety of tissues. This kinase has been a major drug target for metabolic diseases (e.g., type 2 diabetes) and cancers. For example, metformin (an activator of AMPK) is a first-line diabetes drug that protects against cancers. Abnormal regulation of AMPK has been implicated in several brain diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke. Given the emerging importance of neurodegenerative diseases in our aging societies, this review features the recent studies that have delineated the functions of AMPK in brain diseases and discusses their potential clinical implications or roles as drug targets in brain diseases.
The future of EPAC-targeted therapies: agonism versus antagonism.
Parnell, Euan; Palmer, Timothy M; Yarwood, Stephen J
2015-04-01
Pharmaceutical manipulation of cAMP levels exerts beneficial effects through the regulation of the exchange protein activated by cAMP (EPAC) and protein kinase A (PKA) signalling routes. Recent attention has turned to the specific regulation of EPAC isoforms (EPAC1 and EPAC2) as a more targeted approach to cAMP-based therapies. For example, EPAC2-selective agonists could promote insulin secretion from pancreatic β cells, whereas EPAC1-selective agonists may be useful in the treatment of vascular inflammation. By contrast, EPAC1 and EPAC2 antagonists could both be useful in the treatment of heart failure. Here we discuss whether the best way forward is to design EPAC-selective agonists or antagonists and the current strategies being used to develop isoform-selective, small-molecule regulators of EPAC1 and EPAC2 activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kinases Involved in Both Autophagy and Mitosis.
Li, Zhiyuan; Zhang, Xin
2017-08-31
Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.
Kinases Involved in Both Autophagy and Mitosis
2017-01-01
Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations. PMID:28858266
USDA-ARS?s Scientific Manuscript database
The cyclic AMP (cAMP)-PKA pathway is a central signaling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signaling in fungal biology has been well documented. Two key conserved components, adenylate cyclase (AC) and ca...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp; Kitamura, Kazuo; Nagata, Sayaka
2010-02-12
Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2more » complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.« less
Campbell, James C.; VanSchouwen, Bryan; Lorenz, Robin; ...
2016-12-23
The R-diastereomer of phosphorothioate analogs of cGMP, Rp-cGMPS, is one of few known inhibitors of cGMP-dependent protein kinase I (PKG I); however, its mechanism of inhibition is currently not fully understood. We determined the crystal structure of the PKG Iβ cyclic nucleotide-binding domain (PKG Iβ CNB-B), considered a ‘gatekeeper’ for cGMP activation, bound to Rp-cGMPS at 1.3 Å. Our structural and NMR data show that PKG Iβ CNB-B bound to Rp-cGMPS displays an apo-like structure with its helical domain in an open conformation. Comparison with the cAMP-dependent protein kinase regulatory subunit (PKA RIα) showed that this conformation resembles the catalyticmore » subunit-bound inhibited state of PKA RIα more closely than the apo or Rp-cAMPS-bound conformations. Our results suggest that Rp-cGMPS inhibits PKG I by stabilizing the inactive conformation of CNB-B.« less
USDA-ARS?s Scientific Manuscript database
AKI is associated with increased morbidity, mortality, and cost of care, and therapeutic options remain limited. Reactive oxygen species are critical for the genesis of ischemic AKI. Stanniocalcin-1 (STC1) suppresses superoxide generation through induction of uncoupling proteins (UCPs), and transgen...
USDA-ARS?s Scientific Manuscript database
Long-term administration of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) mimics the effects of endurance exercise by activating AMP kinase and by increasing skeletal muscle expression of GLUT4 glucose transporter. AICAR is an intermediate in the purine de novo synthesis, and its tissue conc...
Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling
2014-01-01
Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046
In the Hunger Games, the Winner Takes Everything.
Püschel, Franziska; Muñoz-Pinedo, Cristina
2017-10-01
Entosis is an atypical form of cell death that occurs when a cell engulfs and kills another cell. A recent article by Overholtzer and colleagues indicates that glucose deprivation promotes entosis. AMP-activated protein kinase (AMPK) activation in the loser cells triggers their engulfment and elimination by winner cells, which endure starvation. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Physiopathology of cAMP/PKA signaling in neurons].
Castro, Liliana; Yapo, Cedric; Vincent, Pierre
2016-01-01
Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases. © Société de Biologie, 2017.
N-(4-methoxyphenyl) caffeamide-induced melanogenesis inhibition mechanisms.
Kuo, Yueh-Hsiung; Chen, Chien-Chia; Wu, Po-Yuan; Wu, Chin-Sheng; Sung, Ping-Jyun; Lin, Chien-Yih; Chiang, Hsiu-Mei
2017-01-23
The derivative of caffeamide exhibits antioxidant and antityrosinase activity. The activity and mechanism of N-(4-methoxyphenyl) caffeamide (K36E) on melanogenesis was investigated. B16F0 cells were treated with various concentrations of K36E; the melanin contents and related signal transduction were studied. Western blotting assay was applied to determine the protein expression, and spectrophotometry was performed to identify the tyrosinase activity and melanin content. Our results indicated that K36E reduced α-melanocyte-stimulating hormone (α-MSH)-induced melanin content and tyrosinase activity in B16F0 cells. In addition, K36E inhibited the expression of phospho-cyclic adenosine monophosphate (cAMP)-response element-binding protein, microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1 (TRP-1). K36E activated the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3 beta (GSK3β), leading to the inhibition of MITF transcription activity. K36E attenuated α-MSH induced cAMP pathways, contributing to hypopigmentation. K36E regulated melanin synthesis through reducing the expression of downstream proteins including p-CREB, p-AKT, p-GSK3β, tyrosinase, and TRP-1, and activated the transcription factor, MITF. K36E may have the potential to be developed as a skin whitening agent.
Kim, Donghee; Kang, Dawon; Martin, Elizabeth A; Kim, Insook; Carroll, John L
2014-05-01
Acute hypoxia depolarizes carotid body chemoreceptor (glomus) cells and elevates intracellular Ca(2+) concentration ([Ca(2+)]i). Recent studies suggest that AMP-activated protein kinase (AMPK) mediates these effects of hypoxia by inhibiting the background K(+) channels such as TASK. Here we studied the effects of modulators of AMPK on TASK activity in cell-attached patches. Activators of AMPK (1mM AICAR and 0.1-0.5mM A769662) did not inhibit TASK activity or cause depolarization during acute (10min) or prolonged (2-3h) exposure. Hypoxia inhibited TASK activity by ∼70% in cells pretreated with AICAR or A769662. Both AICAR and A769662 (15-40min) failed to increase [Ca(2+)]i in glomus cells. Compound C (40μM), an inhibitor of AMPK, showed no effect on hypoxia-induced inhibition of TASK. AICAR and A769662 phosphorylated AMPKα in PC12 cells, and Compound C blocked the phosphorylation. Our results suggest that AMPK does not affect TASK activity and is not involved in hypoxia-induced elevation of intracellular [Ca(2+)] in isolated rat carotid body glomus cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Moon, Thomas M; Sheehe, Jessica L; Nukareddy, Praveena; Nausch, Lydia W; Wohlfahrt, Jessica; Matthews, Dwight E; Blumenthal, Donald K; Dostmann, Wolfgang R
2018-05-25
The type I cGMP-dependent protein kinases (PKG I) serve essential physiological functions, including smooth muscle relaxation, cardiac remodeling, and platelet aggregation. These enzymes form homodimers through their N-terminal dimerization domains, a feature implicated in regulating their cooperative activation. Previous investigations into the activation mechanisms of PKG I isoforms have been largely influenced by structures of the cAMP-dependent protein kinase (PKA). Here, we examined PKG Iα activation by cGMP and cAMP by engineering a monomeric form that lacks N-terminal residues 1-53 (Δ53). We found that the construct exists as a monomer as assessed by whole-protein MS, size-exclusion chromatography, and small-angle X-ray scattering (SAXS). Reconstruction of the SAXS 3D envelope indicates that Δ53 has a similar shape to the heterodimeric RIα-C complex of PKA. Moreover, we found that the Δ53 construct is autoinhibited in its cGMP-free state and can bind to and be activated by cGMP in a manner similar to full-length PKG Iα as assessed by surface plasmon resonance (SPR) spectroscopy. However, we found that the Δ53 variant does not exhibit cooperative activation, and its cyclic nucleotide selectivity is diminished. These findings support a model in which, despite structural similarities, PKG Iα activation is distinct from that of PKA, and its cooperativity is driven by in trans interactions between protomers. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
