Abraham, Hajnalka; Covasa, Mihai; Hajnal, Andras
2013-01-01
Cocaine- and amphetamine regulated transcript (CART) peptide is expressed in brain areas involved in homeostatic regulation and reward. CART has been shown to reduce food intake but the underlying mechanisms and the relevance of this effect to obesity yet remain unknown. Therefore, we used immunohistochemistry to investigate expression of CART peptide in various brain regions of the obese Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking the CCK-1 receptor. Analysis revealed that whereas the distribution of CART peptide-immunoreactive neurons and axonal networks was identical in OLETF rats and lean controls, intensity of CART immunoreactivity was significantly reduced in the rostral part of the nucleus accumbens (p<0.01), the basolateral complex of the amygdala (p<0.05), and the rostro-medial nucleus of solitary tract (p<0.001) of the OLETF rats. These areas are involved in reward and integration of taste and viscerosensory information and have been previously associated with altered functions in this strain. The findings suggest that in addition to previously described deficits in peripheral satiety signals and augmented orexigenic regulation, the anorectic effect of CART peptide may also be diminished in OLETF rats. PMID:19533109
Subhedar, Nishikant; Barsagade, Vikas G; Singru, Praful S; Thim, Lars; Clausen, Jes Thorn
2011-05-01
The cocaine- and amphetamine-regulated transcript peptide (CART)-containing system in the forebrain of Clarias gariepinus was studied with immunocytochemistry. While the immunoreactivity was prominently seen in the neurons of the entopeduncular nucleus (EN) located in the ventral telencephalon, CART-immunoreactive fibers were widely distributed in the dorsal and ventral telencephalon. In view of the established role of CART in energy metabolism, we investigated the response of the CART immunoreactive system to positive and negative nutritional conditions. Neurons of the EN and fibers in the different areas of the telencephalon showed significant reduction in CART immunoreactivity following 48 hours food deprivation, or 2 hours following intracranial administration of 2-deoxy-D-glucose (2DG, 100 ng/g body weight, a metabolic antagonist of glucose). However, intracranial injection of glucose (100 ng/g body weight) resulted in a distinct increase in CART immunoreactivity in these components. In mammals, insulin and leptin have been recognized as adiposity agents that convey peripheral energy status-related information to brain. Intracranial administration of insulin (3 mU/fish) and leptin (10 ng/g body weight) significantly increased CART immunoreactivity in the EN neurons and in the fiber network within 2 hours. Superfusion of the EN-containing tissue fragments in the medium enriched in glucose, insulin, or leptin evoked a significant increase in CART immunoreactivity in the EN neurons, but 2DG reduced the immunoreactivity. We suggest that CART-containing neurons of the EN, and fibers in the telencephalon, may process the energy status-related information and contribute to satiety. Copyright © 2011 Wiley-Liss, Inc.
Larsen, P J; Seier, V; Fink-Jensen, A; Holst, J J; Warberg, J; Vrang, N
2003-03-01
Cocaine- and amphetamine-regulated transcript (CART) is present in a number of hypothalamic nuclei. Besides actions in circuits regulating feeding behaviour and stress responses, the hypothalamic functions of CART are largely unknown. We report that CART immunoreactivity is present in hypothalamic neuroendocrine neurones. Adult male rats received a systemic injection of the neuronal tracer Fluorogold (FG) 2 days before fixation, and subsequent double- and triple-labelling immunoflourescence analysis demonstrated that neuroendocrine CART-containing neurones were present in the anteroventral periventricular, supraoptic, paraventricular (PVN) and periventricular nuclei of the hypothalamus. In the PVN, CART-positive neuroendocrine neurones were found in all of cytoarchitectonically identified nuclei. In the periventricular nucleus, approximately one-third of somatostatin cells were also CART-immunoreactive. In the medial parvicellular subnucleus of the PVN, CART and FG coexisted with thyrotrophin-releasing hormone, whereas very few of the corticotrophin-releasing hormone containing cells were CART-immunoreactive. In the arcuate nucleus, CART was extensively colocalized with pro-opiomelanocortin in the ventrolateral part, but completely absent from neuroendocrine neurones of the dorsomedial part. To assess the possible role of CART as a hypothalamic-releasing factor, immunoreactive CART was measured in blood samples from the long portal vessels connecting the median eminence with the anterior pituitary gland. Adult male rats were anaesthetized and the infundibular stalk exposed via a transpharyngeal approach. The long portal vessels were transected and blood collected in 30-min periods (one prestimulatory and three poststimulatory periods). Compared to systemic venous plasma samples, baseline concentrations of immunoreactive CART were elevated in portal plasma. Exposure to sodium nitroprusside hypotension triggered a two-fold elevation of portal CART42-89 immunoreactivity throughout the 90-min stimulation period. In contrast, the concentration of portal plasma CART immunoreactivity dropped in the vehicle infused rats. The current study provides further evidence that CART is a neuroendocrine-releasing factor with a possible impact on anterior pituitary function during states of haemodynamic stress.
Bulc, Michał; Gonkowski, Sławomir; Całka, Jarosław
2015-11-01
In the present study, the effect of streptozotocin-induced diabetes on the cocaine- and amphetamine-regulated transcript-like immunoreactive (CART-LI) enteric nervous structures was investigated within the porcine stomach. To induce diabetes, the pigs were administered intravenously streptozotocin at a dose of 150 mg/kg of body weight. A significant decrease of the number of CART-LI perikarya was observed in the myenteric plexus of the gastric antrum, corpus, and pylorus in the experimental group. In contrast, submucous plexus was devoid of CART-positive neuronal cells both in control and experimental animals. In the control group, the highest densities of CART-LI nerve fibers were observed in the circular muscle layer of antrum and slightly less nerve fibers were present in the muscle layer of corpus and pylorus. In turn, submucous layer of all studied stomach regions revealed relatively smaller number of CART-positive nerve fibers. Diabetes caused statistically significant decrease in the expression of CART-LI nerve fibers only in the antrum circular muscle layer. Also, no changes in the CART-like immunoreactivity in the intraganglionic nerve fibers were observed. The obtained results suggest that acute hyperglycemia produced significant reduction of the CART expression in enteric perikarya throughout entire stomach as well as decrease of density the CART-LI fibers in circular muscle layer of the antrum. Additionally, we suggest that CART might be involved in the regulation of stomach function especially in the gastric motility.
Wasilewska, Barbara; Najdzion, Janusz; Równiak, Maciej; Bogus-Nowakowska, Krystyna; Hermanowicz, Beata; Kolenkiewicz, Małgorzata; Żakowski, Witold; Robak, Anna
2016-03-01
In this study we present the distribution and colocalization pattern of cocaine- and amphetamine-regulated transcript (CART) and three calcium-binding proteins: calbindin (CB), calretinin (CR) and parvalbumin (PV) in the subicular complex (SC) of the guinea pig. The subiculum (S) and presubiculum (PrS) showed higher CART-immunoreactivity (-IR) than the parasubiculum (PaS) as far as the perikarya and neuropil were concerned. CART- IR cells were mainly observed in the pyramidal layer and occasionally in the molecular layer of the S. In the PrS and PaS, single CART-IR perikarya were dispersed, however with a tendency to be found only in superficial layers. CART-IR fibers were observed throughout the entire guinea pig subicular neuropil. Double-labeling immunofluorescence showed that CART-IR perikarya, as well as fibers, did not stain positively for any of the three CaBPs. CART-IR fibers were only located near the CB-, CR-, PV-IR perikarya, whereas CART-IR fibers occasionally intersected fibers containing one of the three CaBPs. The distribution pattern of CART was more similar to that of CB and CR than to that of PV. In the PrS, the CART, CB and CR immunoreactivity showed a laminar distribution pattern. In the case of the PV, this distribution pattern in the PrS was much less prominent than that of CART, CB and CR. We conclude that a heterogeneous distribution of the CART and CaBPs in the guinea pig SC is in keeping with findings from other mammals, however species specific differences have been observed. Copyright © 2015 Elsevier GmbH. All rights reserved.
Najdzion, Janusz
2018-03-01
The superior colliculus (SC) of mammals is a midbrain center, that can be subdivided into the superficial (SCs) and deep layers (SCd). In contrast to the visual SCs, the SCd are involved in multisensory and motor processing. This study investigated the pattern of distribution and colocalization of cocaine- and amphetamine-regulated transcript peptide (CART) and three calcium-binding proteins (CaBPs) i.e. calbindin (CB), calretinin (CR) and parvalbumin (PV) in the SCd of the guinea pig. CART labeling was seen almost exclusively in the neuropil and fibers, which differed in regard to morphology and location. CART-positive neurons were very rare and restricted to a narrow area of the SCd. The most intense CART immunoreactivity was observed in the most dorsally located sublayer of the SCd, which is anatomically and functionally connected with the SCs. CART immunoreactivity in the remaining SCd was less intensive, but still relatively high. This characteristic pattern of immunoreactivity indicates that CART as a putative neurotransmitter or neuromodulator may play an important role in processing of visual information, while its involvement in the auditory and visuomotor processing is less significant, but still possible. CaBPs-positive neurons were morphologically diverse and widely distributed throughout all SCd. From studied CaBPs, CR showed a markedly different distribution compared to CB and PV. Overall, the patterns of distribution of CB and PV were similar in the entire SCd. Consequently, the complementarity of these patterns in the guinea pig was very weak. Double immunostaining revealed that CART did not colocalize with either CaBPs, which suggested that these neurochemical substances might not coexist in the multisensory and visuomotor parts of the SC. Copyright © 2017 Elsevier B.V. All rights reserved.
Chung, Sung; Kim, Hee Jeong; Kim, Hyun Ju; Choi, Sun Hye; Kim, Jin Wook; Kim, Jeong Min; Shin, Kyung Ho
2014-05-01
Recent study demonstrates antidepressant-like effect of cocaine- and amphetamine-regulated transcript (CART) in the forced swimming test (FST), but less is known about whether antidepressant treatments alter levels of CART immunoreactivity (CART-IR) in the FST. To explore this possibility, we assessed the treatment effects of desipramine and citalopram, which inhibit the reuptake of norepinephrine and serotonin into the presynaptic terminals, respectively, on changes in levels of CART-IR before and after the test swim in mouse brain. Levels of CART-IR in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), and hypothalamic paraventricular nucleus (PVN) were significantly increased before the test swim by desipramine and citalopram treatments. This increase in CART-IR in the AcbSh, dBNST, and PVN before the test swim remained elevated by desipramine treatment after the test swim, but this increase in these brain areas returned to near control levels after test swim by citalopram treatment. Citalopram, but not desipramine, treatment increased levels of CART-IR in the central nucleus of the amygdala (CeA) and the locus ceruleus (LC) before the test swim, and this increase was returned to control levels after the test swim in the CeA, but not in the LC. These results suggest common and distinct regulation of CART by desipramine and citalopram treatments in the FST and raise the possibility that CART in the AcbSh, dBNST, and CeA may be involved in antidepressant-like effect in the FST.
Janiuk, I; Kasacka, I
2013-01-01
Cocaine and amphetamine regulated transcript (CART), a neuropeptide of the central and peripheral nervous system plays an essential role in maintaining body homeostasis by regulating body temperature, orexia, digestive motility and blood pressure. Very few studies describe the relationship of hyperten¬sion with CART. Therefore, the present research was undertaken to identify, locate and determine the number of CART-immunopositive neuroendocrine cells (NE) and structures in the urinary bladder and ureter of rats with experimentally induced nephrogenic hypertension. The experiments were conducted on 20 Wistar rats in which hypertension was experimentally induced by applying a clamp on the left renal artery based on the two kidney, one clip experimental model (2K1C). After 6 weeks, fragments of the ureters and urinary bladder were sampled from rats with permanent hypertension. Immunohisto¬chemical analyses revealed a salient effect of renovascular hypertension on the neuroendocrine system of rat ureters and urinary bladder. Differences in the number of neuroendocrine cells and in the density of CART-positive structures were identified between the hypertensive and normotensive (control) rats. Hypertension greatly increased the number of NE cells and the density of CART- immunoreactive (IR) structures in the analysed urinary system organs.
Kolenkiewicz, M; Robak, A; Równiak, M; Bogus-Nowakowska, K; Całka, J; Majewski, M
2009-02-01
This study provides a detailed description concerning the distribution of cocaineand amphetamine-regulated transcript (CART) subunits - CART(61-102) and rhCART(28-116) - in the hippocampal formation (HF) of the guinea pig and domestic pig, focussing on the dentate gyrus (DG) and hippocampus proper (HP). Although in both studied species CART-immunoreactive (CART-IR) neuronal somata and processes were present generally in the same layers, some species-specific differences were still found. In the granular layer (GL) of both species, the ovalshaped neurons and some thick varicose fibres were encountered. In the guinea pig there was an immunoreactive "band of dots", probably representing crosssectioned terminals within the DG molecular layer (MOL), whereas in the domestic pig, some varicose fibres were detected, thus suggesting a different orientation of, at least, some nerve terminals. Furthermore, some CART-positive cells and fibres were observed in the hilus (HL) of the guinea pig, whereas in the analogical part of the domestic pig only nerve terminals were labelled. In both species, in the pyramidal layer (PL) of the hippocampus proper, CART-IR triangular somata were observed in the CA3 sector, as well as some positive processes in MOL; however, a few immunoreactive perikarya were found only in the CA1 sector of the guinea pig. As regards the localization patterns of two isoforms of CART in the guinea pig, both peptide fragments were present simultaneously in each of the labelled neurons or fibres, whereas in the domestic pig three types of fibres may be distinguished within the area of the DG. In the hilus and MOL of the dentate gyrus, there were fibres expressing both isoforms of CART in their whole length (fibres of the first type). Fibres of the second type (in GL) coexpressed both peptides only on their short segments, and the last ones (in MOL) expressed solely rhCART(28-116). These results indicate that the distribution of the two CART isoforms are specifically related, thus the relationship between the two CART isoforms may imply different metabolic profiles of CART-expressing neurons.
Liu, Weiley S.; Davis, Elizabeth P.; Lee, Stephen J.; Tseng, Luke; Chuang, Alice Z.; Whitaker, Christopher M.; Massey, Stephen C.; Sherman, Michael B.; Marshak, David W.
2016-01-01
The goals of this study were to localize the neuropeptide Cocaine- and Amphetamine-Regulated Transcript (CART) in primate retinas and to describe the morphology, neurotransmitter content and synaptic connections of the neurons that contain it. Using in situ hybridization, light and electron microscopic immunolabeling, CART was localized to GABAergic amacrine cells in baboon retinas. The CART-positive cells had thin, varicose dendrites that gradually descended through the inner plexiform layer and ramified extensively in the innermost stratum. They resembled two types of wide-field diffuse amacrine cells that had been described previously in macaque retinas using the Golgi method and also A17, serotonin-accumulating and waterfall cells of other mammals. The CART-positive cells received synapses from rod bipolar cell axons and made synapses onto the axons in a reciprocal configuration. The CART-positive cells also received synapses from other amacrine cells. Some of these were located on their primary dendrites, and the presynaptic cells there included dopaminergic amacrine cells. Although some CART-positive somas were localized in the ganglion cell layer, they did not contain the ganglion cell marker RNA binding protein with multiple splicing (RBPMS). Based on these results and electrophysiological studies in other mammals, the CART-positive amacrine cells would be expected to play a major role in the primary rod pathway of primates, providing feedback inhibition to rod bipolar cells. PMID:27568514
Gutierrez-Ibanez, Cristian; Iwaniuk, Andrew N; Jensen, Megan; Graham, David J; Pogány, Ákos; Mongomery, Benjamin C; Stafford, James L; Luksch, Harald; Wylie, Douglas R
2016-12-15
Cocaine- and amphetamine-regulated transcript peptides (CARTp) are neuropeptides that act as neurotransmitters in the brain of vertebrates. The expression of CARTp has been characterized in teleosts, amphibians, and several mammalian species, but comparative data in reptiles and birds are nonexistent. In this study, we show the distribution of immunoreactivity against CART peptides (CARTp-ir) in the brains of two bird species: the pigeon (Columba livia) and zebra finch (Taeniopygia guttata). We found CARTp-ir cells and terminals in the brains of both, but no major differences between the two species. As in mammals, teleost fish, and amphibians, CARTp-ir terminals and cells were abundant in subpallial regions, particularly the striatum and nucleus accumbens. We also found CARTp-ir cells and terminals in the hypothalamus, and a large number of CARTp-ir terminals in the substantia nigra, ventral tegmental area, periaqueductal gray, parabrachial nucleus, and dorsal vagal complex. However, in contrast to other vertebrates, CARTp-ir was not found in the olfactory bulb. In addition there was almost no CARTp-ir in the pallium or the hippocampal formation, and little CARTp-ir in the cerebellum. The conserved expression of CARTp in the subpallium, hypothalamus, and dorsal vagal complex of birds suggests that some of the functions of CARTp, such as regulation of food intake and interactions with the social control network and mesolimbic reward system, are conserved among vertebrates. J. Comp. Neurol. 524:3747-3773, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cho, Jin Hee; Cho, Yun Ha; Kim, Hyo Young; Cha, Seung Ha; Ryu, Hyun; Jang, Wooyoung; Shin, Kyung Ho
2015-04-01
Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration. Copyright © 2015 Elsevier Ltd. All rights reserved.
The odor of Osmanthus fragrans attenuates food intake
Yamamoto, Takashi; Inui, Tadashi; Tsuji, Tadataka
2013-01-01
Odors have been shown to exert an influence on various physiological and behavioral activities. However, little is known whether or not odor stimulation directly affects the levels of feeding-related neuropeptides. Here we show that the neural transmission by Osmanthus fragrans (OSM) decreased the mRNA expression of orexigenic neuropeptides, such as agouti-related protein, neuropeptide Y, melanin-concentrating hormone and prepro-orexin, while increased anorexigenic neuropeptides, such as cocaine- and amphetamine-regulated transcript and proopiomelanocortin in rats. The decreased number of orexin-immunoreactive neurons in the hypothalamus coincided well with the OSM-induced decreases in the expression of prepro-orexin mRNA. This study demonstrates that the OSM odor, which is known to have a mild sedative effect, decreases the motivation to eat, food intake and body weight, accompanied by sluggish masticatory movements. The data suggest that these effects are due to suppression of orexigenic neuropeptides and activation of anorexigenic neuropeptides in the hypothalamus. PMID:23519146
Dhillo, W S; Small, C J; Stanley, S A; Jethwa, P H; Seal, L J; Murphy, K G; Ghatei, M A; Bloom, S R
2002-09-01
A number of neuropeptides implicated in the hypothalamic regulation of appetite are synthesized in the arcuate nucleus (Arc). Neuropeptide Y (NPY) and agouti-related protein (Agrp) are orexigenic. The pro-opiomelanocortin (POMC) product alpha-melanocyte-stimulating hormone (alpha-MSH) is anorectic. Intracerebroventricular administration of cocaine- and amphetamine-regulated transcript (CART) decreases food intake. However, recent results show that CART is orexigenic when injected into discrete hypothalamic nuclei. There is almost complete coexpression of NPY and Agrp mRNA in Arc neurones, and the majority of CART-containing neurones in the Arc also contain POMC mRNA. We investigated possible interactions between these neuropeptides in vitro using a rat hypothalamic explant system. Administration of 1, 10 and 100 nm of NPY to hypothalamic explants significantly increased release of Agrp(83-132)-immunoreactivity (IR). NPY (10 and 100 nm) significantly increased the release of CART(55-102)-IR and alpha-MSH-IR from hypothalamic explants. Agrp(83-132) (10 nm) administered to hypothalamic explants significantly increased the release of NPY-IR. Agrp(83-132) (10 and 100 nm) significantly decreased the release of CART(55-102)-IR from hypothalamic explants. Administration of 1, 10 and 100 nm CART(55-102) to hypothalamic explants resulted in a significant increase in NPY-IR release. Administration of 10 nm CART(55-102) to hypothalamic explants significantly increased the release of Agrp(83-132)-IR. NDP-MSH (10 nm) administered to hypothalamic explants significantly increased the release of NPY-IR. NDP-MSH (10 and 100 nm) significantly increased the release of Agrp(83-132)-IR from hypothalamic explants. These data suggest that orexigenic neuropeptides in the arcuate nucleus stimulate the release of each other, perhaps reinforcing orexigenic behaviour via a positive-feedback loop. Our results are also in keeping with the possibility that the melanocortin-3 receptor in the arcuate nucleus may influence the release of arcuate neuropeptides.
Prenatal programming by testosterone of hypothalamic metabolic control neurones in the ewe.
Sheppard, K M; Padmanabhan, V; Coolen, L M; Lehman, M N
2011-05-01
Ewes treated prenatally with testosterone develop metabolic deficits, including insulin resistance, in addition to reproductive dysfunctions that collectively mimic polycystic ovarian syndrome (PCOS), a common endocrine disease in women. We hypothesised that metabolic deficits associated with prenatal testosterone excess involve alterations in arcuate nucleus (ARC) neurones that contain either agouti-related peptide (AgRP) or pro-opiomelanocortin (POMC). Characterisation of these neurones in the ewe showed that immunoreactive AgRP and POMC neurones were present in separate populations in the ARC, that AgRP and POMC neurones co-expressed either neuropeptide Y or cocaine- and amphetamine-regulated transcript, respectively, and that each population had a high degree of co-localisation with androgen receptors. Examination of the effect of prenatal testosterone exposure on the number of AgRP and POMC neurones in adult ewes showed that prenatal testosterone excess significantly increased the number of AgRP but not POMC neurones compared to controls; this increase was restricted to the middle division of the ARC, was mimicked by prenatal treatment with dihydrotestosterone, a non-aromatisable androgen, and was blocked by co-treatment of prenatal testosterone with the anti-androgen, flutamide. The density of AgRP fibre immunoreactivity in the preoptic area, paraventricular nucleus, lateral hypothalamus and dorsomedial hypothalamic nucleus was also increased by prenatal testosterone exposure. Thus, ewes that were exposed to androgens during foetal life showed alterations in the number of AgRP-immunoreactive neurones and the density of fibre immunoreactivity in their projection areas, suggestive of permanent prenatal programming of metabolic circuitry that may, in turn, contribute to insulin resistance and an increased risk of obesity in this model of PCOS. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.
Hawks, Brian W.; Li, Wei; Garlow, Steven J.
2009-01-01
Cocaine-Amphetamine Regulated Transcript (CART) peptides are implicated in a wide range of behaviors including in the reinforcing properties of psychostimulants, feeding and energy balance and stress and anxiety responses. We conducted a complex trait analysis to examine natural variation in the regulation of CART transcript abundance (CARTta) in the hypothalamus. CART transcript abundance was measured in total hypothalamic RNA from 26 BxD recombinant inbred (RI) mouse strains and in the C57BL/6 (B6) and DBA/2J (D2) progenitor strains. The strain distribution pattern for CARTta was continuous across the RI panel, which is consistent with this being a quantitative trait. Marker regression and interval mapping revealed significant quantitative trait loci (QTL) on mouse chromosome 4 (around 58.2cM) and chromosome 11 (between 20–36cM) that influence CARTta and account for 31% of the between strain variance in this phenotype. There are numerous candidate genes and QTL in these chromosomal regions that may indicate shared genetic regulation between CART expression and other neurobiological processes referable to known actions of this neuropeptide. PMID:18199428
Zhang, Shengzhe; Jing, Ying; Zhang, Meiying; Zhang, Zhenfeng; Ma, Pengfei; Peng, Huixin; Shi, Kaixuan; Gao, Wei-Qiang; Zhuang, Guanglei
2015-11-04
High-grade serous ovarian carcinoma (HGS-OvCa) has the lowest survival rate among all gynecologic cancers and is hallmarked by a high degree of heterogeneity. The Cancer Genome Atlas network has described a gene expression-based molecular classification of HGS-OvCa into Differentiated, Mesenchymal, Immunoreactive and Proliferative subtypes. However, the biological underpinnings and regulatory mechanisms underlying the distinct molecular subtypes are largely unknown. Here we showed that tumor-infiltrating stromal cells significantly contributed to the assignments of Mesenchymal and Immunoreactive clusters. Using reverse engineering and an unbiased interrogation of subtype regulatory networks, we identified the transcriptional modules containing master regulators that drive gene expression of Mesenchymal and Immunoreactive HGS-OvCa. Mesenchymal master regulators were associated with poor prognosis, while Immunoreactive master regulators positively correlated with overall survival. Meta-analysis of 749 HGS-OvCa expression profiles confirmed that master regulators as a prognostic signature were able to predict patient outcome. Our data unraveled master regulatory programs of HGS-OvCa subtypes with prognostic and potentially therapeutic relevance, and suggested that the unique transcriptional and clinical characteristics of ovarian Mesenchymal and Immunoreactive subtypes could be, at least partially, ascribed to tumor microenvironment.
Szymanska, Kamila; Makowska, Krystyna; Gonkowski, Slawomir
2018-03-20
Bisphenol A, used in the production of plastic, is able to leach from containers into food and cause multidirectional adverse effects in living organisms, including neurodegeneration and metabolic disorders. Knowledge of the impact of BPA on enteric neurons is practically non-existent. The destination of this study was to investigate the influence of BPA at a specific dose (0.05 mg/kg body weight/day) and at a dose ten times higher (0.5 mg/kg body weight/day), given for 28 days, on the porcine ileum. The influence of BPA on enteric neuron immunoreactive to selected neuronal active substances, including substance P (SP), vasoactive intestinal polypeptide (VIP), galanin (GAL), vesicular acetylcholine transporter (VAChT-used here as a marker of cholinergic neurons), and cocaine- and amphetamine-regulated transcript peptide (CART), was studied by the double immunofluorescence method. Both doses of BPA affected the neurochemical characterization of the enteric neurons. The observed changes depended on the type of enteric plexus but were generally characterized by an increase in the number of cells immunoreactive to the particular substances. More visible fluctuations were observed after treatment with higher doses of BPA. The results confirm that even low doses of BPA may influence the neurochemical characterization of the enteric neurons and are not neutral for living organisms.
Role of cocaine- and amphetamine-regulated transcript in estradiol-mediated neuroprotection
NASA Astrophysics Data System (ADS)
Xu, Yun; Zhang, Wenri; Klaus, Judith; Young, Jennifer; Koerner, Ines; Sheldahl, Laird C.; Hurn, Patricia D.; Martínez-Murillo, Francisco; Alkayed, Nabil J.
2006-09-01
Estrogen reduces brain injury after experimental cerebral ischemia in part through a genomic mechanism of action. Using DNA microarrays, we analyzed the genomic response of the brain to estradiol, and we identified a transcript, cocaine- and amphetamine-regulated transcript (CART), that is highly induced in the cerebral cortex by estradiol under ischemic conditions. Using in vitro and in vivo models of neural injury, we confirmed and characterized CART mRNA and protein up-regulation by estradiol in surviving neurons, and we demonstrated that i.v. administration of a rat CART peptide is protective against ischemic brain injury in vivo. We further demonstrated binding of cAMP response element (CRE)-binding protein to a CART promoter CRE site in ischemic brain and rapid activation by CART of ERK in primary cultured cortical neurons. The findings suggest that CART is an important player in estrogen-mediated neuroprotection and a potential therapeutic agent for stroke and other neurodegenerative diseases. ischemia | stroke | estrogen
Cart Regulates Food Intake in Channel Catfish
USDA-ARS?s Scientific Manuscript database
Cocaine-and Amphetamine-Regulated Transcript (CART) is a potent hypothalamic anorectic peptide in mammals and fish. We hypothesized that increased food intake is associated with changes in expression of CART mRNA within the brain of channel catfish. Objectives were to clone the CART gene, examine ...
USDA-ARS?s Scientific Manuscript database
Ghrelin (GRLN), cocaine and amphetamine regulated transcript (CART), neuropeptide Y (NPY), and cholecystokinin (CCK) are neuropeptides involved in the regulation of appetite and feeding in vertebrates. We examined pre- and postprandial changes in the expression of plasma GHRL and mRNAs encoding GRL...
MacDonald, Erin; Volkoff, Hélène
2009-04-01
cDNAs encoding for neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) were cloned in an elasmobranch fish, the winter skate. mRNA tissue distribution was examined for the three peptides as well as the effects of two weeks of fasting on their expression. Skate NPY, CART and CCK sequences display similarities with sequences for teleost fish but in general the degree of identity is relatively low (50%). All three peptides are present in brain and in several peripheral tissues, including gut and gonads. Within the brain, the three peptides are expressed in the hypothalamus, telencephalon, optic tectum and cerebellum. Two weeks of fasting induced an increase in telencephalon NPY and an increase in CCK in the gut but had no effects on hypothalamic NPY, CART and CCK, or on telencephalon CART. Our results provide basis for further investigation into the regulation of feeding in winter skate.
Liu, Christina H; Ren, Jiaqian; Liu, Philip K
2016-02-03
Monoamine oxidase (MAO) enzymes play a critical role in controlling the catabolism of monoamine neurotransmitters and biogenic trace amines and behavior in humans. However, the mechanisms that regulate MAO are unclear. Several transcription factor proteins are proposed to modulate the transcription of MAO gene, but evidence supporting these hypotheses is controversial. We aimed to investigate the mechanism of gene transcription regulator proteins on amphetamine-induced behavior. We applied aptamers containing a DNA binding sequence, as well as a random sequence (without target) to study the modulation of amphetamine-induced MAO levels and hyperactivity in living mice. We pretreated in adult male C57black6 mice (Taconic Farm, Germantown, NY) (n ≥ 3 litters at a time), 2 to 3 months of age (23 ± 2 gm body weight) with double-stranded (ds) DNA aptamers with sequence specific to activator protein-1 (5ECdsAP1), nuclear factor-kappa beta (5ECdsNF-kB), special protein-1 (5ECdsSP-1) or cyclicAMP responsive element binding (5ECdsCreB) protein binding regions, 5ECdsRan [a random sequence without target], single-stranded AP-1 (5ECssAP-1) (8 nmol DNA per kg) or saline (5 μl, intracerebroventricular [icv] injection) control before amphetamine administration (4 mg/kg, i.p.). We then measured and analyzed locomotor activities and the level of MAO-A and MAO-B activity. In the pathological condition of amphetamine exposure, we showed here that pretreatment with 5ECdsAP1 and 5ECdsNF-kB reversed the decrease of MAO-A activity (p < 0.05, t test), but not activity of the B isomer (MAO-B), in the ventral tegmental area (VTA) and substantia nigra (SN) of C57black6 mice. The change in MAO-A level coincided with a reversed amphetamine-induced restless behavior of mice. Pretreatments with saline, 5ECdsCreB, 5ECdsSP-1, 5ECdsRan or 5ECssAP-1 had no effect. Our data lead us to conclude that elevation of AP-1 or NF-kB indirectly decreases MAO-A protein levels which, in turn, diminishes MAO-A ability in the VTA of the mesolimbic dopaminergic pathway that has been implicated in cells under stress especially in the SN and VTA. This study has implications for design for the treatment of drug exposure and perhaps Parkinson's dementia.
LEE, JAE-CHUL; CHEN, BAI HUI; CHO, JEONG-HWI; KIM, IN HYE; AHN, JI HYEON; PARK, JOON HA; TAE, HYUN-JIN; CHO, GEUM-SIL; YAN, BING CHUN; KIM, DAE WON; HWANG, IN KOO; PARK, JINSEU; LEE, YUN LYUL; CHOI, SOO YOUNG; WON, MOO-HO
2015-01-01
Inhibitors of DNA-binding/differentiation (ID) proteins bind to basic helix-loop-helix (bHLH) transcription factors, including those that regulate differentiation and cell-cycle progression during development, and regulate gene transcription. However, little is known about the role of ID proteins in the brain under transient cerebral ischemic conditions. In the present study, we examined the effects of ischemia-reperfusion (I-R) injury on the immunoreactivity and protein levels of IDs 1–4 in the gerbil hippocampus proper Cornu Ammonis regions CA1–3 following 5 min of transient cerebral ischemia. Strong ID1 immunoreactivity was detected in the nuclei of pyramidal neurons in the hippocampal CA1–3 regions; immunoreactivity was significantly changed following I-R in the CA1 region, but not in the CA2/3 region. Five days following I-R, ID1 immunoreactivity was not detected in the CA1 pyramidal neurons. ID1 immunoreactivity was detected only in GABAergic interneurons in the ischemic CA1 region. Weak ID4 immunoreactivity was detected in non-pyramidal cells, and immunoreactivity was again only changed in the ischemic CA1 region. Five days following I-R, strong ID4 immunoreactivity was detected in non-pyramidal cells, which were identified as microglia, and not astrocytes, in the ischemic CA1 region. Furthermore, changes in the protein levels of ID1 and ID4 in the ischemic CA1 region studied by western blot were consistent with patterns of immunoreactivity. In summary, these results indicate that immunoreactivity and protein levels of ID1 and ID4 are distinctively altered following transient cerebral ischemia only in the CA1 region, and that the changes in ID1 and ID4 expression may relate to the ischemia-induced delayed neuronal death. PMID:25503067
Job, Martin O.; Perry, JoAnna; Shen, Li L.; Kuhar, Michael J.
2014-01-01
Cocaine-and-Amphetamine Regulated Transcript peptide (CART peptide) is known for having an inhibitory effect on dopamine (DA)- and cocaine-mediated actions and is postulated to be a homeostatic, regulatory factor in the nucleus accumbens (NAc). Some sex differences in cocaine-mediated LMA and in the expression and function of CART peptide have been reported. However, it is not known if the inhibitory effect of CART peptide on cocaine-mediated locomotor activity (LMA) is sexually dimorphic. In this study, the effect of CART 55-102 on LMA due to intra-NAc DA and i.p. cocaine were determined in male and female Sprague-Dawley rats. The results show that CART 55-102 blunted or reduced both the DA- and cocaine-induced LMA in both males and females. In conclusion, CART peptide is effective in blunting DA- and cocaine-mediated LMA in both males and females. PMID:24630272
Responses of the extrapyramidal and limbic substance P systems to ibogaine and cocaine treatments.
Alburges, M E; Ramos, B P; Bush, L; Hanson, G R
2000-02-25
Ibogaine is an indolamine found in the West Africa shrub, Tabernanthe iboga, and has been proposed for the treatment of addiction to central nervous system (CNS) stimulants such as cocaine and amphetamine. The mechanism of ibogaine action and its suitability as a treatment for drug addiction still remains unclear. Since previous studies demonstrated differential effects of stimulants of abuse (amphetamines) on neuropeptide systems such as substance P, we examined the impact of ibogaine and cocaine on extrapyramidal (striatum and substantia nigra) and limbic (nucleus accumbens and frontal cortex) substance P-like immunoreactivity. Ibogaine and cocaine treatments altered substance P systems by increasing striatal and nigral substance P-like immunoreactivity concentration 12 h after the last drug treatment. However, substance P-like immunoreactivity content was not significantly increased in nucleus accumbens after treatment with either drug. The ibogaine- and cocaine-induced increases in substance P-like immunoreactivity in striatum and substantia nigra were blocked by coadministration of selective dopamine D(1) receptor antagonist (SCH 23390; R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine hydrochloride) or dopamine D(2) receptor antagonist (eticlopride; S(-)-3-Chloro-5-ethyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-hydroxy-2- methoxy-benzamide hydrochloride). Most of the responses by substance P systems to ibogaine administration resembled those caused by cocaine, except in cortical tissue where multiple administration of cocaine, but not ibogaine increased substance P-like immunoreactivity. These data suggest that substance P systems may contribute to the effects of ibogaine and cocaine treatment.
USDA-ARS?s Scientific Manuscript database
We examined pre- and postprandial changes in the expression of plasma ghrelin (GHRL) and mRNAs encoding GRLN, cocaine and amphetamine regulated transcript (CART), neuropeptide Y (NPY), and cholecystokinin (CCK) in channel catfish. Fish were either offered feed (Fed) or fasted (Unfed). Feeding incr...
Palus, Katarzyna; Całka, Jarosław
2016-03-01
The purpose of the present study was to determine the response of the porcine coeliac-superior mesenteric ganglion complex (CSMG) neurons projecting to the prepyloric area of the porcine stomach to peripheral neuronal damage following partial stomach resection. To identify the sympathetic neurons innervating the studied area of stomach, the neuronal retrograde tracer Fast Blue (FB) was applied to control and partial stomach resection (RES) groups. On the 22nd day after FB injection, following laparotomy, the partial resection of the previously FB-injected stomach prepyloric area was performed in animals of RES group. On the 28th day, all animals were re-anaesthetized and euthanized. The CSMG complex was then collected and processed for double-labeling immunofluorescence. In control animals, retrograde-labelled perikarya were immunoreactive to tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), neuropeptide Y (NPY) and galanin (GAL). Partial stomach resection decreased the numbers of FB-positive neurons immunopositive for TH and DβH. However, the strong increase of NPY and GAL expression, as well as de novo-synthesis of neuronal nitric oxide synthase (nNOS) and leu5-Enkephalin (LENK) was noted in studied neurons. Furthermore, FB-positive neurons in all pigs were surrounded by a network of cocaine- and amphetamine-regulated transcript peptide (CART)-, calcitonin gene-related peptide (CGRP)-, and substance P (SP)-, vasoactive intestinal peptide (VIP)-, LENK- and nNOS- immunoreactive nerve fibers. This may suggest neuroprotective contribution of these neurotransmitters in traumatic responses of sympathetic neurons to peripheral axonal damage. Copyright © 2015 Elsevier B.V. All rights reserved.
Mortensen, Amanda H.
2016-01-01
Cocaine-and Amphetamine Regulated Transcript (CART) peptide is expressed in the brain, endocrine and neuroendocrine systems and secreted into the serum. It is thought to play a role in regulation of hypothalamic pituitary functions. Here we report a spatial and temporal analysis of Cart expression in the pituitaries of adult and developing normal and mutant mice with hypopituitarism. We found that Prop1 is not necessary for initiation of Cart expression in the fetal pituitary at e14.5, but it is required indirectly for maintenance of Cart expression in the postnatal anterior pituitary gland. Pou1f1 deficiency has no effect on Cart expression before or after birth. There is no 1:1 correspondence between CART and any particular cell type. In neonates, CART is detected primarily in non-proliferating, POU1F1-positive cells. CART is also found in some cells that express TSH and GH suggesting a correspondence with committed progenitors of the POU1F1 lineage. In summary, we have characterized the normal temporal and cell specific expression of CART in mouse development and demonstrate that postnatal CART expression in the pituitary gland requires PROP1. PMID:27685990
Kobayashi, Yasuhiro; Jimenez-Krassel, Fermin; Ireland, James J; Smith, George W
2006-01-01
The ability of ovarian follicles to produce large amounts of estradiol is a hallmark of follicle health status. Estradiol producing capacity is lost in ovarian follicles before morphological signs of atresia. A prominent wave like pattern of growth of antral follicles is characteristic of monotocous species such as cattle, horses and humans. While our knowledge of the role of pituitary gonadotropins in support of antral follicle growth and development is well established, the intrinsic factors that suppress estradiol production and may help promote atresia during follicular waves are not well understood. Numerous growth factors and cytokines have been reported to suppress granulosa cell estradiol production in vitro, but the association of expression of many such factors in vivo with follicle health status and their physiological significance are not clear. The purpose of this review is to discuss the in vivo and in vitro evidence supporting a local physiological role for cocaine and amphetamine regulated transcript, inhibins and low molecular weight insulin like growth factor binding proteins in negative regulation of granulosa cell estradiol production, with emphasis on evidence from the bovine model system. PMID:16611367
Thim, L; Nielsen, P F; Judge, M E; Andersen, A S; Diers, I; Egel-Mitani, M; Hastrup, S
1998-05-29
Cocaine and amphetamine regulated transcript (CART) is a newly discovered hypothalamic peptide with a potent appetite suppressing activity following intracerebroventricular administration. When the mature rat CART sequence encoding CART(1-102) was inserted in the yeast expression plasmid three CART peptides could be purified from the fermentation broth reflecting processing at dibasic sequences. None of these corresponded to the naturally occurring CART(55-102). In order to obtain CART(55-102) the precursor Glu-Glu-Ile-Asp-CART(55-102) has been produced and CART(55-102) was generated by digestion of the precursor with dipeptidylaminopeptidase-1. All four generated CART peptides have been characterised by N-terminal amino acid sequencing and mass spectrometry. The CART peptides contain six cysteine residues and using the yeast expressed CART(62-102) the disulphide bond configuration was found to be I-III, II-V and IV-VI. When the four CART peptides were intracerebroventricularly injected in fasted mice (0.1 to 2.0 microg) they all produced a dose dependent inhibition of food intake.
Cadet, Jean Lud; Brannock, Christie; Ladenheim, Bruce; McCoy, Michael T.; Krasnova, Irina N.; Lehrmann, Elin; Becker, Kevin G.; Jayanthi, Subramaniam
2014-01-01
Methamphetamine (METH) is a widely abused amphetamine analog. Few studies have investigated the molecular effects of METH exposure in adult animals. Herein, we determined the consequences of an injection of METH (10 mg/kg) on transcriptional effects of a second METH (2.5 mg/kg) injection given one month later. We thus measured gene expression by microarray analyses in the nucleus accumbens (NAc) of 4 groups of rats euthanized 2 hours after the second injection: saline-pretreated followed by saline-challenged (SS) or METH-challenged (SM); and METH-pretreated followed by saline-challenged (MS) or METH-challenged (MM). Microarray analyses revealed that METH (2.5 mg/kg) produced acute changes (1.8-fold; P<0.01) in the expression of 412 (352 upregulated, 60 down-regulated) transcripts including cocaine and amphetamine regulated transcript, corticotropin-releasing hormone (Crh), oxytocin (Oxt), and vasopressin (Avp) that were upregulated. Injection of METH (10 mg/kg) altered the expression of 503 (338 upregulated, 165 down-regulated) transcripts measured one month later (MS group). These genes also included Cart and Crh. The MM group showed altered expression of 766 (565 upregulated, 201 down-regulated) transcripts including Avp, Cart, and Crh. The METH-induced increased Crh expression was enhanced in the MM group in comparison to SM and MS groups. Quantitative PCR confirmed the METH-induced changes in mRNA levels. Therefore, a single injection of METH produced long-lasting changes in gene expression in the rodent NAc. The long-term increases in Crh, Cart, and Avp mRNA expression suggest that METH exposure produced prolonged activation of the endogenous stress system. The METH-induced changes in oxytocin expression also suggest the possibility that this neuropeptide might play a significant role in the neuroplastic and affiliative effects of this drug. PMID:24475032
Sha, Dujuan; Wang, Luna; Zhang, Jun; Qian, Lai; Li, Qiming; Li, Jin; Qian, Jian; Gu, Shuangshuang; Han, Ling; Xu, Peng; Xu, Yun
2014-09-25
The mechanisms of ischemic stroke, a main cause of disability and death, are complicated. Ischemic stroke results from the interaction of various factors including oxidative stress, a key pathological mechanism that plays an important role during the acute stage of ischemic brain injury. This study demonstrated that cocaine- and amphetamine-regulated transcript (CART) peptide, specifically CART55-102, increased the survival rate, but decreased the mortality of neurons exposed to oxygen-glucose deprivation (OGD), in a dose-dependent manner. The above-mentioned effects of CART55-102 were most significant at 0.4nM. These results indicated that CART55-102 suppressed neurotoxicity and enhanced neuronal survival after oxygen-glucose deprivation. CART55-102 (0.4nM) significantly diminished reactive oxygen species levels and markedly increased the activity of mitochondrial respiratory chain complex II in oxygen-glucose deprived neurons. In summary, CART55-102 suppressed oxidative stress in oxygen-glucose deprived neurons, possibly through elevating the activity of mitochondrial respiratory chain complex II. This result provides evidence for the development of CART55-102 as an antioxidant drug. Copyright © 2014 Elsevier B.V. All rights reserved.
[Roles of biologically active peptide in regulation of feeding behavior and energy homeostasis].
Sakurai, Takeshi
2003-09-01
The mechanisms for regulating food intake involve a complicated interplay between peripheral systems (including gastrointestinal peptide secretion, leptin, and vagal afferent nerve responses) and central nervous system (CNS) neuropeptides and/or monoamines. Many hypothalamic neuropeptides are involved in the regulation of energy homeostasis and feeding behavior, including melanocortins, Agouti-related peptide, neuropeptide-Y, cocaine, and amphetamine-regulated transcript, orexin, and melanine concentrating hormone (MCH) as well as monamines (serotonin, dopamine, norepinephrine). Many of these systems are regulated by peripheral metabolic cues including plasma leptin levels. This review summarizes roles of neuropeptides in the regulatory mechanism of feeding and energy homeostasis.
Bando, Yasuhiko; Yamamoto, Miyuki; Sakiyama, Koji; Inoue, Katsuyuki; Takizawa, Shota; Owada, Yuji; Iseki, Shoichi; Kondo, Hisatake; Amano, Osamu
2014-10-01
n-3 Polyunsaturated fatty acids play a role in regulating the growth of the long bones. Fatty acid-binding proteins (FABPs) bind and transport hydrophobic long-chain fatty acids intracellularly, and epidermal-type FABP (E-FABP) has an affinity for n-3 fatty acids. This study aimed to clarify the localization of E-FABP in the growth plate of the mouse tibia. At the chondro-osseous junction (COJ) of the growth plate, E-FABP-immunoreactivity was exclusively localized in mononuclear, spindle-shaped cells with several long processes. These E-FABP-immunoreactive cells were identified as being septoclasts, i.e., cells that resorb uncalcified transverse septa. The processes of these immunoreactive septoclasts terminated between the longitudinal and transverse septa. E-FABP-immunoreactivity was found in the entire cytoplasm and on the mitochondrial outer membrane. In ontogeny, immunoreactive septoclasts were observed immediately after emergence of the primary ossifying center and were distributed not only at the COJ but also in the metaphysis near the COJ. The number of septoclasts increased at the postnatal age of 1 week (P1w)-P2w, and thereafter gradually decreased; and the cells became concentrated at the COJ after P3w-P4w. The immunoreactivity for peroxisome proliferator-activated receptor (PPAR)β/δ was detected in these E-FABP-immunoreactive septoclasts. The present results suggest that fatty acids, preferably n-3 ones, are intracellularly transported by E-FABP to various targets, including mitochondria and nucleus, in which PPARβ/δ may play functional roles in the transcriptional regulation of genes involved in the endochondral ossification.
Casarsa, B S; Marinzalda, M Á; Marchese, N A; Paz, M C; Vivas, L; Baiardi, G; Bregonzio, C
2015-10-29
Previous results from our laboratory showed that angiotensin II AT1 receptors (AT1-R) are involved in the neuroadaptative changes induced by amphetamine. The aim of the present work was to study functional and neurochemical responses to angiotensin II (ANG II) mediated by AT1-R activation in animals previously exposed to amphetamine. For this purpose male Wistar rats (250-320 g) were treated with amphetamine (2.5mg/kg/day intraperitoneal) or saline for 5 days and implanted with intracerebroventricular (i.c.v.) cannulae. Seven days after the last amphetamine administration the animals received ANG II (400 pmol) i.c.v. One group was tested in a free choice paradigm for sodium (2% NaCl) and water intake and sacrificed for Fos immunoreactivity (Fos-IR) determinations. In a second group of rats, urine and plasma samples were collected for electrolytes and plasma renin activity determination and then they were sacrificed for Fos-IR determination in Oxytocinergic neurons (Fos-OT-IR). Repeated amphetamine exposure (a) prevented the increase in sodium intake and Fos-IR cells in caudate-putamen and accumbens nucleus induced by ANG II i.c.v. (b) potentiated urinary sodium excretion and Fos-OT-IR in hypothalamus and (c) increased the inhibitory response in plasma renin activity, in response to ANG II i.c.v. Our results indicate a possible functional desensitisation of AT1-R in response to ANG II, induced by repeated amphetamine exposure. This functional AT1-R desensitisation allows to unmask the effects of ANG II i.c.v. mediated by oxytocin. We conclude that the long lasting changes in brain AT1-R functionality should be considered among the psychostimulant-induced neuroadaptations. Published by Elsevier Ltd.
Sánchez, Edith; Fekete, Csaba; Lechan, Ronald M.; Joseph-Bravo, Patricia
2007-01-01
Neural stimuli, such as suckling or cold exposure, increase TRH mRNA in the paraventricular nucleus (PVN) of the rat hypothalamus, yet only suckling induces prolactin secretion. As TRH co-localizes with cocaine-and amphetamine-regulated transcript (CART) in hypophysiotropic neurons of the PVN, and CART inhibits TRH-induced prolactin release but not TRH-induced TSH release in adenohypophyseal cell cultures, we raised the possibility that differential regulation of CART gene expression in the PVN may explain the differences in prolactin secretion following each of the two stimuli. Primiparous female rats were mated and handled daily during the pre- and postpartum periods. After delivery, the litter was adjusted to 8 pups and at mid-lactation, dams were separated from their pups for 8 hours and exposed to either 1h of cold or 30 min of suckling. Long term effects of suckling were studied by separating pups from their mothers for 24h, followed by a 12h period of continuous suckling. Serum TSH levels increased in response to cold exposure, while prolactin levels were increased by suckling and diminished by cold exposure. CART mRNA levels increased in rostral and mid parts of the medial parvocellular PVN following cold exposure but not after suckling stimulation. These data demonstrate a differential regulation of CART gene expression in hypophysiotropic neurons in response to stimuli that increase TRH mRNA levels, and suggest that CART activation in the PVN may contribute to the decrease in PRL release when the thyroid axis is activated by cold exposure. Section: Regulatory systems PMID:17174283
Wang, Y; Qiu, B; Liu, J; Zhu, Wei-Guo; Zhu, S
2014-09-26
Cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide that plays neuroprotective roles in cerebral ischemia and reperfusion (I/R) injury in animal models or oxygen and glucose deprivation (OGD) in cultured neurons. Recent data suggest that intranasal CART treatment facilitates neuroregeneration in stroke brain. However, little is known about the effects of post-treatment with CART during the neuronal recovery after OGD and reoxygenation in cultured primary cortical neurons. The present study was to investigate the role of CART treated after OGD injury in neurons. Primary mouse cortical neurons were subjected to OGD and then treated with CART. Our data show that post-treatment with CART reduced the neuronal apoptosis caused by OGD injury. In addition, CART repaired OGD-impaired cortical neurons by increasing the expression of growth-associated protein 43 (GAP43), which promotes neurite outgrowth. This effect depends on pleiotrophin (PTN) as siRNA-mediated PTN knockdown totally abolished the increase in CART-stimulated GAP43 protein levels. In summary, our findings demonstrate that CART repairs the neuronal injury after OGD by facilitating neurite outgrowth through PTN-dependent pathway. The role for CART in neurite outgrowth makes it a new potential therapeutic agent for the treatment of neurodegenerative diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Fu, Mao; Cheng, Hua; Chen, Lihong; Wu, Bin; Cai, Mengyin; Xie, Ding; Fu, Zuzhi
2002-12-01
To investigate whether genetic variation in cocaine and amphetamine-regulated transcript (CART) gene might contribute to the genesis of type 2 diabetes. Screening for mutations in the entire coding region for the CART gene were performed with polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) in 180 normoglycemic control subjects and 221 patients with type 2 diabetes. (1) Adenine deletion was identified at position 1,457 nucleotide located at untranslation area of exon 3. In normal weight control, the frequencies of CART-A + and CART-A-alleles were 83.6% and 16.4% respectively. The frequencies of CART-A + A +, A + A-, A-A- genotype were 68.9%, 29.4% and 1.7% respectively. (2) In diabetic patients, the frequencies of CART-A + and A-alleles were 84.6% and 15.4% respectively; the frequencies of CART-A + A +, A + A-, A-A- genotype were 71.9%, 25.3% and 2.7% respectively. The frequency of A deletion of the CART gene in diabetic patients did not differ significantly from normoglycemic control subjects. (3) Diabetic patients with the A deletion had increased total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. Polymorphism was found in the 3'-untranslated region (Delta A1457) of CART in Chinese. A deletion in CART is not associated with type 2 diabetes, but may contribute to dyslipidemia.
Song, Xiaorui; Wang, Hao; Chen, Hao; Sun, Mingzhe; Liang, Zhongxiu; Wang, Lingling; Song, Linsheng
2016-04-01
Hemocytes are the effective immunocytes in bivalves, which have been reported to be derived from stem-like cells in gill epithelium of oyster. In the present work, a conserved haematopoietic transcription factor Tal-1/Scl (Stem Cell Leukemia) was identified in Pacific oyster (Cg-SCL), and it was evolutionarily close to the orthologs in deuterostomes. Cg-SCL was highly distributed in the hemocytes as well as gill and mantle. The hemocyte specific genes Integrin, EcSOD and haematopoietic transcription factors GATA3, C-Myb, c-kit, were down-regulated when Cg-SCL was interfered by dsRNA. During the larval developmental stages, the mRNA transcripts of Cg-SCL gradually increased after fertilization and peaked at early trochophore larvae stage (10 hpf, hours post fertilization), then sharply decreased in late trochophore larvae stage (15 hpf) before resuming in umbo larvae (120 hpf). Whole-mount immunofluorescence assay further revealed that the immunoreactivity of Cg-SCL appeared in blastula larvae with two approximate symmetric spots, and this expression pattern lasted in gastrula larvae. By trochophore, the immunoreactivity formed a ring around the dorsal region and then separated into two remarkable spots at the dorsal side in D-veliger larvae. After bacterial challenge, the mRNA expression levels of Cg-SCL were significantly up-regulated in the D-veliger and umbo larvae, indicating the available hematopoietic regulation in oyster larvae. These results demonstrated that Cg-SCL could be used as haematopoietic specific marker to trace potential developmental events of hematopoiesis during ontogenesis of oyster, which occurred early in blastula stage and maintained until D-veliger larvae. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rotllant, David; Nadal, Roser; Armario, Antonio
2007-05-01
Corticotropin releasing factor (CRF) appears to be critical for the control of important aspects of the behavioral and physiological response to stressors and drugs of abuse. However, the extent to which the different brain CRF neuronal populations are similarly activated after stress and drug administration is not known. We then studied, using double immunohistochemistry for CRF and Fos protein, stress and amphetamine-induced activation of CRF neurons in cortex, central amygdala (CeA), medial parvocellular dorsal, and submagnocellular parvocellular regions of the paraventricular nucleus of the hypothalamus (PVNmpd and PVNsm, respectively) and Barrington nucleus (Bar). Neither exposure to a novel environment (hole-board, HB) nor immobilization (IMO) increased Fos-like immunoreactivity (FLI) in the CeA, but they did to the same extent in cortical regions. In other regions only IMO increased FLI. HB and IMO both failed to activate CRF+ neurons in cortical areas, but after IMO, some neurons expressing FLI in the PVNsm and most of them in the PVNmpd and Bar were CRF+. Amphetamine administration increased FLI in cortical areas and CeA (with some CRF+ neurons expressing FLI), whereas the number of CRF+ neurons increased only in the PVNsm, in contrast to the effects of IMO. The present results indicate that stress and amphetamine elicited a distinct pattern of brain Fos-like protein expression and differentially activated some of the brain CRF neuronal populations, despite similar levels of overall FLI in the case of IMO and amphetamine.
Burghardt, PR; Krolewski, DM; Dykhuis, KE; Ching, J; Pinawin, AM; Britton, SL; Koch, LG; Watson, SJ; Akil, H.
2016-01-01
Obesity is a persistent and pervasive problem, particularly in industrialized nations. It has come to be appreciated that the metabolic health of an individual can influence brain function and subsequent behavioral patterns. To examine the relationship between metabolic phenotype and central systems that regulate behavior, we tested rats with divergent metabolic phenotypes (Low Capacity Runner: LCR vs. High Capacity Runner: HCR) for behavioral responses to the conflict between hunger and environmental novelty using the novelty suppressed feeding (NSF) paradigm. Additionally, we measured expression of mRNA, for peptides involved in energy management, in response to fasting. Following a 24-h fast, LCR rats showed lower latencies to begin eating in a novel environment compared to HCR rats. A 48-h fast equilibrated the latency to begin eating in the novel environment. A 24-h fast differentially affected expression of cocaine-amphetamine regulated transcript (CART) mRNA in the nucleus accumbens (NAc), where 24-h of fasting reduced CART mRNA in LCR rats. Bilateral microinjections of CART 55–102 peptide into the NAc increased the latency to begin eating in the NSF paradigm following a 24-h fast in LCR rats. These results indicate that metabolic phenotype influences how animals cope with the conflict between hunger and novelty, and that these differences are at least partially mediated by CART signaling in the NAc. For individuals with poor metabolic health who have to navigate food-rich and stressful environments, changes in central systems that mediate conflicting drives may feed into the rates of obesity and exacerbate the difficulty individuals have in maintaining weight loss. PMID:26926827
Hackett, Troy A; Clause, Amanda R; Takahata, Toru; Hackett, Nicholas J; Polley, Daniel B
2016-06-01
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Hackett, Troy A.; Clause, Amanda R.; Takahata, Toru; Hackett, Nicholas J.; Polley, Daniel B.
2015-01-01
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11–P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1+ and VGluT2+ transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT+ transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, peri-somatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to—and to some extent may enable— the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits. PMID:26159773
Lisa, Yeo; Sook-, Ha Fan; Yee-, How Say
2012-01-01
Cocaine- and amphetamine-regulated transcript (CART) is a hypothalamic anorectic neuropeptide that controls feeding behaviour and body weight. The study objective was to investigate the association of the CART prepropeptide gene (CARTPT) rs2239670 variant with obesity and its related anthropometric indicators among patients of a Malaysian health clinic in Kampar, Perak, Malaysia. A total of 300 Malay/Peninsular Bumiputera, Chinese, and Indian subjects (115 males, 185 females; 163 non-obese, 137 obese) were recruited by convenience sampling, and anthropometric measurements, blood pressures, and pulse rate were taken. Genotyping was performed using AvaII polymerase chain reaction-restriction fragment length polymorphism. Genotyping revealed 203 (67.7%), 90 (30.0%), and 7 (2.3%) subjects with the GG, GA, and AA genotypes, respectively, with a minor allele (A) frequency of 0.17. No significant difference in the CARTPT rs2239670 genotype and allele distribution was found between obese and non-obese subjects, and logistic regression showed no association between the mutated genotypes (GA, AA) and allele (A) with obesity, even after adjusting for age, gender, and ethnicity. Furthermore, the measurements did not differ significantly between the genotypes and alleles. No significant difference in the genotype and allele distribution was found among genders, but they were significantly different among ethnicities (P = 0.030 and P = 0.019, respectively). CARTPT rs2239670 is not a predictor for obesity among the Malaysian subjects in this study.
Dysregulated Expression of MITF in Subsets of Hepatocellular Carcinoma and Cholangiocarcinoma.
Nooron, Nattakarn; Ohba, Koji; Takeda, Kazuhisa; Shibahara, Shigeki; Chiabchalard, Anchalee
2017-08-01
Cholangiocarcinoma represents the second most common primary liver tumor after hepatocellular carcinoma. Mahanine, a carbazole alkaloid derived from Murraya koenigii (Linn.) Spreng, has been used as folk medicine in Thailand, where the liver fluke-associated cholangiocarcinoma is common. The expression of microphthalmia-associated transcription factor (MITF) is maintained at immunohistochemically undetectable levels in hepatocytes and cholangiocytes. To explore the regulation of MITF expression in the liver, we immunohistochemically analyzed the MITF expression using hepatocellular carcinoma and cholangiocarcinoma specimens of the human liver cancer tissue array. MITF immunoreactivity was detected in subsets of hepatocellular carcinoma (6 out of 38 specimens; 16%) and cholangiocarcinoma (2/7 specimens; 29%). Moreover, immunoreactivity for glioma-associated oncogene 1 (GLI1), a transcription factor of the Hedgehog signaling pathway, was detected in 55% of hepatocellular carcinoma (21/38 specimens) and 86% of cholangiocarcinoma (6/7 specimens). Importantly, MITF was detectable only in the GLI1-positive hepatocellular carcinoma and cholangiocarcinoma, and MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. Subsequently, the effect of mahanine was analyzed in HepG2 human hepatocellular carcinoma and HuCCT1 and KKU-100 human cholangiocarcinoma cells. Mahanine (25 µM) showed the potent cytotoxicity in these hepatic cancer cell lines, which was associated with increased expression levels of MITF, as judged by Western blot analysis. MITF is over-expressed in subsets of hepatocellular carcinoma and cholangiocarcinoma, and detectable MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. MITF expression levels may be determined in hepatic cancer cells by the balance between the Hedgehog signaling and the cellular stress.
Henry, B A; Rao, A; Ikenasio, B A; Mountjoy, K G; Tilbrook, A J; Clarke, I J
2001-11-09
Recently, much attention has focused on the role of the melanocortin system in the regulation of energy homeostasis, especially the satiety effects of the pro-opiomelanocortin (POMC)-derived peptide alpha-melanocyte stimulating hormone (alpha-MSH). We have found that POMC mRNA levels are similar in fat and thin sheep and the current study sought to further characterize the effects of nutritional status on the melanocortin system. To this end, we studied the expression of agouti-related peptide (AGRP) (an endogenous antagonist of alpha-MSH) and cocaine- and amphetamine-regulated transcript (CART), which is co-localized within POMC cells of the arcuate nucleus (ARC) in rodents. Twelve ovariectomized ewes were randomly divided into two groups and fed a maintenance (n=6) or restricted diet (n=6). At the time of experimentation, the animals had significantly (P<0.0001) different bodyweights (53.4+/-2.2 kg, ad libitum vs. 30.4+/-1.2 kg, food-restricted), which was largely due to altered body fat deposits. In situ hybridization was used to study the expression of POMC, AGRP and CART. The expression of POMC in the ARC was similar in ad libitum and food-restricted animals but the expression of AGRP was profoundly increased in the food-restricted group. The expression of CART was abundant throughout the hypothalamus but was not found in the ARC. In food-restricted animals, the expression of CART was lower in the retrochiasmatic nucleus (P<0.01), paraventricular nucleus (P<0.001), the dorsomedial nucleus and the lateral hypothalamic area (P<0.05), but was higher (P<0.01) in the posterior hypothalamic area. Thus, long-term changes in nutritional status have profound effects on the expression of AGRP and CART in the hypothalamus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angel, I.; Hauger, R.L.; Luu, M.D.
1985-09-01
Preincubation of rat hypothalamic slices in glucose-free Krebs-Ringer buffer (37/sup 0/C) resulted in a time-dependent decrease in specific (+)-(/sup 3/H)amphetamine binding in the crude synaptosomal fraction prepared from these slices. The addition of D-glucose resulted in a dose- and time-dependent stimulation of (+)-(/sup 3/H)amphetamine binding, whereas incubations with L-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose failed to increase the number of (+)-(/sup 3/H)amphetamine binding sites. Ouabain potently inhibited the glucose-induced stimulation of (+)-(/sup 3/H)amphetamine binding, suggesting the involvement of Na/sup +/, K/sup +/-ATPase. Preincubation of hypothalamic slices with glucose also resulted in an increase in Na/sup +/,K/sup +/-ATPase activity and the number ofmore » specific high-affinity binding sites for (/sup 3/H)ouabain, and a good correlation was observed between the glucose-stimulated increase in (+)-(/sup 3/H)amphetamine and (/sup 3/H)ouabain binding. These data suggest that the (+)-(/sup 3/H)amphetamine binding site in hypothalamus, previously linked to the anorectic actions of various phenylethylamines, is regulated both in vitro and in vivo by physiological concentrations of glucose. Glucose and amphetamine appear to interact at common sites in the hypothalamus to stimulate Na/sup +/,K/sup +/-ATPase activity, and the latter may be involved in the glucostatic regulation of appetite.« less
Babichuk, Nicole A; Volkoff, Hélène
2013-08-15
Feeding in vertebrates is controlled by a number of appetite stimulating (orexigenic, e.g., orexin and neuropeptide Y, NPY) and appetite suppressing (anorexigenic, e.g., cholecystokinin, CCK and cocaine- and amphetamine-regulated transcript, CART) hormones. Cunners (Tautogolabrus adspersus) survive the winter in shallow coastal waters by entering a torpor-like state, during which they forgo feeding. In order to better understand the mechanisms regulating appetite/fasting in these fish, quantitative real-time PCR was used to measure transcript expression levels of four appetite-regulating hormones: NPY, CART, orexin and CCK in the forebrain (hypothalamus and telencephalon) and CCK in the gut of fed, short-term summer fasted, and natural winter torpor cunners. Summer fasting induced a decrease in hypothalamic orexin levels and telencephalon NPY, CART and CCK mRNA levels. All brain hormone mRNA levels decreased during natural torpor as compared to fed summer fish. In the gut, CCK expression levels decreased during summer fasting. These results indicate that, in cunner, orexin, NPY, CART and CCK may play a role in appetite regulation and might mediate different physiological responses to short-term summer fasting and torpor-induced long-term fasting. © 2013.
Marchese, N A; Paz, M C; Caeiro, X; Dadam, F M; Baiardi, G; Perez, M F; Bregonzio, C
2017-01-06
A single exposure to amphetamine induces neurochemical sensitization in striatal areas. The neuropeptide angiotensin II, through AT 1 receptors (AT 1 -R) activation, is involved in these responses. However, amphetamine-induced alterations can be extended to extra-striatal areas involved in blood pressure control and their physiological outcomes. Our aim for the present study was to analyze the possible role for AT 1 -R in these events using a two-injection protocol and to further characterize the proposed AT 1 -R antagonism protocol. Central effect of orally administered AT 1 -R blocker (Candesartan, 3mg/kg p.o.×5days) in male Wistar rats was analyzed by spontaneous activity of neurons within locus coeruleus. In another group of animals pretreated with the AT 1 -R blocker or vehicle, sensitization was achieved by a single administration of amphetamine (5mg/kg i.p. - day 6) followed by a 3-week period off drug. On day 27, after receiving an amphetamine challenge (0.5mg/kg i.p.), we evaluated: (1) the sensitized c-Fos expression in locus coeruleus (LC), nucleus of the solitary tract (NTS), caudal ventrolateral medulla (A1) and central amygdala (CeAmy); and (2) the blood pressure response. AT 1 -R blockade decreased LC neurons' spontaneous firing rate. Moreover, sensitized c-Fos immunoreactivity in TH+neurons was found in LC and NTS; and both responses were blunted by the AT 1 -R blocker pretreatment. Meanwhile, no differences were found neither in CeAmy nor A1. Sensitized blood pressure response was observed as sustained changes in mean arterial pressure and was effectively prevented by AT 1 -R blockade. Our results extend AT 1 -R role in amphetamine-induced sensitization over noradrenergic nuclei and their cardiovascular output. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Vitamin D3: A Role in Dopamine Circuit Regulation, Diet-Induced Obesity, and Drug Consumption.
Trinko, Joseph R; Land, Benjamin B; Solecki, Wojciech B; Wickham, Robert J; Tellez, Luis A; Maldonado-Aviles, Jaime; de Araujo, Ivan E; Addy, Nii A; DiLeone, Ralph J
2016-01-01
The influence of micronutrients on dopamine systems is not well defined. Using mice, we show a potential role for reduced dietary vitamin D3 (cholecalciferol) in promoting diet-induced obesity (DIO), food intake, and drug consumption while on a high fat diet. To complement these deficiency studies, treatments with exogenous fully active vitamin D3 (calcitriol, 10 µg/kg, i.p.) were performed. Nondeficient mice that were made leptin resistant with a high fat diet displayed reduced food intake and body weight after an acute treatment with exogenous calcitriol. Dopamine neurons in the midbrain and their target neurons in the striatum were found to express vitamin D3 receptor protein. Acute calcitriol treatment led to transcriptional changes of dopamine-related genes in these regions in naive mice, enhanced amphetamine-induced dopamine release in both naive mice and rats, and increased locomotor activity after acute amphetamine treatment (2.5 mg/kg, i.p.). Alternatively, mice that were chronically fed either the reduced D3 high fat or chow diets displayed less activity after acute amphetamine treatment compared with their respective controls. Finally, high fat deficient mice that were trained to orally consume liquid amphetamine (90 mg/L) displayed increased consumption, while nondeficient mice treated with calcitriol showed reduced consumption. Our findings suggest that reduced dietary D3 may be a contributing environmental factor enhancing DIO as well as drug intake while eating a high fat diet. Moreover, these data demonstrate that dopamine circuits are modulated by D3 signaling, and may serve as direct or indirect targets for exogenous calcitriol.
Intracellular Methamphetamine Prevents the Dopamine-induced Enhancement of Neuronal Firing*
Saha, Kaustuv; Sambo, Danielle; Richardson, Ben D.; Lin, Landon M.; Butler, Brittany; Villarroel, Laura; Khoshbouei, Habibeh
2014-01-01
The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na+ or Cl− ion. Although isosmotic substitution of extracellular Na+ ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl− ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons. PMID:24962577
Steiner, Heinz; Van Waes, Vincent
2012-01-01
The psychostimulants methylphenidate (Ritalin, Concerta), amphetamine (Adderall), and modafinil (Provigil) are widely used in the treatment of medical conditions such as attention-deficit hyperactivity disorder and narcolepsy and, increasingly, as “cognitive enhancers” by healthy people. The long-term neuronal effects of these drugs, however, are poorly understood. A substantial amount of research over the past 2 decades has investigated the effects of psychostimulants such as cocaine and amphetamines on gene regulation in the brain because these molecular changes are considered critical for psychostimulant addiction. This work has determined in some detail the neurochemical and cellular mechanisms that mediate psychostimulant-induced gene regulation and has also identified the neuronal systems altered by these drugs. Among the most affected brain systems are corticostriatal circuits, which are part of cortico-basal ganglia-cortical loops that mediate motivated behavior. The neurotransmitters critical for such gene regulation are dopamine in interaction with glutamate, while other neurotransmitters (e.g., serotonin) play modulatory roles. This review presents (1) an overview of the main findings on cocaine- and amphetamine-induced gene regulation in corticostriatal circuits in an effort to provide a cellular framework for (2) an assessment of the molecular changes produced by methylphenidate, medical amphetamine (Adderall), and modafinil. The findings lead to the conclusion that protracted exposure to these cognitive enhancers can induce gene regulation effects in corticostriatal circuits that are qualitatively similar to those of cocaine and other amphetamines. These neuronal changes may contribute to the addiction liability of the psychostimulant cognitive enhancers. PMID:23085425
Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine
Covey, Dan P.; Juliano, Steven A.; Garris, Paul A.
2013-01-01
Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties. PMID:23671560
Brain region differences in regulation of Akt and GSK3 by chronic stimulant administration in mice.
Mines, Marjelo A; Jope, Richard S
2012-07-01
Acute amphetamine administration activates glycogen synthase kinase-3 (GSK3) by reducing its inhibitory serine-phosphorylation in mouse striatum and cerebral cortex. This results from Akt inactivation and is required for certain behavioral effects of amphetamine, such as increased locomotor activity. Here we tested if regulation of Akt and GSK3 was similarly affected by longer-term administration of amphetamine, as well as of methylphenidate, since each of these is administered chronically in patients with attention deficit hyperactivity disorder (ADHD). Akt is activated by post-translational phosphorylation on Thr308, and modulated by Ser473 phosphorylation, whereas phosphorylation on Ser21/9 inhibits the two GSK3 isoforms, GSK3α and GSK3β. After eight days of amphetamine or methylphenidate treatment, striatal Akt and GSK3 were dephosphorylated similar to reported changes after acute amphetamine treatment. Oppositely, in the cerebral cortex and hippocampus Akt and GSK3 phosphorylation increased after eight days of amphetamine or methylphenidate treatment. These opposite brain region changes in Akt and GSK3 phosphorylation matched opposite changes in the association of Akt with β-arrestin and GSK3, which after eight days of amphetamine treatment were increased in the striatum and decreased in the cerebral cortex. Thus, whereas the acute dephosphorylating effect of stimulants on Akt and GSK3 in the striatum was maintained, the response switched in the cerebral cortex after eight days of amphetamine or methylphenidate treatment to cause increased phosphorylation of Akt and GSK3. These results demonstrate that prolonged administration of stimulants causes brain region-selective differences in the regulation of Akt and GSK3. Copyright © 2012 Elsevier Inc. All rights reserved.
Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul
2016-05-27
The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Jurado, Juan; Fuentes-Almagro, Carlos A; Prieto-Alamo, María J; Pueyo, Carmen
2007-09-21
Alternative splicing is a widespread mechanism of gene expression regulation. Previous analyses based on conventional RT-PCR reported the presence of an unspliced c-fos transcript in several mammalian systems. Compared to the well-defined knowledge on the alternative splicing of fosB, the physiological relevance of the unspliced c-fos transcript in regulating c-fos expression remains largely unknown. This work aimed to investigate the functional significance of the alternative splicing c-fos pre-mRNA. A set of primers was designed to demonstrate that, whereas introns 1 and 2 are regularly spliced from primary c-fos transcript, intron 3 remains unspliced in part of total transcript molecules. Here, the two species are referred to as c-fos-2 (+ intron 3) and spliced c-fos (- intron 3) transcripts. Then, we used a quantitatively rigorous approach based on real-time PCR to provide, for the first time, the actual steady-state copy numbers of the two c-fos transcripts. We tested how the mouse-organ context and mouse-gestational age, the synthesis and turnover rates of the investigated transcripts, and the serum stimulation of quiescent cells modulate their absolute-expression profiles. Intron 3 generates an in-frame premature termination codon that predicts the synthesis of a truncated c-Fos protein. This prediction was evaluated by immunoaffinity chromatography purification of c-Fos proteins. We demonstrate that: (i) The c-fos-2 transcript is ubiquitously synthesized either in vivo or in vitro, in amounts that are higher or similar to those of mRNAs coding for other Fos family members, like FosB, DeltaFosB, Fra-1 or Fra-2. (ii) Intron 3 confers to c-fos-2 an outstanding destabilizing effect of about 6-fold. (iii) Major determinant of c-fos-2 steady-state levels in cultured cells is its remarkably high rate of synthesis. (iv) Rapid changes in the synthesis and/or degradation rates of both c-fos transcripts in serum-stimulated cells give rise to rapid and transient changes in their relative proportions. Taken as a whole, these findings suggest a co-ordinated fine-tune of the two c-fos transcript species, supporting the notion that the alternative processing of the precursor mRNA might be physiologically relevant. Moreover, we detected a c-Fos immunoreactive species corresponding in mobility to the predicted truncated variant.
Xiong, Lixia; Meng, Qing; Sun, Xi; Lu, Xiangtong; Fu, Qiang; Peng, Qinghua; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen
2018-01-04
Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca 2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca 2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca 2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. © 2018 International Society for Neurochemistry.
Leptin regulation of bone resorption by the sympathetic nervous system and CART.
Elefteriou, Florent; Ahn, Jong Deok; Takeda, Shu; Starbuck, Michael; Yang, Xiangli; Liu, Xiuyun; Kondo, Hisataka; Richards, William G; Bannon, Tony W; Noda, Masaki; Clement, Karine; Vaisse, Christian; Karsenty, Gerard
2005-03-24
Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb2) present on osteoblasts controls bone formation downstream of leptin. Here we show, by analysing Adrb2-deficient mice, that the sympathetic nervous system favours bone resorption by increasing expression in osteoblast progenitor cells of the osteoclast differentiation factor Rankl. This sympathetic function requires phosphorylation (by protein kinase A) of ATF4, a cell-specific CREB-related transcription factor essential for osteoblast differentiation and function. That bone resorption cannot increase in gonadectomized Adrb2-deficient mice highlights the biological importance of this regulation, but also contrasts sharply with the increase in bone resorption characterizing another hypogonadic mouse with low sympathetic tone, the ob/ob mouse. This discrepancy is explained, in part, by the fact that CART ('cocaine amphetamine regulated transcript'), a neuropeptide whose expression is controlled by leptin and nearly abolished in ob/ob mice, inhibits bone resorption by modulating Rankl expression. Our study establishes that leptin-regulated neural pathways control both aspects of bone remodelling, and demonstrates that integrity of sympathetic signalling is necessary for the increase in bone resorption caused by gonadal failure.
Cardona-Gómez, G P; Chowen, J A; Garcia-Segura, L M
2000-06-05
Gonadal hormones interact with insulin-like growthfactor-I (IGF-I) to regulate synaptic plasticity during the estrous cycle in the rat mediobasal hypothalamus. It has been proposed that tanycytes, specialized glial cells lining the ventral region of the third ventricle, may regulate the availability of IGF-I to hypothalamic neurons. IGF-I levels in tanycytes fluctuate during the estrous cycle. Furthermore, estrogen administration to ovariectomized rats increases IGF-I levels in tanycytes, while progesterone, injected simultaneously with estrogen, blocks the estrogen-induced increase of IGF-I levels in tanycytes. To test whether hormonal regulation of IGF-I receptor (IGF-IR) and IGF binding protein-2 (IGFBP-2) may be involved in the accumulation of IGF-I in tanycytes, we assessed the effect of ovarian hormones on the levels of these molecules in the mediobasal hypothalamus of adult female rats. Ovariectomized animals were treated with either oil, estrogen, progesterone, or estrogen and progesterone simultaneously and then killed 6 or 24 h later. Some neurons, some astrocytes, and many tanycytes in the mediobasal hypothalamus were found by confocal microscopy to be immunoreactive for IGF-IR. IGFBP-2 immunoreactivity was restricted almost exclusively to tanycytes and ependymal cells and was colocalized with IGF-IR immunoreactivity in tanycytes. By electron microscope immunocytochemistry using colloidal gold labeling, IGF-IR and IGFBP-2 immunoreactivities were observed in the microvilli of tanycytes in the lumen of the third ventricle. IGF-IR and IGFBP-2 immunoreactive levels on the apical surface of tanycytes were significantly decreased by the administration of progesterone, either alone or in the presence of estradiol. IGF-IR levels in the mediobasal hypothalamus, measured by Western blotting, were not significantly affected by the separate administration of estradiol or progesterone to ovariectomized rats. However, the simultaneous administration of both hormones resulted in a marked decrease in IGF-IR protein levels. Estradiol administration to ovariectomized rats increased IGFBP-2 immunoreactive levels in the hypothalamus. While progesterone did not significantly affect IGFBP-2 expression, the simultaneous injection of estradiol and progesterone resulted in a marked decrease in IGFBP-2 protein levels. The effect of estradiol on IGFBP-2 was observed both in protein and mRNA levels, suggesting a transcriptional regulation. However, the simultaneous administration of progesterone and estradiol had different effects on IGF-IR protein and IGF-IR mRNA levels, as well as on IGFBP-2 protein and IGFBP-2 mRNA levels, suggesting a postranscriptional action. These findings indicate that estradiol and progesterone regulate the expression of IGF-IR and IGFBP-2 in the mediobasal hypothalamus of adult female rats. Regulation of the hypothalamic IGF-I system by ovarian hormones may be physiologically relevant for neuroendocrine regulation and for synaptic plasticity during the estrous cycle. These results do not support the hypothesis that estrogen-induced accumulation of IGF-I by tanycytes is mediated by the hormonal regulation of IGF-IR. However, estrogen-induced up-regulation of IGFBP-2 and progesterone-induced down-regulation of IGF-IR and IGFBP-2 levels in the apical plasma membrane of tanycytes may be involved in the fluctuation of IGF-I levels in the mediobasal hypothalamus during the estrous cycle. Copyright 2000 John Wiley & Sons, Inc.
Hypothalamic CART is a new anorectic peptide regulated by leptin.
Kristensen, P; Judge, M E; Thim, L; Ribel, U; Christjansen, K N; Wulff, B S; Clausen, J T; Jensen, P B; Madsen, O D; Vrang, N; Larsen, P J; Hastrup, S
1998-05-07
The mammalian hypothalamus strongly influences ingestive behaviour through several different signalling molecules and receptor systems. Here we show that CART (cocaine- and amphetamine-regulated transcript), a brain-located peptide, is a satiety factor and is closely associated with the actions of two important regulators of food intake, leptin and neuropeptide Y. Food-deprived animals show a pronounced decrease in expression of CART messenger RNA in the arcuate nucleus. In animal models of obesity with disrupted leptin signalling, CART mRNA is almost absent from the arcuate nucleus. Peripheral administration of leptin to obese mice stimulates CART mRNA expression. When injected intracerebroventricularly into rats, recombinant CART peptide inhibits both normal and starvation-induced feeding, and completely blocks the feeding response induced by neuropeptide Y. An antiserum against CART increases feeding in normal rats, indicating that CART may be an endogenous inhibitor of food intake in normal animals.
Burke, Andrew R.; Watt, Michael J.; Forster, Gina L.
2011-01-01
Components of the brain’s dopaminergic system, such as dopamine receptors, undergo final maturation in adolescence. Exposure to social stress during human adolescence contributes to substance abuse behaviors. We utilized a rat model of adolescent social stress to investigate the neural mechanisms underlying this correlation. Rats exposed to repeated social defeat in adolescence (P35–P39) exhibited increased conditioned place preference (CPP) for amphetamine (1 mg/kg) in adulthood (P70). In contrast, rats experiencing foot-shock during the same developmental period exhibited amphetamine CPP levels similar to non-stressed controls. Our previous experiments suggested adolescent defeat alters dopamine activity in the mesocorticolimbic system. Furthermore, dopamine receptors have been implicated in the expression of amphetamine CPP. Therefore, we hypothesized that alteration to dopamine receptor expression in the mesocorticolimbic system may be associated with to heightened amphetamine CPP of adult rats exposed to adolescence defeat. We measured D1 and D2 dopamine receptor protein content in the medial prefrontal cortex, nucleus accumbens (NAc) and dorsal striatum following either adolescent social defeat or foot-shock stress and then adult amphetamine CPP. In controls, amphetamine CPP training reduced D2 receptor protein content in the NAc core. However, this down-regulation of NAc core D2 receptors was blocked by exposure to social defeat but not foot-shock stress in adolescence. These results suggest social defeat stress in adolescence alters the manner in which later amphetamine exposure down-regulates D2 receptors. Furthermore, persistent alterations to adult D2 receptor expression and amphetamine responses may depend on the type of stress experienced in adolescence. PMID:21933700
Janiuk, I.; Kasacka, I.
