Sample records for amphibian chytrid fungus

  1. Chytrid fungus parasitizing the wild amphibian Leptodactylus ocellatus (Anura: Leptodactylidae) in Argentina.

    PubMed

    Herrera, Raúl A; Steciow, Mónica M; Natale, Guillermo S

    2005-05-20

    The present contribution is the first report of parasitosis by a chytrid fungus in wild anuran amphibians in Argentina, as well as the first case of amphibian mortality documented to date in Argentina. We report the presence of the chytrid fungus in dead adult Leptodactylus ocellatus. It has been suggested that chytridiomycosis is the main cause of death in several amphibian populations worldwide. Our study demonstrates that chytridiomycosis afflicts L. ocellatus, a common widespread amphibian species, and is the first report of chytridiomycosis in the Argentinian lowlands. The occurrence at this latitude would indicate an extended distribution of this fungus in wildlife populations. It is also the first report of amphibian mortality due to chytrid fungus in our country. It is noteworthy that the site of collection is situated very close to sea level in a temperate climate zone and that this represents the southern most record for South American wild amphibians.

  2. The link between rapid enigmatic amphibian decline and the globally emerging chytrid fungus.

    PubMed

    Lötters, Stefan; Kielgast, Jos; Bielby, Jon; Schmidtlein, Sebastian; Bosch, Jaime; Veith, Michael; Walker, Susan F; Fisher, Matthew C; Rödder, Dennis

    2009-09-01

    Amphibians are globally declining and approximately one-third of all species are threatened with extinction. Some of the most severe declines have occurred suddenly and for unknown reasons in apparently pristine habitats. It has been hypothesized that these "rapid enigmatic declines" are the result of a panzootic of the disease chytridiomycosis caused by globally emerging amphibian chytrid fungus. In a Species Distribution Model, we identified the potential distribution of this pathogen. Areas and species from which rapid enigmatic decline are known significantly overlap with those of highest environmental suitability to the chytrid fungus. We confirm the plausibility of a link between rapid enigmatic decline in worldwide amphibian species and epizootic chytridiomycosis.

  3. Overview of chytrid emergence and impacts on amphibians

    PubMed Central

    2016-01-01

    Chytridiomycosis is an emerging infectious disease of amphibians that affects over 700 species on all continents where amphibians occur. The amphibian–chytridiomycosis system is complex, and the response of any amphibian species to chytrid depends on many aspects of the ecology and evolutionary history of the amphibian, the genotype and phenotype of the fungus, and how the biological and physical environment can mediate that interaction. Impacts of chytridiomycosis on amphibians are varied; some species have been driven extinct, populations of others have declined severely, whereas still others have not obviously declined. Understanding patterns and mechanisms of amphibian responses to chytrids is critical for conservation and management. Robust estimates of population numbers are needed to identify species at risk, prioritize taxa for conservation actions, design management strategies for managing populations and species, and to develop effective measures to reduce impacts of chytrids on amphibians. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080989

  4. Sodium chloride inhibits the growth and infective capacity of the amphibian chytrid fungus and increases host survival rates.

    PubMed

    Stockwell, Michelle Pirrie; Clulow, John; Mahony, Michael Joseph

    2012-01-01

    The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0-5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1-4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation.

  5. Sodium Chloride Inhibits the Growth and Infective Capacity of the Amphibian Chytrid Fungus and Increases Host Survival Rates

    PubMed Central

    Stockwell, Michelle Pirrie; Clulow, John; Mahony, Michael Joseph

    2012-01-01

    The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0–5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1–4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation. PMID:22590639

  6. Presence of the Amphibian Chytrid Fungus Batrachochytrium dendrobatidis in Native Amphibians Exported from Madagascar

    PubMed Central

    Kolby, Jonathan E.

    2014-01-01

    The emerging infectious disease chytridiomycosis is driven by the spread of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd), a highly virulent pathogen threatening global amphibian biodiversity. Although pandemic in distribution, previous intensive field surveys have failed to detect Bd in Madagascar, a biodiversity hotspot home to hundreds of endemic amphibian species. Due to the presence of Bd in nearby continental Africa and the ecological crisis that can be expected following establishment in Madagascar, enhanced surveillance is imperative. I sampled 565 amphibians commercially exported from Madagascar for the presence of Bd upon importation to the USA, both to assist early detection efforts and demonstrate the conservation potential of wildlife trade disease surveillance. Bd was detected in three animals via quantitative PCR: a single Heterixalus alboguttatus, Heterixalus betsileo, and Scaphiophryne spinosa. This is the first time Bd has been confirmed in amphibians from Madagascar and presents an urgent call to action. Our early identification of pathogen presence prior to widespread infection provides the necessary tools and encouragement to catalyze a swift, targeted response to isolate and eradicate Bd from Madagascar. If implemented before establishment occurs, an otherwise likely catastrophic decline in amphibian biodiversity may be prevented. PMID:24599336

  7. Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in native amphibians exported from Madagascar.

    PubMed

    Kolby, Jonathan E

    2014-01-01

    The emerging infectious disease chytridiomycosis is driven by the spread of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd), a highly virulent pathogen threatening global amphibian biodiversity. Although pandemic in distribution, previous intensive field surveys have failed to detect Bd in Madagascar, a biodiversity hotspot home to hundreds of endemic amphibian species. Due to the presence of Bd in nearby continental Africa and the ecological crisis that can be expected following establishment in Madagascar, enhanced surveillance is imperative. I sampled 565 amphibians commercially exported from Madagascar for the presence of Bd upon importation to the USA, both to assist early detection efforts and demonstrate the conservation potential of wildlife trade disease surveillance. Bd was detected in three animals via quantitative PCR: a single Heterixalus alboguttatus, Heterixalus betsileo, and Scaphiophryne spinosa. This is the first time Bd has been confirmed in amphibians from Madagascar and presents an urgent call to action. Our early identification of pathogen presence prior to widespread infection provides the necessary tools and encouragement to catalyze a swift, targeted response to isolate and eradicate Bd from Madagascar. If implemented before establishment occurs, an otherwise likely catastrophic decline in amphibian biodiversity may be prevented.

  8. First Evidence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Hong Kong Amphibian Trade

    PubMed Central

    Kolby, Jonathan E.; Smith, Kristine M.; Berger, Lee; Karesh, William B; Preston, Asa; Pessier, Allan P.; Skerratt, Lee F.

    2014-01-01

    The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd) and cloacal (ranavirus) swabs by quantitative PCR detected pathogen presence in 31/265 (11.7%) and in 105/185 (56.8%) of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong’s trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment. PMID:24599268

  9. Efficacy of SYBR 14/propidium iodide viability stain for the amphibian chytrid fungus Batrachochytrium dendrobatidis.

    PubMed

    Stockwell, M P; Clulow, J; Mahony, M J

    2010-01-25

    The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently described pathogen that has been implicated as a causal agent in the global decline in amphibians. Research into its biology and epidemiology has frequently involved in vitro experimentation. However, this research is currently limited by the inability to differentiate between viable and inviable zoospores. Stains are frequently used to determine cell viability, and this study tested a 2-colour fluorescence assay for the detection and quantification of viable B. dendrobatidis zoospores. The results show that the nucleic acid stains SYBR 14 and propidium iodide are effective in distinguishing live from dead zoospores, and a protocol has been optimized for their use. This viability assay provides an efficient and reliable tool that will have applications in B. dendrobatidis challenge and amphibian exposure experiments.

  10. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change.

    PubMed

    Rödder, Dennis; Kielgast, Jos; Lötters, Stefan

    2010-11-01

    Anthropogenic climate change poses a major threat to global biodiversity with a potential to alter biological interactions at all spatial scales. Amphibians are the most threatened vertebrates and have been subject to increasing conservation attention over the past decade. A particular concern is the pandemic emergence of the parasitic chytrid fungus Batrachochytrium dendrobatidis, which has been identified as the cause of extremely rapid large-scale declines and species extinctions. Experimental and observational studies have demonstrated that the host-pathogen system is strongly influenced by climatic parameters and thereby potentially affected by climate change. Herein we project a species distribution model of the pathogen onto future climatic scenarios generated by the IPCC to examine their potential implications on the pandemic. Results suggest that predicted anthropogenic climate change may reduce the geographic range of B. dendrobatidis and its potential influence on amphibian biodiversity.

  11. Terrestrial Dispersal and Potential Environmental Transmission of the Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis)

    PubMed Central

    Kolby, Jonathan E.; Ramirez, Sara D.; Berger, Lee; Richards-Hrdlicka, Kathryn L.; Jocque, Merlijn; Skerratt, Lee F.

    2015-01-01

    Dispersal and exposure to amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) is not confined to the aquatic habitat, but little is known about pathways that facilitate exposure to wild terrestrial amphibians that do not typically enter bodies of water. We explored the possible spread of Bd from an aquatic reservoir to terrestrial substrates by the emergence of recently metamorphosed infected amphibians and potential deposition of Bd-positive residue on riparian vegetation in Cusuco National Park, Honduras (CNP). Amphibians and their respective leaf perches were both sampled for Bd presence and the pathogen was detected on 76.1% (35/46) of leaves where a Bd-positive frog had rested. Although the viability of Bd detected on these leaves cannot be discerned from our quantitative PCR results, the cool air temperature, closed canopy, and high humidity of this cloud forest environment in CNP is expected to encourage pathogen persistence. High prevalence of infection (88.5%) detected in the recently metamorphosed amphibians and frequent shedding of Bd-positive residue on foliage demonstrates a pathway of Bd dispersal between aquatic and terrestrial habitats. This pathway provides the opportunity for environmental transmission of Bd among and between amphibian species without direct physical contact or exposure to an aquatic habitat. PMID:25927835

  12. Amphibian Chytrid Fungus in Madagascar neither Shows Widespread Presence nor Signs of Certain Establishment.

    PubMed

    Kolby, Jonathan E; Skerratt, Lee F

    2015-01-01

    The global spread of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) is associated with amphibian mass mortality, population decline, and extinction. Over the past decade, concern has been expressed for the potential introduction of Bd to Madagascar, a global hotspot of amphibian biodiversity. Following years without detection, widespread Bd presence in Madagascar has now been reported (Bletz et al. 2015a), raising international conservation concern. Before reacting to this finding with a significant management response, the accuracy and context of the data warrant cautious review. Re-examination of a 10-year dataset together with results from more recent surveillance (Kolby et al. 2015) does not yet demonstrate widespread Bd presence. Detection of Bd at "positive" locations in Madagascar has been inconsistent for unknown reasons. Whether Bd is established in Madagascar (i.e. populations are self-sustaining) or instead requires continued introduction to persist also remains uncertain. The deployment of emergency conservation rescue initiatives is expected to target areas where the distribution of Bd and the risk of chytridiomycosis endangering amphibians is believed to overlap. Thus, erroneous description of Bd presence would misdirect limited conservation resources. Standardized surveillance and confirmatory surveys are now imperative to reliably characterize the distribution, potential spread, virulence and overall risk of Bd to amphibians in Madagascar.

  13. Widespread occurrence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in the southeastern USA

    USGS Publications Warehouse

    Rothermel, B.B.; Walls, S.C.; Mitchell, J.C.; Dodd, C.K.; Irwin, L.K.; Green, D.E.; Vazquez, Victoria M.; Petranka, James W.; Stevenson, Dirk J.

    2008-01-01

    From 1999 to 2006, we sampled >1200 amphibians for the fungal pathogen Batrachochytnum dendrobatidis (Bd) at 30 sites in the southeastern USA. Using histological techniques or PCR assays, we detected chytrid infection in 10 species of aquatic-breeding amphibians in 6 states. The prevalence of chytrid infection was 17.8% for samples of postmetamorphic amphibians examined using skin swab-PCR assays (n = 202 samples from 12 species at 4 sites). In this subset of samples, anurans had a much higher prevalence of infection than caudates (39.2% vs. 5.5%, respectively). Mean prevalence in ranid frogs was 40.7 %. The only infected salamanders were Notophthalmus viridescens at 3 sites. We found infected amphibians from late winter through late spring and in 1 autumn sample. Although we encountered moribund or dead amphibians at 9 sites, most mortality events were not attributed to Bd. Chytridiomycosis was established as the probable cause of illness or death in fewer than 10 individuals. Our observations suggest a pattern of widespread and subclinical infections. However, because most of the sites in our study were visited only once, we cannot dismiss the possibility that chytridiomycosis is adversely affecting some populations. Furthermore, although there is no evidence of chytrid-associated declines in our region, the presence of this pathogen is cause for concern given global climate change and other stressors. Although presence-absence surveys may still be needed for some taxa, such as bufonids, we recommend that future researchers focus on potential population-level effects at sites where Bd is now known to occur. ?? Inter-Research 2008.

  14. Presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) in rainwater suggests aerial dispersal is possible

    USGS Publications Warehouse

    Kolby, Jonathan E.; Sara D. Ramirez,; Lee Berger,; Griffin, Dale W.; Merlijn Jocque,; Lee F. Skerratt,

    2015-01-01

    Abstract Global spread of the pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) may involve dispersal mechanisms not previously explored. Weather systems accompanied by strong wind and rainfall have been known to assist the dispersal of microbes pathogenic to plants and animals, and we considered a similar phenomenon might occur with Bd. We investigated this concept by sampling rainwater from 20 precipitation events for the presence of Bd in Cusuco National Park, Honduras: a site where high Bd prevalence was previously detected in stream-associated amphibians. Quantitative PCR analysis confirmed the presence of Bd in rainwater in one (5 %) of the weather events sampled, although viability cannot be ascertained from molecular presence alone. The source of the Bd and distance that the contaminated rainwater traveled could not be determined; however, this collection site was located approximately 600 m from the nearest observed perennial river by straight-line aerial distance. Although our results suggest atmospheric Bd dispersal is uncommon and unpredictable, even occasional short-distance aerial transport could considerably expand the taxonomic diversity of amphibians vulnerable to exposure and at risk of decline, including terrestrial and arboreal species that are not associated with permanent water bodies.

  15. Widespread occurrence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in the southeastern USA

    USGS Publications Warehouse

    Rothermel, Betsie B.; Walls, Susan C.; Mitchell, Joseph C.; Dodd, C. Kenneth; Irwin, Lisa K.; Green, David E.; Vazquez, Victoria M.; Petranka, James W.; Stevenson, Dirk J.

    2008-01-01

     From 1999 to 2006, we sampled >1200 amphibians for the fungal pathogen Batrachochytrium dendrobatidis(Bd) at 30 sites in the southeastern USA. Using histological techniques or PCR assays, we detected chytrid infection in 10 species of aquatic-breeding amphibians in 6 states. The prevalence of chytrid infection was 17.8% for samples of postmetamorphic amphibians examined using skin swab-PCR assays (n = 202 samples from 12 species at 4 sites). In this subset of samples, anurans had a much higher prevalence of infection than caudates (39.2% vs. 5.5%, respectively). Mean prevalence in ranid frogs was 40.7%. The only infected salamanders were Notophthalmus viridescens at 3 sites. We found infected amphibians from late winter through late spring and in 1 autumn sample. Although we encountered moribund or dead amphibians at 9 sites, most mortality events were not attributed to Bd. Chytridiomycosis was established as the probable cause of illness or death in fewer than 10 individuals. Our observations suggest a pattern of widespread and subclinical infections. However, because most of the sites in our study were visited only once, we cannot dismiss the possibility that chytridiomycosis is adversely affecting some populations. Furthermore, although there is no evidence of chytrid-associated declines in our region, the presence of this pathogen is cause for concern given global climate change and other stressors. Although presence-absence surveys may still be needed for some taxa, such as bufonids, we recommend that future researchers focus on potential population-level effects at sites where Bd is now known to occur.

  16. Effects of the amphibian chytrid fungus and four insecticides on Pacific treefrogs (Pseudacris regilla)

    USGS Publications Warehouse

    Kleinhez, Peter; Boone, Michelle D.; Fellers, Gary

    2012-01-01

    Chemical contamination may influence host-pathogen interactions, which has implications for amphibian population declines. We examined the effects of four insecticides alone or as a mixture on development and metamorphosis of Pacific Treefrogs (Pseudacris regilla) in the presence or absence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Bd exposure had a negative impact on tadpole activity, survival to metamorphosis, time to metamorphosis, and time of tail absorption (with a marginally negative effect on mass at metamorphosis); however, no individuals tested positive for Bd at metamorphosis. The presence of sublethal concentrations of insecticides alone or in a mixture did not impact Pacific Treefrog activity as tadpoles, survival to metamorphosis, or time and size to metamorphosis. Insecticide exposure did not influence the effect of Bd exposure. Our study did not support our prediction that effects of Bd would be greater in the presence of expected environmental concentrations of insecticide(s), but it did show that Bd had negative effects on responses at metamorphosis that could reduce the quality of juveniles recruited into the population.

  17. Rapid Response to Evaluate the Presence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Wild Amphibian Populations in Madagascar

    PubMed Central

    Kolby, Jonathan E.; Smith, Kristine M.; Ramirez, Sara D.; Rabemananjara, Falitiana; Pessier, Allan P.; Brunner, Jesse L.; Goldberg, Caren S.; Berger, Lee; Skerratt, Lee F.

    2015-01-01

    We performed a rapid response investigation to evaluate the presence and distribution of amphibian pathogens in Madagascar following our identification of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranavirus in commercially exported amphibians. This targeted risk-based field surveillance program was conducted from February to April 2014 encompassing 12 regions and 47 survey sites. We simultaneously collected amphibian and environmental samples to increase survey sensitivity and performed sampling both in wilderness areas and commercial amphibian trade facilities. Bd was not detected in any of 508 amphibian skin swabs or 68 water filter samples, suggesting pathogen prevalence was below 0.8%, with 95% confidence during our visit. Ranavirus was detected in 5 of 97 amphibians, including one adult Mantidactylus cowanii and three unidentified larvae from Ranomafana National Park, and one adult Mantidactylus mocquardi from Ankaratra. Ranavirus was also detected in water samples collected from two commercial amphibian export facilities. We also provide the first report of an amphibian mass-mortality event observed in wild amphibians in Madagascar. Although neither Bd nor ranavirus appeared widespread in Madagascar during this investigation, additional health surveys are required to disentangle potential seasonal variations in pathogen abundance and detectability from actual changes in pathogen distribution and rates of spread. Accordingly, our results should be conservatively interpreted until a comparable survey effort during winter months has been performed. It is imperative that biosecurity practices be immediately adopted to limit the unintentional increased spread of disease through the movement of contaminated equipment or direct disposal of contaminated material from wildlife trade facilities. The presence of potentially introduced strains of ranaviruses suggests that Madagascar's reptile species might also be threatened by disease

  18. Rapid Response to Evaluate the Presence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Wild Amphibian Populations in Madagascar.

    PubMed

    Kolby, Jonathan E; Smith, Kristine M; Ramirez, Sara D; Rabemananjara, Falitiana; Pessier, Allan P; Brunner, Jesse L; Goldberg, Caren S; Berger, Lee; Skerratt, Lee F

    2015-01-01

    We performed a rapid response investigation to evaluate the presence and distribution of amphibian pathogens in Madagascar following our identification of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranavirus in commercially exported amphibians. This targeted risk-based field surveillance program was conducted from February to April 2014 encompassing 12 regions and 47 survey sites. We simultaneously collected amphibian and environmental samples to increase survey sensitivity and performed sampling both in wilderness areas and commercial amphibian trade facilities. Bd was not detected in any of 508 amphibian skin swabs or 68 water filter samples, suggesting pathogen prevalence was below 0.8%, with 95% confidence during our visit. Ranavirus was detected in 5 of 97 amphibians, including one adult Mantidactylus cowanii and three unidentified larvae from Ranomafana National Park, and one adult Mantidactylus mocquardi from Ankaratra. Ranavirus was also detected in water samples collected from two commercial amphibian export facilities. We also provide the first report of an amphibian mass-mortality event observed in wild amphibians in Madagascar. Although neither Bd nor ranavirus appeared widespread in Madagascar during this investigation, additional health surveys are required to disentangle potential seasonal variations in pathogen abundance and detectability from actual changes in pathogen distribution and rates of spread. Accordingly, our results should be conservatively interpreted until a comparable survey effort during winter months has been performed. It is imperative that biosecurity practices be immediately adopted to limit the unintentional increased spread of disease through the movement of contaminated equipment or direct disposal of contaminated material from wildlife trade facilities. The presence of potentially introduced strains of ranaviruses suggests that Madagascar's reptile species might also be threatened by disease

  19. Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads

    USGS Publications Warehouse

    Pilliod, D.S.; Muths, E.; Scherer, R. D.; Bartelt, P.E.; Corn, P.S.; Hossack, B.R.; Lambert, B.A.; Mccaffery, R.; Gaughan, C.

    2010-01-01

    Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture-recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect of the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]; the agent of chytridiomycosis) on survival probability and population growth rate. Toads that were infected with Bd had lower average annual survival probability than uninfected individuals at sites where Bd was detected, which suggests chytridiomycosis may reduce survival by 31-42% in wild boreal toads. Toads that were negative for Bd at infected sites had survival probabilities comparable to toads at the uninfected site. Evidence that environmental covariates (particularly cold temperatures during the breeding season) influenced toad survival was weak. The number of individuals in diseased populations declined by 5-7%/year over the 6 years of the study, whereas the uninfected population had comparatively stable population growth. Our data suggest that the presence of Bd in these toad populations is not causing rapid population declines. Rather, chytridiomycosis appears to be functioning as a low-level, chronic disease whereby some infected individuals survive but the overall population effects are still negative. Our results show that some amphibian populations may be coexisting with Bd and highlight the importance of quantitative assessments of survival in diseased animal populations. Journal compilation. ?? 2010 Society for Conservation Biology. No claim to original US government works.

  20. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders

    PubMed Central

    Martel, A.; Beukema, W.; Fisher, M. C.; Farrer, R. A.; Schmidt, B. R.; Tobler, U.; Goka, K.; Lips, K. R.; Muletz, C.; Zamudio, K. R.; Bosch, J.; Lötters, S.; Wombwell, E.; Garner, T.W. J.; Cunningham, A. A.; Spitzen-van der Sluijs, A.; Salvidio, S.; Ducatelle, R.; Nishikawa, K.; Nguyen, T. T.; Kolby, J. E.; Van Bocxlaer, I.; Bossuyt, F.; Pasmans, F.

    2018-01-01

    Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines in populations of European fire salamanders. Here, we screened more than 5000 amphibians from across four continents and combined experimental assessment of pathogenicity with phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. Results show that B. salamandrivorans is restricted to, but highly pathogenic for, salamanders and newts (Urodela). The pathogen likely originated and remained in coexistence with a clade of salamander hosts for millions of years in Asia. As a result of globalization and lack of biosecurity, it has recently been introduced into naïve European amphibian populations, where it is currently causing biodiversity loss. PMID:25359973

  1. Unlocking the story in the swab: A new genotyping assay for the amphibian chytrid fungus Batrachochytrium dendrobatidis.

    PubMed

    Byrne, Allison Q; Rothstein, Andrew P; Poorten, Thomas J; Erens, Jesse; Settles, Matthew L; Rosenblum, Erica Bree

    2017-11-01

    One of the most devastating emerging pathogens of wildlife is the chytrid fungus, Batrachochytrium dendrobatidis (Bd), which affects hundreds of amphibian species around the world. Genomic data from pure Bd cultures have advanced our understanding of Bd phylogenetics, genomic architecture and mechanisms of virulence. However, pure cultures are laborious to obtain and whole-genome sequencing is comparatively expensive, so relatively few isolates have been genetically characterized. Thus, we still know little about the genetic diversity of Bd in natural systems. The most common noninvasive method of sampling Bd from natural populations is to swab amphibian skin. Hundreds of thousands of swabs have been collected from amphibians around the world, but Bd DNA collected via swabs is often low in quality and/or quantity. In this study, we developed a custom Bd genotyping assay using the Fluidigm Access Array platform to amplify 192 carefully selected regions of the Bd genome. We obtained robust sequence data for pure Bd cultures and field-collected skin swabs. This new assay has the power to accurately discriminate among the major Bd clades, recovering the basic tree topology previously revealed using whole-genome data. Additionally, we established a critical value for initial Bd load for swab samples (150 Bd genomic equivalents) above which our assay performs well. By leveraging advances in microfluidic multiplex PCR technology and the globally distributed resource of amphibian swab samples, noninvasive skin swabs can now be used to address critical spatial and temporal questions about Bd and its effects on declining amphibian populations. © 2017 John Wiley & Sons Ltd.

  2. Effects of pond salinization on survival rate of amphibian hosts infected with the chytrid fungus.

    PubMed

    Stockwell, Michelle Pirrie; Storrie, Lachlan James; Pollard, Carla Jean; Clulow, John; Mahony, Michael Joseph

    2015-04-01

    The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of amphibian populations worldwide, but management options are limited. Recent studies show that sodium chloride (NaCl) has fungicidal properties that reduce the mortality rates of infected hosts in captivity. We investigated whether similar results can be obtained by adding salt to water bodies in the field. We increased the salinity of 8 water bodies to 2 or 4 ppt and left an additional 4 water bodies with close to 0 ppt and monitored salinity for 18 months. Captively bred tadpoles of green and golden bell frog (Litoria aurea) were released into each water body and their development, levels of B. dendrobatidis infection, and survival were monitored at 1, 4, and 12 months. The effect of salt on the abundance of nontarget organisms was also investigated in before and after style analyses. Salinities remained constant over time with little intervention. Hosts in water bodies with 4 ppt salt had a significantly lower prevalence of chytrid infection and higher survival, following metamorphosis, than hosts in 0 ppt salt. Tadpoles in the 4 ppt group were smaller in length after 1 month in the release site than those in the 0 and 2 ppt groups, but after metamorphosis body size in all water bodies was similar . In water bodies with 4 ppt salt, the abundance of dwarf tree frogs (Litoria fallax), dragonfly larvae, and damselfly larvae was lower than in water bodies with 0 and 2 ppt salt, which could have knock-on effects for community structure. Based on our results, salt may be an effective field-based B. dendrobatidis mitigation tool for lentic amphibians that could contribute to the conservation of numerous susceptible species. However, as in all conservation efforts, these benefits need to be weighed against negative effects on both target and nontarget organisms. © 2014 Society for Conservation Biology.

  3. Effects of pesticide exposure and the amphibian chytrid fungus on gray treefrog (Hyla chrysoscelis) metamorphosis.

    PubMed

    Gaietto, Kristina M; Rumschlag, Samantha L; Boone, Michelle D

    2014-10-01

    Pesticides are detectable in most aquatic habitats and have the potential to alter host-pathogen interactions. The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has been associated with amphibian declines around the world. However, Bd-associated declines are more prominent in some areas, despite nearly global distribution of Bd, suggesting other factors contribute to disease outbreaks. In a laboratory study, the authors examined the effects of 6 different isolates of Bd in the presence or absence of a pesticide (the insecticide carbaryl or the fungicide copper sulfate) to recently hatched Cope's gray treefrog (Hyla chrysoscelis) tadpoles reared through metamorphosis. The authors found the presence or absence of pesticides differentially altered the mass at metamorphosis of tadpoles exposed to different Bd isolates, suggesting that isolate could influence metamorphosis but not in ways expected based on origin of the isolate. Pesticide exposure had the strongest impact on metamorphosis of all treatment combinations. Whereas copper sulfate exposure reduced the length of the larval period, carbaryl exposure had apparent positive effects by increasing mass at metamorphosis and lengthening larval period, which adds to evidence that carbaryl can stimulate development in counterintuitive ways. The present study provides limited support to the hypothesis that pesticides can alter the response of tadpoles to isolates of Bd and that the insecticide carbaryl can alter developmental decisions. © 2014 SETAC.

  4. Amphibian chytrid fungus (Batrachochytrium dendrobatidis) in coastal and montane California, USA Anurans

    USGS Publications Warehouse

    Fellers, Gary M.; Cole, Rebecca A.; Reinitz, David M.; Kleeman, Patrick M.