McGuire, Christina M; Forgac, Michael
2018-06-08
The vacuolar H + -ATPase (V-ATPase) is an ATP-driven proton pump involved in many cellular processes. An important mechanism by which V-ATPase activity is controlled is the reversible assembly of its two domains, namely the peripheral V 1 domain and the integral V 0 domain. Although reversible assembly is conserved across all eukaryotic organisms, the signaling pathways controlling it have not been fully characterized. Here, we identify glucose starvation as a novel regulator of V-ATPase assembly in mammalian cells. During acute glucose starvation, the V-ATPase undergoes a rapid and reversible increase in assembly and activity as measured by lysosomal acidification. Because the V-ATPase has recently been implicated in the activation of AMP kinase (AMPK), a critical cellular energy sensor that is also activated upon glucose starvation, we compared the time course of AMPK activation and V-ATPase assembly upon glucose starvation. We observe that AMPK activation precedes increased V-ATPase activity. Moreover, the starvation-induced increase in V-ATPase activity and assembly are prevented by the AMPK inhibitor dorsomorphin. These results suggest that increased assembly and activity of the V-ATPase upon glucose starvation are dependent upon AMPK. We also find that the PI3K/Akt pathway, which has previously been implicated in controlling V-ATPase assembly in mammalian cells, also plays a role in the starvation-induced increase in V-ATPase assembly and activity. These studies thus identify a novel stimulus of V-ATPase assembly and a novel signaling pathway involved in regulating this process. The possible function of starvation-induced increase in lysosomal V-ATPase activity is discussed. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Kim, Jeong Joo; Lorenz, Robin; Arold, Stefan T; Reger, Albert S; Sankaran, Banumathi; Casteel, Darren E; Herberg, Friedrich W; Kim, Choel
2016-05-03
Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gan, Ren-You; Li, Hua-Bin
2014-01-01
Liver kinase B1 (LKB1), known as a serine/threonine kinase, has been identified as a critical cancer suppressor in many cancer cells. It is a master upstream kinase of 13 AMP-activated protein kinase (AMPK)-related protein kinases, and possesses versatile biological functions. LKB1 gene is mutated in many cancers, and its protein can form different protein complexes with different cellular localizations in various cell types. The expression of LKB1 can be regulated through epigenetic modification, transcriptional regulation and post-translational modification. LKB1 dowcnstream pathways mainly include AMPK, microtubule affinity regulating kinase (MARK), salt-inducible kinase (SIK), sucrose non-fermenting protein-related kinase (SNRK) and brain selective kinase (BRSK) signalings, etc. This review, therefore, mainly discusses recent studies about the expression, regulation, downstream signaling and cancer suppressive function of LKB1, which can be helpful for better understanding of this molecular and its significance in cancers. PMID:25244018
Phosphodiesterase 4 regulates the migration of B16-F10 melanoma cells.
Watanabe, Yoshihiro; Murata, Taku; Shimizu, Kasumi; Morita, Hiroshi; Inui, Madoka; Tagawa, Toshiro
2012-08-01
Phosphodiesterases (PDEs) are important regulators of signal transduction processes. Eleven PDE gene families (PDE1-11) have been identified and several PDE isoforms are selectively expressed in various cell types. PDE4 family members specifically hydrolyze cyclic AMP (cAMP). Four genes (PDE4A-D) are known to encode PDE4 enzymes, with additional diversity generated by the use of alternative mRNA splicing and the use of different promoters. While PDE4 selective inhibitors show therapeutic potential for treating major diseases such as asthma and chronic obstructive pulmonary disease, little is known concerning the role of PDE4 in malignant melanoma. In this study, we examined the role of PDE4 in mouse B16-F10 melanoma cells. In these cells, PDE4 activity was found to be ∼60% of total PDE activity. RT-PCR detected only PDE4B and PDE4D mRNA. Cell growth was inhibited by the cAMP analog, 8-bromo-cAMP, but not by the specific PDE4 inhibitors, rolipram and denbufylline, which increased intracellular cAMP concentrations. Finally, migration of the B16-F10 cells was inhibited by the PDE4 inhibitors and 8-bromo-cAMP, while migration was increased by a protein kinase A (PKA) inhibitor, PKI(14-22), and was not affected by 8-pCPT-2'-O-Me-cAMP, which is an analog of exchange protein activated by cAMP (Epac). The inhibitory effect of rolipram on migration was reversed by PKI(14-22). Based on these results, PDE4 appears to play an important role in the migration of B16-F10 cells, and therefore may be a novel target for the treatment of malignant melanoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInnis, Brittney; Mitchell, Jessica; Marcus, Stevan, E-mail: smarcus@bama.ua.edu
Research highlights: {yields} cAMP deficiency induces phosphorylation of PKA catalytic subunit (Pka1) in S. pombe. {yields} Pka1 phosphorylation is further induced by physiological stresses. {yields} Pka1 phosphorylation is not induced in cells lacking the PKA regulatory subunit. {yields} Results suggest that cAMP-independent Pka1 phosphorylation is stimulatory in nature. -- Abstract: In the fission yeast, Schizosaccharomyces pombe, cyclic AMP (cAMP)-dependent protein kinase (PKA) is not essential for viability under normal culturing conditions, making this organism attractive for investigating mechanisms of PKA regulation. Here we show that S. pombe cells carrying a deletion in the adenylate cyclase gene, cyr1, express markedly highermore » levels of the PKA catalytic subunit, Pka1, than wild type cells. Significantly, in cyr1{Delta} cells, but not wild type cells, a substantial proportion of Pka1 protein is hyperphosphorylated. Pka1 hyperphosphorylation is strongly induced in cyr1{Delta} cells, and to varying degrees in wild type cells, by both glucose starvation and stationary phase stresses, which are associated with reduced cAMP-dependent PKA activity, and by KCl stress, the cellular adaptation to which is dependent on PKA activity. Interestingly, hyperphosphorylation of Pka1 was not detected in either cyr1{sup +} or cyr1{Delta} S. pombe strains carrying a deletion in the PKA regulatory subunit gene, cgs1, under any of the tested conditions. Our results demonstrate the existence of a cAMP-independent mechanism of PKA catalytic subunit phosphorylation, which we propose could serve as a mechanism for inducing or maintaining specific PKA functions under conditions in which its cAMP-dependent activity is downregulated.« less
Cazabat, Laure; Ragazzon, Bruno; Varin, Audrey; Potier-Cartereau, Marie; Vandier, Christophe; Vezzosi, Delphine; Risk-Rabin, Marthe; Guellich, Aziz; Schittl, Julia; Lechêne, Patrick; Richter, Wito; Nikolaev, Viacheslav O; Zhang, Jin; Bertherat, Jérôme; Vandecasteele, Grégoire
2014-03-01
Carney complex (CNC) is a hereditary disease associating cardiac myxoma, spotty skin pigmentation and endocrine overactivity. CNC is caused by inactivating mutations in the PRKAR1A gene encoding PKA type I alpha regulatory subunit (RIα). Although PKA activity is enhanced in CNC, the mechanisms linking PKA dysregulation to endocrine tumorigenesis are poorly understood. In this study, we used Förster resonance energy transfer (FRET)-based sensors for cAMP and PKA activity to define the role of RIα in the spatiotemporal organization of the cAMP/PKA pathway. RIα knockdown in HEK293 cells increased basal as well as forskolin or prostaglandin E1 (PGE1)-stimulated total cellular PKA activity as reported by western blots of endogenous PKA targets and the FRET-based global PKA activity reporter, AKAR3. Using variants of AKAR3 targeted to subcellular compartments, we identified similar increases in the response to PGE1 in the cytoplasm and at the outer mitochondrial membrane. In contrast, at the plasma membrane, the response to PGE1 was decreased along with an increase in basal FRET ratio. These results were confirmed by western blot analysis of basal and PGE1-induced phosphorylation of membrane-associated vasodilator-stimulated phosphoprotein. Similar differences were observed between the cytoplasm and the plasma membrane in human adrenal cells carrying a RIα inactivating mutation. RIα inactivation also increased cAMP in the cytoplasm, at the outer mitochondrial membrane and at the plasma membrane, as reported by targeted versions of the cAMP indicator Epac1-camps. These results show that RIα inactivation leads to multiple, compartment-specific alterations of the cAMP/PKA pathway revealing new aspects of signaling dysregulation in tumorigenesis.
Signaling through protein kinases and transcriptional regulators in Candida albicans.