2015-01-01
Recent biological advances make it possible to discover new peptides associated with hypertension. The cocaine- and amphetamine-regulated transcript (CART) is a known factor in appetite and feeding behaviour. Various lines of evidence suggest that this peptide participates not only in control of feeding behaviour but also in the regulation of the cardiovascular and sympathetic systems and blood pressure. The role of CART in blood pressure regulation led us to undertake a study aimed at analysing quantitative changes in CART-containing cells in urinary bladders (UB) of rats with renovascular hypertension. We used the Goldblatt model of arterial hypertension (two-kidney, one clip) to evaluate quantitative changes. This model provides researchers with a commonly used tool to analyse the renin-angiotensin system of blood pressure control and, eventually, to develop drugs for the treatment of chronic hypertension. The study was performed on sections of urinary bladders of rats after 3-, 14-, 28-, 42 and 91 days from hypertension induction. Immunohistochemical identification of CART cells was performed on paraffin for the UBs of all the study animals. CART was detected in the endocrine cells, especially numerous in the submucosa and muscularis layers, with a few found in the transitional epithelium and only occasionally in serosa. Hypertension significantly increased the number of CART-positive cells in the rat UBs. After 3 and 42 days following the procedure, statistically significantly higher numbers of CART-positive cells were identified in comparison with the control animals. The differences between the hypertensive rats and the control animals concerned not only the number density of CART-immunoreactive cells but also their localization. After a 6-week period, each of the rats subjected to the renal artery clipping procedure developed stable hypertension. CART appeared in numerous transitional epithelium cells. As this study provides novel findings, the question appears about the type of connection between hypertension and the functioning and activity of CART in the urinary tract (UT). The study gives rise to the assumption that high blood pressure can be a factor that intensifies CART secretion. In conclusion, the endocrine system of the urinary tract is modified by renovascular hypertension. This may affect the production of hormones and biologically active substances and contribute to the development of possible hypertension complications. In order to fully comprehend the role of the CART peptide in blood pressure regulation, further analyses are necessary. PMID:26150151
Janiuk, I; Kasacka, I
2015-04-13
Recent biological advances make it possible to discover new peptides associated with hypertension. The cocaine- and amphetamine-regulated transcript (CART) is a known factor in appetite and feeding behaviour. Various lines of evidence suggest that this peptide participates not only in control of feeding behaviour but also in the regulation of the cardiovascular and sympathetic systems and blood pressure. The role of CART in blood pressure regulation led us to undertake a study aimed at analysing quantitative changes in CART-containing cells in urinary bladders (UB) of rats with renovascular hypertension. We used the Goldblatt model of arterial hypertension (two-kidney, one clip) to evaluate quantitative changes. This model provides researchers with a commonly used tool to analyse the renin-angiotensin system of blood pressure control and, eventually, to develop drugs for the treatment of chronic hypertension. The study was performed on sections of urinary bladders of rats after 3-, 14-, 28-, 42 and 91 days from hypertension induction. Immunohistochemical identification of CART cells was performed on paraffin for the UBs of all the study animals. CART was detected in the endocrine cells, especially numerous in the submucosa and muscularis layers, with a few found in the transitional epithelium and only occasionally in serosa. Hypertension significantly increased the number of CART-positive cells in the rat UBs. After 3 and 42 days following the procedure, statistically significantly higher numbers of CART-positive cells were identified in comparison with the control animals. The differences between the hypertensive rats and the control animals concerned not only the number density of CART-immunoreactive cells but also their localization. After a 6-week period, each of the rats subjected to the renal artery clipping procedure developed stable hypertension. CART appeared in numerous transitional epithelium cells. As this study provides novel findings, the question appears about the type of connection between hypertension and the functioning and activity of CART in the urinary tract (UT). The study gives rise to the assumption that high blood pressure can be a factor that intensifies CART secretion. In conclusion, the endocrine system of the urinary tract is modified by renovascular hypertension. This may affect the production of hormones and biologically active substances and contribute to the development of possible hypertension complications. In order to fully comprehend the role of the CART peptide in blood pressure regulation, further analyses are necessary.
Pak, Jhang Ho; Son, Woo Chan; Seo, Sang-Beom; Hong, Sung-Jong; Sohn, Woon-Mok; Na, Byoung-Kuk; Kim, Tong-Soo
2016-10-01
Clonorchis sinensis is a carcinogenic human liver fluke. Its infection promotes persistent oxidative stress and chronic inflammation environments in the bile duct and surrounding liver tissues owing to direct contact with worms and their excretory-secretory products (ESPs), provoking epithelial hyperplasia, periductal fibrosis, and cholangiocarcinogenesis. We examined the reciprocal regulation of two ESP-induced redox-active proteins, NF-κB and peroxiredoxin 6 (Prdx6), during C. sinensis infection. Prdx6 overexpression suppressed intracellular free-radical generation by inhibiting NADPH oxidase2 and inducible nitric oxide synthase activation in the ESP-treated cholangiocarcinoma cells, substantially attenuating NF-κB-mediated inflammation. NF-κB overexpression decreased Prdx6 transcription levels by binding to two κB sites within the promoter. This transcriptional repression was compensated for by other ESP-induced redox-active transcription factors, including erythroid 2-related factor 2 (Nrf2), hypoxia inducible factor 1α (HIF1α), and CCAAT/enhancer-binding protein β (C/EBPβ). Distribution of immunoreactive Prdx6 and NF-κB was distinct in the early stages of infection in mouse livers but shared concomitant localization in the later stages. The intensity and extent of their immunoreactive staining in infected mouse livers are proportional to lesion severity and infection duration. The constitutive elevations of Prdx6 and NF-κB during C. sinensis infection may be associated with more severe persistent hepatobiliary abnormalities mediated by clonorchiasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Holder, Mary K; Hadjimarkou, Maria M.; Zup, Susan L.; Blutstein, Tamara; Benham, Rebecca S.; McCarthy, Margaret M.; Mong, Jessica A.
2009-01-01
Summary Methamphetamine (MA) abuse has reached epidemic proportions in the United States. Users of MA report dramatic increases in sexual drive that have been associated with increased engagement in risky sexual behavior leading to higher rates of sexually transmitted diseases and unplanned pregnancies. The ability of MA to enhance sexual drive in females is enigmatic since related psychostimulants like amphetamine and cocaine appear not to affect sexual drive in women, and in rodents models, amphetamine has been reported to be inhibitory to female sexual behavior. Examination of MA’s effects on female sexual behavior in an animal model is lacking. Here, using a rodent model, we have demonstrated that MA enhanced female sexual behavior. MA (5mg/kg) or saline vehicle was administered once daily for three days to adult ovariectomized rats primed with ovarian steroids. MA treatment significantly increased the number of proceptive events and the lordosis response compared to hormonally-primed, saline controls. The effect of MA on the neural circuitry underlying the motivation for sexual behavior was examined using Fos immunoreactivity. In the medial amygdala and the ventromedial nucleus of the hypothalamus, nuclei implicated in motivated behaviors, ovarian hormones and MA independently enhance the neuronal activation, but more striking was the significantly greater activation induced by their combined administration. Increases in dopamine neurotransmission may underlie the MA/hormone mediated increase in neuronal activation. In support of this possibility, ovarian hormones significantly increased tyrosine hyroxylase (the rate limiting enzyme in dopamine synthesis) immunoreactivity in the medial amygdala. Thus our present data suggest that the interactions of MA and ovarian hormones leads to changes in the neural substrate of key nuclei involved in mediating female sexual behaviors, and these changes may underlie MA’s ability to enhance these behaviors. PMID:19589643
Simons, Andrean L.; Lu, Ping; Gibson-Corley, Katherine N.; Robinson, Robert A.; Meyerholz, David K.; Colgan, John D.
2013-01-01
We previously identified a novel mutant mouse strain on the C3HeB/FeJ background named Justy. This strain bears a recessive mutation in the Gon4l gene that greatly reduces expression of the encoded protein, a nuclear factor implicated in transcriptional regulation. Here, we report that Justy mutant mice aged 6 months or older spontaneously developed carcinomas with myoepithelial and basaloid differentiation in salivary glands with an incidence of ~25%. Tumors developed proximate to submandibular glands and to a lesser extent in the sublingual and parotid glands. Histologically, tumors often had central cavitary lesions filled with necrotic debris that was lined by tumors cells and had spindle and epithelioid cell differentiation with lesser basaloid to clear cell features. Tumor tissue often had variable evidence of a high mitotic rate, pleomorphism and invasion into adjacent salivary glands. Neoplastic cells had diffuse immunoreactivity for pancytokeratin (AE1/AE3) and p63. While CK5/6 immunostaining was seen in the much of the tumor cells, it was often lacking in pleomorphic areas. Tumor cells lacked immunoreactivity for alpha-smooth muscle actin, S100, c-Kit and glial fibrillary acid protein. Additionally, tumors had immunoreactivity for phosphorylated and total epidermal growth factor receptor (EGFR), suggesting that EGFR signaling may participate in growth regulation of these tumors. These findings indicate that the salivary gland carcinomas occur spontaneously in Justy mice and that these tumors may offer a valuable model for study of EGFR regulation. Combined, our data suggest that Justy mice warrant further investigation for use as a mouse model for human salivary gland neoplasia. PMID:23608756
Naulé, Lydie; Robert, Vincent; Parmentier, Caroline; Martini, Mariangela; Keller, Matthieu; Cohen-Solal, Martine; Hardin-Pouzet, Hélène; Grange-Messent, Valérie; Franceschini, Isabelle; Mhaouty-Kodja, Sakina
2015-12-20
Ovarian oestradiol is essential for pubertal maturation and adult physiology of the female reproductive axis. It acts at central and peripheral sites through two main oestrogen receptors (ER) α and β. Here we investigate the role of ERβ on central effects of oestradiol, by generating a mouse line specifically lacking the ERβ gene in neuronal and glial cells. Central ERβ deletion delays the age at vaginal opening and first oestrous and reduces uterine weight without affecting body growth. Analysis of factors necessary for pubertal progression shows reduced levels of Kiss1 transcripts at postnatal (P) day 25 in the preoptic area, but not in the mediobasal hypothalamus (MBH) of mutant females. In agreement with these data, the number of kisspeptin-immunoreactive neurons was decreased by 57-72% in the three subdivisions of the rostral periventricular area of the third ventricle (RP3V), whereas the density of kisspeptin-immunoreactive fibres was unchanged in the arcuate nucleus of mutant mice. These alterations do not involve changes in ERα mRNAs in the preoptic area and protein levels in the RP3V. The number and distribution of GnRH-immunoreactive cells were unaffected, but gonadotropin-releasing hormone (GnRH) transcript levels were higher in the P25 preoptic area of mutants. At adulthood, mutant females have normal oestrous cyclicity, kisspeptin system and exhibit unaltered sexual behaviour. They display, however, reduced ovary weight and increased anxiety-related behaviour during the follicular phase. This argues for the specific involvement of central ERβ in the regulation of pubertal onset in female reproduction, possibly through prepubertal induction of kisspeptin expression in the RP3V. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nitric Oxide Exerts Basal and Insulin-Dependent Anorexigenic Actions in POMC Hypothalamic Neurons
Wellhauser, Leigh; Chalmers, Jennifer A.
2016-01-01
The arcuate nucleus of the hypothalamus represents a key center for the control of appetite and feeding through the regulation of 2 key neuronal populations, notably agouti-related peptide/neuropeptide Y and proopimelanocortin (POMC)/cocaine- and amphetamine-regulated transcript neurons. Altered regulation of these neuronal networks, in particular the dysfunction of POMC neurons upon high-fat consumption, is a major pathogenic mechanism involved in the development of obesity and type 2 diabetes mellitus. Efforts are underway to preserve the integrity or enhance the functionality of POMC neurons in order to prevent or treat these metabolic diseases. Here, we report for the first time that the nitric oxide (NO−) donor, sodium nitroprusside (SNP) mediates anorexigenic actions in both hypothalamic tissue and hypothalamic-derived cell models by mediating the up-regulation of POMC levels. SNP increased POMC mRNA in a dose-dependent manner and enhanced α-melanocortin-secreting hormone production and secretion in mHypoA-POMC/GFP-2 cells. SNP also enhanced insulin-driven POMC expression likely by inhibiting the deacetylase activity of sirtuin 1. Furthermore, SNP enhanced insulin-dependent POMC expression, likely by reducing the transcriptional repression of Foxo1 on the POMC gene. Prolonged SNP exposure prevented the development of insulin resistance. Taken together, the NO− donor SNP enhances the anorexigenic potential of POMC neurons by promoting its transcriptional expression independent and in cooperation with insulin. Thus, increasing cellular NO− levels represents a hormone-independent method of promoting anorexigenic output from the existing POMC neuronal populations and may be advantageous in the fight against these prevalent disorders. PMID:26930171
Kalujnaia, Svetlana; Hazon, Neil; Cramb, Gordon
2016-08-01
A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells. Copyright © 2016 the American Physiological Society.
Kalujnaia, Svetlana; Hazon, Neil
2016-01-01
A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells. PMID:27252471
Iwasaki, Yusaku; Shimomura, Kenju; Kohno, Daisuke; Dezaki, Katsuya; Ayush, Enkh-Amar; Nakabayashi, Hajime; Kubota, Naoto; Kadowaki, Takashi; Kakei, Masafumi; Nakata, Masanori; Yada, Toshihiko
2013-01-01
Some of insulin's functions, including glucose/lipid metabolism, satiety and neuroprotection, involve the alteration of brain activities. Insulin could signal to the brain via penetrating through the blood-brain barrier and acting on the vagal afferents, while the latter remains unproved. This study aimed to clarify whether insulin directly regulates the nodose ganglion neurons (NGNs) of vagal afferents in mice. NGs expressed insulin receptor (IR) and insulin receptor substrate-2 (IRS2) mRNA, and some of NGNs were immunoreactive to IR. In patch-clamp and fura-2 microfluorometric studies, insulin (10(-12)∼10(-6) M) depolarized and increased cytosolic Ca(2+) concentration ([Ca(2+)]i) in single NGNs. The insulin-induced [Ca(2+)]i increases were attenuated by L- and N-type Ca(2+) channel blockers, by phosphatidylinositol 3 kinase (PI3K) inhibitor, and in NGNs from IRS2 knockout mice. Half of the insulin-responsive NGNs contained cocaine- and amphetamine-regulated transcript. Neuronal fibers expressing IRs were distributed in/around pancreatic islets. The NGNs innervating the pancreas, identified by injecting retrograde tracer into the pancreas, responded to insulin with much greater incidence than unlabeled NGNs. Insulin concentrations measured in pancreatic vein was 64-fold higher than that in circulation. Elevation of insulin to 10(-7) M recruited a remarkably greater population of NGNs to [Ca(2+)]i increases. Systemic injection of glibenclamide rapidly released insulin and phosphorylated AKT in NGs. Furthermore, in IRS2 knockout mice, insulin action to suppress [Ca(2+)]i in orexigenic ghrelin-responsive neurons in hypothalamic arcuate nucleus was intact while insulin action on NGN was markedly attenuated, suggesting a possible link between impaired insulin sensing by NGNs and hyperphagic obese phenotype in IRS2 knockout mice These data demonstrate that insulin directly activates NGNs via IR-IRS2-PI3K-AKT-cascade and depolarization-gated Ca(2+) influx. Pancreas-innervating NGNs may effectively sense dynamic changes of insulin released in response to nutritional states. These interactions could serve to convey the changes in pancreatic and systemic insulin to the brain.
Ishimoto, Takahiro; Nakamichi, Noritaka; Hosotani, Hiroshi; Masuo, Yusuke; Sugiura, Tomoko; Kato, Yukio
2014-01-01
The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs) of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO) as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs). These cells exhibited time-dependent [3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid) led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP), with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits cellular proliferation via regulation of oxidative stress, and also promotes cellular differentiation by modulating the expression of basic helix-loop-helix transcription factors via an unidentified mechanism different from antioxidant action. PMID:24586778
Hatalski, Carolyn G.; Baram, Tallie Z.
2012-01-01
The cAMP-regulatory element (CRE) binding protein (CREB) functions as a trans-acting regulator of genes containing the CRE sequence in their promoter. These include a number of critical genes, such as CRF, involved in the hypothalamic response to stressful stimuli in the adult. The ability of the developing rat (during the first 2 postnatal weeks) to mount the full complement of this stress response has been questioned. We have previously demonstrated the stress-induced up-regulation of the transcription of hypothalamic CRF during the second postnatal week in the rat. The focus of the current study was to explore the mechanism of transcriptional regulation in response to stress through the physiological induction of transcriptional trans-activators that bind to the CRE in the developing rat brain. CRE-binding activity was detected via gel shift analysis in extracts from both the hypothalamus and the cerebral cortex of the developing rat. CREB was identified in these extracts by Western blot analysis and was shown to be the major contributor to the CRE-binding activity by gel shift analysis with two specific antibodies directed against CREB. After acute hypothermic stress, the abundance of CRE-binding activity (but not of total immunoreactive CREB), increased in hypothalamic extracts. This enhanced CRE-binding activity was blocked by an antiserum directed against CREB and was accompanied by an apparent increase in CREB phosphorylation. These results indicate that posttranslational enhancement of CRE-binding activity is likely to constitute an important mechanism for up-regulation of genes possessing the CRE sequence in the developing rat hypothalamus by adverse external signals. PMID:9415405
Tao, Ran; Cousijn, Helena; Jaffe, Andrew E; Burnet, Philip W J; Edwards, Freya; Eastwood, Sharon L; Shin, Joo Heon; Lane, Tracy A; Walker, Mary A; Maher, Brady J; Weinberger, Daniel R; Harrison, Paul J; Hyde, Thomas M; Kleinman, Joel E
2014-10-01
The single-nucleotide polymorphism rs1344706 in the zinc finger protein 804A gene (ZNF804A) shows genome-wide association with schizophrenia and bipolar disorder. Little is known regarding the expression of ZNF804A and the functionality of rs1344706. To characterize ZNF804A expression in human brain and to investigate how it changes across the life span and how it is affected by rs1344706, schizophrenia, bipolar disorder, and major depressive disorder. Molecular and immunochemical methods were used to study ZNF804A messenger RNA (mRNA) and ZNF804A protein, respectively. ZNF804A transcripts were investigated using next-generation sequencing and polymerase chain reaction-based methods, and ZNF804A protein was investigated using Western blots and immunohistochemistry. Samples of dorsolateral prefrontal cortex and inferior parietal lobe tissue were interrogated from 697 participants between 14 weeks' gestational age and age 85 years, including patients with schizophrenia, bipolar disorder, or major depressive disorder. Quantitative measurements of ZNF804A mRNA and immunoreactivity, and the effect of diagnosis and rs1344706 genotype. ZNF804A was expressed across the life span, with highest expression prenatally. An abundant and developmentally regulated truncated ZNF804A transcript was identified, missing exons 1 and 2 (ZNF804AE3E4) and predicted to encode a protein lacking the zinc finger domain. rs1344706 influenced expression of ZNF804AE3E4 mRNA in fetal brain (P = .02). In contrast, full-length ZNF804A showed no association with genotype (P > .05). ZNF804AE3E4 mRNA expression was decreased in patients with schizophrenia (P = .006) and increased in those with major depressive disorder (P < .001), and there was a genotype-by-diagnosis interaction in bipolar disorder (P = .002). ZNF804A immunoreactivity was detected in fetal and adult human cerebral cortex. It was localized primarily to pyramidal neurons, with cytoplasmic as well as dendritic and nuclear staining. No differences in ZNF804A-immunoreactive neurons were seen in schizophrenia or related to rs1344706 (P > .05). rs1344706 influences the expression of ZNF804AE3E4, a novel splice variant. The effect is limited to fetal brain and to this isoform. It may be part of the mechanism by which allelic variation in ZNF804A affects risk of psychosis. ZNF804A is translated in human brain, where its functions may extend beyond its predicted role as a transcription factor.
Delgado, María J.; Cerdá-Reverter, José M.; Soengas, José L.
2017-01-01
The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model. PMID:28694769
Sousa-Ferreira, Lígia; Aveleira, Célia; Botelho, Mariana; Álvaro, Ana Rita; Pereira de Almeida, Luís; Cavadas, Cláudia
2014-01-01
A significant number of children undergo maternal exposure to antidepressants and they often present low birth weight. Therefore, it is important to understand how selective serotonin reuptake inhibitors (SSRIs) affect the development of the hypothalamus, the key center for metabolism regulation. In this study we investigated the proliferative actions of fluoxetine in fetal hypothalamic neuroprogenitor cells and demonstrate that fluoxetine induces the proliferation of these cells, as shown by increased neurospheres size and number of proliferative cells (Ki-67+ cells). Moreover, fluoxetine inhibits the differentiation of hypothalamic neuroprogenitor cells, as demonstrated by decreased number of mature neurons (Neu-N+ cells) and increased number of undifferentiated cells (SOX-2+ cells). Additionally, fluoxetine-induced proliferation and maintenance of hypothalamic neuroprogenitor cells leads to changes in the mRNA levels of appetite regulator neuropeptides, including Neuropeptide Y (NPY) and Cocaine-and-Amphetamine-Regulated-Transcript (CART). This study provides the first evidence that SSRIs affect the development of hypothalamic neuroprogenitor cells in vitro with consequent alterations on appetite neuropeptides. PMID:24598761
Amphetamine regulation of acetylcholine and gamma-aminobutyric acid in nucleus accumbens.
Lindefors, N; Hurd, Y L; O'Connor, W T; Brené, S; Persson, H; Ungerstedt, U
1992-01-01
In situ hybridization histochemistry and in vivo microdialysis were combined to study the effect of amphetamine on the expression of choline acetyltransferase and glutamate decarboxylase67 mRNA and in vivo release of acetylcholine and GABA in rat medial nucleus accumbens. Differential effects on acetylcholine and GABA neurons by a single challenge injection of amphetamine (1.5 mg/kg, s.c.) were apparent in saline-pretreated and amphetamine-pretreated (same dose, twice daily for the previous seven days) rats. Extracellular acetylcholine levels were increased up to 50% over a prolonged period following both single and repeated amphetamine. In contrast, extracellular concentrations of GABA were gradually decreased to half the control values, but only in rats receiving repeated amphetamine. Although the increase of acetylcholine release was not associated with any change in choline acetyltransferase mRNA levels, the number of neurons expressing high levels of glutamate decarboxylase67 mRNA was decreased (28%) following repeated injections. Thus we suggest that amphetamine decreases extracellular GABA levels by a slow mechanism, associated with the decreased expression of glutamate decarboxylase67 mRNA in a subpopulation of densely labeled neurons in the medial nucleus accumbens. The delayed response by GABA to amphetamine may reflect supersensitivity in the activity of postsynaptic gamma-aminobutyric acid-containing neurons in nucleus accumbens as a consequence of the repeated amphetamine treatment.
Bray, Brenna; Scholl, Jamie L; Tu, Wenyu; Watt, Michael J; Renner, Kenneth J; Forster, Gina L
2016-08-01
Amphetamine withdrawal is associated with heightened anxiety-like behavior, which is directly driven by blunted stress-induced glucocorticoid receptor-dependent serotonin release in the ventral hippocampus. This suggests that glucocorticoid availability in the ventral hippocampus during stress may be reduced during amphetamine withdrawal. Therefore, we tested whether amphetamine withdrawal alters either peripheral or hippocampal corticosterone stress responses. Adult male rats received amphetamine (2.5mg/kg, ip) or saline for 14 days followed by 2 weeks of withdrawal. Contrary to our prediction, microdialysis samples from freely-moving rats revealed that restraint stress-induced corticosterone levels in the ventral hippocampus are enhanced by amphetamine withdrawal relative to controls. In separate groups of rats, plasma corticosterone levels increased immediately after 20min of restraint and decreased to below stress-naïve levels after 1h, indicating negative feedback regulation of corticosterone following stress. However, plasma corticosterone responses were similar in amphetamine-withdrawn and control rats. Neither amphetamine nor stress exposure significantly altered protein expression or enzyme activity of the steroidogenic enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD1) or hexose-6-phosphate dehydrogenase (H6PD) in the ventral hippocampus. Our findings demonstrate for the first time that amphetamine withdrawal potentiates stress-induced corticosterone in the ventral hippocampus, which may contribute to increased behavioral stress sensitivity previously observed during amphetamine withdrawal. However, this is not mediated by either changes in plasma corticosterone or hippocampal steroidogenic enzymes. Establishing enhanced ventral hippocampal corticosterone as a direct cause of greater stress sensitivity may identify the glucocorticoid system as a novel target for treating behavioral symptoms of amphetamine withdrawal. Copyright © 2016 Elsevier B.V. All rights reserved.
Vicente-Rodríguez, Marta; Rojo Gonzalez, Loreto; Gramage, Esther; Fernández-Calle, Rosalía; Chen, Ying; Pérez-García, Carmen; Ferrer-Alcón, Marcel; Uribarri, María; Bailey, Alexis; Herradón, Gonzalo
2016-11-01
It was previously shown that mice with genetic deletion of the neurotrophic factor pleiotrophin (PTN-/-) show enhanced amphetamine neurotoxicity and impair extinction of amphetamine conditioned place preference (CPP), suggesting a modulatory role of PTN in amphetamine neurotoxicity and reward. We have now studied the effects of amphetamine (10mg/kg, 4 times, every 2h) in the striatum of mice with transgenic PTN overexpression (PTN-Tg) in the brain and in wild type (WT) mice. Amphetamine caused an enhanced loss of striatal dopaminergic terminals, together with a highly significant aggravation of amphetamine-induced increase in the number of GFAP-positive astrocytes, in the striatum of PTN-Tg mice compared to WT mice. Given the known contribution of D1 and D2 dopamine receptors to the neurotoxic effects of amphetamine, we also performed quantitative receptor autoradiography of both receptors in the brains of PTN-Tg and WT mice. D1 and D2 receptors binding in the striatum and other regions of interest was not altered by genotype or treatment. Finally, we found that amphetamine CPP was significantly reduced in PTN-Tg mice. The data demonstrate that PTN overexpression in the brain blocks the conditioning effects of amphetamine and enhances the characteristic striatal dopaminergic denervation caused by this drug. These results indicate for the first time deleterious effects of PTN in vivo by mechanisms that are probably independent of changes in the expression of D1 and D2 dopamine receptors. The data also suggest that PTN-induced neuroinflammation could be involved in the enhanced neurotoxic effects of amphetamine in the striatum of PTN-Tg mice. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Highland, Julie A; Weiser, Michael J; Hinds, Laura R; Spencer, Robert L
2014-10-01
Entrainment of the intrinsic suprachiasmatic nucleus (SCN) molecular clock to the light-dark cycle depends on photic-driven intracellular signal transduction responses of SCN neurons that converge on cAMP response element-binding protein (CREB)-mediated regulation of gene transcription. Characterization of the CREB coactivator proteins CREB-regulated transcriptional coactivators (CRTCs) has revealed a greater degree of differential activity-dependent modulation of CREB transactivational function than previously appreciated. In confirmation of recent reports, we found an enrichment of crtc2 mRNA and prominent CRTC2 protein expression within the SCN of adult male rats. With use of a hypothalamic organotypic culture preparation for initial CRTC2-reactive antibody characterization, we found that CRTC2 immunoreactivity in hypothalamic neurons shifted from a predominantly cytoplasmic profile under basal culture conditions to a primarily nuclear localization (CRTC2 activation) 30 min after adenylate cyclase stimulation. In adult rat SCN, we found a diurnal variation in CRTC2 activation (peak at zeitgeber time of 4 h and trough at zeitgeber time of 16-20 h) but no variation in the total number of CRTC2-immunoreactive cells. There was no diurnal variation of CRTC2 activation in the hypothalamic paraventricular nucleus, another site of enriched CRTC2 expression. Exposure of rats to light (50 lux) for 30 min during the second half of their dark (nighttime) phase produced CRTC2 activation. We observed in the SCN a parallel change in the expression of a CREB-regulated gene (FOS). In contrast, nighttime light exposure had no effect on CRTC2 activation or FOS expression in the paraventricular nucleus, nor did it affect corticosterone hormone levels. These results suggest that CRTC2 participates in CREB-dependent photic entrainment of SCN function. Copyright © 2014 the American Physiological Society.
Kohara, Yukihiro; Soeta, Satoshi; Izu, Yayoi; Arai, Kiyotaka; Amasaki, Hajime
2016-11-01
In the groove of Ranvier (GOR), osteoblast lineages form bone bark, which develops into endosteal cortical bone. This ossification process is thought to be regulated by the microenvironment in the GOR. Type VI collagen (Col VI), an extracellular matrix (ECM) protein found in the periosteum/perichondrium, mediates osteoblast differentiation via the cell-surface receptor neural/glial antigen 2 (NG2) chondroitin sulfate proteoglycan. In order to clarify the function of Col VI during osteoblast differentiation in the GOR, in the present study, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the rat tibia proximal end during postnatal growing periods by immunohistochemistry. Our data revealed that Col VI accumulated in the ECM of the GOR middle layer and that Col VI accumulation was reduced and disappeared in the inner and middle lower regions. Runt-related transcription factor 2-immunoreactive pre-osteoblasts expressed NG2 in Col VI-immunopositive areas. However, Osterix-immunoreactive mature osteoblasts were only found in the Col VI-immunonegative area. These findings indicate that Col VI provided a characteristic microenvironment in the GOR and that NG2-Col VI interactions may regulate the differentiation of osteoblast lineages prior to terminal maturation. Copyright © 2016 Elsevier GmbH. All rights reserved.
Hou, Qiu-Li; Chen, Er-Hu; Jiang, Hong-Bo; Yu, Shuai-Feng; Yang, Pei-Jin; Liu, Xiao-Qiang; Park, Yoonseong; Wang, Jin-Jun; Smagghe, Guy
2018-01-01
Corazonin (Crz) is a widely distributed neuropeptide (or neurohormone) in insects with diverse physiological functions. The present study aimed to reveal the functions of Crz and its receptor (CrzR) in the regulation of sexual behavior and fertility in male Bactrocera dorsalis. Tissue-specific expression analyses showed that the BdCrz transcript was most abundant in the central nervous system (CNS), and the BdCrzR transcript was most abundant in both the fat body and CNS. Immunochemical localization confirmed that three pairs of Crz-immunoreactive neurons are located in the dorsolateral protocerebrum region of male adult brain. Importantly, RNAi-mediated Crz knockdown lengthened mating duration in males, and knockdown of Crz or CrzR strongly decreased male fertility in the following 3 days, while the courtship behavior and mating efficiency were not affected. The reduced number of sperm in the reproductive organs of mated females indicated that Crz knockdown in males reduced sperm transfer. The findings of this study indicate that Crz contributes to the reproductive physiology of the oriental fruit fly B. dorsalis by regulating sperm transfer in male adults.
Hou, Qiu-Li; Chen, Er-Hu; Jiang, Hong-Bo; Yu, Shuai-Feng; Yang, Pei-Jin; Liu, Xiao-Qiang; Park, Yoonseong; Wang, Jin-Jun; Smagghe, Guy
2018-01-01
Corazonin (Crz) is a widely distributed neuropeptide (or neurohormone) in insects with diverse physiological functions. The present study aimed to reveal the functions of Crz and its receptor (CrzR) in the regulation of sexual behavior and fertility in male Bactrocera dorsalis . Tissue-specific expression analyses showed that the BdCrz transcript was most abundant in the central nervous system (CNS), and the BdCrzR transcript was most abundant in both the fat body and CNS. Immunochemical localization confirmed that three pairs of Crz-immunoreactive neurons are located in the dorsolateral protocerebrum region of male adult brain. Importantly, RNAi-mediated Crz knockdown lengthened mating duration in males, and knockdown of Crz or CrzR strongly decreased male fertility in the following 3 days, while the courtship behavior and mating efficiency were not affected. The reduced number of sperm in the reproductive organs of mated females indicated that Crz knockdown in males reduced sperm transfer. The findings of this study indicate that Crz contributes to the reproductive physiology of the oriental fruit fly B. dorsalis by regulating sperm transfer in male adults.
The nuclear matrix protein NMP-1 is the transcription factor YY1.
Guo, B; Odgren, P R; van Wijnen, A J; Last, T J; Nickerson, J; Penman, S; Lian, J B; Stein, J L; Stein, G S
1995-01-01
NMP-1 was initially identified as a nuclear matrix-associated DNA-binding factor that exhibits sequence-specific recognition for the site IV regulatory element of a histone H4 gene. This distal promoter domain is a nuclear matrix interaction site. In the present study, we show that NMP-1 is the multifunctional transcription factor YY1. Gel-shift and Western blot analyses demonstrate that NMP-1 is immunoreactive with YY1 antibody. Furthermore, purified YY1 protein specifically recognizes site IV and reconstitutes the NMP-1 complex. Western blot and gel-shift analyses indicate that YY1 is present within the nuclear matrix. In situ immunofluorescence studies show that a significant fraction of YY1 is localized in the nuclear matrix, principally but not exclusively associated with residual nucleoli. Our results confirm that NMP-1/YY1 is a ubiquitous protein that is present in both human cells and in rat osteosarcoma ROS 17/2.8 cells. The finding that NMP-1 is identical to YY1 suggests that this transcriptional regulator may mediate gene-matrix interactions. Our results are consistent with the concept that the nuclear matrix may functionally compartmentalize the eukaryotic nucleus to support regulation of gene expression. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479833
Cortright, James J.; Lorrain, Daniel S.; Beeler, Jeff A.; Tang, Wei-Jen
2011-01-01
Previous exposure to amphetamine leads to enhanced locomotor and nucleus accumbens (NAcc) dopamine (DA) responding to the drug as well as enhanced amphetamine self-administration. Here, we investigated the effects of exposure to Δ9-tetrahydrocannibinol (Δ9-THC) on behavioral and biochemical responding to amphetamine. Rats in different groups received five exposure injections of vehicle or one of five doses of Δ9-THC (0.4, 0.75, 1.5, 3.0, and 6.0 mg/kg i.p.) and were tested 2 days and 2 weeks later. Exposure to all but the lowest and highest doses of Δ9-THC enhanced the locomotor response to amphetamine (0.75 mg/kg i.p.), but all failed to enhance NAcc DA overflow in response to the drug. Moreover, exposure to 3.0 mg/kg i.p. Δ9-THC increased forskolin-evoked adenylyl cyclase activity in the NAcc and rats' locomotor response to the direct DA receptor agonist apomorphine (1.0 mg/kg s.c.), suggesting that Δ9-THC sensitized locomotor responding to amphetamine by up-regulating postsynaptic DA receptor signaling in the NAcc. Finally, amphetamine self-administration (200 μg/kg/infusion i.v.) was enhanced in amphetamine (5 × 1.5 mg/kg i.p.)-exposed rats, but not in rats exposed to Δ9-THC (5 × 3.0 mg/kg i.p.). Previous exposure to this dose of Δ9-THC modestly increased apomorphine SA (0.5 mg/kg/infusion i.v.). Thus, unlike amphetamine exposure, exposure to Δ9-THC does not enhance the subsequent NAcc DA response to amphetamine or promote amphetamine self-administration. Although Δ9-THC leads to alterations in postsynaptic DA receptor signaling in the NAcc and these can affect the generation of locomotion, these neuroadaptations do not seem to be linked to the expression of enhanced amphetamine self-administration. PMID:21389094
Holder, Mary K; Hadjimarkou, Maria M; Zup, Susan L; Blutstein, Tamara; Benham, Rebecca S; McCarthy, Margaret M; Mong, Jessica A
2010-02-01
Methamphetamine (MA) abuse has reached epidemic proportions in the United States. Users of MA report dramatic increases in sexual drive that have been associated with increased engagement in risky sexual behavior leading to higher rates of sexually transmitted diseases and unplanned pregnancies. The ability of MA to enhance sexual drive in females is enigmatic since related psychostimulants like amphetamine and cocaine appear not to affect sexual drive in women, and in rodents models, amphetamine has been reported to be inhibitory to female sexual behavior. Examination of MA's effects on female sexual behavior in an animal model is lacking. Here, using a rodent model, we have demonstrated that MA enhanced female sexual behavior. MA (5mg/kg) or saline vehicle was administered once daily for 3 days to adult ovariectomized rats primed with ovarian steroids. MA treatment significantly increased the number of proceptive events and the lordosis response compared to hormonally primed, saline controls. The effect of MA on the neural circuitry underlying the motivation for sexual behavior was examined using Fos immunoreactivity. In the medial amygdala and the ventromedial nucleus of the hypothalamus, nuclei implicated in motivated behaviors, ovarian hormones and MA independently enhance the neuronal activation, but more striking was the significantly greater activation induced by their combined administration. Increases in dopamine neurotransmission may underlie the MA/hormone mediated increase in neuronal activation. In support of this possibility, ovarian hormones significantly increased tyrosine hydroxylase (the rate limiting enzyme in dopamine synthesis) immunoreactivity in the medial amygdala. Thus our present data suggest that the interactions of MA and ovarian hormones leads to changes in the neural substrate of key nuclei involved in mediating female sexual behaviors, and these changes may underlie MA's ability to enhance these behaviors. 2009 Elsevier Ltd. All rights reserved.
Sáez, C; González-Baena, A C; Japón, M A; Giráldez, J; Segura, D I; Rodríguez-Vallejo, J M; González-Esteban, J; Miranda, G; Torrubia, F
1999-07-01
The development of benign prostatic hyperplasia (BPH) is an androgen-dependent process which may be mediated by a number of locally produced growth factors. One of these, the basic fibroblast growth factor (bFGF or FGF2), has a mitogenic effect on prostatic stroma. High expression levels of bFGF have been reported in BPH. FGFR1 and FGFR2 receptors, that exhibit affinity for bFGF, have been identified in normal and hyperplastic prostate. Finasteride, a 5alpha-reductase inhibitor, is an effective drug in the treatment of BPH, inducing regressive changes in the prostate of treated patients, even though its mechanisms of action are not yet completely elucidated. This study was designed to assess the effects of finasteride on the expression levels of bFGF, FGFR1, and FGFR2 in patients with BPH. The expression levels of bFGF, FGFR1, and FGFR2 in 9 patients with prostatic hyperplasia treated with finasteride were assessed by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) analysis of mRNA expression and were compared with those of 9 control patients with untreated BPH. Immunohistochemistry showed strong bFGF immunoreactivity in the prostatic stroma of untreated patients, this being somewhat weaker in the epithelium. In treated patients, epithelial immunoreactivity was practically negative, and a considerable reduction in stromal immunoreactivity was seen. These findings were also confirmed by RT-PCR. FGFR1 showed a weak immunoreactivity in the stroma and in basal epithelial cells. FGFR1 showed a weak immunoreactivity in the stroma and in basal epithelial cells. FGFR2 exhibited strong stromal immunoreactivity, becoming weaker in the basal epithelium. No differences were seen in the expression of both receptors between the groups of treated and untreated patients. A marked reduction in bFGF levels is seen in BPH treated with finasteride in comparison to untreated BPH. In our opinion, finasteride may act as a negative regulator of bFGF expression, counteracting the role of bFGF in the development of BPH.
Zhang, G Y; Ahmed, N; Riley, C; Oliva, K; Barker, G; Quinn, M A; Rice, G E
2005-01-17
The peroxisome proliferator-activated receptors (PPARs) belong to a subclass of nuclear hormone receptor that executes important cellular transcriptional functions. Previous studies have demonstrated the expression of PPARgamma in several tumours including colon, breast, bladder, prostate, lung and stomach. This study demonstrates the relative expression of PPARgamma in normal ovaries and different pathological grades of ovarian tumours of serous, mucinous, endometrioid, clear cell and mixed subtypes. A total of 56 ovarian specimens including 10 normal, eight benign, 10 borderline, seven grade 1, nine grade 2 and 12 grade 3 were analysed using immunohistochemistry. Immunoreactive PPARgamma was not expressed in normal ovaries. Out of eight benign and 10 borderline tumours, only one tumour in each group showed weak cytoplasmic PPARgamma expression. In contrast, 26 out of 28 carcinomas studied were positive for PPARgamma expression with staining confined to cytoplasmic and nuclear regions. An altered staining pattern of PPARgamma was observed in high-grade ovarian tumours with PPARgamma being mostly localized in the nuclei with little cytoplasmic immunoreactivity. On the other hand, predominant cytoplasmic staining was observed in lower-grade tumours. Significantly increased PPARgamma immunoreactivity was observed in malignant ovarian tumours (grade 1, 2 and 3) compared to benign and borderline tumours (chi2 = 48.80, P < 0.001). Western blot analyses showed significant elevation in the expression of immunoreactive PPARgamma in grade 3 ovarian tumours compared with that of normal ovaries and benign ovarian tumours (P < 0.01). These findings suggest an involvement of PPARgamma in the onset and development of ovarian carcinoma and provide an insight into the regulation of this molecule in the progression of the disease.
Morimoto, Ryo; Satoh, Fumitoshi; Murakami, Osamu; Hirose, Takuo; Totsune, Kazuhito; Imai, Yutaka; Arai, Yoichi; Suzuki, Takashi; Sasano, Hironobu; Ito, Sadayoshi; Takahashi, Kazuhiro
2008-07-01
Adrenomedullin 2/intermedin (AM2/IMD) is a new member of calcitonin/calcitonin gene-related peptide family. AM is expressed in various tumors including adrenocortical tumors and modulates tumor growth. The AM2/IMD expression has not been studied, however, in adrenal tumors. The expression of AM2/IMD and AM was therefore studied in human adrenal tumors and attached non-neoplastic adrenal tissues by immunocytochemistry (ICC). Immunoreactive (IR)-AM2/IMD was measured by RIA. Furthermore, the expression of AM2/IMD and its receptor components, calcitonin receptor-like receptor (CRLR), and receptor activity-modifying proteins (RAMPs) 1, 2, and 3 mRNA in these tissues was studied by reverse transcription PCR (RT-PCR). ICC showed that AM2/IMD and AM immunoreactivities were localized in adrenocortical tumors and pheochromocytomas. AM2/IMD and AM immunoreactivities were detected in medulla of attached non-neoplastic tissues, while the degree of immunoreactivity for AM2/IMD and AM in cortices of attached adrenals was relatively weak or undetectable. RIA detected IR-AM2/IMD in adrenal tumors (0.414+/-0.12 to 0.786+/-0.27 pmol/g wet weight, mean+/-S.E.M.) and attached adrenal tissues (0.397+/-0.052 pmol/g wet weight). Reverse-phase high-performance liquid chromatography showed one broad peak eluted in the similar position to synthetic AM2/IMD with several minor peaks. RT-PCR showed expression of AM2/IMD, CRLR, and RAMP1, RAMP2, and RAMP3 mRNA in tissues of adrenal tumors and attached adrenal glands. In conclusion, AM2/IMD is expressed in human adrenal tumors and attached non-neoplastic adrenal tissues and may play (patho-)physiological roles in normal and neoplastic adrenals as an autocrine/paracrine regulator.
Owens, W Anthony; Williams, Jason M; Saunders, Christine; Avison, Malcolm J; Galli, Aurelio; Daws, Lynette C
2012-02-22
The dopamine (DA) transporter (DAT) is a major target for abused drugs and a key regulator of extracellular DA. A rapidly growing literature implicates insulin as an important regulator of DAT function. We showed previously that amphetamine (AMPH)-evoked DA release is markedly impaired in rats depleted of insulin with the diabetogenic agent streptozotocin (STZ). Similarly, functional magnetic resonance imaging experiments revealed that the blood oxygenation level-dependent signal following acute AMPH administration in STZ-treated rats is reduced. Here, we report that these deficits are restored by repeated, systemic administration of AMPH (1.78 mg/kg, every other day for 8 d). AMPH stimulates DA D(2) receptors indirectly by increasing extracellular DA. Supporting a role for D(2) receptors in mediating this "rescue," the effect was completely blocked by pre-treatment of STZ-treated rats with the D(2) receptor antagonist raclopride before systemic AMPH. D(2) receptors regulate DAT cell surface expression through ERK1/2 signaling. In ex vivo striatal preparations, repeated AMPH injections increased immunoreactivity of phosphorylated ERK1/2 (p-ERK1/2) in STZ-treated but not control rats. These data suggest that repeated exposure to AMPH can rescue, by activating D(2) receptors and p-ERK signaling, deficits in DAT function that result from hypoinsulinemia. Our data confirm the idea that disorders influencing insulin levels and/or signaling, such as diabetes and anorexia, can degrade DAT function and that insulin-independent pathways are present that may be exploited as potential therapeutic targets to restore normal DAT function.
Rotllant, David; Armario, Antonio
2012-02-01
Recent evidence strongly suggests a critical role of chromatin remodelling in the acute and chronic effects of addictive drugs. We reasoned that Immunohistochemical detection of certain histone modifications may be a more specific tool than induction of immediate early genes (i.e. c-fos) to detect brain areas and neurons that are critical for the action of addictive drugs. Thus, in the present work we studied in adult male rats the effects of a high dose of amphetamine on brain pattern of histone H3 phosphorylation in serine 10 (pH3S(10)) and c-fos expression. We firstly observed that amphetamine-induced an increase in the number of pH3S(10) positive neurons in a restricted number of brain areas, with maximum levels at 30 min after the drug administration that declined at 90 min in most areas. In a second experiment we studied colocalization of pH3S(10) immunoreactivity (pH3S(10)-IR) and c-fos expression. Amphetamine increased c-fos expression in medial prefrontal cortex (mPFC), dorsal striatum, nucleus accumbens (Acb), major Island of Calleja (ICjM), central amygdala (CeA), bed nucleus of stria terminalis lateral dorsal (BSTld) and paraventricular nucleus of the hypothalamus (PVN). Whereas no evidence for increase in pH3S(10) positive neurons was found in the mPFC and the PVN, in the striatum and the Acb basically all pH3S(10) positive neurons showed colocalization with c-fos. In ICjM, CeA and BSTld a notable degree of colocalization was found, but an important number of neurons expressing c-fos were negative for pH3S(10). The present results give support to the hypothesis that amphetamine-induced pH3S(10)-IR showed a more restricted pattern than brain c-fos induction, being this difference strongly dependent on the particular brain area studied. It is likely that those nuclei and neurons showing pH3S(10)-IR are more specifically associated to important effects of the drug, including neural plasticity. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.
Winther, Sine V.; Tuomainen, Tomi; Borup, Rehannah; Tavi, Pasi; Antoons, Gudrun; Thomsen, Morten B.
2016-01-01
The heart-failure relevant Potassium Channel Interacting Protein 2 (KChIP2) augments CaV1.2 and KV4.3. KChIP3 represses CaV1.2 transcription in cardiomyocytes via interaction with regulatory DNA elements. Hence, we tested nuclear presence of KChIP2 and if KChIP2 translocates into the nucleus in a Ca2+ dependent manner. Cardiac biopsies from human heart-failure patients and healthy donor controls showed that nuclear KChIP2 abundance was significantly increased in heart failure; however, this was secondary to a large variation of total KChIP2 content. Administration of ouabain did not increase KChIP2 content in nuclear protein fractions in anesthetized mice. KChIP2 was expressed in cell lines, and Ca2+ ionophores were applied in a concentration- and time-dependent manner. The cell lines had KChIP2-immunoreactive protein in the nucleus in the absence of treatments to modulate intracellular Ca2+ concentration. Neither increasing nor decreasing intracellular Ca2+ concentrations caused translocation of KChIP2. Microarray analysis did not identify relief of transcriptional repression in murine KChIP2−/− heart samples. We conclude that although there is a baseline presence of KChIP2 in the nucleus both in vivo and in vitro, KChIP2 does not directly regulate transcriptional activity. Moreover, the nuclear transport of KChIP2 is not dependent on Ca2+. Thus, KChIP2 does not function as a conventional transcription factor in the heart. PMID:27349185
Burgos, Jonathan R; Iresjö, Britt-Marie; Smedh, Ulrika
2016-04-01
The aim of the present study was to explore central and peripheral host responses to an anorexia-cachexia producing tumor. We focused on neuroendocrine anorexigenic signals in the hypothalamus, brainstem, pituitary and from the tumor per se. Expression of mRNA for corticotropin-releasing hormone (CRH), cocaine- and amphetamine-regulated transcript (CART), nesfatin-1, thyrotropin (TSH) and the TSH receptor were explored. In addition, we examined changes in plasma TSH, CART peptides (CARTp) and serum amyloid P component (SAP). C57BL/6 mice were implanted with MCG101 tumors or sham-treated. A sham-implanted, pair‑fed (PF) group was included to delineate between primary tumor and secondary effects from reduced feeding. Food intake and body weight were measured daily. mRNA levels from microdissected mouse brain samples were assayed using qPCR, and plasma levels were determined using ELISA. MCG101 tumors expectedly induced anorexia and loss of body weight. Tumor-bearing (TB) mice exhibited an increase in nesfatin-1 mRNA as well as a decrease in CART mRNA in the paraventricular area (PVN). The CART mRNA response was secondary to reduced caloric intake whereas nesfatin-1 mRNA appeared to be tumor-specifically induced. In the pituitary, CART and TSH mRNA were upregulated in the TB and PF animals compared to the freely fed controls. Plasma levels for CARTp were significantly elevated in TB but not PF mice whereas levels of TSH were unaffected. The plasma CARTp response was correlated to the degree of inflammation represented by SAP. The increase in nesfatin-1 mRNA in the PVN highlights nesfatin-1 as a plausible candidate for causing tumor-induced anorexia. CART mRNA expression in the PVN is likely an adaptation to reduced caloric intake secondary to a cancer anorexia-cachexia syndrome (CACS)‑inducing tumor. The MCG101 tumor did not express CART mRNA, thus the elevation of plasma CARTp is host derived and likely driven by inflammation.
Rakovska, Angelina; Baranyi, Maria; Windisch, Katalin; Petkova-Kirova, Polina; Gagov, Hristo; Kalfin, Reni
2017-09-01
CART (Cocaine- and Amphetamine-Regulated Transcript) peptide is a neurotransmitter naturally occurring in the CNS and found mostly in nucleus accumbens, ventrotegmental area, ventral pallidum, amygdalae and striatum, brain regions associated with drug addiction. In the nucleus accumbens, known for its significant role in motivation, pleasure, reward and reinforcement learning, CART peptide inhibits cocaine and amphetamine-induced dopamine-mediated increases in locomotor activity and behavior, suggesting a CART peptide interaction with the dopaminergic system. Thus in the present study, we examined the effect of CART (55-102) peptide on the basal, electrical field stimulation-evoked (EFS-evoked) (30V, 2Hz, 120 shocks) and returning basal dopamine (DA) release and on the release of the DA metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPAL), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3,4-dihydroxyphenylethanol (DOPET), 3-methoxytyramine (3-MT) as well as on norepinephrine (NE) and dopamine-o-quinone (Daq) in isolated mouse nucleus accumbens, in a preparation, in which any CART peptide effects on the dendrites or soma of ventral tegmental projection neurons have been excluded. We further extended our study to assess the effect of CART (55-102) peptide on basal cocaine-induced release of dopamine and its metabolites DOPAL, DOPAC, HVA, DOPET and 3-MT as well as on NE and Daq. To analyze the amount of [ 3 H]dopamine, dopamine metabolites, Daq and NE in the nucleus accumbens superfusate, a high-pressure liquid chromatography (HPLC), coupled with electrochemical, UV and radiochemical detections was used. CART (55-102) peptide, 0.1μM, added alone, exerted: (i) a significant decrease in the basal and EFS-evoked levels of extracellular dopamine (ii) a significant increase in the EFS-evoked and returning basal levels of the dopamine metabolites DOPAC and HVA, major products of dopamine degradation and (iii) a significant decrease in the returning basal levels of DOPET. At the same concentration, 0.1μM, CART (55-102) peptide did not have any effect on the release of noradrenaline. In the presence of CART (55-102) peptide, 0.1μM, the effect of cocaine, 30μM, on the basal dopamine release was inhibited and the effect on the basal DOPAC release substantially increased. To our knowledge, our findings are the first to show direct neurochemical evidence that CART (55-102) peptide plays a neuromodulatory role on the dopaminergic reward system by decreasing dopamine in the mouse nucleus accumbens and by attenuating cocaine-induced effects on dopamine release. Copyright © 2017 Elsevier Inc. All rights reserved.
Pazos, Patricia; Lima, Luis; Diéguez, Carlos; García, María C
2014-01-01
The placenta produces a number of signaling molecules including metabolic and reproductive hormones as well as several inflammatory mediators. Among them, Interleukin-6 (IL-6), a well-known immune and metabolic regulator, acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. IL-6 interacts with key hypothalamic neuropeptidergic systems controlling energy homeostasis such as those producing the orexigenic/anabolic: neuropeptide Y (NPY) and agouti-related peptide (AgRP) and anorectic/catabolic neuropeptides: proopiomelanocortin (POMC) and cocaine and amphetamine regulated transcript (CART). Human and rat placenta have been identified as source of these neuropeptides, but their expression and regulation in murine placental tissues remain unknown. Therefore, placental mRNA levels of IL-6, NPY, AgRP, POMC, and CART at different pregnancy stages (gestational days 13, 15, and 18) were analyzed by real time PCR, as were the effect of IL-6 deficiency (IL-6 knockout mice) on their placental expression. Our results showed that placenta-derived neuropeptides were regulated by gestational age and IL-6 throughout the second half of mouse pregnancy. These data suggest that IL-6 may participate in the fine tune control of energy balance during pregnancy by extending its action as a metabolic signal to the main organ at the fetomaternal interface: the placenta.
Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent
2018-02-01
Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.
Girard, Beatrice M; Malley, Susan E; Braas, Karen M; May, Victor; Vizzard, Margaret A
2010-11-01
Urothelium-specific overexpression of nerve growth factor (NGF) in the urinary bladder of transgenic mice stimulates neuronal sprouting or proliferation in the urinary bladder, produces urinary bladder hyperreflexia, and results in increased referred somatic hypersensitivity. Additional NGF-mediated changes might contribute to the urinary bladder hyperreflexia and pelvic hypersensitivity observed in these transgenic mice such as upregulation of neuropeptide/receptor systems. Chronic overexpression of NGF in the urothelium was achieved through the use of a highly urothelium-specific, uroplakin II promoter. In the present study, we examined pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP), and associated receptor (PAC1, VPAC1, VPAC2) transcripts or protein expression in urothelium and detrusor smooth muscle and lumbosacral dorsal root ganglia in NGF-overexpressing and littermate wildtype mice using real-time quantitative reverse transcription-polymerase chain reaction and immunohistochemical approaches. Results demonstrate upregulation of PAC1 receptor transcript and PAC1-immunoreactivity in urothelium of NGF-OE mice whereas PACAP transcript and PACAP-immunoreactivity were decreased in urothelium of NGF-OE mice. In contrast, VPAC1 receptor transcript was decreased in both urothelium and detrusor smooth muscle of NGF-OE mice. VIP transcript expression and immunostaining was not altered in urinary bladder of NGF-OE mice. Changes in PACAP, VIP, and associated receptor transcripts and protein expression in micturition pathways resemble some, but not all, changes observed after induction of urinary bladder inflammation known to involve NGF production.
Amphetamine regulation of mesolimbic dopamine/cholecystokinin neurotransmission.
Hurd, Y L; Lindefors, N; Brodin, E; Brené, S; Persson, H; Ungerstedt, U; Hökfelt, T
1992-04-24
The effects of acute and repeated amphetamine administration on mesolimbic dopamine (DA) neurons was assessed by studying DA and cholecystokinin (CCK) release in the nucleus accumbens (Acc), as well as effects on mRNA genes regulating DA and CCK synthesis in ventral tegmental area (VTA) cells in rats. Amphetamine (1.5 mg/kg) markedly increased extracellular levels of DA in the medial Acc (assessed by in vivo microdialysis) in drug-naive animals, about twice the amount released in animals repeatedly administered the drug for the previous 7 days (twice daily). CCK overflow was found to mirror the DA responses in that the very transient elevation of CCK monitored in drug-naive animals was attenuated in those with prior amphetamine use. The attenuation of both DA and CCK overflow in the medial Acc was found to be associated with a decrease in the number of CCK mRNA-positive VTA neurons (assessed by in situ hybridization histochemistry). Although the number of cells expressing CCK mRNA were decreased, the gene expression in those positive CCK and tyrosine hydroxylase mRNA cells in the VTA was significantly increased. The CCK mRNA neurons in the VTA were positively identified as those projecting to the medial Acc by the local perfusion of Fluoro-gold retrograde tracer via microdialysis probes located in the Acc.
Wang, Wengang; Darvas, Martin; Storey, Granville P.; Bamford, Ian J.; Gibbs, Jeffrey T.; Palmiter, Richard D.
2013-01-01
Locomotion and cue-dependent behaviors are modified through corticostriatal signaling whereby short-term increases in dopamine availability can provoke persistent changes in glutamate release that contribute to neuropsychiatric disorders, including Parkinson's disease and drug dependence. We found that withdrawal of mice from repeated amphetamine treatment caused a chronic presynaptic depression (CPD) in glutamate release that was most pronounced in corticostriatal terminals with a low probability of release and lasted >50 d in treated mice. An amphetamine challenge reversed CPD via a dopamine D1-receptor-dependent paradoxical presynaptic potentiation (PPP) that increased corticostriatal activity in direct pathway medium spiny neurons. This PPP was correlated with locomotor responses after a drug challenge, suggesting that it may underlie the sensitization process. Experiments in brain slices and in vivo indicated that dopamine regulation of acetylcholine release from tonically active interneurons contributes to CPD, PPP, locomotor sensitization, and cognitive ability. Therefore, a chronic decrease in corticostriatal activity during withdrawal is regulated around a new physiological range by tonically active interneurons and returns to normal upon reexposure to amphetamine, suggesting that this paradoxical return of striatal activity to a more stable, normalized state may represent an additional source of drug motivation during abstinence. PMID:23785153
Stanić, Davor; Dhingra, Rishi R; Dutschmann, Mathias
2018-04-01
Expression of the transcription factor FOXP2 is linked to brain circuits that control motor function and speech. Investigation of FOXP2 protein expression in respiratory areas of the ponto-medullary brainstem of adult rat revealed distinct rostro-caudal expression gradients. A high density of FOXP2 immunoreactive nuclei was observed within the rostral pontine Kölliker-Fuse nucleus, compared to low densities in caudal pontine and rostral medullary respiratory nuclei, including the: (i) noradrenergic A5 and parafacial respiratory groups; (ii) Bötzinger and pre-Bötzinger complex and; (iii) rostral ventral respiratory group. Moderate densities of FOXP2 immunoreactive nuclei were observed in the caudal ventral respiratory group and the nucleus retroambiguus, with significant density levels found in the caudal half of the dorsal respiratory group and the hypoglossal pre-motor area lateral around calamus scriptorius. FOXP2 immunoreactivity was absent in all cranial nerve motor nuclei. We conclude that FOXP2 expression in respiratory brainstem areas selectively delineates laryngeal and hypoglossal pre-motor neuron populations essential for the generation of sound and voice. Copyright © 2018 Elsevier B.V. All rights reserved.
Down-regulation of delayed rectifier K+ channels in the hippocampus of seizure sensitive gerbils.
Lee, Sang-Moo; Kim, Ji-Eun; Sohn, Jong-Hee; Choi, Hui-Chul; Lee, Ju-Sang; Kim, Sung-Hun; Kim, Min-Ju; Choi, Ihn-Geun; Kang, Tae-Cheon
2009-12-16
In order to confirm the species-specific distribution of voltage-gated K(+) (Kv) channels and the definitive relationship between their immunoreactivities and seizure activity, we investigated Kv2.x, Kv3.x and Kv4.x channel immunoreactivities in the hippocampi of seizure-resistant (SR) and seizure-sensitive (SS) gerbils. There was no difference in Kv2.1, Kv3.4, Kv4.2 and Kv4.3 immunoreactivity in the hippocampus between SR and SS gerbils. In comparison to SR gerbils, Kv3.1b immunoreactivity in neurons was significantly lower in SS gerbils instead Kv3.1b-immunoreactive astrocytes were clearly observed in SS gerbils (p<0.05). Kv3.2 immunoreactivity was also significantly lower in neurons of SS gerbils than in those of SR gerbils (p<0.05). Considering the findings of our previous study, these findings suggest that delayed rectifier K(+) channels (Kv1.1, Kv1.2, Kv1.5, Kv1.6, Kv2.1 and Kv3.1-2), not A-type K(+) channels (Kv1.4, Kv3.4 and Kv4.x), may be down-regulated in the SS gerbil hippocampus, as compared to SR gerbils.
NASA Astrophysics Data System (ADS)
Huang, Huiyang; Li, Linming; Ye, Haihui; Feng, Biyun; Li, Shaojing
2013-03-01
Gonadotropin-releasing hormone (GnRH) is a crucial peptide for the regulation of reproduction. Using immunological techniques, we investigated the presence of GnRH in horseshoe crab Tachypleus tridentatus. Octopus GnRH-like immunoreactivity, tunicate GnRH-like immunoreactivity, and lamprey GnRH-I-like immunoreactivity were detected in the neurons and fibers of the protocerebrum. However, no mammal GnRH-like immunoreactivity or lamprey GnRH-III-like immunoreactivity was observed. Our results suggest that a GnRH-like factor, an ancient peptide, existed in the brain of T. tridentatus and may be involved in the reproductive endocrine system.
Adeosun, Samuel O; Albert, Paul R; Austin, Mark C; Iyo, Abiye H
2012-05-01
Nuclear deformed epidermal autoregulatory factor-1 (NUDR/Deaf-1) and five prime repressor element under dual repression (Freud-1) are novel transcriptional regulators of the 5-HT(1A) receptor, a receptor that has been implicated in the pathophysiology of various psychiatric illnesses. The antidepressant effect of 17β-Estradiol (17βE(2)) is purported to involve the downregulation of this receptor. We investigated the possible role of NUDR and Freud-1 in 17βE(2)-induced downregulation of the 5-HT(1A) receptor in the neuroblastoma cell line SH SY5Y. Cells were treated with 10 nM of 17βE(2) for 3 or 48 h, followed by a 24-h withdrawal period. Proteins were isolated and analyzed by western blotting. 17βE(2) treatment increased NUDR immunoreactivity while Freud-1 and the 5-HT(1A) receptor showed significant decreases. Upon withdrawal of 17βE(2), protein expression returned to control levels, except for NUDR, which remained significantly elevated in the 3-h treatment. Taken together, these data support a non-genomic downregulation of 5-HT(1A) receptor protein by 17βE(2), which does not involve NUDR and Freud-1. Rather, changes in both transcription factors seem to be compensatory/homeostatic responses to changes in 5-HT(1A) receptor induced by 17βE(2). These observations further highlight the importance of NUDR and Freud-1 in regulating 5-HT(1A) receptor expression.
Biever, Anne; Boubaker-Vitre, Jihane; Cutando, Laura; Gracia-Rubio, Irene; Costa-Mattioli, Mauro; Puighermanal, Emma; Valjent, Emmanuel
2017-01-01
Repeated psychostimulant exposure induces persistent gene expression modifications that contribute to enduring changes in striatal GABAergic spiny projecting neurons (SPNs). However, it remains unclear whether changes in the control of mRNA translation are required for the establishment of these durable modifications. Here we report that repeated exposure to D-amphetamine decreases global striatal mRNA translation. This effect is paralleled by an enhanced phosphorylation of the translation factors, eIF2α and eEF2, and by the concomitant increased translation of a subset of mRNAs, among which the mRNA encoding for the activity regulated cytoskeleton-associated protein, also known as activity regulated gene 3.1 (Arc/Arg3.1). The enrichment of Arc/Arg3.1 mRNA in the polysomal fraction is accompanied by a robust increase of Arc/Arg3.1 protein levels within the striatum. Immunofluorescence analysis revealed that this increase occurred preferentially in D1R-expressing SPNs localized in striosome compartments. Our results suggest that the decreased global protein synthesis following repeated exposure to D-amphetamine favors the translation of a specific subset of mRNAs in the striatum. PMID:28119566
Examination of methylphenidate-mediated behavior regulation by glycogen synthase kinase-3 in mice.
Mines, Marjelo A; Beurel, Eleonore; Jope, Richard S
2013-01-05
Abnormalities in dopaminergic activity have been implicated in psychiatric diseases, such as attention deficit hyperactivity disorder (ADHD), and are treated with therapeutic stimulants, commonly methylphenidate or amphetamine. Amphetamine administration increases glycogen synthase kinase-3 (GSK3) activation, which is necessary for certain acute behavioral responses to amphetamine, including increased locomotor activity and impaired sensorimotor gating. Here, we tested if modulating GSK3 by administration of the GSK3 inhibitor lithium or expression of constitutively active GSK3 altered behavioral responses to methylphenidate administered to mice acutely or daily for 8 days. Methylphenidate or amphetamine was administered to mice intraperitoneally for 1 or 8 days. Open-field activity and pre-pulse inhibition (PPI) were measured. In contrast to lithium's blockade of acute amphetamine-induced locomotor hyperactivity, lithium treatment did not significantly reduce methylphenidate-induced locomotor hyperactivity in wild-type mice after acute or 8 days of repeated methylphenidate administration. Lithium treatment significantly increased the impairment in PPI caused by methylphenidate, but significantly reduced the amphetamine-induced PPI deficit. In GSK3 knockin mice, expression of constitutively active GSK3β, but not GSK3α, significantly increased locomotor hyperactivity after acute methylphenidate treatment, and significantly impaired PPI, preventing further methylphenidate-induced impairment of PPI that was evident in wild-type mice and GSK3α knockin mice. Lithium does not counteract locomotor activity and PPI responses to methylphenidate as it does these responses to amphetamine, indicating that different mechanisms mediate these behavioral responses to methylphenidate and amphetamine. Only active GSK3β, not GSK3α, modulates behavioral responses to MPH, indicating selectivity in the actions of GSK3 isoforms. Copyright © 2012 Elsevier B.V. All rights reserved.
Miller, G W; Wang, Y M; Gainetdinov, R R; Caron, M G
2001-01-01
One of the most valuable methods for understanding the function of a particular protein is the generation of animals that have had the gene encoding for the protein of interest disrupted, commonly known as a "quo;knockout"quo; or null mutant. By incorporating a sequence of DNA (typically encoding antibiotic resistance to aid in the selection of the mutant gene) into embryonic stem cells by homologous recombination, the normal transcription of the gene is effectively blocked (Fig. 1). Since a particular protein is encoded by two copies of a gene, it is necessary to have the gene on both alleles "quo;knocked out."quo; This is performed by cross-breeding animals with one affected allele (heterozygote) to generate offspring that have inherited two mutant alleles (homozygote). This procedure has been used to generate animals lacking either the plasma membrane dopamine transporter (DAT; Fig. 2) or the vesicular monoamine transporter (VMAT2; Fig. 3). Both DAT and VMAT2 are essential for dopamine homeostasis and are thought to participate in the pathogenesis of Parkinson's disease (1-5). Fig. 1. Maps of the targeting vector and the mock construct. The mouse genomic fragment (clone 11) was isolated from a Stratagene 129 SvJ library by standard colony hybridization using a PCR probe from the 5' end of rat cDNA. The restriction site abbreviations are as follows: H, HindIII; N, NotI; Sc, SacI; Sn, SnaI; X, XbaI; and Xh, XhoI. The region between HindIII and SnaI on clone 11 containing the coding sequence from transmembrane domains 3 and 4 of VMAT2 was deleted and replaced with PGK-neo. The 3' fragment of clone 11 was reserved as an external probe for Southern analysis. To facilitate PCR screening of embryonic stem cell clones, a mock construct containing the SnaI/XbaI fragment and part of the Neo cassette was generated as a positive control. pPNT and pGEM4Z were used to construct knockout and mock vectors, respectively. (Reproduced with permission from ref. 1). Fig. 2. DAT and VMAT2 expression in wild-type and DAT knockout midbrain. DAT immunoreactivity in wild-type (A) and DAT knockout midbrain (B). VMAT2 immunoreactivity in wild-type (C) and DAT knockout midbrain (D). Robust immunoreactivity was observed in the ventral tegmental area and substantia nigra pars compacta and reticulata in the wild-type brain. Note absence of DAT immunoreactivity and modest reduction of VMAT2 immunoreactivity in the DAT knockout. Fig. 3. Characterization of VMAT2 gene disruption. (A) Southern blot analysis of mouse genomic DNA. The Southern blot was prepared with 15 μg of genomic DNA per lane and probed with a 1.4-kb 3' external genomic fragment. +/+, wild type littermates; +/-, heterozygote; -/-, homozygote. (B) RT-PCR analysis of mouse brain poly(A)+ RNA. For each reverse transcription assay, 0.5 μg of poly(A)+ RNA was used. Equal volumes of cDNA templates were used for each PCR assay. The PCR primers used flank the neomycin cassette for the purpose of detecting potential readthrough of the neomycin DNA. The heterozygote has a reduced amount of transcripts compared with the wild-type littermate; the homozygote is devoid of VMAT2 transcripts. G3PDH was used as internal control. (C) Western blot analysis of wholebrain synaptic vesicles. Samples (25 μg) of vesicles were solubilized and separated by SDS-PAGE, transferred to nitrocellulose, subjected to Western blot analysis with anti-VMAT2-Ct (top) or anti-a-tubulin (bottom) antibodies, and developed with chemiluminescence. Molecular mass markers (kDa) are shown to the left. To confirm equal loading and transfer of proteins, the blots were stripped and reprobed with an antibody to α-tubulin. (Reproduced with permission from ref. 1). The importance of DAT in neuronal function is highlighted in animals in which DAT has been genetically deleted (DAT KO) (3). In the homozygote DAT KO mice, released dopamine remains in the extracellular space up to 300 times longer than normal. As expected, these animals display behaviors consistent with persistent activation of dopamine receptors, such as hyperlocomotion. Genetic deletion of VMAT2 reveals the essential role of vesicular storage and release of monoamines. Homozygote VMAT2 knockout mice survive for only a few days, whereas heterozygotes appear normal. Studies performed in homozygote pups and heterozygote adults clearly show that the level of VMAT2 expression calibrates the level of vesicular filling (1,2,bi4). With only 50% of normal VMAT2, heterozygote animals have reduced vesicular filling and release. These alterations in presynaptic monoamine function in the heterozygotes are thought to be responsible for the observed sensitization to the psychostimulants cocaine and amphetamine and to ethanol (1). Knockout animals also appear to parallel the changes that occur in reserpinized animals, suggesting that the adverse actions of this drug are mediated by VMAT2.
Bernstein, Hans-Gert; Jauch, Esther; Dobrowolny, Henrik; Mawrin, Christian; Steiner, Johann; Bogerts, Bernhard
2016-09-01
Profound white matter abnormalities have repeatedly been described in schizophrenia, which involve the altered expression of numerous oligodendrocyte-associated genes. Transcripts of the disrupted-in-schizophrenia 1 (DISC1) gene, a key susceptibility factor in schizophrenia, have recently been shown to be expressed by oligodendroglial cells and to negatively regulate oligodendrocyte differentiation and maturation. To learn more about the putative role(s) of oligodendroglia-associated DISC1 in schizophrenia, we analyzed the density of DISC1-immunoreactive oligodendrocytes in the fronto-parietal white matter in postmortem brains of patients with schizophrenia. Compared with controls (N = 12) and cases with undifferentiated/residual schizophrenia (N = 6), there was a significantly increased density of DISC1-expressing glial cells in paranoid schizophrenia (N = 12), which unlikely resulted from neuroleptic treatment. Pathophysiologically, over-expression of DISC1 protein(s) in white matter oligodendrocytes might add to the reduced levels of two myelin markers, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and myelin basic protein in schizophrenia. Moreover, it might significantly contribute to cell cycle abnormalities as well as to deficits in oligodendroglial cell differentiation and maturation found in schizophrenia.
Palus, Katarzyna; Całka, Jarosław
2015-01-01
This experiment was designed to establish the localization and neurochemical phenotyping of sympathetic neurons supplying prepyloric area of the porcine stomach in a physiological state and during acetylsalicylic acid (ASA) induced gastritis. In order to localize the sympathetic perikarya the stomachs of both control and acetylsalicylic acid treated (ASA group) animals were injected with neuronal retrograde tracer Fast Blue (FB). Seven days post FB injection, animals were divided into a control and ASA supplementation group. The ASA group was given 100 mg/kg of b.w. ASA orally for 21 days. On the 28th day all pigs were euthanized with gradual overdose of anesthetic. Then fourteen-micrometer-thick cryostat sections were processed for routine double-labeling immunofluorescence, using primary antisera directed towards tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), neuropeptide Y (NPY), galanin (GAL), neuronal nitric oxide synthase (nNOS), leu 5-enkephalin (LENK), cocaine- and amphetamine- regulated transcript peptide (CART), calcitonin gene-related peptide (CGRP), substance P (SP) and vasoactive intestinal peptide (VIP). The data obtained in this study indicate that postganglionic sympathetic nerve fibers supplying prepyloric area of the porcine stomach originate from the coeliac-cranial mesenteric ganglion complex (CCMG). In control animals, the FB-labelled neurons expressed TH (94.85 ± 1.01%), DβH (97.10 ± 0.97%), NPY (46.88 ± 2.53%) and GAL (8.40 ± 0.53%). In ASA group, TH- and DβH- positive nerve cells were reduced (85.78 ± 2.65% and 88.82 ± 1.63% respectively). Moreover, ASA- induced gastritis resulted in increased expression of NPY (76.59 ± 3.02%) and GAL (26.45 ± 2.75%) as well as the novo-synthesis of nNOS (6.13 ± 1.11%) and LENK (4.77 ± 0.42%) in traced CCMG neurons. Additionally, a network of CART-, CGRP-, SP-, VIP-, LENK-, nNOS- immunoreactive (IR) nerve fibers encircling the FB-positive perikarya were observed in both intact and ASA-treated animals. The results of this study indicate involvement of these neuropeptides in the development or presumably counteraction of gastric inflammation.
Boles, Tammy H; Wells, Martha J M
2016-12-01
Amphetamine and methamphetamine are emerging contaminants-those for which no regulations currently require monitoring or public reporting of their presence in our water supply. In this research, a protocol for weak cation-exchange (WCX) SPE coupled with LC-MS/MS was developed for determination of emerging contaminants amphetamine and methamphetamine in a complex wastewater matrix. Gradient LC parameters were adjusted to yield baseline separation of methamphetamine from other contaminants. Methamphetamine-D5 was used as the internal standard (IS) to compensate for sample loss during SPE and for signal loss during MS (matrix effects). Recoveries were 102.1 ± 7.9% and 99.4 ± 4.0% for amphetamine and methamphetamine, respectively, using WCX sorbent. Notably, methamphetamine was determined to be present in wastewater influent at each sampling date tested. Amphetamine was present in wastewater influent on two of four sampling dates. Amphetamine concentrations ranged from undetectable to 86.4 ng/L in influent, but it was undetectable in wastewater effluent. Methamphetamine was detected in influent at concentrations ranging from 27.0-60.3 ng/L. Methamphetamine concentration was reduced but incompletely removed at this facility. Although absent in one post-UV effluent sample, concentrations of methamphetamine ranged from 10.8-14.8 ng/L. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Parnaudeau, Sébastien; Dongelmans, Marie-louise; Turiault, Marc; Ambroggi, Frédéric; Delbes, Anne-Sophie; Cansell, Céline; Luquet, Serge; Piazza, Pier-Vincenzo; Tronche, François; Barik, Jacques
2014-01-01
The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs) release. GCs bind the glucocorticoid receptor (GR) a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While GR within dopamine-innervated areas drives cocaine's behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurons is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice. PMID:24574986
Putative roles of neuropeptides in vagal afferent signaling
de Lartigue, Guillaume
2014-01-01
The vagus nerve is a major pathway by which information is communicated between the brain and peripheral organs. Sensory neurons of the vagus are located in the nodose ganglia. These vagal afferent neurons innervate the heart, the lung and the gastrointestinal tract, and convey information about peripheral signals to the brain important in the control of cardiovascular tone, respiratory tone, and satiation, respectively. Glutamate is thought to be the primary neurotransmitter involved in conveying all of this information to the brain. It remains unclear how a single neurotransmitter can regulate such an extensive list of physiological functions from a wide range of visceral sites. Many neurotransmitters have been identified in vagal afferent neurons and have been suggested to modulate the physiological functions of glutamate. Specifically, the anorectic peptide transmitters, cocaine and amphetamine regulated transcript (CART) and the orexigenic peptide transmitters, melanin concentrating hormone (MCH) are differentially regulated in vagal afferent neurons and have opposing effects on food intake. Using these two peptides as a model, this review will discuss the potential role of peptide transmitters in providing a more precise and refined modulatory control of the broad physiological functions of glutamate, especially in relation to the control of feeding. PMID:24650553
Kotani, Takeshi; Toyono, Takashi; Seta, Yuji; Kitou, Ayae; Kataoka, Shinji; Toyoshima, Kuniaki
2013-09-01
Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cβ2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.
Biochemical specificity of von Economo neurons in hominoids
Stimpson, Cheryl D.; Tetreault, Nicole A.; Allman, John M.; Jacobs, Bob; Butti, Camilla; Hof, Patrick R.; Sherwood, Chet C.
2010-01-01
Von Economo neurons (VENs) are defined by their thin, elongated cell body and long dendrites projecting from apical and basal ends. These distinctive neurons are mostly present in anterior cingulate (ACC) and fronto-insular (FI) cortex, with particularly high densities in cetaceans, elephants, and hominoid primates (i.e., humans and apes). This distribution suggests that VENs contribute to specializations of neural circuits in species that share both large brain size and complex social cognition, possibly representing an adaptation to rapidly relay socially-relevant information over long distances across the brain. Recent evidence indicates that unique patterns of protein expression may also characterize VENs, particularly involving molecules that are known to regulate gut and immune function. In this study, we used quantitative stereologic methods to examine the expression of three such proteins that are localized in VENs – activating-transcription factor 3 (ATF3), interleukin 4 receptor (IL4Rα) and neuromedin B (NMB). We quantified immunoreactivity against these proteins in different morphological classes of ACC layer V neurons of hominoids. Among the different neuron types analyzed (pyramidal, VEN, fork, enveloping, and other multipolar), VENs showed the greatest percentage that displayed immunostaining. Additionally, a higher proportion of VENs in humans were immunoreactive to ATF3, IL4Rα, and NMB than in other apes. No other ACC layer V neuron type displayed a significant species difference in the percentage of immunoreactive neurons. These findings demonstrate that phylogenetic variation exists in the protein expression profile of VENs, suggesting that humans might have evolved biochemical specializations for enhanced interoceptive sensitivity. PMID:21140465
Nishijima, Takeshi; Kawakami, Masashi; Kita, Ichiro
2013-01-01
Physical exercise improves multiple aspects of hippocampal function. In line with the notion that neuronal activity is key to promoting neuronal functions, previous literature has consistently demonstrated that acute bouts of exercise evoke neuronal activation in the hippocampus. Repeated activating stimuli lead to an accumulation of the transcription factor ΔFosB, which mediates long-term neural plasticity. In this study, we tested the hypothesis that long-term voluntary wheel running induces ΔFosB expression in the hippocampus, and examined any potential region-specific effects within the hippocampal subfields along the dorso–ventral axis. Male C57BL/6 mice were housed with or without a running wheel for 4 weeks. Long-term wheel running significantly increased FosB/ΔFosB immunoreactivity in all hippocampal regions measured (i.e., in the DG, CA1, and CA3 subfields of both the dorsal and ventral hippocampus). Results confirmed that wheel running induced region-specific expression of FosB/ΔFosB immunoreactivity in the cortex, suggesting that the uniform increase in FosB/ΔFosB within the hippocampus is not a non-specific consequence of running. Western blot data indicated that the increased hippocampal FosB/ΔFosB immunoreactivity was primarily due to increased ΔFosB. These results suggest that long-term physical exercise is a potent trigger for ΔFosB induction throughout the entire hippocampus, which would explain why exercise can improve both dorsal and ventral hippocampus-dependent functions. Interestingly, we found that FosB/ΔFosB expression in the DG was positively correlated with the number of doublecortin-immunoreactive (i.e., immature) neurons. Although the mechanisms by which ΔFosB mediates exercise-induced neurogenesis are still uncertain, these data imply that exercise-induced neurogenesis is at least activity dependent. Taken together, our current results suggest that ΔFosB is a new molecular target involved in regulating exercise-induced hippocampal plasticity. PMID:24282574
Pazos, Patricia; Lima, Luis; Diéguez, Carlos; García, María C.
2014-01-01
The placenta produces a number of signaling molecules including metabolic and reproductive hormones as well as several inflammatory mediators. Among them, Interleukin-6 (IL-6), a well-known immune and metabolic regulator, acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. IL-6 interacts with key hypothalamic neuropeptidergic systems controlling energy homeostasis such as those producing the orexigenic/anabolic: neuropeptide Y (NPY) and agouti-related peptide (AgRP) and anorectic/catabolic neuropeptides: proopiomelanocortin (POMC) and cocaine and amphetamine regulated transcript (CART). Human and rat placenta have been identified as source of these neuropeptides, but their expression and regulation in murine placental tissues remain unknown. Therefore, placental mRNA levels of IL-6, NPY, AgRP, POMC, and CART at different pregnancy stages (gestational days 13, 15, and 18) were analyzed by real time PCR, as were the effect of IL-6 deficiency (IL-6 knockout mice) on their placental expression. Our results showed that placenta-derived neuropeptides were regulated by gestational age and IL-6 throughout the second half of mouse pregnancy. These data suggest that IL-6 may participate in the fine tune control of energy balance during pregnancy by extending its action as a metabolic signal to the main organ at the fetomaternal interface: the placenta. PMID:24744782
CART in the brain of vertebrates: circuits, functions and evolution.
Subhedar, Nishikant K; Nakhate, Kartik T; Upadhya, Manoj A; Kokare, Dadasaheb M
2014-04-01
Cocaine- and amphetamine-regulated transcript peptide (CART) with its wide distribution in the brain of mammals has been the focus of considerable research in recent years. Last two decades have witnessed a steady rise in the information on the genes that encode this neuropeptide and regulation of its transcription and translation. CART is highly enriched in the hypothalamic nuclei and its relevance to energy homeostasis and neuroendocrine control has been understood in great details. However, the occurrence of this peptide in a range of diverse circuitries for sensory, motor, vegetative, limbic and higher cortical areas has been confounding. Evidence that CART peptide may have role in addiction, pain, reward, learning and memory, cognition, sleep, reproduction and development, modulation of behavior and regulation of autonomic nervous system are accumulating, but an integration has been missing. A steady stream of papers has been pointing at the therapeutic potentials of CART. The current review is an attempt at piecing together the fragments of available information, and seeks meaning out of the CART elements in their anatomical niche. We try to put together the CART containing neuronal circuitries that have been conclusively demonstrated as well as those which have been proposed, but need confirmation. With a view to finding out the evolutionary antecedents, we visit the CART systems in sub-mammalian vertebrates and seek the answer why the system is shaped the way it is. We enquire into the conservation of the CART system and appreciate its functional diversity across the phyla. Copyright © 2014 Elsevier Inc. All rights reserved.