    2011-01-01

    We found amphibian chytrid fungus (Bd = Batrachochytrium dendrobatidis) to be widespread within a coastalwatershed at Point Reyes National Seashore, California and within two high elevation watersheds at Yosemite NationalPark, California. Bd was associated with all six species that we sampled (Bufo boreas, B. canorus, Pseudacris regilla, Ranadraytonii, R. sierrae, and Lithobates catesbeianus). For those species sampled at 10 or more sites within a watershed, thepercentage of Bd-positive sites varied from a low of 20.7% for P. regilla at one Yosemite watershed to a high of 79.6% forP. regilla at the Olema watershed at Point Reyes. At Olema, the percent of Bd-positive water bodies declined each year ofour study (2005-2007). Because P. regilla was the only species found in all watersheds, we used that species to evaluatehabitat variables related to the sites where P. regilla was Bd-positive. At Olema, significant variables were year, length ofshoreline (perimeter), percentage cover of rooted vegetation, and water depth. At the two Yosemite watersheds, waterdepth, water temperature, and silt/mud were the most important covariates, though the importance of these three factorsdiffered between the two watersheds. The presence of Bd in species that are not declining suggests that some of theamphibians in our study were innately resistant to Bd, or had developed resistance after Bd became established.

  5. Low prevalence of chytrid fungus (Batrachochytrium dendrobatidis) in amphibians of U.S

    Treesearch

    Blake R. Hossack; Michael J. Adams; Evan H. Campbell Grant; Christopher A. Pearl; James B. Bettaso; William J. Barichivich; Winsor H. Lowe; Kimberly True; Joy L. Ware; Paul Stephen Corn

    2010-01-01

    Many declines of amphibian populations have been associated with chytridiomycosis, a disease caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd). Despite the relatively high prevalence of chytridiomycosis in stream amphibians globally, most surveys in North America have focused primarily on wetland-associated species, which are frequently infected. To...

  6. Detection of the Amphibian Chytrid Fungus Batrachochytrium dendrobatidis in Museum Specimens of Andean Aquatic Birds: Implications for Pathogen Dispersal.

    PubMed

    Burrowes, Patricia A; De la Riva, Ignacio

    2017-04-01

    The occurrence of the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) in the feet of live waterfowl has been documented, but the potential role of birds as dispersers has not been studied. We report the presence of Bd in the feet of preserved aquatic birds in the Bolivian high Andes during the time of drastic amphibian declines in the country. We sampled 48 aquatic birds from the Bolivian Andes that were preserved in museum collections. Birds were sampled for the presence of Bd DNA by swabbing, taking small pieces of tissue from toe webbing, or both. We detected Bd by DNA using quantitative PCR in 42% of the birds sampled via toe tissue pieces. This method was significantly better than swabbing at detecting Bd from bird feet. We confirmed Bd presence by sequencing Bd -positive samples and found 91-98% homology with Bd sequences from GenBank. Our study confirms that aquatic birds can carry Bd and thus may serve as potential vectors of this pathogen across large distances and complex landscapes. In addition, we recommend using DNA from preserved birds as a novel source of data to test hypotheses on the spread of chytridiomycosis in amphibians.

  7. No evidence for effects of infection with the amphibian chytrid fungus on populations of yellow-bellied toads.

    PubMed

    Wagner, Norman; Neubeck, Claus; Guicking, Daniela; Finke, Lennart; Wittich, Martin; Weising, Kurt; Geske, Christian; Veith, Michael

    2017-02-08

    The parasitic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause the lethal disease chytridiomycosis in amphibians and therefore may play a role in population declines. The yellow-bellied toad Bombina variegata suffered strong declines throughout western and northwestern parts of its range and is therefore listed as highly endangered for Germany and the federal state of Hesse. Whether chytridiomycosis may play a role in the observed local declines of this strictly protected anuran species has never been tested. We investigated 19 Hessian yellow-bellied toad populations for Bd infection rates, conducted capture-mark-recapture studies in 4 of them over 2 to 3 yr, examined survival histories of recaptured infected individuals, and tested whether multi-locus heterozygosity of individuals as well as expected heterozygosity and different environmental variables of populations affect probabilities of Bd infection. Our results show high prevalence of Bd infection in Hessian yellow-bellied toad populations, but although significant decreases in 2 populations could be observed, no causative link to Bd as the reason for this can be established. Mass mortalities or obvious signs of disease in individuals were not observed. Conversely, we show that growth of Bd-infected populations is possible under favorable habitat conditions and that most infected individuals could be recaptured with improved body indices. Neither genetic diversity nor environmental variables appeared to affect Bd infection probabilities. Hence, genetically diverse amphibian specimens and populations may not automatically be less susceptible for Bd infection.

  8. Prevalence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) at Buenos Aires National Wildlife Refuge, Arizona, USA

    USGS Publications Warehouse

    Sigafus, Brent H.; Hossack, Blake R.; Muths, Erin L.; Schwalbe, Cecil R.

    2014-01-01

    Information on disease presence can be of use to natural resource managers, especially in areas supporting threatened and endangered species that occur coincidentally with species that are suspected vectors for disease. Ad hoc reports may be of limited utility (Muths et al. 2009), but a general sense of pathogen presence (or absence) can inform management directed at T&E species, especially in regions where disease is suspected to have caused population declines (Bradley et al. 2002). The Chiricahua Leopard Frog (Lithobates chiricahuensis), a species susceptible to infection by the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) (Bradley et al. 2002), and the non-native, invasive American Bullfrog (L. catesbeianus), a suspected vector for chytridiomycosis (Schloegel et al. 2012, Gervasi et al. 2013), both occur at Buenos Aires National Wildlife Refuge (BANWR) and surrounding lands in southern Arizona. Efforts to eradicate the bullfrog from BANWR began in 1997 (Suhre, 2010). Eradication from the southern portion of BANWR was successful by 2008 but the bullfrog remains present at the Arivaca Cienega and in areas immediately adjacent to the refuge (Fig. 1). Curtailing the re-invasion of the bullfrog into BANWR will require vigilance as to ensure the health of Chiricahua Leopard Frog populations.

  9. Sleuthing out a silent scourge for amphibians

    Treesearch

    Noreen Parks; Deanna (Dede) Olson

    2013-01-01

    The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), causes the infectious disease chytridiomycosis, which has triggered massive die-offs and extinctions of amphibians around the world. The disease, identified in 1998, is a significant contributor to the global amphibian biodiversity crisis, and no clear means of arresting its spread...

  10. Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi.

    PubMed

    Fisher, Matthew C; Ghosh, Pria; Shelton, Jennifer M G; Bates, Kieran; Brookes, Lola; Wierzbicki, Claudia; Rosa, Gonçalo M; Farrer, Rhys A; Aanensen, David M; Alvarado-Rybak, Mario; Bataille, Arnaud; Berger, Lee; Böll, Susanne; Bosch, Jaime; Clare, Frances C; A Courtois, Elodie; Crottini, Angelica; Cunningham, Andrew A; Doherty-Bone, Thomas M; Gebresenbet, Fikirte; Gower, David J; Höglund, Jacob; James, Timothy Y; Jenkinson, Thomas S; Kosch, Tiffany A; Lambertini, Carolina; Laurila, Anssi; Lin, Chun-Fu; Loyau, Adeline; Martel, An; Meurling, Sara; Miaud, Claude; Minting, Pete; Ndriantsoa, Serge; O'Hanlon, Simon J; Pasmans, Frank; Rakotonanahary, Tsanta; Rabemananjara, Falitiana C E; Ribeiro, Luisa P; Schmeller, Dirk S; Schmidt, Benedikt R; Skerratt, Lee; Smith, Freya; Soto-Azat, Claudio; Tessa, Giulia; Toledo, Luís Felipe; Valenzuela-Sánchez, Andrés; Verster, Ruhan; Vörös, Judit; Waldman, Bruce; Webb, Rebecca J; Weldon, Che; Wombwell, Emma; Zamudio, Kelly R; Longcore, Joyce E; Garner, Trenton W J

    2018-05-17

    Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.

  11. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians.

    PubMed

    Martel, An; Spitzen-van der Sluijs, Annemarieke; Blooi, Mark; Bert, Wim; Ducatelle, Richard; Fisher, Matthew C; Woeltjes, Antonius; Bosman, Wilbert; Chiers, Koen; Bossuyt, Franky; Pasmans, Frank

    2013-09-17

    The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines remain unexplained, among them a steep decrease in fire salamander populations (Salamandra salamandra) that has brought this species to the edge of local extinction. Here we isolated and characterized a unique chytrid fungus, Batrachochytrium salamandrivorans sp. nov., from this salamander population. This chytrid causes erosive skin disease and rapid mortality in experimentally infected fire salamanders and was present in skin lesions of salamanders found dead during the decline event. Together with the closely related B. dendrobatidis, this taxon forms a well-supported chytridiomycete clade, adapted to vertebrate hosts and highly pathogenic to amphibians. However, the lower thermal growth preference of B. salamandrivorans, compared with B. dendrobatidis, and resistance of midwife toads (Alytes obstetricans) to experimental infection with B. salamandrivorans suggest differential niche occupation of the two chytrid fungi.

  12. Nothing a hot bath won't cure: infection rates of amphibian chytrid fungus correlate negatively with water temperature under natural field settings.

    PubMed

    Forrest, Matthew J; Schlaepfer, Martin A

    2011-01-01

    Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963).

  13. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians

    PubMed Central

    Martel, An; Spitzen-van der Sluijs, Annemarieke; Blooi, Mark; Bert, Wim; Ducatelle, Richard; Fisher, Matthew C.; Woeltjes, Antonius; Bosman, Wilbert; Chiers, Koen; Bossuyt, Franky; Pasmans, Frank

    2013-01-01

    The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines remain unexplained, among them a steep decrease in fire salamander populations (Salamandra salamandra) that has brought this species to the edge of local extinction. Here we isolated and characterized a unique chytrid fungus, Batrachochytrium salamandrivorans sp. nov., from this salamander population. This chytrid causes erosive skin disease and rapid mortality in experimentally infected fire salamanders and was present in skin lesions of salamanders found dead during the decline event. Together with the closely related B. dendrobatidis, this taxon forms a well-supported chytridiomycete clade, adapted to vertebrate hosts and highly pathogenic to amphibians. However, the lower thermal growth preference of B. salamandrivorans, compared with B. dendrobatidis, and resistance of midwife toads (Alytes obstetricans) to experimental infection with B. salamandrivorans suggest differential niche occupation of the two chytrid fungi. PMID:24003137

  14. Assessing the Threat of Amphibian Chytrid Fungus in the Albertine Rift: Past, Present and Future

    PubMed Central

    Seimon, Tracie A.; Ayebare, Samuel; Sekisambu, Robert; Muhindo, Emmanuel; Mitamba, Guillain; Greenbaum, Eli; Menegon, Michele; Pupin, Fabio; McAloose, Denise; Ammazzalorso, Alyssa; Meirte, Danny; Lukwago, Wilbur; Behangana, Mathias; Seimon, Anton; Plumptre, Andrew J.

    2015-01-01

    Batrachochytrium dendrobatidis (Bd), the cause of chytridiomycosis, is a pathogenic fungus that is found worldwide and is a major contributor to amphibian declines and extinctions. We report results of a comprehensive effort to assess the distribution and threat of Bd in one of the Earth’s most important biodiversity hotspots, the Albertine Rift in central Africa. In herpetological surveys conducted between 2010 and 2014, 1018 skin swabs from 17 amphibian genera in 39 sites across the Albertine Rift were tested for Bd by PCR. Overall, 19.5% of amphibians tested positive from all sites combined. Skin tissue samples from 163 amphibians were examined histologically; of these two had superficial epidermal intracorneal fungal colonization and lesions consistent with the disease chytridiomycosis. One amphibian was found dead during the surveys, and all others encountered appeared healthy. We found no evidence for Bd-induced mortality events, a finding consistent with other studies. To gain a historical perspective about Bd in the Albertine Rift, skin swabs from 232 museum-archived amphibians collected as voucher specimens from 1925–1994 were tested for Bd. Of these, one sample was positive; an Itombwe River frog (Phrynobatrachus asper) collected in 1950 in the Itombwe highlands. This finding represents the earliest record of Bd in the Democratic Republic of Congo. We modeled the distribution of Bd in the Albertine Rift using MaxEnt software, and trained our model for improved predictability. Our model predicts that Bd is currently widespread across the Albertine Rift, with moderate habitat suitability extending into the lowlands. Under climatic modeling scenarios our model predicts that optimal habitat suitability of Bd will decrease causing a major range contraction of the fungus by 2080. Our baseline data and modeling predictions are important for comparative studies, especially if significant changes in amphibian health status or climactic conditions are

  15. Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in threatened corroboree frog populations in the Australian Alps.

    PubMed

    Hunter, David A; Speare, Rick; Marantelli, Gerry; Mendez, Diana; Pietsch, Rod; Osborne, Will

    2010-11-01

    Since the early 1980s, the southern corroboree frog Pseudophryne corroboree and northern corroboree frog P. pengilleyi have been in a state of decline from their sub-alpine and high montane bog environments on the southern tablelands of New South Wales, Australia. To date, there has been no adequate explanation as to what is causing the decline of these species. We investigated the possibility that a pathogen associated with other recent frog declines in Australia, the amphibian chytrid fungus Batrachochytrium dendrobatidis, may have been implicated in the decline of the corroboree frogs. We used histology of toe material and real-time PCR of skin swabs to investigate the presence and infection rates with B. dendrobatidis in historic and extant populations of both corroboree frog species. Using histology, we did not detect any B. dendrobatidis infections in corroboree frog populations prior to their decline. However, using the same technique, high rates of infection were observed in populations of both species after the onset of substantial population declines. The real-time PCR screening of skin swabs identified high overall infection rates in extant populations of P. corroboree (between 44 and 59%), while significantly lower rates of infection were observed in low-altitude P. pengilleyi populations (14%). These results suggest that the initial and continued decline of the corroboree frogs may well be attributed to the emergence of B. dendrobatidis in populations of these species.

  16. Nothing a Hot Bath Won't Cure: Infection Rates of Amphibian Chytrid Fungus Correlate Negatively with Water Temperature under Natural Field Settings

    PubMed Central

    2011-01-01

    Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10–50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75–100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications. There must be quite a few things a hot bath won't cure, but I don't know many of them - Sylvia Plath, “The Bell Jar” (1963). PMID:22205950

  17. Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection

    PubMed Central

    McMahon, Taegan A.; Brannelly, Laura A.; Chatfield, Matthew W. H.; Johnson, Pieter T. J.; Joseph, Maxwell B.; McKenzie, Valerie J.; Richards-Zawacki, Corinne L.; Venesky, Matthew D.; Rohr, Jason R.

    2013-01-01

    Batrachochytrium dendrobatidis, a pathogenic chytrid fungus implicated in worldwide amphibian declines, is considered an amphibian specialist. Identification of nonamphibian hosts could help explain the virulence, heterogeneous distribution, variable rates of spread, and persistence of B. dendrobatidis in freshwater ecosystems even after amphibian extirpations. Here, we test whether mosquitofish (Gambusia holbrooki) and crayfish (Procambarus spp. and Orconectes virilis), which are syntopic with many amphibian species, are possible hosts for B. dendrobatidis. Field surveys in Louisiana and Colorado revealed that zoosporangia occur within crayfish gastrointestinal tracts, that B. dendrobatidis prevalence in crayfish was up to 29%, and that crayfish presence in Colorado wetlands was a positive predictor of B. dendrobatidis infections in cooccurring amphibians. In experiments, crayfish, but not mosquitofish, became infected with B. dendrobatidis, maintained the infection for at least 12 wk, and transmitted B. dendrobatidis to amphibians. Exposure to water that previously held B. dendrobatidis also caused significant crayfish mortality and gill recession. These results indicate that there are nonamphibian hosts for B. dendrobatidis and suggest that B. dendrobatidis releases a chemical that can cause host pathology, even in the absence of infection. Managing these biological reservoirs for B. dendrobatidis and identifying this chemical might provide new hope for imperiled amphibians. PMID:23248288

  18. Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA

    Treesearch

    Erin Muths; David S. Pilliod; Lauren J. Livo

    2008-01-01

    Amphibian populations continue to be imperiled by the chytrid fungus (Batrachochytrium dendrobatidis). Understanding where B. dendrobatidis (Bd) occurs and how it may be limited by environmental factors is critical to our ability to effectively conserve the amphibians affected by Bd. We sampled 1247 amphibians (boreal toads and...

  19. Chytrid Fungus, Batrachochytrium dendrobatidis , in Wild Populations of the Lake Titicaca Frog, Telmatobius culeus, in Peru.

    PubMed

    Berenguel, Raul A; Elias, Roberto K; Weaver, Thomas J; Reading, Richard P

    2016-10-01

    The Lake Titicaca frog (Telmatobius culeus) is critically endangered, primarily from overexploitation. However, additional threats, such as chytrid fungus ( Batrachochytrium dendrobatidis ), are poorly studied. We found moderate levels of chytrid infection using quantitative PCR. Our results enhance our understanding of chytrid tolerance to high pH and low water temperature.

  20. Why does Amphibian Chytrid (Batrachochytrium dendrobatidis) not occur everywhere? An exploratory study in Missouri ponds.

    PubMed

    Strauss, Alex; Smith, Kevin G

    2013-01-01

    The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is a globally emerging pathogen that has caused widespread amphibian population declines, extirpations, and extinctions. However, Bd does not occur in all apparently suitable amphibian populations, even within regions where it is widespread, and it is often unclear why Bd occurs in some habitats but not others. In this study, we rigorously surveyed the amphibian and invertebrate biodiversity of 29 ponds in Missouri, screened resident amphibian larvae (Rana (Lithobates) sp.) for Bd infection, and characterized the aquatic physiochemical environment of each pond (temperature pH, conductivity, nitrogen, phosphorus, and chlorophyll-a). Our goal was to generate hypotheses toward answering the question, "Why does Bd not occur in all apparently suitable habitats?" Bd occurred in assayed amphibians in 11 of the 29 ponds in our study area (38% of ponds). We found no significant relationship between any single biotic or abiotic variable and presence of Bd. However, multivariate analyses (nonmetric multidimensional scaling and permutational tests of dispersion) revealed that ponds in which Bd occurred were a restricted subset of all ponds in terms of amphibian community structure, macroinvertebrate community structure, and pond physiochemistry. In other words, Bd ponds from 6 different conservation areas were more similar to each other than would be expected based on chance. The results of a structural equation model suggest that patterns in the occurrence of Bd among ponds are primarily attributable to variation in macroinvertebrate community structure. When combined with recent results showing that Bd can infect invertebrates as well as amphibians, we suggest that additional research should focus on the role played by non-amphibian biota in determining the presence, prevalence, and pathogenicity of Bd in amphibian populations.

  1. Why Does Amphibian Chytrid (Batrachochytrium dendrobatidis) Not Occur Everywhere? An Exploratory Study in Missouri Ponds

    PubMed Central

    Strauss, Alex; Smith, Kevin G.

    2013-01-01

    The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is a globally emerging pathogen that has caused widespread amphibian population declines, extirpations, and extinctions. However, Bd does not occur in all apparently suitable amphibian populations, even within regions where it is widespread, and it is often unclear why Bd occurs in some habitats but not others. In this study, we rigorously surveyed the amphibian and invertebrate biodiversity of 29 ponds in Missouri, screened resident amphibian larvae (Rana (Lithobates) sp.) for Bd infection, and characterized the aquatic physiochemical environment of each pond (temperature pH, conductivity, nitrogen, phosphorus, and chlorophyll-a). Our goal was to generate hypotheses toward answering the question, “Why does Bd not occur in all apparently suitable habitats?” Bd occurred in assayed amphibians in 11 of the 29 ponds in our study area (38% of ponds). We found no significant relationship between any single biotic or abiotic variable and presence of Bd. However, multivariate analyses (nonmetric multidimensional scaling and permutational tests of dispersion) revealed that ponds in which Bd occurred were a restricted subset of all ponds in terms of amphibian community structure, macroinvertebrate community structure, and pond physiochemistry. In other words, Bd ponds from 6 different conservation areas were more similar to each other than would be expected based on chance. The results of a structural equation model suggest that patterns in the occurrence of Bd among ponds are primarily attributable to variation in macroinvertebrate community structure. When combined with recent results showing that Bd can infect invertebrates as well as amphibians, we suggest that additional research should focus on the role played by non-amphibian biota in determining the presence, prevalence, and pathogenicity of Bd in amphibian populations. PMID:24086681

  2. Potential causes for amphibian declines in Puerto Rico

    USGS Publications Warehouse

    Burrowes, P.A.; Joglar, R.L.; Green, David E.

    2004-01-01

    We monitored 11 populations of eight species of Eleutherodactylus in Puerto Rico from 1989 through 2001. We determined relative abundance of active frogs along transects established in the Caribbean National Forest (El Yunque), Carite Forest, San Lorenzo, and in the vicinity of San Juan. Three species (Eleutherodactylus karlschmidti, E. jasperi, and E. eneidae) are presumed to be extinct and eight populations of six different species of endemic Eleutherodactylus are significantly declining at elevations above 400 m. Of the many suspected causes of amphibian declines around the world, we focused on climate change and disease. Temperature and precipitation data from 1970a??2000 were analyzed to determine the general pattern of oscillations and deviations that could be correlated with amphibian declines. We examined a total of 106 tissues taken from museum specimens collected from 1961a??1978 and from live frogs in 2000. We found chytrid fungi in two species collected at El Yunque as early as 1976, this is the first report of chytrid fungus in the Caribbean. Analysis of weather data indicates a significant warming trend and an association between years with extended periods of drought and the decline of amphibians in Puerto Rico. The 1970's and 1990's, which represent the periods of amphibian extirpations and declines, were significantly drier than average. We suggest a possible synergistic interaction between drought and the pathological effect of the chytrid fungus on amphibian populations.

  3. Endemic infection of the amphibian chytrid fungus in a frog community post-decline.

    PubMed

    Retallick, Richard W R; McCallum, Hamish; Speare, Rick

    2004-11-01

    The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of numerous frog species worldwide. In Queensland, Australia, it has been proposed as the cause of the decline or apparent extinction of at least 14 high-elevation rainforest frog species. One of these, Taudactylus eungellensis, disappeared from rainforest streams in Eungella National Park in 1985-1986, but a few remnant populations were subsequently discovered. Here, we report the analysis of B. dendrobatidis infections in toe tips of T. eungellensis and sympatric species collected in a mark-recapture study between 1994 and 1998. This longitudinal study of the fungus in individually marked frogs sheds new light on the effect of this threatening infectious process in field, as distinct from laboratory, conditions. We found a seasonal peak of infection in the cooler months, with no evidence of interannual variation. The overall prevalence of infection was 18% in T. eungellensis and 28% in Litoria wilcoxii/jungguy, a sympatric frog that appeared not to decline in 1985-1986. No infection was found in any of the other sympatric species. Most importantly, we found no consistent evidence of lower survival in T. eungellensis that were infected at the time of first capture, compared with uninfected individuals. These results refute the hypothesis that remnant populations of T. eungellensis recovered after a B. dendrobatidis epidemic because the pathogen had disappeared. They show that populations of T. eungellensis now persist with stable, endemic infections of B. dendrobatidis.

  4. Low prevalence of chytrid fungus (Batrachochytrium dendrobatidis) in amphibians of U.S. headwater streams

    USGS Publications Warehouse

    Hossack, Blake R.; Adams, Michael J.; Campbell Grant, Evan H.; Pearl, Chistopher A.; Bettaso, James B.; Barichivich, William J.; Lowe, Winsor H.; True, Kimberly; Ware, Joy L.; Corn, Paul Stephen

    2010-01-01

    Many declines of amphibian populations have been associated with chytridiomycosis, a disease caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd). Despite the relatively high prevalence of chytridiomycosis in stream amphibians globally, most surveys in North America have focused primarily on wetland-associated species, which are frequently infected. To better understand the distribution and prevalence of Bd in headwater amphibian communities, we sampled 452 tailed frogs (Ascaphus truei and Ascaphus montanus) and 304 stream salamanders (seven species in the Dicamptodontidae and Plethodontidae) for Bd in 38, first- to third-order streams in five montane areas across the United States. We tested for presence of Bd by using PCR on skin swabs from salamanders and metamorphosed tailed frogs or the oral disc of frog larvae. We detected Bd on only seven individuals (0.93%) in four streams. Based on our study and results from five other studies that have sampled headwater- or seep-associated amphibians in the United States, Bd has been detected on only 3% of 1,322 individuals from 21 species. These results differ strongly from surveys in Central America and Australia, where Bd is more prevalent on stream-breeding species, as well as results from wetland-associated anurans in the same regions of the United States that we sampled. Differences in the prevalence of Bd between stream- and wetland-associated amphibians in the United States may be related to species-specific variation in susceptibility to chytridiomycosis or habitat differences.

  5. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders

    PubMed Central

    Laking, Alexandra E.; Ngo, Hai Ngoc; Pasmans, Frank; Martel, An; Nguyen, Tao Thien

    2017-01-01

    The amphibian chytrid fungi, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), pose a major threat to amphibian biodiversity. Recent evidence suggests Southeast Asia as a potential cradle for both fungi, which likely resulted in widespread host-pathogen co-existence. We sampled 583 salamanders from 8 species across Vietnam in 55 locations for Bsal and Bd, determined scaled mass index as a proxy for fitness and collected environmental data. Bsal was found within 14 of the 55 habitats (2 of which it was detected in 2013), in 5 salamandrid species, with a prevalence of 2.92%. The globalized pandemic lineage of Bd was found within one pond on one species with a prevalence of 0.69%. Combined with a complete lack of correlation between infection and individual body condition and absence of indication of associated disease, this suggests low level pathogen endemism and Bsal and Bd co-existence with Vietnamese salamandrid populations. Bsal was more widespread than Bd, and occurs at temperatures higher than tolerated by the type strain, suggesting a wider thermal niche than currently known. Therefore, this study provides support for the hypothesis that these chytrid fungi may be endemic to Asia and that species within this region may act as a disease reservoir. PMID:28287614

  6. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests.

    PubMed

    Valencia-Aguilar, Anyelet; Ruano-Fajardo, Gustavo; Lambertini, Carolina; da Silva Leite, Domingos; Toledo, Luís Felipe; Mott, Tamí

    2015-05-11

    The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians.

  7. Effects of urbanization on the occurrence of Batrachochytrium dendrobatidis: do urban environments provide refuge from the amphibian chytrid fungus?

    Treesearch

    Daniel Saenz; Taylor L. Hall; Matthew A. Kwiatkowski

    2015-01-01

    Batrachochytrium dendrobatidis (Bd) is a widespread pathogenic fungus that is known to cause the disease, chytridiomycosis, which can be lethal to many amphibians. We compared occurrence rates on spring peepers (Pseudacris crucifer) in urban and forested breeding sites in eastern Texas, USA. All study sites were at...

  8. Prevalence of the amphibian pathogen Batrachochytrium dendrobatidis in stream and wetland amphibians in Maryland, USA

    USGS Publications Warehouse

    Campbell Grant, Evan H.; Bailey, Larissa L.; Ware, Joy L.; Duncan, Karen L.

    2008-01-01

    The amphibian chytrid fungus Batrachochytrium dendrobatidis, responsible for the potentially fatal amphibian disease chytridiomycosis, is known to occur in a large and ever increasing number of amphibian populations around the world. However, sampling has been biased towards stream- and wetland-breeding anurans, with little attention paid to stream-associated salamanders. We sampled three frog and three salamander species in the Chesapeake and Ohio Canal National Historic Park, Maryland, by swabbing animals for PCR analysis to detect DNA of B. dendrobatidis. Using PCR, we detected B. dendrobatidis DNA in both stream and wetland amphibians, and report here the first occurrence of the pathogen in two species of stream-associated salamanders. Future research should focus on mechanisms within habitats that may affect persistence and dissemination of B. dendrobatidis among stream-associated salamanders

  9. Mapping the Global Emergence of Batrachochytrium dendrobatidis, the Amphibian Chytrid Fungus

    PubMed Central

    Ronnenberg, Kathryn L.; Powell, Christopher I.; Walker, Susan F.; Bielby, Jon; Garner, Trenton W. J.; Weaver, George

    2013-01-01

    The rapid worldwide emergence of the amphibian pathogen Batrachochytrium dendrobatidis (Bd) is having a profound negative impact on biodiversity. However, global research efforts are fragmented and an overarching synthesis of global infection data is lacking. Here, we provide results from a community tool for the compilation of worldwide Bd presence and report on the analyses of data collated over a four-year period. Using this online database, we analysed: 1) spatial and taxonomic patterns of infection, including amphibian families that appear over- and under-infected; 2) relationships between Bd occurrence and declining amphibian species, including associations among Bd occurrence, species richness, and enigmatic population declines; and 3) patterns of environmental correlates with Bd, including climate metrics for all species combined and three families (Hylidae, Bufonidae, Ranidae) separately, at both a global scale and regional (U.S.A.) scale. These associations provide new insights for downscaled hypothesis testing. The pathogen has been detected in 52 of 82 countries in which sampling was reported, and it has been detected in 516 of 1240 (42%) amphibian species. We show that detected Bd infections are related to amphibian biodiversity and locations experiencing rapid enigmatic declines, supporting the hypothesis that greater complexity of amphibian communities increases the likelihood of emergence of infection and transmission of Bd. Using a global model including all sampled species, the odds of Bd detection decreased with increasing temperature range at a site. Further consideration of temperature range, rather than maximum or minimum temperatures, may provide new insights into Bd-host ecology. Whereas caution is necessary when interpreting such a broad global dataset, the use of our pathogen database is helping to inform studies of the epidemiology of Bd, as well as enabling regional, national, and international prioritization of conservation efforts. We

  10. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus.