Dhillon, Navneet K; Sharma, Sadhna; Khuller, G K
2003-01-01
The human fungal pathogen Candida albicans switches from a budding yeast form to a polarized hyphal form in response to various external signals. This morphogenetic switching has been implicated in the development of pathogenicity. Several signaling pathways that regulate morphogenesis have been identified, including various transcription factors that either activate or repress hypha-specific genes. Two well-characterized pathways include the MAP kinase cascade and cAMP-dependent protein kinase pathway that regulate the transcription factors Cph1p and Efg1p, respectively. cAMP also appears to interplay with other second messengers: Ca2+, inositol tri-phosphates in regulating yeast-hyphal transition. Other, less-characterized pathways include two component histidine kinases, cyclin-dependent kinase pathway, and condition specific pathways such as pH and embedded growth conditions. Nrg1 and Rfg1 function as transcriptional repressors of hyphal genes via recruitment of Tup1 co-repressor complex. Different upstream signals converge into a common downstream output during hyphal switch. The levels of expression of several genes have been shown to be associated with hyphal morphogenesis rather than with a specific hypha-inducing condition. Hyphal development is also linked to the expression of a range of other virulence factors. This review explains the relative contribution of multiple pathways that could be used by Candida albican cells to sense subtle differences in the growth conditions of its native host environment.
Córdova, Alex; Strobel, Pablo; Vallejo, Andrés; Valenzuela, Pamela; Ulloa, Omar; Burgos, Rafael A; Menarim, Bruno; Rodríguez-Gil, Joan Enric; Ratto, Marcelo; Ramírez-Reveco, Alfredo
2014-12-01
This study evaluated the effect of the use of hypometabolic TRIS extenders in the presence or the absence of AMPK activators as well as the utilization of high cooling rates in the refrigeration step on the freezability of stallion sperm. Twelve ejaculates were cryopreserved using Botucrio® as a control extender and a basic TRIS extender (HM-0) separately supplemented with 10 mM metformin, 2mM 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), 2 mM Adenosine monophosphate (AMP), 40 μM compound C AMPK inhibitor or 2 mM AMP+40 μM compound C. Our results showed that the utilization of a hypometabolic TRIS extender supplemented or not with AMP or metformin significantly improves stallion sperm freezability when compared with a commercial extender. Additionally, high cooling rates do not affect stallion sperm quality after cooling and post-thawing. Finally, stallion spermatozoa present several putative AMPK sperm isoforms that do not seem to respond to classical activators, but do respond to the Compound C inhibitor. Copyright © 2014 Elsevier Inc. All rights reserved.
Poli, Anna; Di Pietro, Antonio; Zigon, Dusan; Lenasi, Helena
2009-02-01
Fungi present the ability to hydroxylate steroids. In some filamentous fungi, progesterone induces an enzyme system which converts the compound into a less toxic hydroxylated product. We investigated the progesterone response in the vascular wilt pathogen Fusarium oxysporum, using mass spectrometry and high performance liquid chromatography (HPLC). Progesterone was mainly transformed into 15alpha-hydroxyprogesterone, which was found predominantly in the extracellular medium. The role of two conserved fungal signaling cascades in the induction of the progesterone-transforming enzyme system was studied, using knockout mutants lacking the mitogen-activated protein kinase Fmk1 or the heterotrimeric G-protein beta subunit Fgb1 functioning upstream of the cyclic adenosine monophosphate (cAMP) pathway. No steroid hydroxylation was induced in the Deltafgb1 strain, suggesting a role for the G-protein beta subunit in progesterone signaling. Exogenous cAMP restored the induction of progesterone-transforming activity in the Deltafgb1 strain, suggesting that steroid signaling in F. oxysporum is mediated by the cAMP-PKA pathway.
Wang, Xiaofang; Gattone, Vincent; Harris, Peter C; Torres, Vicente E
2005-04-01
cAMP plays a major role in cystogenesis. Recent in vitro studies suggested that cAMP stimulates B-Raf/ERK activation and proliferation of cyst-derived cells in a Ca(2+) inhibitable, Ras-dependent manner. OPC-31260, a vasopressin V2 receptor (VPV2) antagonist, was shown to lower renal cAMP and inhibit renal disease development and progression in models orthologous to human cystic diseases. Here it is shown that OPC-41061, an antagonist chosen for its potency and selectivity for human VPV2, is effective in PCK rats. PCK kidneys have increased Ras-GTP and phosphorylated ERK levels and 95-kD/68-kD B-Raf ratios, changes that are corrected by the administration of OPC-31260 or OPC-41061. These results support the importance of cAMP in the pathogenesis of polycystic kidney disease, confirm the effectiveness of a VPV2 antagonist to be used in clinical trials for this disease, and suggest that OPC-31260 and OPC-41061 inhibit Ras/mitogen-activated protein kinase signaling in polycystic kidneys.
Yang, Huibin; Li, Gangyong; Wu, Jing-Jiang; Wang, Lidong; Uhler, Michael; Simeone, Diane M.
2013-01-01
Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290–300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281–285 and 320–329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo. PMID:23362281
Yang, Yi; Li, Wang; Liu, Yang; Sun, Yuning; Li, Yan; Yao, Qing; Li, Jianning; Zhang, Qian; Gao, Yujing; Gao, Ling; Zhao, Jiajun
2014-11-01
Understanding the mechanism by which alpha-lipoic acid supplementation has a protective effect upon nonalcoholic fatty liver disease in vivo and in vitro may lead to targets for preventing hepatic steatosis. Male C57BL/6J mice were fed a normal diet, high-fat diet or high-fat diet supplemented with alpha-lipoic acid for 24 weeks. HepG2 cells were incubated with normal medium, palmitate or alpha-lipoic acid. The lipid-lowering effects were measured. The protein expression and distribution were analyzed by Western blot, immunoprecipitation and immunofluorescence, respectively. We found that alpha-lipoic acid enhanced sirtuin 1 deacetylase activity through liver kinase B1 and stimulated AMP-activated protein kinase. By activating the sirtuin 1/liver kinase B1/AMP-activated protein kinase pathway, the translocation of sterol regulatory element-binding protein-1 into the nucleus and forkhead box O1 into the cytoplasm was prevented. Alpha-lipoic acid increased adipose triacylglycerol lipase expression and decreased fatty acid synthase abundance. In in vivo and in vitro studies, alpha-lipoic acid also increased nuclear NF-E2-related factor 2 levels and downstream target amounts via the sirtuin 1 pathway. Alpha-lipoic acid eventually reduced intrahepatic and serum triglyceride content. The protective effects of alpha-lipoic acid on hepatic steatosis appear to be associated with the transcription factors sterol regulatory element-binding protein-1, forkhead box O1 and NF-E2-related factor 2. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Szymańska, Paulina; Martin, Katie R.; MacKeigan, Jeffrey P.; ...