Whiddon, Benjamin B.; Palmiter, Richard D.
2013-01-01
Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on tudies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine–amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous PmchDTR/+ mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH. PMID:23365238
Whiddon, Benjamin B; Palmiter, Richard D
2013-01-30
Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on studies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine-amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous Pmch(DTR/+) mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH.
Johnston, Caitlin E.; Herschel, Daniel; Lasek, Amy W.; Hammer, Ronald P.; Nikulina, Ella M.
2014-01-01
Social defeat stress causes social avoidance and long-lasting cross-sensitization to psychostimulants, both of which are associated with increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area (VTA). Moreover, social stress upregulates VTA mu-opioid receptor (MOR) mRNA. In the VTA, MOR activation inhibits GABA neurons to disinhibit VTA dopamine neurons, thus providing a role for VTA MORs in the regulation of psychostimulant sensitization. The present study determined the effect of lentivirus-mediated MOR knockdown in the VTA on the consequences of intermittent social defeat stress, a salient and profound stressor in humans and rodents. Social stress exposure induced social avoidance and attenuated weight gain in animals with non-manipulated VTA MORs, but both these effects were prevented by VTA MOR knockdown. Rats with non-manipulated VTA MOR expression exhibited cross-sensitization to amphetamine challenge (1.0 mg/kg, i.p.), evidenced by a significant augmentation of locomotion. By contrast, knockdown of VTA MORs prevented stress-induced cross-sensitization without blunting the locomotor-activating effects of amphetamine. At the time point corresponding to amphetamine challenge, immunohistochemical analysis was performed to examine the effect of stress on VTA BDNF expression. Prior stress exposure increased VTA BDNF expression in rats with non-manipulated VTA MOR expression, while VTA MOR knockdown prevented stress-induced expression of VTA BDNF. Taken together, these results suggest that upregulation of VTA MOR is necessary for the behavioral and biochemical changes induced by social defeat stress. Elucidating VTA MOR regulation of stress effects on the mesolimbic system may provide new therapeutic targets for treating stress-induced vulnerability to substance abuse. PMID:25446676
Wiskerke, Joost; Stoop, Nicky; Schetters, Dustin; Schoffelmeer, Anton N. M.; Pattij, Tommy
2011-01-01
It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior. PMID:22016780
Occupational conditions and the risk of the use of amphetamines by truck drivers.
de Oliveira, Lúcio Garcia; de Souza, Letícia Maria de Araújo; Barroso, Lúcia Pereira; Gouvêa, Marcela Júlio César; de Almeida, Carlos Vinícius Dias; Muñoz, Daniel Romero; Leyton, Vilma
2015-01-01
OBJECTIVE To test whether the occupational conditions of professional truck drivers are associated with amphetamine use after demographic characteristics and ones regarding mental health and drug use are controlled for.METHODS Cross-sectional study, with a non-probabilistic sample of 684 male truck drivers, which was collected in three highways in Sao Paulo between years 2012 and 2013. Demographic and occupational information was collected, as well as data on drug use and mental health (sleep quality, emotional stress, and psychiatric disorders). A logistic regression model was developed to identify factors associated with amphetamine use. Odds ratio (OR; 95%CI) was defined as the measure for association. The significance level was established as p < 0.05.RESULTS The studied sample was found to have an average age of 36.7 (SD = 7.8) years, as well as low education (8.6 [SD = 2.3] years); 29.0% of drivers reported having used amphetamines within the twelve months prior to their interviews. After demographic and occupational variables had been controlled for, the factors which indicated amphetamine use among truck drivers were the following: being younger than 38 years (OR = 3.69), having spent less than nine years at school (OR = 1.76), being autonomous (OR = 1.65), working night shifts or irregular schedules (OR = 2.05), working over 12 hours daily (OR = 2.14), and drinking alcohol (OR = 1.74).CONCLUSIONS Occupational aspects are closely related to amphetamine use among truck drivers, which reinforces the importance of closely following the application of law (Resting Act ("Lei do Descanso"); Law 12,619/2012) which regulates the workload and hours of those professionals. Our results show the need for increased strictness on the trade and prescription of amphetamines in Brazil.
Occupational conditions and the risk of the use of amphetamines by truck drivers
de Oliveira, Lúcio Garcia; de Souza, Letícia Maria de Araújo; Barroso, Lúcia Pereira; Gouvêa, Marcela Júlio César; de Almeida, Carlos Vinícius Dias; Muñoz, Daniel Romero; Leyton, Vilma
2015-01-01
OBJECTIVE To test whether the occupational conditions of professional truck drivers are associated with amphetamine use after demographic characteristics and ones regarding mental health and drug use are controlled for. METHODS Cross-sectional study, with a non-probabilistic sample of 684 male truck drivers, which was collected in three highways in Sao Paulo between years 2012 and 2013. Demographic and occupational information was collected, as well as data on drug use and mental health (sleep quality, emotional stress, and psychiatric disorders). A logistic regression model was developed to identify factors associated with amphetamine use. Odds ratio (OR; 95%CI) was defined as the measure for association. The significance level was established as p < 0.05. RESULTS The studied sample was found to have an average age of 36.7 (SD = 7.8) years, as well as low education (8.6 [SD = 2.3] years); 29.0% of drivers reported having used amphetamines within the twelve months prior to their interviews. After demographic and occupational variables had been controlled for, the factors which indicated amphetamine use among truck drivers were the following: being younger than 38 years (OR = 3.69), having spent less than nine years at school (OR = 1.76), being autonomous (OR = 1.65), working night shifts or irregular schedules (OR = 2.05), working over 12 hours daily (OR = 2.14), and drinking alcohol (OR = 1.74). CONCLUSIONS Occupational aspects are closely related to amphetamine use among truck drivers, which reinforces the importance of closely following the application of law (Resting Act (“Lei do Descanso”); Law 12,619/2012) which regulates the workload and hours of those professionals. Our results show the need for increased strictness on the trade and prescription of amphetamines in Brazil. PMID:26398875
Kubota, Y; Leung, E; Vincent, S R
1992-01-01
The ultrastructure of choline acetyltransferase (ChAT)-immunoreactive neurons in the laterodorsal tegmental nucleus (TLD) of the rat was investigated by immunohistochemical techniques. The immunoreactive neurons were medium to large in size, with a few elongated dendrites, contained well-developed cytoplasm, and a nucleus with deep infoldings. They received many nonimmunoreactive, mostly asymmetric synaptic inputs on their soma and dendrites. ChAT-immunoreactive, usually myelinated, axons were occasionally seen in TLD. Only one immunoreactive axon terminal was observed within TLD, and it made synaptic contact with a nonimmunoreactive neuronal perikaryon. The synaptic interactions between ChAT-immunoreactive neurons and tyrosine hydroxylase (TH)-immunoreactive fibers in the TLD were investigated with a double immunohistochemical staining method. ChAT-immunoreactivity detected with a beta-galactosidase method was light blue-green in the light microscope and formed dot-like electron dense particles at the electron microscopic level. TH-immunoreactivity, visualized with a nickel-enhanced immunoperoxidase method, was dark blue-black in the light microscope and diffusely opaque in the electron microscope. Therefore, the difference between these two kinds of immunoreactivity could be quite easily distinguished at both light and electron microscopic levels. In the light microscope, TH-positive fibers were often closely apposed to ChAT-immunoreactive cell bodies and dendrites in TLD. In the electron microscope, the cell soma and proximal dendrites of ChAT-immunoreactive neurons received synaptic contacts from TH-immunoreactive axon terminals. These results provide a morphological basis for catecholaminergic regulation of the cholinergic reticular system.
Ginsberg, S D; Hof, P R; Young, W G; Morrison, J H
1993-01-22
The distribution of noradrenergic processes within the hypothalamus of rhesus monkeys (Macaca mulatta) was examined by immunohistochemistry with an antibody against dopamine-beta-hydroxylase. The results revealed that the pattern of dopamine-beta-hydroxylase immunoreactivity varied systematically throughout the rhesus monkey hypothalamus. Extremely high densities of dopamine-beta-hydroxylase-immunoreactive processes were observed in the paraventricular and supraoptic nuclei, while relatively lower levels were found in the arcuate and dorsomedial nuclei and in the medial preoptic, perifornical, and suprachiasmatic areas. Moderate levels of dopamine-beta-hydroxylase immunoreactivity were found throughout the lateral hypothalamic area and in the internal lamina of the median eminence. Very few immunoreactive processes were found in the ventromedial nucleus or in the mammillary complex. Other midline diencephalic structures were found to have high densities of dopamine-beta-hydroxylase immunoreactivity, including the paraventricular nucleus of the thalamus and a discrete subregion of nucleus reuniens, the magnocellular subfascicular nucleus. A moderate density of dopamine-beta-hydroxylase immunoreactive processes were found in the rhomboid nucleus and zona incerta whereas little dopamine-beta-hydroxylase immunoreactivity was found in the fields of Forel, nucleus reuniens, or subthalamic nucleus. The differential distribution of dopamine-beta-hydroxylase-immunoreactive processes may reflect a potential role of norepinephrine as a regulator of a variety of functions associated with the nuclei that are most heavily innervated, e.g., neuroendocrine release from the paraventricular and supraoptic nuclei, and gonadotropin release from the medial preoptic area and mediobasal hypothalamus. Additionally, quantitative analysis of dopamine-beta-hydroxylase-immunoreactive varicosities was performed on a laser scanning microscope in both magnocellular and parvicellular regions of the paraventricular nucleus of the hypothalamus. The methodology employed in this study allowed for the high resolution of immunoreactive profiles through the volume of tissue being analyzed, and was more accurate than conventional light microscopy in terms of varicosity quantification. Quantitatively, a significant difference in the density of dopamine-beta-hydroxylase-immunoreactive varicosities was found between magnocellular and parvicellular regions, suggesting that parvicellular neurons received a denser noradrenergic input. These differential patterns may reflect an important functional role for norepinephrine in the regulation of anterior pituitary secretion through the hypothalamic-pituitary-adrenal stress axis.
Xp11.2 translocation renal cell carcinoma with PSF-TFE3 rearrangement.
Zhong, Minghao; Weisman, Paul; Zhu, Bing; Brassesco, Maria; Yang, Youfeng; Linehan, W Marston; Merino, Maria J; Zhang, David; Rohan, Stephen; Cai, Dongming; Yang, Ximing
2013-06-01
Xp11.2 translocation renal cell carcinoma (Xp11.2 RCC) is a subtype of RCC characterized by translocations involving a breakpoint at the TFE3 gene (Xp11.2). Moderate to strong nuclear TFE3 immunoreactivity has been recognized as a specific diagnostic marker for this type of tumor. However, exclusive cytoplasmic localization of a TFE3 fusion protein was reported in UOK 145 cells, a cell line derived from an Xp11.2 RCC harboring the PSF-TFE3 translocation. If reproducible using immunohistochemistry (IHC), this finding would have important implications for pathologists in the diagnosis of Xp11.2 RCC, calling into question the specificity of nuclear immunoreactivity for TFE3 in these tumors. The purpose of this study was to determine whether the above-noted cytoplasmic localization of the TFE3 fusion protein could be reproduced using IHC. UOK 145 cells and fresh frozen tissue from 2 clinical cases of Xp11.2 RCC found to harbor the PSF-TFE3 gene rearrangement (by cytogenetic testing) were collected. All samples were subjected to histopathologic evaluation by board-certified pathologists, TFE3 IHC, reverse transcription polymerase chain reaction, and Sanger sequencing analysis. A strong nuclear TFE3 immunoreactivity was demonstrated in all samples including the UOK 145 cell line. No cytoplasmic immunoreactivity was seen. Reverse transcription polymerase chain reaction and Sanger sequencing confirmed the previously reported PSF-TFE3 gene fusion between exon 9 of PSF and exon 6 of TFE3 in the UOK 145 cell line and in one of 2 clinical cases of Xp11.2 RCC. A novel PSF-TFE3 gene fusion between exon 9 of PSF and exon 5 of TFE3 was detected in the second clinical case of Xp11.2 RCC.
Lee, Jae-Chul; Kim, In Hye; Cho, Jeong Hwi; Lee, Tae-Kyeong; Park, Joon Ha; Ahn, Ji Hyeon; Shin, Bich Na; Yan, Bing Chun; Kim, Jong-Dai; Jeon, Yong Hwan; Lee, Young Joo; Won, Moo-Ho; Kang, Il Jun
2018-01-01
4-Hydroxy-3-methoxybenzaldehyde (vanillin), contained in a number of species of plant, has been reported to display beneficial effects against brain injuries. In the present study, the impact of vanillin on scopolamine-induced alterations in cognition and the expression of DNA binding protein inhibitor ID-1 (ID1), one of the inhibitors of DNA binding/differentiation proteins that regulate gene transcription, in the mouse hippocampus. Mice were treated with 1 mg/kg scopolamine with or without 40 mg/kg vanillin once daily for 4 weeks. Scopolamine-induced cognitive impairment was observed from 1 week and was deemed to be severe 4 weeks following the administration of scopolamine. However, treatment with vanillin in scopolamine-treated mice markedly attenuated cognitive impairment 4 weeks following treatment with scopolamine. ID1-immunoreactive cells were revealed in the hippocampus of vehicle-treated mice, and were hardly detected 4 weeks following treatment with scopolamine. However, treatment with vanillin in scopolamine-treated mice markedly restored ID1-immunoreactive cells and expression 4 weeks subsequent to treatment. The results of the present study suggested that vanillin may be beneficial for cognitive impairment, by preventing the reduction of ID1 expression which may be associated with cognitive impairment. PMID:29328430
Szewczyk, Bernadeta; Albert, Paul R; Rogaeva, Anastasia; Fitzgibbon, Heidi; May, Warren L; Rajkowska, Grazyna; Miguel-Hidalgo, Jose J; Stockmeier, Craig A; Woolverton, William L; Kyle, Patrick B; Wang, Zhixia; Austin, Mark C
2010-09-01
Serotonin1A (5-HT(1A)) receptors are reported altered in the brain of subjects with major depressive disorder (MDD). Recent studies have identified transcriptional regulators of the 5-HT(1A) receptor and have documented gender-specific alterations in 5-HT(1A) transcription factor and 5-HT(1A) receptors in female MDD subjects. The 5' repressor element under dual repression binding protein-1 (Freud-1) is a calcium-regulated repressor that negatively regulates the 5-HT(1A) receptor gene. This study documented the cellular expression of Freud-1 in the human prefrontal cortex (PFC) and quantified Freud-1 protein in the PFC of MDD and control subjects as well as in the PFC of rhesus monkeys chronically treated with fluoxetine. Freud-1 immunoreactivity was present in neurons and glia and was co-localized with 5-HT(1A) receptors. Freud-1 protein level was significantly decreased in the PFC of male MDD subjects (37%, p=0.02) relative to gender-matched control subjects. Freud-1 protein was also reduced in the PFC of female MDD subjects (36%, p=0.18) but was not statistically significant. When the data was combined across genders and analysed by age, the decrease in Freud-1 protein level was greater in the younger MDD subjects (48%, p=0.01) relative to age-matched controls as opposed to older depressed subjects. Similarly, 5-HT(1A) receptor protein was significantly reduced in the PFC of the younger MDD subjects (48%, p=0.01) relative to age-matched controls. Adult male rhesus monkeys administered fluoxetine daily for 39 wk revealed no significant change in cortical Freud-1 or 5-HT(1A) receptor proteins compared to vehicle-treated control monkeys. Reduced protein expression of Freud-1 in MDD subjects may reflect dysregulation of this transcription factor, which may contribute to the altered regulation of 5-HT(1A) receptors observed in subjects with MDD. These data may also suggest that reductions in Freud-1 protein expression in the PFC may be associated with early onset of MDD.
Furlong, Teri M.; Leavitt, Lee S.; Keefe, Kristen A.; Son, Jong-Hyun
2016-01-01
Abused amphetamines, such as d-amphetamine (AMPH) and methamphetamine (METH), are highly addictive and destructive to health and productive lifestyles. The abuse of these drugs is associated with impulsive behavior, which is likely to contribute to addiction. The amphetamines also differentially damage dopamine (DA) and serotonin (5-HT) systems, which regulate impulsive behavior; therefore, exposure to these drugs may differentially alter impulsive behavior to effect the progression of addiction. We examined the impact of neurotoxicity induced by three amphetamines on impulsive action using a stop-signal task in rats. Animals were rewarded with a food pellet after lever pressing (i.e. a go trial), unless an auditory cue was presented and withholding lever press gained reward (i.e. a stop trial). Animals were trained on the task and then exposed to a neurotoxic regimen of either AMPH, p-chloroamphetamine (PCA), or METH. These regimens preferentially reduced DA transporter levels in striatum, 5-HT transporter levels in prefrontal cortex, or both, respectively. Assessment of performance on the stop-signal task beginning one week after the treatment revealed that AMPH produced a deficit in go-trial performance, whereas PCA did not alter performance on either trial type. In contrast, METH produced a deficit in stop-trial performance (i.e. impulsive action) but not go-trial performance. These findings suggest that the different neurotoxic consequences of substituted amphetamines are associated with different effects on inhibitory control over behavior. Thus, the course of addiction and maladaptive behavior resulting from exposure to these substances is likely to differ. PMID:26846719
Transcription factor CREB is involved in CaSR-mediated cytoskeleton gene expression.
Huang, Shuaishuai; Ren, Yu; Wang, Ping; Li, Yanyuan; Wang, Xue; Zhuang, Haihui; Fang, Rong; Wang, Yuduo; Liu, Ningsheng; Hehir, Michael; Zhou, Jeff X
2015-03-01
Our previous studies illustrated that a steady increase of intracellular calcium concentration ([Ca2+]i) was important for maintaining microtubules (MTs) rearrangement in apoptotic cells. However, little is known about the effect of calcium sensing receptor (CaSR)-mediated increase in [Ca2+]i on cytoskeleton gene expression. We examined the impact of taxol or CaSR agonist/antagonist on the regulation of [Ca2+]i concentration, cytoskeleton arrangement, phosphorylated CREB and cytoskeleton gene expressions in HeLa cells with dominant negative plasmid of CREB (PM). This study demonstrated that Gdcl3 (a specific CaSR agonist) evoked a rapid increase of [Ca2+]i, formed a rigid bundle of MTs which surrounded the nucleus and decreased the cytoskeleton gene expressions in HeLa cells. These effects were rescued by addition of NPS2390 (a specific CaSR antagonist). Moreover, CaSR activity affected cytoskeleton gene expression through transcription factor CREB. Histoscores of pCREB immunoreactivity in tissues of cervical adenocarcinoma, renal clear cell carcinoma, and diffuse large B-cell lymphoma were markedly increased compared with non malignant tissue. These data demonstrate, for the first time, that CaSR-mediated increase in [Ca2+]i probably modulate cytoskeleton organization and gene expression via transcription factor. © 2014 Wiley Periodicals, Inc.
Ahn, Ji Hyeon; Hong, Seongkweon; Park, Joon Ha; Kim, In Hye; Cho, Jeong Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Bae, Eun Joo; Jeon, Yong Hwan; Kim, Young-Myeong; Won, Moo-Ho; Choi, Soo Young
2017-01-01
Calbindin-D28k (CB), calretinin (CR) and parvalbumin (PV), which regulate cytosolic free Ca2+ concentrations in neurons, are chemically expressed in γ-aminobutyric acid (GABA)ergic neurons that regulate the degree of glutamatergic excitation and output of projection neurons. The present study investigated age-associated differences in CB, CR and PV immunoreactivities in the somatosensory cortex in three species (mice, rats and gerbils) of young (1 month), adult (6 months) and aged (24 months) rodents, using immunohistochemistry and western blotting. Abundant CB-immunoreactive neurons were distributed in layers II and III, and age-associated alterations in their number were different according to the species. CR-immunoreactive neurons were not abundant in all layers; however, the number of CR-immunoreactive neurons was the highest in all adult species. Many PV-immunoreactive neurons were identified in all layers, particularly in layers II and III, and they increased in all layers with age in all species. The present study demonstrated that the distribution pattern of CB-, CR- and PV-containing neurons in the somatosensory cortex were apparently altered in number with normal aging, and that CB and CR exhibited a tendency to decrease in aged rodents, whereas PV tended to increase with age. These results indicate that CB, CR and PV are markedly altered in the somatosensory cortex, and this change may be associated with normal aging. These findings may aid the elucidation of the mechanisms of aging and geriatric disease. PMID:28944879
Brené, S; Messer, C; Okado, H; Hartley, M; Heinemann, S F; Nestler, E J
2000-05-01
The AMPA glutamate receptor subunit GluR2, which plays a critical role in regulation of AMPA channel function, shows altered levels of expression in vivo after several chronic perturbations. To evaluate the possibility that transcriptional mechanisms are involved, we studied a 1254-nucleotide fragment of the 5'-promoter region of the mouse GluR2 gene in neural-derived cell lines. We focused on regulation of GluR2 promoter activity by two neurotrophic factors, which are known to be altered in vivo in some of the same systems that show GluR2 regulation. Glial-cell line derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) both induced GluR2 promoter activity. This was associated with increased expression of endogenous GluR2 immunoreactivity in the cells as measured by Western blotting. The effect of GDNF and BDNF appeared to be mediated via a NRSE (neuron-restrictive silencer element) present within the GluR2 promoter. The response to these neurotrophic factors was lost upon mutating or deleting this site, but not several other putative response elements present within the promoter. Moreover, overexpression of REST (restrictive element silencer transcription factor; also referred to as NRSF or neuron restrictive silencer factor), which is known to act on NRSEs in other genes to repress gene expression, blocked the ability of GDNF to induce GluR2 promoter activity. However, GDNF did not alter endogenous levels of REST in the cells. Together, these findings suggest that GluR2 expression can be regulated by neurotrophic factors via an apparently novel mechanism involving the NRSE present within the GluR2 gene promoter.
Waselus, Maria; Van Bockstaele, Elisabeth J
2007-10-12
Electrophysiological, microdialysis and behavioral studies support a modulatory role for corticotropin-releasing factor (CRF) in regulating the dorsal raphe nucleus (DRN)-serotonin (5-HT) system. CRF and 5-HT are implicated in the pathophysiology of depression, thus neuroanatomical substrates of CRF-DRN-5-HT interactions are of interest. Identification of co-transmitters within DRN CRF axon terminals is important for elucidating the complex effects underlying CRF afferent regulation of DRN neurons. This study investigated whether CRF-labeled axon terminals within the DRN contain immunoreactivity for vesicular glutamate transporters (isoforms vGlut1 and vGlut2) indicative of the excitatory neurotransmitter glutamate. Dual immunohistochemistry for CRF and either vGlut1 or vGlut2 was conducted within the same tissue section and immunofluorescence results indicated patterns of immunoreactivity consistent with previous reports. Abundant vGlut1- and vGlut2-immunoreactivity was found in puncta exhibiting a largely uniform distribution, whereas CRF-immunoreactivity was localized to topographically distributed varicose processes within the DRN. Profiles containing both CRF- and either vGlut1- or vGlut2-immunoreactivity were apparent in the DRN. Electron microscopy confirmed that immunoreactivity for CRF and vGlut1 was localized primarily to separate axon terminals in the DRN, with a subset co-localizing CRF and vGlut1. Examination of CRF and vGlut2 immunoreactivities in the DRN indicated that CRF and vGlut2 were found within the same axon terminal more frequently than CRF and vGlut1. Overall, these anatomical findings suggest that CRF may function, in part, with the excitatory neurotransmitter glutamate in the modulation of neuronal activity in the DRN.
Chakraborty, Tandra R; Tkalych, Oleg; Nanno, Daniela; Garcia, Angelo L; Devi, Lakshmi A; Salton, Stephen R J
2006-05-17
Two novel granin-like polypeptides, VGF and pro-SAAS, which are stored in and released from secretory vesicles and are expressed widely in nervous, endocrine, and neuroendocrine tissues, play roles in the regulation of body weight, feeding, and energy expenditure. Both VGF and pro-SAAS are cleaved into peptide fragments, several of which are biologically active. We utilized a highly sensitive and specific radioimmunoassay (RIA) to immunoreactive, pro-SAAS-derived PEN peptides, developed another against immunoreactive, VGF-derived AQEE30 peptides, and quantified these peptides in various mouse tissues and brain regions. Immunoreactive AQEE30 was most abundant in the pituitary, while brain levels were highest in hypothalamus, striatum, and frontal cortex. Immunoreactive PEN levels were highest in the pancreas and spinal cord, and in brain, PEN was most abundant in striatum, hippocampus, pons and medulla, and cortex. Since both peptides were expressed in hypothalamus, a region of the brain that controls feeding and energy expenditure, double label immunofluorescence studies were employed. These demonstrated that 42% of hypothalamic arcuate neurons coexpress VGF and SAAS peptides, and that the intracellular distributions of these peptides in arcuate neurons differed. By RIA, cold stress increased immunoreactive AQEE30 and PEN peptide levels in female but not male hypothalamus, while a high fat diet increased AQEE30 and PEN peptide levels in female but not male hippocampus. VGF and SAAS-derived peptides are therefore widely expressed in endocrine, neuroendocrine, and neural tissues, can be accurately quantified by RIA, and are differentially regulated in the brain by diet and cold stress.
Pathak, G; Ibrahim, B A; McCarthy, S A; Baker, K; Kelly, M P
2015-08-01
It has been suggested that amphetamine abuse and withdrawal mimics the diverse nature of bipolar disorder symptomatology in humans. Here, we determined if a single paradigm of amphetamine sensitization would be sufficient to produce both manic- and depressive-related behaviors in mice. CD-1 mice were subcutaneously dosed for 5 days with 1.8 mg/kg d-amphetamine or vehicle. On days 6-31 of withdrawal, amphetamine-sensitized (AS) mice were compared to vehicle-treated (VT) mice on a range of behavioral and biochemical endpoints. AS mice demonstrated reliable mania- and depression-related behaviors from day 7 to day 28 of withdrawal. Relative to VT mice, AS mice exhibited long-lasting mania-like hyperactivity following either an acute 30-min restraint stress or a low-dose 1 mg/kg d-amphetamine challenge, which was attenuated by the mood-stabilizers lithium and quetiapine. In absence of any challenge, AS mice showed anhedonia-like decreases in sucrose preference and depression-like impairments in the off-line consolidation of motor memory, as reflected by the lack of spontaneous improvement across days of training on the rotarod. AS mice also demonstrated a functional impairment in nest building, an ethologically-relevant activity of daily living. Western blot analyses revealed a significant increase in methylation of histone 3 at lysine 9 (H3K9), but not lysine 4 (H3K4), in hippocampus of AS mice relative to VT mice. In situ hybridization for the immediate-early gene activity-regulated cytoskeleton-associated protein (Arc) further revealed heightened activation of corticolimbic structures, decreased functional connectivity between frontal cortex and striatum, and increased functional connectivity between the amygdala and hippocampus of AS mice. The effects of amphetamine sensitization were blunted in C57BL/6J mice relative to CD-1 mice. These results show that a single amphetamine sensitization protocol is sufficient to produce behavioral, functional, and biochemical phenotypes in mice that are relevant to bipolar disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F
2010-08-01
Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.
Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.
Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf
2012-03-01
Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.
Nestin expression in the retina of rats with inherited retinal degeneration.
Valamanesh, Fatemeh; Monnin, Julie; Morand-Villeneuve, Nadège; Michel, Germaine; Zaher, Murhaf; Miloudi, Sofiane; Chemouni, Deborah; Jeanny, Jean-Claude; Versaux-Botteri, Claudine
2013-05-01
Nestin is found in radial glia and neuronal/glial progenitor cells during retinal development, and is re-expressed after acute damage in the retina of adult mammals. We have investigated nestin expression in the retina of the Royal College of Surgeons (RCS) rat model of human inherited blindness, Retinitis pigmentosa (RP). During the first postnatal week, nestin immunoreactivity was located in elongated processes resembling radial glia in both control and dystrophic animals. During the second postnatal week, the density of nestin immunoreactive radial processes decreased progressively starting in the outer retina. At postnatal day 20 (PNd20), Nestin immunoreactive radial processes were no longer visible, with immunoreactivity restricted to structures resembling Müller end-feet and/or astrocytes located in the ganglion cell layer (GCL) in both control and dystrophic rats. These morphological results were confirmed by Western blotting and qPCR analysis. The level of nestin remained low in control animals at different time points up to 1 year, but we observed a re-expression of this protein from PNd30 in the dystrophic animals. The morphology of cells re-expressing nestin resembled that of radial glia and/or Muller cells, but co-localization of nestin and glutamine synthetase (GS: a marker of mature Müller cells) was only partial. Interestingly, whereas Western blot analysis confirmed the increase in protein levels from PNd30 onwards, mRNA levels remained low in dystrophic rats. Additional studies demonstrated that the discrepancy between protein and mRNA contents could be due to a dysfunction in proteasome activity as often observed in neurodegenerative pathologies. In conclusion, because of its localization in astrocytes and in radial processes resembling radial glia in the pathologic adult retina, nestin may be involved in mechanisms such as cell migration, generation of new neurons or glial cells and/or in retinal (re)modeling in dystrophic adult animals. The lack of concomitant up-regulation of mRNAs in adult dystrophic animals suggests that the pathology could lead to transcriptional and/or metabolic changes involving the stabilization of the half-life and/or dysregulation of degradation processes of nestin protein. Copyright © 2013 Elsevier Ltd. All rights reserved.
41 CFR Appendix to Part 102 - 74-Rules and Regulations Governing Conduct on Federal Property
Code of Federal Regulations, 2012 CFR
2012-01-01
... from— (a) Being under the influence, using or possessing any narcotic drugs, hallucinogens, marijuana... alcoholic beverages, narcotic drugs, hallucinogens, marijuana, barbiturates, or amphetamines. Alcoholic...
41 CFR Appendix to Part 102 - 74-Rules and Regulations Governing Conduct on Federal Property
Code of Federal Regulations, 2010 CFR
2010-07-01
... from— (a) Being under the influence, using or possessing any narcotic drugs, hallucinogens, marijuana... alcoholic beverages, narcotic drugs, hallucinogens, marijuana, barbiturates, or amphetamines. Alcoholic...
41 CFR Appendix to Part 102 - 74-Rules and Regulations Governing Conduct on Federal Property
Code of Federal Regulations, 2014 CFR
2014-01-01
... from— (a) Being under the influence, using or possessing any narcotic drugs, hallucinogens, marijuana... alcoholic beverages, narcotic drugs, hallucinogens, marijuana, barbiturates, or amphetamines. Alcoholic...
41 CFR Appendix to Part 102 - 74-Rules and Regulations Governing Conduct on Federal Property
Code of Federal Regulations, 2013 CFR
2013-07-01
... from— (a) Being under the influence, using or possessing any narcotic drugs, hallucinogens, marijuana... alcoholic beverages, narcotic drugs, hallucinogens, marijuana, barbiturates, or amphetamines. Alcoholic...
41 CFR Appendix to Part 102 - 74-Rules and Regulations Governing Conduct on Federal Property
Code of Federal Regulations, 2011 CFR
2011-01-01
... from— (a) Being under the influence, using or possessing any narcotic drugs, hallucinogens, marijuana... alcoholic beverages, narcotic drugs, hallucinogens, marijuana, barbiturates, or amphetamines. Alcoholic...
The Central Nervous System and Bone Metabolism: An Evolving Story.
Dimitri, Paul; Rosen, Cliff
2017-05-01
Our understanding of the control of skeletal metabolism has undergone a dynamic shift in the last two decades, primarily driven by our understanding of energy metabolism. Evidence demonstrating that leptin not only influences bone cells directly, but that it also plays a pivotal role in controlling bone mass centrally, opened up an investigative process that has changed the way in which skeletal metabolism is now perceived. Other central regulators of bone metabolism have since been identified including neuropeptide Y (NPY), serotonin, endocannabinoids, cocaine- and amphetamine-regulated transcript (CART), adiponectin, melatonin and neuromedin U, controlling osteoblast and osteoclast differentiation, proliferation and function. The sympathetic nervous system was originally identified as the predominant efferent pathway mediating central signalling to control skeleton metabolism, in part regulated through circadian genes. More recent evidence points to a role of the parasympathetic nervous system in the control of skeletal metabolism either through muscarinic influence of sympathetic nerves in the brain or directly via nicotinic receptors on osteoclasts, thus providing evidence for broader autonomic skeletal regulation. Sensory innervation of bone has also received focus again widening our understanding of the complex neuronal regulation of bone mass. Whilst scientific advance in this field of bone metabolism has been rapid, progress is still required to understand how these model systems work in relation to the multiple confounders influencing skeletal metabolism, and the relative balance in these neuronal systems required for skeletal growth and development in childhood and maintaining skeletal integrity in adulthood.
Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice
Wu, Yuwei; Tu, Qisheng; Valverde, Paloma; Zhang, Jin; Murray, Dana; Dong, Lily Q.; Cheng, Jessica; Jiang, Hua; Rios, Maribel; Morgan, Elise; Tang, Zhihui
2014-01-01
Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC. PMID:24780611
Maronde, Erik; Saade, Anastasia; Ackermann, Katrin; Goubran-Botros, Hany; Pagan, Cecile; Bux, Roman; Bourgeron, Thomas; Dehghani, Faramarz; Stehle, Jörg H
2011-08-01
Time of day is communicated to the body through rhythmic cues, including pineal gland melatonin synthesis, which is restricted to nighttime. Whereas in most rodents transcriptional regulation of the arylalkylamine N-acetyltransferase (Aanat) gene is essential for rhythmic melatonin synthesis, investigations into nonrodent mammalian species have shown post-transcriptional regulation to be of central importance, with molecular mechanisms still elusive. Therefore, human pineal tissues, taken from routine autopsies were allocated to four time-of-death groups (night/dawn/day/dusk) and analyzed for daytime-dependent changes in phosphorylated AANAT (p31T-AANAT) and in acetyl-serotonin-methyltransferase (ASMT) expression and activity. Protein content, intracellular localization, and colocalization of p31T-AANAT and ASMT were assessed, using immunoblotting, immunofluorescence, and immunoprecipitation techniques. Fresh sheep pineal gland preparations were used for comparative purposes. The amount of p31T-AANAT and ASMT proteins as well as their intracellular localization showed no diurnal variation in autoptic human and fresh sheep pineal glands. Moreover, in human and sheep pineal extracts, AANAT could not be dephosphorylated, which was at variance to data derived from rat pineal extracts. P31T-AANAT and ASMT were often found to colocalize in cellular rod-like structures that were also partly immunoreactive for the pinealocyte process-specific marker S-antigen (arrestin) in both, human and sheep pinealocytes. Protein-protein interaction studies with p31T-AANAT, ASMT, and S-antigen demonstrated a direct association and formation of robust complexes, involving also 14-3-3. This work provides evidence for a regulation principle for AANAT activity in the human pineal gland, which may not be based on a p31T-AANAT phosphorylation/dephosphorylation switch, as described for other mammalian species. © 2011 John Wiley & Sons A/S.
Effects of serotonin (5-HT)1B receptor ligands on amphetamine-seeking behavior in rats.
Miszkiel, Joanna; Przegaliński, Edmund
2013-01-01
Numerous studies have indicated that serotonin (5-HT)1B receptor ligands affect the behavioral effects of psychostimulants (cocaine, amphetamine), including the reinforcing activities of these drugs. To substantiate a role for those receptors in incentive motivation for amphetamine, we used the extinction/reinstatement model to examine the effects of the 5-HT1B receptor ligands on the reinstatement of extinguished amphetamine-seeking behavior. Rats trained to self-administer amphetamine (0.06 mg/kg/infusion) subsequently underwent the extinction procedure. These rats were then tested for the amphetamine-primed or amphetamine-associated cue-induced reinstatement of extinguished amphetamine-seeking behavior. The 5-HT1B receptor antagonist SB 216641 (5-7.5 mg/kg) attenuated the amphetamine (1.5 mg/kg)- and the amphetamine-associated cue combined with the threshold dose of amphetamine (0.5 mg/kg)-induced reinstatement of amphetamine-seeking behavior. The 5-HT1B receptor agonist CP 94253 (1.25-5 mg/kg) also inhibited the amphetamine-seeking behavior induced by amphetamine (1.5 mg/kg) but not by the cue combined with the threshold dose of amphetamine. The inhibitory effect of CP94253 on amphetamine-seeking behavior remained unaffected by the 5-HT1B receptor antagonist. Our results indicate that tonic activation of 5-HT1B receptors is involved in amphetamine- and cue-induced reinstatement of amphetamine-seeking behavior and that the inhibitory effects of 5-HT1B receptor antagonists on these phenomena are directly related to the motivational aspects of amphetamine abuse. The inhibitory effect of CP 94253 on amphetamine-seeking behavior seems to be unrelated to 5-HT1B receptor activation and may result from a general reduction of motivation.
Hayashi, Takahito; Ago, Kazutoshi; Nakamae, Takuma; Higo, Eri; Ogata, Mamoru
2016-06-01
Interleukin (IL)-8 has been suggested to be a positive regulator of myelination in the central nervous system, in addition to its principal role as a chemokine for neutrophils. Immunostaining for beta-amyloid precursor protein (AβPP) is an effective tool for detecting traumatic axonal injury, although AβPP immunoreactivity can also indicate axonal injury due to hypoxic causes. In this study, we examined IL-8 and AβPP immunoreactivity in sections of corpus callosum obtained from deceased patients with blunt head injury and from equivalent control tissue. AβPP immunoreactivity was detected in injured axons, such as axonal bulbs and varicose axons, in 24 of 44 head injury cases. These AβPP immunoreactive cases had survived for more than 3h. The AβPP immunostaining pattern can be classified into two types: traumatic (Pattern 1) and non-traumatic (Pattern 2) axonal injuries, which we described previously [Hayashi et al. Int. J. Legal Med. 129 (2015) 1085-1090]. Three of 44 control cases also showed AβPP immunoreactive injured axons as Pattern 2. In contrast, IL-8 immunoreactivity was detected in 7 AβPP immunoreactive and in 2 non-AβPP immunoreactive head injury cases, but was not detected in any of the 44 control cases, including the 3 AβPP immunoreactive control cases. The IL-8 immunoreactive cases had survived from 3 to 24 days, whereas those cases who survived less than 3 days (n=29) and who survived 90 days (n=1) were not IL-8 immunoreactive. Moreover, IL-8 was detected as Pattern 1 axons only. In addition, double immunofluorescence analysis showed that IL-8 is expressed by oligodendrocytes surrounding injured axons. In conclusion, our results suggest that immunohistochemical detection of IL-8 may be useful as a complementary diagnostic marker of traumatic axonal injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
González, J Antonio; Prehn, Jochen H M
2018-01-15
The mechanisms that link diet and body weight are not fully understood. A diet high in fat often leads to obesity, and this in part is the consequence of diet-induced injury to specific hypothalamic nuclei. It has been suggested that a diet high in fat leads to cell loss in the lateral hypothalamus, which contains specific populations of neurons that are essential for regulating energy homoeostasis; however, we do not know which cell types are affected by the diet. We studied the possibility that high-fat diet leads to a reduction in orexin-A/hypocretin-1 (Hcrt1) and/or melanin-concentrating hormone (MCH) immunoreactivity in the lateral hypothalamus. We quantified immuno-labeled Hcrt1 and MCH cells in brain sections of mice fed a diet high in fat for up to 12 weeks starting at 4 weeks of age and found that this diet did not modify the number of Hcrt1- or MCH-immunoreactive neurons. By contrast, there were fewer Hcrt1- (but not MCH-) immunoreactive cells in genetically obese db/db mice compared to wild-type mice. Non-obese, heterozygous db/+ mice also had fewer Hcrt1-immunoreactive cells. Differences in the number of Hcrt1-immunoreactive cells were only a function of the db genotype but not of diet or body weight. Our findings show that the lateral hypothalamus is affected differently in the db genotype and in diet-induced obesity, and support the idea that not all hypothalamic neurons involved in energy balance regulation are sensitive to the effects of diet. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Chung, Sung; Kim, Hee Jeong; Kim, Hyun Ju; Choi, Sun Hye; Cho, Jin Hee; Cho, Yun Ha; Kim, Dong-Hoon; Shin, Kyung Ho
2014-10-01
Dynorphin in the nucleus accumbens shell plays an important role in antidepressant-like effect in the forced swimming test (FST), but it is unclear whether desipramine and citalopram treatments alter prodynorphin levels in other brain areas. To explore this possibility, we injected mice with desipramine and citalopram 0.5, 19, and 23 h after a 15-min pretest swim and observed changes in prodynorphin expression before the test swim, which was conducted 24 h after the pretest swim. The pretest swim increased prodynorphin immunoreactivity in the dorsal bed nucleus of the stria terminalis (dBNST) and lateral division of the central nucleus of the amygdala (CeL). This increase in prodynorphin immunoreactivity in the dBNST and CeL was blocked by desipramine and citalopram treatments. Similar changes in prodynorphin mRNA levels were observed in the dBNST and CeL, but these changes did not reach significance. To understand the underlying mechanism, we assessed changes in phosphorylated CREB at Ser(133) (pCREB) immunoreactivity in the dBNST and central nucleus of the amygdala (CeA). Treatment with citalopram but not desipramine after the pretest swim significantly increased pCREB immunoreactivity only in the dBNST. These results suggest that regulation of prodynorphin in the dBNST and CeL before the test swim may be involved in the antidepressant-like effect of desipramine and citalopram in the FST and suggest that changes in pCREB immunoreactivity in these areas may not play an important role in the regulation of prodynorphin in the dBNST and CeA. Copyright © 2014 Elsevier Ltd. All rights reserved.
Benedusi, Valeria; Martorana, Francesca; Brambilla, Liliana; Maggi, Adriana; Rossi, Daniela
2012-01-01
Recent evidence highlights the peroxisome proliferator-activated receptors (PPARs) as critical neuroprotective factors in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). To gain new mechanistic insights into the role of these receptors in the context of ALS, here we investigated how PPAR transcriptional activity varies in hSOD1G93A ALS transgenic mice. We demonstrate that PPARγ-driven transcription selectively increases in the spinal cord of symptomatic hSOD1G93A mice. This phenomenon correlates with the up-regulation of target genes, such as lipoprotein lipase and glutathione S-transferase α-2, which are implicated in scavenging lipid peroxidation by-products. Such events are associated with enhanced PPARγ immunoreactivity within motor neuronal nuclei. This observation, and the fact that PPARγ displays increased responsiveness in cultured hSOD1G93A motor neurons, points to a role for this receptor in neutralizing deleterious lipoperoxidation derivatives within the motor cells. Consistently, in both motor neuron-like cultures and animal models, we report that PPARγ is activated by lipid peroxidation end products, such as 4-hydroxynonenal, whose levels are elevated in the cerebrospinal fluid and spinal cord from ALS patients. We propose that the accumulation of critical concentrations of lipid peroxidation adducts during ALS progression leads to the activation of PPARγ in motor neurons. This in turn triggers self-protective mechanisms that involve the up-regulation of lipid detoxification enzymes, such as lipoprotein lipase and glutathione S-transferase α-2. Our findings indicate that anticipating natural protective reactions by pharmacologically modulating PPARγ transcriptional activity may attenuate neurodegeneration by limiting the damage induced by lipid peroxidation derivatives. PMID:22910911
Accumulation of type VI collagen in the primary osteon of the rat femur during postnatal development
Kohara, Yukihiro; Soeta, Satoshi; Izu, Yayoi; Amasaki, Hajime
2015-01-01
In rodents, the long bone diaphysis is expanded by forming primary osteons at the periosteal surface of the cortical bone. This ossification process is thought to be regulated by the microenvironment in the periosteum. Type VI collagen (Col VI), a component of the extracellular matrix (ECM) in the periosteum, is involved in osteoblast differentiation at early stages. In several cell types, Col VI interacts with NG2 on the cytoplasmic membrane to promote cell proliferation, spreading and motility. However, the detailed functions of Col VI and NG2 in the ossification process in the periosteum are still under investigation. In this study, to clarify the relationship between localization of Col VI and formation of the primary osteon, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the periosteum of rat femoral diaphysis during postnatal growing periods by immunohistochemistry. Primary osteons enclosing the osteonal cavity were clearly identified in the cortical bone from 2 weeks old. The size of the osteonal cavities decreased from the outer to the inner region of the cortical bone. In addition, the osteonal cavities of newly formed primary osteons at the outermost region started to decrease in size after rats reached the age of 4 weeks. Immunohistochemistry revealed concentrated localization of Col VI in the ECM in the osteonal cavity. Col VI-immunoreactive areas were reduced and they disappeared as the osteonal cavities became smaller from the outer to the inner region. In the osteonal cavities of the outer cortical regions, Runx2-immunoreactive spindle-shaped cells and mature osteoblasts were detected in Col VI-immunoreactive areas. The numbers of Runx2-immunoreactive cells were significantly higher in the osteonal cavities than in the osteogenic layers from 2 to 4 weeks. Most of these Runx2-immunoreactive cells showed NG2-immunoreactivity. Furthermore, PCNA-immunoreactivity was detected in the Runx2-immunoreactive spindle cells in the osteonal cavities. These results indicate that Col VI provides a characteristic microenvironment in the osteonal cavity of the primary osteon, and that differentiation and proliferation of the osteoblast lineage occur in the Col VI-immunoreactive area. Interaction of Col VI and NG2 may be involved in the structural organization of the primary osteon by regulating osteoblast lineages. PMID:25943007
Kohara, Yukihiro; Soeta, Satoshi; Izu, Yayoi; Amasaki, Hajime
2015-05-01
In rodents, the long bone diaphysis is expanded by forming primary osteons at the periosteal surface of the cortical bone. This ossification process is thought to be regulated by the microenvironment in the periosteum. Type VI collagen (Col VI), a component of the extracellular matrix (ECM) in the periosteum, is involved in osteoblast differentiation at early stages. In several cell types, Col VI interacts with NG2 on the cytoplasmic membrane to promote cell proliferation, spreading and motility. However, the detailed functions of Col VI and NG2 in the ossification process in the periosteum are still under investigation. In this study, to clarify the relationship between localization of Col VI and formation of the primary osteon, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the periosteum of rat femoral diaphysis during postnatal growing periods by immunohistochemistry. Primary osteons enclosing the osteonal cavity were clearly identified in the cortical bone from 2 weeks old. The size of the osteonal cavities decreased from the outer to the inner region of the cortical bone. In addition, the osteonal cavities of newly formed primary osteons at the outermost region started to decrease in size after rats reached the age of 4 weeks. Immunohistochemistry revealed concentrated localization of Col VI in the ECM in the osteonal cavity. Col VI-immunoreactive areas were reduced and they disappeared as the osteonal cavities became smaller from the outer to the inner region. In the osteonal cavities of the outer cortical regions, Runx2-immunoreactive spindle-shaped cells and mature osteoblasts were detected in Col VI-immunoreactive areas. The numbers of Runx2-immunoreactive cells were significantly higher in the osteonal cavities than in the osteogenic layers from 2 to 4 weeks. Most of these Runx2-immunoreactive cells showed NG2-immunoreactivity. Furthermore, PCNA-immunoreactivity was detected in the Runx2-immunoreactive spindle cells in the osteonal cavities. These results indicate that Col VI provides a characteristic microenvironment in the osteonal cavity of the primary osteon, and that differentiation and proliferation of the osteoblast lineage occur in the Col VI-immunoreactive area. Interaction of Col VI and NG2 may be involved in the structural organization of the primary osteon by regulating osteoblast lineages. © 2015 Anatomical Society.
Brumovsky, Pablo R.; Seroogy, Kim B.; Lundgren, Kerstin H.; Watanabe, Masahiko; Hökfelt, Tomas; Gebhart, G. F.
2011-01-01
Glutamate is the main excitatory neurotransmitter in the nervous system, including in primary afferent neurons. However, to date a glutamatergic phenotype of autonomic neurons has not been described. Therefore, we explored the expression of vesicular glutamate transporters (VGLUTs) type 1, 2 and 3 in lumbar sympathetic chain (LSC) and major pelvic ganglion (MPG) of naïve BALB/C mice, as well as after pelvic nerve axotomy (PNA), using immunohistochemistry and in situ hybridization. Colocalization with activating transcription factor-3 (ATF-3), tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT) and calcitonin generelated peptide was also examined. Sham-PNA, sciatic nerve axotomy (SNA) or naïve mice were included. In naïve mice, VGLUT2-like immunoreactivity (LI) was only detected in fibers and varicosities in LSC and MPG; no ATF-3-immunoreactive (IR) neurons were visible. In contrast, PNA induced upregulation of VGLUT2 protein and transcript, as well as of ATF-3-LI in subpopulations of LSC neurons. Interestingly, VGLUT2-IR LSC neurons coexpressed ATF-3, and often lacked the noradrenergic marker TH. SNA only increased VGLUT2 protein and transcript in scattered LSC neurons. Neither PNA nor SNA upregulated VGLUT2 in MPG neurons. We also found perineuronal baskets immunoreactive either for VGLUT2 or the acetylcholinergic marker VAChT in non-PNA MPGs, usually around TH-IR neurons. VGLUT1-LI was restricted to some varicosities in MPGs, was absent in LSCs, and remained largely unaffected by PNA or SNA. This was confirmed by the lack of expression of VGLUT1 or VGLUT3 mRNAs in LSCs, even after PNA or SNA. Taken together, axotomy of visceral and non-visceral nerves results in a glutamatergic phenotype of some LSC neurons. In addition, we show previously non-described MPG perineuronal glutamatergic baskets. PMID:21596036
Expression of RYamide in the nervous and endocrine system of Bombyx mori.
Roller, Ladislav; Čižmár, Daniel; Bednár, Branislav; Žitňan, Dušan
2016-06-01
RYamides are neuropeptides encoded by a gene whose precise expression and function have not yet been determined. We identified the RYamide gene transcript (fmgV1g15f, SilkBase database) and predicted two candidates for G-protein coupled RYamide receptors (A19-BAG68418 and A22-BAG68421) in the silkworm Bombyx mori. We cloned the RYamide transcript and described its spatial expression using in situ hybridisation. In the larval central nervous system (CNS) expression of RYamide was restricted to 12-14 small neurons in the brain and two posterior neurons in the terminal abdominal ganglion. During metamorphosis their number decreased to eight protocerebral neurons in the adults. Multiple staining, using various insect neuropeptide antibodies, revealed that neurons expressing RYamide are different from other peptidergic cells in the CNS. We also found RYamide expression in the enteroendocrine cells (EC) of the anterior midgut of larvae, pupae and adults. Two minor subpopulations of these EC were also immunoreactive to antibodies against tachykinin and myosupressin. This expression pattern suggests RYamides may play a role in the regulation of feeding and digestion. Copyright © 2016 Elsevier Inc. All rights reserved.
Substance abuse - amphetamines; Drug abuse - amphetamines; Drug use - amphetamines ... Amphetamine: goey, louee, speed, uppers, whiz Dextroamphetamine (ADHD medicine used illegally): dexies, kiddie-speed, pep pills, uppers; ...
Yao, Dachun; Shu, Jun; Sun, Yan; Etgen, Anne M.
2014-01-01
This study investigated potential mechanisms by which age and IGF-I receptor (IGF-Ir) signaling in the neuroendocrine hypothalamus affect estradiol-positive feedback effects on GnRH neuronal activation and on kisspeptin and N-methyl-D-aspartate (NMDA)-induced LH release and on the abundance of NMDA receptor subunits Nr1 and Nr2b and Kiss1r transcript and protein in the hypothalamus of young and middle-aged female rats. We infused vehicle, IGF-I, or JB-1, a selective antagonist of IGF-Ir, into the third ventricle of ovariectomized female rats primed with estradiol or vehicle and injected with vehicle, kisspeptin (3 or 30 nmol/kg), or NMDA (15 or 30 mg/kg). Regardless of dose, NMDA and kisspeptin resulted in significantly more LH release, GnRH/c-Fos colabeling, and c-Fos immunoreative cells in young than in middle-aged females. Estradiol priming significantly increased Kiss1r, Nr1, and Nr2b receptor transcript and protein abundance in young but not middle-aged female hypothalamus. JB-1 attenuated kisspeptin and NMDA-induced LH release, numbers of GnRH/c-Fos and c-Fos cells, and Kiss1r, Nr1, and Nr2b transcript and protein abundance in young females to levels observed in middle-aged females. IGF-I significantly enhanced NMDA and kisspeptin-induced LH release in middle-aged females without increasing numbers of GnRH/c-Fos or c-Fos immunoreactive cells. IGF-I infusion in middle-aged females also increased Kiss1r, Nr1, and Nr2b protein and transcript to levels that were equivalent to young estradiol-primed females. These findings indicate that age-related changes in estradiol-regulated responsiveness to excitatory input from glutamate and kisspeptin reflect reduced IGF-Ir signaling. PMID:24617524
Case report: Improvement in dissociative symptoms with mixed amphetamine salts.
Scarella, Timothy M; Franzen, Jamie R
2017-01-01
Symptoms of dissociation, including dissociative amnesia, depersonalization, and derealization, commonly develop in individuals subject to chronic and repeated trauma during development. This includes the trauma of environmental inability to facilitate development of adequate cognitive strategies for coping with strong negative emotions. Dissociation likely involves dysregulated balance of prefrontal inhibition of limbic structures and inadequate regulation of attentional bias by both prefrontal and limbic systems. There is currently no established psychopharmacologic treatment for dissociative symptoms. Here the case of a woman with severe dissociative symptoms that were markedly improved with the administration of mixed amphetamine salts is discussed. Potential neurobiologic mechanisms for dissociative symptom improvement with psychostimulants are discussed.
Sundarrajan, Lakshminarasimhan; Unniappan, Suraj
2017-10-01
Irisin is a myokine encoded in fibronectin type III domain containing 5 (FNDC5). FNDC5 forms an integral part of the muscle post-exercise, and causes an increase in energy expenditure in mammals. Irisin is abundantly expressed in cardiac and skeletal muscles and is secreted upon activation of peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1 alpha). Irisin regulates feeding behaviour and cardiovascular function in mammals. More recently, irisin has gained importance as a potential biomarker for myocardial infarction due to its abundance in cardiac muscle. The goal of this research was to determine whether irisin influences feeding, and regulates appetite regulatory peptides in zebrafish. Intraperitoneal injection of irisin [0.1, 1, 10 and 100ng/g body weight (BW)] did not affect feeding, but its knockdown using siRNA (10ng/g BW) caused a significant reduction in food intake. Knockdown of irisin reduced ghrelin and orexin-A mRNA expression, and increased cocaine and amphetamine regulated transcript mRNA expression in zebrafish brain and gut. siRNA mediated knockdown of irisin also downregulated brain derived neurotrophic factor mRNA in zebrafish. The role of endogenous irisin on food intake is likely mediated by its actions on other metabolic peptides. Collectively, these results indicate that unaltered endogenous irisin is required to maintain food intake in zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.
Gago, Belén; Suárez-Boomgaard, Diana; Fuxe, Kjell; Brené, Stefan; Reina-Sánchez, María Dolores; Rodríguez-Pérez, Luis M; Agnati, Luigi F; de la Calle, Adelaida; Rivera, Alicia
2011-08-17
Acute administration of the dopamine D(4) receptor (D(4)R) agonist PD168,077 induces a down-regulation of the μ opioid receptor (MOR) in the striosomal compartment of the rat caudate putamen (CPu), suggesting a striosomal D(4)R/MOR receptor interaction in line with their high co-distribution in this brain subregion. The present work was designed to explore if a D(4)R/MOR receptor interaction also occurs in the modulation of the expression pattern of several transcription factors in striatal subregions that play a central role in drug addiction. Thus, c-Fos, FosB/ΔFosB and P-CREB immunoreactive profiles were quantified in the rat CPu after either acute or continuous (6-day) administration of morphine and/or PD168,077. Acute and continuous administration of morphine induced different patterns of expression of these transcription factors, effects that were time-course and region dependent and fully blocked by PD168,077 co-administration. Moreover, this effect of the D(4)R agonist was counteracted by the D(4)R antagonist L745,870. Interestingly, at some time-points, combined treatment with morphine and PD168,077 substantially increased c-Fos, FosB/ΔFosB and P-CREB expression. The results of this study give indications for a general antagonistic D(4)R/MOR receptor interaction at the level of transcription factors. The change in the transcription factor expression by D(4)R/MOR interactions in turn suggests a modulation of neuronal activity in the CPu that could be of relevance for drug addiction. Copyright © 2011 Elsevier B.V. All rights reserved.
Kisspeptin and Metabolism: The Brain and Beyond.
Dudek, Monika; Ziarniak, Kamil; Sliwowska, Joanna H
2018-01-01
Apart from the well-established role of kisspeptin (Kp) in the regulation of reproductive functions, recent data described its action in the control of metabolism. Of particular interest for the review is the population of Kp neurons localized in the arcuate nucleus (ARC) of the hypothalamus, the site of the brain where reproductive and metabolic cross talk occurs. However, within the hypothalamus Kp does not work alone, but rather interacts with other neuropeptides, e.g., neurokinin B, dynorphin A, proopiomelanocortin, the cocaine- and amphetamine-regulated transcript, agouti-related peptide, and neuropeptide Y. Beyond the brain, Kp is expressed in peripheral tissues involved in metabolic functions. In this review, we will mainly focus on the local action of this peptide in peripheral organs such as the pancreas, liver, and the adipose tissue. We will concentrate on dysregulation of the Kp system in cases of metabolic imbalance, e.g., obesity and diabetes. Importantly, these patients besides metabolic health problems often suffer from disruptions of the reproductive system, manifested by abnormalities in menstrual cycles, premature child birth, miscarriages in women, decreased testosterone levels and spermatogenesis in men, hypogonadism, and infertility. We will review the evidence from animal models and clinical data indicating that Kp could serve as a promising agent with clinical applications in regulation of reproductive problems in individuals with obesity and diabetes. Finally, emerging data indicate a role of Kp in regulation of insulin secretion, potentially leading to development of further therapeutic uses of this peptide to treat metabolic problems in patients with these lifestyle diseases.
Cohen, I; Shani, Y; Schwartz, M
1993-08-15
Mammalian central nervous system neurons do not regenerate after axonal injury, unlike their counterparts in fish and amphibians. After axonal injury, glial cells in mammals do not support regrowth of axons, while in fish they support the regeneration process. Controversy exists as to whether or not the intact fish optic nerve expresses glial fibrillary acidic protein, a well-known marker for mature astrocytes, and thus whether its astrocytes differ in this respect from those of the brain and spinal cord, as well as from optic nerve astrocytes of other species. In an attempt to resolve this question we cloned fish glial fibrillary acidic protein. Two different complementary DNA clones were isolated from a carp brain complementary DNA library, each encoding a different form of glial fibrillary acidic protein apparently originating from different genes. Monospecific polyclonal antibodies were raised against a peptide synthesized according to the predicted amino acid sequence, and used to identify and localize the fish glial fibrillary acidic protein. Two glial fibrillary acidic proteins (of 49 kDa and 51 kDa) were identified by the antibodies in all tested fish central nervous system tissues. The antibodies were then used to examine glial fibrillary acidic protein immunoreactivity in sections taken from uninjured and injured optic nerves of goldfish. Injury was followed by an elevation in glial fibrillary acidic protein immunoreactivity along the whole length of the nerve, except at the site of the injury, where--as in the case of vimentin--no immunoreactivity was detectable. However, in contrast to vimentin-positive glial cells, which repopulate the site of the injury soon after the optic nerve is injured, glial fibrillary acidic protein-positive glial cells remained outside the injury site for as long as 6 weeks after the injury. Despite the injury-induced changes in glial fibrillary acidic protein immunoreactivity, no change was observed in the level of transcript encoding glial fibrillary acidic protein after injury, while there was an increase in the amount of glial fibrillary acidic protein associated with the cytoskeleton and a reduction in the soluble form. These results suggest that the injury-induced changes in immunoreactivity on sections involve changes not in transcription or translation of glial fibrillary acidic protein, but in glial fibrillary acidic protein compartmentalization.
Varela, Fausto A.; Der-Ghazarian, Taleen; Lee, Ryan J.; Charntikov, Sergios; Crawford, Cynthia A.; McDougall, Sanders A.
2017-01-01
Aripiprazole is a second-generation antipsychotic that is increasingly being prescribed to children and adolescents. Despite this trend, little preclinical research has been done on the neural and behavioral actions of aripiprazole during early development. In the present study, young male and female Sprague-Dawley rats were pretreated with vehicle, haloperidol (1 mg/kg), or aripiprazole (10 mg/kg) once daily on postnatal days (PD) 10–20. After one, four, or eight days (i.e., on PD 21, PD 24, or PD 28), amphetamine-induced locomotor activity and stereotypy, as well as dorsal striatal D2 receptor levels, were measured in separate groups of rats. Pretreating young rats with aripiprazole or haloperidol increased D2 binding sites in the dorsal striatum. Consistent with these results, dopamine supersensitivity was apparent when aripiprazole- and haloperidol-pretreated rats were given a test day injection of amphetamine (2 or 4 mg/kg). Increased D2 receptor levels and altered behavioral responding persisted for at least eight days after conclusion of the pretreatment regimen. Contrary to what has been reported in adults, repeated aripiprazole treatment caused D2 receptor up-regulation and persistent alterations of amphetamine-induced behavior in young rats. These findings are consistent with human clinical studies showing that children and adolescents are more prone than adults to aripiprazole-induced side-effects, including extrapyramidal symptoms. PMID:24045880
Heterogeneous distribution of type I nitric oxide synthase in pulmonary vasculature of ovine fetus.
Tzao, C; Nickerson, P A; Russell, J A; Noble, B K; Steinhorn, R H
2000-11-01
The nitric oxide/guanosine 3',5'-cyclic monophosphate pathway plays an essential role in mediating pulmonary vasodilation at birth. Small resistance arteries in the fetal lung are vessels of major significance in the regulation of pulmonary vascular tone. The present study is to determine that type I nitric oxide synthase (NOS-I) is present in ovine fetal pulmonary vasculature and that NOS-I is distributed heterogeneously in ovine fetal pulmonary circulation. We used reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and NOS-I immunohistochemistry to localize NOS-I in fetal sheep lungs and showed a colocalization for NADPH-d activity with NOS-I immunoreactivity. Strong NOS-I immunoreactivity was observed exclusively in the endothelium of the terminal bronchiole and respiratory bronchiole-associated arteries. As a comparison, adult sheep lung did not show positive immunoreactivity in the pulmonary endothelium. NOS-I was absent in the umbilical or systemic arteries from the ovine fetus, whereas abundant NOS-III immunoreactivity was present in these arteries. We conclude that NOS-I is present uniquely in the ovine fetal pulmonary circulation as opposed to the adult pulmonary or the fetal systemic circulation. NOS-I is distributed heterogeneously in the ovine pulmonary vasculature. We speculate that NOS-I plays an active role in the regulation of perinatal pulmonary circulation.
Chacón, Pedro J; del Marco, Ángel; Arévalo, Ángeles; Domínguez-Giménez, Paloma; García-Segura, Luis Miguel; Rodríguez-Tébar, Alfredo
2015-02-01
Imbalances between excitatory and inhibitory transmissions in the brain anticipate the neuronal damage and death that occur in the neurodegenerative diseases like Alzheimer's disease (AD). We previously showed that amyloid-β (Aß), a natural peptide involved in the onset and development of AD, counteracts the neurotrophic activity of the nerve growth factor (NGF) by dampening the γ-aminobutyric acid (GABA)ergic connectivity of cultured hippocampal neurons. Neuronal plasticity is partly controlled by the NGF-promoted expression of the homologue of enhancer-of-split 1 (Hes1), a transcription factor that regulates the formation of GABAergic synapses. We now show that Hes1 controls the expression of cerebellin 4 (Cbln4), a member of a small family of secreted synaptic proteins, and we present the evidence that Cbln4 plays an essential role in the formation and maintenance of inhibitory GABAergic connections. Cbln4 immunoreactivity was found in the hippocampus, mostly in the dendrites and somata of pyramidal neurons. In the CA1, the hippocampal region where the first neurons degenerate in AD, Cbln4 immunoreactivity was associated with GABAergic synapses (detected by vesicular inhibitory amino acid transporter [VGAT] immunostaining), which appear to surround and embrace the somata of CA1 pyramidal neurons (basket cells). Moreover, significant decreases of Hes1, Cbln4, and VGAT immunoreactivities and messenger RNA expression were found in the hippocampus of a mouse model of AD. We also found that either the overexpression of Cbln4 in cultured hippocampal neurons or the application of recombinant Cbln4 to the cultures increased the number of GABAergic varicosities, rescuing neurons from Aß-induced death. In contrast, knockdown of Cbln4 gene in cultured neurons was followed by a large reduction of GABAergic connections. Such an effect was reverted by exogenously added Cbln4. These findings suggest a therapeutic potential for Cbln4 in the treatment of AD. Copyright © 2015 Elsevier Inc. All rights reserved.
Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina.
Nivison-Smith, Lisa; Acosta, Monica L; Misra, Stuti; O'Brien, Brendan J; Kalloniatis, Michael
2014-01-01
Vinpocetine is a natural drug which exerts neuroprotective effects in ischaemia of the brain through actions on cation channels, glutamate receptors and other pathways. This study investigated the effect of vinpocetine on cation channel permeability of inner retinal neurons after acute retinal metabolic insult. We focused on amacrine and ganglion cells immunoreactive for calretinin or parvalbumin due to their previously documented susceptibility to ischaemia. Using the probe, 1-amino-4-guanidobutane (AGB), we observed increased cation channel permeability across amacrine and ganglion cells under ischaemia and hypoglycaemia but not anoxia. Calretinin and parvalbumin immunoreactivity was also reduced during ischaemia and hypoglyacemia but not anoxia. Vinpocetine decreased AGB entry into ischaemic and hypoglycaemic ganglion cells indicating that the drug can modulate unregulated cation entry. In addition, vinpocetine prevented the loss of calretinin and parvalbumin immunoreactivity following ischaemia suggesting it may indirectly regulate intracellular calcium. Vinpocetine also reduced AGB permeability in selected amacrine and ganglion cell populations following N-methyl-D-aspartate (NMDA) but not kainate activation suggesting that vinpocetine's regulation of cation channel permeability may partly involve NMDA sensitive glutamate receptors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Central adiponectin administration reveals new regulatory mechanisms of bone metabolism in mice.
Wu, Yuwei; Tu, Qisheng; Valverde, Paloma; Zhang, Jin; Murray, Dana; Dong, Lily Q; Cheng, Jessica; Jiang, Hua; Rios, Maribel; Morgan, Elise; Tang, Zhihui; Chen, Jake
2014-06-15
Adiponectin (APN), the most abundant adipocyte-secreted adipokine, regulates energy homeostasis and exerts well-characterized insulin-sensitizing properties. The peripheral or central effects of APN regulating bone metabolism are beginning to be explored but are still not clearly understood. In the present study, we found that APN-knockout (APN-KO) mice fed a normal diet exhibited decreased trabecular structure and mineralization and increased bone marrow adiposity compared with wild-type (WT) mice. APN intracerebroventricular infusions decreased uncoupling protein 1 (UCP1) expression in brown adipose tissue, epinephrine and norepinephrine serum levels, and osteoclast numbers, whereas osteoblast osteogenic marker expression and trabecular bone mass increased in APN-KO and WT mice. In addition, centrally administered APN increased hypothalamic tryptophan hydroxylase 2 (TPH2), cocaine- and amphetamine-regulated transcript (CART), and 5-hydroxytryptamine (serotonin) receptor 2C (Htr2C) expressions but decreased hypothalamic cannabinoid receptor-1 expression. Treatment of immortalized mouse neurons with APN demonstrated that APN-mediated effects on TPH2, CART, and Htr2C expression levels were abolished by downregulating adaptor protein containing pleckstrin homology domain, phosphotyrosine domain, and leucine zipper motif (APPL)-1 expression. Pharmacological increase in sympathetic activity stimulated adipogenic differentiation of bone marrow stromal cells (BMSC) and reversed APN-induced expression of the lysine-specific demethylases involved in regulating their commitment to the osteoblastic lineage. In conclusion, we found that APN regulates bone metabolism via central and peripheral mechanisms to decrease sympathetic tone, inhibit osteoclastic differentiation, and promote osteoblastic commitment of BMSC. Copyright © 2014 the American Physiological Society.
Le, Hoang T. M. D.; Angotzi, Anna Rita; Ebbesson, Lars O. E.; Karlsen, Ørjan
2016-01-01
Similar to many marine teleost species, Atlantic cod undergo remarkable physiological changes during the early life stages with concurrent and profound changes in feeding biology and ecology. In contrast to the digestive system, very little is known about the ontogeny and the localization of the centers that control appetite and feed ingestion in the developing brain of fish. We examined the expression patterns of three appetite regulating factors (orexigenic: neuropeptide Y, NPY; prepro-orexin, pOX and anorexigenic: cocaine- and amphetamine-regulated transcript, CART) in discrete brain regions of developing Atlantic cod using chromogenic and double fluorescent in situ hybridization. Differential temporal and spatial expression patterns for each appetite regulator were found from first feeding (4 days post hatch; dph) to juvenile stage (76 dph). Neurons expressing NPY mRNA were detected in the telencephalon (highest expression), diencephalon, and optic tectum from 4 dph onward. CART mRNA expression had a wider distribution along the anterior-posterior brain axis, including both telencephalon and diencephalon from 4 dph. From 46 dph, CART transcripts were also detected in the olfactory bulb, region of the nucleus of medial longitudinal fascicle, optic tectum and midbrain tegmentum. At 4 and 20 dph, pOX mRNA expression was exclusively found in the preoptic region, but extended to the hypothalamus at 46 and 76 dph. Co-expression of both CART and pOX genes were also observed in several hypothalamic neurons throughout larval development. Our results show that both orexigenic and anorexigenic factors are present in the telencephalon, diencephalon and mesencephalon in cod larvae. The telencephalon mostly contains key factors of hunger control (NPY), while the diencephalon, and particularly the hypothalamus may have a more complex role in modulating the multifunctional control of appetite in this species. As the larvae develop, the overall progression in temporal and spatial complexity of NPY, CART and pOX mRNAs expression might be correlated to the maturation of appetite control regulation. These observations suggest that teleost larvae continue to develop the regulatory networks underlying appetite control after onset of exogenous feeding. PMID:27100086
Le, Hoang T M D; Angotzi, Anna Rita; Ebbesson, Lars O E; Karlsen, Ørjan; Rønnestad, Ivar
2016-01-01
Similar to many marine teleost species, Atlantic cod undergo remarkable physiological changes during the early life stages with concurrent and profound changes in feeding biology and ecology. In contrast to the digestive system, very little is known about the ontogeny and the localization of the centers that control appetite and feed ingestion in the developing brain of fish. We examined the expression patterns of three appetite regulating factors (orexigenic: neuropeptide Y, NPY; prepro-orexin, pOX and anorexigenic: cocaine- and amphetamine-regulated transcript, CART) in discrete brain regions of developing Atlantic cod using chromogenic and double fluorescent in situ hybridization. Differential temporal and spatial expression patterns for each appetite regulator were found from first feeding (4 days post hatch; dph) to juvenile stage (76 dph). Neurons expressing NPY mRNA were detected in the telencephalon (highest expression), diencephalon, and optic tectum from 4 dph onward. CART mRNA expression had a wider distribution along the anterior-posterior brain axis, including both telencephalon and diencephalon from 4 dph. From 46 dph, CART transcripts were also detected in the olfactory bulb, region of the nucleus of medial longitudinal fascicle, optic tectum and midbrain tegmentum. At 4 and 20 dph, pOX mRNA expression was exclusively found in the preoptic region, but extended to the hypothalamus at 46 and 76 dph. Co-expression of both CART and pOX genes were also observed in several hypothalamic neurons throughout larval development. Our results show that both orexigenic and anorexigenic factors are present in the telencephalon, diencephalon and mesencephalon in cod larvae. The telencephalon mostly contains key factors of hunger control (NPY), while the diencephalon, and particularly the hypothalamus may have a more complex role in modulating the multifunctional control of appetite in this species. As the larvae develop, the overall progression in temporal and spatial complexity of NPY, CART and pOX mRNAs expression might be correlated to the maturation of appetite control regulation. These observations suggest that teleost larvae continue to develop the regulatory networks underlying appetite control after onset of exogenous feeding.
Boissin-Agasse, L; Tappaz, M; Roch, G; Gril, C; Boissin, J
1991-06-01
This study was designed to examine possible relationships between the photoperiodic regulation of prolactin secretion and the activity of dopaminergic and GABAergic neurons projecting to the external layer of the median eminence. The study was carried out on the mink whose remarkable photosensitivity has been clearly demonstrated. The animals were reared in short (4L:20D) or long (20L:4D) photoperiods. The experiment began in November when day length is short (9.5 h). Dopaminergic and GABAergic neurons were studied using immunocytochemical methods allowing evaluation of the immunoreactivities of tyrosine hydroxylase (TH) and glutamate decarboxylase (GAD), which are respective markers of these neurons. The results were quantified by image analysis. The plasma prolactin level of animals maintained in 4L:20D decreased after 60 days and TH and GAD immunoreactivity were strongly stimulated. After 110 days, the prolactin concentration and TH and GAD immunoreactivity recovered their starting levels. In animals maintained in 20L:4D, the prolactin level was 3 times higher than at the beginning of the photoperiodic treatment but only dopaminergic neurons showed a change, i.e. a decrease in immunoreactivity. At the end of the experiment, prolactin secretion was no longer affected by the stimulatory effect of long-day treatment, and TH immunoreactivity remained low. These results confirm the generally accepted concept that dopaminergic neurons are potent PIF-producing components. GABAergic hypothalamic system appears to be implicated in photoperiodic PRL regulation, but this remains to be clearly demonstrated.
Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy.
Burgess, Christian R; Tse, Gavin; Gillis, Lauren; Peever, John H
2010-10-01
To determine if the dopaminergic system modulates cataplexy, sleep attacks and sleep-wake behavior in narcoleptic mice. Hypocretin/orexin knockout (i.e., narcoleptic) and wild-type mice were administered amphetamine and specific dopamine receptor modulators to determine their effects on sleep, cataplexy and sleep attacks. Hypocretin knockout (n = 17) and wild-type mice (n = 21). Cataplexy, sleep attacks and sleep-wake behavior were identified using electroencephalogram, electromyogram and videography. These behaviors were monitored for 4 hours after an i.p. injection of saline, amphetamine and specific dopamine receptor modulators (D1- and D2-like receptor modulators). Amphetamine (2 mg/kg), which increases brain dopamine levels, decreased sleep attacks and cataplexy by 61% and 67%, suggesting that dopamine transmission modulates such behaviors. Dopamine receptor modulation also had powerful effects on sleep attacks and cataplexy. Activation (SKF 38393; 20 mg/kg) and blockade (SCH 23390; 1 mg/kg) of D1-like receptors decreased and increased sleep attacks by 77% and 88%, without affecting cataplexy. Pharmacological activation of D2-like receptors (quinpirole; 0.5 mg/kg) increased cataplectic attacks by 172% and blockade of these receptors (eticlopride; 1 mg/kg) potently suppressed them by 97%. Manipulation of D2-like receptors did not affect sleep attacks. We show that the dopaminergic system plays a role in regulating both cataplexy and sleep attacks in narcoleptic mice. We found that cataplexy is modulated by a D2-like receptor mechanism, whereas dopamine modulates sleep attacks by a D1-like receptor mechanism. These results support a role for the dopamine system in regulating sleep attacks and cataplexy in a murine model of narcolepsy.
Jensen, P B; Kristensen, P; Clausen, J T; Judge, M E; Hastrup, S; Thim, L; Wulff, B S; Foged, C; Jensen, J; Holst, J J; Madsen, O D
1999-03-26
The hypothalamic satiety peptide CART (cocaine and amphetamine regulated transcript) is expressed at high levels in anorectic rat glucagonomas but not in hypoglycemic insulinomas. However, a non-anorectic metastasis derived from the glucagonoma retained high CART expression levels and produced circulating CART levels comparable to that of the anorectic tumors. Moreover, distinct glucagonoma lines derived by stable HES-1 transfection of the insulinoma caused severe anorexia but retained low circulating levels of CART comparable to that of insulinoma bearing or control rats. Islet tumor associated anorexia and circulating CART levels are thus not correlated, and in line with this peripheral administration of CART (5-50 mg/kg) produced no effect on feeding behavior. In the rat two alternatively spliced forms of CART mRNA exist and quantitative PCR revealed expression of both forms in the hypothalamus, in the different islet tumors, and in the islets of Langerhans. Immunocytochemistry as well as in situ hybridization localized CART expression to the somatostatin producing islet D cell. A potential endocrine/paracrine role of islet CART remains to be clarified.
Anti-inflammatory effect of topical administration of tofacitinib on corneal inflammation.
Sakimoto, Tohru; Ishimori, Akiko
2016-04-01
We evaluated an anti-inflammatory effect of topical administration of tofacitinib, janus kinase (JAK) blocker, on corneal inflammation. Topical instillation of either tofacitinib or PBS was applied after wounding BALB/c mice corneas with alkali burn. Topical instillation was performed until day 14 after injury and injured eye was analyzed. The vascularized area in the alkali burned cornea was significantly reduced in the tofacitinib group compared with that in the PBS group. The immunoreactivity of Gr-1, F4/80, IFN-γ, and phosphorylated STAT(signal transducer and activator of transcription)1 in corneal stroma was diminished significantly in the tofacitinib group. Using laser capture microdissection system and quantitative PCR array analysis, the expression levels of CXCL9, CXCL5, CCL7, CCL2, MMP(matrix metalloproteinase)-9, and STAT1 in corneal stroma were down-regulated in the tofacitinib group. In in vitro study, human fibroblast pretreated by IFN-γ showed phosphorylation of STAT1, and this phosphorylation was down-regulated by adding tofacitinib to the culture medium. These results indicate the topical application of JAK inhibitor causes down-regulation of JAK- or IFN-γ-related molecules. Therefore, we deduce that application of JAK inhibitor for topical instillation may contribute to the treatment of corneal inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strackx, E; Van den Hove, D L A; Steinbusch, H P; Steinbusch, H W M; Vles, J S H; Blanco, C E; Gavilanes, A W D
2008-06-01
Fetal asphyxic insults in the brain are known to be associated with developmental neurological problems like neuromotor disorders. However, little is known about the long-term consequences of fetal asphyxia (FA). For that reason, the present study investigated the long-term effects of FA on motor behavior and dopaminergic circuitry. FA was induced at embryonic day 17 by 75-minute clamping of the uterine circulation. SHAM animals underwent the same procedure except for the clamping. This was followed by full-term vaginal delivery of animals in all groups (FA, SHAM and untreated controls). At 6 months, basal and amphetamine-induced locomotor activity was measured during open field testing. Brain sections were stained for tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP). TH-positive cells and GFAP-positive cells in substantia nigra pars compacta (SN(C)) and striatum were counted using design-based stereology. Moreover, TH-immunoreactivity in the striatum was assessed by grey value measurements. Behavioral analysis demonstrated that SHAM and FA showed less basal and amphetamine-induced activity than controls. Histochemically, FA decreased the number of TH-positive neurons in the SN(C) and lowered TH-positive in the striatum. Furthermore, more GFAP-positive cells were found in the SN(C) and striatum in FA than in either control and SHAM groups. Additionally, FA animals showed ventriculomegaly associated with smaller white matter as well as grey matter volumes. The data show that FA was associated with deficits in both dopamine-related motor behavior and biochemistry. These alterations were associated with nigrostriatal astrogliosis. The present study demonstrates the sensitivity of the dopaminergic system towards FA.
Sensorimotor Gating in Neurotensin-1 Receptor Null Mice
Feifel, D.; Pang, Z.; Shilling, P.D.; Melendez, G.; Schreiber, R.; Button, D.
2009-01-01
BACKGROUND Converging evidence has implicated endogenous neurotensin (NT) in the pathophysiology of brain processes relevant to schizophrenia. Prepulse inhibition of the startle reflex (PPI) is a measure of sensorimotor gating and considered to be of strong relevance to neuropsychiatric disorders associated with psychosis and cognitive dysfunction. Mice genetically engineered to not express NT display deficits in PPI that model the PPI deficits seen in schizophrenia patients. NT1 receptors have been most strongly implicated in mediating the psychosis relevant effects of NT such as attenuating PPI deficits. To investigate the role of NT1 receptors in the regulation of PPI, we measured baseline PPI in wildtype (WT) and NT1 knockout (KO) mice. We also tested the effects of amphetamine and dizocilpine, a dopamine agonist and NMDA antagonist, respectively, that reduce PPI as well as the NT1 selective receptor agonist, PD149163, known to increase PPI in rats. METHODS Baseline PPI and acoustic startle response were measured in WT and NT1 knockout KO mice. After baseline testing, mice were tested again after receiving intraperatoneal (IP) saline or one of three doses of amphetamine (1.0, 3.0 and 10.0 mg/kg), dizocilpine (0.3, 1.0 and 3.0 mg/kg) and PD149163 (0.5, 2.0 and 6.0 mg/kg) on separate test days. RESULTS Baseline PPI and acoustic startle response in NT1 KO mice were not significantly different from NT1 WT mice. WT and KO mice exhibited similar responses to the PPI-disrupting effects of dizocilpine and amphetamine. PD149163 significantly facilitated PPI (P < 0.004) and decreased the acoustic startle response (P < 0.001) in WT but not NT1 KO mice. CONCLUSIONS The data does not support the regulation of baseline PPI or the PPI disruptive effects of amphetamine or dizocilpine by endogenous NT acting at the NT1 receptor, although they support the antipsychotic potential of pharmacological activation of NT1 receptors by NT1 agonists. PMID:19596359
Pentadecapeptide BPC 157 attenuates chronic amphetamine-induced behavior disturbances.