    PubMed

    Olson, Deanna H; Aanensen, David M; Ronnenberg, Kathryn L; Powell, Christopher I; Walker, Susan F; Bielby, Jon; Garner, Trenton W J; Weaver, George; Fisher, Matthew C

    2013-01-01

    The rapid worldwide emergence of the amphibian pathogen Batrachochytrium dendrobatidis (Bd) is having a profound negative impact on biodiversity. However, global research efforts are fragmented and an overarching synthesis of global infection data is lacking. Here, we provide results from a community tool for the compilation of worldwide Bd presence and report on the analyses of data collated over a four-year period. Using this online database, we analysed: 1) spatial and taxonomic patterns of infection, including amphibian families that appear over- and under-infected; 2) relationships between Bd occurrence and declining amphibian species, including associations among Bd occurrence, species richness, and enigmatic population declines; and 3) patterns of environmental correlates with Bd, including climate metrics for all species combined and three families (Hylidae, Bufonidae, Ranidae) separately, at both a global scale and regional (U.S.A.) scale. These associations provide new insights for downscaled hypothesis testing. The pathogen has been detected in 52 of 82 countries in which sampling was reported, and it has been detected in 516 of 1240 (42%) amphibian species. We show that detected Bd infections are related to amphibian biodiversity and locations experiencing rapid enigmatic declines, supporting the hypothesis that greater complexity of amphibian communities increases the likelihood of emergence of infection and transmission of Bd. Using a global model including all sampled species, the odds of Bd detection decreased with increasing temperature range at a site. Further consideration of temperature range, rather than maximum or minimum temperatures, may provide new insights into Bd-host ecology. Whereas caution is necessary when interpreting such a broad global dataset, the use of our pathogen database is helping to inform studies of the epidemiology of Bd, as well as enabling regional, national, and international prioritization of conservation efforts. We

  11. Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibian-killing chytrid fungus.

    PubMed

    Bacigalupe, Leonardo D; Soto-Azat, Claudio; García-Vera, Cristobal; Barría-Oyarzo, Ismael; Rezende, Enrico L

    2017-09-01

    Chytridiomycosis, due to the fungus Batrachochytrium dendrobatidis (Bd), has been associated with the alarming decline and extinction crisis of amphibians worldwide. Because conservation programs are implemented locally, it is essential to understand how the complex interactions among host species, climate and human activities contribute to Bd occurrence at regional scales. Using weighted phylogenetic regressions and model selection, we investigated geographic patterns of Bd occurrence along a latitudinal gradient of 1500 km within a biodiversity hot spot in Chile (1845 individuals sampled from 253 sites and representing 24 species), and its association with climatic, socio-demographic and economic variables. Analyses show that Bd prevalence decreases with latitude although it has increased by almost 10% between 2008 and 2013, possibly reflecting an ongoing spread of Bd following the introduction of Xenopus laevis. Occurrence of Bd was higher in regions with high gross domestic product (particularly near developed centers) and with a high variability in rainfall regimes, whereas models including other bioclimatic or geographic variables, including temperature, exhibited substantially lower fit and virtually no support based on Akaike weights. In addition, Bd prevalence exhibited a strong phylogenetic signal, with five species having high numbers of infected individuals and higher prevalence than the average of 13.3% across all species. Taken together, our results highlight that Bd in Chile might still be spreading south, facilitated by a subset of species that seem to play an important epidemiological role maintaining this pathogen in the communities, in combination with climatic and human factors affecting the availability and quality of amphibian breeding sites. This information may be employed to design conservation strategies and mitigate the impacts of Bd in the biodiversity hot spot of southern Chile, and similar studies may prove useful to disentangle the

  12. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus.

    PubMed

    Becker, Matthew H; Brucker, Robert M; Schwantes, Christian R; Harris, Reid N; Minbiole, Kevin P C

    2009-11-01

    The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 microM on a salamander's skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria.

  13. Effects of the Chytrid fungus on the Tarahumara frog (Rana tarahumarae) in Arizona and Sonora, Mexico

    Treesearch

    Stephen F. Hale; Philip C. Rosen; James L. Jarchow; Gregory A. Bradley

    2005-01-01

    We conducted histological analyses on museum specimens collected 1975-1999 from 10 sites in Arizona and Sonora to test for the pathogenic chytrid fungus (Batrachochytrium dendrobatidis) in ranid frogs, focusing on the Tarahumara frog (Rana tarahumarae). During 1981-2000, frogs displaying disease signs were found in the field, and...

  14. Effects of temperature and hydric environment on survival of the Panamanian Golden Frog infected with a pathogenic chytrid fungus.

    PubMed

    Bustamante, Heidi M; Livo, Lauren J; Carey, Cynthia

    2010-06-01

    Considerable controversy exists concerning whether or not climate changes (particularly global warming) are causing outbreaks of a lethal amphibian pathogen, the chytrid fungus Batrachochytrium dendrobatidis (Longcore, Pessier & D.K. Nichols 1999). In the present study, groups of Panamanian golden frogs (Atelopus zeteki Dunn, 1993), a critically endangered amphibian thought to be nearly extinct in Panama, were exposed to varying dosages of zoospores of Batrachochytrium dendrobatidis, temperatures and hydric environments in order to learn whether this species is susceptible to this pathogen and, if so, how environmental factors affect survival. This pathogen proved to be highly lethal for A. zeteki. Frogs exposed to a dosage of 100 Bd zoospores survived significantly (P<0.0001) longer than those that had been exposed to 10(4) or 10(6) zoospores. Exposed frogs housed at 23 °C survived significantly (P<0.0001) longer than those that were housed at 17 °C. Exposed frogs held in dry conditions survived significantly longer than those in wet conditions (P<0.0001). As a laboratory study, these results do not directly test hypotheses about the relation between climate change and the decline of these frogs in the field, but they inform the discussion about how environmental conditions can have an impact on the interaction between a susceptible amphibian and this pathogen. These data do not support the contention that rising global temperatures are necessary to cause the death of amphibians infected with this pathogen because the pathogen was equally lethal at 17 as at 23 °C, and frogs at the warmer temperature lived significantly longer than those at the cooler one. © 2010 ISZS, Blackwell Publishing and IOZ/CAS.

  15. The Bacterially Produced Metabolite Violacein Is Associated with Survival of Amphibians Infected with a Lethal Fungus

    PubMed Central

    Becker, Matthew H.; Brucker, Robert M.; Schwantes, Christian R.; Harris, Reid N.; Minbiole, Kevin P. C.

    2009-01-01

    The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 μM on a salamander's skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria. PMID:19717627

  16. Evidence of disease-related amphibian decline in Colorado

    USGS Publications Warehouse

    Muths, Erin; Corn, Paul Stephen; Pessier, Allan P.; Green, D. Earl

    2003-01-01

    The recent discovery of a pathogenic fungus (Batrachochytrium dendrobatidis) associated with declines of frogs in the American and Australian tropics, suggests that at least the proximate cause, may be known for many previously unexplained amphibian declines. We have monitored boreal toads in Colorado since 1991 at four sites using capturea??recapture of adults and counts of egg masses to examine the dynamics of this metapopulation. Numbers of male toads declined in 1996 and 1999 with annual survival rate averaging 78% from 1991 to 1994, 45% in 1995 and 3% between 1998 and 1999. Numbers of egg masses also declined. An etiological diagnosis of chytridiomycosis consistent with infections by the genus Batrachochytrium was made in six wild adult toads. Characteristic histomorphological features (i.e. intracellular location, shape of thalli, presence of discharge tubes and rhizoids) of chytrid organisms, and host tissue response (acanthosis and hyperkeratosis) were observed in individual toads. These characteristics were indistinguishable from previously reported mortality events associated with chytrid fungus. We also observed epizootiological features consistent with mortality events associated with chytrid fungus: an increase in the ratio of female:male toads captured, an apparent spread of mortalities within the metapopulation and mortalities restricted to post metamorphic animals. Eleven years of population data suggest that this metapopulation of toads is in danger of extinction, pathological and epizootiological evidence indicates that B. dendrobatidis has played a proximate role in this process

  17. Global amphibian declines: perspectives from the United States and beyond

    USGS Publications Warehouse

    Densmore, Christine L.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    Over recent decades, amphibians have experienced population declines, extirpations and species-level extinctions at an alarming rate. Numerous potential etiologies for amphibian declines have been postulated including climate and habitat degradation. Other potential anthropogenic causes including overexploitation and the frequent introductions of invasive predatory species have also been blamed for amphibian declines. Still other underlying factors may include infectious diseases caused by the chytrid fungus Batrachochytrium dendrobatidis, pathogenic viruses (Ranavirus), and other agents. It is nearly certain that more than one etiology is to blame for the majority of the global amphibian declines, and that these causal factors include some combination of climatological or physical habitat destabilization and infectious disease, most notably chytridiomycosis. Scientific research efforts are aimed at elucidating these etiologies on local, regional, and global scales that we might better understand and counteract the driving forces behind amphibian declines. Conservation efforts as outlined in the Amphibian Conservation Action Plan of 2005 are also being made to curtail losses and prevent further extinctions wherever possible.

  18. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression.

    PubMed

    McMahon, Taegan A; Sears, Brittany F; Venesky, Matthew D; Bessler, Scott M; Brown, Jenise M; Deutsch, Kaitlin; Halstead, Neal T; Lentz, Garrett; Tenouri, Nadia; Young, Suzanne; Civitello, David J; Ortega, Nicole; Fites, J Scott; Reinert, Laura K; Rollins-Smith, Louise A; Raffel, Thomas R; Rohr, Jason R

    2014-07-10

    Emerging fungal pathogens pose a greater threat to biodiversity than any other parasitic group, causing declines of many taxa, including bats, corals, bees, snakes and amphibians. Currently, there is little evidence that wild animals can acquire resistance to these pathogens. Batrachochytrium dendrobatidis is a pathogenic fungus implicated in the recent global decline of amphibians. Here we demonstrate that three species of amphibians can acquire behavioural or immunological resistance to B. dendrobatidis. Frogs learned to avoid the fungus after just one B. dendrobatidis exposure and temperature-induced clearance. In subsequent experiments in which B. dendrobatidis avoidance was prevented, the number of previous exposures was a negative predictor of B. dendrobatidis burden on frogs and B. dendrobatidis-induced mortality, and was a positive predictor of lymphocyte abundance and proliferation. These results suggest that amphibians can acquire immunity to B. dendrobatidis that overcomes pathogen-induced immunosuppression and increases their survival. Importantly, exposure to dead fungus induced a similar magnitude of acquired resistance as exposure to live fungus. Exposure of frogs to B. dendrobatidis antigens might offer a practical way to protect pathogen-naive amphibians and facilitate the reintroduction of amphibians to locations in the wild where B. dendrobatidis persists. Moreover, given the conserved nature of vertebrate immune responses to fungi and the fact that many animals are capable of learning to avoid natural enemies, these results offer hope that other wild animal taxa threatened by invasive fungi might be rescued by management approaches based on herd immunity.

  19. Recent Asian origin of chytrid fungi causing global amphibian declines.

    PubMed

    O'Hanlon, Simon J; Rieux, Adrien; Farrer, Rhys A; Rosa, Gonçalo M; Waldman, Bruce; Bataille, Arnaud; Kosch, Tiffany A; Murray, Kris A; Brankovics, Balázs; Fumagalli, Matteo; Martin, Michael D; Wales, Nathan; Alvarado-Rybak, Mario; Bates, Kieran A; Berger, Lee; Böll, Susanne; Brookes, Lola; Clare, Frances; Courtois, Elodie A; Cunningham, Andrew A; Doherty-Bone, Thomas M; Ghosh, Pria; Gower, David J; Hintz, William E; Höglund, Jacob; Jenkinson, Thomas S; Lin, Chun-Fu; Laurila, Anssi; Loyau, Adeline; Martel, An; Meurling, Sara; Miaud, Claude; Minting, Pete; Pasmans, Frank; Schmeller, Dirk S; Schmidt, Benedikt R; Shelton, Jennifer M G; Skerratt, Lee F; Smith, Freya; Soto-Azat, Claudio; Spagnoletti, Matteo; Tessa, Giulia; Toledo, Luís Felipe; Valenzuela-Sánchez, Andrés; Verster, Ruhan; Vörös, Judit; Webb, Rebecca J; Wierzbicki, Claudia; Wombwell, Emma; Zamudio, Kelly R; Aanensen, David M; James, Timothy Y; Gilbert, M Thomas P; Weldon, Ché; Bosch, Jaime; Balloux, François; Garner, Trenton W J; Fisher, Matthew C

    2018-05-11

    Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis , a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, Bd ASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus.

    PubMed

    Harris, Reid N; Brucker, Robert M; Walke, Jenifer B; Becker, Matthew H; Schwantes, Christian R; Flaherty, Devon C; Lam, Brianna A; Woodhams, Douglas C; Briggs, Cheryl J; Vredenburg, Vance T; Minbiole, Kevin P C

    2009-07-01

    Emerging infectious diseases threaten human and wildlife populations. Altered ecological interactions between mutualistic microbes and hosts can result in disease, but an understanding of interactions between host, microbes and disease-causing organisms may lead to management strategies to affect disease outcomes. Many amphibian species in relatively pristine habitats are experiencing dramatic population declines and extinctions due to the skin disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis. Using a randomized, replicated experiment, we show that adding an antifungal bacterial species, Janthinobacterium lividum, found on several species of amphibians to the skins of the frog Rana muscosa prevented morbidity and mortality caused by the pathogen. The bacterial species produces the anti-chytrid metabolite violacein, which was found in much higher concentrations on frog skins in the treatments where J. lividum was added. Our results show that cutaneous microbes are a part of amphibians' innate immune system, the microbial community structure on frog skins is a determinant of disease outcome and altering microbial interactions on frog skins can prevent a lethal disease outcome. A bioaugmentation strategy may be an effective management tool to control chytridiomycosis in amphibian survival assurance colonies and in nature.

  1. Evaluating the links between climate, disease spread, and amphibian declines.

    PubMed

    Rohr, Jason R; Raffel, Thomas R; Romansic, John M; McCallum, Hamish; Hudson, Peter J

    2008-11-11

    Human alteration of the environment has arguably propelled the Earth into its sixth mass extinction event and amphibians, the most threatened of all vertebrate taxa, are at the forefront. Many of the worldwide amphibian declines have been caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd), and two contrasting hypotheses have been proposed to explain these declines. Positive correlations between global warming and Bd-related declines sparked the chytrid-thermal-optimum hypothesis, which proposes that global warming increased cloud cover in warm years that drove the convergence of daytime and nighttime temperatures toward the thermal optimum for Bd growth. In contrast, the spatiotemporal-spread hypothesis states that Bd-related declines are caused by the introduction and spread of Bd, independent of climate change. We provide a rigorous test of these hypotheses by evaluating (i) whether cloud cover, temperature convergence, and predicted temperature-dependent Bd growth are significant positive predictors of amphibian extinctions in the genus Atelopus and (ii) whether spatial structure in the timing of these extinctions can be detected without making assumptions about the location, timing, or number of Bd emergences. We show that there is spatial structure to the timing of Atelopus spp. extinctions but that the cause of this structure remains equivocal, emphasizing the need for further molecular characterization of Bd. We also show that the reported positive multi-decade correlation between Atelopus spp. extinctions and mean tropical air temperature in the previous year is indeed robust, but the evidence that it is causal is weak because numerous other variables, including regional banana and beer production, were better predictors of these extinctions. Finally, almost all of our findings were opposite to the predictions of the chytrid-thermal-optimum hypothesis. Although climate change is likely to play an important role in worldwide amphibian declines

  2. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus

    Treesearch

    Deanna H. Olson; David M. Aanensen; Kathryn L. Ronnenberg; Christopher I. Powell; Susan F. Walker; Jon Bielby; Trenton W.J. Garner; George Weaver; Matthew C. Fisher

    2013-01-01

    The rapid worldwide emergence of the amphibian pathogen Batrachochytrium dendrobatidis (Bd) is having a profound negative impact on biodiversity. However, global research efforts are fragmented and an overarching synthesis of global infection data is lacking. Here, we provide results from a community tool for the compilation of...

  3. The development of a spatially-explicit, individual-based, disease model for frogs and the chytrid fungus

    EPA Science Inventory

    Background / Question / Methods The fungal pathogen, Batrachochytrium dendrobatidis (BD), has been associated with amphibian population declines and even extinctions worldwide. Transmission of the fungus between amphibian hosts occurs via motile zoospores, which are produced on...

  4. West Africa - A Safe Haven for Frogs? A Sub-Continental Assessment of the Chytrid Fungus (Batrachochytrium dendrobatidis)

    PubMed Central

    Penner, Johannes; Adum, Gilbert B.; McElroy, Matthew T.; Doherty-Bone, Thomas; Hirschfeld, Mareike; Sandberger, Laura; Weldon, Ché; Cunningham, Andrew A.; Ohst, Torsten; Wombwell, Emma; Portik, Daniel M.; Reid, Duncan; Hillers, Annika; Ofori-Boateng, Caleb; Oduro, William; Plötner, Jörg; Ohler, Annemarie; Leaché, Adam D.; Rödel, Mark-Oliver

    2013-01-01

    A putative driver of global amphibian decline is the panzootic chytrid fungus Batrachochytrium dendrobatidis (Bd). While Bd has been documented across continental Africa, its distribution in West Africa remains ambiguous. We tested 793 West African amphibians (one caecilian and 61 anuran species) for the presence of Bd. The samples originated from seven West African countries - Bénin, Burkina Faso, Côte d'Ivoire, Ghana, Guinea, Liberia, Sierra Leone - and were collected from a variety of habitats, ranging from lowland rainforests to montane forests, montane grasslands to humid and dry lowland savannahs. The species investigated comprised various life-history strategies, but we focused particularly on aquatic and riparian species. We used diagnostic PCR to screen 656 specimen swabs and histology to analyse 137 specimen toe tips. All samples tested negative for Bd, including a widespread habitat generalist Hoplobatrachus occipitalis which is intensively traded on the West African food market and thus could be a potential dispersal agent for Bd. Continental fine-grained (30 arc seconds) environmental niche models suggest that Bd should have a broad distribution across West Africa that includes most of the regions and habitats that we surveyed. The surprising apparent absence of Bd in West Africa indicates that the Dahomey Gap may have acted as a natural barrier. Herein we highlight the importance of this Bd-free region of the African continent - especially for the long-term conservation of several threatened species depending on fast flowing forest streams (Conraua alleni (“Vulnerable”) and Petropedetes natator (“Near Threatened”)) as well as the “Critically Endangered” viviparous toad endemic to the montane grasslands of Mount Nimba (Nimbaphrynoides occidentalis). PMID:23426141

  5. 75 FR 56975 - Injurious Wildlife Species; Review of Information Concerning a Petition To List All Live...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... their eggs in trade as injurious unless certified as free of Batrachochytrium dendrobatidis (chytrid... would prohibit the importation of live amphibians or their eggs infected with chytrid fungus into, or... Wildlife requesting that live amphibians or their eggs in trade be considered for inclusion in the...

  6. Community Structure and Function of Amphibian Skin Microbes: An Experiment with Bullfrogs Exposed to a Chytrid Fungus.

    PubMed

    Walke, Jenifer B; Becker, Matthew H; Loftus, Stephen C; House, Leanna L; Teotonio, Thais L; Minbiole, Kevin P C; Belden, Lisa K

    2015-01-01

    The vertebrate microbiome contributes to disease resistance, but few experiments have examined the link between microbiome community structure and disease resistance functions. Chytridiomycosis, a major cause of amphibian population declines, is a skin disease caused by the fungus, Batrachochytrium dendrobatidis (Bd). In a factorial experiment, bullfrog skin microbiota was reduced with antibiotics, augmented with an anti-Bd bacterial isolate (Janthinobacterium lividum), or unmanipulated, and individuals were then either exposed or not exposed to Bd. We found that the microbial community structure of individual frogs prior to Bd exposure influenced Bd infection intensity one week following exposure, which, in turn, was negatively correlated with proportional growth during the experiment. Microbial community structure and function differed among unmanipulated, antibiotic-treated, and augmented frogs only when frogs were exposed to Bd. Bd is a selective force on microbial community structure and function, and beneficial states of microbial community structure may serve to limit the impacts of infection.

  7. Community Structure and Function of Amphibian Skin Microbes: An Experiment with Bullfrogs Exposed to a Chytrid Fungus

    PubMed Central

    Walke, Jenifer B.; Becker, Matthew H.; Loftus, Stephen C.; House, Leanna L.; Teotonio, Thais L.; Minbiole, Kevin P. C.; Belden, Lisa K.

    2015-01-01

    The vertebrate microbiome contributes to disease resistance, but few experiments have examined the link between microbiome community structure and disease resistance functions. Chytridiomycosis, a major cause of amphibian population declines, is a skin disease caused by the fungus, Batrachochytrium dendrobatidis (Bd). In a factorial experiment, bullfrog skin microbiota was reduced with antibiotics, augmented with an anti-Bd bacterial isolate (Janthinobacterium lividum), or unmanipulated, and individuals were then either exposed or not exposed to Bd. We found that the microbial community structure of individual frogs prior to Bd exposure influenced Bd infection intensity one week following exposure, which, in turn, was negatively correlated with proportional growth during the experiment. Microbial community structure and function differed among unmanipulated, antibiotic-treated, and augmented frogs only when frogs were exposed to Bd. Bd is a selective force on microbial community structure and function, and beneficial states of microbial community structure may serve to limit the impacts of infection. PMID:26445500

  8. Confronting inconsistencies in the amphibian-chytridiomycosis system: implications for disease management.

    PubMed

    Venesky, Matthew D; Raffel, Thomas R; McMahon, Taegan A; Rohr, Jason R

    2014-05-01

    Chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), is one of the largest threats to wildlife and is putatively linked to the extirpation of numerous amphibians. Despite over a decade of research on Bd, conflicting results from a number of studies make it difficult to forecast where future epizootics will occur and how to manage this pathogen effectively. Here, we emphasize how resolving these conflicts will advance Bd management and amphibian conservation efforts. We synthesize current knowledge on whether Bd is novel or endemic, whether amphibians exhibit acquired resistance to Bd, the importance of host resistance versus tolerance to Bd, and how biotic (e.g. species richness) and abiotic factors (e.g. climate change) affect Bd abundance. Advances in our knowledge of amphibian-chytrid interactions might inform the management of fungal pathogens in general, which are becoming more common and problematic globally. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  9. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs

    PubMed Central

    Richards-Zawacki, Corinne L.

    2010-01-01

    Predicting how climate change will affect disease dynamics requires an understanding of how the environment affects host–pathogen interactions. For amphibians, global declines and extinctions have been linked to a pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Using a combination of body temperature measurements and disease assays conducted before and after the arrival of B. dendrobatidis, this study tested the hypothesis that body temperature affects the prevalence of infection in a wild population of Panamanian golden frogs (Atelopus zeteki). The timing of first detection of the fungus was consistent with that of a wave of epidemic infections spreading south and eastward through Central America. During the epidemic, many golden frogs modified their thermoregulatory behaviour, raising body temperatures above their normal set point. Odds of infection decreased with increasing body temperature, demonstrating that even slight environmental or behavioural changes have the potential to affect an individual's vulnerability to infection. The thermal dependency of the relationship between B. dendrobatidis and its amphibian hosts demonstrates how the progression of an epidemic can be influenced by complex interactions between host and pathogen phenotypes and the environments in which they are found. PMID:19864287

  10. Restored agricultural wetlands in Central Iowa: habitat quality and amphibian response

    USGS Publications Warehouse

    Reeves, Rebecca A.; Pierce, Clay; Smalling, Kelly L.; Klaver, Robert W.; Vandever, Mark W.; Battaglin, William A.; Muths, Erin L.

    2016-01-01

    Amphibians are declining throughout the United States and worldwide due, partly, to habitat loss. Conservation practices on the landscape restore wetlands to denitrify tile drainage effluent and restore ecosystem services. Understanding how water quality, hydroperiod, predation, and disease affect amphibians in restored wetlands is central to maintaining healthy amphibian populations in the region. We examined the quality of amphibian habitat in restored wetlands relative to reference wetlands by comparing species richness, developmental stress, and adult leopard frog (Lithobates pipiens) survival probabilities to a suite of environmental metrics. Although measured habitat variables differed between restored and reference wetlands, differences appeared to have sub-lethal rather than lethal effects on resident amphibian populations. There were few differences in amphibian species richness and no difference in estimated survival probabilities between wetland types. Restored wetlands had more nitrate and alkaline pH, longer hydroperiods, and were deeper, whereas reference wetlands had more amphibian chytrid fungus zoospores in water samples and resident amphibians exhibited increased developmental stress. Restored and reference wetlands are both important components of the landscape in central Iowa and maintaining a complex of fish-free wetlands with a variety of hydroperiods will likely contribute to the persistence of amphibians in this landscape.

  11. Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone

    PubMed Central

    Thekkiniath, Jose; Zabet-Moghaddam, Masoud; Kottapalli, Kameswara Rao; Pasham, Mithun R.; San Francisco, Susan; San Francisco, Michael

    2015-01-01

    Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure. PMID:26046527

  12. Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone.

    PubMed

    Thekkiniath, Jose; Zabet-Moghaddam, Masoud; Kottapalli, Kameswara Rao; Pasham, Mithun R; San Francisco, Susan; San Francisco, Michael

    2015-01-01

    Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure.

  13. Amphibian skin may select for rare environmental microbes

    PubMed Central

    Walke, Jenifer B; Becker, Matthew H; Loftus, Stephen C; House, Leanna L; Cormier, Guy; Jensen, Roderick V; Belden, Lisa K

    2014-01-01

    Host-microbe symbioses rely on the successful transmission or acquisition of symbionts in each new generation. Amphibians host a diverse cutaneous microbiota, and many of these symbionts appear to be mutualistic and may limit infection by the chytrid fungus, Batrachochytrium dendrobatidis, which has caused global amphibian population declines and extinctions in recent decades. Using bar-coded 454 pyrosequencing of the 16S rRNA gene, we addressed the question of symbiont transmission by examining variation in amphibian skin microbiota across species and sites and in direct relation to environmental microbes. Although acquisition of environmental microbes occurs in some host-symbiont systems, this has not been extensively examined in free-living vertebrate-microbe symbioses. Juvenile bullfrogs (Rana catesbeiana), adult red-spotted newts (Notophthalmus viridescens), pond water and pond substrate were sampled at a single pond to examine host-specificity and potential environmental transmission of microbiota. To assess population level variation in skin microbiota, adult newts from two additional sites were also sampled. Cohabiting bullfrogs and newts had distinct microbial communities, as did newts across the three sites. The microbial communities of amphibians and the environment were distinct; there was very little overlap in the amphibians' core microbes and the most abundant environmental microbes, and the relative abundances of OTUs that were shared by amphibians and the environment were inversely related. These results suggest that, in a host species-specific manner, amphibian skin may select for microbes that are generally in low abundance in the environment. PMID:24858782

  14. Salamander chytrid fungus (Batrachochytrium salamandrivorans) in the United States—Developing research, monitoring, and management strategies

    USGS Publications Warehouse

    Grant, Evan H. Campbell; Muths, Erin L.; Katz, Rachel A.; Canessa, Stefano; Adams, Michael J.; Ballard, Jennifer R.; Berger, Lee; Briggs, Cheryl J.; Coleman, Jeremy; Gray, Matthew J.; Harris, M. Camille; Harris, Reid N.; Hossack, Blake R.; Huyvaert, Kathryn P.; Kolby, Jonathan E.; Lips, Karen R.; Lovich, Robert E.; McCallum, Hamish I.; Mendelson, Joseph R.; Nanjappa, Priya; Olson, Deanna H.; Powers, Jenny G.; Richgels, Katherine L. D.; Russell, Robin E.; Schmidt, Benedikt R.; Spitzen-van der Sluijs, Annemarieke; Watry, Mary Kay; Woodhams, Douglas C.; White, C. LeAnn

    2016-01-20

    The recently (2013) identified pathogenic chytrid fungus, Batrachochytrium salamandrivorans (Bsal), poses a severe threat to the distribution and abundance of salamanders within the United States and Europe. Development of a response strategy for the potential, and likely, invasion of Bsal into the United States is crucial to protect global salamander biodiversity. A formal working group, led by Amphibian Research and Monitoring Initiative (ARMI) scientists from the U.S. Geological Survey (USGS) Patuxent Wildlife Research Center, Fort Collins Science Center, and Forest and Rangeland Ecosystem Science Center, was held at the USGS Powell Center for Analysis and Synthesis in Fort Collins, Colorado, United States from June 23 to June 25, 2015, to identify crucial Bsal research and monitoring needs that could inform conservation and management strategies for salamanders in the United States. Key findings of the workshop included the following: (1) the introduction of Bsal into the United States is highly probable, if not inevitable, thus requiring development of immediate short-term and long-term intervention strategies to prevent Bsal establishment and biodiversity decline; (2) management actions targeted towards pathogen containment may be ineffective in reducing the long-term spread of Bsal throughout the United States; and (3) early detection of Bsal through surveillance at key amphibian import locations, among high-risk wild populations, and through analysis of archived samples is necessary for developing management responses. Top research priorities during the preinvasion stage included the following: (1) deployment of qualified diagnostic methods for Bsal and establishment of standardized laboratory practices, (2) assessment of susceptibility for amphibian hosts (including anurans), and (3) development and evaluation of short- and long-term pathogen intervention and management strategies. Several outcomes were achieved during the workshop, including development

  15. Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads

    Treesearch

    David S. Pilliod; Erin Muths; Rick D. Scherer; Paul E. Bartelt; Paul Stephen Corn; Blake R. Hossack; Brad A. Lambert; Rebecca McCaffery; Christopher Gaughan

    2010-01-01

    Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture-recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect...