2015-03-11
We constructed a mechanistic, computational model for regulation of (macro)autophagy and protein synthesis (at the level of translation). The model was formulated to study the system-level consequences of interactions among the following proteins: two key components of MTOR complex 1 (MTORC1), namely the protein kinase MTOR (mechanistic target of rapamycin) and the scaffold protein RPTOR; the autophagy-initiating protein kinase ULK1; and the multimeric energy-sensing AMP-activated protein kinase (AMPK). Inputs of the model include intrinsic AMPK kinase activity, which is taken as an adjustable surrogate parameter for cellular energy level or AMP:ATP ratio, and rapamycin dose, which controls MTORC1 activity. Outputsmore » of the model include the phosphorylation level of the translational repressor EIF4EBP1, a substrate of MTORC1, and the phosphorylation level of AMBRA1 (activating molecule in BECN1-regulated autophagy), a substrate of ULK1 critical for autophagosome formation. The model incorporates reciprocal regulation of mTORC1 and ULK1 by AMPK, mutual inhibition of MTORC1 and ULK1, and ULK1-mediated negative feedback regulation of AMPK. Through analysis of the model, we find that these processes may be responsible, depending on conditions, for graded responses to stress inputs, for bistable switching between autophagy and protein synthesis, or relaxation oscillations, comprising alternating periods of autophagy and protein synthesis. A sensitivity analysis indicates that the prediction of oscillatory behavior is robust to changes of the parameter values of the model. The model provides testable predictions about the behavior of the AMPK-MTORC1-ULK1 network, which plays a central role in maintaining cellular energy and nutrient homeostasis.« less
Hess, Kenneth C.; Liu, Jingjing; Manfredi, Giovanni; Mühlschlegel, Fritz A.; Buck, Jochen; Levin, Lonny R.; Barrientos, Antoni
2014-01-01
Mitochondria, the major source of cellular energy in the form of ATP, respond to changes in substrate availability and bioenergetic demands by employing rapid, short-term, metabolic adaptation mechanisms, such as phosphorylation-dependent protein regulation. In mammalian cells, an intramitochondrial CO2-adenylyl cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway regulates aerobic energy production. One target of this pathway involves phosphorylation of cytochrome c oxidase (COX) subunit 4-isoform 1 (COX4i1), which modulates COX allosteric regulation by ATP. However, the role of the CO2-sAC-cAMP-PKA signalosome in regulating COX activity and mitochondrial metabolism and its evolutionary conservation remain to be fully established. We show that in Saccharomyces cerevisiae, normoxic COX activity measured in the presence of ATP is 55% lower than in the presence of ADP. Moreover, the adenylyl cyclase Cyr1 activity is present in mitochondria, and it contributes to the ATP-mediated regulation of COX through the normoxic subunit Cox5a, homologue of human COX4i1, in a bicarbonate-sensitive manner. Furthermore, we have identified 2 phosphorylation targets in Cox5a (T65 and S43) that modulate its allosteric regulation by ATP. These residues are not conserved in the Cox5b-containing hypoxic enzyme, which is not regulated by ATP. We conclude that across evolution, a CO2-sAC-cAMP-PKA axis regulates normoxic COX activity.—Hess, K. C., Liu, J., Manfredi, G., Mühlschlegel, F. A., Buck, J., Levin, L. R., Barrientos, A. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity. PMID:25002117
Huang, Wen-Chung; Liao, Po-Chen; Huang, Chun-Hsun; Hu, Sindy; Huang, Shih-Chun; Wu, Shu-Ju
2017-07-01
Osthole is found in Cnidium monnieri (L.) and has anti-inflammatory and anti-oxidative properties. It also inhibits the proliferation of hepatocellular carcinoma cells. This study aimed to evaluate the osthole suppressive nonalcoholic fatty liver disease effects in oleic acid (OA)-induced hepatic steatosis and if it can modulate inflammatory responses and oxidative stress. FL83B cells were pretreated with OA (250μΜ) for 24h, and then added different concentrations of osthole (3-100μM) for 24h. Subsequently, lipolysis and transcription factors of adipogenesis and phosphorylation of AMP-activated protein kinase proteins were measured. In addition, cells with OA-induced steatosis were H 2 O 2 -stimulated, and then incubated with osthole to evaluated if it could suppress its progression to steatohepatitis. Osthole significantly enhanced glycerol release and lipolysis protein expression. Osthole also promoted phosphorylation of AMP-activated protein kinases and increased the activity of triglyceride lipase and hormone- sensitive lipase. Osthole suppressed the nuclear transcription factor kappa-B and the p38 mitogen-activated protein kinase pathway, and decreased the malondialdehyde concentration in FL83B cells with OA-induced steatosis that were treated with H 2 O 2 . These results suggest that osthole might suppress nonalcoholic fatty liver disease by decreasing lipid accumulation, and through its anti-oxidative and anti-inflammatory effects via blocked NF-κB and MAPK signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro
2014-01-01
We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK.
Involvement of catalase in the protective benefits of metformin in mice with oxidative liver injury.
Dai, Jie; Liu, Mingwei; Ai, Qing; Lin, Ling; Wu, Kunwei; Deng, Xinyu; Jing, Yuping; Jia, Mengying; Wan, Jingyuan; Zhang, Li
2014-06-05
Metformin is a commonly used anti-diabetic drug with AMP-activated protein kinase (AMPK)-dependent hypoglycemic activities. Recent studies have revealed its anti-inflammatory and anti-oxidative properties. In the present study, the anti-oxidative potential of metformin and its potential mechanisms were investigated in a mouse model with carbon tetrachloride (CCl₂)-induced severe oxidative liver injury. Our results showed that treatment with metformin significantly attenuated CCl₂-induced elevation of serum aminotransferases and hepatic histological abnormalities. The alleviated liver injury was associated with decreased hepatic contents of oxidized glutathione (GSSG) and malondialdehyde (MDA). In addition, metformin treatment dose-dependently enhanced the activities of catalase (CAT) and decreased CCl₄-induced elevation of hepatic H₂O₂ levels, but it had no obvious effects on the protein level of CAT. We also found that metformin increased the level of phosphorylated AMP-activated protein kinase (AMPK), but treatment with AMPK activator AICAR had no obvious effects on CAT activity. A molecular docking analysis indicated that metformin might interact with CAT via hydrogen bonds. These data suggested that metformin effectively alleviated CCl₄-induced oxidative liver injury in mice and these hepatoprotective effects might be associated with CAT. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A role for Piezo2 in EPAC1-dependent mechanical allodynia
Eijkelkamp, N; Linley, J.E.; Torres, J.M.; Bee, L.; Dickenson, A.H.; Gringhuis, M.; Minett, M.S.; Hong, G.S.; Lee, E.; Oh, U.; Ishikawa, Y.; Zwartkuis, F.J.; Cox, J.J.; Wood, J.N.
2013-01-01
Aberrant mechanosensation has an important role in different pain states. Here we show that Epac1 (cyclic AMP sensor) potentiation of Piezo2-mediated mechanotransduction contributes to mechanical allodynia. Dorsal root ganglia Epac1 mRNA levels increase during neuropathic pain, and nerve damage-induced allodynia is reduced in Epac1−/− mice. The Epac-selective cAMP analogue 8-pCPT sensitizes mechanically evoked currents in sensory neurons. Human Piezo2 produces large mechanically gated currents that are enhanced by the activation of the cAMP-sensor Epac1 or cytosolic calcium but are unaffected by protein kinase C or protein kinase A and depend on the integrity of the cytoskeleton. In vivo, 8-pCPT induces long-lasting allodynia that is prevented by the knockdown of Epac1 and attenuated by mouse Piezo2 knockdown. Piezo2 knockdown also enhanced thresholds for light touch. Finally, 8-pCPT sensitizes responses to innocuous mechanical stimuli without changing the electrical excitability of sensory fibres. These data indicate that the Epac1–Piezo2 axis has a role in the development of mechanical allodynia during neuropathic pain. PMID:23575686
Mohamed, Wasima; Ray, Sibnath; Brazill, Derrick; Baskar, Ramamurthy
2017-01-01
A number of organisms possess several isoforms of protein kinase C but little is known about the significance of any specific isoform during embryogenesis and development. To address this we characterized a PKC ortholog (PkcA; DDB_G0288147) in Dictyostelium discoideum. pkcA expression switches from prestalk in mound to prespore in slug, indicating a dynamic expression pattern. Mutants lacking the catalytic domain of PkcA (pkcA−) did not exhibit tip dominance. A striking phenotype of pkcA− was the formation of an aggregate with a central hollow, and aggregates later fragmented to form small mounds, each becoming a fruiting body. Optical density wave patterns of cAMP in the late aggregates showed several cAMP wave generation centers. We attribute these defects in pkcA− to impaired cAMP signaling, altered cell motility and decreased expression of the cell adhesion molecules – CadA and CsaA. pkcA− slugs showed ectopic expression of ecmA in the prespore region. Further, the use of a PKC-specific inhibitor, GF109203X that inhibits the activity of catalytic domain phenocopied pkcA−. PMID:26183108
Effects on Energy Metabolism of Two Guanidine Molecules, (Boc)2 -Creatine and Metformin.