Sikiric, Predrag; Jelovac, Nikola; Jelovac-Gjeldum, Andjelka; Dodig, Goran; Staresinic, Mario; Anic, Tomislav; Zoricic, Ivan; Rak, Davor; Perovic, Darko; Aralica, Gorana; Buljat, Gojko; Prkacin, Ingrid; Lovric-Bencic, Martina; Separovic, Jadranka; Seiwerth, Sven; Rucman, Rudolf; Petek, Marijan; Turkovic, Branko; Ziger, Tihomil; Boban-Blagaic, Alenka; Bedekovic, Vlado; Tonkic, Ante; Babic, Slaven
2002-05-01
To investigate the effect of pentadecapeptide BPC 157 on chronic exposure to amphetamine in rats, particularly the changes commonly referred in chronic amphetamine studies as tolerance (lesser grade of stereotyped behavior, without increased excitability) and reverse tolerance (ie, prominent stereotyped behavior and heightened startle response upon late amphetamine challenges). After initial application (initial single dose-regimen), amphetamine (10 mg/kg,ip) was given once daily till d 5 (continuous administration-regimen), and thereafter on d 8, 16, and 46 (intermittent administration regimen). Fo r stereotyped behavior and heightened startle response the observation period was 120 min after amphetamine application, and each animal was observed for 10 s in 5 min intervals. Pentadecapeptide BPC 157 (10 microg/kg or 10 ng/k g, ip) or saline (5.0 mL/kg, ip) were given only at the beginning of the experiment, simultaneously with the initial dose of amphetamine. In relation to applied initial-single/continuous/intermittent amphetamine applications regimen, the control amphetamine rats throughout the experiment showed the changes in stereotyped behavior and heightened startle response, increment or decrement, commonly explained in chronic amphetamine studies as tolerance and reverse tolerance. After t he initial application of the amphetamine, the higher BPC 157 dosage apparently attenuated the stereotyped behavior, while the lower dosage of BPC 157 did not reach a statistical significance. Considering the forthcoming amphetamine challenges, in the rats initially treated with pentadecapeptide BPC 157, either 10 microg- or 10 ng-dose, at the time of the first application of amphetamine, the stereotyped behavior remains to be attenuated after all additional amphetamine challenges (on d 2-5, 8, 16, and 46). This attenuation was not limited to stereotyped behavior only. After the initial application of the amphetamine the heighten ed startle response was also apparently mitigated in rats receiving the BPC 157 dosage, either higher or lower. Later, confronted with the forthcoming amphetamine challenges, they showed apparently less abnormal excitability at all tested points. In summary, gastric pentadecapeptide BPC 157 (ie, both microg- and ng-BPC 157 regimens) attenuated chronic amphetamine disturbances. This effect was present throughout the observation period at a statistically significant level. Therefore, it seems that this gastric pentadecapeptide BPC 157 has a modulatory effect on dopamine system, and it could be used in chronic amphetamine disturbances.
Banks, Matthew L; Smith, Douglas A; Kisor, David F; Poklis, Justin L
2016-02-01
Methamphetamine is a globally abused drug that is metabolized to amphetamine, which also produces abuse-related behavioral effects. However, the contributing role of methamphetamine metabolism to amphetamine in methamphetamine's abuse-related subjective effects is unknown. This preclinical study was designed to determine 1) the relationship between plasma methamphetamine levels and methamphetamine discriminative stimulus effects and 2) the contribution of the methamphetamine metabolite amphetamine in the discriminative stimulus effects of methamphetamine in rhesus monkeys. Adult male rhesus monkeys (n=3) were trained to discriminate 0.18mg/kg intramuscular (+)-methamphetamine from saline in a two-key food-reinforced discrimination procedure. Time course of saline, (+)-methamphetamine (0.032-0.32mg/kg), and (+)-amphetamine (0.032-0.32mg/kg) discriminative stimulus effects were determined. Parallel pharmacokinetic studies were conducted in the same monkeys to determine plasma methamphetamine and amphetamine levels after methamphetamine administration and amphetamine levels after amphetamine administration for correlation with behavior in the discrimination procedure. Both methamphetamine and amphetamine produced full, ≥90%, methamphetamine-like discriminative stimulus effects. Amphetamine displayed a slightly, but significantly, longer duration of action than methamphetamine in the discrimination procedure. Both methamphetamine and amphetamine behavioral effects were related to methamphetamine and amphetamine plasma levels by a clockwise hysteresis loop indicating acute tolerance had developed to the discriminative stimulus effects. Furthermore, amphetamine levels after methamphetamine administration were absent when methamphetamine stimulus effects were greatest and peaked when methamphetamine discriminative stimulus effects returned to saline-like levels. Overall, these results demonstrate the methamphetamine metabolite amphetamine does not contribute to methamphetamine's abuse-related subjective effects. Copyright © 2015 Elsevier Inc. All rights reserved.
Acute d-amphetamine pretreatment does not alter stimulant self-administration in humans.
Stoops, William W; Vansickel, Andrea R; Lile, Joshua A; Rush, Craig R
2007-05-01
Recent clinical research indicates that d-amphetamine is effective in treating cocaine and methamphetamine dependence. There is concern, however, with the use of d-amphetamine as a pharmacotherapy because acute administration of d-amphetamine decreases inhibition in cocaine-using individuals and may increase drug-taking behavior. The purpose of the present experiment was to determine whether acute d-amphetamine pretreatment would alter the reinforcing, subject-rated, and cardiovascular effects of d-amphetamine. To this end, 7 human volunteers first sampled doses of oral d-amphetamine (0, 8, and 16 mg). These doses engender moderate drug taking and were selected to avoid a ceiling or floor effect. Volunteers were then allowed to self-administer these sampled doses using a modified progressive-ratio procedure in two sessions in which they received pretreatment with either 0 or 15 mg oral d-amphetamine 2 h prior to completing the modified progressive-ratio procedure. d-Amphetamine produced prototypical stimulant-like effects (e.g., increased ratings of stimulated, elevated blood pressure) and maintained responding on the modified progressive-ratio schedule. Pretreatment with 15 mg oral d-amphetamine also produced prototypical stimulant-like effects, but failed to alter break points for d-amphetamine on the modified progressive-ratio procedure relative to placebo pretreatment. These results indicate that acute d-amphetamine pretreatment does not increase stimulant self-administration.
Ren, Ping; Silberg, Debra G.; Sirica, Alphonse E.
2000-01-01
CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478–486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats. PMID:10666391
Ren, P; Silberg, D G; Sirica, A E
2000-02-01
CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478-486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats.
Adipogenesis in thyroid eye disease.
Crisp, M; Starkey, K J; Lane, C; Ham, J; Ludgate, M
2000-10-01
Adipogenesis contributes to the pathogenesis of thyroid eye disease (TED). Thyrotropin receptor (TSHR) transcripts are present in orbital fat. This study was conducted to determine whether they are expressed as functional protein, and if so, whether this is restricted to TED orbits or to a particular stage in adipocyte differentiation. Samples of fat were obtained from 18 TED-affected orbits and 4 normal orbits, and 9 were obtained from nonorbital locations. Frozen sections were examined by immunocytochemistry using monoclonal antibodies specific for the human TSHR. Samples were disaggregated and the preadipocytes separated from the mature by differential centrifugation and cultured in serum-free or DM and examined for morphologic changes, oil red O and TSHR staining, and TSH-induced cyclic adenosine monophosphate (cAMP) production. Marked immunoreactivity was observed in frozen sections from all three TED samples and faint staining in both normal orbital fat samples. In vitro, 1% to 5% of preadipocytes displayed TSHR immunoreactivity in five of six TED and two of three normal orbital samples and in three of five nonorbital samples. Differentiation, was induced in all 14 orbital samples. Three of four nonorbital samples contained occasional differentiated cells. Fifty percent to 70% of differentiating cells demonstrated receptor immunoreactivity. Two of three TED and four of four nonorbital preadipocytes in DM and/or mature adipocytes displayed a TSH-mediated increase in cAMP. The results indicate that orbital fat TSHR transcripts are expressed as protein, which can be functional. This is not aberrant in TED orbits, although expression may be upregulated. The majority of preadipocytes undergoing differentiation express the receptor, indicating a key role for this population in one mechanism for increasing orbital volume.
1988-10-01
acetyltransferase (ChAT), the ACh- C= synthesizing enzyme. ChAT-immunoreactive cell bodies and processes were localized to autonomic or limbic nuclei throughout...the neuraxis and close appositions with brainstemn microvessels and ependymal cells . Moreover, theA DO , U03 Eoirlo oil ov wavs I 69LET9 SCCUmTYV...spinal preganglionic neurons of the intermediolateral cell columns ([ML). ChAT-immunoreactive cell bodies and processes were localized to autonomic or
Wang, Liqing; Yu, Chao; Wang, Jun; Zhao, Hui; Chan, Sun-On
2017-08-10
Chondroitin sulfate (CS) proteoglycans (PGs) are a family of complex molecules in the extracellular matrix and cell surface that regulate axon growth and guidance during development of the central nervous system. In this study, the expression of CSPGs was investigated in the mouse spinal cord at late embryonic and neonatal stages using CS-56 antibody. CS immunoreactivity was observed abundantly in ventral regions of spinal cord of embryonic day (E) 15 embryos. At E16 to E18, CS expression spread dorsally, but never reached the superficial layers of the dorsal horn. This pattern was maintained until postnatal day 4, the latest stage examined. Antibodies against calcitonin gene related peptide (CGRP) and parvalbumin (PV) were employed to label primary afferents from nociceptors and proprioceptors, respectively. CGRP-immunoreactive fibers terminated in the superficial regions of the dorsal horn where CSPGs were weakly expressed, whereas PV-immunoreactive fibers were found in CSPG-rich regions in the ventral horn. Therefore, we conclude that CS expression is spatiotemporally regulated in the spinal cord, which correlates to the termination of sensory afferents. This pattern suggests a role of CSPGs on patterning afferents in the spinal cord, probably through a differential response of axons to these growth inhibitory molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Stairs, Dustin J; Klein, Emily D; Bardo, Michael T
2006-11-01
The current experiments aimed to determine whether differential rearing alters extinction and/or reinstatement of amphetamine self-administration or sucrose-maintained responding. Male Sprague-Dawley rats were raised in either an enriched condition or an isolated condition. Rats were then trained to lever press on a continuous reinforcement schedule across either 15 daily amphetamine self-administration sessions or 15 sucrose-reinforced sessions, followed by 10 sessions of extinction. After the extinction sessions, priming doses of amphetamine (0, 0.25 or 1.0 mg/kg) were administered 15 min before the session, or sucrose (one or 10 pellets) was delivered non-contingently at the beginning of the session. Enriched condition rats showed greater extinction for amphetamine and sucrose-maintained responding than isolated condition rats. When primed with amphetamine, isolated condition rats reinstated responding following 0.25 mg/kg of amphetamine, whereas enriched condition rats only reinstated responding after 1.0 mg/kg of amphetamine. Isolated condition rats failed to reinstate responding following sucrose delivery, while enriched condition rats reinstated responding following the delivery of 10 sucrose pellets. These results indicate that environmental enrichment enhanced the extinction of both amphetamine and sucrose-maintained responding. Environmental enrichment also raised the reinstatement threshold specific to the amphetamine prime, suggesting a reduction in the incentive motivational effect of amphetamine.
Sakakura, Yasunori; Tsuruga, Eichi; Irie, Kazuharu; Hosokawa, Yoichiro; Nakamura, Hiroaki; Yajima, Toshiniko
2005-01-01
We examined the immunolocalization of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in areas of resorption caused by osteoclasts/chondroclasts on embryonic days 14–16 (E14–16) in Meckel's cartilage, and compared the results with those in endochondral bones in mice. Intense RANKL and OPG immunoreactivity was detected in the chondrocytes in Meckel's cartilage. On E15, when the incisor teeth were closest to the middle portion of Meckel's cartilage, tartrate-resistant acid phosphatase (TRAP)-positive cells appeared on the lateral side of the cartilage. Furthermore, the dental follicle showed moderate immunoreactivity for RANKL and OPG, whereas osteoblasts derived from perichondral cells were immunonegative for RANKL and OPG in that area. On E16, cartilage resorption by TRAP-positive cells had progressed at the differential position, and intensely immunoreactive products of RANKL were overlapped on and found to exist next to TRAP-positive cells in the resorption area. In developing metatarsal tissue, OPG immunoreactivity was intense in periosteal osteoblasts, whereas RANKL was only faintly seen in some of the periosteal cells. In epiphyseal chondrocytes of the developing femur, RANKL immunoreactivity was moderate, and OPG scarcely detected. These results indicate a peculiarity of RANKL and OPG immunolocalization in resorption of Meckel's cartilage. Growth of the incisor teeth may be involved in the time- and position-specific resorption of Meckel's cartilage through local regulation of the RANKL/OPG system in dental follicular cells and periosteal osteoblasts, whereas RANKL and OPG in chondrocytes seem to contribute to resorption through regulation of the chondroclast function. PMID:16191162
Beloate, Lauren N; Omrani, Azar; Adan, Roger A; Webb, Ian C; Coolen, Lique M
2016-09-21
Experience with sexual behavior causes cross-sensitization of amphetamine reward, an effect dependent on a period of sexual reward abstinence. We previously showed that ΔFosB in the nucleus accumbens (NAc) is a key mediator of this cross-sensitization, potentially via dopamine receptor activation. However, the role of mesolimbic dopamine for sexual behavior or cross-sensitization between natural and drug reward is unknown. This was tested using inhibitory designer receptors exclusively activated by designer drugs in ventral tegmental area (VTA) dopamine cells. rAAV5/hSvn-DIO-hm4D-mCherry was injected into the VTA of TH::Cre adult male rats. Males received clozapine N-oxide (CNO) or vehicle injections before each of 5 consecutive days of mating or handling. Following an abstinence period of 7 d, males were tested for amphetamine conditioned place preference (CPP). Next, males were injected with CNO or vehicle before mating or handling for analysis of mating-induced cFos, sex experience-induced ΔFosB, and reduction of VTA dopamine soma size. Results showed that CNO did not affect mating behavior. Instead, CNO prevented sexual experience-induced cross-sensitization of amphetamine CPP, ΔFosB in the NAc and medial prefrontal cortex, and decreases in VTA dopamine soma size. Expression of hm4D-mCherry was specific to VTA dopamine cells and CNO blocked excitation and mating-induced cFos expression in VTA dopamine cells. These findings provide direct evidence that VTA dopamine activation is not required for initiation or performance of sexual behavior. Instead, VTA dopamine directly contributes to increased vulnerability for drug use following loss of natural reward by causing neuroplasticity in the mesolimbic pathway during the natural reward experience. Drugs of abuse act on the neural pathways that mediate natural reward learning and memory. Exposure to natural reward behaviors can alter subsequent drug-related reward. Specifically, experience with sexual behavior, followed by a period of abstinence from sexual behavior, causes increased reward for amphetamine in male rats. This study demonstrates that activation of ventral tegmental area dopamine neurons during sexual experience regulates cross-sensitization of amphetamine reward. Finally, ventral tegmental area dopamine cell activation is essential for experience-induced neural adaptations in the nucleus accumbens, prefrontal cortex, and ventral tegmental area. These findings demonstrate a role of mesolimbic dopamine in the interaction between natural and drug rewards, and identify mesolimbic dopamine as a key mediator of changes in vulnerability for drug use after loss of natural reward. Copyright © 2016 the authors 0270-6474/16/369949-13$15.00/0.
Yoshimura, Mitsuhiro; Matsuura, Takanori; Ohkubo, Junichi; Ohno, Motoko; Maruyama, Takashi; Ishikura, Toru; Hashimoto, Hirofumi; Kakuma, Tetsuya; Yoshimatsu, Hironobu; Terawaki, Kiyoshi; Uezono, Yasuhito; Ueta, Yoichi
2013-08-01
Cisplatin has been widely used; however, various disadvantageous side effects afflict patients. Rikkunshito (RKT), a traditional Japanese herbal medicine, has been widely prescribed in Japan to improve anorexia; but the mechanisms are unknown. Here we studied whether RKT could improve anorexia induced by cisplatin and changes in feeding-regulating peptides in the hypothalamus in rats. Adult male rats were divided into 4 groups: water+saline (WS), water+cisplatin (WC), RKT+saline (RS), and RKT+cisplatin (RC) groups. Water or RKT (1g/kg) was intragastrically administered for 4 days, from day -1 to day 2, and saline or cisplatin (6mg/kg) was intraperitoneally (i.p.) administered at day 0. After i.p. administration, cumulative food intake, water intake, urine volume and body weight were measured. The rats were then decapitated, followed by removal of the brain, and feeding-regulating peptides in the hypothalamus were measured by in situ hybridization histochemistry. In the three-day measurements, there were no significant changes in cumulative water intake and urine volume. The body weight and cumulative food intake in WC significantly decreased compared to WS, whereas these were not observed in RC. Pro-opiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART) in the arcuate nucleus (ARC) in WC significantly increased, and neuropeptide Y (NPY) in the ARC decreased compared to WS, whereas those in RS and RC were comparable to WS. These results suggest that RKT may have therapeutic potential for anorexia induced by cisplatin. Copyright © 2013. Published by Elsevier Inc.
Increased phospho-adducin immunoreactivity in a murine model of amyotrophic lateral sclerosis.
Shan, X; Hu, J H; Cayabyab, F S; Krieger, C
2005-01-01
Adducins alpha, beta and gamma are proteins that link spectrin and actin in the regulation of cytoskeletal architecture and are substrates for protein kinase C and other signaling molecules. Previous studies have shown that expressions of phosphorylated adducin (phospho-adducin) and protein kinase C are increased in spinal cord tissue from patients who died with amyotrophic lateral sclerosis, a neurodegenerative disorder of motoneurons and other cells. However, the distribution of phospho-adducin immunoreactivity has not been described in the mammalian spinal cord. We have evaluated the distribution of immunoreactivity to serine/threonine-dependent phospho-adducin at a region corresponding to the myristoylated alanine-rich C kinase substrate-related domain of adducin in spinal cords of mice over-expressing mutant human superoxide dismutase, an animal model of amyotrophic lateral sclerosis, and in control littermates. We find phospho-adducin immunoreactivity in control spinal cord in ependymal cells surrounding the central canal, neurons and astrocytes. Phospho-adducin immunoreactivity is localized to the cell bodies, dendrites and axons of some motoneurons, as well as to astrocytes in the gray and white matter. Spinal cords of mutant human superoxide dismutase mice having motoneuron loss exhibit significantly increased phospho-adducin immunoreactivity in ventral and dorsal horn spinal cord regions, but not in ependyma surrounding the central canal, compared with control animals. Increased phospho-adducin immunoreactivity localizes predominantly to astrocytes and likely increases as a consequence of the astrogliosis that occurs in the mutant human superoxide dismutase mouse with disease progression. These findings demonstrate increased immunoreactivity against phosphorylated adducin at the myristoylated alanine-rich C kinase substrate domain in a murine model of amyotrophic lateral sclerosis. As adducin is a substrate for protein kinase C at the myristoylated alanine-rich C kinase substrate domain, the increased phospho-adducin immunoreactivity is likely a consequence of protein kinase C activation in neurons and astrocytes of the spinal cord and evidence for aberrant phosphorylation events in mutant human superoxide dismutase mice that may affect neuron survival.
Egertová, Michaela; Elphick, Maurice R
2007-06-01
CiCBR is a G-protein-coupled receptor in the sea-squirt Ciona intestinalis and the first ortholog of vertebrate CB(1) and CB(2) cannabinoid receptors to be identified in an invertebrate (Elphick et al. [2003] Gene 302:95-101). Here we have used Western blotting and immunocytochemistry to examine expression of CiCBR in adult Ciona, employing novel antibodies to the C-terminal tail of CiCBR. Consistent with the expected mass for CiCBR, a approximately 47-kDa band was detected in Ciona membranes, and immunocytochemical analysis of serial sections of Ciona revealed intense immunoreactivity in the cerebral ganglion localised in a dense meshwork of fibers in the neuropile. Accordingly, Western blot analysis of neural complex homogenates revealed the presence of a approximately 47-kDa band. CiCBR immunoreactivity was also observed in axons exiting the ganglion in the anterior and posterior nerves, and analysis of whole-mount preparations revealed that these axons project over the interior surface of the oral and atrial siphons. Isolated CiCBR-immunoreactive axons not associated with the anterior and posterior nerves were observed projecting through the cortical layer of the cerebral ganglion. Central and peripheral CiCBR-immunoreactive fibers were studded with intensely stained varicosities, indicative of a role for CiCBR in regulation of axonal release of neurotransmitters, neuromodulators, or neurohormones. Collectively, our data suggest that the well-established role that the CB(1) receptor has as an axonal regulator of neurotransmitter release in mammals may have originated with ancestral-type cannabinoid receptors in invertebrate chordates before the emergence of CB(1)- and CB(2)-type receptors in vertebrates. (c) 2007 Wiley-Liss, Inc.
Fish, Charles H.; Bowling, Evelyn
1965-01-01
In an institution for the mentally retarded, an uncontrolled study was made on the effects of d-amphetamine, d-amphetamine followed by trifluoperazine, and of combined d-amphetamine and trifluoperazine on stuttering. Of 28 patients to whom d-amphetamine was given, 14 showed improvement after one month's treatment. Eight more showed improvement when trifluoperazine was given for one month to those who did not improve on d-amphetamine. In many cases, improvement was sustained at least six months after treatment was discontinued. Treatment with d-amphetamine was apparently more effective in patients with functional than with organic retardation. PMID:5836893
Molecular cloning and characterization of oocyte-specific Pat1a in Rana rugosa frogs.
Nakamura, Yoriko; Iwasaki, Takehiro; Umei, Yosuke; Saotome, Kazuhiro; Nakajima, Yukiko; Kitahara, Shoichi; Uno, Yoshinobu; Matsuda, Yoichi; Oike, Akira; Kodama, Maho; Nakamura, Masahisa
2015-10-01
The Pat1 gene is expressed in the immature oocytes of Xenopus, and is reportedly involved in regulating the translation of maternal mRNAs required for oocyte-maturation. However, it is still unknown when Pat1a first appears in the differentiating ovary of amphibians. To address this issue, we isolated the full-length Pat1a cDNA from the frog Rana rugosa and examined its expression in the differentiating ovary of this frog. Among eight different tissues examined, the Pat1a mRNA was detectable in only the ovary. When frozen sections from the ovaries of tadpoles at various stages of development were immunostained for Vasa-a germ cell-specific protein-and Pat1a, Vasa-immunopositive signals were observed in all of the germ cells, whereas Pat1a signals were confined to the growing oocytes (50-200 μm in diameter), and absent from small germ cells (<50 μm in diameter). Forty days after testosterone injection into tadpoles to induce female-to-male sex-reversal, Pat1a-immunoreactive oocytes had disappeared completely from the sex-reversed gonad, but Vasa-positive small germ cells persisted. Thus, Pat1a would be a good marker for identifying the sexual status of the sex-reversing gonad in amphibians. In addition, fluorescence in situ hybridization analysis showed Pat1a to have an autosomal locus, suggesting that Pat1a transcription is probably regulated by a tissue-specific transcription factor in R. rugosa. © 2015 Wiley Periodicals, Inc.
Pacheco Otalora, Luis F.; Skinner, Frank; Oliveira, Mauro S.; Dotson, Bianca Farrel; Arshadmansab, Massoud F.; Pandari, Tarun; Garcia, Ileana; Robles, Leslie; Rosas, Gerardo; Mello, Carlos F.; Ermolinsky, Boris S.; Garrido-Sanabria, Emilio R.
2010-01-01
Voltage gated K+ channels (Kv) are a highly diverse group of channels critical in determining neuronal excitability. Deficits of Kv channel subunit expression and function have been implicated in the pathogenesis of epilepsy. In this study, we investigate whether the expression of the specific subunit Kv3.4 is affected during epileptogenesis following pilocarpine-induced status epilepticus. For this purpose, we used immunohistochemistry, Western blotting assays and comparative analysis of gene expression using TaqMan-based probes and delta-delta cycle threshold (Δ ΔCT) method of quantitative real-time polymerase chain reaction (qPCR) technique in samples obtained from age-matched control and epileptic rats. A marked down-regulation of Kv3.4 immunoreactivity was detected in the stratum lucidum and hilus of dentate gyrus in areas corresponding to the mossy fiber system of chronically epileptic rats. Correspondingly, a 20% reduction of Kv3.4 protein levels was detected in the hippocampus of chronic epileptic rats. Real-time quantitative PCR analysis of gene expression revealed that a significant 33% reduction of transcripts for Kv3.4 (gene Kcnc4) occurred after 1 month of pilocarpine-induced status epilepticus and persisted during the chronic phase of the model. These data indicate a reduced expression of Kv3.4 channels at protein and transcript levels in the epileptic hippocampus. Down-regulation of Kv3.4 in mossy fibers may contribute to enhanced presynaptic excitability leading to recurrent seizures in the pilocarpine model of temporal lobe epilepsy. PMID:20971086
Progranulin expression is upregulated after spinal contusion in mice
Naphade, Swati B.; Kigerl, Kristina A.; Jakeman, Lyn B.; Kostyk, Sandra K.; Popovich, Phillip G.
2015-01-01
Progranulin (proepithelin) is a pleiotropic growth factor associated with inflammation and wound repair in peripheral tissues. It also has been implicated in the response to acute traumatic brain injury as well as to chronic neurodegenerative diseases. To determine whether changes in progranulin expression also accompany acute spinal cord injury, C57BL/6 mice were subjected to mid-thoracic (T9 level) contusion spinal cord injury and analyzed by immunohistochemical and biochemical methods. Whereas spinal cord sections prepared from non-injured laminectomy control animals contained low basal levels of progranulin immunoreactivity in gray matter, sections from injured animals contained intense immunoreactivity throughout the injury epicenter that peaked 7–14 days post injury. Progranulin immunoreactivity colocalized with myeloid cell markers CD11b and CD68, indicating that expression increased primarily in activated microglia and macrophages. Immunoblot analysis confirmed that progranulin protein levels rose after injury. On the basis of quantitative polymerase chain reaction analysis, increased protein levels resulted from a 10-fold rise in progranulin transcripts. These data demonstrate that progranulin is dramatically induced in myeloid cells after experimental spinal cord injury and is positioned appropriately both spatially and temporally to influence recovery after injury. PMID:19946692
Oliveira, Lúcio Garcia de; Endo, Ligia Goes; Sinagawa, Daniele Mayumi; Yonamine, Maurício; Munoz, Daniel Romero; Leyton, Vilma
2013-09-01
Amphetamine use by truck drivers for occupational purposes is widely known. The production and consumption of amphetamines was banned by the Brazilian National Health Surveillance Agency (ANVISA) in October 2011. This study analyzes persistent amphetamine use by truck drivers since the ban was implemented. A convenience sample of 427 truck drivers was taken along highways in São Paulo State in 2012. Participants were asked to answer a structured questionnaire and provide a urine sample to screen for recent amphetamine consumption through toxicological analysis. Among the interviewed drivers, 7% had used some illicit drug recently and 2.7% had used amphetamines. Amphetamines are still consumed by truck drivers despite the risks and the recent ban. The authorities should thus monitor the possession and use of amphetamines by drivers in order to effectively enforce the ban.
2013-01-01
Background Tachykinins can have pro-inflammatory as well as healing effects during tissue reorganization and inflammation. Recent studies report an up-regulation in the expression of the substance P (SP)-preferred receptor, the neurokinin-1 receptor, in marked muscle inflammation (myositis). There is, however, only very little information on the expression patterns and levels of tachykinins in this situation. Methods The tachykinin system was analyzed using a rabbit experimental model of muscle overuse, whereby unilateral muscle exercise in combination with electrical stimulation led to muscle derangement and myositis in the triceps surae muscle (experimental length 1–6 weeks). Evaluations were made for both parts of the muscle (soleus and gastrocnemius muscles) in experimental and non-experimental (contralateral) sides. Morphologic evaluation, immunohistochemistry, in situ hybridization and enzyme immunoassay (EIA) analyses were applied. Results Myositis and muscle derangement occurred focally not only in the experimental side but also in the non-experimental side. In the inflammatory areas (focal myositis areas), there were frequent nerve fibers showing tachykinin-like immunoreactivity and which were parts of nerve fascicles and which were freely dispersed in the tissue. Cells in the inflammatory infiltrates showed tachykinin-like immunoreactivity and tachykinin mRNA expression. Specific immunoreactivity and mRNA expression were noted in blood vessel walls of both sides, especially in focally affected areas. With increasing experimental length, we observed an increase in the degree of immunoreactivity in the vessel walls. The EIA analyses showed that the concentration of tachykinin in the tissue on both sides increased in a time-dependent manner. There was a statistical correlation in the concentration of tachykinin and the level of tachykinin immunoreactivity in the blood vessel walls between experimental and non-experimental sides. Conclusions The observations show an up-regulation of the tachykinin system bilaterally during muscle derangement/myositis in response to pronounced unilateral muscle overuse. This up-regulation occurred in inflammatory areas and was related not only to increased tachykinin innervation but also to tachykinin expression in blood vessel walls and inflammatory cells. Importantly, the tachykinin system appears to be an important factor not only ipsilaterally but also contralaterally in these processes. PMID:23587295
Song, Yafeng; Stål, Per S; Yu, Ji-Guo; Forsgren, Sture
2013-04-12
Tachykinins can have pro-inflammatory as well as healing effects during tissue reorganization and inflammation. Recent studies report an up-regulation in the expression of the substance P (SP)-preferred receptor, the neurokinin-1 receptor, in marked muscle inflammation (myositis). There is, however, only very little information on the expression patterns and levels of tachykinins in this situation. The tachykinin system was analyzed using a rabbit experimental model of muscle overuse, whereby unilateral muscle exercise in combination with electrical stimulation led to muscle derangement and myositis in the triceps surae muscle (experimental length 1-6 weeks). Evaluations were made for both parts of the muscle (soleus and gastrocnemius muscles) in experimental and non-experimental (contralateral) sides. Morphologic evaluation, immunohistochemistry, in situ hybridization and enzyme immunoassay (EIA) analyses were applied. Myositis and muscle derangement occurred focally not only in the experimental side but also in the non-experimental side. In the inflammatory areas (focal myositis areas), there were frequent nerve fibers showing tachykinin-like immunoreactivity and which were parts of nerve fascicles and which were freely dispersed in the tissue. Cells in the inflammatory infiltrates showed tachykinin-like immunoreactivity and tachykinin mRNA expression. Specific immunoreactivity and mRNA expression were noted in blood vessel walls of both sides, especially in focally affected areas. With increasing experimental length, we observed an increase in the degree of immunoreactivity in the vessel walls. The EIA analyses showed that the concentration of tachykinin in the tissue on both sides increased in a time-dependent manner. There was a statistical correlation in the concentration of tachykinin and the level of tachykinin immunoreactivity in the blood vessel walls between experimental and non-experimental sides. The observations show an up-regulation of the tachykinin system bilaterally during muscle derangement/myositis in response to pronounced unilateral muscle overuse. This up-regulation occurred in inflammatory areas and was related not only to increased tachykinin innervation but also to tachykinin expression in blood vessel walls and inflammatory cells. Importantly, the tachykinin system appears to be an important factor not only ipsilaterally but also contralaterally in these processes.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... Activities; Proposed Collection; Comment Request; Drug Testing for Contract Employees (Renewal) AGENCY... electronic docket, go to www.regulations.gov . Title: Drug Testing for Contract Employees. ICR numbers: EPA..., amphetamines, phencyclidine (PCP), and any other controlled substances. The testing for drugs must be completed...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to assess polymorphisms within lipogenic-related candidate genes for association with the reproductive traits; age at puberty (AP), ovulation rate (OR), and weaning-to-estrus interval (WEI). Variations within the anorectic gene Cocaine- and Amphetamine-Regulated Trans...
Chronic Social Stress and Ethanol Increase Expression of KLF11, a Cell Death Mediator, in Rat Brain.
Duncan, Jeremy; Wang, Niping; Zhang, Xiao; Johnson, Shakevia; Harris, Sharonda; Zheng, Baoying; Zhang, Qinli; Rajkowska, Grazyna; Miguel-Hidalgo, Jose Javier; Sittman, Donald; Ou, Xiao-Ming; Stockmeier, Craig A; Wang, Jun Ming
2015-07-01
Major depressive disorder and alcoholism are significant health burdens that can affect executive functioning, cognitive ability, job responsibilities, and personal relationships. Studies in animal models related to depression or alcoholism reveal that the expression of Krüppel-like factor 11 (KLF11, also called TIEG2) is elevated in frontal cortex, which suggests that KLF11 may play a role in stress- or ethanol-induced psychiatric conditions. KLF11 is a transcriptional activator of monoamine oxidase A and B, but also serves other functions in cell cycle regulation and apoptotic cell death. In the present study, immunohistochemistry was used to quantify intensity of nuclear KLF11, combined with an unbiased stereological approach to assess nuclei in fronto-limbic, limbic, and other brain regions of rats exposed chronically to social defeat or ethanol. KLF11 immunoreactivity was increased significantly in the medial prefrontal cortex, frontal cortex, and hippocampus of both stressed rats and rats fed ethanol. However, expression of KLF11 protein was not significantly affected in the thalamus, hypothalamus, or amygdala in either treatment group compared to respective control rats. Triple-label immunofluorescence revealed that KLF11 protein was localized in nuclei of neurons and astrocytes. KLF11 was also co-localized with the immunoreactivity of cleaved caspase-3. In addition, Western blot analysis revealed a significant reduction in anti-apoptotic protein, Bcl-xL, but an increase of caspase-3 expression in the frontal cortex of ethanol-treated rats compared to ethanol-preferring controls. Thus, KLF11 protein is up-regulated following chronic exposure to stress or ethanol in a region-specific manner and may contribute to pro-apoptotic signaling in ethanol-treated rats. Further investigation into the KLF11 signaling cascade as a mechanism for neurotoxicity and cell death in depression and alcoholism may provide novel pharmacological targets to lessen brain damage and maximize neuroprotection in these disorders.
Hakansson, A; Schlyter, F; Berglund, M
2009-01-01
Characteristics of primary amphetamine, heroin and cocaine users were compared in a criminal justice population. 7,085 clients with suspected or reported substance use were studied using the Addiction Severity Index. Variables separating amphetamine, heroin and cocaine users were analyzed in stepwise logistic regression. There were considerably more primary amphetamine users (n = 1,396) than heroin (n = 392) and cocaine (n = 119) users. Amphetamine users were older, a more rural population, and less likely to be non-Nordic immigrants. Compared with heroin, amphetamine use was associated with older age, Nordic origin, nonurban residence, memory/concentration problems, parental alcohol problems, and less history of other opioid use, overdose and detoxification. Compared with cocaine, amphetamine use was associated with older age, Nordic origin, nonurban residence, injecting, tobacco and institution treatment. Overlap of drug use between groups was relatively uncommon. This pattern of amphetamine use, common among Swedish criminals, has relatively distinct boundaries from heroin and cocaine use, commonly involves injecting, and differs from other countries. Psychiatric problems and alcohol heredity were common, and evidence-based treatment for amphetamine users is needed. The connection between amphetamine use and criminal behavior is insufficiently understood and should be further addressed. Copyright 2008 S. Karger AG, Basel.
2012-01-01
Use of amphetamine and methamphetamine is widespread in the general population and common among patients with psychiatric disorders. Amphetamines may induce symptoms of psychosis very similar to those of acute schizophrenia spectrum psychosis. This has been an argument for using amphetamine-induced psychosis as a model for primary psychotic disorders. To distinguish the two types of psychosis on the basis of acute symptoms is difficult. However, acute psychosis induced by amphetamines seems to have a faster recovery and appears to resolve more completely compared to schizophrenic psychosis. The increased vulnerability for acute amphetamine induced psychosis seen among those with schizophrenia, schizotypal personality and, to a certain degree other psychiatric disorders, is also shared by non-psychiatric individuals who previously have experienced amphetamine-induced psychosis. Schizophrenia spectrum disorder and amphetamine-induced psychosis are further linked together by the finding of several susceptibility genes common to both conditions. These genes probably lower the threshold for becoming psychotic and increase the risk for a poorer clinical course of the disease. The complex relationship between amphetamine use and psychosis has received much attention but is still not adequately explored. Our paper reviews the literature in this field and proposes a stress-vulnerability model for understanding the relationship between amphetamine use and psychosis. PMID:23216941
Smith, Andrew M; Pappalardo, Dana; Chen, Wei-Jung A
2008-01-01
In this study, the effects of amphetamine exposure during a portion of the brain growth spurt on the total number of hippocampal pyramidal cells (CA1/CA3 subregions) and the granule cells (dentate gyrus) were examined in both neonatal and adult rats. Intragastric intubation was used to administer 5, 15 or 25 mg/kg/day of amphetamine to Sprague-Dawley rat pups from PDs 4-9. Unbiased stereology was used to estimate the total number of cells present within each hippocampal subregion at both PD 9 and PD 68. The results indicated that neonatal amphetamine exposure did not alter the cell number, the reference volume or the density in any of the hippocampal subregions assessed, regardless of age. However, amphetamine significantly altered the rate of neuronal incorporation in both the hippocampal CA3 subregion and the dentate gyrus, and this effect appeared to be dose-related with the most robust effect observed in the highest amphetamine dose. While these findings did not demonstrate significant injurious effects of neonatal amphetamine treatment on the number of hippocampal neurons, these data suggest that amphetamine may interfere with proper hippocampal development. Future studies employing more sensitive measurements or exposing amphetamine during an alternate period of development may provide more information regarding amphetamine-mediated developmental neurotoxicity.
Higashiyama, Hiroyuki; Billin, Andrew N; Okamoto, Yuji; Kinoshita, Mine; Asano, Satoshi
2007-05-01
Peroxisome proliferator-activated receptor-delta (PPAR-delta) is known as a transcription factor involved in the regulation of fatty acid oxidation and mitochondrial biogenesis in several tissues, such as skeletal muscle, liver and adipose tissues. In this study, to elucidate systemic physiological functions of PPAR-delta, we examined the tissue distribution and localization of PPAR-delta in adult mouse tissues using tissue microarray (TMA)-based immunohistochemistry. PPAR-delta positive signals were observed on variety of tissues/cells in multiple systems including cardiovascular, urinary, respiratory, digestive, endocrine, nervous, hematopoietic, immune, musculoskeletal, sensory and reproductive organ systems. In these organs, PPAR-delta immunoreactivity was generally localized on the nucleus, although cytoplasmic localization was observed on several cell types including neurons in the nervous system and cells of the islet of Langerhans. These expression profiling data implicate various physiological roles of PPAR-delta in multiple organ systems. TMA-based immunohistochemistry enables to profile comprehensive protein localization and distribution in a high-throughput manner.
Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo
Tukker, John J; Klausberger, Thomas; Somogyi, Peter
2015-01-01
Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation. PMID:24141313
Frölich, Jan; Banaschewski, Tobias; Spanagel, Rainer; Döpfner, Manfred; Lehmkuhl, Gerd
2012-09-01
Psychostimulants (methylphenidate and amphetamines) are the drugs of first choice in the pharmacological treatment of children and adolescents with attention deficit hyperactivity disorder (ADHD). We summarize the pharmacological characteristics of amphetamines and compare them with methylphenidate, special emphasis being given to a comparison of effects and side effects of the two substances. Finally, we analyze the abuse and addiction risks. Publications were chosen based on a Medline analysis for controlled studies and meta-analyses published between 1980 and 2011; keywords were amphetamine, amphetamine salts, lisdexamphetamine, controlled studies, and metaanalyses. Amphetamines generally exhibit some pharmacologic similarities with methylphenidate. However, besides inhibiting dopamine reuptake amphetamines also cause the release of monoamines. Moreover, plasma half-life is significantly prolonged. The clinical efficacy and tolerability of amphetamines is comparable to methylphenidate. Amphetamines can therefore be used if the individual response to methylphenidate or tolerability is insufficient before switching to a nonstimulant substance, thus improving the total response rate to psychostimulant treatment. Because of the high abuse potential of amphetamines, especially in adults, the prodrug lisdexamphetamine (Vyvanse) could become an effective treatment alternative. Available study data suggest a combination of high clinical effect size with a beneficial pharmacokinetic profile and a reduced abuse risk. In addition to methylphenidate, amphetamines serve as important complements in the psychostimulant treatment of ADHD. Future studies should focus on a differential comparison of the two substances with regard to their effects on different core symptom constellations and the presence of various comorbidities.
Amphetamine derivative related deaths.
Lora-Tamayo, C; Tena, T; Rodríguez, A
1997-02-28
Amphetamine its methylendioxy (methylendioxyamphetamine methylenedioxymethylamphetamine, methylenedioxyethylamphetamine) and methoxy derivatives (p-methoxyamphetamine and p-methoxymethylamphetamine) are widely abused in Spanish society. We present here the results of a systematic study of all cases of deaths brought to the attention of the Madrid department of the Instituto Nacional de Toxicologia from 1993 to 1995 in which some of these drugs have been found in the cadaveric blood. The cases were divided into three categories: amphetamine and derivatives, amphetamines and alcohol, amphetamines and other drugs. Data on age, sex, clinical symptoms, morphological findings, circumstances of death, when known, and concentration of amphetamine derivatives, alcohol and other drugs in blood are given for each group. The information provided here may prove to be useful for the forensic interpretation of deaths which are directly or indirectly related to abuse of amphetamine derivatives.
Predicting drug court outcome among amphetamine-using participants.
Wu, Lora J; Altshuler, Sandra J; Short, Robert A; Roll, John M
2012-06-01
Amphetamine use and abuse carry with it substantial social costs. Although there is a perception that amphetamine users are more difficult to treat than other substance users, drug courts have been used to effectively address drug-related crimes and hold the potential to lessen the impact of amphetamine abuse through efficacious treatment and rehabilitation. The objective of this study was to identify predictors of drug court outcome among amphetamine-using participants. A drug court database was obtained (N = 540) and amphetamine-using participants (n= 341) identified. Multivariate binary regression models run for the amphetamine-using participants identified being employed and being a parent as predictive of successful completion of the program, whereas being sanctioned to jail during the program was inversely related to program completion. Copyright © 2012 Elsevier Inc. All rights reserved.
The effects of d-govadine on conditioned place preference with d-amphetamine or food reward.
Nesbit, Maya O; Dias, Carine; Phillips, Anthony G
2017-03-15
Tetrahydroprotoberberines (THPB) have a high affinity for dopamine (DA) D1 and D2 receptors and may provide a novel treatment for drug addiction. We assessed the effects of the THPB d-govadine on the acquisition, expression, extinction and reinstatement of d-amphetamine-(1.5mg/kg, i.p.) induced conditioned place preference (CPP). Furthermore, the effects of d-govadine on conditioned association between contextual stimuli and a natural reward were examined using food-induced CPP. In separate experiments, rats received d-govadine (0, 0.5 or 1.0mg/kg, i.p.) before a) each d-amphetamine injection during conditioning, b) expression of amphetamine-induced CPP, c) each extinction session, d) amphetamine-induced reinstatement of CPP, or e) placement into a compartment containing food during conditioning. Although d-govadine had no effect on acquisition of amphetamine CPP, treatment with d-govadine during acquisition dose-dependently extinguished a preference for the amphetamine-associated context more quickly than vehicle treatment. Moreover, d-govadine treatment facilitated the extinction of amphetamine CPP when given repeatedly throughout the extinction phase. Although the expression of amphetamine CPP was not affected by d-govadine administered prior to the expression test, amphetamine-induced reinstatement of CPP following an extinction period was blocked by d-govadine (1.0mg/kg). The intermediate dose of d-govadine blocked the acquisition of food CPP, whereas the high dose facilitated extinction of this preference as compared to vehicle-treated animals. Therefore, d-govadine attenuates the maintenance of conditioned associations between contextual stimuli and amphetamine or food reward, as well as amphetamine-induced reinstatement of drug seeking behaviour. As such, d-govadine may be a candidate for further development as a pharmacological treatment of psychostimulant drug dependence. Copyright © 2017 Elsevier B.V. All rights reserved.
Sakomura, Yasunari; Nagashima, Hirotaka; Aoka, Yoshikazu; Uto, Kenta; Sakuta, Akiko; Aomi, Shigeyuki; Kurosawa, Hiromi; Nishikawa, Toshio; Kasanuki, Hiroshi
2002-09-24
Cystic medial degeneration (CMD) is a histological abnormality that is common in annuloaortic ectasia (AAE) and aortic dissection with Marfan syndrome. Apoptosis and loss of vascular smooth muscle cells (VSMCs) is one of the features of CMD, but little is known about its pathogenesis. Peroxisome proliferator-activated receptor-gamma (PPARgamma), a transcription factor of the nuclear receptor superfamily, has been reported to show antiproliferative effects on VSMCs as well as anti-inflammatory effects on macrophages. PPARgamma agonist has been recently reported to induce apoptosis of cultured VSMCs. We examined the histopathology of ascending aortas in AAE of Marfan patients (n=21) and control patients (n=6) at surgery. RT-PCR was performed to demonstrate expression of PPARgamma in CMD. Localization of PPARgamma was determined by double immunostaining using antibodies against PPARgamma and cell-specific markers (ie, SMCs, macrophages, and T lymphocytes). PPARgamma expression was upregulated in AAE samples but minimal in control samples by RT-PCR (P=0.07). Immunoreactivity against PPARgamma in numerous nuclei of VSMCs was observed in CMD lesions. Severity of CMD correlated with positive immunoreactivity of PPARgamma in medial VSMCs (P=0.03). No inflammatory cells (ie, macrophages or T lymphocytes) were detected in CMD lesions. PPARgamma expression is upregulated in SMCs of CMD without any inflammatory response. Activated PPARgamma in VSMCs might be involved in the pathogenesis of CMD in Marfan's aortas. Regulation of PPARgamma might lead to clinical implication in protection against progression of AAE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, N.M.; Mitchell, W.M.; Contrera, J.F.
1990-01-01
Fenfluramine is an amphetamine derivative that in humans is used primarily as an anorectic agent in the treatment of obesity. In rats, subchronic high-dose d,l-fenfluramine treatment (24 mg/kg subcutaneously, twice daily for 4 days) causes long-lasting decreases in brain serotonin (5HT), its metabolite 5-hydroxyindoleacetic acid, and high-affinity 5HT uptake sites. Moreover, this high-dose treatment regimen causes both selective long-lasting decreases in fine-caliber 5HT-immunoreactive axons and appearance of other 5HT-immunoreactive axons with morphology characteristic of degenerating axons. Determination of the potential neurotoxic effects of fenfluramine treatment using immunohistochemistry is limited from the perspectives that staining is difficult to quantify and thatmore » it relies on presence of the antigen (in this case 5HT), and the 5HT-depleting effects of fenfluramine are well known. In the present study, we used quantitative in vitro autoradiography to assess, in detail, the density and regional distribution of (3H)paroxetine-labeled 5HT and (3H)mazindol-labeled catecholamine uptake sites in response to the high-dose fenfluramine treatment described above. Because monoamine uptake sites are concentrated on monoamine-containing nerve terminals, decreases in uptake site density would provide a quantitative assessment of potential neurotoxicity resulting from this fenfluramine treatment regimen. Marked decreases in densities of (3H)paroxetine-labeled 5HT uptake sites occurred in brain regions in which fenfluramine treatment decreased the density of 5HT-like immunostaining when compared to saline-treated control rats. These included cerebral cortex, caudate putamen, hippocampus, thalamus, and medial hypothalamus.« less
Neuropeptidergic Signaling Partitions Arousal Behaviors in Zebrafish
Schoppik, David; Shi, Veronica J.; Zimmerman, Steven; Coleman, Haley A.; Greenwood, Joel; Soucy, Edward R.
2014-01-01
Animals modulate their arousal state to ensure that their sensory responsiveness and locomotor activity match environmental demands. Neuropeptides can regulate arousal, but studies of their roles in vertebrates have been constrained by the vast array of neuropeptides and their pleiotropic effects. To overcome these limitations, we systematically dissected the neuropeptidergic modulation of arousal in larval zebrafish. We quantified spontaneous locomotor activity and responsiveness to sensory stimuli after genetically induced expression of seven evolutionarily conserved neuropeptides, including adenylate cyclase activating polypeptide 1b (adcyap1b), cocaine-related and amphetamine-related transcript (cart), cholecystokinin (cck), calcitonin gene-related peptide (cgrp), galanin, hypocretin, and nociceptin. Our study reveals that arousal behaviors are dissociable: neuropeptide expression uncoupled spontaneous activity from sensory responsiveness, and uncovered modality-specific effects upon sensory responsiveness. Principal components analysis and phenotypic clustering revealed both shared and divergent features of neuropeptidergic functions: hypocretin and cgrp stimulated spontaneous locomotor activity, whereas galanin and nociceptin attenuated these behaviors. In contrast, cart and adcyap1b enhanced sensory responsiveness yet had minimal impacts on spontaneous activity, and cck expression induced the opposite effects. Furthermore, hypocretin and nociceptin induced modality-specific differences in responsiveness to changes in illumination. Our study provides the first systematic and high-throughput analysis of neuropeptidergic modulation of arousal, demonstrates that arousal can be partitioned into independent behavioral components, and reveals novel and conserved functions of neuropeptides in regulating arousal. PMID:24573274
Yu, C-H; Chu, S-C; Chen, P-N; Hsieh, Y-S; Kuo, D-Y
2017-04-01
Phenylpropanolamine (PPA)-induced appetite control is associated with oxidative stress in the hypothalamus. This study explored whether hypothalamic antioxidants participated in hypothalamic ghrelin system-associated appetite control in PPA-treated rats. Rats were given PPA daily for 4 days, and changes in food intake and the expression of neuropeptide Y (NPY), the cocaine- and amphetamine-regulated transcript (CART), superoxide dismutase, catalase, ghrelin, acyl ghrelin (AG), ghrelin O-acyltransferase (GOAT) and the ghrelin receptor (GHSR1a) were examined and compared. Results showed that both food intake and the expression of NPY and ghrelin/AG/GOAT/GHSR1a decreased in response to PPA treatment with maximum decrease on Day 2 of the treatment. In contrast, the expression of antioxidants and CART increased, with the maximum increase on Day 2, with the expression opposite to that of NPY and ghrelin. A cerebral infusion of either a GHSR1a antagonist or reactive oxygen species scavenger modulated feeding behavior and NPY, CART, antioxidants and ghrelin system expression, showing the involvement of ghrelin signaling and oxidative stress in regulating PPA-mediated appetite control. We suggest that hypothalamic ghrelin signaling system, with the help of antioxidants, may participate in NPY/CART-mediated appetite control in PPA-treated rats. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1987-01-01
Three experiments were run to assess the role of the area postrema in taste-aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning to intact ratsmore » and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less-severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste-aversion learning may involve area post-remamediated mechanisms, particularly at the lower doses, but an intact area postrema is not a necessary condition of the acquisition of an amphetamine-induced taste aversion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.M.; Hunt, W.A.; Lee, J.
1987-08-01
Three experiments were run to assess the role of the area postrema in taste aversion learning resulting from combined treatment with subthreshold unconditioned stimuli and in the acquisition of an amphetamine-induced taste aversion. In the first experiment, it was shown that combined treatment with subthreshold radiation (15 rad) and subthreshold amphetamine (0.5 mg/kg, IP) resulted in the acquisition of a taste aversion. The second experiment showed that lesions of the area postrema blocked taste aversion learning produced by two subthreshold doses of amphetamine. In the third experiment, which looked at the dose-response curve for amphetamine-induced taste aversion learning in intactmore » rats and rats with area postrema lesions, it was shown that both groups of rats acquired taste aversions following injection of amphetamine, although the rats with lesions showed a less severe aversion than the intact rats. The results are interpreted as indicating that amphetamine-induced taste aversion learning may involve area postrema-mediated mechanisms, particularly at the lower doses, but that an intact area postrema is not a necessary condition for the acquisition of an amphetamine-induced taste aversion.« less
Destruction of amphetamine in aqueous solution using gamma irradiation
NASA Astrophysics Data System (ADS)
Alkhuraiji, Turki S.; Ajlouni, Abdul-Wali
2017-10-01
Amphetamine-type stimulants are among the most prevalent and widespread commonly abused drugs. Amphetamine and its derivatives were detected in aquatic environment. This study aimed to demonstrate experimentally the ability of γ-irradiation combined with persulfate anions (S2O82-) to degrade and mineralize the amphetamine in aqueous solution. An initial amphetamine concentration of 125 μM in distilled water was completely degraded by a γ-ray dose of 2.8 kGy. Generation of the sulfate radical (SO4•-) from the fast reaction of added S2O82- with hydrated electrons (eaq-; keaq-/S2O82- = 1.1×1010 M-1 s-1) improved the efficiency of amphetamine degradation and mineralization. A γ-ray dose of 0.667 and 0.350 kGy in the absence and presence of S2O82- anions degraded 90% of the amphetamine, respectively. For γ-ray/free O2 and γ-ray/S2O82- systems, 11.5 and 7 kGy was required for 50% amphetamine mineralization, respectively. Addition of HCO3- anions lowered the amphetamine degradation yield, whereas N2 gas, SO42-, and Cl- anions had a negligible effect.
Dasgupta, A; Spies, J
1998-05-01
Amphetamine and methamphetamine are commonly abused central nervous system stimulants. We describe a rapid new derivatization of amphetamine and methamphetamine using 2,2,2-trichloroethyl chloroformate for gas chromatography-mass spectrometric analysis. Amphetamine and methamphetamine, along with N-propyl amphetamine (internal standard), were extracted from urine using 1-chlorobutane. The derivatization with 2,2,2-trichloroethyl chloroformate can be achieved at room temperature in 10 minutes. The electron ionization mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed two weak molecular ions at m/z 309 and 311, but showed diagnostic strong peaks at m/z 218, 220, and 222. In contrast, chemical ionization of the mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed strong (M + 1) ions at m/z 310 and 312 and other strong diagnostic peaks at m/z 274 and 276. The major advantages of this derivative are the presence of a diagnostic cluster of peaks due to the isotopic effect of three chlorine atoms (isotopes 35 and 37) in the derivatized molecule and the relative ease of its preparation. We also observed strong molecular ions for derivatized methamphetamine in the chemical ionization mass spectrum, but the molecular ions were very weak in the electron ionization mass spectrum. We used the scan mode of mass spectrometry in all analyses. When using a urine standard containing 1,000 ng/mL of amphetamine (a 7.4-micromol/L concentration) and methamphetamine (a 6.7-micromol/L concentration), the within-run precisions were 4.8% for amphetamine and 3.6% for methamphetamine. The corresponding between-run precisions were 5.3% for amphetamine and 6.7% for methamphetamine. The assay was linear for amphetamine and methamphetamine concentrations of 250 to 5,000 ng/mL (amphetamine, 1.9-37.0 micromol/L; methamphetamine, 1.7-33.6 micromol/L). The detection limit was 100 ng/mL (amphetamine, 0.74 micromol/L; methamphetamine, 0.67 micromol/L) using the scan mode of electron ionization mass spectrometry. We observed good a correlation between the concentrations of amphetamine and methamphetamine in five urine specimens positive for amphetamines using the more conventional pentafluoropropionyl derivative and our new derivative using 2,2,2-trichloroethyl chloroformate.
Bagnol, D; Herbrecht, F; Julé, Y; Jarry, T; Cupo, A
1993-09-22
The aim of the present study was to analyze changes in the enkephalin immunoreactivity of sympathetic prevertebral ganglia coeliac plexus and inferior mesenteric ganglion) and intestinal tract (myenteric plexus and external muscle layers) in cats 2 days after left thoracic splanchnic nerve ligation, using radioimmunoassay and immunohistochemical techniques. Specific polyclonal antibodies directed against methionine- and leucine-enkephalin were used. The nerve ligation led to a considerable increase in the enkephalin immunoreactivity in the cranial part of the ligated nerves. This finding confirms the presence, in the cat, of an enkephalin output originating from thoracic spinal structures which are probably enkephalin-containing preganglionic neurons. In prevertebral ganglia the nerve ligation induced a marked decrease in the enkephalin immunoreactivity, which was probably due to the interruption of thoracic enkephalin efferents projecting towards both the coeliac plexus and the inferior mesenteric ganglion. In the digestive tract, the nerve ligation depressed the methionine-enkephalin immunoreactivity only in the gastro-duodenal region, and had no effect on the ileo-colonic region. The results of the present study add to the growing evidence that the sympathetic nervous system is involved in regulating the enteric enkephalinergic innervation, which is probably involved in controlling the intestinal motility.
NASA Technical Reports Server (NTRS)
Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)
1999-01-01
Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.
PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION
España, Rodrigo A.; Jones, Sara R.
2013-01-01
The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050
Glial cells have heart: rH1 Na+ channel mRNA and protein in spinal cord astrocytes.
Black, J A; Dib-Hajj, S; Cohen, S; Hinson, A W; Waxman, S G
1998-07-01
Astrocytes in vitro express several distinct voltage-sensitive sodium currents, including tetrodotoxin (TTX)-resistant in non-stellate astrocytes and TTX-sensitive currents in stellate astrocytes. However, the molecular identity of the underlying channels, and the mechanisms that regulate their expression, have yet to be identified. Since spinal cord astrocytes in vitro express sodium currents that are nearly ten-fold greater that those of astrocytes derived from other regions, we used reverse transcription polymerase chain reaction (RT-PCR), in situ hybridization, and immunocytochemistry to search for a sodium channel mRNA and protein corresponding to a TTX-resistant channel in these cells. RT-PCR did not detect transcripts for SNS, which is known to encode a TTX-resistant current in dorsal root ganglion neurons. However, RT-PCR demonstrated the presence of rH1 mRNA in cultured spinal cord astrocytes derived from postnatal day 0 (P0) Sprague Dawley rats at 7 days in vitro and in also intact spinal cords of P0 and P7 rats. Hybridization signal for rH1 mRNA was detected by in situ hybridization cytochemistry in most non-stellate and, at varying levels, in stellate astrocytes in these cultures. Immunocytochemical studies, utilizing a polyclonal antibody (R-12) generated against a conserved polypeptide sequence of sodium channels, demonstrated sodium channel immunoreactivity in non-stellate and stellate astrocytes in these cultures. Spinal cord cultures reacted with a rH1-specific polyclonal antibody also showed rH1 immunostaining in non-stellate and stellate astrocytes, although the intensity of the rH1 immunoreactivity in both astrocyte morphologies was attenuated compared to that observed with the R-12 generic sodium channel antibody. The presence of rH1 mRNA and protein in non-stellate astrocytes in vitro provides a possible correlate for the TTX-resistant current that has been recorded in these cells. Since TTX-resistant current is not present in stellate astrocytes, the presence of rH1 mRNA and protein in these cells suggests, in addition, that post-translational mechanisms participate in the control of sodium channel expression in these cells.
Daytime Ayahuasca administration modulates REM and slow-wave sleep in healthy volunteers.
Barbanoj, Manel J; Riba, Jordi; Clos, S; Giménez, S; Grasa, E; Romero, S
2008-02-01
Ayahuasca is a traditional South American psychoactive beverage and the central sacrament of Brazilian-based religious groups, with followers in Europe and the United States. The tea contains the psychedelic indole N,N-dimethyltryptamine (DMT) and beta-carboline alkaloids with monoamine oxidase-inhibiting properties that render DMT orally active. DMT interacts with serotonergic neurotransmission acting as a partial agonist at 5-HT(1A) and 5-HT(2A/2C) receptor sites. Given the role played by serotonin in the regulation of the sleep/wake cycle, we investigated the effects of daytime ayahuasca consumption in sleep parameters. Subjective sleep quality, polysomnography (PSG), and spectral analysis were assessed in a group of 22 healthy male volunteers after the administration of a placebo, an ayahuasca dose equivalent to 1 mg DMT kg(-1) body weight, and 20 mg d-amphetamine, a proaminergic drug, as a positive control. Results show that ayahuasca did not induce any subjectively perceived deterioration of sleep quality or PSG-measured disruptions of sleep initiation or maintenance, in contrast with d-amphetamine, which delayed sleep initiation, disrupted sleep maintenance, induced a predominance of 'light' vs 'deep' sleep and significantly impaired subjective sleep quality. PSG analysis also showed that similarly to d-amphetamine, ayahuasca inhibits rapid eye movement (REM) sleep, decreasing its duration, both in absolute values and as a percentage of total sleep time, and shows a trend increase in its onset latency. Spectral analysis showed that d-amphetamine and ayahuasca increased power in the high frequency range, mainly during stage 2. Remarkably, whereas slow-wave sleep (SWS) power in the first night cycle, an indicator of sleep pressure, was decreased by d-amphetamine, ayahuasca enhanced power in this frequency band. Results show that daytime serotonergic psychedelic drug administration leads to measurable changes in PSG and sleep power spectrum and suggest an interaction between these drugs and brain circuits modulating REM and SWS.
Jayaram-Lindström, N; Guterstam, J; Häggkvist, J; Ericson, M; Malmlöf, T; Schilström, B; Halldin, C; Cervenka, S; Saijo, T; Nordström, A-L; Franck, J
2017-01-01
The opioid antagonist naltrexone has been shown to attenuate the subjective effects of amphetamine. However, the mechanisms behind this modulatory effect are currently unknown. We hypothesized that naltrexone would diminish the striatal dopamine release induced by amphetamine, which is considered an important mechanism behind many of its stimulant properties. We used positron emission tomography and the dopamine D2-receptor radioligand [11C]raclopride in healthy subjects to study the dopaminergic effects of an amphetamine injection after pretreatment with naltrexone or placebo. In a rat model, we used microdialysis to study the modulatory effects of naltrexone on dopamine levels after acute and chronic amphetamine exposure. In healthy humans, naltrexone attenuated the subjective effects of amphetamine, confirming our previous results. Amphetamine produced a significant reduction in striatal radioligand binding, indicating increased levels of endogenous dopamine. However, there was no statistically significant effect of naltrexone on dopamine release. The same pattern was observed in rats, where an acute injection of amphetamine caused a significant rise in striatal dopamine levels, with no effect of naltrexone pretreatment. However, in a chronic model, naltrexone significantly attenuated the dopamine release caused by reinstatement of amphetamine. Collectively, these data suggest that the opioid system becomes engaged during the more chronic phase of drug use, evidenced by the modulatory effect of naltrexone on dopamine release following chronic amphetamine administration. The importance of opioid-dopamine interactions in the reinforcing and addictive effects of amphetamine is highlighted by the present findings and may help to facilitate medication development in the field of stimulant dependence. PMID:28440810
The effects of amphetamine exposure on outcome-selective Pavlovian-instrumental transfer in rats
Shiflett, Michael W.
2012-01-01
Rationale Repeated exposure to psychostimulants alters behavioral responses to reward-related cues; however, the motivational underpinnings of this effect have not been fully characterized. Objectives The following study was designed to examine how amphetamine sensitization affects performance in rats on a series of Pavlovian and operant tasks that distinguish between general-incentive and outcome-selective forms of conditioned responses. Methods Adult male rats underwent Pavlovian and instrumental training for food pellet rewards. Following training, rats were sensitized to d-amphetamine (2 mg/kg for 7 days). Rats were subsequently tested on an outcome-selective Pavlovian-instrumental transfer (PIT) task, an outcome-reinstatement task, and an outcome devaluation task. Additionally, in a separate experiment PIT was assessed in amphetamine-sensitized and control rats using a Pavlovian backward-conditioned stimulus. Results Repeated amphetamine exposure sensitized locomotor activity to acute amphetamine challenge. Amphetamine altered responses to CS presentations by increasing conditioned approach. During tests of PIT amphetamine-treated rats showed no outcome-selectivity in their responding, responding to a CS whether or not it shared a common outcome with the instrumental response. No effect of amphetamine sensitization was observed on tests of outcome-selective reinstatement by outcome delivery, or action selection based on outcome value. Amphetamine-sensitized rats showed impaired outcome-selective PIT to a backward CS but were unaltered in conditioned approach. Conclusions Amphetamine sensitization prevents outcome-selective responding during PIT, which is dissociable from amphetamine’s effects on conditioned approach. These data suggest fundamental alterations in how stimuli motivate action in addiction. PMID:22562522
2017-07-14
The Drug Enforcement Administration (DEA) is finalizing the designation of the chemical alpha-phenylacetoacetonitrile (APAAN) and its salts, optical isomers, and salts of optical isomers, as a list I chemical under the Controlled Substances Act (CSA). The DEA proposed control of APAAN, due to its use in clandestine laboratories to illicitly manufacture the schedule II controlled substances phenylacetone (also known as phenyl-2-propanone or P2P), methamphetamine, and amphetamine. This rulemaking finalizes, without change, the control of APAAN as a list I chemical. This action does not establish a threshold for domestic and international transactions of APAAN. As such, all transactions involving APAAN, regardless of size, shall be regulated. In addition, chemical mixtures containing APAAN are not exempt from regulatory requirements at any concentration. Therefore, all transactions of chemical mixtures containing any quantity of APAAN shall be regulated pursuant to the CSA. However, manufacturers may submit an application for exemption for those mixtures that do not qualify for automatic exemption.
Liñán-Rico, A; Wunderlich, J E; Enneking, J T; Tso, D R; Grants, I; Williams, K C; Otey, A; Michel, K; Schemann, M; Needleman, B; Harzman, A; Christofi, F L
2015-08-01
The role of purinergic signaling in human ENS is not well understood. We sought to further characterize the neuropharmacology of purinergic receptors in human ENS and test the hypothesis that endogenous purines are critical regulators of neurotransmission. LSCM-Fluo-4/(Ca(2+))-imaging of postsynaptic Ca(2+) transients (PSCaTs) was used as a reporter of synaptic transmission evoked by fiber tract electrical stimulation in human SMP surgical preparations. Pharmacological analysis of purinergic signaling was done in 1,556 neurons (identified by HuC/D-immunoreactivity) in 235 ganglia from 107 patients; P2XR-immunoreactivity was evaluated in 19 patients. Real-time MSORT (Di-8-ANEPPS) imaging tested effects of adenosine on fast excitatory synaptic potentials (fEPSPs). Synaptic transmission is sensitive to pharmacological manipulations that alter accumulation of extracellular purines: Apyrase blocks PSCaTs in a majority of neurons. An ecto-NTPDase-inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP or adenosine deaminase augments PSCaTs. Blockade of reuptake/deamination of eADO inhibits PSCaTs. Adenosine inhibits fEPSPs and PSCaTs (IC50 = 25 µM), sensitive to MRS1220-antagonism (A3AR). A P2Y agonist ADPβS inhibits PSCaTs (IC50 = 111 nM) in neurons without stimulatory ADPbS responses (EC50 = 960 nM). ATP or a P2X1,2,2/3 (α,β-MeATP) agonist evokes fast, slow, biphasic Ca(2+) transients or Ca(2+) oscillations (ATP,EC50 = 400 mM). PSCaTs are sensitive to P2X1 antagonist NF279. Low (20 nM) or high (5 µM) concentrations of P2X antagonist TNP-ATP block PSCaTs in different neurons; proportions of neurons with P2XR-immunoreactivity follow the order P2X2 > P2X1 > P2X3; P2X1 + P2X2 and P2X3 + P2X2 are co-localized. RT-PCR identified mRNA-transcripts for P2X1-7, P2Y1,2,12-14R. Purines are critical regulators of neurotransmission in human ENS. Purinergic signaling involves P2X1, P2X2, P2X3 channels, P2X1 + P2X2 co-localization and inhibitory P2Y or A3 receptors. These are potential novel therapeutic targets for neurogastroenterology. Published by Elsevier Ltd.
Parathyroid hormone gene expression in hypophosphatemic rats.
Kilav, R; Silver, J; Naveh-Many, T
1995-01-01
Phosphate is central to bone metabolism and we have therefore studied whether parathyroid hormone (PTH) is regulated by dietary phosphate in vivo. Weanling rats were fed diets with different phosphate contents for 3 wk: low phosphate (0.02%), normal calcium (0.6%), normal phosphate (0.3%), and calcium (0.6%); high phosphate (1.2%), high calcium (1.2%). The low phosphate diet led to hypophosphatemia, hypercalcemia, and increased serum 1,25(OH)2D3 together with decreased PTH mRNA levels (25 +/- 8% of controls, P < 0.01) and serum immunoreactive PTH (4.7 +/- 0.8: 22.1 +/- 3.7 pg/ml; low phosphate: control, P < 0.05). A high phosphate diet led to increased PTH mRNA levels. In situ hybridization showed that hypophosphatemia decreased PTH mRNA in all the parathyroid cells. To separate the effect of low phosphate from changes in calcium and vitamin D rats were fed diets to maintain them as vitamin D-deficient and normocalcemic despite the hypophosphatemia. Hypophosphatemic, normocalemic rats with normal serum 1,25(OH)2D3 levels still had decreased PTH mRNAs. Nuclear transcript run-ons showed that the effect of low phosphate was posttranscriptional. Calcium and 1,25(OH)2D3 regulate the parathyroid and we now show that dietary phosphate also regulates the parathyroid by a mechanism which remains to be defined. Images PMID:7615802
de Jong, A J; Klamer, M; Lamers, C B
1987-01-01
This study was undertaken to determine the effect of atropine and somatostatin, two inhibitors of intraduodenal pancreatic enzyme secretion, on bombesin-stimulated release of plasma immunoreactive trypsin in 6 healthy volunteers. Infusion of 5 ng/kg.min bombesin during 30 min induced significant increases in plasma trypsin from 206 +/- 20 to 334 +/- 44 ng/ml (p less than 0.01). Atropine (15 ng/kg as i.v. bolus followed by 5 ng/kg.h) had no influence on the bombesin-stimulated increase in plasma immunoreactive trypsin (207 +/- 20 to 326 +/- 54 ng/ml). Somatostatin (125 micrograms as i.v. bolus followed by 125 micrograms/h) also failed to inhibit the plasma trypsin response to bombesin (207 +/- 18 to 663 +/- 166 ng/ml). These results point to major differences in the regulation of plasma and intraduodenal trypsin secretion.
Lin, Chia-Hsien; Tsai, Ming-Cheng
2005-05-01
The modulation effects of d-amphetamine and procaine on the spontaneously generated action potentials were studied on the RP1 central neuron of giant African snails (Achatina fulica Ferussac). Extra-cellular application of d-amphetamine or procaine reversibly elicited bursts of potential (BoP). Prazosin, propranolol, atropine or d-tubocurarine did not alter the BoP elicited by either d-amphetamine or procaine. KT-5720 or H89 (protein kinase A inhibitors) blocked d-amphetamine-elicited BoP, whereas they did not block the procaine-elicited BoP. U73122, neomycin (phospholipase C inhibitors) blocked the procaine-elicited BoP, whereas they did not block the d-amphetamine-elicited BoP in the same neuron. These results suggest that BoP elicited by d-amphetamine or procaine were associated with protein kinase A and phospholipase C activity in the neuron.
Narcolepsy Treated with Racemic Amphetamine during Pregnancy and Breastfeeding.
Öhman, Inger; Wikner, Birgitta Norstedt; Beck, Olof; Sarman, Ihsan
2015-08-01
This case report describes a woman with narcolepsy treated with racemic amphetamine (rac-amphetamine) during pregnancy and breastfeeding with follow-up on the infant's development up to 10 months of age. The pregnancy outcome and the pharmacokinetics of rac-amphetamine were studied during breastfeeding. The pregnancy and the delivery were uneventful. Concentrations of rac-amphetamine were determined in the plasma of the mother and infant, and in the breast milk with a liquid chromatography-mass spectrometry method. Samples were obtained at 2, 5, and 9 weeks postpartum. The transfer of rac-amphetamine to the breast milk was extensive (mean milk/maternal plasma concentration ratio approximately 3). The breastfed infant had a low plasma concentration of rac-amphetamine (about 9% of the maternal plasma level) and the calculated relative infant dose was low (2%). No adverse effects were observed in the breastfed infant. The infant's somatic and psychomotor development up to 10 months of age was normal. Further studies of amphetamine prescribed for medical reasons during pregnancy and lactation are needed. © The Author(s) 2015.
Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines.
Thomas, David M; Dowgiert, Jennifer; Geddes, Timothy J; Francescutti-Verbeem, Dina; Liu, Xiuli; Kuhn, Donald M
2004-09-09
Neurotoxic amphetamines cause damage to monoamine nerve terminals of the striatum by unknown mechanisms. Microglial activation contributes to the neuronal damage that accompanies injury, disease, and inflammation, but a role for these cells in amphetamine-induced neurotoxicity has received little attention. We show presently that D-methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), D-amphetamine, and p-chloroamphetamine, each of which has been linked to dopamine (DA) or serotonin nerve terminal damage, result in microglial activation in the striatum. The non-neurotoxic amphetamines l-methamphetamine, fenfluramine, and DOI do not have this effect. All drugs that cause microglial activation also increase expression of glial fibrillary acidic protein (GFAP). At a minimum, microglial activation serves as a pharmacologically specific marker for striatal nerve terminal damage resulting only from those amphetamines that exert neurotoxicity. Because microglia are known to produce many of the reactive species (e.g., nitric oxide, superoxide, cytokines) that mediate the neurotoxicity of the amphetamine-class of drugs, their activation could represent an early and essential event in the neurotoxic cascade associated with high-dose amphetamine intoxication.
Bhardwaj, Sanjeev K; Dodat, Fatéma; Lévesque, Daniel; Srivastava, Lalit K
2018-05-08
The mechanisms underlying psychostimulant drug-induced sensitization include long-term cellular and molecular adaptations in dopaminergic circuits. Nur77, a member of the Nur family of transcription factors, is expressed in brain regions receiving dopamine inputs and plays a role in activity-induced synaptic modification. Here we evaluated changes in Nur77 mRNA levels in the medial prefrontal cortex (mPFC), dorsal striatum (Str) and nucleus accumbens (NAc) of rats receiving a repeated, sensitizing regimen of amphetamine (AMPH). Results were compared to two groups of controls - animals receiving repeated injections of saline (Rp-SAL) or with no treatment (CON). Two weeks after the last injection, the effect of an acute challenge dose of AMPH on Nur77 expression was evaluated using in-situ hybridization. Repeated AMPH treatment (Rp-AMPH) increased the levels of Nur77 mRNA in the mPFC, NAc core and shell regions. However, the effects of an acute injection of AMPH in each of the three groups of animals was distinct. Whereas an acute AMPH led to a significant increase of Nur77 in all brain regions of the CON animals, it had no significant effect in Rp-SAL animals. Interestingly, in acute AMPH-injected Rp-AMPH animals, Nur77 mRNA levels in the mPFC, Str and NAc regions were significantly lower compared to CON and Rp-SAL animals treated with acute AMPH. There was a positive correlation between AMPH -induced locomotor activity and Nur77 mRNA expression in CON animals; however, this relationship was absent in Rp-SAL and Rp-AMPH animals. The data suggest that Nur77 is a part of neuroadaptive changes caused by either mild stress of repeated injections as well as AMPH-sensitization and may play a role in abnormal behaviors induced by the drug. Copyright © 2018. Published by Elsevier B.V.
Enhanced stereotyped response to amphetamine after pretreatment with small doses of molindone.
Conway, P; Uretsky, N J
1983-05-01
Pretreatment of rats with small doses of the antipsychotic drug, molindone, enhanced the stereotyped behavioral response to amphetamine. In order to determine whether molindone enhanced amphetamine-induced stereotypy by the same mechanism as chronic administration of amphetamine or drugs that inhibit central noradrenergic transmission, the effect of these drugs on the stereotyped behavior produced by beta-phenethylamine (PEA) was compared. Following the administration of phenoxybenzamine, reserpine and diethyldithiocarbamate, the stereotyped response produced by beta-phenethylamine was intensified. In contrast, neither molindone nor chronic pretreatment with amphetamine altered beta-phenethylamine-induced stereotypy. As shown previously with chronic amphetamine pretreatment, molindone also failed to enhance the stereotyped response produced by apomorphine. However, in contrast to the effects of chronic administration of amphetamine, molindone both increased the striatal concentration of dihydroxyphenylacetic acid (DOPAC) and blocked the ability of small doses of apomorphine to decrease this dopamine (DA) metabolite. The doses of molindone that blocked the apomorphine-induced reduction in the concentration of DOPAC in the striatum correlated with the doses that enhanced amphetamine-induced stereotypy. Since the decrease in DOPAC in the striatum produced by apomorphine is thought to be mediated through the stimulation of striatal DA autoreceptors, these results suggest that molindone enhances amphetamine-induced stereotypy by selectively inhibiting DA autoreceptors.
Gustavsen, Ingebjørg; Mørland, Jørg; Bramness, Jørgen G
2006-05-01
Experimental studies have investigated effects of low oral doses of amphetamine and methamphetamine on psychomotor functions, while less work has been done on effects of high doses taken by abusers in real-life settings. There are indications that intake of high doses may impair traffic related skills, and that abuse of amphetamines may cause hypersomnolence at the end-of-binge. The present study aimed at investigating the concentration-effect relationship between blood amphetamines concentrations and impairment in a population of real-life users. Eight hundred and seventy-eight cases with amphetamine or methamphetamine as the only drugs present in the blood samples were selected from the impaired driver registry at The Norwegian Institute of Public Health. In each case the police physician had concluded on whether the driver was impaired or not. 27% of the drivers were judged as not impaired, while 73% were judged as impaired. There was a positive relationship between blood amphetamines concentrations and impairment. The relationship reached a ceiling at blood amphetamines concentrations of 0.27-0.53 mg/l. Younger drivers were more often judged impaired than older drivers at similar concentrations. Despite the performance enhancing qualities of amphetamines demonstrated in some low dose laboratory experiments; this study revealed a positive relationship between blood amphetamines concentration and traffic related impairment.
Soto-Montenegro, María Luisa; Vicente-Rodríguez, Marta; Pérez-García, Carmen; Gramage, Esther; Desco, Manuel; Herradón, Gonzalo
2015-03-30
Amphetamine-induced neurotoxic effects have traditionally been studied using immunohistochemistry and other post-mortem techniques, which have proven invaluable for the definition of amphetamine-induced dopaminergic damage in the nigrostriatal pathway. However, these approaches are limited in that they require large numbers of animals and do not provide the temporal data that can be collected in longitudinal studies using functional neuroimaging techniques. Unfortunately, functional imaging studies in rodent models of drug-induced neurotoxicity are lacking. The aim of this study was to evaluate in vivo the changes in brain glucose metabolism caused by amphetamine in the pleiotrophin knockout mouse (PTN-/-), a genetic model with increased vulnerability to amphetamine-induced neurotoxic effects. We showed that administration of amphetamine causes a significantly greater loss of striatal tyrosine hydroxylase content in PTN-/- mice than in wild-type (WT) mice. In addition, [(18)F]-FDG-PET shows that amphetamine produces a significant decrease in glucose metabolism in the striatum and prefrontal cortex in the PTN-/- mice, compared to WT mice. These findings suggest that [(18)F]-FDG uptake measured by PET is useful for detecting amphetamine-induced changes in glucose metabolism in vivo in specific brain areas, including the striatum, a key feature of amphetamine-induced neurotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The non-human primate striatum undergoes marked prolonged remodeling during postnatal development
Martin, Lee J.; Cork, Linda C.
2014-01-01
We examined the postnatal ontogeny of the striatum in rhesus monkeys (Macaca mulatta) to identify temporal and spatial patterns of histological and chemical maturation. Our goal was to determine whether this forebrain structure is developmentally static or dynamic in postnatal life. Brains from monkeys at 1 day, 1, 4, 6, 9, and 12 months of age (N = 12) and adult monkeys (N = 4) were analyzed. Nissl staining was used to assess striatal volume, cytoarchitecture, and apoptosis. Immunohistochemistry was used to localize and measure substance P (SP), leucine-enkephalin (LENK), tyrosine hydroxylase (TH), and calbindin D28 (CAL) immunoreactivities. Mature brain to body weight ratio was achieved at 4 months of age, and striatal volume increased from ∼1.2 to ∼1.4 cm3 during the first postnatal year. Nissl staining identified, prominently in the caudate nucleus, developmentally persistent discrete cell islands with neuronal densities greater than the surrounding striatal parenchyma (matrix). Losses in neuronal density were observed in island and matrix regions during maturation, and differential developmental programmed cell death was observed in islands and matrix regions. Immunohistochemistry revealed striking changes occurring postnatally in striatal chemical neuroanatomy. At birth, the immature dopaminergic nigrostriatal innervation was characterized by islands enriched in TH-immunoreactive puncta (putative terminals) in the neuropil; TH-enriched islands aligned completely with areas enriched in SP immunoreactivity but low in LENK immunoreactivity. These areas enriched in SP immunoreactivity but low in LENK immunoreactivity were identified as striosome and matrix areas, respectively, because CAL immunoreactivity clearly delineated these territories. SP, LENK, and CAL immunoreactivities appeared as positive neuronal cell bodies, processes, and puncta. The matrix compartment at birth contained relatively low TH-immunoreactive processes and few SP-positive neurons but was densely populated with LENK-immunoreactive neurons. The nucleus accumbens part of the ventral striatum also showed prominent differences in SP, LENK, and CAL immunoreactivities in shell and core territories. During 12 months of postnatal maturation salient changes occurred in neurotransmitter marker localization: TH-positive afferents densely innervated the matrix to exceed levels of immunoreactivity in the striosomes; SP immunoreactivity levels increased in the matrix; and LENK-immunoreactivity levels decreased in the matrix and increased in the striosomes. At 12 months of age, striatal chemoarchitecture was similar qualitatively to adult patterns, but quantitatively different in LENK and SP in caudate, putamen, and nucleus accumbens. This study shows for the first time that the rhesus monkey striatum requires more than 12 months after birth to develop an adult-like pattern of chemical neuroanatomy and that principal neurons within striosomes and matrix have different developmental programs for neuropeptide expression. We conclude that postnatal maturation of the striatal mosaic in primates is not static but, rather, is a protracted and dynamic process that requires many synchronous and compartment-selective changes in afferent innervation and in the expression of genes that regulate neuronal phenotypes. PMID:25294985
Amphetamine as a social drug: Effects of d-amphetamine on social processing and behavior
Wardle, Margaret C.; Garner, Matthew J.; Munafò, Marcus R.; de Wit, Harriet
2012-01-01
Rationale Drug users often report using drugs to enhance social situations, and empirical studies support the idea that drugs increase both social behavior and the value of social interactions. One way drugs may affect social behavior is by altering social processing, for example by decreasing perceptions of negative emotion in others. Objectives We examined effects of d-amphetamine on processing of emotional facial expressions, and on the social behavior of talking. We predicted amphetamine would enhance attention, identification and responsivity to positive expressions, and that this in turn would predict increased talkativeness. Methods Over three sessions, 36 healthy normal adults received placebo, 10mg, and 20mg d-amphetamine under counterbalanced double-blind conditions. At each session we measured processing of happy, fearful, sad and angry expressions using an attentional visual probe task, a dynamic emotion identification task, and measures of facial muscle activity. We also measured talking. Results Amphetamine decreased the threshold for identifying all emotions, increased negative facial responses to sad expressions, and increased talkativeness. Contrary to our hypotheses, amphetamine did not alter attention to, identification of or facial responses to positive emotions specifically. Interestingly, the drug decreased the threshold to identify all emotions, and this effect was uniquely related to increased talkativeness, even after controlling for overall sensitivity to amphetamine. Conclusions The results suggest that amphetamine may encourage sociability by increasing sensitivity to subtle emotional expressions. These findings suggest novel social mechanisms that may contribute to the rewarding effects of amphetamine. PMID:22526538
Predictors of young adults' amphetamine use and disorders: a prospective study.