  16. Distribution and environmental limitations of an amphibian pathogen in the Rocky Mountains, USA

    USGS Publications Warehouse

    Muths, E.; Pilliod, D.S.; Livo, L.J.

    2008-01-01

    Amphibian populations continue to be imperiled by the chytrid fungus (Batrachochytrium dendrobatidis). Understanding where B. dendrobatidis (Bd) occurs and how it may be limited by environmental factors is critical to our ability to effectively conserve the amphibians affected by Bd. We sampled 1247 amphibians (boreal toads and surrogates) at 261 boreal toad (Bufo boreas) breeding sites (97 clusters) along an 11?? latitudinal gradient in the Rocky Mountains to determine the distribution of B. dendrobatidis and examine environmental factors, such as temperature and elevation, that might affect its distribution. The fungus was detected at 64% of all clusters and occurred across a range of elevations (1030-3550 m) and latitudes (37.6-48.6??) but we detected it in only 42% of clusters in the south (site elevations higher), compared to 84% of clusters in the north (site elevations lower). Maximum ambient temperature (daily high) explained much of the variation in Bd occurrence in boreal toad populations and thus perhaps limits the occurrence of the pathogen in the Rocky Mountains to areas where climatic conditions facilitate optimal growth of the fungus. This information has implications in global climate change scenarios where warming temperatures may facilitate the spread of disease into previously un- or little-affected areas (i.e., higher elevations). This study provides the first regional-level, field-based effort to examine the relationship of environmental and geographic factors to the distribution of B. dendrobatidis in North America and will assist managers to focus on at-risk populations as determined by the local temperature regimes, latitude and elevation.

  17. Predicted disease susceptibility in a Panamanian amphibian assemblage based on skin peptide defenses.

    PubMed

    Woodhams, Douglas C; Voyles, Jamie; Lips, Karen R; Carey, Cynthia; Rollins-Smith, Louise A

    2006-04-01

    Chytridiomycosis is an emerging infectious disease of amphibians caused by a chytrid fungus, Batrachochytrium dendrobatidis. This panzootic does not equally affect all amphibian species within an assemblage; some populations decline, others persist. Little is known about the factors that affect disease resistance. Differences in behavior, life history, biogeography, or immune function may impact survival. We found that an innate immune defense, antimicrobial skin peptides, varied significantly among species within a rainforest stream amphibian assemblage that has not been exposed to B. dendrobatidis. If exposed, all amphibian species at this central Panamanian site are at risk of population declines. In vitro pathogen growth inhibition by peptides from Panamanian species compared with species with known resistance (Rana pipiens and Xenopus laevis) or susceptibility (Bufo boreas) suggests that of the nine species examined, two species (Centrolene prosoblepon and Phyllomedusa lemur) may demonstrate strong resistance, and the other species will have a higher risk of disease-associated population declines. We found little variation among geographically distinct B. dendrobatidis isolates in sensitivity to an amphibian skin peptide mixture. This supports the hypothesis that B. dendrobatidis is a generalist pathogen and that species possessing an innate immunologic defense at the time of disease emergence are more likely to survive.

  18. Pseudacris triseriata (western chorus frog) and Rana sylvatica (wood frog) chytridiomycosis

    USGS Publications Warehouse

    Rittman, S.E.; Muths, E.; Green, D.E.

    2003-01-01

    The chytrid fungus Batrachochytrium dendrobatidis is a known pathogen of anuran amphibians, and has been correlated with amphibian die-offs worldwide (Daszak et. al. 1999. Emerging Infectious Diseases 5:735-748). In Colorado, B. dendrobatidis has infected Boreal toads (Bufo boreas) (Muths et. al., in review) and has been identified on museum specimens of northern leopard frogs (Rana pipiens) (Carey et. al. 1999. Develop. Comp. Immunol. 23:459-472). We report the first verified case of chytrid fungus in chorus frogs (Pseudacris triseriata) and wood frogs (Rana sylvatica) in the United States. We collected seven P. triseriata, and two adult and two juvenile R. sylvatica in the Kawuneeche Valley in Rocky Mountain National Park (RMNP) during June 2001. These animals were submitted to the National Wildlife Health Center (NWHC) as part of an amphibian health evaluation in RMNP. Chorus frogs were shipped in one container. Wood frog adults and juveniles were shipped in two separate containers. Histological examinations of all chorus frogs and 3 of 4 wood frogs were positive for chytrid fungus infection. The fourth (adult) wood frog was too decomposed for meaningful histology. Histological findings consisted of multifocally mild to diffusely severe infections of the epidermis of the ventrum and hindlimb digital skin. Chytrid thalli were confined to the thickened epidermis (hyperkeratosis), were spherical to oval, and occasional thalli contained characteristic discharge pores or zoospores (Green and Kagarise Sherman 1999. J. Herpetol 35:92-103; Fellers et al. 2001. Copeia 2001:945-953). We cannot confirm that all specimens carried the fungus at collection, because infection may have spread from one individual to all other individuals in each container during transport. Further sampling of amphibians in Kawuneeche Valley is warranted to determine the rate of infection and mortality in these populations.

  19. Differential patterns of Batrachochytrium dendrobatidis infection in relict amphibian populations following severe disease-associated declines.

    PubMed

    Whitfield, Steven M; Alvarado, Gilbert; Abarca, Juan; Zumbado, Hector; Zuñiga, Ibrahim; Wainwright, Mark; Kerby, Jacob

    2017-09-20

    Global amphibian biodiversity has declined dramatically in the past 4 decades, and many amphibian species have declined to near extinction as a result of emergence of the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd). However, persistent or recovering populations of several amphibian species have recently been rediscovered, and such populations may illustrate how amphibian species that are highly susceptible to chytridiomycosis may survive in the presence of Bd. We conducted field surveys for Bd infection in 7 species of Costa Rican amphibians (all species that have declined to near extinction but for which isolated populations persist) to characterize infection profiles in highly Bd-susceptible amphibians post-decline. We found highly variable patterns in infection, with some species showing low prevalence (~10%) and low infection intensity and others showing high infection prevalence (>80%) and either low or high infection intensity. Across sites, infection rates were negatively associated with mean annual precipitation, and infection intensity across sites was negatively associated with mean average temperatures. Our results illustrate that even the most Bd-susceptible amphibians can persist in Bd-enzootic ecosystems, and that multiple ecological or evolutionary mechanisms likely exist for host-pathogen co-existence between Bd and the most Bd-susceptible amphibian species. Continued monitoring of these populations is necessary to evaluate population trends (continuing decline, stability, or population growth). These results should inform efforts to mitigate impacts of Bd on amphibians in the field.

  20. Species-specific chitin-binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis.

    PubMed

    Abramyan, John; Stajich, Jason E

    2012-01-01

    Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity. Amphibian populations are declining worldwide at an unprecedented rate. Although various factors are thought to contribute to this phenomenon, chytridiomycosis has been identified as one of the leading causes. This deadly fungal disease is cause by Batrachochytrium dendrobatidis, a chytrid fungus species unique in its pathogenicity and, furthermore, its specificity to amphibians. Despite more than two decades of research, the biology of this fungus species and its deadly interaction with amphibians had been notoriously difficult to unravel. Due to the alarming rate of worldwide

  1. Long-term monitoring of tropical alpine habitat change, Andean anurans, and chytrid fungus in the Cordillera Vilcanota, Peru: Results from a decade of study.

    PubMed

    Seimon, Tracie A; Seimon, Anton; Yager, Karina; Reider, Kelsey; Delgado, Amanda; Sowell, Preston; Tupayachi, Alfredo; Konecky, Bronwen; McAloose, Denise; Halloy, Stephan

    2017-03-01

    The Cordillera Vilcanota in southern Peru is the second largest glacierized range in the tropics and home to one of the largest high-alpine lakes, Sibinacocha (4,860 m). Here, Telmatobius marmoratus (marbled water frog), Rhinella spinulosa (Andean toad), and Pleurodema marmoratum (marbled four-eyed frog) have expanded their range vertically within the past century to inhabit newly formed ponds created by ongoing deglaciation. These anuran populations, geographically among the highest (5,200-5,400 m) recorded globally, are being impacted by the chytrid fungus Batrachochytrium dendrobatidis ( Bd ), and the disease it causes, chytridiomycosis. In this study, we report results from over a decade of monitoring these three anuran species, their habitat, and Bd infection status. Our observations reveal dynamic changes in habitat including ongoing rapid deglaciation (18.4 m/year widening of a corridor between retreating glaciers from 2005 to 2015), new pond formation, changes in vegetation in amphibian habitat, and widespread occurrence of Bd in amphibians in seven sites. Three of these sites have tested positive for Bd over a 9- to 12-year period. In addition, we observed a widespread reduction in T. marmoratus encounters in the Vilcanota in 2008, 2009, and 2012, while encounters increased in 2013 and 2015. Despite the rapid and dynamic changes in habitat under a warming climate, continued presence of Bd in the environment for over a decade, and a reduction in one of three anuran species, we document that these anurans continue to breed and survive in this high Andean environment. High variability in anuran encounters across sites and plasticity in these populations across habitats, sites, and years are all factors that could favor repopulation postdecline. Preserving the connectivity of wetlands in the Cordillera Vilcanota is therefore essential in ensuring that anurans continue to breed and adapt as climate change continues to reshape the environment.

  2. Characterization of Batrachochytrium dendrobatidis Inhibiting Bacteria from Amphibian Populations in Costa Rica

    PubMed Central

    Madison, Joseph D.; Berg, Elizabeth A.; Abarca, Juan G.; Whitfield, Steven M.; Gorbatenko, Oxana; Pinto, Adrian; Kerby, Jacob L.

    2017-01-01

    Global amphibian declines and extinction events are occurring at an unprecedented rate. While several factors are responsible for declines and extinction, the fungal pathogen Batrachochytrium dendrobatidis (Bd) has been cited as a major constituent in these events. While the effects of this chytrid fungus have been shown to cause broad scale population declines and extinctions, certain individuals and relict populations have shown resistance. This resistance has been attributed in part to the cutaneous bacterial microbiome. Here, we present the first study characterizing anti-Bd bacterial isolates from amphibian populations in Costa Rica, including the characterization of two strains of Serratia marcescens presenting strong anti-Bd activity. Transcriptome sequencing was utilized for delineation of shifts in gene expression of the two previously uncharacterized strains of S. marcescens grown in three different treatments comprising Bd, heat-killed Bd, and a no Bd control. These results revealed up- and down-regulation of key genes associated with different metabolic and regulatory pathways. This information will be valuable in continued efforts to develop a bacterial-based approach for amphibian protection as well as providing direction for continued mechanistic inquiries of the bacterial anti-Bd response. PMID:28293222

  3. Amphibian-killing chytrid in Brazil comprises both locally endemic and globally expanding populations.

    PubMed

    Jenkinson, T S; Betancourt Román, C M; Lambertini, C; Valencia-Aguilar, A; Rodriguez, D; Nunes-de-Almeida, C H L; Ruggeri, J; Belasen, A M; da Silva Leite, D; Zamudio, K R; Longcore, J E; Toledo, F L; James, T Y

    2016-07-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is the emerging infectious disease implicated in recent population declines and extinctions of amphibian species worldwide. Bd strains from regions of disease-associated amphibian decline to date have all belonged to a single, hypervirulent clonal genotype (Bd-GPL). However, earlier studies in the Atlantic Forest of southeastern Brazil detected a novel, putatively enzootic lineage (Bd-Brazil), and indicated hybridization between Bd-GPL and Bd-Brazil. Here, we characterize the spatial distribution and population history of these sympatric lineages in the Brazilian Atlantic Forest. To investigate the genetic structure of Bd in this region, we collected and genotyped Bd strains along a 2400-km transect of the Atlantic Forest. Bd-Brazil genotypes were restricted to a narrow geographic range in the southern Atlantic Forest, while Bd-GPL strains were widespread and largely geographically unstructured. Bd population genetics in this region support the hypothesis that the recently discovered Brazilian lineage is enzootic in the Atlantic Forest of Brazil and that Bd-GPL is a more recently expanded invasive. We collected additional hybrid isolates that demonstrate the recurrence of hybridization between panzootic and enzootic lineages, thereby confirming the existence of a hybrid zone in the Serra da Graciosa mountain range of Paraná State. Our field observations suggest that Bd-GPL may be more infective towards native Brazilian amphibians, and potentially more effective at dispersing across a fragmented landscape. We also provide further evidence of pathogen translocations mediated by the Brazilian ranaculture industry with implications for regulations and policies on global amphibian trade. © 2016 John Wiley & Sons Ltd.

  4. Phylogenetic evidence for a fusion of archaeal and bacterial SemiSWEETs to form eukaryotic SWEETs and identification of SWEET hexose transporters in the amphibian chytrid pathogen Batrachochytrium dendrobatidis.

    PubMed

    Hu, Yi-Bing; Sosso, Davide; Qu, Xiao-Qing; Chen, Li-Qing; Ma, Lai; Chermak, Diane; Zhang, De-Chun; Frommer, Wolf B

    2016-10-01

    SWEETs represent a new class of sugar transporters first described in plants, animals, and humans and later in prokaryotes. Plant SWEETs play key roles in phloem loading, seed filling, and nectar secretion, whereas the role of archaeal, bacterial, and animal transporters remains elusive. Structural analyses show that eukaryotic SWEETs are composed of 2 triple-helix bundles (THBs) fused via an inversion linker helix, whereas prokaryotic SemiSWEETs contain only a single THB and require homodimerization to form transport pores. This study indicates that SWEETs retained sugar transport activity in all kingdoms of life, and that SemiSWEETs are likely their ancestral units. Fusion of oligomeric subunits into single polypeptides during evolution of eukaryotes is commonly found for transporters. Phylogenetic analyses indicate that THBs of eukaryotic SWEETs may not have evolved by tandem duplication of an open reading frame, but rather originated by fusion between an archaeal and a bacterial SemiSWEET, which potentially explains the asymmetry of eukaryotic SWEETs. Moreover, despite the ancient ancestry, SWEETs had not been identified in fungi or oomycetes. Here, we report the identification of SWEETs in oomycetes as well as SWEETs and a potential SemiSWEET in primitive fungi. BdSWEET1 and BdSWEET2 from Batrachochytrium dendrobatidis, a nonhyphal zoosporic fungus that causes global decline in amphibians, showed glucose and fructose transport activities.-Hu, Y.-B., Sosso, D., Qu, X.-Q., Chen, L.-Q., Ma, L., Chermak, D., Zhang, D.-C., Frommer, W. B. Phylogenetic evidence for a fusion of archaeal and bacterial SemiSWEETs to form eukaryotic SWEETs and identification of SWEET hexose transporters in the amphibian chytrid pathogen Batrachochytrium dendrobatidis. © FASEB.

  5. The Emerging Amphibian Fungal Disease, Chytridiomycosis: A Key Example of the Global Phenomenon of Wildlife Emerging Infectious Diseases.

    PubMed

    Kolby, Jonathan E; Daszak, Peter

    2016-06-01

    The spread of amphibian chytrid fungus, Batrachochytrium dendrobatidis, is associated with the emerging infectious wildlife disease chytridiomycosis. This fungus poses an overwhelming threat to global amphibian biodiversity and is contributing toward population declines and extinctions worldwide. Extremely low host-species specificity potentially threatens thousands of the 7,000+ amphibian species with infection, and hosts in additional classes of organisms have now also been identified, including crayfish and nematode worms.Soon after the discovery of B. dendrobatidis in 1999, it became apparent that this pathogen was already pandemic; dozens of countries and hundreds of amphibian species had already been exposed. The timeline of B. dendrobatidis's global emergence still remains a mystery, as does its point of origin. The reason why B. dendrobatidis seems to have only recently increased in virulence to catalyze this global disease event remains unknown, and despite 15 years of investigation, this wildlife pandemic continues primarily uncontrolled. Some disease treatments are effective on animals held in captivity, but there is currently no proven method to eradicate B. dendrobatidis from an affected habitat, nor have we been able to protect new regions from exposure despite knowledge of an approaching "wave" of B. dendrobatidis and ensuing disease.International spread of B. dendrobatidis is largely facilitated by the commercial trade in live amphibians. Chytridiomycosis was recently listed as a globally notifiable disease by the World Organization for Animal Health, but few countries, if any, have formally adopted recommended measures to control its spread. Wildlife diseases continue to emerge as a consequence of globalization, and greater effort is urgently needed to protect global health.

  6. Health evaluation of amphibians in and near Rocky Mountain National Park (Colorado, USA)

    USGS Publications Warehouse

    Green, D.E.; Muths, E.

    2005-01-01

    We conducted a health survey of amphibians in and adjacent to Rocky Mountain National Park (RMNP) to document current disease presence inside RMNP and identify disease outside RMNP with the potential to spread to the Park's amphibians. Amphibians from five sites within RMNP and seven sites within 60 km of Park boundaries were collected and examined. Necropsies (n - 238), virus isolation, bacterial and fungal cultures, and histological examinations were carried out on amphibian egg masses (outside RMNP/within RMNP: 26/22), larvae (30/42), imagos (recently metamorphosed individuals) (0/3) and adults (61/67) of five species. Marked infections by a pathogenic chytrid fungus (chyridiomycosis), Batrachochytrium dendrobatidis, were detected in three species (Bufo boreas, Pseudacris maculata and Rana sylvatica) from three of five sites within RMNP and in one of three species (P. maculata) from three sites outside RMNP. Of the fully metamorphosed individuals tested (B. boreas, P. maculata and R. sylvatica), chytridiomycosis was found in 60 % (n = 3), 46 % (n = 37) and 54 % (n = 7), respectively. Chytridiomycosis was the principal lethal pathogenic infectious disease detected in three amphibian species within or adjacent to RMNP. Higher fungi were isolated from the cloaca and skin of all five amphibian species. Watermolds (Oomycetes) were isolated from amphibian eggs or skin of all five species. No evidence of Ranavirus was found in cultures and histological examinations of 176 and 142 amphibians, respectively. Fifteen genera of bacteria were identified in larval and just metamorphosed amphibians, and a potentially pathogenic lungworm, Rhabdias sp, was identified in 61.1 % (n = 11) of B. woodhousii outside RMNP, but in only 2 (15.4 %) R. sylvatica within the Park.

  7. Presence and significance of chytrid fungus Batrachochytrium dendrobatidis and other amphibian pathogens at warm-water fish hatcheries in southeastern North America

    USGS Publications Warehouse

    Green, D. Earl; Dodd, C. Kenneth

    2007-01-01

    Our objective was to determine whether diseases known to have detrimental effects on amphibians (ranavirus, BD, mesomycetozoa, protozoa and helminths) are present in amphibian larvae living in warm-water fish hatcheries in the southeastern United States. We further examined hatchery records to assess the extent to which amphibian larvae have been transported throughout various regions and potentially contribute to spreading emerging infectious diseases. 

  8. Current extinction rates of reptiles and amphibians.

    PubMed

    Alroy, John

    2015-10-20

    There is broad concern that a mass extinction of amphibians and reptiles is now underway. Here I apply an extremely conservative Bayesian method to estimate the number of recent amphibian and squamate extinctions in nine important tropical and subtropical regions. The data stem from a combination of museum collection databases and published site surveys. The method computes an extinction probability for each species by considering its sighting frequency and last sighting date. It infers hardly any extinction when collection dates are randomized and it provides underestimates when artificial extinction events are imposed. The method also appears to be insensitive to trends in sampling; therefore, the counts it provides are absolute minimums. Extinctions or severe population crashes have accumulated steadily since the 1970s and 1980s, and at least 3.1% of frog species have already disappeared. Based on these data and this conservative method, the best estimate of the global grand total is roughly 200 extinctions. Consistent with previous results, frog losses are heavy in Latin America, which has been greatly affected by the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Extinction rates are now four orders-of-magnitude higher than background, and at least another 6.9% of all frog species may be lost within the next century, even if there is no acceleration in the growth of environmental threats.

  9. Current extinction rates of reptiles and amphibians

    PubMed Central

    Alroy, John

    2015-01-01

    There is broad concern that a mass extinction of amphibians and reptiles is now underway. Here I apply an extremely conservative Bayesian method to estimate the number of recent amphibian and squamate extinctions in nine important tropical and subtropical regions. The data stem from a combination of museum collection databases and published site surveys. The method computes an extinction probability for each species by considering its sighting frequency and last sighting date. It infers hardly any extinction when collection dates are randomized and it provides underestimates when artificial extinction events are imposed. The method also appears to be insensitive to trends in sampling; therefore, the counts it provides are absolute minimums. Extinctions or severe population crashes have accumulated steadily since the 1970s and 1980s, and at least 3.1% of frog species have already disappeared. Based on these data and this conservative method, the best estimate of the global grand total is roughly 200 extinctions. Consistent with previous results, frog losses are heavy in Latin America, which has been greatly affected by the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Extinction rates are now four orders-of-magnitude higher than background, and at least another 6.9% of all frog species may be lost within the next century, even if there is no acceleration in the growth of environmental threats. PMID:26438855

  10. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease.

    PubMed

    Rohr, Jason R; Raffel, Thomas R

    2010-05-04

    The role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial, and the effect of climatic variability, in particular, has largely been ignored. For instance, it was recently revealed that the proposed link between climate change and widespread amphibian declines, putatively caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), was tenuous because it was based on a temporally confounded correlation. Here we provide temporally unconfounded evidence that global El Niño climatic events drive widespread amphibian losses in genus Atelopus via increased regional temperature variability, which can reduce amphibian defenses against pathogens. Of 26 climate variables tested, only factors associated with temperature variability could account for the spatiotemporal patterns of declines thought to be associated with Bd. Climatic predictors of declines became significant only after controlling for a pattern consistent with epidemic spread (by temporally detrending the data). This presumed spread accounted for 59% of the temporal variation in amphibian losses, whereas El Niño accounted for 59% of the remaining variation. Hence, we could account for 83% of the variation in declines with these two variables alone. Given that global climate change seems to increase temperature variability, extreme climatic events, and the strength of Central Pacific El Niño episodes, climate change might exacerbate worldwide enigmatic declines of amphibians, presumably by increasing susceptibility to disease. These results suggest that changes to temperature variability associated with climate change might be as significant to biodiversity losses and disease emergence as changes to mean temperature.

  11. Linking Ecology and Epidemiology to Understand Predictors of Multi-Host Responses to an Emerging Pathogen, the Amphibian Chytrid Fungus

    PubMed Central

    Stephens, Patrick R.; Hua, Jessica; Searle, Catherine L.; Xie, Gisselle Yang; Urbina, Jenny; Olson, Deanna H.; Bancroft, Betsy A.; Weis, Virginia; Hammond, John I.; Relyea, Rick A.; Blaustein, Andrew R.

    2017-01-01

    Variation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different amphibian species and is implicated in numerous global amphibian population declines. Identifying key hosts in the amphibian-Bd system–those who are at greatest risk or who pose the greatest risk for others–is challenging due in part to many extrinsic environmental factors driving spatiotemporal Bd distribution and context-dependent host responses to Bd in the wild. One way to improve predictive risk models and generate testable mechanistic hypotheses about vulnerability is to complement what we know about the spatial epidemiology of Bd with data collected through comparative experimental studies. We used standardized pathogen challenges to quantify amphibian survival and infection trajectories across 20 post-metamorphic North American species raised from eggs. We then incorporated trait-based models to investigate the predictive power of phylogenetic history, habitat use, and ecological and life history traits in explaining responses to Bd. True frogs (Ranidae) displayed the lowest infection intensities, whereas toads (Bufonidae) generally displayed the greatest levels of mortality after Bd exposure. Affiliation with ephemeral aquatic habitat and breadth of habitat use were strong predictors of vulnerability to and intensity of infection and several other traits including body size, lifespan, age at sexual maturity, and geographic range also appeared in top models explaining host responses to Bd. Several of the species examined are highly understudied with respect to Bd such that this study represents the first experimental susceptibility data. Combining insights gained from experimental studies with observations of

  12. Linking Ecology and Epidemiology to Understand Predictors of Multi-Host Responses to an Emerging Pathogen, the Amphibian Chytrid Fungus.

    PubMed

    Gervasi, Stephanie S; Stephens, Patrick R; Hua, Jessica; Searle, Catherine L; Xie, Gisselle Yang; Urbina, Jenny; Olson, Deanna H; Bancroft, Betsy A; Weis, Virginia; Hammond, John I; Relyea, Rick A; Blaustein, Andrew R

    2017-01-01

    Variation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different amphibian species and is implicated in numerous global amphibian population declines. Identifying key hosts in the amphibian-Bd system-those who are at greatest risk or who pose the greatest risk for others-is challenging due in part to many extrinsic environmental factors driving spatiotemporal Bd distribution and context-dependent host responses to Bd in the wild. One way to improve predictive risk models and generate testable mechanistic hypotheses about vulnerability is to complement what we know about the spatial epidemiology of Bd with data collected through comparative experimental studies. We used standardized pathogen challenges to quantify amphibian survival and infection trajectories across 20 post-metamorphic North American species raised from eggs. We then incorporated trait-based models to investigate the predictive power of phylogenetic history, habitat use, and ecological and life history traits in explaining responses to Bd. True frogs (Ranidae) displayed the lowest infection intensities, whereas toads (Bufonidae) generally displayed the greatest levels of mortality after Bd exposure. Affiliation with ephemeral aquatic habitat and breadth of habitat use were strong predictors of vulnerability to and intensity of infection and several other traits including body size, lifespan, age at sexual maturity, and geographic range also appeared in top models explaining host responses to Bd. Several of the species examined are highly understudied with respect to Bd such that this study represents the first experimental susceptibility data. Combining insights gained from experimental studies with observations of

  13. Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans.

    PubMed

    Van Rooij, Pascale; Pasmans, Frank; Coen, Yanaika; Martel, An

    2017-01-01

    The recently emerged chytrid fungus Batrachochytrium salamandrivorans (Bsal) causes European salamander declines. Proper hygiene protocols including disinfection procedures are crucial to prevent disease transmission. Here, the efficacy of chemical disinfectants in killing Bsal was evaluated. At all tested conditions, Biocidal®, Chloramine-T®, Dettol medical®, Disolol®, ethanol, F10®, Hibiscrub®, potassium permanganate, Safe4®, sodium hypochlorite, and Virkon S®, were effective at killing Bsal. Concentrations of 5% sodium chloride or lower, 0.01% peracetic acid and 0.001-1% copper sulphate were inactive against Bsal. None of the conditions tested for hydrogen peroxide affected Bsal viability, while it did kill Batrachochytrium dendrobatidis (Bd). For Bsal, enzymatic breakdown of hydrogen peroxide by catalases and specific morphological features (clustering of sporangia, development of new sporangia within the original sporangium), were identified as fungal factors altering susceptibility to several of the disinfectants tested. Based on the in vitro results we recommend 1% Virkon S®, 4% sodium hypochlorite and 70% ethanol for disinfecting equipment in the field, lab or captive setting, with a minimal contact time of 5 minutes for 1% Virkon S® and 1 minute for the latter disinfectants. These conditions not only efficiently target Bsal, but also Bd and Ranavirus.