Garbati, Patrizia; Ravera, Silvia; Scarfì, Sonia; Salis, Annalisa; Rosano, Camillo; Poggi, Alessandro; Damonte, Gianluca; Millo, Enrico; Balestrino, Maurizio
2017-09-01
Several enzymes are involved in the energy production, becoming a possible target for new anti-cancer drugs. In this paper, we used biochemical and in silico studies to evaluate the effects of two guanidine molecules, (Boc) 2 -creatine and metformin, on creatine kinase, an enzyme involved in the regulation of intracellular energy levels. Our results show that both drugs inhibit creatine kinase activity; however, (Boc) 2 -creatine displays a competitive inhibition, while metformin acts with a non-competitive mechanism. Moreover, (Boc) 2 -creatine is able to inhibit the activity of hexokinase with a non-competitive mechanism. Considering that creatine kinase and hexokinase are involved in energy metabolism, we evaluated the effects of (Boc) 2 -creatine and metformin on the ATP/AMP ratio and on cellular proliferation in healthy fibroblasts, human breast cancer cells (MDA-MB-468), a human neuroblastoma cell line (SH-SY5Y), a human Hodgkin lymphoma cell line (KMH2). We found that healthy fibroblasts were only partially affected by (Boc) 2 -creatine, while both ATP/AMP ratio and viability of the three cancer cell lines were significantly decreased. By inhibiting both creatine kinase and hexokinase, (Boc) 2 -creatine appears as a promising new agent in anticancer treatment. Further research is needed to understand what types of cancer cells are most suitable to treatment by this new compound. J. Cell. Biochem. 118: 2700-2711, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Hsu, Yung-Chung; Meng, Xiaojing; Ou, Lihui; Ip, Margot M
2010-04-01
Conjugated linoleic acid (CLA) inhibits tumorigenesis and tumor growth in most model systems, an effect mediated in part by its pro-apoptotic activity. We previously showed that trans-10,cis-12 CLA induced apoptosis of p53-mutant TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum stress pathways. In the current study, we investigated the role of AMP-activated protein kinase (AMPK), a key player in fatty acid metabolism, in CLA-induced apoptosis in TM4t cells. We found that t10,c12-CLA increased phosphorylation of AMPK, and that CLA-induced apoptosis was enhanced by the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and inhibited by the AMPK inhibitor compound C. The increased AMPK activity was not due to nutrient/energy depletion since ATP levels did not change in CLA-treated cells, and knockdown of the upstream kinase LKB1 did not affect its activity. Furthermore, our data do not demonstrate a role for the AMPK-modulated mTOR pathway in CLA-induced apoptosis. Although CLA decreased mTOR levels, activity was only modestly decreased. Moreover, rapamycin, which completely blocked the activity of mTORC1 and mTORC2, did not induce apoptosis, and attenuated rather than enhanced CLA-induced apoptosis. Instead, the data suggest that CLA-induced apoptosis is mediated by the AMPK-p38 MAPK-Bim pathway: CLA-induced phosphorylation of AMPK and p38 MAPK, and increased expression of Bim, occurred with a similar time course as apoptosis; phosphorylation of p38 MAPK was blocked by compound C; the increased Bim expression was blocked by p38 MAPK siRNA; CLA-induced apoptosis was attenuated by the p38 inhibitor SB-203580 and by siRNAs directed against p38 MAPK or Bim. Copyright 2009 Elsevier Inc. All rights reserved.
Quantitative Proteomics Analysis of the cAMP/Protein Kinase A Signaling Pathway
2012-01-01
To define the proteins whose expression is regulated by cAMP and protein kinase A (PKA), we used a quantitative proteomics approach in studies of wild-type (WT) and kin- (PKA-null) S49 murine T lymphoma cells. We also compared the impact of endogenous increases in the level of cAMP [by forskolin (Fsk) and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX)] or by a cAMP analogue (8-CPT-cAMP). We identified 1056 proteins in WT and kin- S49 cells and found that 8-CPT-cAMP and Fsk with IBMX produced differences in protein expression. WT S49 cells had a correlation coefficient of 0.41 between DNA microarray data and the proteomics analysis in cells incubated with 8-CPT-cAMP for 24 h and a correlation coefficient of 0.42 between the DNA microarray data obtained at 6 h and the changes in protein expression after incubation with 8-CPT-cAMP for 24 h. Glutathione reductase (Gsr) had a higher level of basal expression in kin- S49 cells than in WT cells. Consistent with this finding, kin- cells are less sensitive to cell killing and generation of malondialdehyde than are WT cells incubated with H2O2. Cyclic AMP acting via PKA thus has a broad impact on protein expression in mammalian cells, including in the regulation of Gsr and oxidative stress. PMID:23110364
Cdk5 Is Required for Memory Function and Hippocampal Plasticity via the cAMP Signaling Pathway
Gao, Jun; Joseph, Nadine; Xie, Zhigang; Zhou, Ying; Durak, Omer; Zhang, Lei; Zhu, J. Julius; Clauser, Karl R.; Carr, Steven A.; Tsai, Li-Huei
2011-01-01
Memory formation is modulated by pre- and post-synaptic signaling events in neurons. The neuronal protein kinase Cyclin-Dependent Kinase 5 (Cdk5) phosphorylates a variety of synaptic substrates and is implicated in memory formation. It has also been shown to play a role in homeostatic regulation of synaptic plasticity in cultured neurons. Surprisingly, we found that Cdk5 loss of function in hippocampal circuits results in severe impairments in memory formation and retrieval. Moreover, Cdk5 loss of function in the hippocampus disrupts cAMP signaling due to an aberrant increase in phosphodiesterase (PDE) proteins. Dysregulation of cAMP is associated with defective CREB phosphorylation and disrupted composition of synaptic proteins in Cdk5-deficient mice. Rolipram, a PDE4 inhibitor that prevents cAMP depletion, restores synaptic plasticity and memory formation in Cdk5-deficient mice. Collectively, our results demonstrate a critical role for Cdk5 in the regulation of cAMP-mediated hippocampal functions essential for synaptic plasticity and memory formation. PMID:21984943
The ATM protein kinase and cellular redox signaling: beyond the DNA damage response
Ditch, Scott; Paull, Tanya T.
2011-01-01
The ataxia-telangiectasia mutated (ATM) protein kinase is best known for its role in the DNA damage response, but recent findings suggest that it also functions as a redox sensor that controls the levels of reactive oxygen species in human cells. Here, we review the evidence supporting the conclusion that ATM can be directly activated by oxidation, as well as various observations from ATM-deficient patients and mouse models that point toward the importance of ATM in oxidative stress responses. We also discuss the roles of this kinase in regulating mitochondrial function and metabolic control through its action on tumor suppressor p53, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1 (HIF-1), and how the regulation of these enzymes may be affected in ATM-deficient patients and in cancer cells. PMID:22079189
The ATM protein kinase and cellular redox signaling: beyond the DNA damage response.
Ditch, Scott; Paull, Tanya T
2012-01-01
The ataxia-telangiectasia mutated (ATM) protein kinase is best known for its role in the DNA damage response, but recent findings suggest that it also functions as a redox sensor that controls the levels of reactive oxygen species in human cells. Here, we review evidence supporting the conclusion that ATM can be directly activated by oxidation, as well as various observations from ATM-deficient patients and mouse models that point to the importance of ATM in oxidative stress responses. We also discuss the roles of this kinase in regulating mitochondrial function and metabolic control through its action on tumor suppressor p53, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor 1 (HIF1), and how the regulation of these enzymes may be affected in ATM-deficient patients and in cancer cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
Musante, Veronica; Li, Lu; Kanyo, Jean; Lam, Tukiet T; Colangelo, Christopher M; Cheng, Shuk Kei; Brody, A Harrison; Greengard, Paul; Le Novère, Nicolas; Nairn, Angus C
2017-06-14
ARPP-16, ARPP-19, and ENSA are inhibitors of protein phosphatase PP2A. ARPP-19 and ENSA phosphorylated by Greatwall kinase inhibit PP2A during mitosis. ARPP-16 is expressed in striatal neurons where basal phosphorylation by MAST3 kinase inhibits PP2A and regulates key components of striatal signaling. The ARPP-16/19 proteins were discovered as substrates for PKA, but the function of PKA phosphorylation is unknown. We find that phosphorylation by PKA or MAST3 mutually suppresses the ability of the other kinase to act on ARPP-16. Phosphorylation by PKA also acts to prevent inhibition of PP2A by ARPP-16 phosphorylated by MAST3. Moreover, PKA phosphorylates MAST3 at multiple sites resulting in its inhibition. Mathematical modeling highlights the role of these three regulatory interactions to create a switch-like response to cAMP. Together, the results suggest a complex antagonistic interplay between the control of ARPP-16 by MAST3 and PKA that creates a mechanism whereby cAMP mediates PP2A disinhibition.
Shafiee-Kermani, Farideh; Han, Sang-oh; Miller, William L
2007-07-01
FSH is induced by activin, and this expression is modulated by GnRH through FSHB expression. This report focuses on the inhibitory effect of GnRH on activin-induced FSHB expression. Activin-treated primary murine pituitary cultures robustly express mutant ovine FSHBLuc-DeltaAP1, a luciferase transgene driven by 4.7 kb of ovine FSHB promoter. This promoter lacks two GnRH-inducible activator protein-1 sites, making it easier to observe GnRH-mediated inhibition. Luciferase expression from this transgene was decreased 94% by 100 nM GnRH with a half-time of approximately 4 h in pituitary cultures, and this inhibition was independent of follistatin. Activators of cAMP and protein kinase C like forskolin and phorbol 12-myristate 3-acetate (PMA), respectively, mimicked GnRH action. Kinetic studies of wild-type ovine FSHBLuc in LbetaT2 cells showed continuous induction by activin (4-fold) over 20 h. Most of this induction (78%) was blocked, beginning at 6 h. cAMP response element binding protein (CREB) was implicated in this inhibition because overexpression of its constitutively active mutant mimicked GnRH, and its inhibitor (inducible cAMP early repressor isoform II) reversed the inhibition caused by GnRH, forskolin, or PMA. In addition, GnRH, forskolin, or PMA increased the expression of a CREB-responsive reporter gene, 6xCRE-37PRL-Luc. Inhibition of nitric oxide type I (NOSI) by 7-nitroindazole also reversed GnRH-mediated inhibition by 60%. It is known that GnRH and CREB induce production of NOSI in gonadotropes and neuronal cells, respectively. These data support the concept that chronic GnRH inhibits activin-induced ovine FSHB expression by sequential activation of CREB and NOSI through the cAMP and/or protein kinase C pathways.