Hayatbakhsh, Mohammad R; Najman, Jake M; Bor, William; Williams, Gail M
2009-05-01
Understanding the risk factors that predict amphetamine use and development of amphetamine abuse or dependence (disorder) may help guide preventive interventions. This study aimed to investigate the correlates and predictors of young adults' amphetamine use and use disorders. Prospective cohort, population-based study which started in Brisbane, South East Queensland (Australia) in 1981. The study participants were a cohort of 2042 young adults, followed up from birth to young adulthood. At the 21-year follow-up, amphetamine use was assessed via a self-report questionnaire, and amphetamine use disorder (AUD) was assessed using the Composite International Diagnostic Interview (CIDI-Auto). Potential predictors (15 risk factors) were assessed between baseline (antenatal visit) and the 21-year follow-up. These included participant's gender, mother's age and education, maternal marital status and quality of marital relationship, maternal tobacco and alcohol consumption, mother-child communication, child mental health and problem behaviours, child smoking and alcohol consumption and child school performance. Young adult amphetamine users were more likely to have concurrent symptoms of mental illness and problem behaviours and to use or abuse cigarettes, cannabis, or other illicit drugs. In multivariate analyses, young adults' amphetamine use and disorder were disproportionately more common among males and those who have prospectively reported aggression/delinquency or smoking at 14 years, or who have experienced childhood sexual abuse. Our findings suggest that problem behaviours, smoking and childhood sexual abuse are predictors of initiation to use of amphetamines and development of amphetamine abuse and dependence.
Nicotine Modifies Corticostriatal Plasticity and Amphetamine Rewarding Behaviors in Mice123
Storey, Granville P.; Heimbigner, Lauren; Walwyn, Wendy M.; Bamford, Nigel S.
2016-01-01
Abstract Corticostriatal signaling participates in sensitized responses to drugs of abuse, where short-term increases in dopamine availability provoke persistent, yet reversible, changes in glutamate release. Prior studies in mice show that amphetamine withdrawal promotes a chronic presynaptic depression in glutamate release, whereas an amphetamine challenge reverses this depression by potentiating corticostriatal activity in direct pathway medium spiny neurons. This synaptic plasticity promotes corticostriatal activity and locomotor sensitization through upstream changes in the activity of tonically active cholinergic interneurons (ChIs). We used a model of operant drug-taking behaviors, in which mice self-administered amphetamine through an in-dwelling catheter. Mice acquired amphetamine self-administration under fixed and increasing schedules of reinforcement. Following a period of abstinence, we determined whether nicotinic acetylcholine receptors modified drug-seeking behavior and associated alterations in ChI firing and corticostriatal activity. Mice responding to conditioned reinforcement showed reduced ChI and corticostriatal activity ex vivo, which paradoxically increased following an amphetamine challenge. Nicotine, in a concentration that increases Ca2+ influx and desensitizes α4β2*-type nicotinic receptors, reduced amphetamine-seeking behaviors following abstinence and amphetamine-induced locomotor sensitization. Nicotine blocked the depression of ChI firing and corticostriatal activity and the potentiating response to an amphetamine challenge. Together, these results demonstrate that nicotine reduces reward-associated behaviors following repeated amphetamine and modifies the changes in ChIs firing and corticostriatal activity. By returning glutamatergic activity in amphetamine self-administering mice to a more stable and normalized state, nicotine limits the depression of striatal activity in withdrawal and the increase in activity following abstinence and a subsequent drug challenge. PMID:26866057
Extended Detection of Amphetamine and Methamphetamine in Oral Fluid.
Andås, Hilde T; Enger, Asle; Øiestad, Åse Marit L; Vindenes, Vigdis; Christophersen, Asbjørg S; Huestis, Marilyn A; Øiestad, Elisabeth L
2016-02-01
Amphetamine and methamphetamine are popular drugs of abuse worldwide and are important components of drug monitoring programs. Windows of detection for amphetamine and methamphetamine in oral fluid after high doses have not been investigated. Repeated high-dose ingestions are likely to cause positive samples for extended periods. Common routes of administration of amphetamine/methamphetamine in Norway are oral intake or injection. The aim of this study was to investigate windows of detection for amphetamine and methamphetamine in oral fluid from drug addicts under sustained abstinence during detoxification. Twenty-five patients admitted to a closed detoxification unit were included in this study. Oral fluid samples were collected daily in the morning and evening, and urine every morning for 10 days. A blood sample was drawn during the first 5 days after admission if the patient consented. Oral fluid results were compared with urine results to determine whether a new ingestion occurred. Oral fluid was collected with the Intercept oral fluid collection device. In-house cutoff concentrations for amphetamine and methamphetamine were 6.8 and 7.5 mcg/L, respectively, in oral fluid, and 135 and 149 mcg/L, respectively, in urine. Amphetamines were detected in 11 oral fluid, 5 urine, and 2 blood specimens from 25 patients. Patients self-reported amphetamines intake of up to 0.5-2 g daily. Windows of detection for amphetamine and methamphetamine in oral fluid were up to 8 days, longer than in urine at the applied cutoff values. These data confirm that oral fluid is a viable alternative to urine for monitoring amphetamine abuse, and that these substances might be detected in oral fluid for at least 1 week after ingestion of high doses. Such long detection times were, as far as we are aware, never reported previously for oral fluid amphetamines.
Kraemer, Thomas; Roditis, Susanne K; Peters, Frank T; Maurer, Hans H
2003-03-01
Prenylamine (R,S-N-(3,3-diphenylpropyl-methyl-2-phenethylamine), a World Health Organization class V calcium antagonist, is known to be metabolized to amphetamine. In this study, amphetamine concentrations after a single-dose administration of prenylamine were determined to check if they reached values that could be of analytical and/or pharmacological importance in clinical and forensic toxicology. Enantiomeric composition of amphetamine was also studied. Five volunteers received a single 120-mg oral dose of prenylamine. Urine samples were analyzed using the Abbott TDx immunoassay Amphetamine/Methamphetamine II and using our routine systematic toxicological analysis (STA) gas chromatography-mass spectrometry (GC-MS) procedure. For quantitation purposes, GC-MS was used in the selected-ion monitoring (SIM) mode (ions m/z 118, 122, 240, 244) after solid-phase extraction (Isolute Confirm HCX) and derivatization (heptafluorobutyric anhydride). Amphetamine-d5 was used as internal standard (IS). Chiral separation of the heptafluorobutyrated amphetamine enantiomers was achieved using an Astec Chiraldex G-PN column. The TDx results showed a great variability for the different volunteers. A urine sample of one volunteer showed results as high as 3200 ng/mL, whereas the urine samples of another volunteer never gave results greater than the TDx detection limit (100 ng/mL). Using the STA procedure, the presence of amphetamine could be confirmed in all urine samples with TDx results greater than the cutoff value (300 ng/mL). Using the GC-MS SIM method, amphetamine concentrations up to 1280 ng/mL were determined. Chiral analysis revealed that both enantiomers of amphetamine were present in the samples with a surplus of the S(+)-enantiomer in the early phase of excretion. Forensic implications are discussed.
Amphetamine enhances endurance by increasing heat dissipation.
Morozova, Ekaterina; Yoo, Yeonjoo; Behrouzvaziri, Abolhassan; Zaretskaia, Maria; Rusyniak, Daniel; Zaretsky, Dmitry; Molkov, Yaroslav
2016-09-01
Athletes use amphetamines to improve their performance through largely unknown mechanisms. Considering that body temperature is one of the major determinants of exhaustion during exercise, we investigated the influence of amphetamine on the thermoregulation. To explore this, we measured core body temperature and oxygen consumption of control and amphetamine-trea ted rats running on a treadmill with an incrementally increasing load (both speed and incline). Experimental results showed that rats treated with amphetamine (2 mg/kg) were able to run significantly longer than control rats. Due to a progressively increasing workload, which was matched by oxygen consumption, the control group exhibited a steady increase in the body temperature. The administration of amphetamine slowed down the temperature rise (thus decreasing core body temperature) in the beginning of the run without affecting oxygen consumption. In contrast, a lower dose of amphetamine (1 mg/kg) had no effect on measured parameters. Using a mathematical model describing temperature dynamics in two compartments (the core and the muscles), we were able to infer what physiological parameters were affected by amphetamine. Modeling revealed that amphetamine administration increases heat dissipation in the core. Furthermore, the model predicted that the muscle temperature at the end of the run in the amphetamine-treated group was significantly higher than in the control group. Therefore, we conclude that amphetamine may mask or delay fatigue by slowing down exercise-induced core body temperature growth by increasing heat dissipation. However, this affects the integrity of thermoregulatory system and may result in potentially dangerous overheating of the muscles. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Meyer, Andrew C.; Bardo, Michael T.
2015-01-01
Rationale Previous research suggests both genetic and environmental influences on substance abuse vulnerability. Objectives The current work sought to investigate the interaction of genes and environment on the acquisition of amphetamine self-administration, as well as amphetamine-stimulated dopamine (DA) release in nucleus accumbens shell using in vivo microdialysis. Methods Inbred Lewis (LEW) and Fischer (F344) rat strains were raised in either an enriched condition (EC), social condition (SC), or isolated condition (IC). Acquisition of amphetamine self-administration (0.1 mg/kg/infusion) was determined across an incrementing daily fixed ratio (FR) schedule. In a separate cohort of rats, extracellular DA and the metabolite dihydroxyphenylacetic acid (DOPAC) were measured in the nucleus accumbens shell following an acute amphetamine injection (1 mg/kg). Results “Addiction-prone” LEW had greater acquisition of amphetamine self-administration on a FR1 schedule compared to “addiction-resistant” F344 when raised in the SC environment. These genetic differences were negated in both the EC and IC environments, with enrichment buffering against self-administration and isolation enhancing self-administration in both strains. On a FR5 schedule, the isolation-induced increase in amphetamine self-administration was greater in F344 than LEW. While no group differences were obtained in extracellular DA, gene x environment differences were obtained in extracellular levels of the metabolite DOPAC. In IC rats only, LEW showed an attenuation in the amphetamine-induced decrease in DOPAC compared to F344. IC LEW rats also had an attenuated DOPAC response to amphetamine compared to EC LEW. Conclusions The current results demonstrate gene x environment interactions in amphetamine self-administration and amphetamine-induced changes in extracellular DOPAC in NAc shell. However, the behavioral and neurochemical differences were not related directly, indicating that mechanisms independent of DA metabolism in NAc shell likely mediate the gene x environment effects in amphetamine self-administration. PMID:25566972
Banks, Matthew L; Snyder, Rodney W; Fennell, Timothy R; Negus, S Stevens
2017-05-01
Benzphetamine is a Schedule III anorectic agent that is a prodrug for d-amphetamine and d-methamphetamine and may have utility as an "agonist" medication for cocaine use disorder treatment. This study evaluated the pharmacokinetic-pharmacodynamic profile of benzphetamine using a drug discrimination procedure in rhesus monkeys. The potency and time course of cocaine-like discriminative stimulus effects were compared for benzphetamine (10-18mg/kg, intramuscular (IM)) and d-amphetamine (0.032-0.32mg/kg, IM) in monkeys (n=3-4) trained to discriminate IM cocaine (0.32mg/kg) from saline in a two-key food-reinforced discrimination procedure. Parallel pharmacokinetic studies in the same monkeys determined plasma benzphetamine, d-methamphetamine and/or d-amphetamine levels for correlation with behavioral effects. d-Amphetamine produced dose-dependent, time-dependent, and full cocaine-like effects, i.e. ≥90% cocaine-appropriate responding, in all monkeys without altering response rates. The time course of d-amphetamine's cocaine-like discriminative stimulus effects correlated with plasma d-amphetamine levels. Benzphetamine was 180-fold less potent than d-amphetamine and produced full cocaine-like effects in only 2 of 4 monkeys while significantly decreasing response rates. Benzphetamine administration increased plasma d-methamphetamine (peak at 100min) and d-amphetamine (peak at 24h) levels, but the time course of behavioral effects did not correlate with increased levels of benzphetamine, d-methamphetamine or d-amphetamine. These results suggest that benzphetamine yields d-amphetamine and d-methamphetamine as active metabolites in rhesus monkeys, but generation of these metabolites is not sufficient to account for benzphetamine behavioral effects. The incomplete cocaine substitution profile and protracted d-amphetamine plasma levels suggest that benzphetamine may still warrant further evaluation as a candidate pharmacotherapy for cocaine use disorder treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Meyer, Andrew C; Bardo, Michael T
2015-07-01
Previous research suggests both genetic and environmental influences on substance abuse vulnerability. The current work sought to investigate the interaction of genes and environment on the acquisition of amphetamine self-administration as well as amphetamine-stimulated dopamine (DA) release in nucleus accumbens shell using in vivo microdialysis. Inbred Lewis (LEW) and Fischer (F344) rat strains were raised in either an enriched condition (EC), social condition (SC), or isolated condition (IC). Acquisition of amphetamine self-administration (0.1 mg/kg/infusion) was determined across an incrementing daily fixed ratio (FR) schedule. In a separate cohort of rats, extracellular DA and the metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were measured in the nucleus accumbens shell following an acute amphetamine injection (1 mg/kg). "Addiction-prone" LEW rats had greater acquisition of amphetamine self-administration on a FR1 schedule compared to "addiction-resistant" F344 rats when raised in the SC environment. These genetic differences were negated in both the EC and IC environments, with enrichment buffering against self-administration and isolation enhancing self-administration in both strains. On a FR5 schedule, the isolation-induced increase in amphetamine self-administration was greater in F344 than LEW rats. While no group differences were obtained in extracellular DA, gene × environment differences were obtained in extracellular levels of the metabolite DOPAC. In IC rats only, LEW rats showed attenuation in the amphetamine-induced decrease in DOPAC compared to F344 rats. IC LEW rats also had an attenuated DOPAC response to amphetamine compared to EC LEW rats. The current results demonstrate gene × environment interactions in amphetamine self-administration and amphetamine-induced changes in extracellular DOPAC in nucleus accumbens (NAc) shell. However, the behavioral and neurochemical differences were not related directly, indicating that mechanisms independent of DA metabolism in NAc shell likely mediate the gene × environment effects in amphetamine self-administration.
Marchese, Natalia Andrea; Artur de laVillarmois, Emilce; Basmadjian, Osvaldo Martin; Perez, Mariela Fernanda; Baiardi, Gustavo; Bregonzio, Claudia
2016-03-01
Angiotensin II, by activation of its brain AT1-receptors, plays an active role as neuromodulator in dopaminergic transmission. These receptors participate in the development of amphetamine-induced behavioral and dopamine release sensitization. Dopamine is involved in cognitive processes and provides connectivity between brain areas related to these processes. Amphetamine by its mimetic activity over dopamine neurotransmission elicits differential responses after acute administration or after re-exposure following long-term withdrawal periods in different cognitive processes. The purpose of this study is to evaluate the AT1-receptor involvement in the acute and long-term amphetamine-induced alterations in long-term memory and in cellular-related events. Male Wistar rats (250-300 g) were used in this study. Acute effects: Amphetamine (0.5/2.5 mg/kg i.p.) was administered after post-training in the inhibitory avoidance (IA) response. The AT1-receptor blocker Losartan was administered i.c.v. before a single dose of amphetamine (0.5 mg/kg i.p.). Long-term effects: The AT1-receptors blocker Candesartan (3 mg/kg p.o.) was administered for 5 days followed by 5 consecutive days of amphetamine (2.5 mg/kg/day, i.p.). The neuroadaptive changes were evidenced after 1 week of withdrawal by an amphetamine challenge (0.5 mg/kg i.p.). The IA response, the neuronal activation pattern, and the hippocampal synaptic transmission were evaluated. The impairing effect in the IA response of post-training acute amphetamine was partially prevented by Losartan. The long-term changes induced by repeated amphetamine (resistance to acute amphetamine interference in the IA response, neurochemical altered response, and increased hippocampal synaptic transmission) were prevented by AT1-receptors blockade. AT1-receptors are involved in the acute alterations and in the neuroadaptations induced by repeated amphetamine associated with neurocognitive processes.
Treatment for amphetamine withdrawal.
Srisurapanont, M; Jarusuraisin, N; Kittirattanapaiboon, P
2001-01-01
Amphetamine withdrawal has been less studied although it is a common problem with a prevalent rate of 87% among amphetamine users. Its symptoms, in particular intense craving, may be a critical factor leading to relapse of amphetamine use. In clinical practice, treatment for cocaine withdrawal has been recommended for the management of amphetamine withdrawal although the pharmacodynamic and pharmacokinetic properties of these two substances are not the same. To search and determine risks, benefits, and costs of a variety of treatments for the management of amphetamine withdrawal. Electronic searches of MEDLINE (1966 - December 2000), EMBASE (1980 - February 2001), CINAHL (1982 - January 2001) and Cochrane Controlled Trials Register (Cochrane Library 2000 issue 4) were undertaken. References to the articles obtained by any means were searched. All relevant randomised controlled trials (RCTs) and controlled clinical trials (CCTs) were included. Participants were people with amphetamine withdrawal, diagnosed by any set of criteria. Any kinds of biological and psychological treatments both alone and combined were examined. A variety of outcomes, for example, number of treatment responders, score changes, were considered. Two reviewers evaluated and extracted the data independently. The dichotomous data were extracted on an intention-to-treat basis in which the dropouts were assigned as participants with the worst outcomes. The Relative Risk (RR) with the 95% confidence interval (95% CI) was used to assess the dichotomous data. The Weighted Mean Difference (WMD) with 95% CI was used to assessed the continuous data. The results of two studies have shown some benefits of amineptine in the treatment of amphetamine withdrawal. Those benefits can be seen in the respects of discontinuation rate and global state, as measured by Clinical Global Impression Scale. However, no direct benefit of amineptine on amphetamine withdrawal symptoms or craving was shown. The evidence about the treatment for amphetamine withdrawal is very limited. Amineptine has limited benefits on some amphetamine withdrawal symptoms. Due to a number of reports of amineptine abuse, it has been withdrawn from the market for a few years. At present, no available treatment has been demonstrated to be effective in the treatment of amphetamine withdrawal. The medications that should be considered for further treatment studies may be those with the propensities to increase dopamine, norepinephrine and/or serotonin activities of the brain. Naturalistic studies of amphetamine withdrawal symptoms and course are also crucial for the development of study designs appropriate for further treatment studies of amphetamine withdrawal.
Kopra, Jaakko J; Panhelainen, Anne; Af Bjerkén, Sara; Porokuokka, Lauriina L; Varendi, Kärt; Olfat, Soophie; Montonen, Heidi; Piepponen, T Petteri; Saarma, Mart; Andressoo, Jaan-Olle
2017-02-08
Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum. SIGNIFICANCE STATEMENT Delivery of ectopic glial cell line-derived neurotrophic factor (GDNF) promotes the function, plasticity, and survival of midbrain dopaminergic neurons, the dysfunction of which contributes to various neurological and psychiatric diseases. However, how the deletion or reduction of GDNF in the CNS affects the function of dopaminergic neurons has remained unknown. Using conditional Gdnf knock-out mice, we found that endogenous GDNF affects striatal dopamine homeostasis and regulates amphetamine-induced behaviors by regulating the level and function of dopamine transporters. These data regarding the physiological role of GDNF are relevant in the context of neurological and neurodegenerative diseases that involve changes in dopamine transporter function. Copyright © 2017 the authors 0270-6474/17/371581-10$15.00/0.
Striberny, Anja; Jørgensen, Even H
2017-05-15
Despite vast research attention, the knowledge about central mechanisms of appetite regulation in teleost remains inconclusive. A common strategy in studies on appetite regulating mechanisms is to measure the response to feed restriction or - deprivation, but responses vary between fish species and between experiments, and are also likely dependent on the degree of energy perturbation. The anadromous Arctic charr is an interesting model for studying appetite regulation as its feeding cycle comprises months of winter anorexia, and hyperphagia during summer. Here we studied how the gene expression of putative hypothalamic appetite regulators were affected by two days, one week and one month feed deprivation during summer, and subsequent re-feeding and exposure to feed flavour. Short-term feed deprivation caused only a minor reduction in condition factor and had no effect on hypothalamic gene expression. Long-term feed-deprivation caused a marked reduction in weight and condition factor which contrasted the increase in weight and condition factor seen in ad libitum fed controls. A marked energy perturbation by feed deprivation was also indicated by a lower hypothalamic expression of the genes encoding insulin-like growth factor 1 (IGF1) and IGF1 binding protein 5 in the feed deprived charr compared to fed controls. Surprisingly, long-term feed deprivation and energy perturbation did not induce changes in hypothalamic appetite regulators. Unexpectedly, re-feeding and exposure to feed flavour caused an increase in the expression of the genes encoding the orexigenic agouti-related peptide and the anorexigenic melanocortin receptor 4 and cocaine- and amphetamine-regulated transcript. Our study gives strong evidence for a role of these in appetite regulation in Arctic charr, but their mechanisms of action remain unknown. We suggest that changes in gene expression are more likely to be registered during transition phases, e.g. from fasting to feeding and upon stimulatory inputs such as feed flavour. Copyright © 2017 Elsevier Inc. All rights reserved.
Ramanadham, Sasanka; Song, Haowei; Hsu, Fong-Fu; Zhang, Sheng; Crankshaw, Mark; Grant, Gregory A; Newgard, Christopher B; Bao, Shunzhong; Ma, Zhongmin; Turk, John
2003-12-02
Many cells express a group VIA 84 kDa phospholipase A(2) (iPLA(2)beta) that is sensitive to inhibition by a bromoenol lactone (BEL) suicide substrate. Inhibition of iPLA(2)beta in pancreatic islets and insulinoma cells suppresses, and overexpression of iPLA(2)beta in INS-1 insulinoma cells amplifies, glucose-stimulated insulin secretion, suggesting that iPLA(2)beta participates in secretion. Western blotting analyses reveal that glucose-responsive 832/13 INS-1 cells express essentially no 84 kDa iPLA(2)beta-immunoreactive protein but predominantly express a previously unrecognized immunoreactive iPLA(2)beta protein in the 70 kDa region that is not generated by a mechanism of alternate splicing of the iPLA(2)beta transcript. To determine if the 70 kDa-immunoreactive protein is a short isoform of iPLA(2)beta, protein from the 70 kDa region was digested with trypsin and analyzed by mass spectrometry. Such analyses reveal several peptides with masses and amino acid sequences that exactly match iPLA(2)beta tryptic peptides. Peptide sequences identified in the 70 kDa tryptic digest include iPLA(2)beta residues 7-53, suggesting that the N-terminus is preserved. We also report here that the 832/13 INS-1 cells express iPLA(2)beta catalytic activity and that BEL inhibits secretagogue-stimulated insulin secretion from these cells but not the incorporation of arachidonic acid into membrane PC pools of these cells. These observations suggest that the catalytic iPLA(2)beta activity expressed in 832/13 INS-1 cells is attributable to a short isoform of iPLA(2)beta and that this isoform participates in insulin secretory but not in membrane phospholipid remodeling pathways. Further, the finding that pancreatic islets also express predominantly a 70 kDa iPLA(2)beta-immunoreactive protein suggests that a signal transduction role of iPLA(2)beta in the native beta-cell might be attributable to a 70 kDa isoform of iPLA(2)beta.
Code of Federal Regulations, 2012 CFR
2012-10-01
... involving marijuana, cocaine, amphetamines, or PCP? 40.137 Section 40.137 Transportation Office of the... results involving marijuana, cocaine, amphetamines, or PCP? (a) As the MRO, you must verify a confirmed positive test result for marijuana, cocaine, amphetamines, and/or PCP unless the employee presents a...
Code of Federal Regulations, 2010 CFR
2010-10-01
... involving marijuana, cocaine, amphetamines, or PCP? 40.137 Section 40.137 Transportation Office of the... results involving marijuana, cocaine, amphetamines, or PCP? (a) As the MRO, you must verify a confirmed positive test result for marijuana, cocaine, amphetamines, and/or PCP unless the employee presents a...
Code of Federal Regulations, 2011 CFR
2011-10-01
... involving marijuana, cocaine, amphetamines, or PCP? 40.137 Section 40.137 Transportation Office of the... results involving marijuana, cocaine, amphetamines, or PCP? (a) As the MRO, you must verify a confirmed positive test result for marijuana, cocaine, amphetamines, and/or PCP unless the employee presents a...
Code of Federal Regulations, 2013 CFR
2013-10-01
... involving marijuana, cocaine, amphetamines, or PCP? 40.137 Section 40.137 Transportation Office of the... results involving marijuana, cocaine, amphetamines, or PCP? (a) As the MRO, you must verify a confirmed positive test result for marijuana, cocaine, amphetamines, and/or PCP unless the employee presents a...
Code of Federal Regulations, 2014 CFR
2014-10-01
... involving marijuana, cocaine, amphetamines, or PCP? 40.137 Section 40.137 Transportation Office of the... results involving marijuana, cocaine, amphetamines, or PCP? (a) As the MRO, you must verify a confirmed positive test result for marijuana, cocaine, amphetamines, and/or PCP unless the employee presents a...
[Driving under the influence of amphetamine and metamphetamine].
Lia, Kjersti; Spigset, Olav; Slørdal, Lars
2009-01-15
The CNS stimulatory agents amphetamine and methamphetamine are often detected in blood samples from apprehended subjects driving under the influence of drugs. Relevant literature was identified through searches in PubMed and Google Scholar. The current state of knowledge regarding effects of amphetamines on traffic behaviour is reviewed and discussed. Limited epidemiological data and a small number of experimental studies using low doses of amphetamines are available. Low amphetamine doses have been associated with enhanced performance in studies of sleep-deprived subjects. Theoretical considerations and empirical observations suggest that higher doses may impede performance, but not in accordance with usual concentration/effect relationships. There is a conspicuous lack of data on how to handle cases of driving under the influence of amphetamines.
Niessen, Neville-Andrew; Balthazart, Jacques; Ball, Gregory F.; Charlier, Thierry D.
2011-01-01
Steroid receptor coactivators are necessary for efficient transcriptional regulation by ligand-bound nuclear receptors, including estrogen and androgen receptors. SRC-2 modulates estrogen- and progesterone-dependent sexual behavior in female rats but its implication in the control of male sexual behavior has not been studied to our knowledge. We cloned and sequenced the complete quail SRC-2 transcript and showed by semi-quantitative PCR that SRC-2 expression is nearly ubiquitous, with high levels of expression in the kidney, cerebellum and diencephalon. Real time quantitative PCR did not reveal any differences between intact males and females the medial preoptic nucleus (POM), optic lobes and cerebellum. We next investigated the physiological and behavioral role of this coactivator using in vivo antisense oligonucleotide (AS) techniques. Daily injections in the third ventricle at the level of the POM of locked nucleic acid antisense targeting SRC-2 significantly reduced the expression of testosterone-dependent male-typical copulatory behavior but no inhibition of one aspect of the appetitive sexual behavior was observed. The volume of POM, defined by aromatase-immunoreactive cells, was markedly decreased in animals treated with AS as compared to controls. These results demonstrate that SRC-2 plays a prominent role in the control of steroid-dependent male sexual behavior and its associated neuroplasticity in Japanese quail. PMID:21854393
Zakirova, Zuchra; Fanutza, Tomas; Bonet, Justine; Readhead, Ben; Zhang, Weijia; Yi, Zhengzi; Beauvais, Genevieve; Zwaka, Thomas P.; Ozelius, Laurie J.; Blitzer, Robert D.; Gonzalez-Alegre, Pedro
2018-01-01
Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia. PMID:29364887
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nonogaki, Katsunori; Nozue, Kana; Oka, Yoshitomo
2006-12-29
Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration ofmore » sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.« less
Tributyltin disrupts feeding and energy metabolism in the goldfish (Carassius auratus).
Zhang, Jiliang; Sun, Ping; Yang, Fan; Kong, Tao; Zhang, Ruichen
2016-06-01
Tributyltin (TBT) can induce obesogen response. However, little is known about the adverse effects of TBT on food intake and energy metabolism. The present study was designed to investigate the effects of TBT, at environmental concentrations of 2.44 and 24.4 ng/L (1 and 10 ng/L as Sn), on feeding and energy metabolism in goldfish (Carassius auratus). After exposure for 54 d, TBT increased the weight gain and food intake in fish. The patterns of brain neuropeptide genes expression were in line with potential orexigenic effects, with increased expression of neuropeptide Y and apelin, and decreased expression of pro-opiomelanocortin, ghrelin, cocaine and amphetamine-regulated transcript, and corticotropin-releasing factor. Interestingly, the energy metabolism indicators (oxygen consumption, ammonia exertion and swimming activity) and the serum thyroid hormones were all significantly increased at the 2.44 ng/L TBT group in fish. However, no changes of energy metabolism indicators or a decrease of thyroid hormones was found at the 24.4 ng/L TBT group, which indicated a complex disrupting effect on metabolism of TBT. In short, TBT can alter feeding and energy metabolism in fish, which might promote the obesogenic responses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Iwasaki, Yusaku; Maejima, Yuko; Suyama, Shigetomo; Yoshida, Masashi; Arai, Takeshi; Katsurada, Kenichi; Kumari, Parmila; Nakabayashi, Hajime; Kakei, Masafumi; Yada, Toshihiko
2015-03-01
Oxytocin (Oxt), a neuropeptide produced in the hypothalamus, is implicated in regulation of feeding. Recent studies have shown that peripheral administration of Oxt suppresses feeding and, when infused subchronically, ameliorates hyperphagic obesity. However, the route through which peripheral Oxt informs the brain is obscure. This study aimed to explore whether vagal afferents mediate the sensing and anorexigenic effect of peripherally injected Oxt in mice. Intraperitoneal Oxt injection suppressed food intake and increased c-Fos expression in nucleus tractus solitarius to which vagal afferents project. The Oxt-induced feeding suppression and c-Fos expression in nucleus tractus solitarius were blunted in mice whose vagal afferent nerves were blocked by subdiaphragmatic vagotomy or capsaicin treatment. Oxt induced membrane depolarization and increases in cytosolic Ca(2+) concentration ([Ca(2+)]i) in single vagal afferent neurons. The Oxt-induced [Ca(2+)]i increases were markedly suppressed by Oxt receptor antagonist. These Oxt-responsive neurons also responded to cholecystokinin-8 and contained cocaine- and amphetamine-regulated transcript. In obese diabetic db/db mice, leptin failed to increase, but Oxt increased [Ca(2+)]i in vagal afferent neurons, and single or subchronic infusion of Oxt decreased food intake and body weight gain. These results demonstrate that peripheral Oxt injection suppresses food intake by activating vagal afferent neurons and thereby ameliorates obesity in leptin-resistant db/db mice. The peripheral Oxt-regulated vagal afferent neuron provides a novel target for treating hyperphagia and obesity. Copyright © 2015 the American Physiological Society.
Girosi, Laura; Ferrando, Sara; Beltrame, Francesco; Ciarcia, Gaetano; Diaspro, Alberto; Fato, Marco; Magnone, Mirko; Raiteri, Luca; Ramoino, Paola; Tagliafierro, Grazia
2007-07-01
The aim of this study has been the biochemical demonstration of the presence of gamma-aminobutyric acid (GABA) in the Mediterranean sea fan Eunicella cavolini by means of high-performance liquid chromatography, and the description of the distribution pattern of GABA and its related molecules, glutamic acid decarboxylase (GAD), vesicular GABA transporter (VGAT) and one of the GABA receptors (GABA(B) R) by immunohistochemical methods. The interrelationships of GABA, GAD and GABA receptor immunoreactivity have been established by using double-immunohistochemical methods and confocal microscopy. The immunodetection of monoclonal and/or polyclonal antibodies has revealed GABA immunoreactivity throughout the polyp tissue, both in neuronal and non-neuronal elements. GAD immunoreactivity has been mostly localized in the neuronal compartment, contacting epithelial and muscular elements. GABA(B) R immunoreactivity appears particularly intense in the nematocytes and in the oocyte envelope; its presence in GAD-immunoreactive neurons in the tentacles suggests an autocrine type of regulation. Western blot analysis has confirmed that a GABA(B) R, with a molecular weight of 142 kDa, similar to that of rat brain, is present in E. cavolini polyp tissue. The identification of the sites of the synthesis, vesicular transport, storage and reception of GABA strongly suggests the presence of an almost complete set of GABA-related molecules for the functioning of the GABAergic system in this simple nervous system. The distribution of these different immunoreactivities has allowed us to hypothesize GABA involvement in nematocyst discharge, in body wall and enteric muscular contraction, in neuronal integration and in male gametocyte differentiation.
Activity-dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex.
Catalano, S M; Chang, C K; Shatz, C J
1997-11-01
NMDA receptors have been implicated in activity-dependent synaptic plasticity in the developing visual cortex. We examined the distribution of immunocytochemically detectable NMDAR1 in visual cortex of cats and ferrets from late embryonic ages to adulthood. Cortical neurons are initially highly immunostained. This level declines gradually over development, with the notable exception of cortical layers 2/3, where levels of NMDAR1 immunostaining remain high into adulthood. Within layer 4, the decline in NMDAR1 immunostaining to adult levels coincides with the completion of ocular dominance column formation and the end of the critical period for layer 4. To determine whether NMDAR1 immunoreactivity is regulated by retinal activity, animals were dark-reared or retinal activity was completely blocked in one eye with tetrodotoxin (TTX). Dark-rearing does not cause detectable changes in NMDAR1 immunoreactivity. However, 2 weeks of monocular TTX administration decreases NMDAR1 immunoreactivity in layer 4 of the columns of the blocked eye. Thus, high levels of NMDAR1 immunostaining within the visual cortex are temporally correlated with ocular dominance column formation and developmental plasticity; the persistence of staining in layers 2/3 also correlates with the physiological plasticity present in these layers in the adult. In addition, visual experience is not required for the developmental changes in the laminar pattern of NMDAR1 levels, but the presence of high levels of NMDAR1 in layer 4 during the critical period does require retinal activity. These observations are consistent with a central role for NMDA receptors in promoting and ultimately limiting synaptic rearrangements in the developing neocortex.
Jones, Alan Wayne; Holmgren, Anita
2013-04-01
Amphetamine is a major drug of abuse in Sweden and in the other Nordic countries. The demographics of amphetamine abusers in Sweden and the concentrations of this stimulant in blood are reported for 10 years of forensic blood samples (2001-2010). Using a forensic toxicology database (TOXBASE), we studied 1183 amphetamine-related deaths, 20,452 users of illicit drugs, and 47,366 people arrested for driving under the influence of drugs (DUID). Most amphetamine abusers were male (82%-87%), and their average age was 33 to 39 years with males being 2 to 3 years older than females (P < 0.001). Mean (median) concentrations of amphetamine in blood were 1.25 (0.40) mg/L in autopsy cases, 0.61 (0.40) mg/L in users of illicit drugs, and 0.76 (0.58) mg/L in DUID suspects. Median concentration in DUID suspects was significantly higher than in the other forensic materials (P < 0.001). Women also had higher median concentrations of amphetamine in blood than male abusers of this central stimulant (P < 0.001). The major coingested drugs were benzodiazepines (41%), cannabis (26%), opiates (21%), and alcohol (18%) in autopsy cases. Polydrug use was less common in DUID suspects and users of illicit drugs, although benzodiazepines (13%), tetrahydrocannabinol (12%), and opiates (5%) were often identified along with amphetamine. Because median concentration of amphetamine was higher in living subjects (DUID suspects) compared with amphetamine-related deaths, this points toward toxicity of coingested drugs or adverse drug-drug interaction as being responsible for death.
Discriminative stimulus effects of caffeine and benzphetamine in amphetamine-trained volunteers.
Chait, L D; Johanson, C E
1988-01-01
The discriminative stimulus (DS) and subjective effects of caffeine (100 and 300 mg, PO) and benzphetamine (12.5 and 50 mg, PO) were studied in 18 normal human volunteers trained to discriminate between d-amphetamine (10 mg) and placebo. d-Amphetamine increased ratings of drug liking and activity level and produced a profile of subjective effects characteristic of amphetamine and related psychomotor stimulants. The DS effects of d-amphetamine generalized only partially to caffeine and benzphetamine; mean percent d-amphetamine-appropriate responding was 42 and 58 after 100 and 300 mg caffeine, respectively, and 17 and 56 after 12.5 and 50 mg benzphetamine, respectively. Neither dose of caffeine affected ratings of drug liking or activity level, but 300 mg caffeine did produce a profile of subjective effects that partially overlapped with that produced by d-amphetamine. Benzphetamine 50 mg, but not 12.5 mg, increased ratings of drug liking and activity level and produced a profile of subjective effects qualitatively similar to, but weaker than, that produced by d-amphetamine. For both caffeine and benzphetamine, a close relationship was observed between their subjective effects and their ability to substitute for the DS effects of d-amphetamine. These results correspond well with findings obtained from similar studies conducted with laboratory animals, providing further support for the reliability and validity of human drug discrimination paradigms.
Class identity assignment for amphetamines using neural networks and GC-FTIR data
NASA Astrophysics Data System (ADS)
Gosav, S.; Praisler, M.; Van Bocxlaer, J.; De Leenheer, A. P.; Massart, D. L.
2006-08-01
An exploratory analysis was performed in order to evaluate the feasibility of building of neural network (NN) systems automating the identification of amphetamines necessary in the investigation of drugs of abuse for epidemiological, clinical and forensic purposes. A first neural network system was built to distinguish between amphetamines and nonamphetamines. A second, more refined system, aimed to the recognition of amphetamines according to their toxicological activity (stimulant amphetamines, hallucinogenic amphetamines, nonamphetamines). Both systems proved that discrimination between amphetamines and nonamphetamines, as well as between stimulants, hallucinogens and nonamphetamines is possible (83.44% and 85.71% correct classification rate, respectively). The spectroscopic interpretation of the 40 most important input variables (GC-FTIR absorption intensities) shows that the modeling power of an input variable seems to be correlated with the stability and not with the intensity of the spectral interaction. Thus, discarding variables only because they correspond to spectral windows with weak absorptions does not seem be not advisable.
Fenetylline: new results on pharmacology, metabolism and kinetics.
Nickel, B; Niebch, G; Peter, G; von Schlichtegroll, A; Tibes, U
1986-06-01
In the fenetylline molecule, theophylline is covalently linked with amphetamine via an alkyl chain. The inclusion of amphetamine and results from early metabolic studies have led to speculation that fenetylline may be merely a prodrug for amphetamine and/or theophylline. Although previous studies are not consistent with this hypothesis, additional studies were conducted to comparatively evaluate the profiles of activity exhibited by fenetylline and its two postulated primary metabolites, (+/-)-amphetamine and theophylline. Investigations were also initiated using newly developed high pressure liquid chromatography (HPLC) techniques to further characterize the metabolic pattern that fenetylline undergoes and to examine the relationship between plasma pharmacokinetics and the pharmacodynamic actions of the drug. Fenetylline inhibits activity associated with amphetamine in certain test systems, an effect similar to that previously observed with fenfluramine. Only small amounts of the amphetamine theoretically available in the fenetylline molecule are released. Pharmacodynamic activity associated with fenetylline administration is more closely tied to plasma levels of the parent compound than to any (+/-)-amphetamine produced.
Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hui; Liu, Tao; Zhang, Zhen
Ovarian cancer remains the most lethal gynecological malignancy in the developed world, despite recent advances in genomic information and treatment. To better understand this disease, define an integrated proteogenomic landscape, and identify factors associated with homologous repair deficiency (HRD) and overall survival, we performed a comprehensive proteomic characterization of ovarian high-grade serous carcinomas (HGSC) previously characterized by The Cancer Genome Atlas (TCGA). We observed that messenger RNA transcript abundance did not reliably predict abundance for 10,030 proteins across 174 tumors. Clustering of tumors based on protein abundance identified five subtypes, two of which correlated robustly with mesenchymal and proliferative subtypes,more » while tumors characterized as immunoreactive or differentiated at the transcript level were intermixed at the protein level. At the genome level, HGSC is characterized by a complex landscape of somatic copy number alterations (CNA), which individually do not correlate significantly with survival. Correlation of CNAs with protein abundances identified loci with significant trans regulatory effects mapping to pathways associated with proliferation, cell motility/invasion, and immune regulation, three known hallmarks of cancer. Using the trans regulated proteins we also created models significantly correlated with patient survival by multivariate analysis. Integrating protein abundance with specific post-translational modification data identified subnetworks correlated with HRD status; specifically, acetylation of Lys12 and Lys16 on histone H4 was associated with HRD status. Using quantitative phosphoproteomics data covering 4,420 proteins as reflective of pathway activity, we identified the PDGFR and VEGFR signaling pathways as significantly up-regulated in patients with short overall survival, independent of PDGFR and VEGFR protein levels, potentially informing the use of anti-angiogenic therapies. Components of the Rho/Rac/Cdc42 cell motility pathways were also significantly enriched for short survival. Overall, proteomics provided new insights into ovarian cancer not apparent from genomic analysis and enabling a deeper understanding of HGSC with the potential to inform targeted therapeutics.« less
Expression and function of 5-HT4 receptors in the mouse enteric nervous system.
Liu, Mintsai; Geddis, Matthew S; Wen, Ying; Setlik, Wanda; Gershon, Michael D
2005-12-01
The aim of the current study was to identify enteric 5-HT(4) splice variants, locate enteric 5-HT(4) receptors, determine the relationship, if any, of the 5-HT(4) receptor to 5-HT(1P) activity, and to ascertain the function of 5-HT(4) receptors in enteric neurophysiology. 5-HT(4a), 5-HT(4b), 5-HT(4e), and 5-HT(4f) isoforms were found in mouse brain and gut. The ratio of 5-HT(4) expression to that of the neural marker, synaptophysin, was higher in gut than in brain but was similar in small and large intestines. Submucosal 5-HT(4) expression was higher than myenteric. Although transcripts encoding 5-HT(4a) and 5-HT(4b) isoforms were more abundant, those encoding 5-HT(4e) and 5-HT(4f) were myenteric plexus specific. In situ hybridization revealed the presence of transcripts encoding 5-HT(4) receptors in subsets of enteric neurons, interstitial cells of Cajal, and smooth muscle cells. IgY antibodies to mouse 5-HT(4) receptors were raised, affinity purified, and characterized. Nerve fibers in the circular muscle and the neuropil in ganglia of both plexuses were highly 5-HT(4) immunoreactive, although only a small subset of neurons contained 5-HT(4) immunoreactivity. No 5-HT(4)-immunoreactive nerves were detected in the mucosa. 5-HT and 5-HT(1P) agonists evoked a G protein-mediated long-lasting inward current that was neither mimicked by 5-HT(4) agonists nor blocked by 5-HT(4) antagonists. In contrast, the 5-HT(4) agonists renzapride and tegaserod increased the amplitudes of nicotinic evoked excitatory postsynaptic currents. Enteric neuronal 5-HT(4) receptors thus are presynaptic and probably exert their prokinetic effects by strengthening excitatory neurotransmission.
Disney, Anita A.; Aoki, Chiye
2010-01-01
Acetylcholine (ACh) is believed to underlie mechanisms of arousal and attention in mammals. ACh also has a demonstrated functional effect in visual cortex that is both diverse and profound. We have reported previously that cholinergic modulation in V1 of the macaque monkey is strongly targeted toward GABAergic interneurons. Here we examine the localization of m1 and m2 muscarinic receptor subtypes across subpopulations of GABAergic interneurons—identified by their expression of the calcium-binding proteins parvalbumin, calbindin, and calretinin—using dual-immunofluorescence confocal microscopy in V1 of the macaque monkey. In doing so, we find that the vast majority (87%) of parvalbumin-immunoreactive neurons express m1-type muscarinic ACh receptors. m1 receptors are also expressed by 60% of calbindin-immunoreactive neurons and 40% of calretinin-immunoreactive neurons. m2 AChRs, on the other hand, are expressed by only 31% of parvalbumin neurons, 23% of calbindin neurons, and 25% of calretinin neurons. Parvalbumin-immunoreactive cells comprise ≈75% of the inhibitory neuronal population in V1 and included in this large subpopulation are neurons known to veto and regulate the synchrony of principal cell spiking. Through the expression of m1 ACh receptors on nearly all of these PV cells, the cholinergic system avails itself of powerful control of information flow through and processing within the network of principal cells in the cortical circuit. PMID:18265004
Huang, W; Simpson, R K
1999-09-01
Sensitization of the second order neurons in the spinal dorsal horn after somatic noxious stimuli is partly mediated by the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor. These neurons also express c-Fos immunoreactivity in response to the somatic noxious stimuli. The present study assessed the influence of intrathecal pre-treatment with MK-801, a non-competitive antagonist of NMDA receptor, on thermal sensitization following peripheral noxious heat stimulation. In addition, the influence of MK-801 on c-Fos immunoreactivity in the rat lumbar spinal cord neurons after the peripheral noxious heat was examined. Sprague-Dawley rats were subject to intrathecal catheterization and administration of MK-801 or saline before and after noxious heat (52 degrees C) stimulation of rat hindpaws. Thermal sensitization was tested after MK-801 (0.1 mumol 10 microliters-1). Fos-like immunoreactivity was evaluated 2 h after noxious stimulation in a separate group of animals. MK-801 significantly increased the thermal withdrawal threshold by 60% following noxious heat stimulation and reduced c-Fos immunoreactivity in the second order neurons by 70% in the dorsal horn. The study suggests that glutamate plays a pivotal role in the thermal nociceptive pathway and indicates that the NMDA receptor is necessary to maintain normal thermal sensitization, possibly by regulating c-fos gene expression in second order neurons.
Venancio, Jade Cabestre; Margatho, Lisandra Oliveira; Rorato, Rodrigo; Rosales, Roberta Ribeiro Costa; Debarba, Lucas Kniess; Coletti, Ricardo; Antunes-Rodrigues, Jose; Elias, Carol F; Elias, Lucila Leico K
2017-11-01
Leptin is a permissive factor for puberty initiation, participating as a metabolic cue in the activation of the kisspeptin (Kiss1)-gonadotropin-releasing hormone neuronal circuitry; however, it has no direct effect on Kiss1 neurons. Leptin acts on hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons, participating in the regulation of energy homeostasis. We investigated the influence of a short-term high-fat diet (HFD) on the effect of leptin on puberty timing. Kiss1-hrGFP female mice received a HFD or regular diet (RD) after weaning at postnatal day (PN)21 and were studied at PN28 and PN32. The HFD increased body weight and plasma leptin concentrations and decreased the age at vaginal opening (HFD, 32 ± 0.53 days; RD, 38 ± 0.67 days). Similar colocalization of neurokinin B and dynorphin in Kiss1-hrGFP neurons of the arcuate nucleus (ARC) was observed between the HFD and RD groups. The HFD increased CART expression in the ARC and Kiss1 messenger RNA expression in the anteroventral periventricular (AVPV)/anterior periventricular (Pe). The HFD also increased the number of ARC CART neurons expressing leptin-induced phosphorylated STAT3 (signal transducer and activator of transcription 3) at PN32. Close apposition of CART fibers to Kiss1-hrGFP neurons was observed in the ARC of both RD- and HFD-fed mice. In conclusion, these data reinforce the notion that a HFD increases kisspeptin expression in the AVPV/Pe and advances puberty initiation. Furthermore, we have demonstrated that the HFD-induced earlier puberty is associated with an increase in CART expression in the ARC. Therefore, these data indicate that CART neurons in the ARC can mediate the effect of leptin on Kiss1 neurons in early puberty induced by a HFD. Copyright © 2017 Endocrine Society.
Gan, Lin; Wang, Mingli; Chen, Jason J.; Gershon, Michael D.; Gershon, Anne A.
2014-01-01
Latent wild-type (WT) and vaccine (vOka) varicella-zoster virus (VZV) are found in the human enteric nervous system (ENS). VZV also infects guinea pig enteric neurons in vitro, establishes latency and can be reactivated. We therefore determined whether lymphocytes infected in vitro with VZV secrete infectious virions and can transfer infection in vivo to the ENS of recipient guinea pigs. T lymphocytes (CD3-immunoreactive) were preferentially infected following co-culture of guinea pig or human peripheral blood mononuclear cells with VZV-infected HELF. VZV proliferated in the infected T cells and expressed immediate early and late VZV genes. Electron microscopy confirmed that VZV-infected T cells produced encapsulated virions. Extracellular virus, however, was pleomorphic, suggesting degradation occurred prior to release, which was confirmed by the failure of VZV-infected T cells to secrete infectious virions. Intravenous injection of WT- or vOka-infected PBMCs, nevertheless, transmitted VZV to recipient animals (guinea pig > human lymphocytes). Two days post-inoculation, lung and liver, but not gut, contained DNA and transcripts encoding ORFs 4, 40, 66 and 67. Twenty-eight days after infection, gut contained DNA and transcripts encoding ORFs 4 and 66 but neither DNA nor transcripts could any longer be found in lung or liver. In situ hybridization revealed VZV DNA in enteric neurons, which also expressed ORF63p (but not ORF68p) immunoreactivity. Observations suggest that VZV infects T cells, which can transfer VZV to and establish latency in enteric neurons in vivo. Guinea pigs may be useful for studies of VZV pathogenesis in the ENS. PMID:24965252
Vidal, Luis; Lugo, Nidza
2007-01-01
The intergeniculate leaflet (IGL) and its neuropeptide Y (NPY) projection to the main circadian clock, the suprachiasmatic nucleus (SCN), have been the focus of extensive research conducted, for the most part, on nocturnal rodent species. However, a variety of anatomical and physiological differences between the circadian system of diurnal and nocturnal species have been reported. These differences led us to question whether the role of NPY in the circadian system of the diurnal ground squirrel differs from that in nocturnal rodents. We used semi-quantitative immunohistochemistry to analyze NPY content in SCN terminals of squirrels sacrificed at specific times of the day and compared the data to previous published results from the rat. Additionally, NPY mRNA was quantified using real-time PCR to determine if varying NPY-immunoreactivity (-ir) levels could be the result of changes in peptide transcription. Our results demonstrate that NPY-ir levels in the ground squirrel SCN peak during the middle of the night unlike what is observed in the rat. Cell counts of NPY-ir neurons in the IGL revealed a pattern of variation 6 hr out of phase compared to what was observed in the SCN. NPY mRNA levels showed only one sharp increase in the middle of the night, coinciding with increases in NPY-ir levels observed in the SCN. Differences in the pattern of fluctuation of NPY in the SCN between the rat and squirrel suggest that this peptide may serve distinct roles in the circadian system of diurnal and nocturnal species. Our data provide the first evidence of the relationship between transcript and peptide levels in the circadian system of a diurnal species. PMID:17109825
Expression of nerve growth factor and its receptor, tyrosine kinase receptor A, in rooster testes.
Ma, Wei; Wang, Chunqiang; Su, Yuhong; Tian, Yumin; Zhu, Hongyan
2015-10-01
Nerve growth factor (NGF), which is required for the survival and differentiation of the nervous system, is also thought to play an important role in the development of mammalian reproductive tissues. To explore the function of NGF in the male reproductive system of non-mammalian animals, we determined the presence of NGF and its receptor, tyrosine kinase receptor A (TrkA), in rooster testes and investigated the regulation of NGF and TrkA expression by follicle-stimulating hormone (FSH). The mRNA and protein levels of NGF and TrkA in 6-week-old rooster testes were lower than those in 12-, 16- or 20-week age groups; levels were highest in the 16-week group. Immunohistochemistry showed that NGF and TrkA were both detected in spermatogonia, spermatocytes and spermatids. NGF immunoreactivity was observed in Leydig cells and strong TrkA signals were present in Sertoli cells. Meanwhile, FSH increased TrkA transcript levels in rooster testes in a dose-dependent manner. We present novel evidence for the developmental and FSH-regulated expression of the NGF/TrkA system, and our findings suggest that the NGF/TrkA system may play a prominent role in chicken spermatogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.
Expressions of TRPVs in the cholesteatoma epithelium.
Do, Ba Hung; Koizumi, Hiroki; Ohbuchi, Toyoaki; Kawaguchi, Rintaro; Suzuki, Hideaki
2017-10-01
We have recently proposed a hypothesis that acid leakage through the cholesteatoma epithelium mediates bone resorption in middle ear cholesteatoma. In the present study, we investigated the expressions of transient receptor potential vanilloid (TRPV) channels, which have been shown to play roles in the regulation of epidermal barrier function, in the cholesteatoma epithelium in comparison with the normal skin. Cholesteatoma epithelium and postauricular skin were collected from 17 patients with primary acquired middle ear cholesteatoma who underwent tympanomastoidectomy. Expressions of TRPV1, TRPV3, TRPV4, and TRPV6 were explored by fluorescence immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). TRPV1, TRPV3, TRPV4, and TRPV6 mRNAs were all detected by qRT-PCR both in the skin and cholesteatoma tissue. Immunohistochemical staining showed that TRPV1 and TRPV3 were positive in the viable cell layers of the epidermis of the skin, and only TRPV3 was positive in those of the cholesteatoma epithelium. The immunoreactivity for TRPV3 was significantly weaker in cholesteatoma than in the skin. The lower expression of TRPV3 in cholesteatoma may be one of the mechanisms underlying the increased permeability of this tissue. On the other hand, TRPV1, TRPV4, and TRPV6 are unlikely to be involved in the regulation of epithelial permeability in cholesteatoma.
2011-01-01
To elucidate the molecular mechanisms underling hydration during oocyte maturation, we characterized the structure of Japanese eel (Anguilla japonica) novel-water selective aquaporin 1 (AQP1b) that thought to be involved in oocyte hydration. The aqp1b cDNA encodes a 263 amino acid protein that includes the six potential transmembrane domains and two Asn-Pro-Ala motifs. Reverse transcription-polymerase chain reaction showed transcription of Japanese eel aqp1b in ovary and testis but not in the other tissues. In situ hybridization studies with the eel aqp1b cRNA probe revealed intense eel aqp1b signal in the oocytes at the perinucleolus stage and the signals became faint during the process of oocyte development. Light microscopic immunocytochemical analysis of ovary revealed that the Japanese eel AQP1b was expressed in the cytoplasm around the yolk globules which were located in the peripheral region of oocytes during the primary yolk globule stage; thereafter, the immunoreactivity was observed throughout the cytoplasm of oocyte as vitellogenesis progressed. The immunoreactivity became localized around the large membrane-limited yolk masses which were formed by the fusion of yolk globules during the oocyte maturation phase. These results together indicate that AQP1b, which is synthesized in the oocyte during the process of oocyte growth, is essential for mediating water uptake into eel oocytes. PMID:21615964
Potential Adverse Effects of Amphetamine Treatment on Brain and Behavior: A Review
Berman, Steven M.; Kuczenski, Ronald; McCracken, James T.; London, Edythe D.
2009-01-01
Rationale Amphetamine stimulants have been used medically since early in the twentieth century, but they have a high abuse potential and can be neurotoxic. Although they have long been used effectively to treat attention deficit hyperactivity disorder (ADHD) in children and adolescents, amphetamines are now being prescribed increasingly as maintenance therapy for ADHD and narcolepsy in adults, considerably extending the period of potential exposure. Effects of prolonged stimulant treatment have not been fully explored, and understanding such effects is a research priority 1. Because the pharmacokinetics of amphetamines differ between children and adults, reevaluation of the potential for adverse effects of chronic treatment of adults is essential. Findings Despite information on the effects of stimulants in laboratory animals, profound species differences in susceptibility to stimulant-induced neurotoxicity underscore the need for systematic studies of prolonged human exposure. Early amphetamine treatment has been linked to slowing in height and weight growth in some children. Because the number of prescriptions for amphetamines has increased several-fold over the past decade, an amphetamine-containing formulation is the most commonly prescribed stimulant in North America, and it is noteworthy that amphetamines are also the most abused prescription medications. Although early treatment does not increase risk for substance abuse, few studies have tracked the compliance and usage profiles of individuals who began amphetamine treatment as adults. Overall, there is concern about risk for slowed growth in young patients who are dosed continuously, and for substance abuse in patients first medicated in late adolescence or adulthood. Although most adult patients also use amphetamines effectively and safely, occasional case reports indicate that prescription use can produce marked psychological adverse events, including stimulant-induced psychosis. Assessments of central toxicity and adverse psychological effects during late adulthood and senescence of adults who receive prolonged courses of amphetamine treatment are warranted. Finally, identification of the biological factors that confer risk and those that offer protection are also needed to better specify the parameters of safe, long-term, therapeutic administration of amphetamines to adults. PMID:18698321
Zhang, Kai; Zhao, Yan; Wang, Qingzhong; Jiang, Haifeng; Du, Jiang; Yu, Shunying; Zhao, Min
2016-05-27
GABA system genes have been implicated in neurotrophy and neurogenesis, which play pivotal roles in an individual's variation in vulnerability to amphetamine addiction or amphetamine-induced psychosis (AIP). We hypothesized that common genetic variants in the GABA system genes may be associated with amphetamine-induced psychotic disorder. In our study, thirty-six single nucleotide polymorphisms (SNPs) within the GABA system genes were genotyped in 400 amphetamine-induced psychotic disorder patients and 400 amphetamine use disorders patients (AUP) (not including those categorized as psychosis) in the Han Chinese population. In this study, 51.88% of the Han Chinese amphetamine-type substance use disorder patients met the criteria of amphetamine-induced psychotic disorder, and 79.5% amphetamine-induced psychotic disorder patients had auditory hallucinations, while 46.5% had delusions of reference. The allele frequency of rs1129647 showed nominal association with AIP in the Han Chinese population (P=0.03). Compared with AUP group patients, T allele frequency of AIP group patients was significantly increased. The adjustment for age and gender factors in the AIP and AUP patients was executed using unconditional logistic regression under five inheritance models. The genotype frequency of rs1129647 showed nominal association with AIP in the log-additive model (P=0.04). The genotype frequency of rs2290733 showed nominal association with AIP in the recessive model (P=0.04). Compared with female AIP patients, male patients were more likely to have the CC genotype of rs17545383 (P=0.04). Moreover, we determined that more male patients carried the T allele of rs2290733 in the AIP group (P=0.004). Unfortunately, the significant differences did not survive Benjamini-Hochberg false discovery rate correction (adjusted P>0.05). No association between the SNPs of the GABA system genes and amphetamine-induced psychotic disorder risk was identified. No haplotype of the GABA system genes affected amphetamine-induced psychotic disorder risk. This report describes the first association study between the GABA system genes and amphetamine-induced psychotic disorder in the Han Chinese population. Our data may provide a reference for future research. Copyright © 2016. Published by Elsevier Ireland Ltd.
Upregulation of gene expression in reward-modulatory striatal opioid systems by sleep loss.
Baldo, Brian A; Hanlon, Erin C; Obermeyer, William; Bremer, Quentin; Paletz, Elliott; Benca, Ruth M
2013-12-01
Epidemiological studies have shown a link between sleep loss and the obesity 'epidemic,' and several observations indicate that sleep curtailment engenders positive energy balance via increased palatable-food 'snacking.' These effects suggest alterations in reward-modulatory brain systems. We explored the effects of 10 days of sleep deprivation in rats on the expression of striatal opioid peptide (OP) genes that subserve food motivation and hedonic reward, and compared effects with those seen in hypothalamic energy balance-regulatory systems. Sleep-deprived (Sleep-Dep) rats were compared with yoked forced-locomotion apparatus controls (App-Controls), food-restricted rats (Food-Restrict), and unmanipulated controls (Home-Cage). Detection of mRNA levels with in situ hybridization revealed a subregion-specific upregulation of striatal preproenkephalin and prodynorhin gene expression in the Sleep-Dep group relative to all other groups. Neuropeptide Y (NPY) gene expression in the hippocampal dentate gyrus and throughout neocortex was also robustly upregulated selectively in the Sleep-Dep group. In contrast, parallel gene expression changes were observed in the Sleep-Dep and Food-Restrict groups in hypothalamic energy-sensing systems (arcuate nucleus NPY was upregulated, and cocaine- and amphetamine-regulated transcript was downregulated), in alignment with leptin suppression in both groups. Together, these results reveal a novel set of sleep deprivation-induced transcriptional changes in reward-modulatory peptide systems, which are dissociable from the energy-balance perturbations of sleep loss or the potentially stressful effects of the forced-locomotion procedure. The recruitment of telencephalic food-reward systems may provide a feeding drive highly resistant to feedback control, which could engender obesity through the enhancement of palatable feeding.
Association between travel length and drug use among Brazilian truck drivers.
Sinagawa, Daniele Mayumi; De Carvalho, Heráclito Barbosa; Andreuccetti, Gabriel; Do Prado, Natanael Vitoriano; De Oliveira, Keziah Cristina Barbosa Gruber; Yonamine, Mauricio; Muñoz, Daniel Romero; Gjerde, Hallvard; Leyton, Vilma
2015-01-01
To investigate whether the use of the stimulants amphetamines and cocaine by truck drivers in Brazil was related to travel length. Truck drivers were randomly stopped by the Federal Highway Police on interstate roads in Sao Paulo State during morning hours from 2008 to 2011 and invited to participate in the project "Comandos de Saúde nas Rodovias" (Health Commands on the Roads). Participants were asked about the use of drugs, travel distance, and age, and gender was recorded. Samples of urine were collected and analyzed for amphetamine, benzoylecgonine (a metabolite of cocaine), and carboxytetrahydrocannabinol (THC-COOH; a metabolite of cannabis) by immunological screening and quantification by gas chromatography-mass spectroscopy. Current use of amphetamine, cocaine, and cannabis was reported by 5.7%, 0.7%, and 0.3% of the truck drivers, respectively. Amphetamine, benzoylecgonine, and THC-COOH were found in urine samples from 5.4%, 2.6,% and in 1.0% of the drivers, respectively. There was a significant association between the positive cases for amphetamine and reported travel length; 9.9% of urine samples from drivers who reported travel length of more than 270 km were positive for amphetamine, and 10.9% of those drivers reported current use of amphetamines. In most cases, appetite suppressants containing amphetamines had been used, but the purpose was most often to stay awake and alert while driving. Truck drivers with travel length of more than 270 km had significantly higher odds ratio (OR) for having a urine sample that was positive for amphetamine when adjusted for age as confounding factor (OR = 9.41, 95% confidence interval [CI], 3.97-22.26). No significant association was found between the use of cocaine or cannabis and travel length. Truck drivers who reported driving more than 270 km had significantly higher frequencies of urine samples positive for amphetamine and reported significantly more frequent current use of amphetamines than those who reported shorter driving distances.
Banks, Matthew L.; Snyder, Rodney W.; Fennell, Timothy R.; Negus, S. Stevens
2017-01-01
Benzphetamine is a Schedule III anorectic agent that is a prodrug for d-amphetamine and d-methamphetamine and may have utility as an “agonist” medication for cocaine use disorder treatment. This study evaluated the pharmacokinetic-pharmacodynamic profile of benzphetamine using a drug discrimination procedure in rhesus monkeys. The potency and time course of cocaine-like discriminative stimulus effects were compared for benzphetamine (10–18 mg/kg, intramuscular (IM)) and d-amphetamine (0.032–0.32 mg/kg, IM) in monkeys (n=3–4) trained to discriminate IM cocaine (0.32 mg/kg) from saline in a two-key food-reinforced discrimination procedure. Parallel pharmacokinetic studies in the same monkeys determined plasma benzphetamine, d-methamphetamine and/or d-amphetamine levels for correlation with behavioral effects. d-Amphetamine produced dose-dependent, time-dependent, and full cocaine-like effects, i.e. ≥ 90% cocaine-appropriate responding,in all monkeys without altering response rates. The time course of d-amphetamine’s cocaine-like discriminative stimulus effects correlated with plasma d-amphetamine levels. Benzphetamine was 180-fold less potent than d-amphetamine and produced full cocaine-like effects in only 2 of 4 monkeys while significantly decreasing response rates. Benzphetamine administration increased plasma d-methamphetamine (peak at 100 min) and d-amphetamine (peak at 24 h) levels, but the time course of behavioral effects did not correlate with increased levels of benzphetamine, d-methamphetamine or d-amphetamine. These results suggest that benzphetamine yields d-amphetamine and d-methamphetamine as active metabolites in rhesus monkeys, but generation of these metabolites is not sufficient to account for benzphetamine behavioral effects. The incomplete cocaine substitution profile and protracted d-amphetamine plasma levels suggest that benzphetamine may still warrant further evaluation as a candidate pharmacotherapy for cocaine use disorder treatment. PMID:28373066
Who are the new amphetamine users? A 10-year prospective study of young Australians.
Degenhardt, Louisa; Coffey, Carolyn; Carlin, John B; Moran, Paul; Patton, George C
2007-08-01
Despite good evidence of increased availability and use of amphetamines world-wide, relatively little is known about the epidemiology of young adult amphetamine use; relationships with social functioning, other drug use and mental health at this age; nor of the adolescent predictors of such use. We examined these issues using a representative cohort of young people followed-up in Victoria, Australia. A stratified, random sample of 1943 adolescents was recruited from secondary schools across Victoria at age 14-15 years. This cohort was interviewed on eight occasions until the age of 24-25 years (78% follow-up at that age). Cross-sectional and predictive associations were assessed using logistic regression. At age 24 years, 12% of the sample had used amphetamines in the past year, with 1-2% using at least weekly. Young adult amphetamine use was predicted strongly by adolescent drug use and was associated robustly with other drug use and dependence in young adulthood. Associations were stronger for more frequent users. Among young adults who had not been using amphetamines at age 20 years, the strongest predictor of use at age 24 years was the use of other drugs, particularly cannabis, at 20 years. Psychological distress did not predict independently an increased likelihood of amphetamine use in this cohort. Young people in Australia using amphetamine at age 24 years are highly likely to be significant polydrug users. The risks for both initiation of young adult amphetamine use, and maintenance of such use, pertain to the heavy use of other drugs. Interventions for heavy amphetamine users at this age are likely to require attention to multiple drug problems.
Wright, Jennifer M; Ren, Suelynn; Constantin, Annie; Clarke, Paul B S
2018-03-01
Nicotine and D-amphetamine can strengthen reinforcing effects of unconditioned visual stimuli. We investigated whether these reinforcement-enhancing effects reflect a slowing of stimulus habituation and depend on food restriction. Adult male rats pressed an active lever to illuminate a cue light during daily 60-min sessions. Depending on the experiment, rats were challenged with fixed or varying doses of D-amphetamine (0.25-2 mg/kg IP) and nicotine (0.025-0.2 mg/kg SC) or with the tobacco constituent norharman (0.03-10 μg/kg IV). Experiment 1 tested for possible reinforcement-enhancing effects of D-amphetamine and norharman. Experiment 2 investigated whether nicotine and amphetamine inhibited the spontaneous within-session decline in lever pressing. Experiment 3 assessed the effects of food restriction. Amphetamine (0.25-1 mg/kg) and nicotine (0.1 mg/kg) increased active lever pressing specifically (two- to threefold increase). The highest doses of nicotine and amphetamine also affected inactive lever responding (increase and decrease, respectively). With the visual reinforcer omitted, responding was largely extinguished. Neither drug appeared to slow habituation, as assessed by the within-session decline in lever pressing, and reinforcement-enhancing effects still occurred if the drugs were given after this decline had occurred. Food restriction enhanced the reinforcement-enhancing effect of amphetamine but not that of nicotine. Responding remained goal-directed after several weeks of testing. Low doses of D-amphetamine and nicotine produced reinforcement enhancement even in free-feeding subjects, independent of the spontaneous within-session decline in responding. Reinforcement enhancement by amphetamine, but not nicotine, was enhanced by concurrent subchronic food restriction.
Badiani, A; Morano, M I; Akil, H; Robinson, T E
1995-02-27
We reported previously that when amphetamine is given in NOVEL test cages both its acute psychomotor activating effects (rotational behaviour and locomotor activity) and the degree of sensitization are greater than when amphetamine is given in HOME cages that are physically identical to the NOVEL test cages. Since exposure to the NOVEL environment increases plasma corticosterone levels (Experiment 1) it is possible that the enhancement in the effects of amphetamine in the NOVEL condition is mediated by corticosterone. If this hypothesis is correct adrenalectomy (ADX) should abolish the difference between the HOME and NOVEL groups. This was tested in three independent experiments, in which the response (rotational behavior in Experiments 2 and 3; locomotor activity and rearing behavior in Experiment 4) to repeated injections of amphetamine was assessed in rats that underwent adrenalectomy (ADX) or a sham operation (SHAM). ADX animals received either no corticosterone replacement or one of two corticosterone replacement treatments. Adrenalectomy, with or without corticosterone replacement treatment, had no significant effect on the development of amphetamine sensitization, either in the HOME or the NOVEL environment. By contrast, the effects of adrenalectomy on the acute response to amphetamine varied depending on the behavioral measure and possibly on the dose of amphetamine (2.0 mg/kg, 3.0 mg/kg and 1.5 mg/kg IP, in Experiments 2, 3 and 4, respectively). We conclude that: (i) a stress-induced secretion of adrenal hormones is not responsible for the enhancement in sensitization to amphetamine seen in animals tested in a NOVEL environment; (ii) circulating adrenal hormones are not necessary for development of sensitization to the psychomotor activating effects of amphetamine.
Maintenance on naltrexone+amphetamine decreases cocaine-vs.-food choice in male rhesus monkeys.
Moerke, Megan J; Banks, Matthew L; Cheng, Kejun; Rice, Kenner C; Negus, S Stevens
2017-12-01
Cocaine use disorder remains a significant public health issue for which there are no FDA-approved pharmacotherapies. Amphetamine maintenance reduces cocaine use in preclinical and clinical studies, but the mechanism of this effect is unknown. Previous studies indicate a role for endogenous opioid release and subsequent opioid receptor activation in some amphetamine effects; therefore, the current study examined the role of mu-opioid receptor activation in d-amphetamine treatment effects in an assay of cocaine-vs-food choice. Adult male rhesus monkeys with double-lumen intravenous catheters responded for concurrently available food pellets and cocaine injections (0-0.1mg/kg/injection) during daily sessions. Cocaine choice and overall reinforcement rates were evaluated during 7-day treatments with saline or test drugs. During saline treatment, cocaine maintained a dose-dependent increase in cocaine-vs.-food choice. The mu-opioid receptor agonist morphine (0.032-0.32mg/kg/h) dose-dependently increased cocaine choice and decreased rates of reinforcement. A dose of the mu-selective opioid receptor antagonist naltrexone (0.0032mg/kg/h) that completely blocked morphine effects had no effect on cocaine choice when it was administered alone, but it enhanced the effectiveness of a threshold dose of 0.032mg/kg/h amphetamine to decrease cocaine choice without also enhancing nonselective behavioral disruption by this dose of amphetamine. Conversely, the kappa-selective opioid antagonist norbinalorphimine did not enhance amphetamine effects on cocaine choice. These results suggest that amphetamine maintenance produces mu opioid-receptor mediated effects that oppose its anti-cocaine effects. Co-administration of naltrexone may selectively enhance amphetamine potency to decrease cocaine choice without increasing amphetamine potency to produce general behavioral disruption. Copyright © 2017 Elsevier B.V. All rights reserved.
Smith, Douglas A; Blough, Bruce E; Banks, Matthew L
2017-01-01
Synthetic cathinones have emerged as the newest class of abused monoamine transporter substrates. Structurally, these compounds are all beta-ketone amphetamine (cathinone) analogs. Whether synthetic cathinone analogs produce differential behavioral effects from their amphetamine analog counterparts has not been systematically examined. Preclinical drug discrimination procedures have been useful for determining the structure activity relationships (SARs) of abused drugs; however, direct comparisons between amphetamine and cathinone analogs are lacking and, in particular, in non-human primate models. The study aim was to determine the potency and time course of (±)-amphetamine, (±)-cathinone, and (±)-methamphetamine and their 3,4-methylenedioxy analogs (±)-MDA, (±)-MDC, and (±)-MDMA, respectively, to produce cocaine-like discriminative stimulus effects. If cathinone analogs have similar behavioral pharmacological properties to their amphetamine counterparts, then we would predict similar potencies and efficacies to produce cocaine-like discriminative stimulus effects. Male rhesus monkeys (n = 4) were trained to discriminate intramuscular cocaine (0.32 mg/kg) from saline in a two-key food-reinforced discrimination procedure. Racemic amphetamine, cathinone, and methamphetamine produced dose-dependent and full substitution, ≥90 % cocaine-appropriate responding, in all monkeys. Addition of 3,4-methylenedioxy moiety attenuated both the potency and efficacy of amphetamine (MDA), cathinone (MDC), and methamphetamine (MDMA) to produce full cocaine-like effects. Moreover, the cocaine-like effects of amphetamine and cathinone were attenuated to a greater extent than those of methamphetamine or previously published methcathinone (Smith et al. 2016). The presence of an N-methyl group blunted both the potency and the efficacy shift of the 3,4-methylenedioxy addition for both amphetamine and cathinone analogs.
Prenatal exposure to amphetamines. Risks and adverse outcomes in pregnancy.
Plessinger, M A
1998-03-01
Based on findings in humans and the confirmation of prenatal exposures in animals, amphetamines and methamphetamines increase the risk of an adverse outcome when abused during pregnancy. Clefting, cardiac anomalies, and fetal growth reduction deficits that have been seen in infants exposed to amphetamines during pregnancy have all been reproduced in animal studies involving prenatal exposures to amphetamines. The differential effects of amphetamines between genetic strains of mice and between species demonstrate that pharmacokinetics and the genetic disposition of the mother and developing embryo can have an enormous influence on enhancing or reducing these potential risks. The effects of prenatal exposure to amphetamines in producing altered behavior in humans appear less compelling when one considers other confounding variables of human environment, genetics, and polydrug abuse. In view of the animal data concerning altered behavior and learning tasks in comparison with learning deficits observed in humans, the influence of the confounding variables in humans may serve to increase the sensitivity of the developing embryo/fetus to prenatal exposure to amphetamines. These factors and others may predispose the developing conceptus to the damaging effects of amphetamines by actually lowering the threshold of susceptibility at the sites where damage occurs. Knowledge of the effects of prenatal exposure of the fetus and the mother to designer amphetamines is lacking. Based on the few studies in which designer drugs have been examined in animal models, more questions are raised than answered. Possible reasons why no malformations or significant fetal effects were found in the study by St. Omer include the genetic strain of rat used, the conservative exposure profile, or the fact that the placenta metabolized MDMA before reaching the embryo. These questions underscore the need for further investigations concerning the prenatal exposure effects of designer compounds and the effects of amphetamine and methamphetamine in general.
Ruksee, Nootchanart; Tongjaroenbuangam, Walaiporn; Casalotti, Stefano O; Govitrapong, Piyarat
2008-10-06
Pseudoephedrine is a drug commonly prescribed as a nasal decongestant and bronchodilator and is also freely available in cold remedies and medications. The structural and pharmacological similarity of pseudoephedrine to amphetamine has led to evaluation of its psychomotor stimulant properties within the central nervous system. Previous investigations have shown that the acute responses to pseudoephedrine were similar to those of amphetamine and other psychostimulants. This study examined the effect of chronic administration of pseudoephedrine in rat nucleus accumbens and striatum and identified three further similarities to amphetamine. (i) Chronic exposure to pseudoephedrine reduced the c-Fos response to acute pseudoephedrine treatment suggesting that pseudoephedrine induced tolerance in the animals. (ii) In animals chronically treated with amphetamine or pseudoephedrine the acute c-Fos response to pseudoephedrine and amphetamine was reduced respectively as compared to naïve animals indicating cross-tolerance for the two drugs. (iii)The known involvement of the dopamine system in the response to amphetamine and pseudoephedrine was further confirmed in this study by demonstrating that pseudoephedrine similarly to amphetamine, but with lower potency, inhibited [3H]dopamine uptake in synaptosomal preparations. This work has demonstrated further similarities of the effect of pseudoephedrine to those of amphetamine in brain areas known to be associated with drug addiction. The most significant result presented here is the cross tolerance effect of amphetamine and pseudoephedrine. This suggests that both drugs induce similar mechanisms of action in the brain. Further studies are required to establish whether despite its considerable lower potency, pseudoephedrine could pose health and addiction risks in humans similar to that of known psychostimulants.
Ruksee, Nootchanart; Tongjaroenbuangam, Walaiporn; Casalotti, Stefano O; Govitrapong, Piyarat
2008-01-01
Background Pseudoephedrine is a drug commonly prescribed as a nasal decongestant and bronchodilator and is also freely available in cold remedies and medications. The structural and pharmacological similarity of pseudoephedrine to amphetamine has led to evaluation of its psychomotor stimulant properties within the central nervous system. Previous investigations have shown that the acute responses to pseudoephedrine were similar to those of amphetamine and other psychostimulants. Results This study examined the effect of chronic administration of pseudoephedrine in rat nucleus accumbens and striatum and identified three further similarities to amphetamine. (i) Chronic exposure to pseudoephedrine reduced the c-Fos response to acute pseudoephedrine treatment suggesting that pseudoephedrine induced tolerance in the animals. (ii) In animals chronically treated with amphetamine or pseudoephedrine the acute c-Fos response to pseudoephedrine and amphetamine was reduced respectively as compared to naïve animals indicating cross-tolerance for the two drugs. (iii)The known involvement of the dopamine system in the response to amphetamine and pseudoephedrine was further confirmed in this study by demonstrating that pseudoephedrine similarly to amphetamine, but with lower potency, inhibited [3H]dopamine uptake in synaptosomal preparations. Conclusion This work has demonstrated further similarities of the effect of pseudoephedrine to those of amphetamine in brain areas known to be associated with drug addiction. The most significant result presented here is the cross tolerance effect of amphetamine and psudoephedrine. This suggests that both drugs induce similar mechanisms of action in the brain. Further studies are required to establish whether despite its considerable lower potency, pseudoephedrine could pose health and addiction risks in humans similar to that of known psychostimulants. PMID:18834549
Wilkins, Chris; Sweetsur, Paul
2011-04-01
Few studies have examined the statistical association between methamphetamine/amphetamine use and acquisitive crime. Both methamphetamine/amphetamine and cannabis use have been implicated by New Zealand Police as factors in acquisitive offending among active criminal populations. The aim of our study was to examine the statistical association between spending on methamphetamine/amphetamine and cannabis and earnings from acquisitive crime among police detainees in New Zealand. Four police stations in different regions. A sample of 2125 police detainees were interviewed about their drug use and acquisitive crime. Statistical models were developed to predict involvement in acquisitive crime using spending on methamphetamine/amphetamine and cannabis for personal use, and to examine associations between the level of spending on methamphetamine/amphetamine and cannabis for personal use and level of dollar earnings from acquisitive crime. Self-reported spending on drug use and self-reported earnings from acquisitive crime in the past 30 days. Spending on cannabis and methamphetamine/amphetamine could predict involvement in acquisitive crime. Level of spending on methamphetamine/amphetamine and cannabis was associated positively with the level of earnings from property crime. Level of spending on methamphetamine/amphetamine was also associated positively with level of earnings from drug dealing. There was a largely negative association between level of spending on cannabis and level of earnings from drug dealing. High spending on methamphetamine/amphetamine is associated statistically with higher earnings from acquisitive crime among police detainees. Further research into this association, and in particular the causal nature of the association, is required to obtain clear policy recommendations. © 2010 The Authors, Addiction © 2010 Society for the Study of Addiction.
Smith, Douglas A.; Blough, Bruce. E.; Banks, Matthew L.
2016-01-01
Rationale Synthetic cathinones have emerged as the newest class of abused monoamine transporter substrates. Structurally, these compounds are all beta-ketone amphetamine (cathinone) analogs. Whether synthetic cathinone analogs produce differential behavioral effects from their amphetamine analog counterparts has not been systematically examined. Preclinical drug discrimination procedures have been useful for determining the structure activity relationships (SAR) of abused drugs; however, direct comparisons between amphetamine and cathinone analogs are lacking and, in particular, in nonhuman primate models. Objectives The study aim was to determine the potency and time course of (±)-amphetamine, (±)-cathinone, (±)-methamphetamine, and their 3,4-methylenedioxy analogs (±)-MDA, (±)-MDC, and (±)-MDMA, respectively to produce cocaine-like discriminative stimulus effects. If cathinone analogs have similar behavioral pharmacological properties to their amphetamine counterparts, then we would predict similar potencies and efficacies to produce cocaine-like discriminative stimulus effects. Methods Male rhesus monkeys (n=4) were trained to discriminate intramuscular cocaine (0.32 mg/kg) from saline in a two-key food-reinforced discrimination procedure. Results Racemic amphetamine, cathinone, and methamphetamine produced dose-dependent and full, ≥90% cocaine-appropriate responding, in all monkeys. Addition of 3,4-methylenedioxy moiety attenuated both the potency and efficacy of amphetamine (MDA), cathinone (MDC), and methamphetamine (MDMA) to produce full cocaine-like effects. Moreover, the cocaine-like effects of amphetamine and cathinone were attenuated to a greater extent than methamphetamine or previously published methcathinone (Smith et al. 2016). Conclusion The presence of an N-methyl group blunted both the potency and efficacy shift of the 3,4-methylenedioxy addition for both amphetamine and cathinone analogs. PMID:27709249
Characteristics of treatment provided for amphetamine use in New South Wales, Australia.