  14. An alternative framework for responding to the amphibian crisis

    USGS Publications Warehouse

    Muths, Erin L.; Fisher, Robert N.

    2017-01-01

    Volumes of data illustrate the severity of the crisis affecting amphibians, where > 32% of amphibians worldwide are threatened with declining populations. Although there have been isolated victories, the current approach to the issue is unsuccessful. We suggest that a radically different approach, something akin to human emergency response management (i.e. the Incident Command System), is one alternative to addressing the inertia and lack of cohesion in responding to amphibian issues. We acknowledge existing efforts and the useful research that has been conducted, but we suggest that a change is warranted and that the identification of a new amphibian chytrid provides the impetus for such a change. Our goal is to recognize that without a centralized effort we (collectively) are likely to fail in responding to this challenge.

  15. Amphibian decline and extinction: what we know and what we need to learn.

    PubMed

    Collins, James P

    2010-11-01

    For over 350 million yr, thousands of amphibian species have lived on Earth. Since the 1980s, amphibians have been disappearing at an alarming rate, in many cases quite suddenly. What is causing these declines and extinctions? In the modern era (post 1500) there are 6 leading causes of biodiversity loss in general, and all of these acting alone or together are responsible for modern amphibian declines: commercial use; introduced/exotic species that compete with, prey on, and parasitize native frogs and salamanders; land use change; contaminants; climate change; and infectious disease. The first 3 causes are historical in the sense that they have been operating for hundreds of years, although the rate of change due to each accelerated greatly after about the mid-20th century. Contaminants, climate change, and emerging infectious diseases are modern causes suspected of being responsible for the so-called 'enigmatic decline' of amphibians in protected areas. Introduced/exotic pathogens, land use change, and infectious disease are the 3 causes with a clear role in amphibian decline as well as extinction; thus far, the other 3 causes are only implicated in decline and not extinction. The present work is a review of the 6 causes with a focus on pathogens and suggested areas where new research is needed. Batrachochytrium dendrobatidis (Bd) is a chytrid fungus that is an emerging infectious disease causing amphibian population decline and species extinction. Historically, pathogens have not been seen as a major cause of extinction, but Bd is an exception, which is why it is such an interesting, important pathogen to understand. The late 20th and early 21st century global biodiversity loss is characterized as a sixth extinction event. Amphibians are a striking example of these losses as they disappear at a rate that greatly exceeds historical levels. Consequently, modern amphibian decline and extinction is a lens through which we can view the larger story of biodiversity

  16. Widespread presence of the pathogenic fungus Batrachochytrium dendrobatidis in wild amphibian communities in Madagascar

    PubMed Central

    Bletz, Molly C.; Rosa, Gonçalo M.; Andreone, Franco; Courtois, Elodie A.; Schmeller, Dirk S.; Rabibisoa, Nirhy H. C.; Rabemananjara, Falitiana C. E.; Raharivololoniaina, Liliane; Vences, Miguel; Weldon, Ché; Edmonds, Devin; Raxworthy, Christopher J.; Harris, Reid N.; Fisher, Matthew C.; Crottini, Angelica

    2015-01-01

    Amphibian chytridiomycosis, an emerging infectious disease caused by the fungus Batrachochytrium dendrobatidis (Bd), has been a significant driver of amphibian declines. While globally widespread, Bd had not yet been reported from within Madagascar. We document surveys conducted across the country between 2005 and 2014, showing Bd's first record in 2010. Subsequently, Bd was detected in multiple areas, with prevalence reaching up to 100%. Detection of Bd appears to be associated with mid to high elevation sites and to have a seasonal pattern, with greater detectability during the dry season. Lineage-based PCR was performed on a subset of samples. While some did not amplify with any lineage probe, when a positive signal was observed, samples were most similar to the Global Panzootic Lineage (BdGPL). These results may suggest that Bd arrived recently, but do not exclude the existence of a previously undetected endemic Bd genotype. Representatives of all native anuran families have tested Bd-positive, and exposure trials confirm infection by Bd is possible. Bd's presence could pose significant threats to Madagascar's unique “megadiverse” amphibians. PMID:25719857

  17. Potential concerns with analytical methods used for the detection of Batrachochytrium salamandrivorans from archived DNA of amphibian swab samples, Oregon, USA

    Treesearch

    Deborah D. Iwanowicz; William B. Schill; Deanna H. Olson; Michael J. Adams; Christine Densmore; R. Scott Cornman; Cynthia Adams; Jr. Figiel; Chauncey W. Anderson; Andrew R. Blaustein; Tara Chestnut

    2017-01-01

    We report on the results of surveillance for the salamander chytrid fungus, Batrachochytrium salamandrivorans (Bsal). Two samples from archived DNA used in a previous chytrid study in Oregon were Bsal-positive, alerting us to the first potential finding of this pathogen in North America, infecting American...

  18. Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis

    PubMed Central

    2011-01-01

    Background Rescuing amphibian diversity is an achievable conservation challenge. Disease mitigation is one essential component of population management. Here we assess existing disease mitigation strategies, some in early experimental stages, which focus on the globally emerging chytrid fungus Batrachochytrium dendrobatidis. We discuss the precedent for each strategy in systems ranging from agriculture to human medicine, and the outlook for each strategy in terms of research needs and long-term potential. Results We find that the effects of exposure to Batrachochytrium dendrobatidis occur on a spectrum from transient commensal to lethal pathogen. Management priorities are divided between (1) halting pathogen spread and developing survival assurance colonies, and (2) prophylactic or remedial disease treatment. Epidemiological models of chytridiomycosis suggest that mitigation strategies can control disease without eliminating the pathogen. Ecological ethics guide wildlife disease research, but several ethical questions remain for managing disease in the field. Conclusions Because sustainable conservation of amphibians in nature is dependent on long-term population persistence and co-evolution with potentially lethal pathogens, we suggest that disease mitigation not focus exclusively on the elimination or containment of the pathogen, or on the captive breeding of amphibian hosts. Rather, successful disease mitigation must be context specific with epidemiologically informed strategies to manage already infected populations by decreasing pathogenicity and host susceptibility. We propose population level treatments based on three steps: first, identify mechanisms of disease suppression; second, parameterize epizootiological models of disease and population dynamics for testing under semi-natural conditions; and third, begin a process of adaptive management in field trials with natural populations. PMID:21496358

  19. Dermocystid-chytrid coinfection in the neotropical frog Hypsiboas pulchellus (Anura: Hylidae).

    PubMed

    Borteiro, Claudio; Cruz, Juan Carlos; Kolenc, Francisco; Verdes, José Manuel; Moraña, Antonio; Martínez Debat, Claudio; Kun, Alejandra; Ubilla, Martín; Okada, Kosuke

    2014-01-01

    We present gross and histologic evidence of coinfection in amphibians by fungal-like parasites of the order Dermocystidia (Amphibiocystidium sp.) and the fungus Batrachochytrium dendrobatidis. The condition was observed in frogs Hypsiboas pulchellus (Hylidae) from Uruguay in 2009 to 2012. This report is the first of dermocystids in Neotropical amphibians since 1940.

  20. Variation in the Presence of Anti-Batrachochytrium dendrobatidis Bacteria of Amphibians Across Life Stages and Elevations in Ecuador.

    PubMed

    Bresciano, J C; Salvador, C A; Paz-Y-Miño, C; Parody-Merino, A M; Bosch, J; Woodhams, D C

    2015-06-01

    Amphibian populations are decreasing worldwide due to a variety of factors. In South America, the chytrid fungus Batrachochytrium dendrobatidis (Bd) is linked to many population declines. The pathogenic effect of Bd on amphibians can be inhibited by specific bacteria present on host skin. This symbiotic association allows some amphibians to resist the development of the disease chytridiomycosis. Here, we aimed (1) to determine for the first time if specific anti-Bd bacteria are present on amphibians in the Andes of Ecuador, (2) to monitor anti-Bd bacteria across developmental stages in a focal amphibian, the Andean marsupial tree frog, Gastrotheca riobambae, that deposits larvae in aquatic habitats, and (3) to compare the Bd presence associated with host assemblages including 10 species at sites ranging in biogeography from Amazonian rainforest (450 masl) to Andes montane rainforest (3200 masl). We sampled and identified skin-associated bacteria of frogs in the field using swabs and a novel methodology of aerobic counting plates, and a combination of morphological, biochemical, and molecular identification techniques. The following anti-Bd bacteria were identified and found to be shared among several hosts at high-elevation sites where Bd was present at a prevalence of 32.5%: Janthinobacterium lividum, Pseudomonas fluorescens, and Serratia sp. Bd were detected in Gastrotheca spp. and not detected in the lowlands (sites below 1000 masl). In G. riobambae, recognized Bd-resistant bacteria start to be present at the metamorphic stage. Overall bacterial abundance was significantly higher post-metamorphosis and on species sampled at lower elevations. Further metagenomic studies are needed to evaluate the roles of host identity, life-history stage, and biogeography of the microbiota and their function in disease resistance.

  1. Amphibian commerce as a likely source of pathogen pollution.

    PubMed

    Picco, Angela M; Collins, James P

    2008-12-01

    The commercial trade of wildlife occurs on a global scale. In addition to removing animals from their native populations, this trade may lead to the release and subsequent introduction of nonindigenous species and the pathogens they carry. Emerging infectious diseases, such as chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), and ranaviral disease have spread with global trade in amphibians and are linked to amphibian declines and die-offs worldwide, which suggests that the commercial trade in amphibians may be a source of pathogen pollution. We screened tiger salamanders involved in the bait trade in the western United States for both ranaviruses and Bd with polymerase chain reaction and used oral reports from bait shops and ranavirus DNA sequences from infected bait salamanders to determine how these animals and their pathogens are moved geographically by commerce. In addition, we conducted 2 surveys of anglers to determine how often tiger salamanders are used as bait and how often they are released into fishing waters by anglers, and organized bait-shop surveys to determine whether tiger salamanders are released back into the wild after being housed in bait shops. Ranaviruses were detected in the tiger salamander bait trade in Arizona, Colorado, and New Mexico, and Bd was detected in Arizona bait shops. Ranaviruses were spread geographically through the bait trade. All tiger salamanders in the bait trade were collected from the wild, and in general they moved east to west and north to south, bringing with them their multiple ranavirus strains. Finally, 26-73% of anglers used tiger salamanders as fishing bait, 26-67% of anglers released tiger salamanders bought as bait into fishing waters, and 4% of bait shops released tiger salamanders back into the wild after they were housed in shops with infected animals. The tiger salamander bait trade in the western United States is a useful model for understanding the consequences of the

  2. Fluorescent probes as a tool for labelling and tracking the amphibian chytrid fungus Batrachochytrium dendrobatidis.

    PubMed

    Herbert, Sarah M; Leung, Tommy L F; Bishop, Phillip J

    2011-09-09

    The dissemination of the virulent pathogen Batrachochytrium dendrobatidis (Bd) has contributed to the decline and extinction of many amphibian species worldwide. Several different strains have been identified, some of which are sympatric. Interactions between co-infecting strains of a pathogen can have significant influences on disease epidemiology and evolution; therefore the dynamics of multi-strain infections is an important area of research. We stained Bd cells with 2 fluorescent BODIPY fatty acid probes to determine whether these can potentially be used to distinguish and track Bd cell lines in multi-strain experiments. Bd cells in broth culture were stained with 5 concentrations of green-fluorescent BODIPY FL and red-fluorescent BODIPY 558/568 and visualised under an epifluorescent microscope for up to 16 d post-dye. Dyed strains were also assessed for growth inhibition. The most effective concentration for both dyes was 10 pM. This concentration of dye produced strong fluorescence for 12 to 16 d in Bd cultures held at 23 degrees C (3 to 4 generations), and did not inhibit Bd growth. Cells dyed with BODIPY FL and BODIPY 558/568 can be distinguished from each other on the basis of their fluorescence characteristics. Therefore, it is likely that this technique will be useful for research into multi-strain dynamics of Bd infections.

  3. A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages.

    PubMed

    Langhammer, Penny F; Lips, Karen R; Burrowes, Patricia A; Tunstall, Tate; Palmer, Crystal M; Collins, James P

    2013-01-01

    Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen's role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.

  4. Disease in a dynamic landscape: host behavior and wildfire reduce amphibian chytrid infection

    USGS Publications Warehouse

    Hossack, Blake R.; Lowe, Winsor H.; Ware, Joy L.; Corn, Paul Stephen

    2013-01-01

    Disturbances are often expected to magnify effects of disease, but these effects may depend on the ecology, behavior, and life history of both hosts and pathogens. In many ecosystems, wildfire is the dominant natural disturbance and thus could directly or indirectly affect dynamics of many diseases. To determine how probability of infection by the aquatic fungus Batrachochytrium dendrobatidis (Bd) varies relative to habitat use by individuals, wildfire, and host characteristics, we sampled 404 boreal toads (Anaxyrus boreas boreas) across Glacier National Park, Montana (USA). Bd causes chytridiomycosis, an emerging infectious disease linked with widespread amphibian declines, including the boreal toad. Probability of infection was similar for females and the combined group of males and juveniles. However, only 9% of terrestrial toads were infected compared to >30% of aquatic toads, and toads captured in recently burned areas were half as likely to be infected as toads in unburned areas. We suspect these large differences in infection reflect habitat choices by individuals that affect pathogen exposure and persistence, especially in burned forests where warm, arid conditions could limit Bd growth. Our results show that natural disturbances such as wildfire and the resulting diverse habitats can influence infection across large landscapes, potentially maintaining local refuges and host behaviors that facilitate evolution of disease resistance.

  5. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the United States.

    PubMed

    Battaglin, W A; Smalling, K L; Anderson, C; Calhoun, D; Chestnut, T; Muths, E

    2016-10-01

    To investigate interactions among disease, pesticides, water quality, and adjacent land cover, we collected samples of water, sediment, and frog tissue from 21 sites in 7 States in the United States (US) representing a variety of amphibian habitats. All samples were analyzed for >90 pesticides and pesticide degradates, and water and frogs were screened for the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) using molecular methods. Pesticides and pesticide degradates were detected frequently in frog breeding habitats (water and sediment) as well as in frog tissue. Fungicides occurred more frequently in water, sediment, and tissue than was expected based upon their limited use relative to herbicides or insecticides. Pesticide occurrence in water or sediment was not a strong predictor of occurrence in tissue, but pesticide concentrations in tissue were correlated positively to agricultural and urban land, and negatively to forested land in 2-km buffers around the sites. Bd was detected in water at 45% of sites, and on 34% of swabbed frogs. Bd detections in water were not associated with differences in land use around sites, but sites with detections had colder water. Frogs that tested positive for Bd were associated with sites that had higher total fungicide concentrations in water and sediment, but lower insecticide concentrations in sediments relative to frogs that were Bd negative. Bd concentrations on frog swabs were positively correlated to dissolved organic carbon, and total nitrogen and phosphorus, and negatively correlated to pH and water temperature. Data were collected from a range of locations and amphibian habitats and represent some of the first field-collected information aimed at understanding the interactions between pesticides, land use, and amphibian disease. These interactions are of particular interest to conservation efforts as many amphibians live in altered habitats and may depend on wetlands embedded in these landscapes to survive

  6. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the United States

    USGS Publications Warehouse

    Battaglin, William A.; Smalling, Kelly L.; Anderson, Chauncey; Calhoun, Daniel L.; Chestnut, Tara E.; Muths, Erin L.

    2016-01-01

    To investigate interactions among disease, pesticides, water quality, and adjacent land cover, we collected samples of water, sediment, and frog tissue from 21 sites in 7 States in the United States (US) representing a variety of amphibian habitats. All samples were analyzed for > 90 pesticides and pesticide degradates, and water and frogs were screened for the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) using molecular methods. Pesticides and pesticide degradates were detected frequently in frog breeding habitats (water and sediment) as well as in frog tissue. Fungicides occurred more frequently in water, sediment, and tissue than was expected based upon their limited use relative to herbicides or insecticides. Pesticide occurrence in water or sediment was not a strong predictor of occurrence in tissue, but pesticide concentrations in tissue were correlated positively to agricultural and urban land, and negatively to forested land in 2-km buffers around the sites. Bd was detected in water at 45% of sites, and on 34% of swabbed frogs. Bd detections in water were not associated with differences in land use around sites, but sites with detections had colder water. Frogs that tested positive for Bd were associated with sites that had higher total fungicide concentrations in water and sediment, but lower insecticide concentrations in sediments relative to frogs that were Bd negative. Bd concentrations on frog swabs were positively correlated to dissolved organic carbon, and total nitrogen and phosphorus, and negatively correlated to pH and water temperature.Data were collected from a range of locations and amphibian habitats and represent some of the first field-collected information aimed at understanding the interactions between pesticides, land use, and amphibian disease. These interactions are of particular interest to conservation efforts as many amphibians live in altered habitats and may depend on wetlands embedded in these landscapes to

  7. Batrachochytrium salamandrivorans and the risk of a second amphibian pandemic

    USGS Publications Warehouse

    Yap, Tiffany A.; Nguyen, Natalie T.; Serr, Megan; Shepak, Alex; Vredenburg, Vance

    2017-01-01

    Amphibians are experiencing devastating population declines globally. A major driver is chytridiomycosis, an emerging infectious disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Bdwas described in 1999 and has been linked with declines since the 1970s, while Bsal is a more recently discovered pathogen that was described in 2013. It is hypothesized that Bsaloriginated in Asia and spread via international trade to Europe, where it has been linked to salamander die-offs. Trade in live amphibians thus represents a significant threat to global biodiversity in amphibians. We review the current state of knowledge regarding Bsal and describe the risk of Bsal spread. We discuss regional responses to Bsal and barriers that impede a rapid, coordinated global effort. The discovery of a second deadly emerging chytrid fungal pathogen in amphibians poses an opportunity for scientists, conservationists, and governments to improve global biosecurity and further protect humans and wildlife from a growing number of emerging infectious diseases.

  8. Diversity and Hidden Host Specificity of Chytrids infecting Colonial Volvocacean Algae.

    PubMed

    Van den Wyngaert, Silke; Rojas-Jimenez, Keilor; Seto, Kensuke; Kagami, Maiko; Grossart, Hans-Peter

    2018-05-12

    Chytrids are zoosporic fungi that play an important, but yet understudied, ecological role in aquatic ecosystems. Many chytrid species have been morphologically described as parasites on phytoplankton. However, the majority of them have rarely been isolated and lack DNA sequence data. In this study we isolated and cultivated three parasitic chytrids, infecting a common volvocacean host species, Yamagishiella unicocca. In order to identify the chytrids, we characterized morphology and life cycle, and analyzed phylogenetic relationships based on 18S and 28S rDNA genes. Host range and specificity of the chytrids was determined by cross infection assays with host strains, characterized by rbcL and ITS markers. We were able to confirm the identity of two chytrid strains as Endocoenobium eudorinae Ingold and Dangeardia mamillata Schröder and described the third chytrid strain as Algomyces stechlinensis gen. et sp. nov. The three chytrids were assigned to novel and phylogenetically distant clades within the phylum Chytridiomycota, each exhibiting different host specificities. By integrating morphological and molecular data of both the parasitic chytrids and their respective host species, we unveiled cryptic host-parasite associations. This study highlights that a high prevalence of (pseudo)cryptic diversity requires molecular characterization of both phytoplankton host and parasitic chytrid to accurately identify and compare host range and specificity, and to study phytoplankton-chytrid interactions in general. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Chytridiomycosis widespread in Anurans of Northeastern United States

    USGS Publications Warehouse

    Longcore, J.R.; Longcore, J.E.; Pessier, Allan P.; Halteman, W.A.

    2007-01-01

    An emerging disease of amphibians caused by the chytrid fungus Batrachochytrium dendrobatidis has been associated with morbidity, mortality, and extinction of species. Typically, researchers have detected B. dendrobatidis only when examining amphibians for causes of mortalities; few data exist on infection rates where mortalities are lacking. During May?September 2000?2002 we obtained amphibian specimens killed by vehicles and others collected at remote off-road sites throughout Maine, USA, and from federal lands in 5 states in the Northeast. We detected infected specimens, mostly green frogs (Rana clamitans), at 5 of 7 national wildlife refuges, a federal waterfowl production area, and Acadia National Park. Seven of 9 species, including all Ranidae species, were infected throughout Maine; rates ranged from 14.6% in American toads (Bufo americanus) to 25.7% in northern leopard frogs (Rana pipiens). We did not detect any infections in 50 eastern gray tree frogs (Hyla versicolor) or 21 spring peepers (Pseudacris crucifer). Species that hibernate in terrestrial habitats seem to have lower rates of infection than species that hibernate in aquatic habitats. Infections peaked in spring and autumn and were associated with air temperatures optimal for B. dendrobatidis growth. The relatively high infection rates among species without documented die-offs suggest that either losses have occurred undetected, that the fungus is endemic and species have attained a level of resistance to infections becoming lethal, or that climatic conditions of the Northeast have a role in preventing infections from being lethal. Data on prevalence and distribution of this chytrid fungus in the Northeast may be useful in modeling its origins and predicting long-term ecosystem effects involving anurans.

  10. Opening the file drawer: Unexpected insights from a chytrid infection experiment.

    PubMed

    Byrne, Allison Q; Poorten, Thomas J; Voyles, Jamie; Willis, Craig K R; Rosenblum, Erica Bree

    2018-01-01

    Infection experiments are critical for understanding wildlife disease dynamics. Although infection experiments are typically designed to reduce complexity, disease outcomes still result from complex interactions between host, pathogen, and environmental factors. Cryptic variation across factors can lead to decreased repeatability of infection experiments within and between research groups and hinder research progress. Furthermore, studies with unexpected results are often relegated to the "file drawer" and potential insights gained from these experimental outcomes are lost. Here, we report unexpected results from an infection experiment studying the response of two differentially-susceptible but related frogs (American Bullfrog Rana catesbeiana and the Mountain yellow-legged frog Rana muscosa) to the amphibian-killing chytrid fungus (Batrachochytrium dendrobatidis, Bd). Despite well-documented differences in susceptibility between species, we found no evidence for antibody-mediated immune response and no Bd-related mortality in either species. Additionally, during the study, the sham-inoculated R. catesbeiana control group became unexpectedly Bd-positive. We used a custom genotyping assay to demonstrate that the aberrantly-infected R. catesbeiana carried a Bd genotype distinct from the inoculation genotype. Thus R. catesbeiana individuals were acquired with low-intensity infections that could not be detected with qPCR. In the Bd-inoculated R. catesbeiana treatment group, the inoculated genotype appeared to out-compete the cryptic infection. Thus, our results provide insight into Bd coinfection dynamics, a phenomenon that is increasingly relevant as different pathogen strains are moved around the globe. Our experiment highlights how unexpected experimental outcomes can serve as both cautionary tales and opportunities to explore unanswered research questions. We use our results as a case study to highlight common sources of anomalous results for infection experiments

  11. Citation rate and perceived subject bias in the amphibian-decline literature.

    PubMed

    Ohmer, Michel E; Bishop, Phillip J

    2011-02-01

    As a result of global declines in amphibian populations, interest in the conservation of amphibians has grown. This growth has been fueled partially by the recent discovery of other potential causes of declines, including chytridiomycosis (the amphibian chytrid, an infectious disease) and climate change. It has been proposed that researchers have shifted their focus to these novel stressors and that other threats to amphibians, such as habitat loss, are not being studied in proportion to their potential effects. We tested the validity of this proposal by reviewing the literature on amphibian declines, categorizing the primary topic of articles within this literature (e.g., habitat loss or UV-B radiation) and comparing citation rates among articles on these topics and impact factors of journals in which the articles were published. From 1990 to 2009, the proportion of papers on habitat loss remained fairly constant, and although the number of papers on chytridiomycosis increased after the disease was described in 1998, the number of published papers on amphibian declines also increased. Nevertheless, papers on chytridiomycosis were more highly cited than papers not on chytridiomycosis and were published in journals with higher impact factors on average, which may indicate this research topic is more popular in the literature. Our results were not consistent with a shift in the research agenda on amphibians. We believe the perception of such a shift has been supported by the higher citation rates of papers on chytridiomycosis. ©2010 Society for Conservation Biology.

  12. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama.

    PubMed

    Crawford, Andrew J; Lips, Karen R; Bermingham, Eldredge

    2010-08-03

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity.

  13. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama

    PubMed Central

    Crawford, Andrew J.; Lips, Karen R.; Bermingham, Eldredge

    2010-01-01

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity. PMID:20643927

  14. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures.

    PubMed

    Xie, Gisselle Yang; Olson, Deanna H; Blaustein, Andrew R

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for

  15. Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures

    PubMed Central

    Olson, Deanna H.; Blaustein, Andrew R.

    2016-01-01

    Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for

  16. Evidence that chytrids dominate fungal communities in high-elevation soils

    PubMed Central

    Freeman, K. R.; Martin, A. P.; Karki, D.; Lynch, R. C.; Mitter, M. S.; Meyer, A. F.; Longcore, J. E.; Simmons, D. R.; Schmidt, S. K.

    2009-01-01

    Periglacial soils are one of the least studied ecosystems on Earth, yet they are widespread and are increasing in area due to retreat of glaciers worldwide. Soils in these environments are cold and during the brief summer are exposed to high levels of UV radiation and dramatic fluctuations in moisture and temperature. Recent research suggests that these environments harbor immense microbial diversity. Here we use sequencing of environmental DNA, culturing of isolates, and analysis of environmental variables to show that members of the Chytridiomycota (chytrids) dominate fungal biodiversity and perhaps decomposition processes in plant-free, high-elevation soils from the highest mountain ranges on Earth. The zoosporic reproduction of chytrids requires free water, yet we found that chytrids constituted over 70% of the ribosomal gene sequences of clone libraries from barren soils of the Himalayas and Rockies; by contrast, they are rare in other soil environments. Very few chytrids have been cultured, although we were successful at culturing chytrids from high-elevation sites throughout the world. In a more focused study of our sites in Colorado, we show that carbon sources that support chytrid growth (eolian deposited pollen and microbial phototrophs) are abundant and that soils are saturated with water for several months under the snow, thus creating ideal conditions for the development of a chytrid-dominated ecosystem. Our work broadens the known biodiversity of the Chytridomycota, and describes previously unsuspected links between aquatic and terrestrial ecosystems in alpine regions. PMID:19826082

  17. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs.

    PubMed

    Frenken, Thijs; Alacid, Elisabet; Berger, Stella A; Bourne, Elizabeth C; Gerphagnon, Mélanie; Grossart, Hans-Peter; Gsell, Alena S; Ibelings, Bas W; Kagami, Maiko; Küpper, Frithjof C; Letcher, Peter M; Loyau, Adeline; Miki, Takeshi; Nejstgaard, Jens C; Rasconi, Serena; Reñé, Albert; Rohrlack, Thomas; Rojas-Jimenez, Keilor; Schmeller, Dirk S; Scholz, Bettina; Seto, Kensuke; Sime-Ngando, Télesphore; Sukenik, Assaf; Van de Waal, Dedmer B; Van den Wyngaert, Silke; Van Donk, Ellen; Wolinska, Justyna; Wurzbacher, Christian; Agha, Ramsy

    2017-10-01

    Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology

    PubMed Central

    2010-01-01

    White-nose syndrome (WNS) is causing unprecedented declines in several species of North American bats. The characteristic lesions of WNS are caused by the fungus Geomyces destructans, which erodes and replaces the living skin of bats while they hibernate. It is unknown how this infection kills the bats. We review here the unique physiological importance of wings to hibernating bats in relation to the damage caused by G. destructans and propose that mortality is caused by catastrophic disruption of wing-dependent physiological functions. Mechanisms of disease associated with G. destructans seem specific to hibernating bats and are most analogous to disease caused by chytrid fungus in amphibians. PMID:21070683

  19. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology

    USGS Publications Warehouse

    Cryan, Paul M.; Meteyer, Carol U.; Boyles, Justin G.; Blehert, David S.