Glycogen synthase kinase-3β promotes cyst expansion in polycystic kidney disease.
Tao, Shixin; Kakade, Vijayakumar R; Woodgett, James R; Pandey, Pankaj; Suderman, Erin D; Rajagopal, Madhumitha; Rao, Reena
2015-06-01
Polycystic kidney diseases (PKDs) are inherited disorders characterized by the formation of fluid filled renal cysts. Elevated cAMP levels in PKDs stimulate progressive cyst enlargement involving cell proliferation and transepithelial fluid secretion often leading to end-stage renal disease. The glycogen synthase kinase-3 (GSK3) family of protein kinases consists of GSK3α and GSK3β isoforms and has a crucial role in multiple cellular signaling pathways. We previously found that GSK3β, a regulator of cell proliferation, is also crucial for cAMP generation and vasopressin-mediated urine concentration by the kidneys. However, the role of GSK3β in the pathogenesis of PKDs is not known. Here we found that GSK3β expression and activity were markedly upregulated and associated with cyst-lining epithelia in the kidneys of mice and humans with PKD. Renal collecting duct-specific gene knockout of GSK3β or pharmacological inhibition of GSK3 effectively slowed down the progression of PKD in mouse models of autosomal recessive or autosomal dominant PKD. GSK3 inactivation inhibited cAMP generation and cell proliferation resulting in reduced cyst expansion, improved renal function, and extended life span. GSK3β inhibition also reduced pERK, c-Myc, and cyclin-D1, known mitogens in proliferation of cystic epithelial cells. Thus, GSK3β has a novel functional role in PKD pathophysiology, and its inhibition may be therapeutically useful to slow down cyst expansion and progression of PKD.
Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.
Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C
2006-09-08
The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.
Bakhshalizadeh, Shabnam; Amidi, Fardin; Shirazi, Reza; Shabani Nashtaei, Maryam
2018-06-01
Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder in reproductive-aged women. Hormonal abnormality caused by steroidogenesis disturbances appears to be the main culprit of the clinical picture in PCOS. Vitamin D3 could regulate steroidogenesis in granulosa cells, but the mechanism of action of vitamin D3 on steroidogenesis remains unknown. AMP-activated protein kinase (AMPK) has a modulating role in steroid hormone production. We investigated the effect of vitamin D3 on steroidogenesis in cultured granulosa cells of dehydroepiandrosterone-induced PCOS mice and studied the involvement of AMPK signalling pathway in the current process. Immunoblotting assay showed that vitamin D3 could increase phosphorylation of AMPK alpha and acetyl-CoA carboxylase, main substrate of AMPK. Vitamin D3 and 5-aminoimidazole-4-carboxamide-1-β-D-riboside or Aicar (AMPK activator) not only reduced gene expression of steroidogenic enzymes (P450scc or Cyp11a1, StAR, Cyp19a1 and 3B-HSD), but also reduced production of progesterone and 17B-estradiol assessed by radioimmunoassay. Pretreatment with compound C (AMPK inhibitor) decreased APMK phosphorylation and eliminated the effects of vitamin D3 and Aicar on steroidogenic enzymes expression and estradiol and progesterone production. This study showed that vitamin D3 has the main role in regulating of steroidogenesis in granulosa cells of mouse polycystic ovary through activation of the AMPK signalling pathway. Polycystic ovarian syndrome (PCOS) is an endocrine disorder of women in reproductive age. This disorder is partly related to disruption in steroidogenesis pathway and dysregulation of estradiol and progesterone production in granulosa cells of polycystic ovaries. Previously, we have shown that vitamin D3 could modulate steroidogenesis pathway in PCOS granulosa cells. In this study, we investigate the molecular mechanism of vitamin D3 in regulation of steroidogenesis pathway. We have shown that vitamin D3 has a modulating role in steroidogenesis pathway of granulosa cells by regulation of AMP-activated protein kinase (AMPK) as an underlying molecular mechanism in mouse polycystic ovary. Copyright © 2018 John Wiley & Sons, Ltd.
Queiroz, Eveline A I F; Fortes, Zuleica B; da Cunha, Mário A A; Barbosa, Aneli M; Khaper, Neelam; Dekker, Robert F H
2015-10-01
Fungal β-d-glucans of the (1→3)-type are known to exhibit direct antitumor effects, and can also indirectly decrease tumor proliferation through immunomodulatory responses. The underlying molecular mechanisms involved in decreasing tumor formation, however, are not well understood. In this study, we examined the antiproliferative role and mechanism of action of three different fungal exocellular β-glucans in MCF-7 breast cancer cells. The β-glucans were obtained from Botryosphaeria rhodina MAMB-05 [two botryosphaerans; (1→3)(1→6)-β-d-glucan; one produced on glucose, the other on fructose] and Lasiodiplodia theobromae MMPI [lasiodiplodan; (1→6)-β-d-glucan, produced on glucose]. Using the cell proliferation-MTT assay, we showed that the β-glucans exhibited a time- and concentration-dependent antiproliferative activity (IC50, 100μg/ml). Markers of cell cycle, apoptosis, necrosis and oxidative stress were analyzed using flow cytometry, RT-PCR and Western blotting. Exposure to β-glucans increased apoptosis, necrosis, oxidative stress, mRNA expression of p53, p27 and Bax; the activity of AMP-activated protein-kinase, Forkhead transcription factor FOXO3a, Bax and caspase-3; and decreased the activity of p70S6K in MCF-7 cells. In the presence of hydrogen peroxide, the fungal β-glucans increased oxidative stress, which was associated with reduced cell viability. We showed that these β-glucans exhibited an antiproliferative effect that was associated with apoptosis, necrosis and oxidative stress. This study demonstrated for the first time that the apoptosis induced by β-glucans was mediated by AMP-activated protein-kinase and Forkhead transcription factor, FOXO3a. Our findings provide novel mechanistic insights into their antiproliferative roles, and compelling evidence that these β-glucans possess a broad range of biomodulatory properties that may prove useful in cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Connor, K; Clegg, R A
1993-05-01
Protein kinase isoenzymes belonging to the protein kinase C (PK-C) family present in rat mammary tissue have been resolved from one another by chromatography on hydroxyapatite, and characterized. PK-C alpha is the predominant isoenzyme and is present at a constant level of activity throughout mammary-gland development and differentiation. In contrast, marked changes in the relative abundance of other mammary PK-C isoenzymes accompany the transition from pregnancy to lactation. The sensitivity of mammary PK-C alpha to Ca2+ is greater in tissue from pregnant than from lactating rats. This isoenzyme has other atypical properties consistent with its being more highly phosphorylated than PK-C alpha in rat brain and spleen. One of the protein kinase isoenzymes resolved from mammary tissue recognizes the peptide substrate used to assay AMP-activated kinase and may thus interfere in the determination of this activity. Another is fully active in the absence of Ca2+ and is more than 80% active in the absence of added lipid effectors. A 'housekeeping' role is proposed for PK-C alpha in mammary tissue, whereas the less abundant PK-C isoenzymes may be involved in mammary cell proliferation and differentiation.
Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Takeshi; Abe, Daigo; Sekiya, Keizo
2007-06-01
Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulatedmore » kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.« less
Zang, Yi; Yu, Li-Fang; Nan, Fa-Jun; Feng, Lin-Yin; Li, Jia
2009-03-06
The fate of neural stem cells (NSCs), including their proliferation, differentiation, survival, and death, is regulated by multiple intrinsic signals and the extrinsic environment. We had previously reported that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) directly induces astroglial differentiation of NSCs by activation of the Janus kinase (JAK)/Signal transducer and activator of transcription 3 (STAT3) pathway independently of AMP-activated protein kinase (AMPK). Here, we reported the observation that AICAR inhibited NSC proliferation and its underlying mechanism. Analysis of caspase activity and cell cycle showed that AICAR induced G1/G0 cell cycle arrest in NSCs, associated with decreased levels of poly(ADP-ribose) polymerase, phospho-retinoblastoma protein (Rb), and cyclin D but did not cause apoptosis. Iodotubericidin and Compound C, inhibitors of adenosine kinase and AMPK, respectively, or overexpression of a dominant-negative mutant of AMPK, but not JAK inhibitor, were able to reverse the anti-proliferative effect of AICAR. Glucose deprivation also activated the AMPK pathway, induced G0/G1 arrest, and suppressed the proliferation of NSCs, an effect associated with decreased levels of phospho-Rb and cyclin D protein. Furthermore, Compound C and overexpression of dominant-negative AMPK in C17.2 NSCs could block the glucose deprivation-mediated down-regulation of cyclin D and partially reverse the suppression of proliferation. These results suggest that AICAR and glucose deprivation might induce G1/G0 cell cycle arrest and suppress proliferation of NSCs via phospho-Rb and cyclin D down-regulation. AMPK, but not JAK/STAT3, activation is key for this inhibitory effect and may play an important role in the responses of NSCs to metabolic stresses such as glucose deprivation.
Hong-Brown, Ly Q.; Brown, C. Randell; Huber, Danuta S.; Lang, Charles H.
2008-01-01
HIV anti-retroviral drugs decrease protein synthesis, although the underlying regulatory mechanisms of this process are not fully established. Therefore, we investigated the effects of the HIV protease inhibitor lopinavir (LPV) on protein metabolism. We also characterized the mechanisms that mediate the effects of this drug on elongation factor-2 (eEF2), a key component of the translational machinery. Treatment of C2C12 myocytes with LPV produced a dose-dependent inhibitory effect on protein synthesis. This effect was observed at 15 min and was maintained for at least 4 h. Mechanistically, LPV increased the phosphorylation of eEF2 and thereby decreased the activity of this protein. Increased phosphorylation of eEF2 was associated with increased activity of its upstream regulators AMP-activated protein kinase (AMPK) and eEF2 kinase (eEF2K). Both AMPK and eEF2K directly phosphorylated eEF2 in an in vitro kinase assay suggesting two distinct paths lead to eEF2 phosphorylation. To verify this connection, myocytes were treated with the AMPK inhibitor compound C. Compound C blocked eEF2K and eEF2 phosphorylation, demonstrating that LPV affects eEF2 activity via an AMPK-eEF2K dependent pathway. In contrast, incubation of myocytes with rottlerin suppressed eEF2K, but not eEF2 phosphorylation, suggesting that eEF2 can be regulated independent of eEF2K. Finally, LPV did not affect PP2A activity when either eEF2 or peptide was used as the substrate. Collectively, these results indicate that LPV decreases protein synthesis, at least in part, via inhibition of eEF2. This appears regulated by AMPK which can act directly on eEF2 or indirectly via the action of eEF2K. PMID:18712774
Turban, Sophie; Stretton, Clare; Drouin, Olivier; Green, Charlotte J.; Watson, Maria L.; Gray, Alexander; Ross, Fiona; Lantier, Louise; Viollet, Benoit; Hardie, D. Grahame; Marette, Andre; Hundal, Harinder S.
2012-01-01
The importance of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) as effectors of metformin (Met) action on glucose uptake (GU) in skeletal muscle cells was investigated. GU in L6 myotubes was stimulated 2-fold following 16 h of Met treatment and acutely enhanced by insulin in an additive fashion. Insulin-stimulated GU was sensitive to PI3K inhibition, whereas that induced by Met was not. Met and its related biguanide, phenformin, stimulated AMPK activation/phosphorylation to a level comparable with that induced by the AMPK activator, 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR). However, the increase in GU elicited by AICAR was significantly lower than that induced by either biguanide. Expression of a constitutively active AMPK mimicked the effects of AICAR on GU, whereas a dominant interfering AMPK or shRNA silencing of AMPK prevented AICAR-stimulated GU and Met-induced AMPK signaling but only repressed biguanide-stimulated GU by ∼20%. Consistent with this, analysis of GU in muscle cells from α1−/−/α2−/− AMPK-deficient mice revealed a significant retention of Met-stimulated GU, being reduced by ∼35% compared with that of wild type cells. Atypical PKCs (aPKCs) have been implicated in Met-stimulated GU, and in line with this, Met and phenformin induced activation/phosphorylation of aPKC in L6 myotubes. However, although cellular depletion of aPKC (>90%) led to loss in biguanide-induced aPKC phosphorylation, it had no effect on Met-stimulated GU, whereas inhibitors targeting novel/conventional PKCs caused a significant reduction in biguanide-induced GU. Our findings indicate that although Met activates AMPK, a significant component of Met-stimulated GU in muscle cells is mediated via an AMPK-independent mechanism that involves novel/conventional PKCs. PMID:22511782
Turban, Sophie; Stretton, Clare; Drouin, Olivier; Green, Charlotte J; Watson, Maria L; Gray, Alexander; Ross, Fiona; Lantier, Louise; Viollet, Benoit; Hardie, D Grahame; Marette, Andre; Hundal, Harinder S
2012-06-08
The importance of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) as effectors of metformin (Met) action on glucose uptake (GU) in skeletal muscle cells was investigated. GU in L6 myotubes was stimulated 2-fold following 16 h of Met treatment and acutely enhanced by insulin in an additive fashion. Insulin-stimulated GU was sensitive to PI3K inhibition, whereas that induced by Met was not. Met and its related biguanide, phenformin, stimulated AMPK activation/phosphorylation to a level comparable with that induced by the AMPK activator, 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR). However, the increase in GU elicited by AICAR was significantly lower than that induced by either biguanide. Expression of a constitutively active AMPK mimicked the effects of AICAR on GU, whereas a dominant interfering AMPK or shRNA silencing of AMPK prevented AICAR-stimulated GU and Met-induced AMPK signaling but only repressed biguanide-stimulated GU by ∼20%. Consistent with this, analysis of GU in muscle cells from α1(-/-)/α2(-/-) AMPK-deficient mice revealed a significant retention of Met-stimulated GU, being reduced by ∼35% compared with that of wild type cells. Atypical PKCs (aPKCs) have been implicated in Met-stimulated GU, and in line with this, Met and phenformin induced activation/phosphorylation of aPKC in L6 myotubes. However, although cellular depletion of aPKC (>90%) led to loss in biguanide-induced aPKC phosphorylation, it had no effect on Met-stimulated GU, whereas inhibitors targeting novel/conventional PKCs caused a significant reduction in biguanide-induced GU. Our findings indicate that although Met activates AMPK, a significant component of Met-stimulated GU in muscle cells is mediated via an AMPK-independent mechanism that involves novel/conventional PKCs.
Inhibition of AMPK catabolic action by GSK3
Suzuki, Tsukasa; Bridges, Dave; Nakada, Daisuke; Skiniotis, Georgios; Morrison, Sean J.; Lin, Jiandie; Saltiel, Alan R.; Inoki, Ken
2013-01-01
SUMMARY AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis by inhibiting anabolic and activating catabolic processes. While AMPK activation has been extensively studied, mechanisms that inhibit AMPK remain elusive. Here we report that glycogen synthase kinase 3 (GSK3) inhibits AMPK function. GSK3 forms a stable complex with AMPK through interactions with the AMPK β regulatory subunit and phosphorylates the AMPK α catalytic subunit. This phosphorylation enhances the accessibility of the activation loop of the α subunit to phosphatases, thereby inhibiting AMPK kinase activity. Surprisingly, PI3K-Akt signaling, which is a major anabolic signaling and normally inhibits GSK3 activity, promotes GSK3 phosphorylation and inhibition of AMPK, thus revealing how AMPK senses anabolic environments in addition to cellular energy levels. Consistently, disrupting GSK3 function within the AMPK complex sustains higher AMPK activity and cellular catabolic processes even under anabolic conditions, indicating that GSK3 acts as a critical sensor for anabolic signaling to regulate AMPK. PMID:23623684
Regulation of NADH/CoQ oxidoreductase: do phosphorylation events affect activity?