McKetin, Rebecca; Kelly, Erin; Indig, Devon
2005-09-01
The purpose of this study was to examine the types of treatment services provided for amphetamine use, the characteristics of amphetamine treatment clients and the geographic areas most affected by amphetamine treatment provision within New South Wales (NSW), Australia. Data on completed amphetamine treatment episodes were extracted from the NSW Minimum Data Set for Alcohol and Other Drug Treatment Services for the year 2002/03 (n = 4,337). The geographic area of treatment presentations was based on the location of the treatment service, and was categorized as metropolitan, regional or rural. Treatment disproportionately affected regional and rural NSW, and treatment clients often presented with concurrent cannabis and/or alcohol problems. Clients were overwhelmingly injecting drug users with poor socio-demographic characteristics. Counselling was the most common treatment service provided, followed by detoxification and residential rehabilitation. Detoxification was usually provided in an in-patient setting, particularly within metropolitan NSW. Compliance with residential rehabilitation was notably poor. In conclusion, the development of appropriate interventions for amphetamine use needs to consider that the majority of treatment recipients will be based in a regional or rural setting, and treating amphetamine users will often involve treatment of concurrent cannabis and alcohol problems. The nature and appropriateness of treatment services provided for amphetamine use needs to be reviewed in detail, and further research is needed into the nature of problematic amphetamine use and factors affecting treatment demand in regional and rural NSW.
Mattsson, Anna; Olson, Lars; Svensson, Torgny H; Schilström, Björn
2007-11-01
Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.
Xu, Tai-Xiang; Ma, Qi; Spealman, Roger D; Yao, Wei-Dong
2010-12-01
Amphetamine can improve cognition in healthy subjects and patients with schizophrenia, attention-deficit hyperactivity disorder, and other neuropsychiatric diseases; higher doses, however, can impair cognitive function, especially those mediated by the prefrontal cortex. We investigated how amphetamine affects prefrontal cortex long-term potentiation (LTP), a cellular correlate of learning and memory, in normal and hyperdopaminergic mice lacking the dopamine transporter. Acute amphetamine treatment in wild-type mice produced a biphasic dose-response modulation of LTP, with a low dose enhancing LTP and a high dose impairing it. Amphetamine-induced LTP enhancement was prevented by pharmacological blockade of D(1) - (but not D(2)-) class dopamine receptors, by blockade of β-adrenergic receptors, or by inhibition of cAMP-PKA signaling. In contrast, amphetamine-induced LTP impairment was prevented by inhibition of post-synaptic protein phosphatase-1, a downstream target of PKA signaling, or by blockade of either D(1) - or D(2)-class dopamine, but not noradrenergic, receptors. Thus, amphetamine biphasically modulates LTP via cAMP-PKA signaling orchestrated mainly through dopamine receptors. Unexpectedly, amphetamine restored the loss of LTP in dopamine transporter-knockout mice primarily by activation of the noradrenergic system. Our results mirror the biphasic effectiveness of amphetamine in humans and provide new mechanistic insights into its effects on cognition under normal and hyperdopaminergic conditions. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.
Price, T J; Flores, C M; Cervero, F; Hargreaves, K M
2006-09-15
Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile x mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation.
PRICE, T. J.; FLORES, C. M.; CERVERO, F.; HARGREAVES, K. M.
2007-01-01
Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile × mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation. PMID:16809002
Obinata, Daisuke; Takada, Shogo; Takayama, Ken-ichi; Urano, Tomohiko; Ito, Akiko; Ashikari, Daisaku; Fujiwara, Kyoko; Yamada, Yuta; Murata, Taro; Kumagai, Jinpei; Fujimura, Tetsuya; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Homma, Yukio; Takahashi, Satoru; Inoue, Satoshi
2016-04-01
The androgen receptor (AR) plays a key role in the development of prostate cancer. AR signalling mediates the expression of androgen-responsive genes, which are involved in prostate cancer development and progression. Our previous chromatin immunoprecipitation study showed that the region of abhydrolase domain containing 2 (ABHD2) includes a functional androgen receptor binding site. In this study, we demonstrated that ABHD2 is a novel androgen-responsive gene that is overexpressed in human prostate cancer tissues. The expression levels of ABHD2 in androgen-sensitive cells were evaluated by quantitative reverse transcription polymerase chain reaction and western-blot analyses. LNCaP and VCaP cells with ABHD2 overexpression or short interfering RNA (siRNA) knockdown were used for functional analyses. ABHD2 expression was examined in clinical samples of prostate cancer by immunohistochemistry. We showed that ABHD2 expression is increased by androgen in LNCaP and VCaP cells. This androgen-induced ABHD2 expression was diminished by bicalutamide. While stable expression of ABHD2 affected the enhancement of LNCaP cell proliferation and migration, siRNA-mediated ABHD2 knockdown suppressed cell proliferation and migration. In addition, the siRNA treatment significantly repressed the tumour growth derived from LNCaP cells in athymic mice. Immunohistochemical analysis of ABHD2 expression in tumour specimens showed a positive correlation of ABHD2 immunoreactivity with high Gleason score and pathological N stage. Moreover, patients with high immunoreactivity of ABHD2 showed low cancer-specific survival rates and a resistance to docetaxel-based chemotherapy. ABHD2 is a novel androgen-regulated gene that can promote prostate cancer growth and resistance to chemotherapy, and is a novel target for diagnosis and treatment of prostate cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pena, J D; Mello, P A; Hernandez, M R
2000-05-01
The purpose of this study was to identify elastic microfibrillar components fibrillin-1 and fibrillin-2 in optic nerve heads of adult normal and glaucomatous subjects, in cultured optic nerve head astrocytes (type 1B astrocytes), as well as fibrillin-1 in fetal optic nerve heads. To characterize synthesis and gene expression of microfibrillar proteins in human optic nerve heads and cultured type 1B astrocytes, light microscopy immunohistochemistry, in situ hybridization, and RT-PCR or Northern blots were performed. Our results demonstrated that fibrillin-1 was associated with blood vessels, astrocytes in the glial columns and cribriform plates, and with astrocyte processes in the nerve bundles in all samples. In glaucomatous optic nerves there was enhanced fibrillin-1 immunoreactivity, especially surrounding blood vessels. Fibrillin-2 was localized primarily to blood vessels in all samples, without qualitative differences between normal and glaucomatous samples. In fetal optic nerve heads fibrillin-1 mRNA was localized to glial cells and to the blood vessel walls. In adult optic nerve heads, there was little fibrillin-1 mRNA as detectable by in situ hybridization and RT-PCR. There was no detectable upregulation of fibrillin-1 mRNA in glaucoma. In cultured type 1B astrocytes, fibrillin-1 staining was mostly pericellular. There was little fibrillin-2 immunoreactivity. In conclusion, astrocytes from the optic nerve head deposit elastic microfibrillar components in situ and in vitro, with a predominance of fibrillin-1. Upregulation of fibrillin-1 mRNA was not observed in glaucoma, suggesting that increased transcription may occur early in the disease process. Cultures of type 1B astrocytes from the optic nerve head provides a useful model to study mechanisms regulating the interactions of elastin and the microfibrils in optic nerve head astrocytes.
Yanguas-Casás, Natalia; Barreda-Manso, M Asunción; Pérez-Rial, Sandra; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo
2017-11-01
The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in various animal models of neuropathologies. We have previously shown the anti-inflammatory properties of TUDCA in an animal model of acute neuroinflammation. Here, we present a new anti-inflammatory mechanism of TUDCA through the regulation of transforming growth factor β (TGFβ) pathway. The bacterial lipopolysaccharide (LPS) was injected intravenously (iv) on TGFβ reporter mice (Smad-binding element (SBE)/Tk-Luc) to study in their brains the real-time activation profile of the TGFβ pathway in a non-invasive way. The activation of the TGFβ pathway in the brain of SBE/Tk-Luc mice increased 24 h after LPS injection, compared to control animals. This activation peak increased further in mice treated with both LPS and TUDCA than in mice treated with LPS only. The enhanced TGFβ activation in mice treated with LPS and TUDCA correlated with both an increase in TGFβ3 transcript in mouse brain and an increase in TGFβ3 immunoreactivity in microglia/macrophages, endothelial cells, and neurons. Inhibition of the TGFβ receptor with SB431542 drug reverted the effect of TUDCA on microglia/macrophages activation and on TGFβ3 immunoreactivity. Under inflammatory conditions, treatment with TUDCA enhanced further the activation of TGFβ pathway in mouse brain and increased the expression of TGFβ3. Therefore, the induction of TGFβ3 by TUDCA might act as a positive feedback, increasing the initial activation of the TGFβ pathway by the inflammatory stimulus. Our findings provide proof-of-concept that TGFβ contributes to the anti-inflammatory effect of TUDCA under neuroinflammatory conditions.
Toda, Riko; Okano, Keiko; Takeuchi, Yuki; Yamauchi, Chihiro; Fukushiro, Masato; Takemura, Akihiro; Okano, Toshiyuki
2014-01-01
Lunar cycle-associated physiology has been found in a wide variety of organisms. Studies suggest the presence of a circalunar clock in some animals, but the location of the lunar clock is unclear. We previously found lunar-associated expression of transcripts for Cryptochrome3 gene (SgCry3) in the brain of a lunar phase-responsive fish, the Goldlined spinefoot (Siganus guttatus). Then we proposed a photoperiodic model for the lunar phase response, in which SgCry3 might function as a phase-specific light response gene and/or an oscillatory factor in unidentified circalunar clock. In this study, we have developed an anti-SgCRY3 antibody to identify SgCRY3-immunoreactive cells in the brain. We found immunoreactions in the subependymal cells located in the mediobasal region of the diencephalon, a crucial site for photoperiodic seasonal responses in birds. For further assessment of the lunar-responding mechanism and the circalunar clock, we investigated mRNA levels of Cry3 as well as those of the other clock(-related) genes, Period (Per2 and Per4), in S. guttatus reared under nocturnal moonlight interruption or natural conditions. Not only SgCry3 but SgPer4 mRNA levels showed lunar phase-dependent variations in the diencephalon without depending on light condition during the night. These results suggest that the expressions of SgCry3 and SgPer4 are not directly regulated by moonlight stimulation but endogenously mediated in the brain, and implicate that circadian clock(-related) genes may be involved in the circalunar clock locating within the mediobasal region of the diencephalon.
Bo, E; Farinetti, A; Marraudino, M; Sterchele, D; Eva, C; Gotti, S; Panzica, G
2016-07-01
Tributyltin (TBT), a pesticide used in antifouling paints, is toxic for aquatic invertebrates. In vertebrates, TBT may act in obesogen- inducing adipogenetic gene transcription for adipocyte differentiation. In a previous study, we demonstrated that acute administration of TBT induces c-fos expression in the arcuate nucleus. Therefore, in this study, we tested the hypothesis that adult exposure to TBT may alter a part of the nervous pathways controlling animal food intake. In particular, we investigated the expression of neuropeptide Y (NPY) immunoreactivity. This neuropeptide forms neural circuits dedicated to food assumption and its action is mediated by Y1 receptors that are widely expressed in the hypothalamic nuclei responsible for the regulation of food intake and energy homeostasis. To this purpose, TBT was orally administered at a dose of 0.025 mg/kg/day/body weight to adult animals [male and female C57BL/6 (Y1-LacZ transgenic mice] for 4 weeks. No differences were found in body weight and fat deposition, but we observed a significant increase in feed efficiency in TBT-treated male mice and a significant decrease in circulating leptin in both sexes. Computerized quantitative analysis of NPY immunoreactivity and Y1-related β-galactosidase activity demonstrated a statistically significant reduction in NPY and Y1 transgene expression in the hypothalamic circuit controlling food intake of treated male mice in comparison with controls. In conclusion, the present results indicate that adult exposure to TBT is profoundly interfering with the nervous circuits involved in the stimulation of food intake. © 2016 American Society of Andrology and European Academy of Andrology.
Rodriguez-Menchaca, Aldo A; Solis Jr, Ernesto; Cameron, Krasnodara; De Felice, Louis J
2012-01-01
BACKGROUND AND PURPOSE Wherever they are located, dopamine transporters (DATs) clear dopamine (DA) from the extracellular milieu to help regulate dopaminergic signalling. Exposure to amphetamine (AMPH) increases extracellular DA in the synaptic cleft, which has been ascribed to DAT reverse transport. Increased extracellular DA prolongs postsynaptic activity and reinforces abuse and hedonic behaviour. EXPERIMENTAL APPROACH Xenopus laevis oocytes expressing human (h) DAT were voltage-clamped and exposed to DA, R(-)AMPH, or S(+)AMPH. KEY RESULTS At -60mV, near neuronal resting potentials, S(+)AMPH induced a depolarizing current through hDAT, which after removing the drug, persisted for more than 30 min. This persistent leak in the absence of S(+)AMPH was in contrast to the currents induced by R(-)AMPH and DA, which returned to baseline immediately after their removal. Our data suggest that S(+)AMPH and Na+ carry the initial S(+)AMPH-induced current, whereas Na+ and Cl- carry the persistent leak current. We propose that the persistent current results from the internal action of S(+)AMPH on hDAT because the temporal effect was consistent with S(+)AMPH influx, and intracellular S(+)AMPH activated the effect. The persistent current was dependent on Na+ and was blocked by cocaine. Intracellular injection of S(+)AMPH also activated a DA-induced persistent leak current. CONCLUSIONS AND IMPLICATIONS We report a hitherto unknown action of S(+)AMPH on hDAT that potentially affects AMPH-induced DA release. We propose that internal S(+)AMPH acts as a molecular stent that holds the transporter open even after external S(+)AMPH is removed. Amphetamine-induced persistent leak currents are likely to influence dopaminergic signalling, DA release mechanisms, and amphetamine abuse. PMID:22014068
Similar discriminative-stimulus effects of D-amphetamine in women and men.
Vansickel, Andrea R; Lile, Joshua A; Stoops, William W; Rush, Craig R
2007-01-01
The results of controlled non-human animal and human laboratory studies are mixed regarding whether women and men respond differently to stimulant drugs. In order to assess potential gender differences in the effects of D-amphetamine, we conducted a retrospective analysis of six studies conducted in our laboratory that used identical procedures and measures. Thirteen women and fourteen men learned to discriminate 15 mg oral D-amphetamine. After acquiring the discrimination (i.e., >or=80% correct responding on 4 consecutive sessions), the effects of a range of doses of D-amphetamine (0, 2.5, 5, 10, and 15 mg) alone and in combination with other drugs, were assessed. Only data from sessions in which D-amphetamine was administered alone were included in this analysis. D-amphetamine functioned as a discriminative stimulus and dose-dependently increased drug-appropriate responding. Women and men did not differ in their ability to discriminate D-amphetamine. Women and men differed on participant-ratings of high (women
Saha, Soham; Kumar, Santosh; Singh, Uday; Singh, Omprakash; Singru, Praful S
2015-09-01
In teleosts, while neuropeptide Y (NPY) has emerged as one of the potent regulators of GnRH-LH axis, entopeduncular nucleus (EN) in the ventral telencephalon serves as major site for NPY synthesis/storage. Neurons of the EN innervate preoptic area and pituitary, respond to gonadal steroids, undergo reproduction phase-related changes, and are believed to convey sex steroid-borne information to GnRH neurons. In spite of the importance of EN, the neural circuitry associated with the nucleus has not been defined. Aim of the present study is to examine the possibility of the dopaminergic regulation of EN. NPY-immunoreactive cells and fibers were extensively distributed in the forebrain and pituitary of Cirrhinus cirrhosus. NPY immunoreactivity was observed in the olfactory receptor neurons, ganglion cells of terminal nerve, and in neurons of area ventralis telencephali/pars lateralis, EN, nucleus preopticus periventricularis (NPP), and nucleus lateralis tuberis. NPY-fibers were observed in the dorsal telencephalon, tuberal area and pituitary. While the area ventralis telencephali/pars intermedialis (Vi) located just above the EN contained a distinct population of tyrosine hydroxylase neurons, their axons seem to innervate NPY neurons in EN. Superfused brain slices containing EN were treated with DA D1- and D2-like receptor agonists. NPY-immunoreactivity in the EN showed significant increase (P<0.001) following DA D1-like receptor agonist, SKF-38393 treatment, but DA D2-like receptor agonist, quinpirole was ineffective. DA may regulate NPY neurons in EN via D1-like receptors. DA-NPY interaction in the EN might be important in the central regulation of reproduction in teleosts. Copyright © 2014 Elsevier Inc. All rights reserved.
Badawy, Gamal; Reinecke, Manfred
2003-03-01
Evidence for the presence and potential co-existence of vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP) and nitric oxide synthase (NOS) in gastro-intestinal endocrine cells and/or nerve fibers is conflicting and very few results exist on development. This immunofluorescence study aims to clarify the appearance and localization of VIP, PACAP and NOS in the gastro-intestinal tract of the Axolotl, Ambystoma mexicanum, during ontogeny. VIP-immunoreactivity appeared in nerve fibers as early as on day 3 after hatching likely indicating a particular role, such as a trophic action, of VIP in very early development. PACAP-immunoreactivity was observed 3 days later within the VIP-immunoreactive (-IR) fibers. From this time on, VIP- and PACAP-immunoreactivity exhibited complete co-existence. VIP/PACAP-IR fibers were found throughout the gastro-intestinal tract. They were most prominent in the myenteric plexus and the muscle layers and less frequent in the submucosa. NOS-immunoreactivity appeared as late as at the 1st (64 days) juvenile stage in a subpopulation of the VIP/PACAP-IR fibers that contacted submucosal arteries. We found only very few VIP/PACAP-IR perikarya, indicating that part of the VIP/PACAP-IR fibers is of extrinsic origin. On day 12 and in the 1st and 2nd (104 days) juvenile stage, infrequent PACAP-IR entero-endocrine cells were noted, while neither VIP- nor NOS-immunoreactivity occurred in endocrine cells at any stage of development. The complete coexistence of neuronal PACAP- and VIP-immunoreactivities and their very early appearance in ontogeny may suggest important and coordinated roles of both peptides in the control of Axolotl gastro-intestinal activity, while the VIP/ PACAP/NOS-IR fibers may be involved in the regulation of submucosal blood flow.
Leitermann, Randy J; Sajdyk, Tammy J; Urban, Janice H
2012-10-01
Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA. Copyright © 2012 Elsevier B.V. All rights reserved.
Wierońska, J M; Brański, P; Pałvcha, A; Smiałowska, M
2001-01-01
Amygdala is the brain structure responsible for integrating all behavior connected with fear, and in this structure two neuropeptides, neuropeptide Y (NPY), corticoliberin (CRF) and the most abundant excitatory neurotransmitter glutamate seem to take part in the regulation of anxiety behavior. Our previous studies showed the modulation of NPY and CRF expression by classical neurotransmitters in some brain structures, therefore in the present study we investigated the effect of NMDA receptor antagonists on the expression of NPY and CRF immunoreactivity in the rat brain amygdala. A non-competitive NMDA receptor antagonist, MK-801, or a functional NMDA antagonist, ACPC were used. Brains were taken out and processed by immunohistochemical method using specific NPY or CRF antibodies. The staining intensity and density of IR neurons were evaluated under a microscope in amygdala sections. It was found that both MK-801 and ACPC induced a significant decrease in NPY-immunoreactivity in amygdala nerve cell bodies and terminals, which may suggest an increased release of this peptide. CRF-IR was decreased after ACPC only. The obtained results indicate that in the amygdala, the NMDA receptors mediated glutamatergic transmission may regulate NPY neurons. Copyright 2001 Harcourt Publishers Ltd.
OPRM1 gene variants modulate amphetamine-induced euphoria in humans
Dlugos, Andrea M.; Hamidovic, Ajna; Hodgkinson, Colin; Pei-Hong, Shen; Goldman, David; Palmer, Abraham A.; de Wit, Harriet
2012-01-01
The μ-opioid receptor is involved in the rewarding effects of not only opioids like morphine but also psychostimulants like amphetamine. This study aimed to investigate associations between subjective response to amphetamine and genetic polymorphisms and haplotypes in the μ-opioid receptor including the exonic variant rs1799971 (Asp40Asn). 162 Caucasian volunteers participated in three sessions receiving either placebo or d-amphetamine (10 and 20 mg). Associations between levels of self-reported Euphoria, Energy and Stimulation (ARCI-49) after d-amphetamine ingestion and polymorphisms in OPRM1 were investigated. The intronic SNPs rs510769 and rs2281617 were associated with significantly higher ratings of Euphoria, Energy and Stimulation after 10 mg amphetamine. Feelings of Euphoria, Energy and Stimulation were also found to be associated with a 2-SNP haplotype formed with rs1799971 and rs510769 and a 3-SNP haplotype formed with rs1918760, rs2281617 and rs1998220. These results support the hypothesis that genetic variability in the μ-opioid receptor gene influences the subjective effects of amphetamine and may suggest new strategies for prevention and treatment of psychostimulant abuse. PMID:21029375
Effect of amphetamine on human macronutrient intake.
Foltin, R W; Kelly, T H; Fischman, M W
1995-11-01
Six male subjects participated in a 15-day residential study examining the effects of amphetamine on macronutrient intake. During the first 11 days, carbohydrate intake was manipulated by providing lunch meals high (155 g) or low (25 g) in carbohydrate. Subjects received oral d-amphetamine (5, 10 mg/70 kg, BID) or placebo. Total daily caloric intake was similar under both lunch conditions (approximately 3400/Kcal), but carbohydrate contributed more energy under the high-carbohydrate condition. Both doses of amphetamine decreased total caloric intake to approximately 2600 Kcal, by decreasing the number of eating bouts, without affecting macronutrient selection. During the last four days subjects received a higher daily dose of amphetamine (30 mg/70 kg in four doses) or placebo, and were allowed to self-select lunch. Although 30 mg amphetamine decreased intake of all macronutrients, the relative contribution of carbohydrate to total caloric intake was increased from 54% to 62%, while the contribution of fat was decreased from 32% to 26% and the contribution of protein was decreased from 14% to 12%. Thus, at a high dose, amphetamine altered the relative contribution of specific macronutrients to total caloric intake.
Kocsis, Zsuzsa S; Molnár, Csilla S; Watanabe, Masahiko; Daneels, Guy; Moechars, Dieder; Liposits, Zsolt; Hrabovszky, Erik
2010-02-01
Recent immunohistochemical studies of the rat adenohypophysis identified type-2 vesicular glutamate transporter (VGLUT2), a marker for glutamatergic neuronal phenotype, in high percentages of adenohypophysial gonadotrophs and thyrotrophs. The presence and molecular identity of amino acid neurotransmitters in the remaining hormone producing cell types are unknown. In the present study we addressed the putative synthesis of another glutamatergic marker, VGLUT1 by adenohypophysial cells. Immunohistochemical studies revealed VGLUT1 immunoreactivity in a small subset of polygonal medium-sized cells in the anterior lobe. Western blot analysis revealed a single major 60 kDa protein band in the adenohypophysis. Furthermore, the expression of VGLUT1 mRNA was confirmed by reverse transcription-polymerase chain reaction followed by sequence analysis of the amplicon. In contrast with rats which only showed VGLUT1 signal in the anterior lobe of the pituitary, mice contained high levels of VGLUT1 immunoreactivity in the intermediate, in addition to the anterior lobe. No signal was present in VGLUT1-knockout mice, providing evidence for specificity. In rats, results of colocalization studies with dual-immunofluorescent labeling provided evidence for VGLUT1 immunoreactivity in 45.9% of corticotrophs and 7.7% of luteinizing hormone beta-immunopositive gonadotrophs. Cells of the other peptide hormone phenotypes were devoid of VGLUT1 signal. A few cells in the adenohypophysis expressed both VGLUT1 and VGLUT2 immunoreactivities. The presence of the glutamate markers VGLUT1 and VGLUT2 in distinct populations of peptide hormone-secreting hypophysial cells highly indicates the involvement of endogenous glutamate release in autocrine/paracrine regulatory mechanisms. The biological function of adenohypophysial glutamate will require clarification. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Panneton, W. Michael; Gan, Qi
2014-01-01
Few trigeminal sensory fibers project centrally beyond the trigeminal sensory complex, with only projections of fibers carried in its sensory anterior ethmoidal (AEN) and intraoral nerves described. Fibers of the AEN project into the brainstem reticular formation where immunoreactivity against substance P and CGRP are found. We investigated whether the source of these peptides could be from trigeminal ganglion neurons by performing unilateral rhizotomies of the trigeminal root and looking for absence of label. After an 8–14 days survival, substance P immunoreactivity in the trigeminal sensory complex was diminished, but we could not conclude that the sole source of this peptide in the lateral parabrachial area and lateral reticular formation arises from primary afferent fibers. Immunoreactivity to CGRP after rhizotomy however was greatly diminished in the trigeminal sensory complex, confirming the observations of others. Moreover, CGRP immunoreactivity was nearly eliminated in fibers in the lateral parabrachial area, the caudal ventrolateral medulla, both the peri-ambiguus and ventral parts of the rostral ventrolateral medulla, in the external formation of the nucleus ambiguus, and diminished in the caudal pressor area. The nearly complete elimination of CGRP in the lateral reticular formation after rhizotomy suggests this peptide is carried in primary afferent fibers. Moreover, the arborization of CGRP immunoreactive fibers in these areas mimics that of direct projections from the AEN. Since electrical stimulation of the AEN induces cardiorespiratory adjustments including an apnea, peripheral vasoconstriction, and bradycardia similar to those seen in the mammalian diving response, we suggest these perturbations of autonomic behavior are enhanced by direct somatic primary afferent projections to these reticular neurons. We believe this to be first description of potential direct somatoautonomic projections to brainstem neurons regulating autonomic activity. PMID:24926231
NASA Technical Reports Server (NTRS)
Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.
1991-01-01
Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.
Panneton, W Michael; Gan, Qi
2014-01-01
Few trigeminal sensory fibers project centrally beyond the trigeminal sensory complex, with only projections of fibers carried in its sensory anterior ethmoidal (AEN) and intraoral nerves described. Fibers of the AEN project into the brainstem reticular formation where immunoreactivity against substance P and CGRP are found. We investigated whether the source of these peptides could be from trigeminal ganglion neurons by performing unilateral rhizotomies of the trigeminal root and looking for absence of label. After an 8-14 days survival, substance P immunoreactivity in the trigeminal sensory complex was diminished, but we could not conclude that the sole source of this peptide in the lateral parabrachial area and lateral reticular formation arises from primary afferent fibers. Immunoreactivity to CGRP after rhizotomy however was greatly diminished in the trigeminal sensory complex, confirming the observations of others. Moreover, CGRP immunoreactivity was nearly eliminated in fibers in the lateral parabrachial area, the caudal ventrolateral medulla, both the peri-ambiguus and ventral parts of the rostral ventrolateral medulla, in the external formation of the nucleus ambiguus, and diminished in the caudal pressor area. The nearly complete elimination of CGRP in the lateral reticular formation after rhizotomy suggests this peptide is carried in primary afferent fibers. Moreover, the arborization of CGRP immunoreactive fibers in these areas mimics that of direct projections from the AEN. Since electrical stimulation of the AEN induces cardiorespiratory adjustments including an apnea, peripheral vasoconstriction, and bradycardia similar to those seen in the mammalian diving response, we suggest these perturbations of autonomic behavior are enhanced by direct somatic primary afferent projections to these reticular neurons. We believe this to be first description of potential direct somatoautonomic projections to brainstem neurons regulating autonomic activity.
Metabolic Precursors to Amphetamine and Methamphetamine.
Cody, J D
1993-12-01
Analysis and interpretation of amphetamine results is a challenging process made difficult by a number of factors. One of the complications comes from determination of the origin of amphetamine or methamphetamine in a sample. Given the relatively rare occasions that either of these two drugs are prescribed, legal prescription of one of these drugs is seldom a reason for positive findings. A number of other precursor compounds are metabolized by the body to amphetamine or methamphetamine, many of which could be used for legitimate reasons. Fourteen different metabolic precursors of amphetamine or methamphetamine are included in this review. They are amphetaminil, benzphetamine, clobenzorex, deprenyl, dimethylamphetamine, ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, mesocarb, and prenylamine. Medical use, metabolism, analysis, and interpretation are described to afford sufficient information to evaluate the possible involvement of these drugs in positive amphetamine or methamphetamine results. Copyright © 1993 Central Police University.
Gender-specific increase of bone mass by CART peptide treatment is ovary-dependent.
Gerrits, Han; Bakker, Nicole Ec; van de Ven-de Laat, Cindy Jm; Bourgondien, Freek Gm; Peddemors, Carolien; Litjens, Ralph Hgm; Kok, Han J; Vogel, Gerard Mt; Krajnc-Franken, Magda Am; Gossen, Jan A
2011-12-01
Cocaine- and amphetamine-regulated transcript (CART) has emerged as a neurotransmitter and hormone that has been implicated in many processes including food intake, maintenance of body weight, and reward, but also in the regulation of bone mass. CART-deficient mice are characterized by an osteoporotic phenotype, whereas female transgenic mice overexpressing CART display an increase in bone mass. Here we describe experiments that show that peripheral subcutaneous sustained release of different CART peptide isoforms for a period up to 60 days increased bone mass by 80% in intact mice. CART peptides increased trabecular bone mass, but not cortical bone mass, and the increase was caused by reduced osteoclast activity in combination with normal osteoblast activity. The observed effect on bone was gender-specific, because male mice did not respond to treatment with CART peptides. In addition, male transgenic CART overexpressing mice did not display increased bone mass. Ovariectomy (OVX) completely abolished the increase of bone mass by CART peptides, both in CART peptide-treated wild-type mice and in CART transgenic mice. The effect of CART peptide treatment on trabecular bone was not mediated by 17β-estradiol (E(2)) because supplementation of OVX mice with E(2) could not rescue the effect of CART peptides on bone. Together, these results indicate that sustained release of CART peptides increases bone mass in a gender-specific way via a yet unknown mechanism that requires the presence of the ovary. Copyright © 2011 American Society for Bone and Mineral Research.
Sundarrajan, Lakshminarasimhan; Blanco, Ayelén Melisa; Bertucci, Juan Ignacio; Ramesh, Naresh; Canosa, Luis Fabián; Unniappan, Suraj
2016-01-01
Nesfatin-1 is an 82 amino acid anorexigen encoded in a secreted precursor nucleobindin-2 (NUCB2). NUCB2 was named so due to its high sequence similarity with nucleobindin-1 (NUCB1). It was recently reported that NUCB1 encodes an insulinotropic nesfatin-1-like peptide (NLP) in mice. Here, we aimed to characterize NLP in fish. RT- qPCR showed NUCB1 expression in both central and peripheral tissues. Western blot analysis and/or fluorescence immunohistochemistry determined NUCB1/NLP in the brain, pituitary, testis, ovary and gut of goldfish. NUCB1 mRNA expression in goldfish pituitary and gut displayed a daily rhythmic pattern of expression. Pituitary NUCB1 mRNA expression was downregulated by estradiol, while testosterone upregulated its expression in female goldfish brain. High carbohydrate and fat suppressed NUCB1 mRNA expression in the brain and gut. Intraperitoneal injection of synthetic rat NLP and goldfish NLP at 10 and 100 ng/g body weight doses caused potent inhibition of food intake in goldfish. NLP injection also downregulated the expression of mRNAs encoding orexigens, preproghrelin and orexin-A, and upregulated anorexigen cocaine and amphetamine regulated transcript mRNA in goldfish brain. Collectively, these results provide the first set of results supporting the anorectic action of NLP, and the regulation of tissue specific expression of goldfish NUCB1. PMID:27329836
Predicting hydration free energies of amphetamine-type stimulants with a customized molecular model
NASA Astrophysics Data System (ADS)
Li, Jipeng; Fu, Jia; Huang, Xing; Lu, Diannan; Wu, Jianzhong
2016-09-01
Amphetamine-type stimulants (ATS) are a group of incitation and psychedelic drugs affecting the central nervous system. Physicochemical data for these compounds are essential for understanding the stimulating mechanism, for assessing their environmental impacts, and for developing new drug detection methods. However, experimental data are scarce due to tight regulation of such illicit drugs, yet conventional methods to estimate their properties are often unreliable. Here we introduce a tailor-made multiscale procedure for predicting the hydration free energies and the solvation structures of ATS molecules by a combination of first principles calculations and the classical density functional theory. We demonstrate that the multiscale procedure performs well for a training set with similar molecular characteristics and yields good agreement with a testing set not used in the training. The theoretical predictions serve as a benchmark for the missing experimental data and, importantly, provide microscopic insights into manipulating the hydrophobicity of ATS compounds by chemical modifications.
Garcia, Erik J; Cain, Mary E
2016-02-01
Novelty and sensation seeking (NSS) predisposes humans and rats to experiment with psychostimulants. In animal models, different tests of NSS predict different phases of drug dependence. Ultrasonic vocalizations (USVs) are evoked by psychomotor stimulants and measure the affective/motivation response to stimuli, yet the role NSS has on USVs in response to amphetamine is not determined. The aim of the present study was to determine if individual differences in NSS and USVs can predict locomotor and USV response to amphetamine (0.0, 0.3, and 1.0 mg/kg) after acute and chronic exposure. Thirty male rats were tested for their response to novelty (IEN), choice to engage in novelty (NPP), and heterospecific play (H-USV). Rats were administered non-contingent amphetamine or saline for seven exposures, and USVs and locomotor activity were measured. After a 14-day rest, rats were administered a challenge dose of amphetamine. Regression analyses indicated that amphetamine dose-dependently increased locomotor activity and the NPP test negatively predicted treatment-induced locomotor activity. The H-USV test predicted treatment-induced frequency-modulated (FM) USVs, but the strength of prediction depended on IEN response. Results provide evidence that locomotor activity and FM USVs induced by amphetamine represent different behavioral responses. The prediction of amphetamine-induced FM USVs by the H-USV screen was changed by the novelty response, indicating that the affective value of amphetamine-measured by FM USVs-depends on novelty response. This provides evidence that higher novelty responders may develop a tolerance faster and may escalate intake faster.
Turner, Amy C; Kraev, Igor; Stewart, Michael G; Stramek, Agata; Overton, Paul G; Dommett, Eleanor J
2018-06-04
Heightened distractibility is a core symptom of Attention Deficit Hyperactivity Disorder (ADHD). Effective treatment is normally with chronic orally administered psychostimulants including amphetamine. Treatment prevents worsening of symptoms but the site of therapeutic processes, and their nature, is unknown. Mounting evidence suggests that the superior colliculus (SC) is a key substrate in distractibility and a therapeutic target, so we assessed whether therapeutically-relevant changes are induced in this structure by chronic oral amphetamine. We hypothesized that amphetamine would alter visual responses and morphological measures. Six-week old healthy male rats were treated with oral amphetamine (2, 5 or 10 mg/kg) or a vehicle for one month after which local field potential and multiunit recordings were made from the superficial layers of the SC in response to whole-field light flashes in withdrawal. Rapid Golgi staining was also used to assess dendritic spines, and synaptophysin staining was used to assess synaptic integrity. Chronic amphetamine increased local field potential responses at higher doses, and increased synaptophysin expression, suggesting enhanced visual input involving presynaptic remodelling. No comparable increases in multiunit activity were found suggesting amphetamine suppresses collicular output activity, counterbalancing the increased input. We also report, for the first time, five different dendritic spine types in the superficial layers and show these to be unaffected by amphetamine, indicating that suppression does not involve gross postsynaptic structural alterations. In conclusion, we suggest that amphetamine produces changes at the collicular level that potentially stabilise the structure and may prevent the worsening of symptoms in disorders like ADHD. Copyright © 2018. Published by Elsevier Ltd.
Amphetamine increases activity but not exploration in humans and mice
Minassian, Arpi; Young, Jared W.; Cope, Zackary A.; Henry, Brook L.; Geyer, Mark A.; Perry, William
2015-01-01
Rationale Cross-species quantification of physiological behavior enables a better understanding of the biological systems underlying neuropsychiatric diseases such as Bipolar Disorder (BD). Cardinal symptoms of manic BD include increased motor activity and goal-directed behavior, thought to be related to increased catecholamine activity, potentially selective to dopamine homeostatic dysregulation. Objectives The objective of this study was to test whether acute administration of amphetamine, a norepinephrine/dopamine transporter inhibitor and dopamine releaser, would replicate the profile of activity and exploration observed in both humans with manic BD and mouse models of mania. Methods Healthy volunteers with no psychiatric history were randomized to a one-time dose of placebo (n=25), 10 mg d-amphetamine (n=18), or 20 mg amphetamine (n=23). 80 mice were administered one of 4 doses of d-amphetamine or vehicle. Humans and mice were tested in the Behavioral Pattern Monitor (BPM), which quantifies motor activity, exploratory behavior, and spatial patterns of behavior. Results In humans, the 20-mg dose of amphetamine increased motor activity as measured by acceleration without marked effects on exploration or spatial patterns of activity. In mice, amphetamine increased activity, decreased specific exploration, and caused straighter, one-dimensional movements in a dose-dependent manner. Conclusions Consistent with mice, amphetamine increased motoric activity in humans without increasing exploration. Given that BD patients exhibit heightened exploration, these data further emphasize the limitation of amphetamine-induced hyperactivity as a suitable model for BD. Further, these studies highlight the utility of cross-species physiological paradigms in validating biological mechanisms of psychiatric diseases. PMID:26449721
Robinson, Mike J F; Anselme, Patrick; Suchomel, Kristen; Berridge, Kent C
2015-08-01
Amphetamine and stress can sensitize mesolimbic dopamine-related systems. In Pavlovian autoshaping, repeated exposure to uncertainty of reward prediction can enhance motivated sign-tracking or attraction to a discrete reward-predicting cue (lever-conditioned stimulus; CS+), as well as produce cross-sensitization to amphetamine. However, it remains unknown how amphetamine sensitization or repeated restraint stress interact with uncertainty in controlling CS+ incentive salience attribution reflected in sign-tracking. Here rats were tested in 3 successive phases. First, different groups underwent either induction of amphetamine sensitization or repeated restraint stress, or else were not sensitized or stressed as control groups (either saline injections only, or no stress or injection at all). All next received Pavlovian autoshaping training under either certainty conditions (100% CS-UCS association) or uncertainty conditions (50% CS-UCS association and uncertain reward magnitude). During training, rats were assessed for sign-tracking to the CS+ lever versus goal-tracking to the sucrose dish. Finally, all groups were tested for psychomotor sensitization of locomotion revealed by an amphetamine challenge. Our results confirm that reward uncertainty enhanced sign-tracking attraction toward the predictive CS+ lever, at the expense of goal-tracking. We also reported that amphetamine sensitization promoted sign-tracking even in rats trained under CS-UCS certainty conditions, raising them to sign-tracking levels equivalent to the uncertainty group. Combining amphetamine sensitization and uncertainty conditions did not add together to elevate sign-tracking further above the relatively high levels induced by either manipulation alone. In contrast, repeated restraint stress enhanced subsequent amphetamine-elicited locomotion, but did not enhance CS+ attraction. (c) 2015 APA, all rights reserved).
Robinson, Mike J.F.; Anselme, Patrick; Suchomel, Kristen; Berridge, Kent C.
2015-01-01
Amphetamine and stress can sensitize mesolimbic dopamine-related systems. In Pavlovian autoshaping, repeated exposure to uncertainty of reward prediction can enhance motivated sign-tracking or attraction to a discrete reward-predicting cue (lever CS+), as well as produce cross-sensitization to amphetamine. However, it remains unknown how amphetamine-sensitization or repeated restraint stress interact with uncertainty in controlling CS+ incentive salience attribution reflected in sign-tracking. Here rats were tested in three successive phases. First, different groups underwent either induction of amphetamine sensitization or repeated restraint stress, or else were not sensitized or stressed as control groups (either saline injections only, or no stress or injection at all). All next received Pavlovian autoshaping training under either certainty conditions (100% CS-UCS association) or uncertainty conditions (50% CS-UCS association and uncertain reward magnitude). During training, rats were assessed for sign-tracking to the lever CS+ versus goal-tracking to the sucrose dish. Finally, all groups were tested for psychomotor sensitization of locomotion revealed by an amphetamine challenge. Our results confirm that reward uncertainty enhanced sign-tracking attraction toward the predictive CS+ lever, at the expense of goal-tracking. We also report that amphetamine sensitization promoted sign-tracking even in rats trained under CS-UCS certainty conditions, raising them to sign-tracking levels equivalent to the uncertainty group. Combining amphetamine sensitization and uncertainty conditions together did not add together to elevate sign-tracking further above the relatively high levels induced by either manipulation alone. In contrast, repeated restraint stress enhanced subsequent amphetamine-elicited locomotion, but did not enhance CS+ attraction. PMID:26076340
Treatment for amphetamine withdrawal.
Shoptaw, Steven J; Kao, Uyen; Heinzerling, Keith; Ling, Walter
2009-04-15
Few studies examined treatments for amphetamine withdrawal, although it is a common problem among amphetamine users. Its symptoms, in particular intense craving, may be a critical factor leading to relapse to amphetamine use. In clinical practice, medications for cocaine withdrawal are commonly used to manage amphetamine withdrawal although the pharmacodynamic and pharmacokinetic properties of these two illicit substances are different. To assess the effectiveness of pharmacological alone or in combination with psychosocial treatment for amphetamine withdrawals on discontinuation rates, global state, withdrawal symptoms, craving, and other outcomes. MEDLINE (1966 - 2008), CINAHL (1982 - 2008), PsycINFO (1806 - 2008), CENTRAL (Cochrane Library 2008 issue 2), references of obtained articles. All randomised controlled and clinical trials evaluating pharmacological and or psychosocial treatments (alone or combined) for people with amphetamine withdrawal symptoms. Two authors evaluated and extracted data independently. The data were extracted from intention-to-treat analyses. The Relative Risk (RR) with the 95% confidence interval (95% CI) was used to assess dichotomous outcomes. The Weighted Mean Difference (WMD) with 95% CI was used to assess continuous outcomes. Four randomised controlled trials (involving 125 participants) met the inclusion criteria for the review. Two studies found that amineptine significantly reduced discontinuation rates and improved overall clinical presentation, but did not reduce withdrawal symptoms or craving compared to placebo. The benefits of mirtazapine over placebo for reducing amphetamine withdrawal symptoms were not as clear. One study suggested that mirtazapine may reduce hyperarousal and anxiety symptoms associated with amphetamine withdrawal. A more recent study failed to find any benefit of mirtazapine over placebo on retention or on amphetamine withdrawal symptoms. No medication is effective for treatment of amphetamine withdrawal. Amineptine showed reduction in discontinuation rates and improvement in clinical presentation compared to placebo, but had no effect on reducing withdrawal symptoms or craving. In spite of these limited benefits, amineptine is not available for use due to concerns over abuse liability when using the drug. The benefits of mirtazapine as a withdrawal agent are less clear based on findings from two randomised controlled trials: one report showed improvements in amphetamine withdrawal symptoms over placebo; a second report showed no differences in withdrawal symptoms compared to placebo. Further potential treatment studies should examine medications that increase central nervous system activity involving dopamine, norepinephrine and/or serotonin neurotransmitters, including mirtazapine.
The diagnostic and prognostic value of SALL4 in hepatoblastoma.
Zhou, Shengmei; Venkatramani, Rajkumar; Gomulia, Ellen; Shillingford, Nick; Wang, Larry
2016-11-01
To investigate the expression of spalt-like transcription factor 4 (SALL4), a regulator of embryonal development, in three epithelial components of hepatoblastoma (HB) and the relationship between SALL4 expression levels and patients' clinicopathological features. A total of 115 specimens from 79 patients with HB were selected for immunostaining of SALL4. Nuclear staining was semi-quantified using the immunoreactive score (IS; range: 0-12). SALL4 expression was seen in all embryonal components (mean IS = 8.58) and in 41% of fetal components (mean IS = 0.78). No SALL4 expression was seen in either small cell undifferentiated or mesenchymal components of HB. Neither chemotherapy nor metastasis altered SALL4 expression significantly. High SALL4 expression levels were associated significantly with decreased overall survival (OS) (P = 0.004), event-free survival (EFS) (P = 0.003) and the presence of metastasis (P = 0.049) on univariate analysis. Multivariate analysis identified SALL4 as an independent prognostic predictor for OS (P = 0.029). SALL4 is useful for subtyping HB, and high SALL4 expression is associated with decreased survival in HB. © 2016 John Wiley & Sons Ltd.
Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.
Chao, Hsiao-Tuan; Chen, Hongmei; Samaco, Rodney C; Xue, Mingshan; Chahrour, Maria; Yoo, Jong; Neul, Jeffrey L; Gong, Shiaoching; Lu, Hui-Chen; Heintz, Nathaniel; Ekker, Marc; Rubenstein, John L R; Noebels, Jeffrey L; Rosenmund, Christian; Zoghbi, Huda Y
2010-11-11
Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.
The Role of Hypothalamic Insulin and Dopamine in the Anorectic Effect of Cocaine and d-amphetamine
1992-08-21
15: Figure 16: Figure 17: Figure 18: LIST OF FIGURES Chemical structure of cocaine Chemical structure of amphetamine Cocaine groups! Average...prevent hypotension (Hoffman, 1987). The chemical structure of amphetamine is shown in figure 2. General Aspects: The term amphetamine applies to a group...cormnunication, 1991). 26 Germany in the 1930’s, with c hemical structures resembling those of epinephrine and NE. Their effects are similar to those of
Yang, Pamela B.; Atkins, Kristal D.; Dafny, Nachum
2014-01-01
The psychostimulants amphetamine and methylphenidate (MPD / Ritalin) are the drugs most often used to treat attention deficit hyperactivity disorder (ADHD). In addition, students of all ages take these drugs to improve academic performance but also abuse them for pleasurable enhancement. In addition, other psychostimulants such 3,4 methylenedioxymethamphetamine (MDMA / ecstasy) are used / abused for similar objectives. One of the experimental markers for the potential of a drug to produce dependence is its ability to induce behavioral sensitization and cross sensitization with other drugs of abuse. The objective of this study is to use identical experimental protocols and behavioral assays to compare in female rats the effects of amphetamine, MPD and MDMA on locomotor activity and to determine if they induce behavioral sensitization and/or cross sensitization with each other. The main findings of this study are 1. Acute amphetamine, MPD and MDMA all elicited increases in locomotor activity. 2. Chronic administration of an intermediate dose of amphetamine or MPD elicited behavioral sensitization. 3. Chronic administration of MDMA elicited behavioral sensitization in some animals and behavioral tolerance in others. 4. Cross sensitization between MPD and amphetamine was observed. 5. MDMA did not show either cross sensitization or cross tolerance with amphetamine. In conclusion, these results suggest that MDMA act by different mechanisms compared to MPD and amphetamine. PMID:21549116
Evans, Sian E; Bagnall, John; Kasprzyk-Hordern, Barbara
2016-08-01
This paper aims to understand enantioselective transformation of amphetamine, methamphetamine, MDMA (3,4-methylenedioxy-methamphetamine) and MDA (3,4-methylenedioxyamphetamine) during wastewater treatment and in receiving waters. In order to undertake a comprehensive evaluation of the processes occurring, stereoselective transformation of amphetamine-like compounds was studied, for the first time, in controlled laboratory experiments: receiving water and activated sludge simulating microcosm systems. The results demonstrated that stereoselective degradation, via microbial metabolic processes favouring S-(+)-enantiomer, occurred in all studied amphetamine-based compounds in activated sludge simulating microcosms. R-(-)-enantiomers were not degraded (or their degradation was limited) which proves their more recalcitrant nature. Out of all four amphetamine-like compounds studied, amphetamine was the most susceptible to biodegradation. It was followed by MDMA and methamphetamine. Photochemical processes facilitated degradation of MDMA and methamphetamine but they were not, as expected, stereoselective. Preferential biodegradation of S-(+)-methamphetamine led to the formation of S-(+)-amphetamine. Racemic MDMA was stereoselectively biodegraded by activated sludge which led to its enrichment with R-(-)-enantiomer and formation of S-(+)-MDA. Interestingly, there was only mild stereoselectivity observed during MDMA degradation in rivers. This might be due to different microbial communities utilised during activated sludge treatment and those present in the environment. Kinetic studies confirmed the recalcitrant nature of MDMA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.
Shiflett, Michael W; Riccie, Meaghan; DiMatteo, RoseMarie
2013-11-01
Psychostimulant sensitization heightens behavioral and motivational responses to reward-associated stimuli; however, its effects on stimuli associated with reward absence are less understood. We examined whether amphetamine sensitization alters performance during Pavlovian-instrumental transfer (PIT) to conditioned excitors and inhibitors. We further sought to characterize the effects of amphetamine sensitization on learning versus performance by exposing rats to amphetamine prior to Pavlovian training or between training and test. Adult male Long-Evans rats were given conditioned inhibition (A+/AX-) and Pavlovian (B+) training, followed by variable-interval instrumental conditioning. Rats were sensitized to D-amphetamine (2 mg/kg daily injections for 7 days) or served as non-exposed controls. Rats were given a PIT test, in which they were presented with stimulus B alone or in compound with the conditioned inhibitor (BX). During the PIT test, control rats significantly reduced instrumental responding on BX trials (to approximately 50 % of responding to B). Amphetamine sensitization prior to Pavlovian conditioning increased lever pressing on BX trials and reduced lever pressing on B trials compared to controls. Amphetamine sensitization between training and test increased lever pressing on B and BX trials compared to controls. No effects of sensitization were observed on conditioned food cup approach. Amphetamine sensitization increases instrumental responding during PIT to a conditioned inhibitor by enhancing the excitation of conditioned stimuli and reducing the inhibition of conditioned inhibitors.
Gemma, Vincent A; Chapple, Kristina A; Goslar, Pamela W; Israr, Sharjeel; Petersen, Scott R; Weinberg, Jordan A
2018-05-21
Trauma centers reported illicit amphetamine use in approximately 10% of trauma admissions in the previous decade. From experience at a trauma center located in a southwestern metropolis, our perception is that illicit amphetamine use is on the rise, and that these patients utilize in-hospital resources beyond what would be expected for their injuries. The purpose of this study was to document the incidence of illicit amphetamine use among our trauma patients and to evaluate its impact on resource utilization. We conducted a retrospective cohort study using 7 consecutive years of data (starting July 2010) from our institution's trauma registry. Toxicology screenings were used to categorize patients into one of three groups: illicit amphetamine, other drugs, or drug free. Adjusted linear and logistic regression models were used to predict hospital cost, length of stay, ICU admission and ventilation between drug groups. Models were conducted with combined injury severity (ISS) and then repeated for ISS <9, ISS 9-15 and ISS 16 and above. 8,589 patients were categorized into the following three toxicology groups: 1255 (14.6%) illicit amphetamine, 2214 (25.8%) other drugs, and 5120 (59.6%) drug free. Illicit amphetamine use increased threefold over the course of the study (from 7.85% to 25.0% of annual trauma admissions). Adjusted linear models demonstrated that illicit amphetamine among patients with ISS<9 was associated with 4.6% increase in hospital cost (P=.019) and 7.4% increase in LOS (P=.043). Logistic models revealed significantly increased odds of ventilation across all ISS groups and increased odds of ICU admission when all ISS groups were combined (P=.001) and within the ISS<9 group (P=.002). Hospital resource utilization of amphetamine patients with minor injuries is significant. Trauma centers with similar epidemic growth in proportion of amphetamine patients face a potentially significant resource strain relative to other centers. Prognostic and Epidemiological LEVEL OF EVIDENCE: III.
Costa, Giulia; Morelli, Micaela
2015-01-01
Background: Rats emit 50kHz ultrasonic vocalizations (USVs) in response to either natural or pharmacological pleasurable stimuli, and these USVs have emerged as a new behavioral measure for investigating the motivational properties of drugs. Earlier studies have indicated that activation of the dopaminergic system is critically involved in 50kHz USV emissions. However, evidence also exists that non-dopaminergic neurotransmitters participate in this behavioral response. Methods: To ascertain whether glutamate transmission plays a role in 50kHz USV emissions stimulated by amphetamine, rats received five amphetamine (1–2mg/kg, i.p.) administrations on alternate days in a test cage, either alone or combined with the glutamate N-methyl-D-aspartate receptor antagonist MK-801 (0.1–0.5mg/kg, i.p.). Seven days after treatment discontinuation, rats were re-exposed to the test cage to assess drug conditioning, and afterwards received a drug challenge. USVs and locomotor activity were evaluated, along with immunofluorescence for Zif-268 in various brain regions and spontaneous alternation in a Y maze. Results: Amphetamine-treated rats displayed higher 50kHz USV emissions and locomotor activity than vehicle-treated rats, and emitted conditioned vocalizations on test cage re-exposure. Rats co-administered amphetamine and MK-801 displayed lower and dose-dependent 50kHz USV emissions, but not lower locomotor activity, during repeated treatment and challenge, and scarce conditioned vocalization compared with amphetamine-treated rats. These effects were associated with lower levels of Zif-268 after amphetamine challenge and spontaneous alternation deficits. Conclusions: These results indicate that glutamate transmission participates in the acute, long-term, and conditioned effects of amphetamine on 50kHz USVs, possibly by influencing amphetamine-induced long-term neuronal changes and/or amphetamine-associated memories. PMID:25991653
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mei-Fang
The abuse of ketamine and amphetamine analogs is associated with incidence of hypertension and strokes involving activation of sympathetic activities. Large cerebral arteries at the base of the brain from several species receive dense sympathetic innervation which upon activation causes parasympathetic-nitrergic vasodilation with increased regional blood flow via axo-axonal interaction mechanism, serving as a protective mechanism to meet O{sub 2} demand in an acutely stressful situation. The present study was designed to examine effects of ketamine and amphetamine analogs on axo-axonal interaction-mediated neurogenic nitrergic vasodilation in porcine basilar arteries using techniques of blood-vessel myography, patch clamp and two-electrode voltage clamp,more » and calcium imaging. In U46619-contracted basilar arterial rings, nicotine (100 μM) and electrical depolarization of nitrergic nerves by transmural nerve stimulation (TNS, 8 Hz) elicited neurogenic nitrergic vasodilations. Ketamine and amphetamine analogs concentration-dependently inhibited nicotine-induced parasympathetic-nitrergic vasodilation without affecting that induced by TNS, nitroprusside or isoproterenol. Ketamine and amphetamine analogs also concentration-dependently blocked nicotine-induced inward currents in Xenopus oocytes expressing α3β2-nicotinic acetylcholine receptors (nAChRs), and nicotine-induced inward currents as well as calcium influxes in rat superior cervical ganglion neurons. The potency in inhibiting both inward-currents and calcium influxes is ketamine > methamphetamine > hydroxyamphetamine. These results indicate that ketamine and amphetamine analogs, by blocking nAChRs located on cerebral perivascular sympathetic nerves, reduce nicotine-induced, axo-axonal interaction mechanism-mediated neurogenic dilation of the basilar arteries. Chronic abuse of these drugs, therefore, may interfere with normal sympathetic-parasympathetic interaction mechanism resulting in diminished neurogenic vasodilation and, possibly, normal blood flow in the brainstem. - Highlights: • Ketamine/amphetamines inhibit nicotine-induced cerebral neurogenic vasdilation. • Ketamine/amphetamines block cerebral perivascular sympathetic nAChR-mediated current. • The inhibitory potency is ketamine > D-amphetamine > methamphetamine > OH-amphetamine.« less
Berro, Laís F; Tufik, Sergio B; Frussa-Filho, Roberto; Andersen, Monica L; Tufik, Sergio
2018-04-03
Sleep deprivation (SD) and amphetamine use are commonly associated conditions. SD shares similar neurobiological effects with psychostimulants, playing an important role in drug addiction, especially through conditioning manipulations. The aim of the present study was to investigate the effects of SD on the development of amphetamine-induced conditioned place preference (CPP) in a protocol with a reduced number of conditioning sessions. Male adult Wistar rats were submitted to 4 conditioning sessions (2 sessions/day) in the CPP apparatus, half with saline (non-drug-paired compartment) and half with 2 mg/kg amphetamine (drug-paired compartment) after control (home-cage maintained) or SD (6 h gentle handling method) conditions. Control animals did not express a preference for the amphetamine-paired compartment, showing that 2 conditioning sessions with the drug were not sufficient to establish CPP. On the other hand, animals submitted to SD during the conditioning sessions expressed a preference for the amphetamine-paired compartment, which was maintained across the entire test session. SD precipitated the development of CPP to amphetamine, showing that lack of sleep can contribute to the establishment of a conditioning between the drug effect and environmental cues. Copyright © 2018 Elsevier B.V. All rights reserved.
Ross, John R.; Ramakrishnan, Hariharasubramanian; Porter, Brenda E.; Robinson, Michael B.
2011-01-01
Recently, we demonstrated that mRNA for the neuronal glutamate transporter, excitatory amino acid carrier 1 (EAAC1), is found in dendrites of hippocampal neurons in culture and in dendrites of hippocampal pyramidal cells after pilocarpine-induced status epilepticus (SE). We also showed that SE increased the levels of EAAC1 mRNA ~15-fold in synaptoneurosomes. In the present study, the effects of SE on the distribution EAAC1 protein in hippocampus were examined. In addition, the effects of Group 1 mGluR receptor activation on the levels of EAAC1 protein were examined in synaptoneurosomes prepared from sham control animals and from animals that experience pilocarpine-induced SE. We find that EAAC1 immunoreactivity increases in pyramidal cells of the hippocampus after 3 h of SE. In addition, the group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine (DHPG), caused an increase in EAAC1 protein levels in hippocampal synaptoneurosomes; this effect of DHPG was much larger (~3- to 5-fold) after 3 h of SE. The DHPG-induced increases in EAAC1 protein were blocked by two different inhibitors of translation but not by inhibitors of transcription. mGluR1 or mGluR5 antagonists completely blocked the DHPG-induced increases in EAAC1 protein. DHPG also increased the levels of GluR2/3 protein, but this effect was not altered by SE. The DHPG-induced increase in EAAC1 protein was blocked by an inhibitor of the mammalian target of rapamycin (mTOR) or an inhibitor of extracellular signal-regulated kinase (ERK). These studies provide the first evidence EAAC1 translation can be regulated, and they show that regulated translation of EAAC1 is up-regulated after SE. PMID:21371038
Role of neuropeptide Y (NPY) in the regulation of reproduction: study based on catfish model.
Subhedar, Nishikant; Gaikwad, Archana; Biju, K C; Saha, Subhash
2005-04-01
Significance of NPY in the regulation of GnRH-LH axis was evaluated. Considerable NPY immunoreactivity was seen in the components like olfactory system, basal telencephalon, preoptic and tuberal areas, and the pituitary gland that serve as neuroanatomical substrates for processing reproductive information. Close anatomical association as well as colocalizations of NPY and GnRH were seen in the olfactory receptor neurons, olfactory nerve fibers and their terminals in the glomeruli, ganglion cells of nervus terminalis, medial olfactory tracts, fibers in the ventral telencephalon and pituitary. In the pituitary, NPY fibers seem to innervate the GnRH as well as LH cells. Intracranial administration of NPY resulted in significant increase in the GnRH immunoreactivity in all the components of the olfactory system. In the pituitary, NPY augmented the population of GnRH fibers and LH cells. HPLC analysis showed that salmon GnRH content in the olfactory organ, bulb, preoptic area+telencephalon and pituitary was also significantly increased following NPY treatment. NPY may play a role in positive regulation of GnRH throughout the neuraxis and also up-regulate the LH cells in the pituitary.
Amphetamine self-administration in light and moderate drinkers.
Stanley, Matthew D; Poole, Mégan M; Stoops, William W; Rush, Craig R
2011-03-01
Light and moderate drinkers respond differently to the effects of abused drugs, including stimulants such as amphetamine. The purpose of this study was to determine whether light and moderate drinkers differ in their sensitivity to the reinforcing and subjective effects of d-amphetamine. We hypothesized that moderate drinkers (i.e., participants that reported consuming at least seven alcohol-containing beverages per week) would be more sensitive to the reinforcing and positive subject-rated effects of d-amphetamine than light drinkers. Data from four studies that employed similar d-amphetamine self-administration procedures and subject-rated drug-effect measures were included in the analysis. Light (n = 17) and moderate (n = 16) drinkers sampled placebo, low (8 to 10 mg), and high (16 to 20 mg) doses of oral d-amphetamine administered in eight capsules. Following sampling sessions, participants worked for a maximum of eight capsules, each containing 12.5% of the previously sampled dose, on a modified progressive-ratio schedule of reinforcement. Both active doses of d-amphetamine functioned as a reinforcer in the moderate drinkers, while only the high dose did so in the light drinkers. The moderate drinkers worked for significantly more capsules that contained the high dose of d-amphetamine than did the light drinkers. d-Amphetamine produced prototypical stimulant-like subjective effects (e.g., dose-dependent increases in ratings of Good Effects; Like Drug and Willing to Take Again). Moderate drinkers reported significantly greater subjective effects than the light drinkers. These results are consistent with those from previous laboratory experiments and suggest that moderate alcohol consumption may increase vulnerability to the abuse-related effects of stimulants. Copyright © 2010 by the Research Society on Alcoholism.
Tait, Robert J; McKetin, Rebecca; Kay-Lambkin, Frances; Bennett, Kylie; Tam, Ada; Bennett, Anthony; Geddes, Jenny; Garrick, Adam; Christensen, Helen; Griffiths, Kathleen M
2012-06-25
The prevalence of amphetamine-type stimulant use is greater than that of opioids and cocaine combined. Currently, there are no approved pharmacotherapy treatments for amphetamine-type stimulant problems, but some face-to-face psychotherapies are of demonstrated effectiveness. However, most treatment services focus on alcohol or opioid disorders, have limited reach and may not appeal to users of amphetamine-type stimulants. Internet interventions have proven to be effective for some substance use problems but none has specifically targeted users of amphetamine-type stimulants. The study will use a randomized controlled trial design to evaluate the effect of an internet intervention for amphetamine-type stimulant problems compared with a waitlist control group. The primary outcome will be assessed as amphetamine-type stimulant use (baseline, 3 and 6 months). Other outcomes measures will include 'readiness to change', quality of life, psychological distress (K-10 score), days out of role, poly-drug use, help-seeking intention and help-seeking behavior. The intervention consists of three modules requiring an estimated total completion time of 90 minutes. The content of the modules was adapted from face-to-face clinical techniques based on cognitive behavior therapy and motivation enhancement. The target sample is 160 men and women aged 18 and over who have used amphetamine-type stimulants in the last 3 months. To our knowledge this will be the first randomized controlled trial of an internet intervention specifically developed for users of amphetamine-type stimulants. If successful, the intervention will offer greater reach than conventional therapies and may engage clients who do not generally seek treatment from existing service providers. Australian and New Zealand Clinical Trials Registry (http://www.anzctr.org.au/) ACTRN12611000947909.
2012-01-01
Background The prevalence of amphetamine-type stimulant use is greater than that of opioids and cocaine combined. Currently, there are no approved pharmacotherapy treatments for amphetamine-type stimulant problems, but some face-to-face psychotherapies are of demonstrated effectiveness. However, most treatment services focus on alcohol or opioid disorders, have limited reach and may not appeal to users of amphetamine-type stimulants. Internet interventions have proven to be effective for some substance use problems but none has specifically targeted users of amphetamine-type stimulants. Design/method The study will use a randomized controlled trial design to evaluate the effect of an internet intervention for amphetamine-type stimulant problems compared with a waitlist control group. The primary outcome will be assessed as amphetamine-type stimulant use (baseline, 3 and 6 months). Other outcomes measures will include ‘readiness to change’, quality of life, psychological distress (K-10 score), days out of role, poly-drug use, help-seeking intention and help-seeking behavior. The intervention consists of three modules requiring an estimated total completion time of 90 minutes. The content of the modules was adapted from face-to-face clinical techniques based on cognitive behavior therapy and motivation enhancement. The target sample is 160 men and women aged 18 and over who have used amphetamine-type stimulants in the last 3 months. Discussion To our knowledge this will be the first randomized controlled trial of an internet intervention specifically developed for users of amphetamine-type stimulants. If successful, the intervention will offer greater reach than conventional therapies and may engage clients who do not generally seek treatment from existing service providers. Trial registration Australian and New Zealand Clinical Trials Registry (www.anzctr.org.au/) ACTRN12611000947909 PMID:22731926
Cross-Reactivity of Chloroquine and Hydroxychloroquine With DRI Amphetamine Immunoassay.
Gomila, Isabel; Quesada, Loreto; López-Corominas, Victoria; Fernández, Julia; Servera, Miguel Á; Sahuquillo, Laura; Dastis, Macarena; Torrents, Albert; Barceló, Bernardino
2017-04-01
Chloroquine and hydroxychloroquine are medical drugs used to treat the chemoprophylaxis of malaria and a second-line anti-inflammatory drug. We performed a study of cross-reactivity of chloroquine and hydroxychloroquine in the DRI Amphetamine Assay inspired by a case report of a self-ingestion of chloroquine after a family dispute, that involved the following: (1) an in vitro study with control samples of healthy subjects, (2) an in vivo study with samples of patients with rheumatoid arthritis, and (3) an evaluation of the cross-reactivity of chloroquine and hydroxychloroquine in 3 additional immunoassays. In the case report, the Amphetamine DRI assay resulted positive both at 1000 ng/mL cutoff (1507 and 1137 ng/mL) and at 500 ng/mL cutoff (1178 and 642 ng/mL). Chloroquine urine levels were 103,900 and 100,900 ng/mL at 5 and 9 hours after ingestion. The results with control samples showed a positive cross-reactivity of chloroquine in the DRI Amphetamine Assay (approximately 0.74% and 0.89% at cutoff of 1000 and 500 ng/mL, respectively). Hydroxychloroquine did not cross-react with the DRI Amphetamine Assay up to 1,000,000 ng/mL. In patients treated with chloroquine or hydroxychloroquine, DRI Amphetamine did not produce false-positive results. The comparative assay study showed a positive cross-reactivity of chloroquine in the Emit II Plus Amphetamines Assay with control samples. Chloroquine can cause false-positive results in the DRI Amphetamine Assay when it is present at high concentrations. Hydroxychloroquine did not produce false-positive results neither in the DRI Amphetamine Assay nor in the others immunoassays evaluated.
Case Reports of Aripiprazole Causing False-Positive Urine Amphetamine Drug Screens in Children.
Kaplan, Justin; Shah, Pooja; Faley, Brian; Siegel, Mark E
2015-12-01
Urine drug screens (UDSs) are used to identify the presence of certain medications. One limitation of UDSs is the potential for false-positive results caused by cross-reactivity with other substances. Amphetamines have an extensive list of cross-reacting medications. The literature contains reports of false-positive amphetamine UDSs with multiple antidepressants and antipsychotics. We present 2 cases of presumed false-positive UDSs for amphetamines after ingestion of aripiprazole. Case 1 was a 16-month-old girl who accidently ingested 15 to 45 mg of aripiprazole. She was lethargic and ataxic at home with 1 episode of vomiting containing no identifiable tablets. She remained sluggish with periods of irritability and was admitted for observation. UDS on 2 consecutive days came back positive for amphetamines. Case 2 was of a 20-month-old girl who was brought into the hospital after accidental ingestion of an unknown quantity of her father's medications which included aripiprazole. UDS on the first day of admission came back positive only for amphetamines. Confirmatory testing with gas chromatography-mass spectrometry (GC-MS) on the blood and urine samples were also performed for both patients on presentation to detect amphetamines and were subsequently negative. Both patients returned to baseline and were discharged from the hospital. To our knowledge, these cases represent the first reports of false-positive amphetamine urine drug tests with aripiprazole. In both cases, aripiprazole was the drug with the highest likelihood of causing the positive amphetamine screen. The implications of these false-positives include the possibility of unnecessary treatment and monitoring of patients. Copyright © 2015 by the American Academy of Pediatrics.
Childs, Emma; de Wit, Harriet
2014-01-01
Learned associations between drugs and the places they are used are critical to the development of drug addiction. Contextual conditioning has long been studied in animals as an indirect measure of drug reward, but little is known about the process in humans. Here, we investigated de novo contextual conditioning with d-amphetamine in healthy humans (n = 34). Volunteers underwent four conditioning sessions conducted in two testing rooms with double-blind, alternating d-amphetamine (20 mg) and placebo administration. Before conditioning procedures began, they rated the two rooms to examine pre-existing preferences. One group (Paired, n = 19) always received d-amphetamine in their least preferred room and placebo in the other during conditioning sessions. Another group (Unpaired, n = 15) received d-amphetamine and placebo in both rooms. Subjective drug effects were monitored at repeated times. At a separate re-exposure test, preference ratings for the drug-associated room were increased among the Paired group only, and more subjects in the Paired than the Unpaired group switched their preference to their initially least preferred room. Also, ratings of d-amphetamine drug liking independently predicted room liking at test among the Paired group only. Further, Paired group subjects reported greater stimulation and drug craving after d-amphetamine on the second administration, relative to the first. This study supports preliminary findings that humans, like animals, develop a preference for a place associated with d-amphetamine that is related to its subjective effects. These findings also suggest that experiencing d-amphetamine in a consistent environment produces context-dependent changes in its subjective effects, including an enhanced rewarding efficacy and abuse potential. PMID:22129527
Talpos, John; Aerts, Nancy; Waddell, Jason; Steckler, Thomas
2015-11-01
Paired associates learning (PAL) has been suggested to be predictive of functional outcomes in first episode psychosis and of conversion from mild cognitive impairment to Alzheimer's disease. An automated touch screen-based rodent PAL (rPAL) task has been developed and is sensitive to manipulations of the dopaminergic and glutamatergic system. Accordingly, rPAL when used with pharmacological models of schizophrenia, like NMDA receptor blockade with MK-801 or dopaminergic stimulation with amphetamine, may have utility as a translational model of cognitive impairment in schizophrenia. The purpose of this study was to determine if amphetamine- and MK-801-induced impairment represent distinct models of cognitive impairment by testing their sensitivity to common antipsychotics and determine the relative contributions of D1 versus D2 receptors on performance of PAL. Rats were trained in rPAL and were then treated with MK-801, amphetamine, risperidone, haloperidol, quinpirole, SK-82958, or SCH-23390 alone and in combination. While both amphetamine and MK-801 caused clear impairments in accuracy, MK-801 induced a profound "perseverative" type behavior that was more pronounced when compared to amphetamine. Moreover, amphetamine-induced impairments, but not the effects of MK-801, could be reversed by antipsychotics as well as the D1 receptor antagonist SCH-23390, suggesting a role for both the D1 and D2 receptor in the amphetamine impairment model. These data suggest that amphetamine and MK-801 represent dissociable models of impairment in PAL, dependent on different underlying neurobiology. The ability to distinguish dopaminergic versus glutamatergic effects on performance in rPAL makes it a unique and useful tool in the modeling of cognitive impairments in schizophrenia.
Amphetamines and pH-shift agents for brain imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biersack, H.J.; Winkler, C.
1986-01-01
This book gives a review of the results of experimental and clinical research on both I-amphetamine derivatives and pH-shift agents. Virtually all relevant working groups from the USA and Europe have contributed to this volume. The pharmacology of amphetamine and the corresponding receptor theories are described in detail, whereas other chapters deal with the labeling as well as the metabolic process of this drug. In addition to this, new amphetamine derivatives are presented together with other essential products which play a significant role in scintigraphy of the brain function. Finally, there are two chapters on instrumentation problems followed by eightmore » contributions on the clinical results of amphetamine scintigraphy in cerebral vascular diseases, epilepsy, migraine and brain tumors.« less
Power, Brian D; Stefanis, Nikos C; Dragovic, Milan; Jablensky, Assen; Castle, David; Morgan, Vera
2014-01-01
Individuals with a psychotic disorder who had a premorbid history of amphetamine use (n=382) were analyzed in groups according to age of initiation to amphetamine (AIA) and mean number of years of duration of premorbid exposure to amphetamine (DPEA) was calculated. Univariate General Linear Models were used to test for group differences in age at onset of psychotic illness (AOI) and DPEA. Although a temporal direct relationship between AIA and AOI was detected (mean duration 5.3 years), our findings suggested this association was spurious and better explained by a later initiation to amphetamine than to cannabis (by 2-3 years). Copyright © 2013 Elsevier B.V. All rights reserved.
Sembower, Mark A.; Ertischek, Michelle D.; Buchholtz, Chloe; Dasgupta, Nabarun; Schnoll, Sidney H.
2013-01-01
This article examines rates of nonmedical use and diversion of extended-release amphetamine and extended-release oral methylphenidate in the United States. Prescription dispensing data were sourced from retail pharmacies. Nonmedical use data were collected from the Researched Abuse, Diversion and Addiction-Related Surveillance (RADARS) System Drug Diversion Program and Poison Center Program. Drug diversion trends nearly overlapped for extended-release amphetamine and extended-release oral methylphenidate. Calls to poison centers were generally similar; however, calls regarding extended-release amphetamine trended slightly lower than those for extended-release oral methylphenidate. Data suggest similar diversion and poison center call rates for extended-release amphetamine and extended-release oral methylphenidate. PMID:23480245
Bakhtazad, Atefeh; Vousooghi, Nasim; Garmabi, Behzad; Zarrindast, Mohammad Reza
2016-10-01
It has been shown previously that cocaine- and amphetamine-regulated transcript (CART) peptide has a modulatory role and homeostatic regulatory effect in motivation to and reward of the drugs of abuse specially psychostimulants. Recent data also showed that in addition to psychostimulants, CART is critically involved in the different stages of opioid addiction. Here we have evaluated the fluctuations in the level of CART peptide in plasma and CSF in different phases of opioid addiction to find out whether CART can serve as a suitable marker in opioid addiction studies. Male rats were randomly distributed in groups of control, acute low-dose (10mg/kg) morphine, acute high-dose morphine (80mg/kg), chronic escalating doses of morphine, withdrawal syndrome precipitated by administration of naloxone (1mg/kg), and abstinent after long-term drug-free maintenance of addicted animals. The level of CART peptide in CSF and plasma samples was measured by enzyme immunoassay. CART peptide concentration in the CSF and plasma was significantly elevated in acute high-dose morphine and withdrawal state animals and down-regulated in addicted rats. In abstinent group, CART peptide level was up-regulated in plasma but not in CSF samples. As the observed results are in agreement with data regarding the CART mRNA and protein expression in the brain reward pathway in opioid addiction phases, it may be suggested that evaluation of CART peptide level in CSF or plasma could be a suitable marker which reflects the rises and falls of the peptide concentration in brain in the development of opioid addiction. Copyright © 2016 Elsevier Inc. All rights reserved.
Calarco, Cali A; Lee, Somin; Picciotto, Marina R
2017-09-01
Nicotine and tobacco use is associated with lower body weight, and many smokers report concerns about weight. In animal studies, nicotine reduces weight gain, reduces food consumption, and alters energy expenditure, but these effects vary with duration and route of nicotine administration. Previous studies have used standardized nicotine doses, however, in this study, male and female mice had free access to nicotine drinking water for 30 days while fed either a high fat diet (HFD) or chow, allowing animals to titrate their nicotine intake. In male mice, HFD increased body weight and caloric intake. Nicotine attenuated this effect and decreased weight gain per calorie consumed without affecting overall caloric intake or acute locomotion, suggesting metabolic changes. Nicotine did not decrease weight in chow-fed animals. In contrast, the same paradigm did not result in significant differences in weight gain in female animals, but did alter corticosterone levels and locomotion, indicating sex differences in the response to HFD and nicotine. We measured levels of mRNAs encoding nicotinic acetylcholine receptor subunits, uncoupling proteins (UCP) 1-3, and neuropeptides involved in energy balance in adipose tissues and the arcuate nucleus of the hypothalamus (ARC). HFD and nicotine regulated UCP levels in adipose tissues and ARC from female, but not male, mice. Regulation of agouti-related peptide, neuropeptide-Y, melanin-concentrating hormone, and cocaine- and amphetamine-regulated transcript in ARC varied with diet and nicotine in a sex-dependent manner. These data demonstrate that chronic consumption of nicotine moderates the effect of HFD in male mice by changing metabolism rather than food intake, and identify a differential effect on female mice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Porter, Danielle T; Roberts, David A; Maruska, Karen P
2017-10-01
Integration of reproduction and metabolism is necessary for species survival. While the neural circuits controlling energy homeostasis are well-characterized, the signals controlling the relay of nutritional information to the reproductive axis are less understood. The cichlid fish Astatotilapia burtoni is ideal for studying the neural regulation of feeding and reproduction because females cycle between a feeding gravid state and a period of forced starvation while they brood developing young inside their mouths. To test the hypothesis that candidate neuropeptide-containing neurons known to be involved in feeding and energy homeostasis in mammals show conserved distribution patterns, we performed immunohistochemistry and in situ hybridization to localize appetite-stimulating (neuropeptide Y, NPY; agouti-related protein, AGRP) and appetite-inhibiting (cocaine and amphetamine-regulated transcript, CART; pro-opiomelanocortin, pomc1a) neurons in the brain. NPY, AGRP, CART, and pomc1a somata showed distribution patterns similar to other teleosts, which included localization to the lateral tuberal nucleus (NLT), the putative homolog of the mammalian arcuate nucleus. Gravid females also had larger NPY and AGRP neurons in the NLT compared to brooding females, but brooding females had larger pomc1a neurons compared to gravid females. Hypothalamic agrp mRNA levels were also higher in gravid compared to brooding females. Thus, larger appetite-stimulating neurons (NPY, AGRP) likely promote feeding while females are gravid, while larger pomc1a neurons may act as a signal to inhibit food intake during mouth brooding. Collectively, our data suggest a potential role for NPY, AGRP, POMC, and CART in regulating energetic status in A. burtoni females during varying metabolic and reproductive demands. © 2017 Wiley Periodicals, Inc.
Schéle, Erik; Grahnemo, Louise; Anesten, Fredrik; Hallén, Anna; Bäckhed, Fredrik; Jansson, John-Olov
2013-10-01
The gut microbiota contributes to fat mass and the susceptibility to obesity. However, the underlying mechanisms are not completely understood. To investigate whether the gut microbiota affects hypothalamic and brainstem body fat-regulating circuits, we compared gene expression of food intake-regulating neuropeptides between germ-free and conventionally raised (CONV-R) mice. We found that CONV-R mice had decreased expression of the antiobesity neuropeptide glucagon-like peptide-1 (GLP-1) precursor proglucagon (Gcg) in the brainstem. Moreover, in both the hypothalamus and the brainstem, CONV-R mice had decreased expression of the antiobesity neuropeptide brain-derived neurotrophic factor (Bdnf). CONV-R mice had reduced expression of the pro-obesity peptides neuropeptide-Y (Npy) and agouti-related protein (Agrp), and increased expression of the antiobesity peptides proopiomelanocortin (Pomc) and cocaine- and amphetamine-regulated transcript (Cart) in the hypothalamus. The latter changes in neuropeptide expression could be secondary to elevated fat mass in CONV-R mice. Leptin treatment caused less weight reduction and less suppression of orexigenic Npy and Agrp expression in CONV-R mice compared with germ-free mice. The hypothalamic expression of leptin resistance-associated suppressor of cytokine signaling 3 (Socs-3) was increased in CONV-R mice. In conclusion, the gut microbiota reduces the expression of 2 genes coding for body fat-suppressing neuropeptides, Gcg and Bdnf, an alteration that may contribute to fat mass induction by the gut microbiota. Moreover, the presence of body fat-inducing gut microbiota is associated with hypothalamic signs of Socs-3-mediated leptin resistance, which may be linked to failed compensatory body fat reduction.
Laque, Amanda; Zhang, Yan; Gettys, Sarah; Nguyen, Tu-Anh; Bui, Kelly; Morrison, Christopher D.
2013-01-01
Leptin acts centrally via leptin receptor (LepRb)-expressing neurons to regulate food intake, energy expenditure, and other physiological functions. LepRb neurons are found throughout the brain, and several distinct populations contribute to energy homeostasis control. However, the function of most LepRb populations remains unknown, and their contribution to regulate energy homeostasis has not been studied. Galanin has been hypothesized to interact with the leptin signaling system, but literature investigating colocalization of LepRb and galanin has been inconsistent, which is likely due to technical difficulties to visualize both. We used reporter mice with green fluorescent protein expression from the galanin locus to recapitulate the colocalization of galanin and leptin-induced p-STAT3 as a marker for LepRb expression. Here, we report the existence of two populations of galanin-expressing LepRb neurons (Gal-LepRb neurons): in the hypothalamus overspanning the perifornical area and adjacent dorsomedial and lateral hypothalamus [collectively named extended perifornical area (exPFA)] and in the brainstem (nucleus of the solitary tract). Surprisingly, despite the known orexigenic galanin action, leptin induces galanin mRNA expression and stimulates LepRb neurons in the exPFA, thus conflicting with the expected anorexigenic leptin action. However, we confirmed that intra-exPFA leptin injections were indeed sufficient to mediate anorexic responses. Interestingly, LepRb and galanin-expressing neurons are distinct from orexin or melanin-concentrating hormone (MCH)-expressing neurons, but exPFA galanin neurons colocalized with the anorexigenic neuropeptides neurotensin and cocaine- and amphetamine-regulated transcript (CART). Based on galanin's known inhibitory function, we speculate that in exPFA Gal-LepRb neurons galanin acts inhibitory rather than orexigenic. PMID:23482448
Mechanisms of antimotion sickness drugs
NASA Technical Reports Server (NTRS)
Wood, C. D.; Manno, J. E.; Wood, M. J.; Manno, B. R.; Redetzki, H. M.
1987-01-01
Eight subjects, male and female, were rotated using the step method to progressively increase the speed of rotation (+2 rpm) after every 40 head movements to a maximum of 35 rpm. The end point for motion sickness was the Graybiel Malaise III total of symptoms short of frank nausea. The drug treatments were placebo, scopolamine 0.6 mg and 1 mg, scopolamine 0.6 mg/d-amphetamine 10 mg, scopolamine 1 mg/d-amphetamine 10 mg, and amphetamine 10 mg. Scopolamine increased tolerated head movements over placebo level by + 81; scopolamine 1 mg + 183; d-amphetamine by + 118; scopolamine 0.6/d-amphetamine by + 165; and scopolamine 1 mg/d-amphetamine 10 mg by + 201. The drugs effective in preventing motion sickness are considered to be divided into those with central acetylcholine blocking activity and those which enhance norepinephrine activity. A combination of both of these actions produces the most effective antimotion sickness medications. It is concluded that the balance between the acetylcholine and norepinephrine activity in the CNS appears to be responsible for motion sickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon
The amphetamine derivative ({+-})-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significantmore » gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.« less
Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension
Chen, Pin-I; Cao, Aiqin; Miyagawa, Kazuya; Tojais, Nancy F.; Hennigs, Jan K.; Li, Caiyun G.; Sweeney, Nathaly M.; Inglis, Audrey S.; Wang, Lingli; Li, Dan; Ye, Matthew; Feldman, Brian J.