    2010-01-01

    White-nose syndrome (WNS) is causing unprecedented declines in several species of North American bats. The characteristic lesions of WNS are caused by the fungus Geomyces destructans, which erodes and replaces the living skin of bats while they hibernate. It is unknown how this infection kills the bats. We review here the unique physiological importance of wings to hibernating bats in relation to the damage caused by G. destructans and propose that mortality is caused by catastrophic disruption of wing-dependent physiological functions. Mechanisms of disease associated with G. destructans seem specific to hibernating bats and are most analogous to disease caused by chytrid fungus in amphibians.

  20. First report of spontaneous chytridiomycosis in frogs in Asia.

    PubMed

    Une, Yumi; Kadekaru, Sho; Tamukai, Kenichi; Goka, Kouichi; Kuroki, Toshiro

    2008-11-20

    This is the first report of amphibian chytridiomycosis in Asia. We discovered a lethal outbreak in Japan, among 45 exotic frogs from 18 species kept for breeding by a private owner. Of these 45 frogs, 16 died and another 7 were found to be infected by chytrid fungus Batrachochytrium dendrobatidis (Bd) but survived after treatment. Bd was detected in frogs from 9 species (Lepidobatrachus laevis, Ceratophrys cornuta, C. cranwelli, C. ornata, C. calcarata, Chacophrys pierotti, Occidozyga lima, Leptodactylus pentadactylus and Plethodontohyla tuberata).

  1. Amphibian chytridiomycosis: a review with focus on fungus-host interactions.

    PubMed

    Van Rooij, Pascale; Martel, An; Haesebrouck, Freddy; Pasmans, Frank

    2015-11-25

    Amphibian declines and extinctions are emblematic for the current sixth mass extinction event. Infectious drivers of these declines include the recently emerged fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans (Chytridiomycota). The skin disease caused by these fungi is named chytridiomycosis and affects the vital function of amphibian skin. Not all amphibians respond equally to infection and host responses might range from resistant, over tolerant to susceptible. The clinical outcome of infection is highly dependent on the amphibian host, the fungal virulence and environmental determinants. B. dendrobatidis infects the skin of a large range of anurans, urodeles and caecilians, whereas to date the host range of B. salamandrivorans seems limited to urodeles. So far, the epidemic of B. dendrobatidis is mainly limited to Australian, neotropical, South European and West American amphibians, while for B. salamandrivorans it is limited to European salamanders. Other striking differences between both fungi include gross pathology and thermal preferences. With this review we aim to provide the reader with a state-of-the art of host-pathogen interactions for both fungi, in which new data pertaining to the interaction of B. dendrobatidis and B. salamandrivorans with the host's skin are integrated. Furthermore, we pinpoint areas in which more detailed studies are necessary or which have not received the attention they merit.

  2. Antibacterial therapeutics for the treatment of chytrid infection in amphibians: Columbus's egg?

    PubMed

    Muijsers, Mariska; Martel, An; Van Rooij, Pascale; Baert, Kris; Vercauteren, Griet; Ducatelle, Richard; De Backer, Patrick; Vercammen, Francis; Haesebrouck, Freddy; Pasmans, Frank

    2012-09-25

    The establishment of safe and effective protocols to treat chytridiomycosis in amphibians is urgently required. In this study, the usefulness of antibacterial agents to clear chytridiomycosis from infected amphibians was evaluated. Florfenicol, sulfamethoxazole, sulfadiazine and the combination of trimethoprim and sulfonamides were active in vitro against cultures of five Batrachochytrium dendrobatidis strains containing sporangia and zoospores, with minimum inhibitory concentrations (MIC) of 0.5-1.0 μg/ml for florfenicol and 8.0 μg/ml for the sulfonamides. Trimethoprim was not capable of inhibiting growth but, combined with sulfonamides, reduced the time to visible growth inhibition by the sulfonamides. Growth inhibition of B. dendrobatidis was not observed after exposure to clindamycin, doxycycline, enrofloxacin, paromomycin, polymyxin E and tylosin. Cultures of sporangia and zoospores of B. dendrobatidis strains JEL423 and IA042 were killed completely after 14 days of exposure to 100 μg/ml florfenicol or 16 μg/ml trimethoprim combined with 80 μg/ml sulfadiazine. These concentrations were, however, not capable of efficiently killing zoospores within 4 days after exposure as assessed using flow cytometry. Florfenicol concentrations remained stable in a bathing solution during a ten day period. Exposure of Discoglossus scovazzi tadpoles for ten days to 100 μg/ml but not to 10 μg florfenicol /ml water resulted in toxicity. In an in vivo trial, post metamorphic Alytes muletensis, experimentally inoculated with B. dendrobatidis, were treated topically with a solution containing 10 μg/ml of florfenicol during 14 days. Although a significant reduction of the B. dendrobatidis load was obtained, none of the treated animals cleared the infection. We thus conclude that, despite marked anti B. dendrobatidis activity in vitro, the florfenicol treatment used is not capable of eliminating B. dendrobatidis infections from amphibians.

  3. Occurrence of the amphibian pathogen Batrachochytrium dendrobatidis in the Pacific Northwest.

    Treesearch

    C.A. Pearl; E.L. Bull; D.E. Green; J. Bowerman; M.J. Adams; A. Hyatt; W.H. Wente

    2007-01-01

    Chytridiomycosis (infection by the fungus Batrachochytrium dendrobatidis) is an emerging pathogen of amphibians that is associated with declines in at least four continents. We report results of disease screens from 271 field-sampled amphibians from Oregon and Washington. Chytridiomycosis was detected on 5 of 7 species and from 31 percent of all...

  4. Do Frogs Still Get Their Kicks On Route 66? A Transcontinental Transect For Amphibian Chytrid Fungus (Batrachochytrium Dendrobatidis) Infection On U.S. Department Of Defense Installations

    DTIC Science & Technology

    2011-01-04

    Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Ecology 103: 3165-3170. Lips KR...and Other Federal Lands in Sustaining Biodiversity . BioScience 58: 339-347. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL

  5. Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa)

    USGS Publications Warehouse

    Fellers, G.M.; Green, D.E.; Longcore, J.E.

    2001-01-01

    The chytrid fungus Batrachochytrium dendrobatidis was originally reported in wild frog populations in Panama and Australia, and from captive frogs in the U.S. National Zoological Park (Washington, DC). This recently described fungus affects the keratinized epidermis of amphibians and has been implicated as a causative factor in the declines of frog populations. We report here the presence of B. dendrobatidis in larval and recently metamorphosed mountain yellow-legged frogs (Rana muscosa) in or near the Sierra Nevada Mountains of California, an area where declines have been documented in all five species of native anurans. Forty-one percent (158 of 387) of larval R. muscosa examined in the field with a hand lens and 18% (14 of 79) of preserved larvae had abnormalities of the oral disc. Twenty-eight larvae were collected from 10 sites where tadpoles had been observed with missing or abnormally keratinized mouthparts, and 24 of these were examined for infection. Sixty-seven percent (16 of 24) of these tadpoles were infected with B. dendrobatidis. Batrachochytrium dendrobatidis was cultured from both tadpoles and recent metamorphs from one of these sites. Tadpoles with mouthpart abnormalities or confirmed chytrid fungus infections were collected at 23 sites spanning a distance of > 440 km and an elevational range from 1658a??3550 m. Life-history traits of R. muscosa may make this species particularly susceptible to infection by Batrachochytrium. We recommend that biologists examine tadpoles for oral disc abnormalities as a preliminary indication of chytridiomycosis. Further, we believe that biologists should take precautions to prevent spreading this and other amphibian diseases from one site to another.

  6. Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa)

    USGS Publications Warehouse

    Fellers, G.M.; Green, E.D.; Longcore, J.E.

    2001-01-01

    The chytrid fungus Batrachochytrium dendrobatidis was originally reported in wild frog populations in Panama and Australia, and from captive frogs in the U.S. National Zoological Park (Washington, DC). This recently described fungus affects the keratinized epidermis of amphibians and has been implicated as a causative factor in the declines of frog populations. We report here the presence of B. dendrobatidis in larval and recently metamorphosed mountain yellow-legged frogs (Rana muscosa) in or near the Sierra Nevada Mountains of California, an area where declines have been documented in all five species of native anurans. Forty-one percent (158 of 387) of larval R. muscosa examined in the field with a hand lens and 18% (14 of 79) of preserved larvae had abnormalities of the oral disc. Twenty-eight larvae were collected from 10 sites where tadpoles had been observed with missing or abnormally keratinized mouthparts, and 24 of these were examined for infection. Sixty-seven percent (16 of 24) of these tadpoles were infected with B. dendrobatidis. Batrachochytrium dendrobatidis was cultured from both tadpoles and recent metamorphs from one of these sites. Tadpoles with mouthpart abnormalities or confirmed chytrid fungus infections were collected at 23 sites spanning a distance of > 440 km and an elevational range from 1658-3550 m. Life-history traits of R. muscosa may make this species particularly susceptible to infection by Batrachochytrium. We recommend that biologists examine tadpoles for oral disc abnormalities as a preliminary indication of chytridiomycosis. Further, we believe that biologists should take precautions to prevent spreading this and other amphibian diseases from one site to another.

  7. Batrachochytrium dendrobatidis detected in amphibians from National Forests in eastern Texas, USA

    Treesearch

    Daniel Saenz; Brendan T. Kavanagh; Matthew A. Kwiatkowski

    2010-01-01

    The amphibian disease chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd, Longcore et al. 1999), is well known as a major threat to amphibians resulting in mass die-offs and population declines throughout the world (Berger et al. 1998; Blaustein and Keisecker 2002; Daszak et al. 2003; McCallum 2005; Rachowicz et al. 2006)....

  8. Antibacterial therapeutics for the treatment of chytrid infection in amphibians: Columbus’s egg?

    PubMed Central

    2012-01-01

    Background The establishment of safe and effective protocols to treat chytridiomycosis in amphibians is urgently required. In this study, the usefulness of antibacterial agents to clear chytridiomycosis from infected amphibians was evaluated. Results Florfenicol, sulfamethoxazole, sulfadiazine and the combination of trimethoprim and sulfonamides were active in vitro against cultures of five Batrachochytrium dendrobatidis strains containing sporangia and zoospores, with minimum inhibitory concentrations (MIC) of 0.5-1.0 μg/ml for florfenicol and 8.0 μg/ml for the sulfonamides. Trimethoprim was not capable of inhibiting growth but, combined with sulfonamides, reduced the time to visible growth inhibition by the sulfonamides. Growth inhibition of B. dendrobatidis was not observed after exposure to clindamycin, doxycycline, enrofloxacin, paromomycin, polymyxin E and tylosin. Cultures of sporangia and zoospores of B. dendrobatidis strains JEL423 and IA042 were killed completely after 14 days of exposure to 100 μg/ml florfenicol or 16 μg/ml trimethoprim combined with 80 μg/ml sulfadiazine. These concentrations were, however, not capable of efficiently killing zoospores within 4 days after exposure as assessed using flow cytometry. Florfenicol concentrations remained stable in a bathing solution during a ten day period. Exposure of Discoglossus scovazzi tadpoles for ten days to 100 μg/ml but not to 10 μg florfenicol /ml water resulted in toxicity. In an in vivo trial, post metamorphic Alytes muletensis, experimentally inoculated with B. dendrobatidis, were treated topically with a solution containing 10 μg/ml of florfenicol during 14 days. Although a significant reduction of the B. dendrobatidis load was obtained, none of the treated animals cleared the infection. Conclusions We thus conclude that, despite marked anti B. dendrobatidis activity in vitro, the florfenicol treatment used is not capable of eliminating B. dendrobatidis infections

  9. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia)

    NASA Astrophysics Data System (ADS)

    Agha, Ramsy; Saebelfeld, Manja; Manthey, Christin; Rohrlack, Thomas; Wolinska, Justyna

    2016-10-01

    Parasites are rarely included in food web studies, although they can strongly alter trophic interactions. In aquatic ecosystems, poorly grazed cyanobacteria often dominate phytoplankton communities, leading to the decoupling of primary and secondary production. Here, we addressed the interface between predator-prey and host-parasite interactions by conducting a life-table experiment, in which four Daphnia galeata genotypes were maintained on quantitatively comparable diets consisting of healthy cyanobacteria or cyanobacteria infected by a fungal (chytrid) parasite. In four out of five fitness parameters, at least one Daphnia genotype performed better on parasitised cyanobacteria than in the absence of infection. Further treatments consisting of purified chytrid zoospores and heterotrophic bacteria suspensions established the causes of improved fitness. First, Daphnia feed on chytrid zoospores which trophically upgrade cyanobacterial carbon. Second, an increase in heterotrophic bacterial biomass, promoted by cyanobacterial decay, provides an additional food source for Daphnia. In addition, chytrid infection induces fragmentation of cyanobacterial filaments, which could render cyanobacteria more edible. Our results demonstrate that chytrid parasitism can sustain zooplankton under cyanobacterial bloom conditions, and exemplify the potential of parasites to alter interactions between trophic levels.

  10. Fungal diseases of amphibians: an overview.

    PubMed

    Paré, Jean A

    2003-05-01

    Clinicians should be familiar with the most common fungal diseases of amphibians. Because lesions in mycotic diseases are nonspecific, a diagnosis cannot be established solely on the basis of clinical presentation. Bacterial, mycobacterial, chlamydial, and parasitic infections, and toxic or environmental conditions may mimic mycotic disease to various extents. Furthermore, mycoses may be masked by overwhelming secondary bacterial infection and therefore remain undiagnosed. Skin scrapings, impression smears, biopsies, and fungal culture are all useful tools in confirming or dismissing a diagnosis of mycosis. Whenever possible, an effort should be made to forward samples and biopsies for culture to appropriate laboratories. Providing the laboratory with a tentative etiologic diagnosis may allow for specific selection of more specific agars and culture conditions and maximize the chances of recovering the fungus from lesions. Identification to species level should also be encouraged, if progress is to be made in the understanding of mycoses in amphibians. The morphology of an isolate should be consistent with the microscopic features of the fungus in histological sections of affected tissues, if it is to be firmly incriminated as the cause of disease. A complete necropsy should be conducted on animals that die or are found dead, and, ideally, isolates from confirmed cases of fungal infection should be deposited in scientific collections, so that they are available for later studies. In addendum, readers should be aware that there is recent evidence to suggest that at least some published cases of amphibian basidiobolomycosis were in fact cases of chytridiomycosis [38], and therefore the validity of basidiobolomycosis as a disease entity in amphibians may be revisited in the years to come.

  11. Co-Infection by Chytrid Fungus and Ranaviruses in Wild and Harvested Frogs in the Tropical Andes

    PubMed Central

    Warne, Robin W.; LaBumbard, Brandon; LaGrange, Seth; Vredenburg, Vance T.; Catenazzi, Alessandro

    2016-01-01

    While global amphibian declines are associated with the spread of Batrachochytrium dendrobatidis (Bd), undetected concurrent co-infection by other pathogens may be little recognized threats to amphibians. Emerging viruses in the genus Ranavirus (Rv) also cause die-offs of amphibians and other ectotherms, but the extent of their distribution globally, or how co-infections with Bd impact amphibians are poorly understood. We provide the first report of Bd and Rv co-infection in South America, and the first report of Rv infections in the amphibian biodiversity hotspot of the Peruvian Andes, where Bd is associated with extinctions. Using these data, we tested the hypothesis that Bd or Rv parasites facilitate co-infection, as assessed by parasite abundance or infection intensity within individual adult frogs. Co-infection occurred in 30% of stream-dwelling frogs; 65% were infected by Bd and 40% by Rv. Among terrestrial, direct-developing Pristimantis frogs 40% were infected by Bd, 35% by Rv, and 20% co-infected. In Telmatobius frogs harvested for the live-trade 49% were co-infected, 92% were infected by Bd, and 53% by Rv. Median Bd and Rv loads were similar in both wild (Bd = 101.2 Ze, Rv = 102.3 viral copies) and harvested frogs (Bd = 103.1 Ze, Rv = 102.7 viral copies). While neither parasite abundance nor infection intensity were associated with co-infection patterns in adults, these data did not include the most susceptible larval and metamorphic life stages. These findings suggest Rv distribution is global and that co-infection among these parasites may be common. These results raise conservation concerns, but greater testing is necessary to determine if parasite interactions increase amphibian vulnerability to secondary infections across differing life stages, and constitute a previously undetected threat to declining populations. Greater surveillance of parasite interactions may increase our capacity to contain and mitigate the impacts of these and other wildlife

  12. Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America

    Treesearch

    Tara Chestnut; Chauncey Anderson; Radu Popa; Andrew R. Blaustein; Mary Voytek; Deanna H. Olson; Julie Kirshtein

    2014-01-01

    Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd), is a contributor to amphibian declines...

  13. Trouble in the aquatic world: How wildlife professionals are battling amphibian declines

    USGS Publications Warehouse

    Olson, Deanna H.; Chestnut, Tara E.

    2014-01-01

    A parasitic fungus, similar to the one that caused the extinction of numerous tropical frog and toad species, is killing salamanders in Europe. Scientists first identified the fungus, Batrachochytrium salamandrivorans, in 2013 as the culprit behind the death of fire salamanders (Salamandra salamandra) in the Netherlands (Martel et al. 2013) and are now exploring its potential impact to other species. Although the fungus, which kills the amphibians by infecting their skin, has not yet spread to the United States, researchers believe it’s only a matter of time before it does and, when that happens, the impact on salamander populations could be devastating (Martel et al. 2014).Reports of worldwide declines of amphibians began a quarter of a century ago (Blaustein & Wake 1990). Globally, some amphibian population declines occurred in the late 1950s and early 1960s, and declining trends continued in North America (Houlahan et al. 2000). In the earlier years, population declines were attributed primarily to overharvest due to unregulated supply of species such as the northern leopard frog (Lithobates pipiens) for educational use (Dodd 2013). In later years, however, causes of declines were less evident. In 1989, herpetologists at the First World Congress of Herpetology traded alarming stories of losses across continents and in seemingly protected landscapes, making it clear that amphibian population declines were a “global phenomenon.” In response to these reports, in 1991, the International Union for Conservation of Nature (IUCN) established the Declining Amphibian Populations Task Force to better understand the scale and scope of global amphibian declines. Unfortunately, the absence of long-term monitoring data and targeted studies made it difficult for the task force to compile information.Today, according to AmphibiaWeb.org, there are 7,342 amphibian species in the world — double the number since the first alerts of declines — making the situation

  14. Dr Jekyll and Mrs Hyde: Risky hybrid sex by amphibian-parasitizing chytrids in the Brazilian Atlantic Forests.

    PubMed

    Ghosh, Pria; Fisher, Matthew C

    2016-07-01

    In their article in this issue of Molecular Ecology, Jenkinson et al. () and colleagues address a worrying question-how could arguably the most dangerous pathogen known to science, Batrachochytrium dendrobatidis (Bd), become even more virulent? The answer: start having sex. Jenkinson et al. present a case for how the introduction into Brazil of the globally invasive lineage of Bd, BdGPL, has disrupted the relationship between native amphibians and an endemic Bd lineage, BdBrazil. BdBrazil is hypothesized to be native to the Atlantic Forest and so have a long co-evolutionary history with biodiverse Atlantic Forest amphibian community. The authors suggest that this has resulted in a zone of hybrid Bd genotypes which are potentially more likely to cause fatal chytridiomycosis than either parent lineage. The endemic-nonendemic Bd hybrid genotypes described in this study, and the evidence for pathogen translocation via the global amphibian trade presented, highlights the danger of anthropogenic pathogen dispersal. This research emphasizes that biosecurity regulations may have to refocus on lineages within species if we are to mitigate against the danger of new, possibly hypervirulent genotypes of pathogens emerging as phylogeographic barriers are breached. © 2016 John Wiley & Sons Ltd.

  15. Parasitic chytrids sustain zooplankton growth during inedible algal bloom

    PubMed Central

    Rasconi, Serena; Grami, Boutheina; Niquil, Nathalie; Jobard, Marlène; Sime-Ngando, Télesphore

    2014-01-01

    This study assesses the quantitative impact of parasitic chytrids on the planktonic food web of two contrasting freshwater lakes during different algal bloom situations. Carbon-based food web models were used to investigate the effects of chytrids during the spring diatom bloom in Lake Pavin (oligo-mesotrophic) and the autumn cyanobacteria bloom in Lake Aydat (eutrophic). Linear inverse modeling was employed to estimate undetermined flows in both lakes. The Monte Carlo Markov chain linear inverse modeling procedure provided estimates of the ranges of model-derived fluxes. Model results confirm recent theories on the impact of parasites on food web function through grazers and recyclers. During blooms of “inedible” algae (unexploited by planktonic herbivores), the epidemic growth of chytrids channeled 19–20% of the primary production in both lakes through the production of grazer exploitable zoospores. The parasitic throughput represented 50% and 57% of the zooplankton diet, respectively, in the oligo-mesotrophic and in the eutrophic lakes. Parasites also affected ecological network properties such as longer carbon path lengths and loop strength, and contributed to increase the stability of the aquatic food web, notably in the oligo-mesotrophic Lake Pavin. PMID:24904543

  16. Occurrence of the amphibian pathogen Batrachochytrium dendrobatidis in the Pacific Northwest

    USGS Publications Warehouse

    Pearl, C.A.; Bull, E.L.; Green, D.E.; Bowerman, J.; Adams, M.J.; Hyatt, A.; Wente, W.H.

    2007-01-01

    Chytridiomycosis (infection by the fungus Batrachochytrium dendrobatidis) has been associated with amphibian declines in at least four continents. We report results of disease screens from 210 pond-breeding amphibians from 37 field sites in Oregon and Washington. We detected B. dendrobatidis on 28% of sampled amphibians, and we found ??? 1 detection of B. dendrobatidis from 43% of sites. Four of seven species tested positive for B. dendrobatidis, including the Northern Red-Legged Frog (Rana aurora), Columbia Spotted Frog (Rana luteiventris), and Oregon Spotted Frog (Rana pretiosa). We also detected B. dendrobatidis in nonnative American Bullfrogs (Rana catesbeiana) from six sites in western and central Oregon. Our study and other recently published findings suggest that B. dendrobatidis has few geographic and host taxa limitations among North American anurans. Further research on virulence, transmissibility, persistence, and interactions with other stressors is needed to assess the potential impact of B. dendrobatidis on Pacific Northwestern amphibians. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  17. Distribution and risk factors for spread of amphibian chytrid fungus Batrachochytrium dendrobatidis in the Tasmanian Wilderness World Heritage Area, Australia.

    PubMed

    Pauza, Matthew D; Driessen, Michael M; Skerratt, Lee F

    2010-11-01

    Chytridiomycosis is an emerging infectious disease caused by the pathogen Batrachochytrium dendrobatidis (Bd) and is the cause of the decline and extinction of amphibian species throughout the world. We surveyed the distribution of Bd within and around the Tasmanian Wilderness World Heritage Area (TWWHA), a 1.38 million ha area of significant fauna conservation value, which provides the majority of habitat for Tasmania's 3 endemic frog species (Litoria burrowsae, Bryobatrachus nimbus and Crinia tasmaniensis). Bd was detected at only 1 (3%) of the 33 sites surveyed within the TWWHA and at 15 (52%) of the 29 sites surveyed surrounding the TWWHA. The relatively low incidence of the disease within the TWWHA suggests that the majority of the TWWHA is currently free of the pathogen despite the fact that the region provides what appears to be optimal conditions for the persistence of Bd. For all survey sites within and around the TWWHA, the presence of Bd was strongly associated with the presence of gravel roads, forest and < 1000 m altitude--factors that in this study were associated with human-disturbed landscapes around the TWWHA. Conversely, the presence of walking tracks was strongly associated with the absence of Bd, suggesting an association of absence with relatively remote locations. The wide distribution of Bd in areas of Tasmania with high levels of human disturbance and its very limited occurrence in remote wilderness areas suggests that anthropogenic activities may facilitate the dissemination of the pathogen on a landscape scale in Tasmania. Because the majority of the TWWHA is not readily accessible and appears to be largely free of Bd, and because Tasmanian frogs reproduce in ponds rather than streams, it may be feasible to control the spread of the disease in the TWWHA.

  18. Survey for the Pathogenic Chytrid Fungus Batrachochytrium dendrobatidis in Southwestern North Carolina Salamander Populations

    Treesearch

    S. Keitzer; Reuben Goforth; Allan Pessier; April Johnson

    2011-01-01

    Batrachochytrium dendrobatidis is a fungal pathogen responsible for a potentially fatal disease of amphibians. We conducted a survey for B. dendrobatidis in the Appalachian Mountains of southwestern North Carolina, USA, from 10 June to 23 July 23 2009. Ventral skin swabs were collected from plethodontid salamanders (n=278) and real-time PCR was performed to test for...

  19. Batrachochytrium dendrobatidis prevalence and haplotypes in domestic and imported pet amphibians in Japan.

    PubMed

    Tamukai, Kenichi; Une, Yumi; Tominaga, Atsushi; Suzuki, Kazutaka; Goka, Koichi

    2014-05-13

    The international trade in amphibians is believed to have increased the spread of Batrachochytrium dendrobatidis (Bd), the fungal pathogen responsible for chytridiomycosis, which has caused a rapid decline in amphibian populations worldwide. We surveyed amphibians imported into Japan and those held in captivity for a long period or bred in Japan to clarify the Bd infection status. Samples were taken from 820 individuals of 109 amphibian species between 2008 and 2011 and were analyzed by a nested-PCR assay. Bd prevalence in imported amphibians was 10.3% (58/561), while it was 6.9% (18/259) in those in private collections and commercially bred amphibians in Japan. We identified the genotypes of this fungus using partial DNA sequences of the internal transcribed spacer (ITS) region. Sequencing of PCR products of all 76 Bd-positive samples revealed 11 haplotypes of the Bd ITS region. Haplotype A (DNA Data Bank of Japan accession number AB435211) was found in 90% (52/58) of imported amphibians. The results show that Bd is currently entering Japan via the international trade in exotic amphibians as pets, suggesting that the trade has indeed played a major role in the spread of Bd.

  20. Widespread occurrence of bd in French Guiana, South America.

    PubMed

    Courtois, Elodie A; Gaucher, Philippe; Chave, Jérôme; Schmeller, Dirk S

    2015-01-01

    The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is a purported agent of decline and extinction of many amphibian populations worldwide. Its occurrence remains poorly documented in many tropical regions, including the Guiana Shield, despite the area's high amphibian diversity. We conducted a comprehensive assessment of Bd in French Guiana in order to (1) determine its geographical distribution, (2) test variation of Bd prevalence among species in French Guiana and compare it to earlier reported values in other South American anuran species (http://www.bd-maps.net; 123 species from 15 genera) to define sentinel species for future work, (3) track changes in prevalence through time and (4) determine if Bd presence had a negative effect on one selected species. We tested the presence of Bd in 14 species at 11 sites for a total of 1053 samples (306 in 2009 and 747 in 2012). At least one Bd-positive individual was found at eight out of 11 sites, suggesting a wide distribution of Bd in French Guiana. The pathogen was not uniformly distributed among the studied amphibian hosts, with Dendrobatidae species displaying the highest prevalence (12.4%) as compared to Bufonidae (2.6 %) and Hylidae (1.5%). In contrast to earlier reported values, we found highest prevalence for three Dendrobatidae species and two of them displayed an increase in Bd prevalence from 2009 to 2012. Those three species might be the sentinel species of choice for French Guiana. For Dendrobates tinctorius, of key conservation value in the Guiana Shield, smaller female individuals were more likely to be infected, suggesting either that frogs can outgrow their chytrid infections or that the disease induces developmental stress limiting growth. Generally, our study supports the idea that Bd is more widespread than previously thought and occurs at remote places in the lowland forest of the Guiana shield.

  1. Widespread Occurrence of Bd in French Guiana, South America

    PubMed Central

    Courtois, Elodie A.; Gaucher, Philippe; Chave, Jérôme; Schmeller, Dirk S.