Maj, Mary C; Raha, Sandeep; Myint, Tomoko; Robinson, Brian H
2004-01-01
We had previously suggested that phosphorylation of proteins by mitochondrial kinases regulate the activity of NADH/CoQ oxidoreductase. Initial data showed that pyruvate dehydrogenase kinase (PDK) and cAMP-dependent protein kinase A (PKA) phosphorylate mitochondrial membrane proteins. Upon phosphorylation with crude PDK, mitochondria appeared to be deficient in NADH/cytochrome c reductase activity associated with increased superoxide production. Conversely, phosphorylation by PKA resulted in increased NADH/cytochrome c reductase activity and decreased superoxide formation. Current data confirms PKA involvement in regulating Complex I activity through phosphorylation of an 18 kDa subunit. Beef heart NADH/ cytochrome c reductase activity increases to 150% of control upon incubation with PKA and ATP-gamma-S. We have cloned the four human isoforms of PDK and purified beef heart Complex I. Incubation of mitochondria with PDK isoforms and ATP did not alter Complex I activity or superoxide production. Radiolabeling of mitochondria and purified Complex I with PDK failed to reveal phosphorylated proteins.
The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.
Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark
2016-01-01
Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Antidiabetic effect of gomisin N via activation of AMP-activated protein kinase.
Jung, Dae Young; Kim, Ji-Hyun; Lee, Hoyoung; Jung, Myeong Ho
2017-12-16
Gomisin N (GN) is a lignan derived from Schisandra chinensis. AMP-activated kinase (AMPK) has gained attention as a therapeutic target for the treatment of metabolic syndrome. Previously, we reported that GN activated the AMPK pathway and ameliorated high-fat diet (HFD)-induced hepatic steatosis. In this study, we investigated the anti-diabetic effects of GN in C2C12 myotubes and HFD obese mice. GN enhanced the phosphorylation of AMPK/acetyl-CoA carboxylase (ACC) and Akt. In addition, GN promoted glucose uptake in C2C12 myotubes, which was accompanied by the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Treatment with compound C, an AMPK inhibitor, suppressed GN-mediated stimulation of glucose uptake. Furthermore, GN increased the expression of mitochondria biogenesis and fatty acid oxidation genes in C2C12 myotubes. In the in vivo study, administration of GN to HFD mice decreased the levels of fasting blood glucose and insulin, and improved glucose tolerance in HFD obese mice. GN administration rescued the decreased phosphorylation of AMPK and Akt and stimulated the expression of mitochondria biogenesis genes in the skeletal muscle of HFD mice. These findings suggested that GN exerted anti-hyperglycemic effects through AMPK activation. Copyright © 2017 Elsevier Inc. All rights reserved.
YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Tang, Ming-Chi
2012-04-15
Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383more » alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation. ► The combined effects were reversed by H89. ► The combination of rolipram and PGE1 triggered NO production and iNOS expression. ► Effect of YC-1 occurred through inhibition of cAMP-specific PDE.« less
McLean, P. G.; Coupar, I. M.
1996-01-01
1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that the 5-HT4 receptors of the circular smooth muscle of human colon mediate relaxation and inhibition of spontaneous contractions via activation of adenylyl cyclase, formation of cyclic AMP and activation of protein kinase A. PMID:8799582
McLean, P G; Coupar, I M
1996-06-01
1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that the 5-HT4 receptors of the circular smooth muscle of human colon mediate relaxation and inhibition of spontaneous contractions via activation of adenylyl cyclase, formation of cyclic AMP and activation of protein kinase A.
Antidiabetic effect of the α-lipoic acid γ-cyclodextrin complex.
Naito, Yuki; Ikuta, Naoko; Nakata, Daisuke; Terao, Keiji; Matsumoto, Kinuyo; Kajiwara, Naemi; Okano, Ayaka; Yasui, Hiroyuki; Yoshikawa, Yutaka
2014-09-01
In recent years, the number of patients suffering from diabetes mellitus has been increasing worldwide. In particular, type 2 diabetes mellitus, a lifestyle-related disease, is recognized as a serious disease with various complications. Many types of pharmaceutics or specific health foods have been used for the management of diabetes mellitus. At the same time, the relationship between diabetes mellitus and α-lipoic acid has been recognized for many years. In this study, we found that the α-lipoic acid γ-cyclodextrin complex exhibited an HbA1c lowering effect for treating type 2 diabetes mellitus in animal models. Moreover, in this study, we investigated the activation of phosphorylation of AMP-activated protein kinase, which plays a role in cellular energy homeostasis, in the liver of KKA(y) mice by using α-lipoic acid and the α-lipoic acid γ-cyclodextrin complex. Our results show that the α-lipoic acid γ-cyclodextrin complex strongly induced the phosphorylation of AMP-activated protein kinase. Thus, we concluded that intake of the α-lipoic acid γ-cyclodextrin complex exerted an antidiabetic effect by suppressing the elevation of postprandial hyperglycemia as well as doing exercise.
Wang, Lijun; Ye, Xiao; Hua, Yanyin; Song, Yingxiang
2018-05-28
Adipose tissue fibrosis is a novel mechanism for the development of obesity related insulin resistance. Berberine (BBR) has been shown to relieve several metabolic disorders, including obesity and type 2 diabetes. However, the effects of BBR on obesity related adipose fibrosis remain poorly understood. The objective of this study was to assess the effects of BBR on adipose tissue fibrosis in high fat diet (HFD)-induced obese mice. The results showed that BBR reduced animal body weight and significantly improved glucose tolerance in HFD mice. In addition, BBR treatment markedly attenuated collagen deposition and reversed the up-regulation of fibrosis associated genes in the adipose tissue of HFD mice. Moreover, BBR treatment activated AMP-activated kinase signaling and reduced TGF-β1 and Smad3 phosphorylation. Of note, the inhibitory effects of BBR on adipose tissue fibrosis were significantly blocked by AMPK inhibition with compound C, an AMPK inhibitor. Macrophage infiltration and polarization induced by HFD were also reversed after BBR administration. These findings suggest that BBR displays beneficial effects in the treatment of obesity, in part via improvement of adipose tissue fibrosis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Bix, Gregory; Fu, Jian; Gonzalez, Eva M.; Macro, Laura; Barker, Amy; Campbell, Shelly; Zutter, Mary M.; Santoro, Samuel A.; Kim, Jiyeun K.; Höök, Magnus; Reed, Charles C.; Iozzo, Renato V.
2004-01-01
Endorepellin, the COOH-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits several aspects of angiogenesis. We provide evidence for a novel biological axis that links a soluble fragment of perlecan protein core to the major cell surface receptor for collagen I, α2β1 integrin, and provide an initial investigation of the intracellular signaling events that lead to endorepellin antiangiogenic activity. The interaction between endorepellin and α2β1 integrin triggers a unique signaling pathway that causes an increase in the second messenger cAMP; activation of two proximal kinases, protein kinase A and focal adhesion kinase; transient activation of p38 mitogen-activated protein kinase and heat shock protein 27, followed by a rapid down-regulation of the latter two proteins; and ultimately disassembly of actin stress fibers and focal adhesions. The end result is a profound block of endothelial cell migration and angiogenesis. Because perlecan is present in both endothelial and smooth muscle cell basement membranes, proteolytic activity during the initial stages of angiogenesis could liberate antiangiogenic fragments from blood vessels' walls, including endorepellin. PMID:15240572
Activation of AMPKα2 in adipocytes is essential for nicotine-induced insulin resistance in vivo
Wu, Yue; Song, Ping; Zhang, Wencheng; Liu, Junhui; Dai, Xiaoyan; Liu, Zhaoyu; Lu, Qiulun; Ouyang, Changhan; Xie, Zhonglin; Zhao, Zhengxing; Zhuo, Xiaozhen; Viollet, Benoit; Foretz, Marc; Wu, Jiliang; Yuan, Zuyi; Zou, Ming-Hui
2015-01-01
Cigarette smoking promotes body weight reduction in humans while paradoxically also promoting insulin resistance (IR) and hyperinsulinemia. The mechanisms behind these effects of smoking are unclear. Here, we show that nicotine, a major constitute of cigarette smoke, selectively activates AMP-activated protein kinase α2 (AMPKα2) in adipocytes, which, in turn, phosphorylates MAP kinase phosphatase-1 (MKP1) at serine 334, initiating a proteasome-dependent degradation of this latter protein. The nicotine-dependent reduction in MKP1 induces the aberrant activation of p38 mitogen-activated protein kinase and c-Jun amino-terminal kinase leading to increased phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307. This phosphorylation of IRS1 leads to its degradation, Akt inhibition, and the loss of insulin-mediated inhibition of lipolysis. Consequently, nicotine increases lipolysis, which results in body weight reduction, but this increase also elevates the levels of circulating free fatty acids and thus causes IR in insulin-sensitive tissues. These results newly place AMPKα2 as an essential mediator of nicotine-induced whole-body IR in spite of reductions in adiposity. PMID:25799226