2017-01-01
Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress. PMID:28138562
Improvement of attention with amphetamine in low- and high-performing rats.
Turner, Karly M; Burne, Thomas H J
2016-09-01
Attentional deficits occur in a range of neuropsychiatric disorders, such as schizophrenia and attention deficit hyperactivity disorder. Psychostimulants are one of the main treatments for attentional deficits, yet there are limited reports of procognitive effects of amphetamine in preclinical studies. Therefore, task development may be needed to improve predictive validity when measuring attention in rodents. This study aimed to use a modified signal detection task (SDT) to determine if and at what doses amphetamine could improve attention in rats. Sprague-Dawley rats were trained on the SDT prior to amphetamine challenge (0.1, 0.25, 0.75 and 1.25 mg/kg). This dose range was predicted to enhance and disrupt cognition with the effect differing between individuals depending on baseline performance. Acute low dose amphetamine (0.1 and 0.25 mg/kg) improved accuracy, while the highest dose (1.25 mg/kg) significantly disrupted performance. The effects differed for low- and high-performing groups across these doses. The effect of amphetamine on accuracy was found to significantly correlate with baseline performance in rats. This study demonstrates that improvement in attentional performance with systemic amphetamine is dependent on baseline accuracy in rats. Indicative of the inverted U-shaped relationship between dopamine and cognition, there was a baseline-dependent shift in performance with increasing doses of amphetamine. The SDT may be a useful tool for investigating individual differences in attention and response to psychostimulants in rodents.
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2003-01-01
Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Fukushiro, Daniela F; Mári-Kawamoto, Elisa; Aramini, Tatiana C F; Saito, Luis P; Costa, Jacqueline M; Josino, Fabiana S; Frussa-Filho, Roberto
2011-11-01
Anhedonia associated with a dysphoric state is an important feature of amphetamine withdrawal in humans. We aimed to investigate the effects of amphetamine withdrawal on two motivation-related behaviors in mice: novelty seeking and environmental habituation. Because anxiety can interfere with the behavioral outcome of other tasks, amphetamine-withdrawn mice were also evaluated in the elevated plus maze. Swiss male mice (three months old) were treated with 2.0mg/kg amphetamine for 13 days, every other day, in their home cages (a total of seven injections). Twenty-four hours after withdrawal from drug treatment, mice were tested in a free-choice novelty apparatus containing one familiar and one novel compartment or in the elevated plus maze. Novelty-seeking behavior was assessed by comparing the time spent in the novel compartment vs. the familiar compartment, whereas environmental habituation was concomitantly evaluated by the time-response curve of total locomotion (novel+familiar). Novelty seeking was decreased during amphetamine withdrawal, and this result was not associated with changes in the anxiety-like behavior of mice. Additionally, amphetamine withdrawal enhanced environmental habituation. The concomitant decrease in novelty seeking and the increase in environmental habituation seem to be related to amphetamine withdrawal-induced anhedonia. Thus, the model proposed here could be used as a tool for the study of mechanisms and potential treatment of the anhedonic behavioral consequences of psychostimulant withdrawal. Copyright © 2011 Elsevier Inc. All rights reserved.
Koltunowska, D; Gibula-Bruzda, E; Kotlinska, J H
2013-08-01
Chronic amphetamine use results in anxiety-like states after drug cessation. The aim of the study was to determine a role of ionotropic and metabotropic glutamate receptor ligands in amphetamine-evoked withdrawal anxiety in the elevated plus-maze test in rats. In our study memantine (8 and 12 mg/kg), a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist did not reduce amphetamine withdrawal anxiety. Acamprosate (NMDA and metabotropic glutamate 5 receptor (mGluR5) antagonist) at the dose 200 and 400mg/kg showed anxiolytic-like effect, thus increasing the percent of time spent in open arms and a number of open arm entries. mGluR5 selective antagonist, MTEP (3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine hydrochloride) and mGluR2/3 agonist, LY354740 (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid), caused effects similar to acamprosate at doses 1.25-5mg/kg and 2.5-5mg/kg, respectively. None of the glutamate ligands influenced locomotor activity of rats when given to the saline-treated group. Taking into account the positive correlation between amphetamine withdrawal-induced anxiety and relapse to amphetamine taking, our results suggest that modulation of mGluRs may prevent relapse to amphetamine and might pose a new direction in amphetamine abuse therapy. Copyright © 2013 Elsevier Inc. All rights reserved.
Shiflett, Michael W.; Riccie, Meaghan; DiMatteo, RoseMarie
2013-01-01
Rationale Psychostimulant sensitization heightens behavioral and motivational responses to reward-associated stimuli; however, its effects on stimuli associated with reward absence are less understood. Objectives We examined whether amphetamine sensitization alters performance during Pavlovian-instrumental transfer (PIT) to conditioned excitors and inhibitors. We further sought to characterize the effects of amphetamine sensitization on learning versus performance by exposing rats to amphetamine prior to Pavlovian training or between training and test. Methods Adult male Long Evans rats were given conditioned inhibition (A+/AX−) and Pavlovian (B+) training, followed by variable-interval instrumental conditioning. Rats were sensitized to d-amphetamine (2 mg/kg daily injections for seven days), or served as non-exposed controls. Rats were given a PIT test, in which they were presented with stimulus B alone or in compound with the conditioned inhibitor (BX). Results During the PIT test, control rats significantly reduced instrumental responding on BX trials (to approximately 50% of responding to B). Amphetamine sensitization prior to Pavlovian conditioning increased lever-pressing on BX trials and reduced lever-pressing on B trials compared to controls. Amphetamine sensitization between training and test increased lever-pressing on B and BX trials compared to controls. No effects of sensitization were observed on conditioned food-cup approach. Conclusions Amphetamine sensitization increases instrumental responding during PIT to a conditioned inhibitor, by enhancing excitation of conditioned stimuli and reducing inhibition of conditioned inhibitors. PMID:23715640
Neuronal NOS localises to human airway cilia.
Jackson, Claire L; Lucas, Jane S; Walker, Woolf T; Owen, Holly; Premadeva, Irnthu; Lackie, Peter M
2015-01-30
Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function. Copyright © 2014 Elsevier Inc. All rights reserved.
Immunoreactive GnRH Type I Receptors in the Mouse and Sheep Brain
Albertson, Asher J.; Navratil, Amy; Mignot, Mallory; Dufourny, Laurence; Cherrington, Brian; Skinner, Donal C.
2008-01-01
GnRH has been implicated in an array of functions outside the neuroendocrine reproductive axis. Previous investigations have reported extensive GnRH binding in numerous sites and this has been supported by in situ hybridization studies reporting GnRH receptor mRNA distribution. The present study on mice and sheep supports and extends these earlier investigations by revealing the distribution of cells immunoreactive for the GnRH receptor. In addition to sites previously shown to express GnRH receptors such as the hippocampus, amygdala and the arcuate nucleus, the improved resolution afforded by immunocytochemistry detected cells in the mitral cell lay of the olfactory bulb as well as the central grey of the mesencephalon. In addition, GnRH receptor immunoreactive neurons in the hippocampus and mesencephalon of the sheep were shown to colocalize with estrogen receptor β. Although GnRH may act at some of these sites to regulate reproductive processes, evidence is accumulating to support an extra-reproductive role for this hypothalamic decapeptide. PMID:18439800
Coexistence of salusin and vasopressin in the rat hypothalamo-hypophyseal system.
Takenoya, Fumiko; Hori, Tomoko; Kageyama, Haruaki; Funahashi, Hisayuki; Takeuchi, Masao; Kitamura, Yoshitaka; Shichiri, Masayoshi; Shioda, Seiji
2005-09-09
Salusins are two newly discovered TOR-related peptides consisting of 28 and 20 amino acids and designated salusin-alpha and salusin-beta, respectively. Using immunohistochemistry techniques, salusin-like immunoreactivity was detected in the rat hypothalamo-neurohypophyseal tract and immunopositive cells were distributed in the suprachiasmatic, supraoptic and paraventricular nucleus. In the paraventricular nucleus, salusin-like immunoreactivity was observed both in parvocellular and magnocellular neurons. Many salusin-positive nerve fibers and their terminals were identified in the internal layer of the median eminence and posterior pituitary. Less intense salusin-positive staining of fibers and terminals was found in the suprachiasmatic nucleus and external layer of the median eminence. Dual immunostaining was performed to determine if salusin coexisted with vasopressin or oxytocin in the hypothalamus. Most of the salusin-like immunoreactivity was detected in vasopressin- but not in oxytocin-containing neurons in these nuclei. The functional significance of the coexistence of salusin with vasopressin is discussed, including the possibility that salusin participates in the regulation of blood pressure.
21 CFR 862.3100 - Amphetamine test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... measure amphetamine, a central nervous system stimulating drug, in plasma and urine. Measurements obtained... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Amphetamine test system. 862.3100 Section 862.3100...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...
21 CFR 862.3100 - Amphetamine test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... measure amphetamine, a central nervous system stimulating drug, in plasma and urine. Measurements obtained... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Amphetamine test system. 862.3100 Section 862.3100...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...
21 CFR 862.3100 - Amphetamine test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... measure amphetamine, a central nervous system stimulating drug, in plasma and urine. Measurements obtained... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Amphetamine test system. 862.3100 Section 862.3100...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...
21 CFR 862.3100 - Amphetamine test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... measure amphetamine, a central nervous system stimulating drug, in plasma and urine. Measurements obtained... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Amphetamine test system. 862.3100 Section 862.3100...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...
21 CFR 862.3100 - Amphetamine test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... measure amphetamine, a central nervous system stimulating drug, in plasma and urine. Measurements obtained... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Amphetamine test system. 862.3100 Section 862.3100...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862...
Genome-wide characterization of monomeric transcriptional regulators in Mycobacterium tuberculosis.
Feng, Lipeng; Chen, Zhenkang; Wang, Zhongwei; Hu, Yangbo; Chen, Shiyun
2016-05-01
Gene transcription catalysed by RNA polymerase is regulated by transcriptional regulators, which play central roles in the control of gene transcription in both eukaryotes and prokaryotes. In regulating gene transcription, many regulators form dimers that bind to DNA with repeated motifs. However, some regulators function as monomers, but their mechanisms of gene expression control are largely uncharacterized. Here we systematically characterized monomeric versus dimeric regulators in the tuberculosis causative agent Mycobacterium tuberculosis. Of the >160 transcriptional regulators annotated in M. tuberculosis, 154 transcriptional regulators were tested, 22 % probably act as monomers and most are annotated as hypothetical regulators. Notably, all members of the WhiB-like protein family are classified as monomers. To further investigate mechanisms of monomeric regulators, we analysed the actions of these WhiB proteins and found that the majority interact with the principal sigma factor σA, which is also a monomeric protein within the RNA polymerase holoenzyme. Taken together, our study for the first time globally classified monomeric regulators in M. tuberculosis and suggested a mechanism for monomeric regulators in controlling gene transcription through interacting with monomeric sigma factors.
21 CFR 250.101 - Amphetamine and methamphetamine inhalers regarded as prescription drugs.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Amphetamine and methamphetamine inhalers regarded... DRUGS New Drug or Prescription Status of Specific Drugs § 250.101 Amphetamine and methamphetamine inhalers regarded as prescription drugs. (a) Recurring reports of abuse and misuse of methamphetamine (also...
21 CFR 250.101 - Amphetamine and methamphetamine inhalers regarded as prescription drugs.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Amphetamine and methamphetamine inhalers regarded... DRUGS New Drug or Prescription Status of Specific Drugs § 250.101 Amphetamine and methamphetamine inhalers regarded as prescription drugs. (a) Recurring reports of abuse and misuse of methamphetamine (also...
21 CFR 250.101 - Amphetamine and methamphetamine inhalers regarded as prescription drugs.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Amphetamine and methamphetamine inhalers regarded... DRUGS New Drug or Prescription Status of Specific Drugs § 250.101 Amphetamine and methamphetamine inhalers regarded as prescription drugs. (a) Recurring reports of abuse and misuse of methamphetamine (also...
21 CFR 250.101 - Amphetamine and methamphetamine inhalers regarded as prescription drugs.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Amphetamine and methamphetamine inhalers regarded... DRUGS New Drug or Prescription Status of Specific Drugs § 250.101 Amphetamine and methamphetamine inhalers regarded as prescription drugs. (a) Recurring reports of abuse and misuse of methamphetamine (also...
21 CFR 250.101 - Amphetamine and methamphetamine inhalers regarded as prescription drugs.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Amphetamine and methamphetamine inhalers regarded... DRUGS New Drug or Prescription Status of Specific Drugs § 250.101 Amphetamine and methamphetamine inhalers regarded as prescription drugs. (a) Recurring reports of abuse and misuse of methamphetamine (also...
Amphetamine. Report Series 28, No. 1.
ERIC Educational Resources Information Center
National Inst. on Drug Abuse (DHEW/PHS), Rockville, MD. National Clearinghouse for Drug Abuse Information.
This report, prepared by the National Clearinghouse for Drug Abuse Information, presents substantial information on the use and abuse of the drug "family" known as amphetamines. A brief history of the drug is given, along with its basic pharmacology. The current medical uses for amphetamines include: (1) short-term treatment of obesity,…
Der-Avakian, Andre; Markou, Athina
2010-07-01
Psychostimulant withdrawal leads to depressive symptoms, such as anhedonia and social dysfunction. We determined the effects of withdrawal from chronic exposure to nicotine (9 mg/kg/day salt, 28 days) or amphetamine (10 mg/kg/day salt, 7 days) on the motivated response for a sucrose reward and on social interaction in rats. Both nicotine and amphetamine exposure increased the motivated response for sucrose. However, only spontaneous amphetamine withdrawal led to an immediate and persistent decrease in motivated behavior, which was not correlated with body weight loss. Social interaction was not affected during withdrawal from either drug. These results indicate that withdrawal from chronic amphetamine exposure leads to an immediate and enduring anhedonic state.
A rapid enhancement of locomotor sensitization to amphetamine by estradiol in female rats.
Zovkic, Iva B; McCormick, Cheryl M
2017-11-14
Estradiol moderates the effects of drugs of abuse in both humans and rodents. Estradiol's enhancement of behavioral effects resulting from high (>2.5mg/kg) doses of amphetamine is established in rats; there is less evidence for the role of estradiol in locomotor effects elicited by lower doses, which are less aversive, increase incentive motivation, involve different neural mechanisms than higher doses, and often more readily reveal group differences than do higher doses. Further, the extent to which estradiol is required for the induction versus the expression of sensitization is unknown. To establish a protocol, we replicated the effects of estradiol on locomotor sensitization to amphetamine reported in a previous study that involved a high locomotor-activating dose (1.5mg/kg) of amphetamine, but with a lower dose. Ovariectomized female rats received 5μg of estradiol benzoate (EB) or OIL 30min before each of 5 treatments of 1.0mg/kg amphetamine or saline; all received a 0.5mg/kg challenge dose three days later. Compared with results for OIL, EB enhanced the locomotor-activating effects of repeated 1.0mg/kg amphetamine across treatment days. In contrast, on challenge day, there was no difference between EB-saline and EB-amphetamine to the lower dose (i.e., no sensitization). Experiments 2 and 3 involved a shorter induction (2days) and a lengthier withdrawal (9days) before the challenge test for the expression of sensitization to better differentiate the induction phase from the expression phase. In Expt2, EB-, and not OIL-, treated rats showed sensitization to 0.5mg/kg amphetamine; neither group showed sensitization to 1.5mg/kg amphetamine (ceiling effect?). In Expt3, rats were treated with EB either in both the induction and expression phases, in one of the phases only, or in neither phase. There was an effect of hormone treatment on challenge day and not on induction day; rats given EB on Challenge day showed sensitization to 0.5mg/kg amphetamine; OIL rats did not. The results suggest rapid effects of estradiol on amphetamine sensitization consistent with rapid effects of estradiol reported for other behaviours. Copyright © 2017. Published by Elsevier Inc.
Peribronchial innervation of the rat lung.
Artico, Marco; Bosco, Sandro; Bronzetti, Elena; Felici, Laura M; Pelusi, Giuseppe; Lo Vasco, Vincenza Rita; Vitale, Marco
2004-10-01
Mammalian peribronchial tissue is supplied by several peptide-containing nerve fibers. Although it is well established that different neuropeptides exert significant effects on bronchial and vascular tone in the lungs, the role played by some neuromediators on the general regulation, differentiation and release of locally active substances is still controversial. We studied the innervation of rat peribronchial tissue by immunohistochemical techniques. The immunoperoxidase method with nickel amplification was applied to detect the distribution of nerve fibers using antibodies against the general neuronal marker PGP 9.5 (neuron-specific cytoplasmic protein), while the cholinacetyltransferase immunoreactivity was studied by immunohistochemistry. A slight immunoreactivity for NT receptors is observed in lung bronchial epithelium. There is increasing evidence that NTs may act with a paracrine mechanism regulating functional activity of neuronal and non-neuronal structures. A specific immunoreactivity for NTs and NT receptors was also demonstrated within different layers of large, medium and small sized intrapulmonary arteries and veins, according to a recent study of our group. Moreover our data describe the expression of NTs and NT receptors in lymphoid aggregates of the lung (BALT) in which both lymphocytes and macrophages express TrkA receptor and synthesize NTs. Our results show the presence of an extensive network of innervation in the rat peribronchial tissue, confirming a morphological basis for a possible neural modulation of the respiratory mucosa and the physiological/pathophysiological mechanisms of the lung.
Adaptive Plasticity of Vaginal Innervation in Term Pregnant Rats
Liao, Zhaohui; Smith, Peter G.
2011-01-01
Changes in reproductive status place varied functional demands on the vagina. These include receptivity to male intromission and sperm transport in estrus, barrier functions during early pregnancy, and providing a conduit for fetal passage at parturition. Peripheral innervation regulates vaginal function, which in turn may be influenced by circulating reproductive hormones. We assessed vaginal innervation in diestrus and estrus (before and after the estrous cycle surge in estrogen), and in the early (low estrogen) and late (high estrogen) stages in pregnancy. In vaginal sections from cycling rats, axons immunoreactive for the pan-neuronal marker protein gene product 9.5 (PGP 9.5) showed a small reduction at estrus relative to diestrus, but this difference did not persist after correcting for changes in target size. No changes were detected in axons immunoreactive for tyrosine hydroxylase (sympathetic), vesicular acetylcholine transporter (parasympathetic), or calcitonin gene-related peptide and transient receptor potential vanilloid type 1 (TRPV-1; sensory nociceptors). In rats at 10 days of pregnancy, innervation was similar to that observed in cycling rats. However, at 21 days of pregnancy, axons immunoreactive for PGP 9.5 and each of the subpopulation-selective markers were significantly reduced both when expressed as percentage of sectional area or after correcting for changes in target size. Because peripheral nerves regulate vaginal smooth muscle tone, blood flow, and pain sensitivity, reductions in innervation may represent important adaptive mechanisms facilitating parturition. PMID:21666101
Scarfone, E; Ulfendahl, M; Lundeberg, T
1996-11-01
Four neuropeptides, substance P, neurokinin A, calcitonin gene-related peptide and neuropeptide Y, were detected by radioimmunoassay in guinea-pig vestibular end-organs. High-resolution confocal microscopy visualization of immunofluorescence staining was used to determine the cellular localization of these peptides. Substance P- and neurokinin A-like immunoreactivities were found to co-exist in afferent fibers innervating the peripheral regions of both the utricular and ampullar sensory organs. The immunoreactivity was more concentrated in the distal ends of the calyceal-shaped nerve endings that innervate type I sensory cells. While in the guinea-pig, nerve calyces and type I cells are distributed in both the central and peripheral regions of the sensory epithelia, immunoreactive calyces were found only in the peripheral regions. Calcitonin gene-related peptide-like immunoreactivity was localized in small bouton endings situated at the level of the base of the hair cells. These boutons were in a position to make axosomatic contacts with type II sensory cells and axodendritic contacts with afferent nerve endings. Calcitonin gene-related peptide immunoreactivity co-existed with choline acetyltransferase immunoreactivity. The localization and shape of these boutons identified them as the axonal endings of efferent vestibular fibers. Neuropeptide Y-like immunoreactivity was not observed in the actual sensory epithelium but in the underlying connective tissue, where it was located in varicose fibers along blood vessels. The synaptic position of the tachykinins is clearly distinct from that of calcitonin gene-related peptide. This segregation distinguishes the vestibular end-organs from most peripheral tissues where these peptides are co-localized. The tachykinin-immunoreactive afferent fibers are postsynaptic to the hair cells. If, as in somatic sensory endings, these fibers can be triggered to release the neuropeptides by an axon reflex type of activation, then the tachykinins could interfere directly with the function of type I and type II vestibular hair cells. Calcitonin gene-related peptide co-exists with acetylcholine in the efferent axonal endings that are presynaptic to type II hair cells and to afferent fibers. Calcitonin gene-related peptide can thus interfere by direct synaptic action with type II hair cells only. It may also regulate the activity of the tachykinin-containing afferents.
Kay, Jeremy N; De la Huerta, Irina; Kim, In-Jung; Zhang, Yifeng; Yamagata, Masahito; Chu, Monica W; Meister, Markus; Sanes, Joshua R
2011-05-25
The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.
Zhang, Li-Juan; Xue, Yue-Qiang; Yang, Chun; Yang, Wei-Hua; Chen, Long; Zhang, Qian-Jin; Qu, Ting-Yu; Huang, Shile; Zhao, Li-Ru; Wang, Xiao-Min; Duan, Wei-Ming
2012-01-01
Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH) expression of dopaminergic (DA) neurons induced by 6-hydroxydopamine (6-OHDA) toxicity that is most commonly used to create a rat model of Parkinson's disease (PD). In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS) and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK) signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis. PMID:22815976
Kortner, Trond M; Overrein, Ingrid; Oie, Gunvor; Kjørsvik, Elin; Bardal, Tora; Wold, Per-Arvid; Arukwe, Augustine
2011-10-01
We have profiled the expression of twelve genes, in order to provide an overview on the molecular ontogeny of digestive capability with the associated endocrine control during Atlantic cod (Gadus morhua) larval development. Enzyme activity levels for the key digestive enzyme, trypsin, was also measured. Specifically, transcripts for trypsin, amylase, lipolytic enzymes: bile salt activated lipase (BAL), phospholipase A2 (PLA2) and Acyl CoA dehydrogenase (ACADM), regulatory peptides: neuropeptide Y (NPY), orexin (OX) cholecystokinin (CCK) and cocaine and amphetamine-related transcript (CART), the somatotropic factors: growth hormone (GH), preprosomatostatin 1 (PPSS1) and thyroid hormone receptors (TRα and TRβ) were analyzed using quatitative (real-time) polymerase chain reaction (qPCR). Trypsin and BAL mRNA levels peaked at approximately day 17 and 25 post-hatch, respectively, and thereafter displayed a decreasing pattern until metamorphosis. GH mRNA levels decreased moderately from 3 to 33dph, and thereafter, an increase was observed until 46dph. TRα mRNA levels showed a fluctuating pattern peaking at day 39 post-hatch. TRβ mRNA levels were too low to obtain quantitative measurements. Amylase mRNA slightly increased from day 3 to 17 post-hatch, and thereafter showed a steady decrease until day 60. Interestingly, PLA2 mRNA expression showed a consistent increase throughout the study period, indicating an increasingly important role during larval development. Overall, data from this study indicate that cod larvae show differential developmental mode of expression patterns for key genes and endocrine factors that regulate digestive capability, growth and development. These data are discussed in relation to larval trypsin enzyme activity and previous reports for other teleost species. Copyright © 2011 Elsevier Inc. All rights reserved.
Fatty Acid–Regulated Transcription Factors in the Liver
Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.
2014-01-01
Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177
Lee, Jae-Chul; Park, Joon Ha; Ahn, Ji Hyeon; Park, Jinseu; Kim, In Hye; Cho, Jeong Hwi; Shin, Bich Na; Lee, Tae-Kyeong; Kim, Hyunjung; Song, Minah; Cho, Geum-Sil; Kim, Dae Won; Kang, Il Jun; Kim, Young-Myeong; Won, Moo-Ho; Choi, Soo Young
2018-01-01
Neurofilaments (NFs) including neurofilament-200 kDa (NF-H), neurofilament-165 kDa (NF-M) and neurofilament-68 kDa (NF-L) are major protein constituents of the brain, and serve important roles in the regulation of axonal transport. NF alteration is a key feature in the pathogenesis of neurological disorders involving cognitive dysfunction. In the present study, cognitive impairments were investigated, via assessments using the Morris water maze and passive avoidance tests, in mice following chronic systemic treatment with 1 mg/kg scopolamine (SCO) for 4 weeks. SCO-induced cognitive impairments were significantly observed 1 week following the SCO treatment, and these cognitive deficits were maintained for 4 weeks. However, the NF immunoreactivities and levels were altered differently according to the hippocampal subregion following SCO treatment. NF-H immunoreactivity and levels were markedly altered in all hippocampal subregions, and were significantly increased 1 week following the SCO treatment; thereafter, the immunoreactivity and levels significantly decreased with time. NF-M immunoreactivity and levels gradually decreased in the hippocampus and were significantly decreased 4 weeks following SCO treatment. NF-L immunoreactivity and levels gradually decreased in the hippocampus, and were significantly decreased 2 and 4 weeks following SCO treatment. In conclusion, the results of the present study demonstrated that chronic systemic treatment with SCO induced cognitive impairment from 1 week following SCO treatment, and NF expression was diversely altered according to the hippocampal subregion from 1 week following SCO treatment. These results suggest that SCO-induced changes in NF expression may be associated with cognitive impairment. PMID:29257227
Bcl-2 expression during the development and degeneration of RCS rat retinae.
Sharma, R K
2001-12-14
In various hereditary retinal degenerations, including that in Royal College of Surgeons (RCS) rats, the photoreceptors ultimately die by apoptosis. Bcl-2 is one of the genes, which regulates apoptosis and is thought to promote survival of cells. This study has investigated the developmental expression of Bcl-2 in RCS rat, which is a well-studied animal model for hereditary retinal degeneration. An antibody against Bcl-2 was used for its immunohistochemical localization in dystrophic RCS rat retinae from postnatal (PN) days 4, 7, 13, 35, 45, 70, 202 and 14 months. Results were compared with Bcl-2 localization in congenic non-dystrophic rats from PN 4, 7, 13, 44, 202 and 14 months. Bcl-2 immunoreactivity in non-dystrophic retinae was already present in PN 4 retinae in the nerve fiber layer (presumably in the endfeet of immature Müller cells) and in the proximal parts of certain radially aligned neuroepithelial cells/immature Müller cell radial processes. With increasing age the immunoreactivity in relatively more mature Müller cell radial processes spread distally towards the outer retina and between PN 13 and 44 it reached the adult distribution. No cell bodies in the ganglion cell layer were found to be immunoreactive. Expression of Bcl-2 immunoreactivity in dystrophic RCS rat retinae closely resembled that of non-dystrophic retinae. No immunoreactivity was seen in photoreceptors or retinal pigment epithelium in dystrophic or non-dystrophic retinae. In conclusion, Bcl-2 expression is not altered, either in terms of its chronology or the cell type expressing it, during retinal degeneration in RCS rats.
Amphetamine-induced place preference in humans
Childs, Emma L.; de Wit, Harriet
2009-01-01
Background The conditioned place preference procedure is a widely used animal model of rewarding drug effects that, to date, has not been tested in humans. In this study, we sought to demonstrate that humans, like non-humans, would exhibit a preference for a place previously associated with amphetamine. Further, we investigated the relationship between conditioned place preference and the mood-altering effects of the drug. Methods Thirty-one healthy individuals participated in a five-session procedure during which they experienced the effects of d-amphetamine (20mg) or placebo on two occasions in two distinctive environments (sessions 1 to 4). One group of subjects (paired group, N=19) received amphetamine consistently in one room and placebo in another room, while a second group (unpaired group, N=12) received amphetamine and placebo without regard to the rooms. During the sessions, participants completed questionnaires to rate their mood. On the fifth session, they rated their preference for the two rooms. Results Individuals in the paired group rated their liking of the amphetamine-paired room significantly higher than the placebo-associated room, while there was no difference between ratings of the two rooms for individuals in the unpaired group. In the paired group, drug liking ratings during the conditioning sessions positively predicted preference for the drug-associated room, whereas reports of amphetamine-induced anxiety and dysphoria negatively predicted room liking scores. Conclusions This study demonstrates that humans, like non-humans, prefer a place associated with amphetamine administration. These findings support the idea that subjective responses to a drug contribute to its ability to establish place conditioning. PMID:19111278
Does COMT genotype influence the effects of d-amphetamine on executive functioning?
Wardle, Margaret C.; Hart, Amy B.; Palmer, Abraham A.; de Wit, Harriet
2012-01-01
In a widely cited study, Mattay et al. (2003) reported that amphetamine (0.25 mg/kg oral, or 17mg for a 68kg individual) impaired behavioral and brain indices of executive functioning, measured using the Wisconsin Card Sorting Task (WCST) and N-Back working memory task, in 6 individuals homozygous for the met allele of the val158met polymorphism in the catechol-O-methyltransferase (COMT) gene, whereas it improved executive functioning in 10 individuals homozygous for the more active val allele. We attempted to replicate their behavioral findings in a larger sample, using similar executive functioning tasks and a broader range of amphetamine doses. Over four sessions, n = 200 healthy normal adults received oral placebo, d-amphetamine 5mg, 10mg, and 20mg (average of 0.07, 0.15 and 0.29 mg/kg), under counterbalanced double-blind conditions, and completed WCST and N-back tests of executive functioning. Amphetamine had typical effects on blood pressure and processing speed but did not affect executive functioning. COMT genotype (val158met) was not related to executive functioning under placebo or amphetamine conditions, even when we compared only the homozygous val/val and met/met genotypes at the highest dose of amphetamine (20 mg). Thus, we were not able to replicate the behavioral interaction between COMT and amphetamine seen in Mattay et al. (Mattay et al., 2003). We discuss possible differences between the studies and the implications of our findings for the use of COMT genotyping to predict clinical responses to dopaminergic drugs, and the use of intermediate phenotypes in genetic research. PMID:23231539
Simon, Nicholas W; Setlow, Barry
2006-11-01
It has been suggested that some of the addictive potential of psychostimulant drugs of abuse such as amphetamine may result from their ability to enhance memory for drug-related experiences through actions on memory consolidation. This experiment examined whether amphetamine can specifically enhance consolidation of memory for a Pavlovian association between a neutral conditioned stimulus (CS-a light) and a rewarding unconditioned stimulus (US-food), as Pavlovian conditioning of this sort plays a major role in drug addiction. Male Long-Evans rats were given six training sessions consisting of 8 CS presentations followed by delivery of the food into a recessed food cup. After the 1st, 3rd, and 5th session, rats received subcutaneous injections of amphetamine (1.0 or 2.0 mg/kg) or saline vehicle immediately following training. Conditioned responding was assessed using the percentage of time rats spent in the food cup during the CS relative to a pre-CS baseline period. Both amphetamine-treated groups showed significantly more selective conditioned responding than saline controls. In a control experiment, there were no differences among groups given saline, 1.0 or 2.0 mg/kg amphetamine 2 h post-training, suggesting that immediate post-training amphetamine enhanced performance specifically through actions on memory consolidation rather than through non-mnemonic processes. This procedure modeled Pavlovian learning involved in drug addiction, in which the emotional valence of a drug reward is transferred to neutral drug-predictive stimuli such as drug paraphernalia. These data suggest that amphetamine may contribute to its addictive potential through actions specifically on memory consolidation.
Riggs, Nathaniel R; Chou, Chih-Ping; Pentz, Mary Ann
2009-10-01
The aim of the current study was to examine the long-term effect of an early adolescent substance abuse prevention program on trajectories and initiation of amphetamine use into early adulthood. Eight middle schools were assigned randomly to a program or control condition. The randomized controlled trial followed participants through 15 waves of data, from ages 11-28 years. This longitudinal study design includes four separate periods of development from early adolescence to early adulthood. The intervention took place in middle schools. A total of 1002 adolescents from one large mid-western US city were the participants in the study. The intervention was a multi-component community-based program delivered in early adolescence with a primary emphasis on tobacco, alcohol and marijuana use. At each wave of data collection participants completed a self-report survey that included questions about life-time amphetamine use. Compared to a control group, participants in the Midwestern Prevention Project (MPP) intervention condition had reduced growth (slope) in amphetamine use in emerging adulthood, a lower amphetamine use intercept at the commencement of the early adulthood and delayed amphetamine use initiation. The pattern of results suggests that the program worked first to prevent amphetamine use, and then to maintain the preventive effect into adulthood. Study findings suggest that early adolescent substance use prevention programs that focus initially on the 'gateway' drugs have utility for long-term prevention of amphetamine use. © 2009 The Authors. Journal compilation © 2009 Society for the Study of Addiction.
USDA-ARS?s Scientific Manuscript database
Transcription factors (TFs) are proteins that regulate the expression of target genes by binding to specific elements in their regulatory regions. Transcriptional regulators (TRs) also regulate the expression of target genes; however, they operate indirectly via interaction with the basal transcript...
Literature Review: Update on Amphetamine Neurotoxicity and Its Relevance to the Treatment of ADHD
ERIC Educational Resources Information Center
Advokat, Claire
2007-01-01
Objective: A review of amphetamine treatment for attention-deficit/hyperactivity disorder (ADHD) was conducted, to obtain information on the long-term neurological consequences of this therapy. Method: Several databases were accessed for research articles on the effects of amphetamine in the brain of laboratory animals and ADHD diagnosed…
Illegal or legitimate use? Precursor compounds to amphetamine and methamphetamine.
Musshoff, F
2000-02-01
The interpretation of methamphetamine and amphetamine positive test results in biological samples is a challenge to clinical and forensic toxicology for several reasons. The effects of pH and dilution of urine samples and the knowledge about legitimate and illicit sources have to be taken into account. Besides a potentially legal prescription of amphetamines, many substances metabolize to methamphetamine or amphetamine in the body: amphetaminil, benzphetamine, clobenzorex, deprenyl, dimethylamphetamine, ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, mesocarb, and prenylamine. Especially the knowledge of potential origins of methamphetamine and amphetamine turns out to be very important to prevent a misinterpretation of the surrounding circumstances and to prove illegal drug abuse. In this review, potential precursor compounds are described, including their medical use and major clinical effects and their metabolic profiles, as well as some clues which help to identify the sources.
Mechanisms of specificity in neuronal activity-regulated gene transcription
Lyons, Michelle R.; West, Anne E.
2011-01-01
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain. PMID:21620929
One day of motor training with amphetamine impairs motor recovery following spinal cord injury.
Wong, Jamie K; Steward, Oswald
2012-02-01
It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury because early training with amphetamine increases lesion severity. Copyright © 2011 Elsevier Inc. All rights reserved.
Chalmers, Jenny; Lancaster, Kari; Hughes, Caitlin
2016-10-01
Stigmatisation of illicit drug use is known to discourage people from reporting their use of illicit drugs. In the context of Australia's two recent "ice-epidemics" this study examines whether rapid increases in community concern about meth/amphetamine concurrent with increased stigmatising media reporting about meth/amphetamine "epidemics" are associated with increased under-reporting of its use in population surveys. We examined the relationship between general population trends in self-reported lifetime use of and attitudes towards meth/amphetamine between 2001 and 2013, contextualised against related stimulants and heroin, using five waves of Australia's National Drug Strategy Household Survey (NDSHS), alongside trends in print media reporting on meth/amphetamine from 2001 to 2014. Analysis of NDSHS data showed significant increases in community concern about meth/amphetamine between 2004 and 2007, and 2010 and 2013 in all birth cohorts and age groups. In both periods self-reported lifetime use of meth/amphetamine fell in many birth cohorts. The falls were only statistically significant in the first period, for birth cohorts from 1961-1963 to 1973-1975. Falls in lifetime use within a cohort from one period to the next are incongruous and we did not observe them in the other drugs considered. Equally, increases in concern were specific to meth/amphetamine. We counted substantial and rapid increase in the number of newspaper reports about meth/amphetamine in both periods, particularly reports including the term 'epidemic'. Rapid increases in the quantum of media reporting stigmatising a drug (through its construction as an 'epidemic') accompanying increased general public concerns about the drug may increase the tendency to under-report lifetime use. This may make it difficult to rely upon household surveys to observe trends in patterns of use and suggests that policy makers, media and others in the AOD sector should avoid stigmatisation of drugs, particularly during periods of heightened concern. Copyright © 2016 Elsevier B.V. All rights reserved.
Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William
2015-11-01
Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2. © 2015 International Society for Neurochemistry.
The Impact of Illicit Use of Amphetamine on Male Sexual Functions.
Chou, Nan-Hua; Huang, Yung-Jui; Jiann, Bang-Ping
2015-08-01
Data concerning the impact of amphetamine on male sexual functions are limited, although amphetamine has been used as an aphrodisiac. This cross-sectional study was to assess the impact of illicit use of amphetamine on male sexual functions. Male illicit drug users in a Drug Abstention and Treatment Center were recruited to complete a self-administered questionnaire, and data were compared with age-matched controls. The International Index of Erectile Function (IIEF) and global assessment questions were used to assess sexual functions. Of 1,159 amphetamine mono-illicit drug users, the mean age was 31.9 ± 7.5 (18-57) years, and mean duration of drug use was 30.7 ± 52.2 (median 9, range 0.1-252) months. Half of them reported that drug use had no impact on their sexual functions. The other half reported drug impacts as reduced erectile rigidity and sexual life satisfaction, enhanced orgasmic intensity, and prolonged ejaculation latency time more often than the opposite effects, while they reported enhanced or reduced effect equally on sexual desire. Dosing frequency of amphetamine was associated with its impact on sexual functions, but duration of its use had little association with that. Compared with 211 age-matched controls, the amphetamine mono-illicit drug users had lower IIEF scores in the domains of erectile function, orgasmic function, and overall satisfaction, but there are no significant differences in intercourse satisfaction and sexual desire scores. The prevalence of erectile dysfunction (ED) was significantly higher in the drug users than in the controls (29.3% vs. 11.9%). The odds ratio of ED for amphetamine use was 2.1 (95% confidence interval 1.2-3.6) after adjustment for other risk factors. The impact of illicit use of amphetamine on male sexual functions varied among users, and their ED prevalence was higher than the controls. © 2015 International Society for Sexual Medicine.
Hutsell, Blake A.; Blough, Bruce E.; Poklis, Justin L.; Negus, S. Stevens
2015-01-01
Background: Chronic amphetamine treatment decreases cocaine consumption in preclinical and human laboratory studies and in clinical trials. Lisdexamfetamine is an amphetamine prodrug in which L-lysine is conjugated to the terminal nitrogen of d-amphetamine. Prodrugs may be advantageous relative to their active metabolites due to slower onsets and longer durations of action; however, lisdexamfetamine treatment’s efficacy in decreasing cocaine consumption is unknown. Methods: This study compared lisdexamfetamine and d-amphetamine effects in rhesus monkeys using two behavioral procedures: (1) a cocaine discrimination procedure (training dose = 0.32mg/kg cocaine, i.m.); and (2) a cocaine-versus-food choice self-administration procedure. Results: In the cocaine-discrimination procedure, lisdexamfetamine (0.32–3.2mg/kg, i.m.) substituted for cocaine with lower potency, slower onset, and longer duration of action than d-amphetamine (0.032–0.32mg/kg, i.m.). Consistent with the function of lisdexamfetamine as an inactive prodrug for amphetamine, the time course of lisdexamfetamine effects was related to d-amphetamine plasma levels by a counter-clockwise hysteresis loop. In the choice procedure, cocaine (0–0.1mg/kg/injection, i.v.) and food (1g banana-flavored pellets) were concurrently available, and cocaine maintained a dose-dependent increase in cocaine choice under baseline conditions. Treatment for 7 consecutive days with lisdexamfetamine (0.32–3.2mg/kg/day, i.m.) or d-amphetamine (0.032–0.1mg/kg/h, i.v.) produced similar dose-dependent rightward shifts in cocaine dose-effect curves and decreases in preference for 0.032mg/kg/injection cocaine. Conclusions: Lisdexamfetamine has a slower onset and longer duration of action than amphetamine but retains amphetamine’s efficacy to reduce the choice of cocaine in rhesus monkeys. These results support further consideration of lisdexamfetamine as an agonist-based medication candidate for cocaine addiction. PMID:25618405
Doboszyńska, Teresa; Andronowska, Aneta
2002-01-01
Abstract: Immunohistochemical localization and distribution of nitric oxide synthase (eNOS), endothelin (ET-1) and endothelin beta receptor (ETB-R) were investigated in precollector and collector lymph vessels in the broad ligament of the uterus during different phases of the estrous cycle in pigs. The polyclonal antibody for ET-1 and ETB-R and monoclonal antibody for eNOS isoform were used to perform observations on the light microscopic level. Immunoreactivities to ET-1, ETB-R and eNOS were observed in the endothelium of precollector and collector lymphangions but not in smooth muscle cells of the lymphatics examined. The staining for eNOS in the endothelial cells of all studied lymphatic vessels was stronger comparing to ET-1 and ETB-R. During the estrous cycle, only eNOS showed the correlation with the particular phases of the estrous cycle. The differences between ET-1 and ETB-R immunoreactivities were very slight and rather independent of the size or type of the lymphatic lymphangions and estrous cycle. The highest immunoreactivity level for eNOS was displayed by collector lymphangions with widened lumen in the follicular phase comparing to the precollector ones. During the luteal phase, a slight decrease in the reaction intensity was observed. The immunoreactivities for ET-1 in the endothelium of the studied vessels was not comparable with the presence or with the reactivity level of ETB-R. Optically stronger immunoreaction for ETB-R was observed in the cytoplasm of collector lymphangions in the follicular phase. eNOS, ET-1 and ETB-R were also present in the cytoplasm of the lymphatic valves. These results suggest that ET-1 and eNOS can play a role in the mechanisms regulating the vascular contractile activity, promoting lymph flow during the estrous cycle in the porcine broad ligament.
Recoverable hearing loss with amphetamines and other drugs.
Iqbal, Nayyer
2004-06-01
Prolonged and sustained consumption of alcohol, heroin and volatiles had been reported to impair hearing. Amphetamine related hearing loss is clinically different from the hearing loss seen with other agents. It seems that illicit drug use could result in two clinically different types of hearing losses. In May and June of 2001, 183 men aged 18 and above who met DSM-IV criteria for substance dependence were studied in a hospital in Saudia Arabia. The purpose of the study was to ascertain the prevalence of amphetamine-related recoverable hearing loss, establish whether similar hearing loss also occurred with other drugs of abuse and determine if drug-related psychosis was more prevalent in those amphetamine users who developed this type of hearing loss. Recoverable type of hearing loss was not just seen in amphetamine users but also occurred with cannabis, heroin, alcohol, dextromethorphan and glue use. Drug-induced psychosis was three and a half times more common in those amphetamine users who developed a hearing loss. Major depression and suicidality was also more common in these individuals. This association of major depression and subsequent development of hearing loss was also found in those using other type of drugs. It was concluded that a history of major depression was a good predictor of later development of both drug-induced psychosis and hearing loss in amphetamine users, and hypoperfusion was proposed as the possible explanation.
Fatovich, Daniel M; McCoubrie, David L; Song, Swithin J; Rosen, David M; Lawn, Nick D; Daly, Frank F
2010-09-06
To determine the prevalence of occult brain abnormalities in magnetic resonance imaging of active amphetamine users. Prospective convenience study in a tertiary hospital emergency department (ED). Patients presenting to the ED for an amphetamine-related reason were eligible for inclusion. We collected demographic data, drug use data, and performed a mini-mental state examination (MMSE). The proportion of patients with an abnormality on their MRI scan. Of 38 patients enrolled, 30 had MRI scans. Nineteen were male and their mean age was 26.7 +/- 5.4 years (range 19-41 years). The mean age of first amphetamine use was 18 years (range 13-26 years). Sixteen patients used crystal methamphetamine (mean amount 2.5 g/week), nine used amphetamine ("speed") (mean amount 2.9 g/week), and 23 used ecstasy (mean amount 2.3 tablets/week). Marijuana was smoked by 26 (mean amount 5.9 g/week), and 28 drank alcohol (mean amount 207 g/week). The median MMSE score was 27/30 (interquartile range, 26-29). Abnormalities on brain MRI scans were identified in six patients, most commonly an unidentified bright object (n = 4). In this pilot study of brain MRI of young people attending the ED with an amphetamine-related presentation, one in five had an occult brain lesion. While the significance of this is uncertain, it is congruent with evidence that amphetamines cause brain injury.
Jain, Raka; Holtzman, Stephen G
2005-05-15
The purpose of this study was to determine if caffeine induces cross tolerance to the amphetamine-like discriminative stimulus effects of dopaminergic drugs that act through distinct mechanisms (e.g., release, uptake inhibition, direct activation of dopamine D(1)- or D(2)-family receptors). Rats were trained to discriminate 1.0 mg/kg d-amphetamine from saline in a two-choice discrete-trial procedure. Stimulus-generalization curves were generated by cumulative dosing for d-amphetamine (0.1-1.0 mg/kg), methylphenidate (0.3-5.6 mg/kg), SKF 81297 (0.3-3.0 mg/kg), and R-(-)-propylnorapomorphine (NPA; 0.001-1.78 mg/kg), as well as for caffeine (3.0-56 mg/kg); curves were re-determined after twice daily injections of caffeine (30 mg/kg) for 3.5 days. The rats generalized dose dependently to the four dopaminergic drugs, but only to a limited extent to caffeine. Twice daily injections of caffeine induced significant cross tolerance (i.e., increased ED(50)) to the amphetamine-like discriminative effects of methylphenidate and SKF 81297, attenuated non-significantly the effects of NPA, and did not alter the effects of amphetamine. Thus, caffeine produces differential cross tolerance to the amphetamine-like discriminative effects of dopaminergic drugs, a phenomenon in which the dopamine D(1) receptor appears to have an important role.
Boltushka: A Homemade Amphetamine-Type Stimulant and HIV Risk in Odessa, Ukraine
Chintalova-Dallas, Repsina; Case, Patricia; Kitsenko, Nataliya; Lazzarini, Zita
2009-01-01
Background Homemade amphetamine-type stimulants (ATSs) have been reported in Russia and Eastern Europe for decades. Recipes differ geographically and over time producing differing active ingredients. Vint and jeff (active ingredients methamphetamine and methcathinone, respectively) are two such homemade ATSs originally produced from over-the-counter cold medications and household chemicals. Methods During a Rapid Policy Assessment and Responses (RPAR) project in Odessa, Ukraine, researchers found use of boltushka, a novel homemade ATS. Fourteen supplemental qualitative interviews were conducted, including ten interviews with boltushka injectors and four interviews with pharmacists. We report patterns of boltushka use among local injection drug users (IDUs) as well as the role of laws, regulations, and current pharmacy practices. Results Legal restrictions on over-the-counter cold medicines in Ukraine led to products containing phenypropanolamine (PPA), which oxidized with KMnO4 (potassium permanganate), produces a weak ATS, cathinone, called boltushka. Boltushka’s ingredients are easily available in pharmacies or on the black market. IDUs reported a mean age at first use of 16 years old (range 12–21). While published data are scant, anecdotal evidence reported here include amphetamine-like effects on energy and appetite, binging patterns of use, and some reports of shaking and other neurological damage consistent with earlier reports from exposure to KMnO4. Users reported sharing syringes and other non-sterile injection practices. No users reported specific treatment or prevention programs for boltushka users. Conclusions Although Ukrainian government regulations have limited access to precursor chemicals, IDUs have continued to make and use boltushka. The actual extent and demographics of boltushka use are unknown. Besides risk of bloodborne disease, the health effects of injected homemade ATSs and their constituent chemicals are poorly documented. Interventions beyond available harm reduction efforts may be required. Education/treatment specific to boltushka users and screening for other physical harms are critical interventions. PMID:18976896
Agoglia, Abigail E.; Sharko, Amanda C.; Psilos, Kelly E.; Holstein, Sarah E.; Reid, Grant T.; Hodge, Clyde W.
2014-01-01
Background Binge alcohol drinking is a particularly risky pattern of alcohol consumption that often precedes alcohol dependence and addiction. The transition from binge alcohol drinking to alcohol addiction likely involves mechanisms of synaptic plasticity and learning in the brain. The mitogen-activated protein kinase (MAPK) signaling cascades have been shown to be involved in learning and memory, as well as the response to drugs of abuse, but their role in binge alcohol drinking remains unclear. The present experiments were designed to determine the effects of acute alcohol on extracellular signaling related kinases (ERK1/2) expression and activity, and to determine whether ERK1/2 activity functionally regulates binge-like alcohol drinking. Methods Adult male C57BL/6J mice were injected with ethanol (3.0 mg/kg, IP) 10, 30 or 90 minutes prior to brain tissue collection. Next, mice that were brought to freely consume unsweetened ethanol in a binge-like access procedure were pretreated with the MEK1/2 inhibitor SL327 or the p38 MAP kinase inhibitor SB239063. Results Acute ethanol increased pERK1/2 immunoreactivity relative to vehicle in brain regions known to be involved in drug reward and addiction, including the central amygdala and prefrontal cortex. However, ethanol decreased pERK1/2 immunoreactivity relative to vehicle in the nucleus accumbens core. SB239063 pretreatment significantly decreased ethanol consumption only at doses that also produced nonspecific locomotor effects. SL327 pretreatment significantly increased ethanol, but not sucrose, consumption without inducing generalized locomotor effects. Conclusions These findings indicate that ERK1/2MAPK signaling regulates binge-like alcohol drinking. Since alcohol increased pERK1/2 immunoreactivity relative to vehicle in brain regions known to regulate drug self-administration, SL327 may have blocked this direct pharmacological effect of alcohol and thereby inhibited the termination of binge-like drinking. PMID:25703719
A novel statistical approach for identification of the master regulator transcription factor.
Sikdar, Sinjini; Datta, Susmita
2017-02-02
Transcription factors are known to play key roles in carcinogenesis and therefore, are gaining popularity as potential therapeutic targets in drug development. A 'master regulator' transcription factor often appears to control most of the regulatory activities of the other transcription factors and the associated genes. This 'master regulator' transcription factor is at the top of the hierarchy of the transcriptomic regulation. Therefore, it is important to identify and target the master regulator transcription factor for proper understanding of the associated disease process and identifying the best therapeutic option. We present a novel two-step computational approach for identification of master regulator transcription factor in a genome. At the first step of our method we test whether there exists any master regulator transcription factor in the system. We evaluate the concordance of two ranked lists of transcription factors using a statistical measure. In case the concordance measure is statistically significant, we conclude that there is a master regulator. At the second step, our method identifies the master regulator transcription factor, if there exists one. In the simulation scenario, our method performs reasonably well in validating the existence of a master regulator when the number of subjects in each treatment group is reasonably large. In application to two real datasets, our method ensures the existence of master regulators and identifies biologically meaningful master regulators. An R code for implementing our method in a sample test data can be found in http://www.somnathdatta.org/software . We have developed a screening method of identifying the 'master regulator' transcription factor just using only the gene expression data. Understanding the regulatory structure and finding the master regulator help narrowing the search space for identifying biomarkers for complex diseases such as cancer. In addition to identifying the master regulator our method provides an overview of the regulatory structure of the transcription factors which control the global gene expression profiles and consequently the cell functioning.
Singer, Bryan F; Neugebauer, Nichole M; Forneris, Justin; Rodvelt, Kelli R; Li, Dongdong; Bubula, Nancy; Vezina, Paul
2014-01-01
Intermittent systemic exposure to psychostimulants such as amphetamine leads to several forms of long-lasting behavioral plasticity including nonassociative sensitization and associative conditioning. In the nucleus accumbens (NAcc), the protein serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) and its phosphorylation target, the guanine-nucleotide exchange factor kalirin-7 (Kal7), may contribute to the neuroadaptations underlying each of these forms of plasticity. Pharmacological inhibition of Cdk5 in the NAcc prevents the increases in dendritic spine density in this site and enhances the locomotor sensitization normally observed following repeated cocaine. Mice lacking the Kal7 gene display similar phenotypes suggesting that locomotor sensitization and increased NAcc spine density need not be positively correlated. As increases in spine density may relate to the formation of associative memories and both Cdk5 and Kal7 regulate the generation of spines following repeated drug exposure, we hypothesized that either inhibiting Cdk5 or preventing its phosphorylation of Kal7 in the NAcc may prevent the induction of drug conditioning. In the present experiments, blockade in rats of NAcc Cdk5 activity with roscovitine (40 nmol/0.5μl/side) prior to each of 4 injections of amphetamine (1.5 mg/kg; i.p.) prevented the accrual of contextual locomotor conditioning but spared the induction of locomotor sensitization as revealed on tests conducted one week later. Similarly, transient viral expression in the NAcc exclusively during amphetamine exposure of a threoninealanine mutant form of Kal7 [mKal7(T1590A)] that is not phosphorylated by Cdk5 also prevented the accrual of contextual conditioning and spared the induction of sensitization. These results indicate that signaling via Cdk5 and Kal7 in the NAcc is necessary for the formation of context-drug associations, potentially through the modulation of dendritic spine dynamics in this site. PMID:24939858
Gorriti, M A; Rodríguez de Fonseca, F; Navarro, M; Palomo, T
1999-01-22
Clinical and basic research studies have linked cannabinoid consumption to the onset of psychosis, specially schizophrenia. In the present study we have evaluated the effects of the natural psychoactive constituent of Cannabis (-)-delta9-tetrahydrocannabinol on the acute actions of the psychostimulant, D-amphetamine, on behaviour displayed by male rats on a hole-board, a proposed animal model of amphetamine-induced psychosis. Cannabinoid-amphetamine interactions were studied (1) 30 min after acute injection of (-)-delta9-tetrahydrocannabinol (0.1 or 6.4 mg/kg, i.p.); (2) 30 min after the last injection of 14-daily treatment with (-)-delta9-tetrahydrocannabinol (0.1 or 6.4 mg/kg) and 3) 24 h after the last injection of 14-daily treatment with (-)-delta9-tetrahydrocannabinol (6.4 mg/kg). Acute cannabinoid exposure antagonized the amphetamine-induced dose-dependent increase in locomotion, exploration and the decrease in inactivity. Chronic treatment with (-)-delta9-tetrahydrocannabinol resulted in tolerance to this antagonistic effect on locomotion and inactivity but not on exploration, and potentiated amphetamine-induced stereotypies. Lastly, 24 h of withdrawal after 14 days of cannabinoid treatment resulted in sensitization to the effects of D-amphetamine on locomotion, exploration and stereotypies. Since (-)-delta9-tetrahydrocannabinol is a cannabinoid CB1 receptor agonist, densely present in limbic and basal ganglia circuits, and since amphetamine enhances monoaminergic inputs (i.e., dopamine, serotonin) in these brain areas, the present data support the hypothesis of a role for the cannabinoid CB1 receptor as a regulatory mechanism of monoaminergic neuron-mediated psychomotor activation. These findings may be relevant for the understanding of both cannabinoid-monoamines interactions and Cannabis-associated psychosis.
McKenna, Stacey A
2011-11-01
Since the 1930s, amphetamine has been used for a variety of socially and medically condoned purposes including personal and performance enhancement. In the contemporary U.S., although amphetamine and its derivatives share a history, similar chemical composition, and physiological and psychiatric effects, they are typically treated and researched as two distinct groups: illegally produced methamphetamine and prescription amphetamine. This study is an examination of the social meanings of these categories and their users as represented in popular media. To complement existing research on drug discourses in popular news media, this study analysed entertainment media: ten novels, three seasons of Breaking Bad, six television episodes, and eight movies. Media were coded inductively and deductively using tenets of critical discourse analysis and rhetorical criticism. The author identified discourses about user subject positions and ideologies pertaining to enhancement-related motivations for use. Two important themes emerged from this analysis that construct amphetamine use and users in ways that reflect, legitimize and reproduce class and gender ideologies. First, discourses illustrate that distinct meanings of methamphetamine versus prescription amphetamine are linked to expectations about the respective socioeconomic class and social status of their users. Second, the discourses reflect gendered values and ideals about productivity and sexuality. In reality, American cultural and political-economic contexts may encourage the use of amphetamine to meet a variety of social expectations and economic needs. However, many policy and prevention efforts surrounding amphetamine use disproportionately target methamphetamine users and women. Because policy and prevention efforts can be influenced as much by social values as by data, it is important to examine the many arenas in which social values are produced and disseminated. Copyright © 2011 Elsevier B.V. All rights reserved.
Abuse of Amphetamines and Structural Abnormalities in Brain
Berman, Steven; O’Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D.
2009-01-01
We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse, and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques that include manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common, and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre-existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain structure. PMID:18991959
Parkinson, J A; Olmstead, M C; Burns, L H; Robbins, T W; Everitt, B J
1999-03-15
Dopamine release within the nucleus accumbens (NAcc) has been associated with both the rewarding and locomotor-stimulant effects of abused drugs. The functions of the NAcc core and shell were investigated in mediating amphetamine-potentiated conditioned reinforcement and locomotion. Rats were initially trained to associate a neutral stimulus (Pavlovian CS) with food reinforcement (US). After excitotoxic lesions that selectively destroyed either the NAcc core or shell, animals underwent additional CS-US training sessions and then were tested for the acquisition of a new instrumental response that produced the CS acting as a conditioned reinforcer (CR). Animals were infused intra-NAcc with D-amphetamine (0, 1, 3, 10, or 20 microg) before each session. Shell lesions affected neither Pavlovian nor instrumental conditioning but completely abolished the potentiative effect of intra-NAcc amphetamine on responding with CR. Core-lesioned animals were impaired during the Pavlovian retraining sessions but showed no deficit in the acquisition of responding with CR. However, the selectivity in stimulant-induced potentiation of the CR lever was reduced, as intra-NAcc amphetamine infusions dose-dependently increased responding on both the CR lever and a nonreinforced (control) lever. Shell lesions produced hypoactivity and attenuated amphetamine-induced activity. In contrast, core lesions resulted in hyperactivity and enhanced the locomotor-stimulating effect of amphetamine. These results indicate a functional dissociation of subregions of the NAcc; the shell is a critical site for stimulant effects underlying the enhancement of responding with CR and locomotion after intra-NAcc injections of amphetamine, whereas the core is implicated in mechanisms underlying the expression of CS-US associations.
Genetic Variation of the Ghrelin Signalling System in Individuals with Amphetamine Dependence
Jayaram-Lindström, Nitya; Nilsson, Staffan; Toren, Kjell; Rosengren, Annika; Engel, Jörgen A.; Franck, Johan
2013-01-01
The development of amphetamine dependence largely depends on the effects of amphetamine in the brain reward systems. Ghrelin, an orexigenic peptide, activates the reward systems and is required for reward induced by alcohol, nicotine, cocaine and amphetamine in mice. Human genetic studies have shown that polymorphisms in the pre-proghrelin (GHRL) as well as GHS-R1A (GHSR) genes are associated with high alcohol consumption, increased weight and smoking in males. Since the heritability factor underlying drug dependence is shared between different drugs of abuse, we here examine the association between single nucleotide polymorphisms (SNPs) and haplotypes in the GHRL and GHSR, and amphetamine dependence. GHRL and GHSR SNPs were genotyped in Swedish amphetamine dependent individuals (n = 104) and controls from the general population (n = 310). A case-control analysis was performed and SNPs and haplotypes were additionally tested for association against Addiction Severity Interview (ASI) composite score of drug use. The minor G-allele of the GHSR SNP rs2948694, was more common among amphetamine dependent individuals when compared to controls (pc = 0.02). A significant association between the GHRL SNP rs4684677 and ASI composite score of drug use was also reported (pc = 0.03). The haplotype analysis did not add to the information given by the individual polymorphisms. Although genetic variability of the ghrelin signalling system is not a diagnostic marker for amphetamine dependence and problem severity of drug use, the present results strengthen the notion that ghrelin and its receptor may be involved in the development of addictive behaviours and may thus serve as suitable targets for new treatments of such disorders. PMID:23579732
Genetic variation of the ghrelin signalling system in individuals with amphetamine dependence.
Suchankova, Petra; Jerlhag, Elisabet; Jayaram-Lindström, Nitya; Nilsson, Staffan; Toren, Kjell; Rosengren, Annika; Engel, Jörgen A; Franck, Johan
2013-01-01
The development of amphetamine dependence largely depends on the effects of amphetamine in the brain reward systems. Ghrelin, an orexigenic peptide, activates the reward systems and is required for reward induced by alcohol, nicotine, cocaine and amphetamine in mice. Human genetic studies have shown that polymorphisms in the pre-proghrelin (GHRL) as well as GHS-R1A (GHSR) genes are associated with high alcohol consumption, increased weight and smoking in males. Since the heritability factor underlying drug dependence is shared between different drugs of abuse, we here examine the association between single nucleotide polymorphisms (SNPs) and haplotypes in the GHRL and GHSR, and amphetamine dependence. GHRL and GHSR SNPs were genotyped in Swedish amphetamine dependent individuals (n = 104) and controls from the general population (n = 310). A case-control analysis was performed and SNPs and haplotypes were additionally tested for association against Addiction Severity Interview (ASI) composite score of drug use. The minor G-allele of the GHSR SNP rs2948694, was more common among amphetamine dependent individuals when compared to controls (pc = 0.02). A significant association between the GHRL SNP rs4684677 and ASI composite score of drug use was also reported (pc = 0.03). The haplotype analysis did not add to the information given by the individual polymorphisms. Although genetic variability of the ghrelin signalling system is not a diagnostic marker for amphetamine dependence and problem severity of drug use, the present results strengthen the notion that ghrelin and its receptor may be involved in the development of addictive behaviours and may thus serve as suitable targets for new treatments of such disorders.
Assis, María Amparo; Valdomero, Analía; García-Keller, Constanza; Sotomayor, Claudia; Cancela, Liliana Marina
2011-05-01
Despite the mesocorticolimbic dopaminergic pathway being one of the main substrates underlying stimulating and reinforcing effects induced by psychostimulant drugs, there is little information regarding its role in their effects at the immune level. We have previously demonstrated that acute exposure to amphetamine (5 mg/kg, i.p.) induced an inhibitory effect on the splenic T-cell proliferative response, along with an increase in the methionine(met)-enkephalin content at limbic and immune levels, 4 days after drug administration. In this study, we investigated if a possible dopamine mechanism underlies these amphetamine-induced effects by administering D1 and D2 dopaminergic antagonists or a dopaminergic terminal neurotoxin before the drug. Pre-treatment with either SCH-23390 (0.1 mg/kg, i.p.) or raclopride (0.1 mg/kg, i.p.), a D1 or D2 dopaminergic receptor antagonist, respectively, abrogated the effects of amphetamine on the lymphoproliferative response and on met-enkephalin levels of the spleen. The amphetamine-induced increase in limbic met-enkephalin content was suppressed by SCH-23390 but not by raclopride pre-treatment. Finally, an intra-accumbens 6-hydroxy-dopamine injection administered 2 weeks previously prevented amphetamine-induced effects on the lymphoproliferative response and on met-enkephalin levels in the prefrontal cortex and spleen. These findings strongly suggest that D1 and D2 dopaminergic receptors are involved in amphetamine-induced effects at immune level as regards the lymphoproliferative response and the changes in spleen met-enkephalin content, whereas limbic met-enkephalin levels were modulated only by the D1 dopaminergic receptors. In addition, this study showed that a mesolimbic component modulated amphetamine-induced effects on the immune response, as previously shown at a behavioral level. Copyright © 2011 Elsevier Inc. All rights reserved.
The N Terminus of Monoamine Transporters Is a Lever Required for the Action of Amphetamines*
Sucic, Sonja; Dallinger, Stefan; Zdrazil, Barbara; Weissensteiner, René; Jørgensen, Trine N.; Holy, Marion; Kudlacek, Oliver; Seidel, Stefan; Cha, Joo Hwan; Gether, Ulrik; Newman, Amy H.; Ecker, Gerhard F.; Freissmuth, Michael; Sitte, Harald H.
2010-01-01
The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). We explored the functional importance of the N terminus in mediating the action of amphetamines by focusing initially on the highly conserved threonine residue at position 81, a candidate site for phosphorylation by protein kinase C. Molecular dynamics simulations of the wild type SERT, compared with its mutations SERTT81A and SERTT81D, suggested structural changes in the inner vestibule indicative of an opening of the inner vestibule. Predictions from this model (e.g. the preferential accumulation of SERTT81A in the inward conformation, its reduced turnover number, and a larger distance between its N and C termini) were verified. Most importantly, SERTT81A (and the homologous mutations in noradrenaline and dopamine) failed to support amphetamine-induced efflux, and this was not remedied by aspartate at this position. Amphetamine-induced currents through SERTT81A were comparable with those through the wild type transporter. Both abundant Na+ entry and accumulation of SERTT81A in the inward facing conformation ought to favor amphetamine-induced efflux. Thus, we surmised that the N terminus must play a direct role in driving the transporter into a state that supports amphetamine-induced efflux. This hypothesis was verified by truncating the first 64 amino acids and by tethering the N terminus to an additional transmembrane helix. Either modification abolished amphetamine-induced efflux. We therefore conclude that the N terminus of monoamine transporters acts as a lever that sustains reverse transport. PMID:20118234
Hauser, Frank M; Rößler, Thorsten; Hulshof, Janneke W; Weigel, Diana; Zimmermann, Ralf; Pütz, Michael
2018-04-01
α-Phenylacetoacetonitrile (APAAN) is one of the most important pre-precursors for amphetamine production in recent years. This assumption is based on seizure data but there is little analytical data available showing how much amphetamine really originated from APAAN. In this study, several syntheses of amphetamine following the Leuckart route were performed starting from different organic compounds including APAAN. The organic phases were analysed using gas chromatography-mass spectrometry (GC-MS) to search for signals caused by possible APAAN markers. Three compounds were discovered, isolated, and based on the performed syntheses it was found that they are highly specific for the use of APAAN. Using mass spectra, high resolution MS and nuclear magnetic resonance (NMR) data the compounds were characterised and identified as 2-phenyl-2-butenenitrile, 3-amino-2-phenyl-2-butenenitrile, and 4-amino-6-methyl-5-phenylpyrimidine. To investigate their significance, they were searched in data from seized amphetamine samples to determine to what extent they were present in illicitly produced amphetamine. Data of more than 580 cases from amphetamine profiling databases in Germany and the Netherlands were used for this purpose. These databases allowed analysis of the yearly occurrence of the markers going back to 2009. The markers revealed a trend that was in agreement with seizure reports and reflected an increasing use of APAAN from 2010 on. This paper presents experimental proof that APAAN is indeed the most important pre-precursor of amphetamine in recent years. It also illustrates how important it is to look for new ways to identify current trends in drug production since such trends can change within a few years. Copyright © 2017 John Wiley & Sons, Ltd.
Fuller, R W; Hemrick-Luecke, S K; Ornstein, P L
1992-10-01
LY274614, 3SR,4aRS,6SR,8aRS-6-[phosphonomethyl]decahydr oisoquinoline-3- carboxylic acid, has been described as a potent antagonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. Here its ability to antagonize the prolonged depletion of dopamine in the striatum by amphetamine in iprindole-treated rats is reported. A single 18.4 mg/kg (i.p.) dose of (+/-)-amphetamine hemisulfate, given to rats pretreated with iprindole, resulted in persistent depletion of dopamine in the striatum 1 week later. This prolonged depletion of dopamine in the striatum was antagonized by dizocilpine (MK-801, a non-competitive antagonist of NMDA receptors) or by LY274614 (a competitive antagonist of NMDA receptors). The protective effect of LY274614 was dose-dependent, being maximum at 10-40 mgkg (i.p.). A 10 mg/kg dose of LY274614 was effective in antagonizing the depletion of dopamine in the striatum, when given as long as 8 hr prior to amphetamine but not when given 24 hr prior to amphetamine. Depletion of dopamine in the striatum was also antagonized when LY274614 was given after the injection of amphetamine; LY274614 protected when given up to 4 hr after but not when given 8 or 24 hr after amphetamine. The prolonged depletion of dopamine in the striatum in mice, given multiple injections of methamphetamine, was also antagonized dose-dependently and completely by LY274614. The data strengthen the evidence that the neurotoxic effect of amphetamine and related compounds toward nigrostriatal dopamine neurons involves NMDA receptors and that LY274614 is an NMDA receptor antagonist with long-lasting in vivo effects in rats.
LIU, XIAO-YAN; SHI, JIAN-HUA; DU, WEN-HUA; FAN, YAN-PING; HU, XIAO-LEI; ZHANG, CHEN-CHEN; XU, HUAN-BAI; MIAO, YAN-JUN; ZHOU, HAI-YAN; XIANG, PING; CHEN, FENG-LING
2011-01-01
The aim of the present study was to investigate the effects of glucocorticoids (GCs) on appetite and gene expression of the hypothalamic appetite regulatory peptides, neuropeptide Y (NPY), agouti-related protein (AGRP) and cocaine and amphetamine-regulated transcript (CART), in non-obese and obese rats. Both non-obese and obese rats were randomly assigned to three groups: normal saline, low- and high-dose GC groups (NSG, LDG and HDG, respectively), which received an intraperitoneal injection with normal saline (0.2 ml/100 g) or hydrocortisone sodium succinate at 5 and 15 mg/kg, respectively, for 20 days. The expression levels of NPY, AGRP and CART mRNA in the hypothalamus were measured by real-time quantitative PCR. Non-obese and obese rats were found to undergo weight loss after GC injection, and a higher degree of weight loss was observed in the HDG rats. The average and cumulative food intakes in the obese and non-obese rats injected with high-dose GC were lower compared to that in the NSG (p<0.05). mRNA expression levels of the orexigenic neuropeptides, NPY and AGRP, and the anorexigenic neuropeptide, CART, were significantly lower in the HDG than levels in the NSG for both the obese and non-obese rats (p<0.05). GC treatment decreased appetite and body weight, induced apparent glucolipid metabolic disturbances and hyperinsulinemia, while down-regulated mRNA expression levels of the orexigenic neuropeptides, NPY and AGRP, and anorexigenic neuropeptide, CART, in the hypothalamus in the rats. The mechanism which induces this neuropeptide expression requires further study. PMID:22977608
Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation
McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth
2015-01-01
ABSTRACT Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. PMID:26157160
Probing the Effects of Stress Mediators on the Human Hair Follicle
Peters, Eva M.J.; Liotiri, Sofia; Bodó, Enikő; Hagen, Evelin; Bíró, Tamás; Arck, Petra C.; Paus, Ralf
2007-01-01
Stress alters murine hair growth, depending on substance P-mediated neurogenic inflammation and nerve growth factor (NGF), a key modulator of hair growth termination (catagen induction). Whether this is of any relevance in human hair follicles (HFs) is completely unclear. Therefore, we have investigated the effects of substance P, the central cutaneous prototypic stress-associated neuropeptide, on normal, growing human scalp HFs in organ culture. We show that these prominently expressed substance P receptor (NK1) at the gene and protein level. Organ-cultured HFs responded to substance P by premature catagen development, down-regulation of NK1, and up-regulation of neutral endopeptidase (degrades substance P). This was accompanied by mast cell degranulation in the HF connective tissue sheath, indicating neurogenic inflammation. Substance P down-regulated immunoreactivity for the growth-promoting NGF receptor (TrkA), whereas it up-regulated NGF and its apoptosis- and catagen-promoting receptor (p75NTR). In addition, MHC class I and β2-microglobulin immunoreactivity were up-regulated and detected ectopically, indicating collapse of the HF immune privilege. In conclusion, we present a simplistic, but instructive, organ culture assay to demonstrate sensitivity of the human HF to key skin stress mediators. The data obtained therewith allow one to sketch the first evidence-based biological explanation for how stress may trigger or aggravate telogen effluvium and alopecia areata. PMID:18055548
Kraemer, Thomas; Maurer, Hans H
2002-04-01
This paper reviews the toxicokinetics of amphetamines. The designer drugs MDA (methylenedioxy-amphetamine, R,S-1-(3;,4;-methylenedioxyphenyl)2-propanamine), MDMA (R,S-methylenedioxymethamphetamine), and MDE (R,S-methylenedioxyethylamphetamine), as well as BDB (benzodioxolylbutanamine; R,S-1-(1;,3;-benzodioxol-5;-yl)-2-butanamine or R,S-1-(3;,4;-methylenedioxyphenyl)-2-butanamine) and MBDB (R,S-N-methyl-benzodioxolylbutanamine), were taken into consideration, as were the following N-alkylated amphetamine derivatives: amphetaminil, benzphetamine, clobenzorex, dimethylamphetamine, ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, mesocarb, methamphetamine, prenylamine, and selegiline. English-language publications from 1995 to 2000 were reviewed. Papers describing identification of metabolites or cytochrome P450 isoenzyme-dependent metabolism and papers containing pharmacokinetic/toxicokinetic data were considered and summarized. The implications of toxicokinetics for toxicologic assessment or for interpretation in forensic cases are discussed.
[Immunocytochemical localization of c-fos protein in termite brains following flying behavior].
Su, Xiao Hong; Xi, Geng Si; Zhang, Min
2005-02-01
The expression of c-fos protein was examined in the brain of reproduction termite (Reticulitermes aculabialis) with immunocytochemical localization method. The results showed c-fos protein immunoreactivity was found in the procerebrum, deutocerebrum and tritocerebrum of termites at all stages. At last instar nymph and after flying stage, c-fos immunoreactivity of procerebrum was weak, but the female and male termites displayed significantly increased the number of c-fos labeled cells in the protocerebrum at flying stage. On the other hand, previous studies have demonstrated neural cells of procerebrum could strongly secrete FSH (Follicle Stimulating Hormone) and LH (Luteinizing Hormone) which maintained libido and stimulated mating flight. This meaned that c-fos expression of procerebrum involved in hormone regulation in sexual behavior,as have been shown in mammal. In conclusion, we demonstrated here for the first time that c-fos expression of procerebrum of termites involved in sexual behavior. These resulats provided a new morphological proof that neural activation of procerebrum participated in the regulation of sexual behavior of termites.
Guzeloglu Kayisli, Ozlem; Kayisli, Umit A; Basar, Murat; Semerci, Nihan; Schatz, Frederick; Lockwood, Charles J
2015-01-01
Use of long-acting progestin only contraceptives (LAPCs) offers a discrete and highly effective family planning method. Abnormal uterine bleeding (AUB) is the major side effect of, and cause for, discontinuation of LAPCs. The endometria of LAPC-treated women display abnormally enlarged, fragile blood vessels, decreased endometrial blood flow and oxidative stress. To understanding to mechanisms underlying AUB, we propose to identify LAPC-modulated unique gene cluster(s) in human endometrial stromal cells (HESCs). Protein and RNA isolated from cultured HESCs treated 7 days with estradiol (E2) or E2+ medroxyprogesterone acetate (MPA) or E2+ etonogestrel (ETO) or E2+ progesterone (P4) were analyzed by quantitative Real-time (q)-PCR and immunoblotting. HSCORES were determined for immunostained-paired endometria of pre-and 3 months post-Depot MPA (DMPA) treated women and ovariectomized guinea pigs (GPs) treated with placebo or E2 or MPA or E2+MPA for 21 days. In HESCs, whole genome analysis identified a 67 gene group regulated by all three progestins, whereas a 235 gene group was regulated by E2+ETO and E2+MPA, but not E2+P4. Ingenuity pathway analysis identified glucocorticoid receptor (GR) activation as one of upstream regulators of the 235 MPA and ETO-specific genes. Among these, microarray results demonstrated significant enhancement of FKBP51, a repressor of PR/GR transcriptional activity, by both MPA and ETO. q-PCR and immunoblot analysis confirmed the microarray results. In endometria of post-DMPA versus pre-DMPA administered women, FKBP51 expression was significantly increased in endometrial stromal and glandular cells. In GPs, E2+MPA or MPA significantly increased FKBP51 immunoreactivity in endometrial stromal and glandular cells versus placebo- and E2-administered groups. MPA or ETO administration activates GR signaling and increases endometrial FKBP51 expression, which could be one of the mechanisms causing AUB by inhibiting PR and GR-mediated transcription. The resultant PR and/or GR-mediated functional withdrawal may contribute to associated endometrial inflammation, aberrant angiogenesis, and bleeding.
Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel
2016-04-26
Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.
Bossi, Flavia; Fan, Jue; Xiao, Jun; Chandra, Lilyana; Shen, Max; Dorone, Yanniv; Wagner, Doris; Rhee, Seung Y
2017-06-26
The molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. To identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation. We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.
ERIC Educational Resources Information Center
Gustafsson, Peik; Hansson, Kjell; Eidevall, Lena; Thernlund, Gunilla; Svedin, Carl Goran
2008-01-01
Objective: This research seeks to study the impact on family function after 3 months of treatment with amphetamine. Method: A total of 43 children, 6 to 11 years of age, with ADHD were treated with amphetamine for 3 months. Family function was studied before and after treatment by parent self-rating and independent observer ratings of videotaped…
[Epileptic insults, cerebral infarction and rhabdomyolysis as complications of amphetamine use].
Roebroek, R M; Korten, J J
1996-01-27
In a 16-year-old boy with acute generalised epileptic convulsions, cerebral infarction and rhabdomyolysis were diagnosed. The urine was positive for amphetamine. Until that moment the patient had denied using drugs. He recovered and was discharged after nine days. Recreational use of ecstasy (methylenedioxymethamphetamine) and other amphetamine derivatives is gaining popularity worldwide. This drug abuse is rarely reported spontaneously.
HIV Risk Behavior among Amphetamine Injectors at U.S. Syringe Exchange Programs
ERIC Educational Resources Information Center
Braine, Naomi; Des Jarlais, Don C.; Goldblatt, Cullen; Zadoretzky, Cathy; Turner, Charles
2005-01-01
The goal of this study was to compare HIV risk behaviors of amphetamine and non-amphetamine injectors at syringe exchange programs (SEP) in the United States and to identify factors associated with injection risk. This analysis is based on data from a random cross-section of participants at 13 SEPs in different parts of the country. All interviews…
[Urine levels of fenethylline and amphetamine after administration of Captagon].
Iffland, R
1982-01-01
The limit for detecting fenethylline and its metabolite amphetamine in GLC with N-FID is in the range of nanograms. The elimination of these substances in urine was measured after giving different quantities of Captagon to six volunteers. The concentrations of fenethylline and amphetamine in urine allow to estimate with some limitations time and amount of consuming Captagon for forensic purposes.
Dopaminergic Actions of D-Amphetamine on Schedule-Induced Polydipsia in Rats
ERIC Educational Resources Information Center
Pellon, Ricardo; Ruiz, Ana; Rodriguez, Cilia; Flores, Pilar
2007-01-01
Schedule-induced polydipsia in rats was developed by means of a fixed-time 60-s schedule of food presentation. The acute administration of d-amphetamine sulfate (0.1-3.0 mg/kg) produced a dose-dependent decrease in the rate of licking. D-Amphetamine shifted to the left the temporal distribution of adjunctive drinking within interfood intervals.…
Riddick, C A; Ring, W L; Baker, J R; Hodulik, C R; Bigby, T D
1997-05-15
The aim of this study was to assess the effect of dexamethasone on 5-lipoxygenase pathway expression in human peripheral blood monocytes and the acute monocytic leukemia cell line, THP-1. Cells were conditioned over a period of days with dexamethasone, at concentrations relevant in vivo, to study the effect of the glucocorticoid on calcium-ionophore-stimulated 5-lipoxygenase product and arachidonic acid release. The effect of dexamethasone on levels of immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and its activating protein (5-LAP) was also assessed. Dexamethasone increased the stimulated release of 5-lipoxygenase products from both monocytes and THP-1 cells in a dose-dependent fashion. The increase in product generation was not due to changes in the availability of arachidonic acid. However, immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and 5-LAP were increased by conditioning with dexamethasone. There was no apparent effect of the glucocorticoid on LTA4-hydrolase-immunoreactive protein levels or specific activity. We conclude that dexamethasone increases 5-lipoxygenase pathway expression in both monocytes and in THP-1 cells. This effect is due, at least in part, to increases in immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and 5-LAP. These results suggest a role for glucocorticoids in the regulation of 5-lipoxygenase pathway expression in mononuclear phagocytes.
The Characterization of AT1 Expression in the Dorsal Root Ganglia After Chronic Constriction Injury.
Oroszova, Zuzana; Hricova, Ludmila; Stropkovska, Andrea; Lukacova, Nadezda; Pavel, Jaroslav
2017-04-01
To clarify the role of Angiotensin II in the regulation of sensory signaling, we characterized the AT 1 expression in neuronal subpopulation of lower lumbar dorsal root ganglia under normal conditions and its alteration in neuropathic pain model. The characterization of AT 1 expression was done under control and after the chronic constriction injury induced by four loose ligatures of the sciatic nerve representing the model of posttraumatic painful peripheral neuropathy. Major Angiotensin II receptor type was expressed in approximately 43 % of small-sized and 62 % of large-sized neurons in control. The AT 1 overexpression after sciatic nerve ligation lasting 7 days was detected predominantly in small-sized AT 1 immunoreactive neurons (about 38 % increase). Chronic constriction injury caused a statistically marked increase in number of the small-sized peptidergic (CGRP immunoreactive) neuronal subpopulation expressing AT 1 (about 64 %). The subpopulations of AT 1 -immunoreactive and nonpeptide-containing primary sensory neurons revealed by IB4 binding, tyrosine hydroxylase- and parvalbumin-immunoreactive neurons were not markedly changed. Our results indicate that: (1) the AT 1 overexpression after the chronic constriction injury is an important factor in Angiotensin II-potentiated pain perception; (2) Angiotensin II is involved in pathological mechanisms of neuropathic pain and this effect can be mediated perhaps in combination with other neuropeptides synthesized in the primary sensory neurons.