    2015-01-01

    The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is a purported agent of decline and extinction of many amphibian populations worldwide. Its occurrence remains poorly documented in many tropical regions, including the Guiana Shield, despite the area’s high amphibian diversity. We conducted a comprehensive assessment of Bd in French Guiana in order to (1) determine its geographical distribution, (2) test variation of Bd prevalence among species in French Guiana and compare it to earlier reported values in other South American anuran species (http://www.bd-maps.net; 123 species from 15 genera) to define sentinel species for future work, (3) track changes in prevalence through time and (4) determine if Bd presence had a negative effect on one selected species. We tested the presence of Bd in 14 species at 11 sites for a total of 1053 samples (306 in 2009 and 747 in 2012). At least one Bd-positive individual was found at eight out of 11 sites, suggesting a wide distribution of Bd in French Guiana. The pathogen was not uniformly distributed among the studied amphibian hosts, with Dendrobatidae species displaying the highest prevalence (12.4%) as compared to Bufonidae (2.6 %) and Hylidae (1.5%). In contrast to earlier reported values, we found highest prevalence for three Dendrobatidae species and two of them displayed an increase in Bd prevalence from 2009 to 2012. Those three species might be the sentinel species of choice for French Guiana. For Dendrobates tinctorius, of key conservation value in the Guiana Shield, smaller female individuals were more likely to be infected, suggesting either that frogs can outgrow their chytrid infections or that the disease induces developmental stress limiting growth. Generally, our study supports the idea that Bd is more widespread than previously thought and occurs at remote places in the lowland forest of the Guiana shield. PMID:25902035

  2. Population and habitat viability assessment for the Wyoming toad (Bufo baxteri): Final workshop report

    USGS Publications Warehouse

    2001-01-01

    The Wyoming toad was listed as an endangered species under the Endangered Species Act on January 17, 1984, with a recovery plan approved in 1991. Currently the total population of the Wyoming toad includes approximately 200 animals in the captive breeding program and as few as 62 toads surviving at reintroduction sites in the Laramie Basin based upon fall 2000 survey data (after releases of more than 10,000 toads and tadpoles since 1995). Necessary conservation measures include improving reproduction and survival in the captive breeding program, improving survival at reintroduction sites, developing techniques to control the effects of the amphibian chytrid fungus, and eliminating threats and further habitat degradation in the wild.

  3. Distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the Pacific Northwestern USA

    USGS Publications Warehouse

    Pearl, Christopher A.; Bull, E.L.; Green, D.E.; Bowerman, Jay; Adams, Michael J.; Hyatt, A.; Wente, W.

    2007-01-01

    Chytridiomycosis (infection by the fungus Batrachochytrium dendrobatidis) has been associated with amphibian declines in at least four continents. We report results of disease screens from 210 pond-breeding amphibians from 37 field sites in Oregon and Washington. We detected B. dendrobatidis on 28% of sampled amphibians, and we found a?Y 1 detection of B. dendrobatidis from 43% of sites. Four of seven species tested positive for B. dendrobatidis, including the Northern Red-Legged Frog (Rana aurora), Columbia Spotted Frog (Rana luteiventris), and Oregon Spotted Frog (Rana pretiosa). We also detected B. dendrobatidis in nonnative American Bullfrogs (Rana catesbeiana) from six sites in western and central Oregon. Our study and other recently published findings suggest that B. dendrobatidis has few geographic and host taxa limitations among North American anurans. Further research on virulence, transmissibility, persistence, and interactions with other stressors is needed to assess the potential impact of B. dendrobatidis on Pacific Northwestern amphibians.

  4. Pathogenic fungus Batrachochytrium dendrobatidis in marbled water frog Telmatobius marmoratus: first record from Lake Titicaca, Bolivia.

    PubMed

    Cossel, John; Lindquist, Erik; Craig, Heather; Luthman, Kyle

    2014-11-13

    The pathogenic fungus Batrachochytrium dendrobatidis (Bd) has been associated with amphibian declines worldwide but has not been well-studied among Critically Endangered amphibian species in Bolivia. We sampled free-living marbled water frogs Telmatobius marmoratus (Anura: Leptodactylidae) from Isla del Sol, Bolivia, for Bd using skin swabs and quantitative polymerase chain reactions. We detected Bd on 44% of T. marmoratus sampled. This is the first record of Bd in amphibians from waters associated with Lake Titicaca, Bolivia. These results further confirm the presence of Bd in Bolivia and substantiate the potential threat of this pathogen to the Critically Endangered, sympatric Titicaca water frog T. culeus and other Andean amphibians.

  5. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates.

    PubMed

    Lepelletier, Frédéric; Karpov, Sergey A; Alacid, Elisabet; Le Panse, Sophie; Bigeard, Estelle; Garcés, Esther; Jeanthon, Christian; Guillou, Laure

    2014-03-01

    Environmental 18S rRNA gene surveys of microbial eukaryotes have recently revealed the diversity of major parasitic agents in pelagic freshwater systems, consisting primarily of chytrid fungi. To date, only a few studies have reported the presence of chydrids in the marine environment and a limited number of marine chytrids have been properly identified and characterized. Here, we report the isolation and cultivation of a marine chytrid from samples taken during a bloom of the toxic dinoflagellate Alexandrium minutum in the Arenys de Mar harbour (Mediterranean Sea, Spain). Cross-infections using cultures and natural phytoplankton communities revealed that this chytrid is only able to infect certain species of dinoflagellates, with a rather wide host range but with a relative preference for Alexandrium species. Phylogenetic analyses showed that it belongs to the order Rhizophydiales, but cannot be included in any of the existing families within this order. Several ultrastructural characters confirmed the placement of this taxon within the Rhizophydiales as well its novelty notably in terms of zoospore structure. This marine chytridial parasitoid is described as a new genus and species, Dinomyces arenysensis, within the Dinomycetaceae fam. nov. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Bd on the beach: high prevalence of Batrachochytrium dendrobatidis in the lowland forests of Gorgona Island (Colombia, South America).

    PubMed

    Flechas, Sandra Victoria; Sarmiento, Carolina; Amézquita, Adolfo

    2012-09-01

    The amphibian chytrid fungus, Batrachochytrium dendrobatidis, Bd, has been implicated in the decimation and extinction of many amphibian populations worldwide, especially at mid and high elevations. Recent studies have demonstrated the presence of the pathogen in the lowlands from Australia and Central America. We extend here its elevational range by demonstrating its presence at the sea level, in the lowland forests of Gorgona Island, off the Pacific coast of Colombia. We conducted two field surveys, separated by four years, and diagnosed Bd by performing polymerase chain reactions on swab samples from the skin of five amphibian species. All species, including the Critically Endangered Atelopus elegans, tested positive for the pathogen, with prevalences between 3.9 % in A. elegans (in 2010) and 52 % in Pristimantis achatinus. Clinical signs of chytridiomycosis were not detected in any species. To our knowledge, this is the first report of B. dendrobatidis in tropical lowlands at sea level, where temperatures may exceed optimal growth temperatures of this pathogen. This finding highlights the need to understand the mechanisms allowing the interaction between frogs and pathogen in lowland ecosystems.

  7. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis

    PubMed Central

    Carvalho, Tamilie; Becker, C. Guilherme

    2017-01-01

    The recent increase in emerging fungal diseases is causing unprecedented threats to biodiversity. The origin of spread of the frog-killing fungus Batrachochytrium dendrobatidis (Bd) is a matter of continued debate. To date, the historical amphibian declines in Brazil could not be attributed to chytridiomycosis; the high diversity of hosts coupled with the presence of several Bd lineages predating the reported declines raised the hypothesis that a hypervirulent Bd genotype spread from Brazil to other continents causing the recent global amphibian crisis. We tested for a spatio-temporal overlap between Bd and areas of historical amphibian population declines and extinctions in Brazil. A spatio-temporal convergence between Bd and declines would support the hypothesis that Brazilian amphibians were not adapted to Bd prior to the reported declines, thus weakening the hypothesis that Brazil was the global origin of Bd emergence. Alternatively, a lack of spatio-temporal association between Bd and frog declines would indicate an evolution of host resistance in Brazilian frogs predating Bd's global emergence, further supporting Brazil as the potential origin of the Bd panzootic. Here, we Bd-screened over 30 000 museum-preserved tadpoles collected in Brazil between 1930 and 2015 and overlaid spatio-temporal Bd data with areas of historical amphibian declines. We detected an increase in the proportion of Bd-infected tadpoles during the peak of amphibian declines (1979–1987). We also found that clusters of Bd-positive samples spatio-temporally overlapped with most records of amphibian declines in Brazil's Atlantic Forest. Our findings indicate that Brazil is post epizootic for chytridiomycosis and provide another piece to the puzzle to explain the origin of Bd globally. PMID:28179514

  8. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis.

    PubMed

    Carvalho, Tamilie; Becker, C Guilherme; Toledo, Luís Felipe

    2017-02-08

    The recent increase in emerging fungal diseases is causing unprecedented threats to biodiversity. The origin of spread of the frog-killing fungus Batrachochytrium dendrobatidis ( Bd ) is a matter of continued debate. To date, the historical amphibian declines in Brazil could not be attributed to chytridiomycosis; the high diversity of hosts coupled with the presence of several Bd lineages predating the reported declines raised the hypothesis that a hypervirulent Bd genotype spread from Brazil to other continents causing the recent global amphibian crisis. We tested for a spatio-temporal overlap between Bd and areas of historical amphibian population declines and extinctions in Brazil. A spatio-temporal convergence between Bd and declines would support the hypothesis that Brazilian amphibians were not adapted to Bd prior to the reported declines, thus weakening the hypothesis that Brazil was the global origin of Bd emergence. Alternatively, a lack of spatio-temporal association between Bd and frog declines would indicate an evolution of host resistance in Brazilian frogs predating Bd 's global emergence , further supporting Brazil as the potential origin of the Bd panzootic. Here, we Bd -screened over 30 000 museum-preserved tadpoles collected in Brazil between 1930 and 2015 and overlaid spatio-temporal Bd data with areas of historical amphibian declines. We detected an increase in the proportion of Bd -infected tadpoles during the peak of amphibian declines (1979-1987). We also found that clusters of Bd -positive samples spatio-temporally overlapped with most records of amphibian declines in Brazil's Atlantic Forest. Our findings indicate that Brazil is post epizootic for chytridiomycosis and provide another piece to the puzzle to explain the origin of Bd globally. © 2017 The Author(s).

  9. Long-term observations of Boreal Toads at an ARMI apex site

    USGS Publications Warehouse

    Corn, Paul Stephen; Muths, Erin L.; Pilliod, David S.

    2011-01-01

    The U.S. Geological Survey’s Amphibian Research and Monitoring Initiative (ARMI) is a national project with goals to monitor the status and trends of amphibians, conduct research on causes of declines, and provide information and support to management agencies for conservation of amphibian populations. ARMI activities are organized around extensive inventories and place-based monitoring (such as collaboration with the Greater Yellowstone Inventory and Monitoring Network), and intensive population studies and research at selected locations (apex sites). One such site is an oxbow pond on the Buffalo Fork near the Black Rock Ranger Station east of Grand Teton National Park. We have been conducting mark-recapture of boreal toads (Anaxyrus boreas) at Black Rock since 2002. In concert with studies of other toad populations in the Rocky Mountains, we have documented a high rate of incidence of the chytrid fungus Batrachochytrium dendrobatidis (Bd) and a negative rate of growth of the toad population, but not the population crash or extinction observed in other populations with high prevalence of Bd. Long-term observations at other ARMI apex sites have proven invaluable for studying effects of climate change on amphibian behavior, and the Black Rock site has been upgraded with onsite recording of weather data and auditory monitoring of other amphibian species. Continued research at Black Rock will be critical for understanding the interrelated effects of climate and disease on amphibians in the Greater Yellowstone Ecosystem.

  10. Survey for the pathogenic chytrid fungus Batrachochytrium dendrobatidis in southwestern North Carolina salamander populations.

    PubMed

    Keitzer, S Conor; Goforth, Reuben; Pessier, Allan P; Johnson, April J

    2011-04-01

    Batrachochytrium dendrobatidis is a fungal pathogen responsible for a potentially fatal disease of amphibians. We conducted a survey for B. dendrobatidis in the Appalachian Mountains of southwestern North Carolina, USA, from 10 June to 23 July 23 2009. Ventral skin swabs were collected from plethodontid salamanders (n=278) and real-time PCR was performed to test for the presence of B. dendrobatidis. We found no evidence of B. dendrobatidis, suggesting that B. dendrobatidis is absent or present in such low levels that it was undetected. If B. dendrobatidis was present at the time of our sampling, this survey supports evidence of low prevalence of B. dendrobatidis in North American headwater stream salamander populations.

  11. Identifying parasitic and saprotrophic interactions of freshwater chytrids with a microalga

    NASA Astrophysics Data System (ADS)

    Ward, C.; Longcore, J. E.; Carney, L. T.; Mayali, X.; Pett-Ridge, J.; Thelen, M. P.; Stuart, R.

    2016-12-01

    Despite having long been regarded as ecologically insignificant, aquatic fungi may be key regulators of carbon cycling in phytoplankton-dominated freshwater ecosystems. For several decades, it has been known that through infection chytrids and other parasitic fungi can cause major declines in natural algal populations and the release of large quantities of organic matter into the water column. Additionally, as in other environments fungi may be critically important in the decomposition of refractory organic matter, although to our knowledge this has never been investigated in pelagic freshwater ecosystems. We have a limited understanding of how fungi can interact with phytoplankton or phytoplankton-derived organic matter, and logistical difficulties complicate their study in the environment. Here, we have developed a model green alga-chytrid system to characterize the interactions under varying host physiologies and to investigate how these interactions influence the physiological and metabolic outcomes of both members. Chytrid infection was clearly linked to algal growth stage in the fungal isolate belonging to Rhizophydiales with infectivity only in late cyst stage, while the isolate belonging to Paraphysoderma could infect in both early and late cyst stages. To test whether freshwater chytrids can metabolize algal-derived organic matter, fungal isolates were grown axenically in algal spent media from different growth stages. The Rhizophydiales isolate grew on algal exudate from early cyst stage, while the Paraphysodermaisolate grew on exudates from both growth stages. Ongoing work has focused on using biochemical and multi-omic approaches to study the mechanistic underpinnings of algal-fungal interactions and to better understand the factors contributing to growth stage- and strain-specific differences. Together, these findings suggest that fungi may play a dual role in regulating carbon cycling in freshwater ecosystems via parasitic and saprotrophic strategies

  12. Whether the weather drives patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach.

    PubMed

    Murray, Kris A; Skerratt, Lee F; Garland, Stephen; Kriticos, Darren; McCallum, Hamish

    2013-01-01

    The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ~72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and

  13. Whether the Weather Drives Patterns of Endemic Amphibian Chytridiomycosis: A Pathogen Proliferation Approach

    PubMed Central

    Murray, Kris A.; Skerratt, Lee F.; Garland, Stephen; Kriticos, Darren; McCallum, Hamish

    2013-01-01

    The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ∼72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling

  14. Behavioral Effects of the Fungal Pathogen Batrachochytrium Dendrobatidis on the Crayfish Host Procambarus Alleni

    NASA Astrophysics Data System (ADS)

    Waggett, R. J.; Virgl, E. J.; McMahon, T. A.

    2016-02-01

    The chytrid fungus Batrachochytrium dendrobatidis (Bd) is a parasite implicated in local and global amphibian declines. Although it is considered to be an amphibian specialist, co-occurring species such as the crayfish species Procambarus alleni and Procambarus clarkii have been identified as Bd hosts and potential vectors in the spread and transmission of Bd to amphibians. Procambarus alleni is a freshwater crayfish species native to Florida and popular in the aquarium trade due to its distinctive blue coloration. Although many behavioral and physiological studies have been conducted on the congener, Procambarus clarkii, an introduced species found in many niches throughout the United States, few comparative studies have involved P. alleni. Here, we have quantified the escape behavior kinetics of healthy, lab-reared and wild-caught P. alleni (juvenile and adult) using high speed videography and motion analysis. Kinetic parameters analyzed included velocity, acceleration, net to gross displacement ratios (NGDR), response latency, number of thrusts per response and total distance jumped. Further, we exposed wild-caught P. alleni to cultured Bd and quantified the behavioral effects 24 hours and 1 week following exposure. Data on the survival and behavioral changes of P. alleni could provide insight on the potential toxic effects of Bd and the tendency toward Bd transmission.

  15. Genomic epidemiology of the emerging pathogen Batrachochytrium dendrobatidis from native and invasive amphibian species in Chile.

    PubMed

    Valenzuela-Sánchez, A; O'Hanlon, S J; Alvarado-Rybak, M; Uribe-Rivera, D E; Cunningham, A A; Fisher, M C; Soto-Azat, C

    2018-04-01

    Emerging fungal diseases represent a threat to food security, animal and human health worldwide. Amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has been associated with catastrophic and well-documented amphibian population declines and extinctions. For the first time, Bd was cultured from native and non-native wild amphibians in Chile. Phylogenomic analyses revealed that Chilean isolates AVS2, AVS4 and AVS7 group within the global panzootic lineage of Bd (BdGPL) in a single highly supported clade that includes a genotype previously isolated from the United Kingdom. Our results extend the known distribution of BdGPL in South America and suggest a single and relatively recent introduction of BdGPL into the country, providing additional support to the role of anthropogenic activity in the global spread of this panzootic lineage. © 2017 Blackwell Verlag GmbH.

  16. Detection of Batrachochytrium dendrobatidis in endemic salamander species from central Texas.

    PubMed

    Gaertner, James P; Forstner, Michael R J; O'Donnell, Lisa; Hahn, Dittmar

    2009-03-01

    A nested PCR protocol was used to analyze five endemic salamander species from Central Texas for the presence of the emerging pathogen, chytrid fungus (Batrachochytrium dendrobatidis). Chytrid fungus was detected from samples of each of the five species sampled: with low abundance, in the Texas salamander (Eurycea neotenes) (1 positive out of 16 individuals tested; 1/16), the Blanco River Springs salamander (E. pterophila) (1/20), the threatened San Marcos salamander (E. nana) (1/17), and the endangered Barton Springs salamander (E. sosorum) (1/7); much higher abundance was obtained for the Jollyville Plateau salamander (E. tonkawae) (6/14), which has recently been petitioned for addition to the USA endangered species list. With one exception, sequences of PCR products were identical to the 5.8S rRNA gene, and nearly so for the flanking internal transcribed spacer (ITS) regions of B. dendrobatidis which confirmed the detection of chytrid fungus, and thus demonstrated the presence of this pathogen in populations of endangered species in Central Texas. These confirmations were obtained from nonconsumptive tail clippings which confirms the applicability of historically collected samples from other studies in the examination of the fungus across time.

  17. Perspectives on invasive amphibians in Brazil

    PubMed Central

    Forti, Lucas Rodriguez; Becker, C. Guilherme; Tacioli, Leandro; Pereira, Vânia Rosa; Santos, André Cid F. A.; Oliveira, Igor; Haddad, Célio F. B.; Toledo, Luís Felipe

    2017-01-01

    Introduced species have the potential to become invasive and jeopardize entire ecosystems. The success of species establishing viable populations outside their original extent depends primarily on favorable climatic conditions in the invasive ranges. Species distribution modeling (SDM) can thus be used to estimate potential habitat suitability for populations of invasive species. Here we review the status of six amphibian species with invasive populations in Brazil (four domestic species and two imported species). We (i) modeled the current habitat suitability and future potential distribution of these six focal species, (ii) reported on the disease status of Eleutherodactylus johnstonei and Phyllodytes luteolus, and (iii) quantified the acoustic overlap of P. luteolus and Leptodactylus labyrinthicus with three co-occurring native species. Our models indicated that all six invasive species could potentially expand their ranges in Brazil within the next few decades. In addition, our SDMs predicted important expansions in available habitat for 2 out of 6 invasive species under future (2100) climatic conditions. We detected high acoustic niche overlap between invasive and native amphibian species, underscoring that acoustic interference might reduce mating success in local frogs. Despite the American bullfrog Lithobates catesbeianus being recognized as a potential reservoir for the frog-killing fungus Batrachochytrium dendrobatidis (Bd) in Brazil, we did not detect Bd in the recently introduced population of E. johnstonei and P. luteolus in the State of São Paulo. We emphasize that the number of invasive amphibian species in Brazil is increasing exponentially, highlighting the urgent need to monitor and control these populations and decrease potential impacts on the locally biodiverse wildlife. PMID:28938024

  18. Perspectives on invasive amphibians in Brazil.

    PubMed

    Forti, Lucas Rodriguez; Becker, C Guilherme; Tacioli, Leandro; Pereira, Vânia Rosa; Santos, André Cid F A; Oliveira, Igor; Haddad, Célio F B; Toledo, Luís Felipe

    2017-01-01

    Introduced species have the potential to become invasive and jeopardize entire ecosystems. The success of species establishing viable populations outside their original extent depends primarily on favorable climatic conditions in the invasive ranges. Species distribution modeling (SDM) can thus be used to estimate potential habitat suitability for populations of invasive species. Here we review the status of six amphibian species with invasive populations in Brazil (four domestic species and two imported species). We (i) modeled the current habitat suitability and future potential distribution of these six focal species, (ii) reported on the disease status of Eleutherodactylus johnstonei and Phyllodytes luteolus, and (iii) quantified the acoustic overlap of P. luteolus and Leptodactylus labyrinthicus with three co-occurring native species. Our models indicated that all six invasive species could potentially expand their ranges in Brazil within the next few decades. In addition, our SDMs predicted important expansions in available habitat for 2 out of 6 invasive species under future (2100) climatic conditions. We detected high acoustic niche overlap between invasive and native amphibian species, underscoring that acoustic interference might reduce mating success in local frogs. Despite the American bullfrog Lithobates catesbeianus being recognized as a potential reservoir for the frog-killing fungus Batrachochytrium dendrobatidis (Bd) in Brazil, we did not detect Bd in the recently introduced population of E. johnstonei and P. luteolus in the State of São Paulo. We emphasize that the number of invasive amphibian species in Brazil is increasing exponentially, highlighting the urgent need to monitor and control these populations and decrease potential impacts on the locally biodiverse wildlife.

  19. Citizen scientists monitor a deadly fungus threatening amphibian communities in northern coastal California, USA

    Treesearch

    Karen L. Pope; Greta M. Wengert; Janet E. Foley; Donald T. Ashton; Richard G. Botzler

    2016-01-01

    Ecoclub youth and supervising family members conducted citizen science to assess regional prevalence and distribution of Batrachochytrium dendrobatidis (Bd) among amphibians at Humboldt Bay National Wildlife Refuge (Refuge) and Redwood National and State Parks (Parks), Humboldt County, California, US, May 2013 through December...

  20. A New Chytridiomycete Fungus Intermixed with Crustacean Resting Eggs in a 407-Million-Year-Old Continental Freshwater Environment

    PubMed Central

    Goral, Tomasz; Longcore, Joyce E.; Olesen, Jørgen; Kenrick, Paul; Edgecombe, Gregory D.

    2016-01-01

    The 407-million-year-old Rhynie Chert (Scotland) contains the most intact fossilised remains of an early land-based ecosystem including plants, arthropods, fungi and other microorganisms. Although most studies have focused on the terrestrial component, fossilised freshwater environments provide critical insights into fungal-algal interactions and the earliest continental branchiopod crustaceans. Here we report interactions between an enigmatic organism and an exquisitely preserved fungus. The fungal reproductive structures are intermixed with exceptionally well-preserved globular spiny structures interpreted as branchiopod resting eggs. Confocal laser scanning microscopy enabled us to reconstruct the fungus and its possible mode of nutrition, the affinity of the resting eggs, and their spatial associations. The new fungus (Cultoraquaticus trewini gen. et sp. nov) is attributed to Chytridiomycota based on its size, consistent formation of papillae, and the presence of an internal rhizoidal system. It is the most pristine fossil Chytridiomycota known, especially in terms of rhizoidal development and closely resembles living species in the Rhizophydiales. The spiny resting eggs are attributed to the crustacean Lepidocaris rhyniensis, dating branchiopod adaptation to life in ephemeral pools to the Early Devonian. The new fungal interaction suggests that, as in modern freshwater environments, chytrids were important to the mobilisation of nutrients in early aquatic foodwebs. PMID:27973602

  1. Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians.

    PubMed

    Scheele, Ben C; Hunter, David A; Grogan, Laura F; Berger, Lee; Kolby, Jon E; McFadden, Michael S; Marantelli, Gerry; Skerratt, Lee F; Driscoll, Don A

    2014-10-01

    Wildlife diseases pose an increasing threat to biodiversity and are a major management challenge. A striking example of this threat is the emergence of chytridiomycosis. Despite diagnosis of chytridiomycosis as an important driver of global amphibian declines 15 years ago, researchers have yet to devise effective large-scale management responses other than biosecurity measures to mitigate disease spread and the establishment of disease-free captive assurance colonies prior to or during disease outbreaks. We examined the development of management actions that can be implemented after an epidemic in surviving populations. We developed a conceptual framework with clear interventions to guide experimental management and applied research so that further extinctions of amphibian species threatened by chytridiomycosis might be prevented. Within our framework, there are 2 management approaches: reducing Batrachochytrium dendrobatidis (the fungus that causes chytridiomycosis) in the environment or on amphibians and increasing the capacity of populations to persist despite increased mortality from disease. The latter approach emphasizes that mitigation does not necessarily need to focus on reducing disease-associated mortality. We propose promising management actions that can be implemented and tested based on current knowledge and that include habitat manipulation, antifungal treatments, animal translocation, bioaugmentation, head starting, and selection for resistance. Case studies where these strategies are being implemented will demonstrate their potential to save critically endangered species. © 2014 Society for Conservation Biology.

  2. Seasonal Variation in Population Abundance and Chytrid Infection in Stream-Dwelling Frogs of the Brazilian Atlantic Forest.

    PubMed

    Ruggeri, Joice; Longo, Ana V; Gaiarsa, Marília P; Alencar, Laura R V; Lambertini, Carolina; Leite, Domingos S; Carvalho-e-Silva, Sergio P; Zamudio, Kelly R; Toledo, Luís Felipe; Martins, Marcio

    2015-01-01

    Enigmatic amphibian declines were first reported in southern and southeastern Brazil in the late 1980s and included several species of stream-dwelling anurans (families Hylodidae and Cycloramphidae). At that time, we were unaware of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd); therefore, pollution, habitat loss, fragmentation and unusual climatic events were hypothesized as primary causes of these declines. We now know that multiple lineages of Bd have infected amphibians of the Brazilian Atlantic forest for over a century, yet declines have not been associated specifically with Bd outbreaks. Because stream-dwelling anurans occupy an environmental hotspot ideal for disease transmission, we investigated temporal variation in population and infection dynamics of three stream-adapted species (Hylodes asper, H. phyllodes, and Cycloramphus boraceiensis) on the northern coast of São Paulo state, Brazil. We surveyed standardized transects along streams for four years, and show that fluctuations in the number of frogs correlate with specific climatic variables that also increase the likelihood of Bd infections. In addition, we found that Bd infection probability in C. boraceiensis, a nocturnal species, was significantly higher than in Hylodes spp., which are diurnal, suggesting that the nocturnal activity may either facilitate Bd zoospore transmission or increase susceptibility of hosts. Our findings indicate that, despite long-term persistence of Bd in Brazil, some hosts persist with seasonally variable infections, and thus future persistence in the face of climate change will depend on the relative effect of those changes on frog recruitment and pathogen proliferation.

  3. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides.

    PubMed

    Brühl, Carsten A; Pieper, Silvia; Weber, Brigitte

    2011-11-01

    Current pesticide risk assessment does not specifically consider amphibians. Amphibians in the aquatic environment (aquatic life stages or postmetamorphic aquatic amphibians) and terrestrial living juvenile or adult amphibians are assumed to be covered by the risk assessment for aquatic invertebrates and fish, or mammals and birds, respectively. This procedure has been evaluated as being sufficiently protective regarding the acute risk posed by a number of pesticides to aquatic amphibian life stages (eggs, larvae). However, it is unknown whether the exposure and sensitivity of terrestrial living amphibians are comparable to mammalian and avian exposure and sensitivity. We reviewed the literature on dermal pesticide absorption and toxicity studies for terrestrial life stages of amphibians, focusing on the dermal exposure pathway, that is, through treated soil or direct overspray. In vitro studies demonstrated that cutaneous absorption of chemicals is significant and that chemical percutaneous passage, P (cm/h), is higher in amphibians than in mammals. In vivo, the rapid and substantial uptake of the herbicide atrazine from treated soil by toads (Bufo americanus) has been described. Severe toxic effects on various amphibian species have been reported for field-relevant application rates of different pesticides. In general, exposure and toxicity studies for terrestrial amphibian life stages are scarce, and the reported data indicate the need for further research, especially in light of the global amphibian decline. Copyright © 2011 SETAC.