Nakamura, Keijiro; Ajijola, Olujimi A; Aliotta, Eric; Armour, J Andrew; Ardell, Jeffrey L; Shivkumar, Kalyanam
2016-05-01
To determine whether chronic myocardial infarction (MI) induces structural and neurochemical changes in neurons within afferent and efferent ganglia mediating cardiac neurotransmission. Neuronal somata in i) right atrial (RAGP) and ii) ventral interventricular ganglionated plexi (VIVGP), iii) stellate ganglia (SG) and iv) T1-2 dorsal root ganglia (DRG) bilaterally derived from normal (n=8) vs. chronic MI (n=8) porcine subjects were studied. We examined whether the morphology and neuronal nitric oxide synthase (nNOS) expression in soma of RAGP, VIVGP, DRG and SG neurons were altered as a consequence of chronic MI. In DRG, we also examined immunoreactivity of calcitonin gene related peptide (CGRP), a marker of afferent neurons. Chronic MI increased neuronal size and nNOS immunoreactivity in VIVGP (but not RAGP), as well as in the SG bilaterally. Across these ganglia, the increase in neuronal size was more pronounced in nNOS immunoreactive neurons. In the DRG, chronic MI also caused neuronal enlargement, and increased CGRP immunoreactivity. Further, DRG neurons expressing both nNOS and CGRP were increased in MI animals compared to controls, and represented a shift from double negative neurons. Chronic MI impacts diverse elements within the peripheral cardiac neuraxis. That chronic MI imposes such widespread, diverse remodeling of the peripheral cardiac neuraxis must be taken into consideration when contemplating neuronal regulation of the ischemic heart. Copyright © 2016 Elsevier B.V. All rights reserved.
[Hallucinogens, amphetamines and entactogens].
Vollenweider, F X; Vollenweider-Scherpenhuyzen, M F
2003-06-01
MDMA ("Ecstasy") and its analogues such as MDE and MDA are amphetamine derivatives reported to produce an altered state with emotional overtones. Since more than ten years, ecstasy is after cannabis the most frequently used recreational drug by young adults, particularly in the so-called techno-scene. However, according to a recent survey there is an increasing trend for a revival of classic amphetamine and hallucinogen abuse, possibly due to the concern about the potential neurotoxicity and somatic risks associated with ecstasy use. Of the hallucinogens consumed, psilocybin containing mushroom ("magic mushrooms"), but also LSD are at the forefront. The present contribution summarizes the psychological and somatic effects of hallucinogens, amphetamines, and entactogens.
Sadeghipour, F; Veuthey, J L
1997-11-07
A rapid, sensitive and selective liquid chromatographic method with fluorimetric detection was developed for the separation and quantification of four methylenedioxylated amphetamines without interference of other drugs of abuse and common substances found in illicit tablets. The method was validated by examining linearity, precision and accuracy as well as detection and quantification limits. Methylenedioxylated amphetamines were quantified in eight tablets from illicit drug seizures and results were quantitatively compared to HPLC-UV analyses. To demonstrate the better sensitivity of the fluorimetric detection, methylenedioxylated amphetamines were analyzed in serum after a liquid-liquid extraction procedure and results were also compared to HPLC-UV analyses.
The effect of antimotion sickness drugs on habituation to motion
NASA Technical Reports Server (NTRS)
Wood, C. D.; Manno, J. E.; Manno, B. R.; Odenheimer, R. C.; Bairnsfather, L. E.
1986-01-01
The mechanism which allows for increased exposure to motion and accelerates habituation is investigated. The responses of 12 male and female subjects between 18-30 years rotated once a day for 5 days on the Contraves Goerz rotating chair after receiving placebo, 10 mg d-amphetamine, 0.6 mg scopolamine with 5 mg d-amphetamine, and 1.0 mg scopolamine are studied. It is observed that with placebo the subjects performed 48 more head movements than untreated subjects, 118 more movements with d-amphetamine, 176 more with 0.6 mg scopolamine with d-amphetamine, and 186 more with 1.0 scopolamine. The data reveal that exposure to rotation increases tolerance from 88 head movements on day 2 to 159 on day 4 at 17.4 rpm and with placebo; 96 to 186 at 19.9 rpm with 10 mg d-amphetamine; 111 to 273 at 20.2 rpm with scopolamine with d-amphetamine, and 141 to 279 at 22.4 rpm with 1.0 mg scopolamine. It is noted that a combination of cholinergic blocking and norepinephrine activation action is most effective in preventing the development of motion sickness and habituation is due to the greater exposure to vestibular simulation permitted by the drugs.
Xu, Zeqiong; Du, Peng; Li, Kaiyang; Gao, Tingting; Wang, Zhenglu; Fu, Xiaofang; Li, Xiqing
2017-12-01
Wastewater analysis is a promising approach to monitor illicit drug abuse of a community. However, drug use estimation via wastewater analysis may be biased by sources other than abuse. This is especially true for methamphetamine and amphetamine as their presence in wastewater may come from many sources, such as direct disposal or excretion following administration of prescription drugs. Here we traced methamphetamine and amphetamine sources via concentration and enantiomeric profiling of the two compounds from black market to receiving waters. Methamphetamine in wastewater was found to predominantly arise from abuse, proving the feasibility of using wastewater analysis for estimating its consumption in China. Amphetamine abuse was previously considered negligible in East and Southeast Asia. However, we found that amphetamine was abused considerably (up to 90.7mg/1000inh/day) in a significant number (>20%) of major cities in China. Combined concentration and enantiomeric profiling also revealed direct disposal into receiving waters of methamphetamine manufactured by different processes. These findings have important implications for monitoring of and law enforcement against methamphetamine/amphetamine abuse and related crimes in China and abroad. Copyright © 2017. Published by Elsevier B.V.
Faraone, Stephen V
2018-04-01
Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.
Li, Mi; McMillan, Donald E
2003-08-22
The experiments showed that sequential drug discriminations can be learned and retained under a fixed-interval (FI) schedule for more than 18 months without additional training under a complex three-choice procedure. Pigeons were trained to discriminate among 5 mg/kg pentobarbital, 2 mg/kg D-amphetamine, and saline. After responding stabilized, dose-response curves were determined for other drugs. Subsequently, pentobarbital was replaced with 5 mg/kg morphine as a training drug, and D-amphetamine was replaced with 30 mg/kg caffeine. After the pigeons learned these new discriminations, dose-response curves were redetermined. Initially, chlordiazepoxide substituted for pentobarbital, cocaine substituted for D-amphetamine, and nicotine partially substituted for D-amphetamine. Morphine, Delta9-tetrahydrocannabinol, and caffeine did not substitute for either drug. After retraining with morphine and caffeine, responding occurred on the pentobarbital/morphine key after pentobarbital, chlordiazepoxide and morphine and on the D-amphetamine/caffeine key after D-amphetamine, cocaine and caffeine. After nicotine and Delta9-tetrahyrdocannabinol, responding occurred on the saline key. These data show that drug discriminations learned under fixed-interval schedules are retained for long time periods, even when discrimination training with other drugs occurs during the retention period.
Endocannabinoids as physiological regulators of colonic propulsion in mice.
Pinto, Luisa; Izzo, Angelo A; Cascio, Maria Grazia; Bisogno, Tiziana; Hospodar-Scott, Karen; Brown, David R; Mascolo, Nicola; Di Marzo, Vincenzo; Capasso, Francesco
2002-07-01
Activation of enteric cannabinoid CB1 receptors inhibits motility in the small intestine; however, it is not known whether endogenous cannabinoids (anandamide and 2-arachidonylglycerol) play a physiologic role in regulating intestinal motility. In the present study, we investigated the possible involvement of endocannabinoids in regulating intestinal propulsion in the mouse colon in vivo. Intestinal motility was studied measuring the expulsion of a glass bead inserted into the distal colon; endocannabinoid levels were measured by isotope-dilution gas chromatography-mass spectrometry; anandamide amidohydrolase activity was measured by specific enzyme assays. CB1 receptors were localized by immunohistochemistry. Anandamide, WIN 55,212-2, cannabinol (nonselective cannabinoid agonists), and ACEA (a selective CB1 agonist) inhibited colonic propulsion; this effect was counteracted by SR141716A, a CB1 receptor antagonist. Administered alone, SR141716A increased motility, whereas the inhibitor of anandamide cellular reuptake, VDM11, decreased motility. High amounts of 2-arachidonylglycerol and particularly anandamide were found in the colon, together with a high activity of anandamide amidohydrolase. CB1 receptor immunoreactivity was colocalized to a subpopulation of choline acetyltransferase-immunoreactive neurons and fiber bundles in the myenteric plexus. We conclude that endocannabinoids acting on myenteric CB1 receptors tonically inhibit colonic propulsion in mice.
Jaafari, Nadia; Khomitch-Baud, Alexandra; Gilhodes, Jean-Claude; Hua, Guoqiang; Julé, Yvon
2008-04-01
The involvement of NK2 receptors (NK2r) in the neuroregulation of human colonic motility has been mainly assessed by using pharmacological approaches. The aim of this study was to characterize the intramural neurons and nerve varicosities expressing NK2r in human colonic neuronal pathways. Neuronal coding in the myenteric plexus and external muscle layers was identified on the basis of the patterns of colocalization of tachykinins (TK), vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), glutamate decarboxylase (GAD), and vasoactive intestinal peptide (VIP) with NK2r immunoreactivity. The proportions of chemically defined synaptophysin-immunoreactive nerve varicosities were accurately determined by using specific software. NK2r immunoreactivity was detected in the soma of many myenteric neurons (71.8%). A large proportion of these neurons was immunoreactive to VAChT (39.3%), TK (30%), and GAD (23.5%) and, to a lesser extent, to NOS and VIP. The proportions of nerve varicosities expressing NK2r showed significant regional differences: the highest proportion (59.8%) was located in the myenteric plexus. High proportions of the myenteric nerve varicosities expressing NK2r were immunoreactive to VIP (80.9%) and NOS (77.9%), and lower proportions were recorded with VAChT, TK, and GAD. In the circular and longitudinal muscle layers, the proportions of nerve varicosities expressing NK2r were 49.6% and 45.3%, respectively. The chemically defined intramuscular varicosities were closely apposed to smooth muscle cells expressing NK2r. In conclusion, the data obtained in this study, in which the expression of NK2r was mapped in the human colonic neuronal pathways, confirm that these receptors are involved in the neuroneuronal and neuromuscular processes regulating human colonic motility. Copyright 2008 Wiley-Liss, Inc.
Localization of connexin 43 gap junctions and hemichannels in tanycytes of adult mice.
Szilvásy-Szabó, Anett; Varga, Edina; Beliczai, Zsuzsa; Lechan, Ronald M; Fekete, Csaba
2017-10-15
Tanycytes are specialized glial cells lining the lateral walls and the floor of the third ventricle behind the optic chiasm. In addition to functioning as barrier cells, they also have an important role in the regulation of neuroendocrine axes and energy homeostasis. To determine whether tanycytes communicate with each other via Connexin 43 (Cx43) gap junctions, individual tanycytes were loaded with Lucifer yellow (LY) through a patch pipette. In all cases, LY filled a larger group of tanycytes as well as blood vessels adjacent to tanycyte processes. The Cx43-blocker, carbenoxolone, inhibited spreading of LY. The greatest density of Cx43-immunoreactive spots was observed in the cell membrane of α-tanycyte cell bodies. Cx43-immunoreactivity was also present in the membrane of β-tanycyte cell bodies, but in lower density. Processes of both types of tanycytes also contained Cx43-immunoreactivity. At the ultrastructural level, Cx43-immunoreactivity was present in the cell membrane of all types of tanycytes including their ventricular surface, but gap junctions were more frequent among α-tanycytes. Cx43-immunoreactivity was also observed in the cell membrane between contacting tanycyte endfeet processes, and between tanycyte endfeet process and axon varicosities in the external zone of the median eminence and capillaries in the arcuate nucleus and median eminence. These results suggest that gap junctions are present not only among tanycytes, but also between tanycytes and the axons of hypophysiotropic neurons. Cx43 hemichannels may also facilitate the transport between tanycytes and extracellular fluids, including the cerebrospinal fluid, extracellular space of the median eminence and bloodstream. Copyright © 2017 Elsevier B.V. All rights reserved.
Moeller, John F.; Meredith, Michael
2010-01-01
The nervus terminalis (NT) is a vertebrate cranial nerve whose function in adults is unknown. In bonnethead sharks the nerve is anatomically independent of the olfactory system, with two major cell populations within one or more ganglia along its exposed length. Most cells are immunoreactive for either gonadotropin-releasing hormone (GnRH) or RFamide-like peptides. To define further the cell populations and connectivity, we used double-label immuno-cytochemistry with antisera to different isoforms of GnRH and to choline acetyltransferase (ChAT). The labeling patterns of two GnRH antisera revealed different populations of GnRH immunoreactive (ir) cell-profiles in the NT ganglion. One antiserum labeled a large group of cells and fibers, which likely contain mammalian GnRH (GnRH-I) as described in previous studies, and which were ChAT immunoreactive. The other antiserum labeled large club-like structures, which were anuclear, and a sparse number of fibers, but with no clear labeling of cell bodies in the ganglion. These club structures were choline acetyltrasferase (ChAT) negative, and preabsorption control tests suggest they may contain chicken-GnRH-II (GnRH-II) or dogfish GnRH. The second major NT ganglion cell-type was immunoreactive for RF-amides, which regulate GnRH release in other vertebrates, and may provide an intraganglionic influence on GnRH release. The immunocytochemical and anatomical differences between the two GnRH immunoreactive profile types indicate possible functional differences for these isoforms in the NT. The club-like structures may be sites of GnRH release into the general circulation since these structures were observed near blood vessels and resembled structures seen in the median eminence of rats. PMID:20950589
Moeller, John F; Meredith, Michael
2010-12-17
The nervus terminalis (NT) is a vertebrate cranial nerve whose function in adults is unknown. In bonnethead sharks, the nerve is anatomically independent of the olfactory system, with two major cell populations within one or more ganglia along its exposed length. Most cells are immunoreactive for either gonadotropin-releasing hormone (GnRH) or RF-amide-like peptides. To define further the cell populations and connectivity, we used double-label immunocytochemistry with antisera to different isoforms of GnRH and to choline acetyltransferase (ChAT). The labeling patterns of two GnRH antisera revealed different populations of GnRH-immunoreactive (ir) cell profiles in the NT ganglion. One antiserum labeled a large group of cells and fibers, which likely contain mammalian GnRH (GnRH-I) as described in previous studies and which were ChAT immunoreactive. The other antiserum labeled large club-like structures, which were anuclear, and a sparse number of fibers, but with no clear labeling of cell bodies in the ganglion. These club structures were choline acetyltrasferase (ChAT)-negative, and preabsorption control tests suggest they may contain chicken-GnRH-II (GnRH-II) or dogfish GnRH. The second major NT ganglion cell-type was immunoreactive for RF-amides, which regulate GnRH release in other vertebrates, and may provide an intraganglionic influence on GnRH release. The immunocytochemical and anatomical differences between the two GnRH-immunoreactive profile types indicate possible functional differences for these isoforms in the NT. The club-like structures may be sites of GnRH release into the general circulation since these structures were observed near blood vessels and resembled structures seen in the median eminence of rats. Copyright © 2010 Elsevier B.V. All rights reserved.
Somvanshi, Rishi K; Jhajj, Amrit; Heer, Michael; Kumar, Ujendra
2018-02-01
The present study describes the status of somatostatin receptors (SSTRs) and their colocalization with insulin (β), glucagon (α) and somatostatin (δ) producing cells in the pancreatic islets of 11weeks old R6/2 Huntington's Disease transgenic (HD tg) and age-matched wild type (wt) mice. We also determined expression of tyrosine hydroxylase (TH), glutamic acid decarboxylase (GAD) and presynaptic marker synaptophysin (SYP) in addition to signal transduction pathways associated with diabetes. In R6/2 mice, islets are relatively smaller in size, exhibit enhanced expression and nuclear inclusion of mHtt along with the loss of insulin, glucagon and somatostatin expression. In comparison to wt, R6/2 mice display enhanced mRNA for all SSTRs except SSTR2. In the pancreatic lysate, SSTR1, 4 and 5 immunoreactivity decreases whereas SSTR3 immunoreactivity increases with no discernible changes in SSTR2 immunoreactivity. Furthermore, at the cellular level, R6/2 mice exhibit a receptor specific distributional pattern of SSTRs like immunoreactivity and colocalization with β, α and δ cells. While GAD expression is increased, TH and SYP immunoreactivity was decreased in R6/2 mice, anticipating a cross-talk between the CNS and pancreas in diabetes pathophysiology. We also dissected out the changes in signaling pathway and found decreased activation and expression of PKA, AKT, ERK1/2 and STAT3 in R6/2 mice pancreas. These findings suggest that the impaired organization of SSTRs within islets may lead to perturbed hormonal regulation and signaling. These interconnected complex events might shed new light on the pathogenesis of diabetes in neurodegenerative diseases and the role of SSTRs in potential therapeutic intervention. Copyright © 2017 Elsevier B.V. All rights reserved.
Individual vulnerabilities relative for potential pathological conditions.
Moal, Michel Le
2016-08-15
It is not a usual venture to review experiments conducted decades ago in the context of interests of that time and replace them in a long-term historical perspective. These investigations were the product of a long-standing interest for individual differences in vulnerabilities relative to coping with stressful situations and for potential pathological conditions such as drug abuse. The rationale was, and still is, to decipher the psychobiological characteristics of these complex traits. STRESS- AND PHARMACOLOGICALLY-INDUCED BEHAVIORAL SENSITIZATION INCREASES VULNERABILITY TO ACQUISITION OF AMPHETAMINE SELF-ADMINISTRATION: Individual vulnerability to drug addiction may be an important factor in the prognosis of pathological behavior in man. However, experimental investigations have largely neglected the psychobiological substrate of predisposition to addiction. In this study, we use a self-administration (SA) acquisition paradigm showing that previous repeated exposure to a stressful experience (tail-pinch) or to amphetamine increases the locomotor response to this drug (behavioral sensitization) and enhances vulnerability to amphetamine SA. These results show that vulnerability to developing amphetamine SA may be influenced by stressful experiences, and that previous contact with the drug may also enhance a predisposition to amphetamine-taking behavior. As tail-pinch and amphetamine sensitization affect both the dopamine (DA) neural system and the propensity to self-administer amphetamine (a behavior also modulated by DA activity), stress may influence SA via an action on the DA system. © 1990. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B.V. All rights reserved.
Amphetamine increases schedule-induced drinking reduced by negative punishment procedures.
Pérez-Padilla, Angeles; Pellón, Ricardo
2003-05-01
d-Amphetamine has been reported to increase schedule-induced drinking punished by lick-dependent signalled delays in food delivery. This might reflect a drug-behaviour interaction dependent on the type of punisher, because no such effect has been found when drinking was reduced by lick-contingent electric shocks. However, the anti-punishment effect of amphetamine could be mediated by other behavioural processes, such as a loss of discriminative control or an increase in the value of delayed reinforcers. To test the effects of d-amphetamine on the acquisition and maintenance of schedule-induced drinking reduced by unsignalled delays in food delivery. Rats received 10-s unsignalled delays initiated by each lick after polydipsia was induced by a fixed-time 30-s food reinforcement schedule or from the outset of the experiment. Yoked-control rats received these same delays but independently of their own behaviour. d-Amphetamine (0.1-3.0 mg/kg) was then tested IP. d-Amphetamine dose-dependently increased and then decreased punished schedule-induced drinking. The drug led to dose-dependent reductions when the delays were not contingent or when they were applied from the outset of training. These results support the contention that d-amphetamine has an increasing effect on schedule-induced drinking that has been previously reduced by a negative punishment procedure. This effect cannot be attributed to other potentially involved processes, and therefore support the idea that drug effects on punished behaviour depend on punishment being delays in food or shock deliveries.
Individual behavioural predictors of amphetamine-induced emission of 50 kHz vocalization in rats.
Mulvihill, Kevin G; Brudzynski, Stefan M
2018-05-11
Measurement of ultrasonic vocalizations (USVs) produced by adult rats represents a highly useful index of emotional arousal. The associations found between 50 kHz USV production and a variety of behavioural and pharmacological protocols increasingly suggests they serve as a marker of positive motivational states. This study used a powerful within-subjects design to investigate the relationships among individual differences in approach to a sweet-food reward, predisposition to emit 50 kHz USVs spontaneously, and 50 kHz USVs emission following acute systemic administration of amphetamine. Both approach motivation and predisposition to call were found to not correlate with each other but did predict 50 kHz USV response to acute amphetamine. These two behavioural phenotypes appear to represent dissociable predictors of acute amphetamine-induced emission of 50 kHz USVs in a non-sensitization paradigm. In contrast to that, a measure of sucrose preference was not found to predict 50 kHz USV emission following amphetamine. Acute amphetamine was also found to increase average sound frequency of emitted USVs and selectively increase the proportion of Trill subtype 50 kHz USVs. Together, these data demonstrate that acute amphetamine-induced 50 kHz USVs in the adult rat represent more than just a univariate motivational state and may represent the product of dissociable subsystems of emotional behavior. Copyright © 2018. Published by Elsevier B.V.
Sirohi, Sunil; Schurdak, Jennifer D; Seeley, Randy J; Benoit, Stephen C; Davis, Jon F
2016-07-01
Recent data implicate glucagon-like peptide-1 (GLP-1), a potent anorexigenic peptide released in response to nutrient intake, as a regulator for the reinforcing properties of food, alcohol and psychostimulants. While, both central and peripheral mechanisms mediate effects of GLP-1R signaling on food intake, the extent to which central or peripheral GLP-1R signaling regulates reinforcing properties of drugs of abuse is unknown. Here, we examined amphetamine reinforcement, alcohol intake and hedonic feeding following peripheral administration of EX-4 (a GLP-1 analog) in FLOX and GLP-1R KD(Nestin) (GLP-1R selectively ablated from the central nervous system) mice (n=13/group). First, the effect of EX-4 pretreatment on the expression of amphetamine-induced conditioned place preference (Amp-CPP) was examined in the FLOX and GLP-1R KD(Nestin) mice. Next, alcohol intake (10% v/v) was evaluated in FLOX and GLP-1R KD(Nestin) mice following saline or EX-4 injections. Finally, we assessed the effects of EX-4 pretreatment on hedonic feeding behavior. Results indicate that Amp-CPP was completely blocked in the FLOX mice, but not in the GLP-1R KD(Nestin) mice following EX-4 pretreatment. Ex-4 pretreatment selectively blocked alcohol consumption in the FLOX mice, but was ineffective in altering alcohol intake in the GLP-1R KD(Nestin) mice. Notably, hedonic feeding was partially blocked in the GLP-1R KD(Nestin) mice, whereas it was abolished in the FLOX mice. The present study provides critical insights regarding the nature by which GLP-1 signaling controls reinforced behaviors and underscores the importance of both peripheral and central GLP-1R signaling for the regulation of addictive disorders. Copyright © 2016. Published by Elsevier Inc.
Cochrane, David E; Carraway, Robert E; Harrington, Kimberly; Laudano, Melissa; Rawlings, Stephen; Feldberg, Ross S
2011-12-01
To determine if mast cells synthesize the inflammatory peptide, neurotensin (NT), secrete immunoreactive and bioactive NT, and express the NT receptor NTS1. HMC-1 cells, pleural mast cells from Sprague-Dawley rats, LAD2 mast cells, and human cord blood mast cells were used. HMC-1 cells were stimulated with NT, C48/80, mastoparan, or PGE(2). For changes in cutaneous vascular permeability, anesthetized rats were injected intravenously with Evans Blue dye and intradermally with saline, NT, histamine, diphenhydramine, and C48/80. RT-PCR was used to identify RNA transcripts. Histamine was measured by fluorometric assay. In vivo cutaneous vascular permeability assays, radio-immunoassays for NT, Western blotting for the NT precursor protein and NTS1 protein from HMC-1 cells and tissues from rats were used. Immunohistochemistry was used to identify NT precursor-like proteins in HMC-1 mast cells. HMC-1 cells express mRNAs for NT precursor, PC5A processing enzyme and NTS1 receptor. Human cord blood mast cells and LAD2 mast cells express mRNA transcripts for NT precursor and NTS1. Western blotting showed NT precursor and NTS1 receptor in HMC1. Rat tissues with high numbers of mast cells contained NT precursor proteins. NT-like peptides from HMC-1 displayed NT-like bioactivity. HMC-1 mast cells synthesize and secrete immunoreactive and bioactive NT-like peptide(s) and express the NT receptor, suggesting that NT from mast cells might serve autocrine and paracrine roles.
Liu, Wenjing; Ma, Rui; Yuan, Yuan
2017-01-01
Noncoding RNAs play critical roles in regulating protein-coding genes and comprise two major classes: long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). LncRNAs regulate gene expression at transcriptional, post-transcriptional, and epigenetic levels via multiple action modes. LncRNAs can also function as endogenous competitive RNAs for miRNAs and indirectly regulate gene expression post-transcriptionally. By binding to the 3'-untranslated regions (3'-UTR) of target genes, miRNAs post-transcriptionally regulate gene expression. Herein, we conducted a review of post-transcriptional regulation by lncRNAs and miRNAs of genes associated with biological behaviors of gastric cancer. PMID:29187891
A Go-to-Market Strategy: Promoting Private Sector Solutions to the Threat of Proliferation
2013-04-01
indicators reveal that these problems, often subsumed under the seemingly innocuous heading of “transnational threats,” are a growing cancer on the...trade is worth an estimated $322 billion annually with 52,356 metric tons of opium, cannabis , cocaine, and amphetamine-type stimulant (ATS...of medical isotopes to the sites that secure the material. 30 Regulators are also now starting to consider another critical component in the
Belbin, Fiona E; Noordally, Zeenat B; Wetherill, Sarah J; Atkins, Kelly A; Franklin, Keara A; Dodd, Antony N
2017-01-01
We investigated the signalling pathways that regulate chloroplast transcription in response to environmental signals. One mechanism controlling plastid transcription involves nuclear-encoded sigma subunits of plastid-encoded plastid RNA polymerase. Transcripts encoding the sigma factor SIG5 are regulated by light and the circadian clock. However, the extent to which a chloroplast target of SIG5 is regulated by light-induced changes in SIG5 expression is unknown. Moreover, the photoreceptor signalling pathways underlying the circadian regulation of chloroplast transcription by SIG5 are unidentified. We monitored the regulation of chloroplast transcription in photoreceptor and sigma factor mutants under controlled light regimes in Arabidopsis thaliana. We established that a chloroplast transcriptional response to light intensity was mediated by SIG5; a chloroplast transcriptional response to the relative proportions of red and far red light was regulated by SIG5 through phytochrome and photosynthetic signals; and the circadian regulation of chloroplast transcription by SIG5 was predominantly dependent on blue light and cryptochrome. Our experiments reveal the extensive integration of signals concerning the light environment by a single sigma factor to regulate chloroplast transcription. This may originate from an evolutionarily ancient mechanism that protects photosynthetic bacteria from high light stress, which subsequently became integrated with higher plant phototransduction networks. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Grana, E.; Lilla, L.
1959-01-01
The stereoisomers of amphetamine and 1-phenylethylamine have been studied in the rat both as central stimulants and as inhibitors of amine oxidase from brain, liver, and kidney. There was no correlation between these two effects; thus it is unlikely that the central stimulating action of amphetamine is due to inhibition of amine oxidase. PMID:13828860
ERIC Educational Resources Information Center
Li, Mi; Wessinger, William D.; McMillan, D. E.
2005-01-01
Three pigeons were trained to discriminate among 5 mg/kg pentobarbital, 2 mg/kg amphetamine, a combination of these two drugs at these doses, and saline using a four-choice procedure (amphetamine--pentobarbital group). Three other pigeons were trained to discriminate among 5 mg/kg morphine, 2 mg/kg methamphetamine, a combination of these two drugs…
21 CFR 862.1405 - Immunoreactive insulin test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...
21 CFR 862.1405 - Immunoreactive insulin test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...
21 CFR 862.1405 - Immunoreactive insulin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...
21 CFR 862.1405 - Immunoreactive insulin test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunoreactive insulin test system. 862.1405... Systems § 862.1405 Immunoreactive insulin test system. (a) Identification. An immunoreactive insulin test system is a device intended to measure immunoreactive insulin in serum and plasma. Immunoreactive insulin...
Fordahl, Steve C.; Locke, Jason L.; Jones, Sara R.
2016-01-01
High fat (HF) diet-induced obesity has been shown to augment behavioral responses to psychostimulants that target the dopamine system. The purpose of this study was to characterize dopamine terminal changes induced by a HF diet that correspond with enhanced locomotor sensitization to amphetamine. C57BL/6J mice had limited (2hr 3d/week) or extended (24h 7d/week) access to a HF diet or standard chow for six weeks. Mice were then repeatedly exposed to amphetamine (AMPH), and their locomotor responses to an amphetamine challenge were measured. Fast scan cyclic voltammetry was used to identify changes in dopamine terminal function after AMPH exposure. Exposure to a HF diet reduced dopamine uptake and increased locomotor responses to acute, high-dose AMPH administration compared to chow fed mice. Microdialysis showed elevated extracellular dopamine in the nucleus accumbens (NAc) coincided with enhanced locomotion after acute AMPH in HF-fed mice. All mice exhibited locomotor sensitization to amphetamine, but both extended and limited access to a HF diet augmented this response. Neither HF-fed group showed the robust amphetamine sensitization-induced increases in dopamine release, reuptake, and amphetamine potency observed in chow fed animals. However, the potency of amphetamine as an uptake inhibitor was significantly elevated after sensitization in mice with extended (but not limited) access to HF. Conversely, after amphetamine sensitization, mice with limited (but not extended) access to HF displayed reduced autoreceptor sensitivity to the D2/D3 agonist quinpirole. Additionally, we observed reduced membrane dopamine transporter (DAT) levels after HF, and a shift in DAT localization to the cytosol was detected with limited access to HF. This study showed that different patterns of HF exposure produced distinct dopamine terminal adaptations to repeated AMPH, which differed from chow fed mice, and enhanced sensitization to AMPH. Locomotor sensitization in chow fed mice coincided with elevated DAT function and increased AMPH potency; however, the enhanced behavioral response to AMPH after HF exposure was unique in that it coincided with reduced DAT function and diet pattern-specific adaptations. PMID:27267686
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossi, Flavia; Fan, Jue; Xiao, Jun
Here, the molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. As a result, to identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation.more » We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.« less
Bossi, Flavia; Fan, Jue; Xiao, Jun; ...
2017-06-26
Here, the molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. As a result, to identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation.more » We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.« less
Monocarboxylate transporter 1 (MCT1) in the liver of pre-ruminant and adult bovines.
Kirat, D; Inoue, H; Iwano, H; Yokota, H; Taniyama, H; Kato, S
2007-01-01
This study investigated the distribution and expression of monocarboxylate transporter 1 (MCT1) in the livers of pre-ruminant calves and adult bovines (bulls and cows), using different molecular biological techniques. Reverse transcription-polymerase chain reaction (RT-PCR) verified the presence of mRNA encoding for MCT1 in both pre-ruminant and adult bovine livers. Immunohistochemically, MCT1 was clearly demonstrated on the sinusoidal surfaces of bovine hepatocytes but its expression varied widely between pre-ruminants and adult bovines. In pre-ruminants, a faint hepatocellular expression of MCT1 was observed in a few hepatocytes, whereas an intense immunoreactive staining for MCT1 was shown in the majority of adult bovine hepatocytes. Western blot analysis also confirmed the results of the immunohistochemistry. Quantitative immunoblotting, as estimated by densitometric analysis, showed that the level of MCT1 in the liver of adult bovines was 8-9-fold greater (P<0.01) than that in pre-ruminant calf livers although no significant differences were detected between bulls and cows. The results demonstrated that MCT1 may play a crucial role in the transport of propionate in bovine liver, suggesting that MCT1 expression may be influenced by developmental and metabolic regulations.
Ecdysis triggering hormone signaling in the yellow fever mosquito Aedes aegypti.
Dai, Li; Adams, Michael E
2009-05-15
At the end of each developmental stage, the yellow fever mosquito Aedes aegypti performs the ecdysis behavioral sequence, a precisely timed series of behaviors that culminates in shedding of the old exoskeleton. Here we describe ecdysis triggering hormone-immunoreactive Inka cells located at branch points of major tracheal trunks and loss of staining coincident with ecdysis. Peptides (AeaETH1, AeaETH2) purified from extracts of pharate 4th instar larvae have--PRXamide C-terminal amino acid sequence motifs similar to ETHs previously identified in moths and flies. Injection of synthetic AeaETHs induced premature ecdysis behavior in pharate larvae, pupae and adults. Two functionally distinct subtypes of ETH receptors (AeaETHR-A, AeaETHR-B) of A. aegypti are identified and show high sensitivity and selectivity to ETHs. Increased ETHR transcript levels and behavioral sensitivity to AeaETHs arising in the hours preceding the 4th instar larva-to-pupa ecdysis are correlated with rising ecdysteroid levels, suggesting steroid regulation of receptor gene expression. Our description of natural and ETH-induced ecdysis in A. aegypti should facilitate future approaches directed toward hormone-based interference strategies for control of mosquitoes as human disease vectors.
Expression of aquaporin8 in human astrocytomas: Correlation with pathologic grade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Shu-juan; Wang, Ke-jian; Gan, Sheng-wei
2013-10-11
Highlights: •AQP8 is mainly distributed in the cytoplasm of human astrocytoma cells. •AQP8 over-expressed in human astrocytomas, especially glioblastoma. •The up-regulation of AQP8 is related to the pathological grade of human astrocytomas. •AQP8 may contribute to the growth and proliferation of astrocytomas. -- Abstract: Aquaporin8 (AQP8), a member of the aquaporin (AQP) protein family, is weakly distributed in mammalian brains. Previous studies on AQP8 have focused mainly on the digestive and the reproductive systems. AQP8 has a pivotal role in keeping the fluid and electrolyte balance. In this study, we investigated the expression changes of AQP8 in 75 cases ofmore » human brain astrocytic tumors using immunohistochemistry, Western blotting, and reverse transcription polymerase chain reaction. The results demonstrated that AQP8 was mainly distributed in the cytoplasm of astrocytoma cells. The expression levels and immunoreactive score of AQP8 protein and mRNA increased in low-grade astrocytomas, and further increased in high-grade astrocytomas, especially in glioblastoma. Therefore, AQP8 may contribute to the proliferation of astrocytomas, and may be a biomarker and candidate therapy target for patients with astrocytomas.« less
Rullan, Marc; Benzinger, Dirk; Schmidt, Gregor W; Milias-Argeitis, Andreas; Khammash, Mustafa
2018-05-17
Transcription is a highly regulated and inherently stochastic process. The complexity of signal transduction and gene regulation makes it challenging to analyze how the dynamic activity of transcriptional regulators affects stochastic transcription. By combining a fast-acting, photo-regulatable transcription factor with nascent RNA quantification in live cells and an experimental setup for precise spatiotemporal delivery of light inputs, we constructed a platform for the real-time, single-cell interrogation of transcription in Saccharomyces cerevisiae. We show that transcriptional activation and deactivation are fast and memoryless. By analyzing the temporal activity of individual cells, we found that transcription occurs in bursts, whose duration and timing are modulated by transcription factor activity. Using our platform, we regulated transcription via light-driven feedback loops at the single-cell level. Feedback markedly reduced cell-to-cell variability and led to qualitative differences in cellular transcriptional dynamics. Our platform establishes a flexible method for studying transcriptional dynamics in single cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
America’s First Amphetamine Epidemic 1929–1971
Rasmussen, Nicolas
2008-01-01
Using historical research that draws on new primary sources, I review the causes and course of the first, mainly iatrogenic amphetamine epidemic in the United States from the 1940s through the 1960s. Retrospective epidemiology indicates that the absolute prevalence of both nonmedical stimulant use and stimulant dependence or abuse have reached nearly the same levels today as at the epidemic’s peak around 1969. Further parallels between epidemics past and present, including evidence that consumption of prescribed amphetamines has also reached the same absolute levels today as at the original epidemic’s peak, suggest that stricter limits on pharmaceutical stimulants must be considered in any efforts to reduce amphetamine abuse today. PMID:18445805
Cross-reactivity of amphetamine analogues with Roche Abuscreen radioimmunoassay reagents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, J.T.
1990-01-01
Cross-reactivity of amphetamine analogues with the Abuscreen amphetamine radioimmunoassay reagents was determined for both the standard and high specificity antibody systems. Compounds tested included 2-methoxyamphetamine, 4-hydroxymethamphetamine, 2,5-dimethoxyamphetamine (DMA), 4-bromo-2,5-dimethoxyamphetamine (DOB), 4-bromo-2,5-dimethoxy-beta-phenethylamine (BDMPEA), 3,4,5-trimethoxyamphetamine (TMA), 3,4-methylenedioxyamphetamine (MDA), N,N-dimethyl-3,4-methylenedioxyamphetamine and N-hydroxy-3,4-methylenedioxyamphetamine (N-OH MDA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyethylamphetamine (MDEA), 2,5-dimethoxy-4-ethylamphetamine, 2,5-dimethoxy-4-methylamphetamine (DOM), and 3,4,5-trimethoxyphenethylamine (mescaline). Blank negative reference material was spiked with 1,000 to 100,000 ng/mL of the amphetamine analogue and used as sample in the assays. MDA was the only analogue that showed cross reactivity equal to or greater than that of amphetamine. None of the other analogue compounds demonstrated a positive resultmore » at even the highest concentration; however several showed depressed counts at various concentration levels.« less
Pharmacokinetic and pharmacodynamic analysis of d-amphetamine in an attention task in rodents.
Slezak, Jonathan M; Mueller, Melanie; Ricaurte, George A; Katz, Jonathan L
2018-06-02
Amphetamine is a common therapeutic agent for alleviating the core symptoms associated with attention-deficit hyperactivity disorder (ADHD) in children and adults. The current study used a translational model of attention, the five-choice serial reaction time (5-CSRT) procedure with rats, to examine the time-course effects of d-amphetamine. Effects of different dosages of d-amphetamine were related to drug-plasma concentrations, fashioned after comprehensive pharmacokinetic/pharmacodynamic assessments that have been employed in clinical investigations. We sought to determine whether acute drug-plasma concentrations that enhance performance in the 5-CSRT procedure are similar to those found to be therapeutic in patients diagnosed with ADHD. Results from the pharmacokinetic/pharmacodynamic assessment indicate that d-amphetamine plasma concentrations associated with improved performance on the 5-CSRT procedure overlap with those that have been reported to be therapeutic in clinical trials. The current findings suggest that the 5-CSRT procedure may be a useful preclinical model for predicting the utility of novel ADHD therapeutics and their effective concentrations.
Transcriptomic Analysis of Grapevine (cv. Summer Black) Leaf, Using the Illumina Platform
Pervaiz, Tariq; Haifeng, Jia; Salman Haider, Muhammad; Cheng, Zhang; Cui, Mengjie; Wang, Mengqi; Cui, Liwen; Wang, Xicheng; Fang, Jinggui
2016-01-01
Proceeding to illumina sequencing, determining RNA integrity numbers for poly RNA were separated from each of the four developmental stages of cv. Summer Black leaves by using Illumina HiSeq™ 2000. The sums of 272,941,656 reads were generated from vitis vinifera leaf at four different developmental stages, with more than 27 billion nucleotides of the sequence data. At each growth stage, RNA samples were indexed through unique nucleic acid identifiers and sequenced. KEGG annotation results depicted that the highest number of transcripts in 2,963 (2Avs4A) followed by 1Avs4A (2,920), and 3Avs4A (2,294) out of 15,614 (71%) transcripts were recorded. In comparison, a total of 1,532 transcripts were annotated in GOs, including Cellular component, with the highest number in “Cell part” 251 out of 353 transcripts (71.1%), followed by intracellular organelle 163 out of 353 transcripts (46.2%), while in molecular function and metabolic process 375 out of 525 (71.4%) transcripts, multicellular organism process 40 out of 525 (7.6%) transcripts in biological process were most common in 1Avs2A. While in case of 1Avs3A, cell part 476 out of 662 transcripts (71.9%), and membrane-bounded organelle 263 out of 662 transcripts (39.7%) were recorded in Cellular component. In the grapevine transcriptome, during the initial stages of leaf development 1Avs2A showed single transcript was down-regulated and none of them were up-regulated. While in comparison of 1A to 3A showed one up-regulated (photosystem II reaction center protein C) and one down regulated (conserved gene of unknown function) transcripts, during the hormone regulating pathway namely SAUR-like auxin-responsive protein family having 2 up-regulated and 7 down-regulated transcripts, phytochrome-associated protein showed 1 up-regulated and 9 down-regulated transcripts, whereas genes associated with the Leucine-rich repeat protein kinase family protein showed 7 up-regulated and 1 down-regulated transcript, meanwhile Auxin Resistant 2 has single up-regulated transcript in second developmental stage, although 3 were down-regulated at lateral growth stages (3A and 4A). In the present study, 489 secondary metabolic pathways related genes were identified during leaf growth, which mainly includes alkaloid (40), anthocyanins (21), Diterpenoid (144), Monoterpenoid (90) and Flavonoids (93). Quantitative real-time PCR was applied to validate 10 differentially expressed transcripts patterns from flower, leaf and fruit metabolic pathways at different growth stages. PMID:26824474
Morphology of P2X3-immunoreactive nerve endings in the rat laryngeal mucosa.
Takahashi, Natsumi; Nakamuta, Nobuaki; Yamamoto, Yoshio
2016-02-01
The morphological characteristics of P2X3-immunoreactive nerve endings in the laryngeal mucosa were herein examined using immunohistochemistry with confocal laser microscopy. Ramified intraepithelial nerve endings immunoreactive to P2X3 were distributed in the epiglottis and arytenoid region. The axon terminals of P2X3-immunoreactive ramified endings were beaded or flat in shape. These endings were also immunoreactive to P2X2 and not identical to the nerve endings immunoreactive to Na(+)-K(+)-ATPase α3-subunit, substance P (SP), and calcitonin gene-related peptide (CGRP). P2X3-immunoreactive axon terminals were also immunoreactive to vGLUT1, vGLUT2, and vGLUT3. In addition to ramified endings, P2X3-immunoreactive nerve endings were associated with α-gustducin-immunoreactive solitary chemosensory cells and/or SNAP25-immunoreactive neuroendocrine cells. Furthermore, P2X3-immunoreactive nerve endings were also observed in the taste bud-like chemosensory cell clusters of the stratified squamous epithelium covering epiglottic and arytenoid cartilage. The P2X3-immunoreactive nerve endings that associated with sensory and/or endocrine cells and chemosensory cell clusters were also immunoreactive to P2X2, vGLUT1, vGLUT2, and vGLUT3, but not to SP or CGRP. In conclusion, P2X3-immunoreactive nerve endings may be classified into two types, i.e., intraepithelial ramified nerve endings and nerve endings associated with chemosensory cells and neuroendocrine cells.
Muscarinic acetylcholine receptor expression in aganglionic bowel.
Oue, T; Yoneda, A; Shima, H; Puri, P
2000-01-01
In Hirschsprung's disease (HD) there exists an overabundance of acetylcholine (ACh), which in turn stimulates excessive production of the enzyme acetylcholinesterase. Muscarinic ACh receptors (mAChRs) play an important role in smooth-muscle contraction. Recent studies have indicated five different subtypes of mAChRs encoded by five different genes, ml to m5. The purpose of this study was to investigate the expression of each mAChR subtype in aganglionic (AG) colon to further understand the pathophysiology of HD. Entire colon resected at the time of pull-through operation for HD was obtained from 14 patients. Specimens obtained at autopsy from 8 age-matched patients without gastrointestinal disease acted as controls. Frozen sections were used for indirect immunohistochemistry as well as in-situ hybridization. Immunohistochemistry was performed using specific antiserum against each mAChR subtype and in-situ hybridization was performed using specific oligonucleotide probes against ml to m5 subtypes. Messenger RNA (mRNA) was extracted from normoganglionic (NG) and AG bowel of HD patients and normal control bowel. Reverse transcription-polymerase chain reaction was performed to evaluate mRNA levels of each mAChR subtype. To adjust the levels of mRNA expression, a housekeeping gene G3PDH, known to be expressed normally, was used as an internal control. Strong m2 and m3 immunoreactivity was observed in the mucosal layer, smooth-muscle layers, and myenteric plexus of NG bowel, whereas ml immunoreactivity was only detected in the mucosal layer. The most striking finding was the abundance of m3-immunoreactive fibers in muscle layers of NG bowel while there was a total lack of m3 fibers in smooth-muscle of AG bowel. Intense mRNA signals encoding m2 and m3 and to a lesser degree ml were detected in NG bowel, and these signals were weak in AG bowel. Immunoreactivity and mRNA expression of m4 and m5 was not detected in NG or AG bowel. The lack of m3-immunoreactive fibers in the smooth-muscle layers of AG bowel and decreased m2 and m3 mRNA expression in AG bowel may be responsible for the motility dysfunction in the aganglionic segment.
Röhrich, J; Zörntlein, S; Becker, J; Urban, R
2010-04-01
The Rapid Stat assay, a point-of-collection drug-testing device for detection of amphetamines, cannabinoids, cocaine, opiates, methadone, and benzodiazepines in oral fluid, was evaluated for cannabis and amphetamine-type stimulants. The Rapid Stat tests (n = 134) were applied by police officers in routine traffic checks. Oral fluid and blood samples were analyzed using gas chromatography-mass spectrometry (GC-MS) for Delta(9)-tetrahydrocannabinol, amphetamine, methamphetamine, methylenedioxymethamphetamine, methylenedioxyethylamphetamine, and methylenedioxyamphetamine. The comparison of GC-MS analysis of oral fluid with the Rapid Stat results for cannabis showed a sensitivity of 85%, a specificity of 87%, and a total confirmation rate of 87%. When compared with serum, the sensitivity of the cannabis assay decreased to 71%, the specificity to 60%, and the total confirmation rate to 66%. These findings were possibly caused by an incorrect reading of the THC test results. Comparison of the Rapid Stat amphetamine assay with GC-MS in oral fluid showed a sensitivity of 94%, a specificity of 97%, and a total confirmation rate of 97%. Compared with serum, a sensitivity of 100%, a specificity of 90%, and a total confirmation rate of 92% was found. The amphetamine assay must, therefore, be regarded as satisfactory.
Pathology of deaths associated with "ecstasy" and "eve" misuse.
Milroy, C M; Clark, J C; Forrest, A R
1996-02-01
To study the postmortem pathology associated with ring substituted amphetamine (amphetamine derivatives) misuse. The postmortem findings in deaths associated with the ring substituted amphetamines 3,4-methylenedioxymethyl-amphetamine (MDMA, ecstasy) and 3,4-methylenedioxyethylamphetamine (MDEA, eve) were studied in seven young white men aged between 20 and 25 years. Striking changes were identified in the liver, which varied from foci of individual cell necrosis to centrilobular necrosis. In one case there was massive hepatic necrosis. Changes consistent with catecholamine induced myocardial damage were seen in five cases. In the brain perivascular haemorrhagic and hypoxic changes were identified in four cases. Overall, the changes in four cases were the same as those reported in heart stroke, although only two cases had a documented history of hyperthermia. Of these four cases, all had changes in their liver, three had changes in their brains, and three in their heart. Of the other three cases, one man died of fulminant liver failure, one of water intoxication and one probably from a cardiac arrhythmia associated with myocardial fibrosis. These data suggest that there is more than one mechanism of damage in ring substituted amphetamine misuse, injury being caused by hyperthermia in some cases, but with ring substituted amphetamines also possibly having a toxic effect on the liver and other organs in the absence of hyperthermia.
Hawken, Emily R; Beninger, Richard J
2014-05-01
Amphetamine enhances dopamine (DA) transmission and induces psychotic states or exacerbates psychosis in at-risk individuals. Amphetamine sensitization of the DA system has been proposed as a rodent model of schizophrenia-like symptoms. In humans, excessive nonphysiologic drinking or primary polydipsia is significantly associated with a diagnosis of schizophrenia. In rodents, nonphysiologic drinking can be induced by intermittent presentation of food in the presence of a drinking spout to a hungry animal; this phenomenon is termed, "schedule-induced polydipsia" (SIP). This study aims to determine the effects of amphetamine sensitization on SIP. We injected rats with amphetamine (1.5 mg/kg) daily for 5 days. Following 4 weeks of withdrawal, animals were food restricted and exposed to the SIP protocol (noncontingent fixed-time 1-min food schedule) for daily 2-h sessions for 24 days. Results showed that previously amphetamine-injected animals drank more in the SIP protocol and drank more than controls when the intermittent food presentation schedule was removed. These findings suggest that hyperdopaminergia associated with schizophrenia may contribute to the development of polydipsia in this population. Whether animals that develop SIP have DA dysfunction or aberrant activity of other circuits that modulate DA activity has yet to be clearly defined.
Catecholaminergic consolidation of motor cortical neuroplasticity in humans.
Nitsche, Michael A; Grundey, Jessica; Liebetanz, David; Lang, Nicolas; Tergau, Frithjof; Paulus, Walter
2004-11-01
Amphetamine, a catecholaminergic re-uptake-blocker, is able to improve neuroplastic mechanisms in humans. However, so far not much is known about the underlying physiological mechanisms. Here, we study the impact of amphetamine on NMDA receptor-dependent long-lasting excitability modifications in the human motor cortex elicited by weak transcranial direct current stimulation (tDCS). Amphetamine significantly enhanced and prolonged increases in anodal, tDCS-induced, long-lasting excitability. Under amphetamine premedication, anodal tDCS resulted in an enhancement of excitability which lasted until the morning after tDCS, compared to approximately 1 h in the placebo condition. Prolongation of the excitability enhancement was most pronounced for long-term effects; the duration of short-term excitability enhancement was only slightly increased. Since the additional application of the NMDA receptor antagonist dextromethorphane blocked any enhancement of tDCS-driven excitability under amphetamine, we conclude that amphetamine consolidates the tDCS-induced neuroplastic effects, but does not initiate them. The fact that propanolol, a beta-adrenergic antagonist, diminished the duration of the tDCS-generated after-effects suggests that adrenergic receptors play a certain role in the consolidation of NMDA receptor-dependent motor cortical excitability modifications in humans. This result may enable researchers to optimize neuroplastic processes in the human brain on the rational basis of purpose-designed pharmacological interventions.
Thompson, Christopher K.; Schwabe, Fabian; Schoof, Alexander; Mendoza, Ezequiel; Gampe, Jutta; Rochefort, Christelle; Scharff, Constance
2013-01-01
FOXP2 is a transcription factor functionally relevant for learned vocalizations in humans and songbirds. In songbirds, FoxP2 mRNA expression in the medium spiny neurons of the basal ganglia song nucleus Area X is developmentally regulated and varies with singing conditions in different social contexts. How individual neurons in Area X change FoxP2 expression across development and in social contexts is not known, however. Here we address this critical gap in our understanding of FoxP2 as a link between neuronal networks and behavior. We used a statistically unbiased analysis of FoxP2-immunoreactivity (FoxP2-IR) on a neuron-by-neuron basis and found a bimodal distribution of FoxP2-IR neurons in Area X: weakly-stained and intensely-stained. The density of intensely-stained FoxP2-IR neurons was 10 times higher in juveniles than in adults, exponentially decreased with age, and was negatively correlated with adult song stability. Three-week old neurons labeled with BrdU were more than five times as likely to be intensely-stained than weakly-stained. The density of FoxP2-IR putative migratory neurons with fusiform-shaped nuclei substantially decreased as birds aged. The density of intensely-stained FoxP2-IR neurons was not affected by singing whereas the density of weakly-stained FoxP2-IR neurons was. Together, these data indicate that young Area X medium spiny neurons express FoxP2 at high levels and decrease expression as they become integrated into existing neural circuits. Once integrated, levels of FoxP2 expression correlate with singing behavior. Together, these findings raise the possibility that FoxP2 levels may orchestrate song learning and song stereotypy in adults by a common mechanism. PMID:23450800
Thompson, Christopher K; Schwabe, Fabian; Schoof, Alexander; Mendoza, Ezequiel; Gampe, Jutta; Rochefort, Christelle; Scharff, Constance
2013-01-01
FOXP2 is a transcription factor functionally relevant for learned vocalizations in humans and songbirds. In songbirds, FoxP2 mRNA expression in the medium spiny neurons of the basal ganglia song nucleus Area X is developmentally regulated and varies with singing conditions in different social contexts. How individual neurons in Area X change FoxP2 expression across development and in social contexts is not known, however. Here we address this critical gap in our understanding of FoxP2 as a link between neuronal networks and behavior. We used a statistically unbiased analysis of FoxP2-immunoreactivity (FoxP2-IR) on a neuron-by-neuron basis and found a bimodal distribution of FoxP2-IR neurons in Area X: weakly-stained and intensely-stained. The density of intensely-stained FoxP2-IR neurons was 10 times higher in juveniles than in adults, exponentially decreased with age, and was negatively correlated with adult song stability. Three-week old neurons labeled with BrdU were more than five times as likely to be intensely-stained than weakly-stained. The density of FoxP2-IR putative migratory neurons with fusiform-shaped nuclei substantially decreased as birds aged. The density of intensely-stained FoxP2-IR neurons was not affected by singing whereas the density of weakly-stained FoxP2-IR neurons was. Together, these data indicate that young Area X medium spiny neurons express FoxP2 at high levels and decrease expression as they become integrated into existing neural circuits. Once integrated, levels of FoxP2 expression correlate with singing behavior. Together, these findings raise the possibility that FoxP2 levels may orchestrate song learning and song stereotypy in adults by a common mechanism.
Bochorishvili, Genrieta; Stornetta, Ruth L.; Coates, Melissa B.; Guyenet, Patrice G.
2014-01-01
The retrotrapezoid nucleus (RTN) contains CO2-responsive neurons that regulate breathing frequency and amplitude. These neurons (RTN-Phox2b neurons) contain the transcription factor Phox2b, vesicular glutamate transporter 2 (VGLUT2) mRNA, and a subset contains preprogalanin mRNA. We wished to determine whether the terminals of RTN-Phox2b neurons contain galanin and VGLUT2 proteins, to identify the specific projections of the galaninergic subset, to test whether RTN-Phox2b neurons contact neurons in the pre-Bötzinger complex, and to identify the ultrastructure of these synapses. The axonal projections of RTN-Phox2b neurons were traced by using biotinylated dextran amine (BDA), and many BDA-ir boutons were found to contain galanin immunoreactivity. RTN galaninergic neurons had ipsilateral projections that were identical with those of this nucleus at large: the ventral respiratory column, the caudolateral nucleus of the solitary tract, and the pontine Köliker-Fuse, intertrigeminal region, and lateral parabrachial nucleus. For ultrastructural studies, RTN-Phox2b neurons (galaninergic and others) were transfected with a lentiviral vector that expresses mCherry almost exclusively in Phox2b-ir neurons. After spinal cord injections of a catecholamine neuron-selective toxin, there was a depletion of C1 neurons in the RTN area; thus it was determined that the mCherry-positive terminals located in the pre-Bötzinger complex originated almost exclusively from the RTN-Phox2b (non-C1) neurons. These terminals were generally VGLUT2-immunoreactive and formed numerous close appositions with neurokinin-1 receptor-ir pre-Bötzinger complex neurons. Their boutons (n = 48) formed asymmetric synapses filled with small clear vesicles. In summary, RTN-Phox2b neurons, including the galaninergic subset, selectively innervate the respiratory pattern generator plus a portion of the dorsolateral pons. RTN-Phox2b neurons establish classic excitatory glutamatergic synapses with pre-Bötzinger complex neurons presumed to generate the respiratory rhythm. PMID:21935944
Martin, T R; Mathison, J C; Tobias, P S; Letúrcq, D J; Moriarty, A M; Maunder, R J; Ulevitch, R J
1992-01-01
A plasma lipopolysaccharide (LPS)-binding protein (LBP) has been shown to regulate the response of rabbit peritoneal macrophages and human blood monocytes to endotoxin (LPS). We investigated whether LBP is present in lung fluids and the effects of LBP on the response of lung macrophages to LPS. Immunoreactive LBP was detectable in the lavage fluids of patients with the adult respiratory distress syndrome by immunoprecipitation followed by Western blotting, and also by specific immunoassay. In rabbits, the LBP appeared to originate outside of the lungs, inasmuch as mRNA transcripts for LBP were identified in total cellular RNA from liver, but not from lung homogenates or alveolar macrophages. Purified LBP enhanced the response of human and rabbit alveolar macrophages to both smooth form LPS (Escherichia coli O111B:4) and rough form LPS (Salmonella minnesota Re595). In the presence of LBP and LPS, the onset of tumor necrosis factor-alpha (TNF alpha) production occurred earlier and at an LPS threshold dose that was as much as 1,000-fold lower for both types of LPS. In rabbit alveolar macrophages treated with LBP and LPS, TNF alpha mRNA appeared earlier, reached higher levels, and had a prolonged half-life as compared with LPS treatment alone. Neither LPS nor LPS and LBP affected pHi or [Cai++] in alveolar macrophages. Specific monoclonal antibodies to CD14, a receptor that binds LPS/LBP complexes, inhibited TNF alpha production by human alveolar macrophages stimulated with LPS alone or with LPS/LBP complexes, indicating the importance of CD14 in mediating the effects of LPS on alveolar macrophages. Thus, immunoreactive LBP accumulates in lung lavage fluids in patients with lung injury and enhances LPS-stimulated TNF alpha gene expression in alveolar macrophages by a pathway that depends on the CD14 receptor. LBP may play an important role in augmenting TNF alpha expression by alveolar macrophages within the lungs. Images PMID:1281827
Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.
Ackermann, Amanda M; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H
2016-03-01
Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. We sorted human α- and β-cells and performed the "Assay for Transposase-Accessible Chromatin with high throughput sequencing" (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The "group specific protein" (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion.
Effects of amphetamine on reactivity to emotional stimuli
Wardle, Margaret C.; de Wit, Harriet
2011-01-01
Rationale Most studies of the reinforcing effects of stimulants have focused on the drugs’ capacity to induce positive mood (i.e., euphoria). However, recent findings suggest drugs may also alter emotional reactivity to external stimuli, and that this may occur independently of direct effects on mood. Objectives We aimed to examine effects of d-amphetamine, a prototypic stimulant, on self-reported and psychophysiological reactivity to emotional stimuli as well as overall subjective mood. We predicted that amphetamine would enhance reactivity to pleasant stimuli, particularly, stimuli with social content and that these effects would be independent of the drug’s direct effects on mood. Methods Over three sessions, 36 healthy normal adults received placebo, d-amphetamine 10 and 20 mg under counterbalanced double-blind conditions. At each session, emotional reactivity to standardized positive, neutral, and negative pictures with and without social content was measured in self-reports and facial muscles sensitive to emotional state. Drug effects on cardiovascular variables and subjective mood were also measured. Results Amphetamine produced euphoria, feelings of drug effect, and increased blood pressure. Most notably, amphetamine enhanced self-reported positive reactions to all pictures and psychophysiological reactions to positive pictures. These effects were not significantly related to drug-induced mood changes. Contrary to our hypothesis, effects of amphetamine on emotional reactivity were not moderated by social content. Conclusions This study demonstrates a previously unexamined and potentially reinforcing effect of stimulant drugs in humans, distinct from more typically measured euphorigenic effects, and suggests new areas of research in stimulant abuse risk and adaptations occurring during drug dependence. PMID:21947316
Degenhardt, Louisa; Coffey, Carolyn; Moran, Paul; Carlin, John B; Patton, George C
2007-07-01
Previous work has highlighted the adverse consequences of early-onset cannabis use. However, little is known about the predictors and effects of early-onset amphetamine use. We set out to examine these issues using a representative cohort of young people followed-up over 11 years in Victoria, Australia. A stratified, random sample of 1943 adolescents was recruited from secondary schools across Victoria at age 14-15 years. This cohort was interviewed on eight occasions until the age of 24-25 years (78% follow-up at that age). Cross-sectional associations were assessed using logistic regression with allowance for repeated measures. Both proportional hazards models and logistic regression models were used to assess prospective associations. Approximately 7% of the sample had used amphetamines by the age of 17 years. Amphetamine use by this age was associated with poorer mental health and other drug use. The incidence of amphetamine use during the teenage years was predicted by heavier drug use and by mental health problems. By young adulthood (age 24-25 years), adolescent amphetamine users were more likely to meet criteria for dependence upon a range of drugs, to have greater psychological morbidity and to have some limitations in educational attainment. Most of these associations were not sustained after adjustment for early-onset cannabis use. Young people in Australia who begin amphetamine use by age 17 years are at increased risk for a range of mental health, substance use and psychosocial problems in young adulthood. However, these problems are largely accounted for by their even earlier-onset cannabis use.
Sweet taste liking is associated with subjective response to amphetamine in women but not men.
Weafer, Jessica; Lyon, Nicholas; Hedeker, Donald; de Wit, Harriet
2017-11-01
Preference for sweet taste rewards has been linked to the propensity for drug use in both animals and humans. Here, we tested the association between sweet taste liking and sensitivity to amphetamine reward in healthy adults. We hypothesized that sweet likers would report greater euphoria and stimulation following D-amphetamine (20 mg) compared to sweet dislikers. Men (n = 36) and women (n = 34) completed a sweet taste test in which they rated their liking of various concentrations of sucrose and filtered water (0.05, 0.10, 0.21, 0.42, and 0.83 M). Participants who preferred the highest concentration were classified as "sweet likers." All others were classified as "sweet dislikers." They then completed four sessions in which they received D-amphetamine (20 mg) and placebo in alternating order, providing self-report measures of euphoria and stimulation on the Addiction Research Center Inventory (ARCI) at regular intervals. We conducted linear mixed effects models to examine relationships between sweet liking and drug-induced euphoria and stimulation. Sweet likers reported significantly greater amphetamine-induced euphoria than did sweet dislikers among women. By contrast, sweet liking was not associated with amphetamine response in men. No associations with stimulation were observed. The association between sweet preference and amphetamine response in women is consistent with animal studies linking sweet taste preference and drug reward and also fits with observations that individuals who use drugs show a preference for sweet tastes. Whether the sex difference is related to circulating hormones, or other variables, remains to be determined.
Ferris, Mark J; Calipari, Erin S; Rose, Jamie H; Siciliano, Cody A; Sun, Haiguo; Chen, Rong; Jones, Sara R
2015-07-01
There are ∼ 1.6 million people who meet the criteria for cocaine addiction in the United States, and there are currently no FDA-approved pharmacotherapies. Amphetamine-based dopamine-releasing drugs have shown efficacy in reducing the motivation to self-administer cocaine and reducing intake in animals and humans. It is hypothesized that amphetamine acts as a replacement therapy for cocaine through elevation of extracellular dopamine levels. Using voltammetry in brain slices, we tested the ability of a single amphetamine infusion in vivo to modulate dopamine release, uptake kinetics, and cocaine potency in cocaine-naive animals and after a history of cocaine self-administration (1.5 mg/kg/infusion, fixed-ratio 1, 40 injections/day × 5 days). Dopamine kinetics were measured 1 and 24 h after amphetamine infusion (0.56 mg/kg, i.v.). Following cocaine self-administration, dopamine release, maximal rate of uptake (Vmax), and membrane-associated dopamine transporter (DAT) levels were reduced, and the DAT was less sensitive to cocaine. A single amphetamine infusion reduced Vmax and membrane DAT levels in cocaine-naive animals, but fully restored all aspects of dopamine terminal function in cocaine self-administering animals. Here, for the first time, we demonstrate pharmacologically induced, immediate rescue of deficits in dopamine nerve-terminal function in animals with a history of high-dose cocaine self-administration. This observation supports the notion that the DAT expression and function can be modulated on a rapid timescale and also suggests that the pharmacotherapeutic actions of amphetamine for cocaine addiction go beyond that of replacement therapy.
Modafinil evokes striatal [(3)H]dopamine release and alters the subjective properties of stimulants.
Dopheide, Marsha M; Morgan, Russell E; Rodvelt, Kelli R; Schachtman, Todd R; Miller, Dennis K
2007-07-30
Modafinil is a mild psychostimulant used for the treatment of sleep and arousal-related disorders, and has been considered a pharmacotherapy for cocaine and amphetamine dependence; however, modafinil's mechanism of action is largely unclear. The present study investigated modafinil using drug discrimination and slice superfusion techniques. Rats were trained to discriminate cocaine (1.6 or 5 mg/kg) or amphetamine (0.3 mg/kg) from saline injection for food reinforcement. Modafinil (64-128 mg/kg) substituted partially for both cocaine doses and amphetamine. Pretreatment with a lower modafinil dose (32 mg/kg) augmented the discriminative stimulus properties of cocaine (1.6 mg/kg dose group) and amphetamine. In neurochemical experiments, modafinil (100-300 microM) evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine in a concentration-dependent manner; however, modafinil was less potent and efficacious than amphetamine and nicotine. The dopamine transporter inhibitor nomifensine (10 microM) blocked modafinil-evoked [(3)H]overflow, and concentrations of modafinil (<100 microM) that did not have intrinsic activity attenuated amphetamine (1 and 3 microM)-evoked [(3)H]overflow. Modafinil-evoked [(3)H]overflow was not altered by the nicotinic acetylcholine receptor antagonist mecamylamine, and modafinil did not alter nicotine-evoked [(3)H]overflow, indicating that nicotinic acetylcholine receptors likely are not important for modafinil's mechanism of action. The present results indicate that modafinil evokes dopamine release from striatal neurons and is a psychostimulant that is pharmacologically similar to, but much less potent and efficacious than, amphetamine.
Amphetamine reward in food restricted mice lacking the melanin-concentrating hormone receptor-1.
Geuzaine, Annabelle; Tyhon, Amélie; Grisar, Thierry; Brabant, Christian; Lakaye, Bernard; Tirelli, Ezio
2014-04-01
Chronic food restriction (FR) and maintenance of low body weight have long been known to increase the rewarding and motor-activating effects of addictive drugs. However, the neurobiological mechanisms through which FR potentiates drug reward remain largely unknown. Melanin-concentrating hormone (MCH) signaling could be one of these mechanisms since this peptide is involved in energy homeostasis and modulates mesolimbic dopaminergic transmission. The purpose of the present study was to test this hypothesis by investigating the impact of FR on amphetamine reward in wild-type (WT) and knockout mice lacking the melanin-concentrating hormone receptor-1 (MCHR1-KO). The rewarding effects of amphetamine (0.75-2.25 mg/kg, i.p.) were measured with the conditioned place preference (CPP) technique. The food of the mice was restricted to maintain their body weight at 80-85% of their free-feeding (FF) weight throughout the entire CPP experiment. Locomotor activity of the animals was recorded during the conditioning sessions. Our results show that locomotion of all the food-restricted mice treated with saline or amphetamine increased over the sessions whatever the genotype. On the place preference test, the amplitude of CPP induced by 0.75 mg/kg amphetamine was higher in food restricted WT mice than in free-fed WT mice and food restricted MCHR1-KO mice. However, FR did not affect amphetamine reward in MCHR1-KO mice. The present results indicate that MCH signaling could be involved in the ability of FR to increase amphetamine-induced CPP. Copyright © 2014 Elsevier B.V. All rights reserved.
Prenatal and early postnatal dietary sodium restriction sensitizes the adult rat to amphetamines.
McBride, Shawna M; Culver, Bruce; Flynn, Francis W
2006-10-01
Acute sodium deficiency sensitizes adult rats to psychomotor effects of amphetamine. This study determined whether prenatal and early life manipulation of dietary sodium sensitized adult offspring to psychomotor effects of amphetamine (1 or 3 mg/kg ip) in two strains of rats. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) dams were fed chow containing low NaCl (0.12%; LN), normal NaCl (1%; NN), or high NaCl (4%; HN) throughout breeding, gestation, and lactation. Male offspring were maintained on the test diet for an additional 3 wk postweaning and then fed standard chow thereafter until testing began. Overall, blood pressure (BP), total fluid intake, salt preference, and adrenal gland weight were greater in SHR than in WKY. WKY LN offspring had greater water intake and adrenal gland weight than did WKY NN and HN offspring, whereas WKY HN offspring had increased BP, salt intake, and salt preference compared with other WKY offspring. SHR HN offspring also had increased BP compared with other SHR offspring; all other measures were similar for SHR offspring. The low-dose amphetamine increased locomotor and stereotypical behavior compared with baseline and saline injection in both WKY and SHR offspring. Dietary sodium history affected the rats' psychomotor response to the higher dose of amphetamine. Injections of 3 mg/kg amphetamine in both strains produced significantly more behavioral activity in the LN offspring than in NN and HN offspring. These results show that early life experience with low-sodium diets produce long-term changes in adult rats' behavioral responses to amphetamine.
Gagliano, Humberto; Ortega-Sanchez, Juan Antonio; Nadal, Roser; Armario, Antonio
2017-10-01
We recently reported that simultaneous exposure to amphetamine and various stressors resulted in reduced hypothalamic-pituitary-adrenal (HPA) and glycemic responses to the stressors. Since this is a new and relevant phenomenon, we wanted to further explore this interaction. This study aims (i) to characterize the effect of various doses of amphetamine on the physiological response to a predominantly emotional stressor (forced swim) when the drug was given immediately before stress; (ii) to study if an interaction appears when the drug was given 30 min or 7 days before swim; and (iii) to know whether cocaine causes similar effects when given just before stress. Adult male rats were used and plasma levels of ACTH, corticosterone, and glucose were the outcomes. Amphetamine caused a dose-dependent activation of the HPA axis, but all doses reduced HPA and glycemic responses to swim when given just before the stressor. Importantly, during the post-swim period, the stressor potently inhibited the ACTH response to amphetamine, demonstrating mutual inhibition between the two stimuli. The highest dose of amphetamine also reduced the response to swim when given 30 min before stress, whereas it caused HPA sensitization when given 7 days before. Cocaine also reduced stress-induced HPA activation when given just before swim. The present results demonstrate a negative synergy between psychostimulants (amphetamine and cocaine) and stress regarding HPA and glucose responses when rats were exposed simultaneously to both stimuli. The inhibitory effect of amphetamine is also observed when given shortly before stress, but not some days before.
Cannabidiol effects in the prepulse inhibition disruption induced by amphetamine.
Pedrazzi, J F C; Issy, A C; Gomes, F V; Guimarães, F S; Del-Bel, E A
2015-08-01
The information processing appears to be deficient in schizophrenia. Prepulse inhibition (PPI), which measures the inhibition of a motor response by a weak sensory event, is considered particularly useful to understand the biology of information processing in schizophrenia patients. Drugs that facilitate dopaminergic neurotransmission such as amphetamine induce PPI disruption in human and rodents. Clinical and neurobiological findings suggest that the endocannabinoid system and cannabinoids may be implicated in the pathophysiology and treatment of schizophrenia. Cannabidiol (CBD), a non-psychotomimetic constituent of the Cannabis sativa plant, has also been reported to have potential as an antipsychotic. Our aim was to investigate if CBD pretreatment was able to prevent PPI disruption induced by amphetamine. Since one possible mechanism of CBD action is the facilitation of endocannabinoid-mediated neurotransmission through anandamide, we tested the effects of an anandamide hydrolysis inhibitor (URB597) in the amphetamine-induced PPI disruption. Male Swiss mice were treated with CBD systemic or intra-accumbens, or URB597 (systemic) prior to amphetamine and were exposed to PPI test. Amphetamine (10 mg/kg) disrupted PPI while CBD (15-60 mg/kg) or URB597 (0.1-1 mg/kg) administered alone had no effect. Pretreatment with CBD attenuated the amphetamine-disruptive effects on PPI test after systemic or intra-accumbens administration. Similar effects were also found with the inhibitor of anandamide hydrolysis. These results corroborate findings indicating that CBD induces antipsychotic-like effects. In addition, they pointed to the nucleus accumbens as a possible site of these effects. The increase of anandamide availability may be enrolled in the CBD effects.
Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L
2017-01-01
Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI: http://dx.doi.org/10.7554/eLife.23326.001 PMID:28425915
Joseph, Shai R; Pálfy, Máté; Hilbert, Lennart; Kumar, Mukesh; Karschau, Jens; Zaburdaev, Vasily; Shevchenko, Andrej; Vastenhouw, Nadine L
2017-04-20
Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo.
Dalmau, A; Bergman, B; Brismar, B
1999-11-01
We have studied the occurrence of dual diagnoses (psychoses as well as abuse of either amphetamine, cannabis or opiates) during a 15-year period, among patients treated at Huddinge Hospital, Stockholm, Sweden. The purpose of the study is to evaluate if the different drugs were coupled to different rates of psychiatric co-morbidity. During the period in question, 461, 425 and 371 different patients respectively had been admitted at least once due to dependency on amphetamine, cannabis and opiates. Approximately 30% of the patients with a pure abuse of amphetamine or cannabis and less than 6% of the opiate abusers had been diagnosed at least once with any of the psychoses studied. Comparing the frequency of psychoses among mixed and pure abusers of illegal drugs, with and without a concomitant abuse of alcohol, we found that the co-morbidity rate for mixed opiate abusers increased significantly from 7.2 to 20.2% when alcohol abuse was also present. For abusers of amphetamine and cannabis (both pure and mixed), no differences in co-morbidity rates were seen when an abuse of alcohol was added to that of the drugs. It is difficult to find an explanation for the significant difference between the co-morbidity of pure abuse of amphetamine or cannabis on the one hand and opiates on the other. In conclusion, our findings show that the distribution of psychotic illness is high among abusers of amphetamine and cannabis, in contrast to the generally lower co-morbidity among abusers of opiates. Although these findings are consistent with earlier studies that have shown a propensity for developing psychoses among abusers of amphetamine and cannabis, one should bear in mind that this study is based on inpatients, and is not necessarily representative for all abusers of the drugs in question.
Dias da Silva, Diana; Carmo, Helena; Lynch, Adam; Silva, Elisabete
2013-12-01
The liver is a vulnerable target for amphetamine toxicity, but the mechanisms involved in the drug's hepatotoxicity remain poorly understood. The purpose of the current research was to characterize the mode of death elicited by four amphetamines and to evaluate whether their combination triggered similar mechanisms in immortalized human HepG2 cells. The obtained data revealed a time- and temperature-dependent mortality of HepG2 cells exposed to 3,4-methylenedioxymethamphetamine (MDMA, ecstasy; 1.3 mM), methamphetamine (3 mM), 4-methylthioamphetamine (0.5 mM) and D-amphetamine (1.7 mM), alone or combined (1.6 mM mixture). At physiological temperature (37 °C), 24-h exposures caused HepG2 death preferentially by apoptosis, while a rise to 40.5 °C favoured necrosis. ATP levels remained unaltered when the drugs where tested at normothermia, but incubation at 40.5 °C provoked marked ATP depletion for all treatments. Further investigations on the apoptotic mechanisms triggered by the drugs (alone or combined) showed a decline in BCL-2 and BCL- XL mRNA levels, with concurrent upregulation of BAX, BIM, PUMA and BID genes. Elevation of Bax, cleaved Bid, Puma, Bak and Bim protein levels was also seen. To the best of our knowledge, Puma, Bim and Bak have never been linked with the toxicity induced by amphetamines. Time-dependent caspase-3/-7 activation, but not mitochondrial membrane potential (∆ψm) disruption, also mediated amphetamine-induced apoptosis. The cell dismantling was confirmed by poly(ADP-ribose)polymerase proteolysis. Overall, for all evaluated parameters, no relevant differences were detected between individual amphetamines and the mixture (all tested at equieffective cytotoxic concentrations), suggesting that the mode of action of the amphetamines in combination does not deviate from the mode of action of the drugs individually, when eliciting HepG2 cell death.
Wolf, William A.; Martin, Jody L.; Kartje, Gwendolyn L.; Farrer, Robert G.
2014-01-01
Previously we have shown that addition of amphetamine to physical therapy results in enhanced motor improvement following stroke in rats, which was associated with the formation of new motor pathways from cortical projection neurons of the contralesional cortex. It is unclear what mechanisms are involved, but amphetamine is known to induce the neuronal release of catecholamines as well as upregulate fibroblast growth factor-2 (FGF-2) expression in the brain. Since FGF-2 has been widely documented to stimulate neurite outgrowth, the present studies were undertaken to provide evidence for FGF-2 as a neurobiological mechanism underlying amphetamine-induced neuroplasticity. In the present study rats that received amphetamine plus physical therapy following permanent middle cerebral artery occlusion exhibited significantly greater motor improvement over animals receiving physical therapy alone. Amphetamine plus physical therapy also significantly increased the number of FGF-2 expressing pyramidal neurons of the contralesional cortex at 2 weeks post-stroke and resulted in significant axonal outgrowth from these neurons at 8 weeks post-stroke. Since amphetamine is a known releaser of norepinephrine, in vitro analyses focused on whether noradrenergic stimulation could lead to neurite outgrowth in a manner requiring FGF-2 activity. Primary cortical neurons did not respond to direct stimulation by norepinephrine or amphetamine with increased neurite outgrowth. However, conditioned media from astrocytes exposed to norepinephrine or isoproterenol (a beta adrenergic agonist) significantly increased neurite outgrowth when applied to neuronal cultures. Adrenergic agonists also upregulated FGF-2 expression in astrocytes. Pharmacological analysis indicated that beta receptors and alpha1, but not alpha2, receptors were involved in both effects. Antibody neutralization studies demonstrated that FGF-2 was a critical contributor to neurite outgrowth induced by astrocyte-conditioned media. Taken together the present results suggest that noradrenergic activation, when combined with physical therapy, can improve motor recovery following ischemic damage by stimulating the formation of new neural pathways in an FGF-2-dependent manner. PMID:25229819
Amelio, Antonio L; Caputi, Massimo; Conkright, Michael D
2009-01-01
The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1–MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity. PMID:19644446
Post-transcriptional regulation tends to attenuate the mRNA noise and to increase the mRNA gain
NASA Astrophysics Data System (ADS)
Shi, Changhong; Wang, Shuqiang; Zhou, Tianshou; Jiang, Yiguo
2015-10-01
Post-transcriptional regulation is ubiquitous in prokaryotic and eukaryotic cells, but how it impacts gene expression remains to be fully explored. Here, we analyze a simple gene model in which we assume that mRNAs are produced in a constitutive manner but are regulated post-transcriptionally by a decapping enzyme that switches between the active state and the inactive state. We derive the analytical mRNA distribution governed by a chemical master equation, which can be well used to analyze the mechanism of how post-transcription regulation influences the mRNA expression level including the mRNA noise. We demonstrate that the mean mRNA level in the stochastic case is always higher than that in the deterministic case due to the stochastic effect of the enzyme, but the size of the increased part depends mainly on the switching rates between two enzyme states. More interesting is that we find that in contrast to transcriptional regulation, post-transcriptional regulation tends to attenuate noise in mRNA. Our results provide insight into the role of post-transcriptional regulation in controlling the transcriptional noise.
NTP-CERHR monograph on the potential human reproductive and developmental effects of amphetamines.
2005-07-01
The National Toxicology Program (NTP) Center for the Evaluation of Risks to Human Reproduction (CERHR) conducted an evaluation of the potential for amphetamines to cause adverse effects on reproduction and development in humans. Amphetamines evaluated were D- and D,L-amphetamine and methamphetamine. Amphetamine is approved by the U.S. Food and Drug Administration for the treatment of attention deficit hyperactivity disorder (ADHD) in persons over 3 years of age and narcolepsy; methamphetamine is approved for the treatment of ADHD in persons 6 years of age and older and for short-term treatment of obesity. Amphetamines were selected for evaluation because of 1) widespread usage in children, 2) availability of developmental studies in children and experimental animals, and 3) public concern about the effect of this stimulant on child development. The results of this evaluation on amphetamines are published in an NTP-CERHR monograph which includes: 1) the NTP Brief, 2) the Expert Panel Report on the Reproductive and Developmental Toxicity of Methylphenidate, and 3) public comments received on the Expert Panel Report. As stated in the NTP Brief, the NTP reached the following conclusions regarding the possible effects of exposure to methylphenidate on human development and reproduction. First, there is some concern for developmental effects, specifically for potential neurobehavioral alterations, from prenatal amphetamine exposure in humans both in therapeutic and non-therapeutic settings. After prenatal exposure to therapeutic doses of amphetamine, rat pups demonstrated neurobehavioral alterations. Data from human and animal studies were judged insufficient for an evaluation of the effect of amphetamine exposure on growth and other related developmental effects. Second, there is concern for methamphetamine-induced adverse developmental effects, specifically on growth and neurobehavioral development, in therapeutic and non-therapeutic settings. This conclusion is based on evidence from studies in experimental animals that prenatal and postnatal exposures to methamphetamine produce neurobehavioral alterations, small litter size, and low birth weight. Results from studies in humans suggest that methamphetamine may cause low birth weight and shortened gestation, but study confounders such as possible multiple drug usage prevent a definite conclusion. NTP-CERHR monographs are transmitted to federal and state agencies, interested parties, and the public and are available in electronic PDF format on the CERHR web site (http://cerhr.niehs.nih.gov) and in printed text or CD-ROM from the CERHR (National Institute of Environmental Health Sciences, P.O. Box 12233, MD EC-32, Research Triangle Park, NC; fax: 919-316-4511).
Yu, Ching-Han; Chu, Shu-Chen; Chen, Pei-Ni; Hsieh, Yih-Shou; Kuo, Dong-Yih
2017-06-01
Hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) have been documented to participate in amphetamine (AMPH)-induced appetite suppression. This study investigated whether ghrelin signalling is associated with changes in NPY/POMC-mediated appetite control. Rats were given AMPH daily for four days, and changes in food intake, body weight, plasma ghrelin, hypothalamic NPY, melanocortin 3 receptor (MC3R), ghrelin O-acyltransferase (GOAT), acyl ghrelin (AG) and ghrelin receptor (GHSR1a) were examined and compared. Food intake, body weight and NPY expression decreased, while MC3R expression increased and expressed reciprocally to NPY expression during AMPH treatment. Plasma ghrelin and hypothalamic AG/GOAT/GHSR1a expression decreased on Day 1 and Day 2, which was associated with the positive energy metabolism, and returned to normal levels on Day 3 and Day 4, which was associated with the negative energy metabolism; this expression pattern was similar to that of NPY. Infusion with a GHSR1a antagonist or an NPY antisense into the brain enhanced the decrease in NPY and AG/GOAT/GHSR1a expression and the increase in MC3R expression compared to the AMPH-treated group. Peripheral ghrelin and the central ghrelin system participated in the regulation in AMPH-induced appetite control. These results shed light on the involvement of ghrelin signalling in reciprocal regulation of NPY/POMC-mediated appetite control and may prove useful for the development of anti-obesity drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.
The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karen S. Browning; Marie Petrocek; Bonnie Bartel
2006-06-01
The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional genemore » expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.« less
... site Sitio para adolescentes Body Mind Sexual Health Food & Fitness Diseases & ... español Anfetaminas What It Is: Amphetamines are very addictive stimulants. They speed up functions in the brain and ...