  4. Thermal physiology, disease, and amphibian declines on the eastern slopes of the Andes.

    PubMed

    Catenazzi, Alessandro; Lehr, Edgar; Vredenburg, Vance T

    2014-04-01

    Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection-prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate-warming stress. © 2013 Society for Conservation Biology.

  5. Widespread occurrence of the chytrid fungus batrachochytrium dendrobatidis on oregon spotted frogs (rana pretiosa)

    USGS Publications Warehouse

    Pearl, C.A.; Bowerman, J.; Adams, M.J.; Chelgren, N.D.

    2009-01-01

    The pathogen Batrachochytrium dendrobatidis (Bd) has been associated with amphibian declines in multiple continents, including western North America. We investigated Bd prevalence in Oregon spotted frog (Rana pretiosa), a species that has declined across its range in the Pacific Northwest. Polymerase chain reaction analysis of skin swabs indicated that Bd was prevalent within populations (420 of 617 juvenile and adults) and widespread among populations (36 of 36 sites) where we sampled R. pretiosa in Oregon and Washington. We rarely detected Bd in R. pretiosa larvae (2 of 72). Prevalence of Bd in postmetamorphic R. pretiosa was inversely related to frog size. We found support for an interactive effect of elevation and sampling date on Bd: prevalence of Bd generally increased with date, but this effect was more pronounced at lower elevations. We also found evidence that the body condition of juvenile R. pretiosa with Bd decreased after their first winter. Our data indicate that some Oregon spotted frog populations are currently persisting with relatively high Bd prevalence, but the risk posed by Bd is unknown. ?? 2010 International Association for Ecology and Health.

  6. Seasonal Variation in Population Abundance and Chytrid Infection in Stream-Dwelling Frogs of the Brazilian Atlantic Forest

    PubMed Central

    Ruggeri, Joice; Longo, Ana V.; Gaiarsa, Marília P.; Alencar, Laura R. V.; Lambertini, Carolina; Leite, Domingos S.; Carvalho-e-Silva, Sergio P.; Zamudio, Kelly R.; Toledo, Luís Felipe; Martins, Marcio

    2015-01-01

    Enigmatic amphibian declines were first reported in southern and southeastern Brazil in the late 1980s and included several species of stream-dwelling anurans (families Hylodidae and Cycloramphidae). At that time, we were unaware of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd); therefore, pollution, habitat loss, fragmentation and unusual climatic events were hypothesized as primary causes of these declines. We now know that multiple lineages of Bd have infected amphibians of the Brazilian Atlantic forest for over a century, yet declines have not been associated specifically with Bd outbreaks. Because stream-dwelling anurans occupy an environmental hotspot ideal for disease transmission, we investigated temporal variation in population and infection dynamics of three stream-adapted species (Hylodes asper, H. phyllodes, and Cycloramphus boraceiensis) on the northern coast of São Paulo state, Brazil. We surveyed standardized transects along streams for four years, and show that fluctuations in the number of frogs correlate with specific climatic variables that also increase the likelihood of Bd infections. In addition, we found that Bd infection probability in C. boraceiensis, a nocturnal species, was significantly higher than in Hylodes spp., which are diurnal, suggesting that the nocturnal activity may either facilitate Bd zoospore transmission or increase susceptibility of hosts. Our findings indicate that, despite long-term persistence of Bd in Brazil, some hosts persist with seasonally variable infections, and thus future persistence in the face of climate change will depend on the relative effect of those changes on frog recruitment and pathogen proliferation. PMID:26161777

  7. The precarious persistence of the endangered Sierra Madre yellow-legged frog Rana muscosa in southern California, USA

    USGS Publications Warehouse

    Backlin, Adam R.; Hitchcock, Cynthia J.; Gallegos, Elizabeth A.; Yee, Julie L.; Fisher, Robert N.

    2015-01-01

    We conducted surveys for the Endangered Sierra Madre yellow-legged frog Rana muscosa throughout southern California to evaluate the current distribution and status of the species. Surveys were conducted during 2000–2009 at 150 unique streams and lakes within the San Gabriel, San Bernardino, San Jacinto, and Palomar mountains of southern California. Only nine small, geographically isolated populations were detected across the four mountain ranges, and all tested positive for the amphibian chytrid fungus Batrachochytrium dendrobatidis. Our data show that when R. muscosa is known to be present it is easily detectable (89%) in a single visit during the frog's active season. We estimate that only 166 adult frogs remained in the wild in 2009. Our research indicates that R. muscosa populations in southern California are threatened by natural and stochastic events and may become extirpated in the near future unless there is some intervention to save them.

  8. Composition of Micro-eukaryotes on the Skin of the Cascades Frog (Rana cascadae) and Patterns of Correlation between Skin Microbes and Batrachochytrium dendrobatidis.

    PubMed

    Kueneman, Jordan G; Weiss, Sophie; McKenzie, Valerie J

    2017-01-01

    Global amphibian decline linked to fungal pathogens has galvanized research on applied amphibian conservation. Skin-associated bacterial communities of amphibians have been shown to mediate fungal skin infections and the development of probiotic treatments with antifungal bacteria has become an emergent area of research. While exploring the role of protective bacteria has been a primary focus for amphibian conservation, we aim to expand and study the other microbes present in amphibian skin communities including fungi and other micro-eukaryotes. Here, we characterize skin-associated bacteria and micro-eukaryotic diversity found across life stages of Cascades frog ( Rana cascadae ) and their associated aquatic environments using culture independent 16S and 18S rRNA marker-gene sequencing. Individuals of various life stages of Cascades frogs were sampled from a population located in the Trinity Alps in Northern California during an epidemic of the chytrid fungus, Batrachochytrium dendrobatidis . We filtered the bacterial sequences against a published database of bacteria known to inhibit B. dendrobatidis in co-culture to estimate the proportion of the skin bacterial community that is likely to provide defense against B. dendrobatidis . Tadpoles had a significantly higher proportion of B. dendrobatidis -inhibitory bacterial sequence matches relative to subadult and adult Cascades frogs. We applied a network analysis to examine patterns of correlation between bacterial taxa and B. dendrobatidis , as well as micro-eukaryotic taxa and B. dendrobatidis . Combined with the published database of bacteria known to inhibit B. dendrobatidis , we used the network analysis to identify bacteria that negatively correlated with B. dendrobatidis and thus could be good probiotic candidates in the Cascades frog system.

  9. Batrachochytrium dendrobatidis infection patterns among Panamanian amphibian species, habitats and elevations during epizootic and enzootic stages.

    PubMed

    Brem, Forrest M R; Lips, Karen R

    2008-09-24

    The pathogenic fungus Batrachochytrium dendrobatidis (Bd) has caused declines of many amphibian populations, yet the full course of the epizootic has rarely been observed in wild populations. We determined effects of elevation, habitat, and aquatic index (AI) on prevalence of infection among Panamanian amphibians sampled along 2 elevational transects. Amphibian populations on the Santa Fé transect (SFT) had declined in 2002, while those on the El Copé transect (ECT) were healthy until September 2004. In 2004 we sampled Bd along both transects, surveying the SFT 2 yr after decline, and surveying the ECT 4 mo prior to the arrival of Bd, during the epizootic, and 2 mo later. Overall prevalence of Bd along the ECT increased from 0.0 (95% CI 0.00-0.0003) to 0.51 (95% CI 0.48-0.55) over a 3 mo period, accompanied by significant decreases in amphibian abundance and species richness in all habitats. Prevalence of infection on the ECT was highest along riparian transects and at higher elevations, but not among levels of AI. Prevalence of infection on the SFT was highest in pool transects, and at higher elevations, but not among levels of AI. Riparian amphibian abundance and species richness also declined at SFT following detection of Bd in 2002. Variation among species, microenvironmental conditions, and the length of coexistence with Bd may contribute to observed differences in prevalence of Bd and in population response.

  10. Cryptic chytridiomycosis linked to climate and genetic variation in amphibian populations of the southeastern United States

    PubMed Central

    Hoffman, Eric A.; Tye, Matthew R.; Hether, Tyler D.; Savage, Anna E.

    2017-01-01

    North American amphibians have recently been impacted by two major emerging pathogens, the fungus Batrachochytrium dendrobatidis (Bd) and iridoviruses in the genus Ranavirus (Rv). Environmental factors and host genetics may play important roles in disease dynamics, but few studies incorporate both of these components into their analyses. Here, we investigated the role of environmental and genetic factors in driving Bd and Rv infection prevalence and severity in a biodiversity hot spot, the southeastern United States. We used quantitative PCR to characterize Bd and Rv dynamics in natural populations of three amphibian species: Notophthalmus perstriatus, Hyla squirella and Pseudacris ornata. We combined pathogen data, genetic diversity metrics generated from neutral markers, and environmental variables into general linear models to evaluate how these factors impact infectious disease dynamics. Occurrence, prevalence and intensity of Bd and Rv varied across species and populations, but only one species, Pseudacris ornata, harbored high Bd intensities in the majority of sampled populations. Genetic diversity and climate variables both predicted Bd prevalence, whereas climatic variables alone predicted infection intensity. We conclude that Bd is more abundant in the southeastern United States than previously thought and that genetic and environmental factors are both important for predicting amphibian pathogen dynamics. Incorporating both genetic and environmental information into conservation plans for amphibians is necessary for the development of more effective management strategies to mitigate the impact of emerging infectious diseases. PMID:28448517

  11. Population genetic structure and disease in montane boreal toads: More heterozygous individuals are more likely to be infected with amphibian chytrid

    USGS Publications Warehouse

    Addis, Brett; Lowe, Winsor; Hossack, Blake R.; Allendorf, Fred

    2015-01-01

    Amphibians are more threatened than any other vertebrate group, with 41 % of species classified as threatened. The causes of most declines are not well understood, though many declines have been linked to disease. Additionally, amphibians are physiologically constrained to moist habitats and considered poor dispersers; thus, they may suffer genetic consequences of population isolation. To understand threats to the persistence of boreal toads (Bufo boreas) in Glacier National Park, USA, we genotyped 551 individuals at 11 microsatellite loci and used Bayesian clustering methods to describe population genetic structure and identify barriers to gene flow. We found evidence of two primary genetic groups that differed substantially in elevation and two secondary groups within the high elevation group. There was also evidence of further substructure within the southern high elevation group, suggesting mountain ridges are barriers to gene flow at local scales. Overall, genetic variation was high, but allelic richness declined with increasing elevation, reflecting greater isolation or smaller effective population sizes of high altitude populations. We tested for Batrachochytrium dendrobatidis (Bd), the fungal pathogen which causes chytridiomycosis, and we found that 35 of 199 toads were positive for Bd. Unexpectedly, more heterozygous individuals were more likely to be infected. This suggests that dispersal facilitates the spread of disease because heterozygosity may be highest where dispersal and gene flow are greatest.

  12. Population size, survival, growth, and movements of Rana sierrae

    USGS Publications Warehouse

    Fellers, Gary M.; Kleeman, Patrick M.; Miller, David A. W.; Halstead, Brian J.; Link, William

    2013-01-01

    Based on 2431 captures of 757 individual frogs over a 9-yr period, we found that the population of R. sierrae in one meadow–stream complex in Yosemite National Park ranged from an estimated 45 to 115 adult frogs. Rana sierrae at our relatively low elevation site (2200 m) grew at a fast rate (K = 0.73–0.78), had high overwintering survival rates (44.6–95%), lived a long time (up to 16 yr), and tended to be fairly sedentary during the summer (100% minimum convex polygon annual home ranges of 139 m2) but had low year-to-year site fidelity. Even though the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) has been present in the population for at least 13 yr, there was no clear downward trend as might be expected from reports of R. sierrae population declines associated with Bd or from reports of widespread population decline of R. sierrae throughout its range.

  13. Sex Reversal in Amphibians.

    PubMed

    Flament, Stéphane

    2016-01-01

    Amphibians have been widely used to study developmental biology due to the fact that embryo development takes place independently of the maternal organism and that observations and experimental approaches are easy. Some amphibians like Xenopus became model organisms in this field. In the first part of this article, the differentiation of the gonads in amphibians and the mechanisms governing this process are reviewed. In the second part, the state of the art about sex reversal, which can be induced by steroid hormones in general and by temperature in some species, is presented. Also information about pollutants found in the environment that could interfere with the development of the amphibian reproductive apparatus or with their reproductive physiology is given. Such compounds could play a part in the amphibian decline, since in the wild, many amphibians are endangered species. © 2016 S. Karger AG, Basel.

  14. Species-level correlates of susceptibility to the pathogenic amphibian fungus Batrachochytrium dendrobatidis in the United States

    Treesearch

    Betsy A. Bancroft; Barbara A. Han; Catherine L. Searle; Lindsay M. Biga; Deanna H. Olson; Lee B. Kats; Joshua J. Lawler; Andrew R. Blaustein

    2011-01-01

    Disease is often implicated as a factor in population declines of wildlife and plants. Understanding the characteristics that may predispose a species to infection by a particular pathogen can help direct conservation efforts. Recent declines in amphibian populations world-wide are a major conservation issue and may be caused in part by a fungal pathogen, ...

  15. Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians.

    PubMed

    Wake, David B; Vredenburg, Vance T

    2008-08-12

    Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians--frogs, salamanders, and caecilians--may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction.

  16. Draft Genome Sequences of Phenotypically Distinct Janthinobacterium sp. Isolates Cultured from the Hudson Valley Watershed

    PubMed Central

    Bettina, Alexandra M.; Doing, Georgia; O’Brien, Kelsey

    2018-01-01

    ABSTRACT Investigation of the Hudson Valley watershed reveals many violacein-producing bacteria. These are of interest for their biotherapeutic potential in treating chytrid infections of amphibians. The draft whole-genome sequences for seven Janthinobacterium isolates with a variety of phenotypes are provided in this study. PMID:29348334

  17. Climate change and amphibians

    USGS Publications Warehouse

    Corn, P.S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  18. Amphibians of Olympic National Park

    USGS Publications Warehouse

    ,

    2000-01-01

    Amphibians evolved from fishes about 360 million years ago and were the first vertebrates adapted to life on land. The word amphibian means "double life." It refers to the life history of many amphibians, which spend part of their life in water and part on land. There are three major groups of amphibians: salamanders, frogs, and toads, and caecilians. Salamanders, frogs, and toads can be found in Olympic National Park (ONP), but caecilians live only in tropical regions. Many amphibians are generalist predators, eating almost any prey they can fit into their mouths.

  19. Are we in the midst of the sixth mass extinction? A view from the world of amphibians

    PubMed Central

    Wake, David B.; Vredenburg, Vance T.

    2008-01-01

    Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians—frogs, salamanders, and caecilians—may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction. PMID:18695221

  20. Understanding Amphibian Declines Through Geographic Approaches

    USGS Publications Warehouse

    Gallant, Alisa

    2006-01-01

    Growing concern over worldwide amphibian declines warrants serious examination. Amphibians are important to the proper functioning of ecosystems and provide many direct benefits to humans in the form of pest and disease control, pharmaceutical compounds, and even food. Amphibians have permeable skin and rely on both aquatic and terrestrial ecosystems during different seasons and stages of their lives. Their association with these ecosystems renders them likely to serve as sensitive indicators of environmental change. While much research on amphibian declines has centered on mysterious causes, or on causes that directly affect humans (global warming, chemical pollution, ultraviolet-B radiation), most declines are the result of habitat loss and habitat alteration. Improving our ability to characterize, model, and monitor the interactions between environmental variables and amphibian habitats is key to addressing amphibian conservation. In 2000, the U.S. Geological Survey (USGS) initiated the Amphibian Research and Monitoring Initiative (ARMI) to address issues surrounding amphibian declines.

  1. North American amphibians: Distribution and diversity

    USGS Publications Warehouse

    Green, David M.; Weir, Linda A.; Casper, Gary S.; Lannoo, Michael

    2014-01-01

    Some 300 species of amphibians inhabit North America. The past two decades have seen an enormous growth in interest about amphibians and an increased intensity of scientific research into their fascinating biology and continent-wide distribution.This atlas presents the spectacular diversity of North American amphibians in a geographic context. It covers all formally recognized amphibian species found in the United States and Canada, many of which are endangered or threatened with extinction. Illustrated with maps and photos, the species accounts provide current information about distribution, habitat, and conservation.Researchers, professional herpetologists, and anyone intrigued by amphibians will value North American Amphibians as a guide and reference.

  2. Long-term monitoring of an amphibian community after a climate change- and infectious disease-driven species extirpation.

    PubMed

    Bosch, Jaime; Fernández-Beaskoetxea, Saioa; Garner, Trenton W J; Carrascal, Luis María

    2018-06-01

    Infectious disease and climate change are considered major threats to biodiversity and act as drivers behind the global amphibian decline. This is, to a large extent, based on short-term studies that are designed to detect the immediate and strongest biodiversity responses to a threatening process. What few long-term studies are available, although typically focused on single species, report outcomes that often diverge significantly from the short-term species responses. Here, we report the results of an 18-year survey of an amphibian community exposed to both climate warming and the emergence of lethal chytridiomycosis. Our study shows that the impacts of infectious disease are ongoing but restricted to two out of nine species that form the community, despite the fact all species can become infected with the fungus. Climate warming appears to be affecting four out of the nine species, but the response of three of these is an increase in abundance. Our study supports a decreasing role of infectious disease on the community, and an increasing and currently positive effect of climate warming. We caution that if the warming trends continue, the net positive effect will turn negative as amphibian breeding habitat becomes unavailable as water bodies dry, a pattern that already may be underway. © 2018 John Wiley & Sons Ltd.

  3. CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response.

    PubMed

    Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie

    2016-04-01

    To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. DNA Extraction Method Affects the Detection of a Fungal Pathogen in Formalin-Fixed Specimens Using qPCR.

    PubMed

    Adams, Andrea J; LaBonte, John P; Ball, Morgan L; Richards-Hrdlicka, Kathryn L; Toothman, Mary H; Briggs, Cheryl J

    2015-01-01

    Museum collections provide indispensable repositories for obtaining information about the historical presence of disease in wildlife populations. The pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has played a significant role in global amphibian declines, and examining preserved specimens for Bd can improve our understanding of its emergence and spread. Quantitative PCR (qPCR) enables Bd detection with minimal disturbance to amphibian skin and is significantly more sensitive to detecting Bd than histology; therefore, developing effective qPCR methodologies for detecting Bd DNA in formalin-fixed specimens can provide an efficient and effective approach to examining historical Bd emergence and prevalence. Techniques for detecting Bd in museum specimens have not been evaluated for their effectiveness in control specimens that mimic the conditions of animals most likely to be encountered in museums, including those with low pathogen loads. We used American bullfrogs (Lithobates catesbeianus) of known infection status to evaluate the success of qPCR to detect Bd in formalin-fixed specimens after three years of ethanol storage. Our objectives were to compare the most commonly used DNA extraction method for Bd (PrepMan, PM) to Macherey-Nagel DNA FFPE (MN), test optimizations for Bd detection with PM, and provide recommendations for maximizing Bd detection. We found that successful detection is relatively high (80-90%) when Bd loads before formalin fixation are high, regardless of the extraction method used; however, at lower infection levels, detection probabilities were significantly reduced. The MN DNA extraction method increased Bd detection by as much as 50% at moderate infection levels. Our results indicate that, for animals characterized by lower pathogen loads (i.e., those most commonly encountered in museum collections), current methods may underestimate the proportion of Bd-infected amphibians. Those extracting DNA from archived museum

  5. Establishing a baseline and faunal history in amphibian monitoring programs: The amphibians of Harris Neck, GA

    USGS Publications Warehouse

    Dodd, C.K.; Barichivich, W.J.

    2007-01-01

    We conducted an intensive inventory of Harris Neck National Wildlife Refuge in coastal Georgia to determine the feasibility of establishing an amphibian monitoring program at this location. Thirteen semi-aquatic amphibian species were identified at 21 locations. Amphibian species richness at Harris Neck was similar to that of nearby barrier islands. The amphibian fauna of Harris Neck has long been affected by human-induced landscape changes, including the inadvertent introduction of tadpoles from distant fish hatcheries and the creation of artificial impoundments. Land-use history provides important information necessary to understand current amphibian distribution, especially when census data are used to establish a baseline from which to monitor future status and trends.

  6. Chemosignals, hormones, and amphibian reproduction.

    PubMed

    Woodley, Sarah

    2015-02-01

    This article is part of a Special Issue "Chemosignals and Reproduction". Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran "breeding glands", 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Fire and amphibians in North America

    USGS Publications Warehouse

    Pilliod, D.S.; Bury, R.B.; Hyde, E.J.; Pearl, C.A.; Corn, P.S.

    2003-01-01

    Information on amphibian responses to fire and fuel reduction practices is critically needed due to potential declines of species and the prevalence of new, more intensive fire management practices in North American forests. The goals of this review are to summarize the known and potential effects of fire and fuels management on amphibians and their aquatic habitats, and to identify information gaps to help direct future scientific research. Amphibians as a group are taxonomically and ecologically diverse; in turn, responses to fire and associated habitat alteration are expected to vary widely among species and among geographic regions. Available data suggest that amphibian responses to fire are spatially and temporally variable and incompletely understood. Much of the limited research has addressed short-term (1–3 years) effects of prescribed fire on terrestrial life stages of amphibians in the southeastern United States. Information on the long-term negative effects of fire on amphibians and the importance of fire for maintaining amphibian communities is sparse for the majority of taxa in North America. Given the size and severity of recent wildland fires and the national effort to reduce fuels on federal lands, future studies are needed to examine the effects of these landscape disturbances on amphibians. We encourage studies to address population-level responses of amphibians to fire by examining how different life stages are affected by changes in aquatic, riparian, and upland habitats. Research designs need to be credible and provide information that is relevant for fire managers and those responsible for assessing the potential effects of various fuel reduction alternatives on rare, sensitive, and endangered amphibian species.

  8. Mitigating amphibian chytridiomycosis in nature

    USGS Publications Warehouse

    Garner, Trenton W. J.; Schmidt, Benedikt R.; Martel, An; Pasmans, Frank; Muths, Erin L.; Cunningham, Andrew A.; Weldon, Che; Fisher, Matthew C.; Bosch, Jaime

    2016-01-01

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.

  9. BIOTIC FACTORS IN AMPHIBIAN POPULATION DECLINES

    EPA Science Inventory

    Amphibians evolved in, and continue to exist in, habitats that are replete with many other organisms. Some of these organisms serve as prey for amphibians and others interact with amphibians as predators, competitors, pathogens, or symbionts. Still other organisms in their enviro...

  10. DNA barcoding amphibians and reptiles.

    PubMed

    Vences, Miguel; Nagy, Zoltán T; Sonet, Gontran; Verheyen, Erik

    2012-01-01

    Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples.

  11. Mitigating amphibian chytridiomycoses in nature.

    PubMed

    Garner, Trenton W J; Schmidt, Benedikt R; Martel, An; Pasmans, Frank; Muths, Erin; Cunningham, Andrew A; Weldon, Che; Fisher, Matthew C; Bosch, Jaime

    2016-12-05

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  12. Mitigating amphibian chytridiomycoses in nature

    PubMed Central

    Martel, An; Pasmans, Frank; Muths, Erin; Cunningham, Andrew A.; Weldon, Che; Bosch, Jaime

    2016-01-01

    Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080996

  13. Characterization of the Carbohydrate Binding Module 18 gene family in the amphibian pathogen Batrachochytrium dendrobatidis.

    PubMed

    Liu, Peng; Stajich, Jason E

    2015-04-01

    Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis responsible for worldwide decline in amphibian populations. Previous analysis of the Bd genome revealed a unique expansion of the carbohydrate-binding module family 18 (CBM18) predicted to be a sub-class of chitin recognition domains. CBM expansions have been linked to the evolution of pathogenicity in a variety of fungal species by protecting the fungus from the host. Based on phylogenetic analysis and presence of additional protein domains, the gene family can be classified into 3 classes: Tyrosinase-, Deacetylase-, and Lectin-like. Examination of the mRNA expression levels from sporangia and zoospores of nine of the cbm18 genes found that the Lectin-like genes had the highest expression while the Tyrosinase-like genes showed little expression, especially in zoospores. Heterologous expression of GFP-tagged copies of four CBM18 genes in Saccharomyces cerevisiae demonstrated that two copies containing secretion signal peptides are trafficked to the cell boundary. The Lectin-like genes cbm18-ll1 and cbm18-ll2 co-localized with the chitinous cell boundaries visualized by staining with calcofluor white. In vitro assays of the full length and single domain copies from CBM18-LL1 demonstrated chitin binding and no binding to cellulose or xylan. Expressed CBM18 domain proteins were demonstrated to protect the fungus, Trichoderma reeseii, in vitro against hydrolysis from exogenously added chitinase, likely by binding and limiting exposure of fungal chitin. These results demonstrate that cbm18 genes can play a role in fungal defense and expansion of their copy number may be an important pathogenicity factor of this emerging infectious disease of amphibians. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Reproductive Medicine in Amphibians.

    PubMed

    Chai, Norin

    2017-05-01

    Reproduction of amphibians includes ovulation, spermiation, fertilization, oviposition, larval stage and development, and metamorphosis. A problem at any stage could lead to reproductive failure. To stimulate reproduction, environmental conditions must be arranged to simulate changes in natural habits. Reproductive life history is well documented in amphibians; a thorough knowledge of this subject will aid the practitioner in diagnosis and treatment. Technologies for artificial reproduction are developing rapidly, and some protocols may be transferable to privately kept or endangered species. Reproductive tract disorders are rarely described; no bacterial or viral diseases are known that specifically target the amphibian reproductive system. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Nutrition and health in amphibian husbandry.

    PubMed

    Ferrie, Gina M; Alford, Vance C; Atkinson, Jim; Baitchman, Eric; Barber, Diane; Blaner, William S; Crawshaw, Graham; Daneault, Andy; Dierenfeld, Ellen; Finke, Mark; Fleming, Greg; Gagliardo, Ron; Hoffman, Eric A; Karasov, William; Klasing, Kirk; Koutsos, Elizabeth; Lankton, Julia; Lavin, Shana R; Lentini, Andrew; Livingston, Shannon; Lock, Brad; Mason, Tom; McComb, Alejandra; Morris, Cheryl; Pessier, Allan P; Olea-Popelka, Francisco; Probst, Tom; Rodriguez, Carlos; Schad, Kristine; Semmen, Kent; Sincage, Jamie; Stamper, M Andrew; Steinmetz, Jason; Sullivan, Kathleen; Terrell, Scott; Wertan, Nina; Wheaton, Catharine J; Wilson, Brad; Valdes, Eduardo V

    2014-01-01

    Amphibian biology is intricate, and there are many inter-related factors that need to be understood before establishing successful Conservation Breeding Programs (CBPs). Nutritional needs of amphibians are highly integrated with disease and their husbandry needs, and the diversity of developmental stages, natural habitats, and feeding strategies result in many different recommendations for proper care and feeding. This review identifies several areas where there is substantial room for improvement in maintaining healthy ex situ amphibian populations specifically in the areas of obtaining and utilizing natural history data for both amphibians and their dietary items, achieving more appropriate environmental parameters, understanding stress and hormone production, and promoting better physical and population health. Using a scientific or research framework to answer questions about disease, nutrition, husbandry, genetics, and endocrinology of ex situ amphibians will improve specialists' understanding of the needs of these species. In general, there is a lack of baseline data and comparative information for most basic aspects of amphibian biology as well as standardized laboratory approaches. Instituting a formalized research approach in multiple scientific disciplines will be beneficial not only to the management of current ex situ populations, but also in moving forward with future conservation and reintroduction projects. This overview of gaps in knowledge concerning ex situ amphibian care should serve as a foundation for much needed future research in these areas. © 2014 Wiley Periodicals, Inc.

  16. Nutrition and Health in Amphibian Husbandry

    PubMed Central

    Ferrie, Gina M.; Alford, Vance C.; Atkinson, Jim; Baitchman, Eric; Barber, Diane; Blaner, William S.; Crawshaw, Graham; Daneault, Andy; Dierenfeld, Ellen; Finke, Mark; Fleming, Greg; Gagliardo, Ron; Hoffman, Eric A.; Karasov, William; Klasing, Kirk; Koutsos, Elizabeth; Lankton, Julia; Lavin, Shana R.; Lentini, Andrew; Livingston, Shannon; Lock, Brad; Mason, Tom; McComb, Alejandra; Morris, Cheryl; Pessier, Allan P.; Olea-Popelka, Francisco; Probst, Tom; Rodriguez, Carlos; Schad, Kristine; Semmen, Kent; Sincage, Jamie; Stamper, M. Andrew; Steinmetz, Jason; Sullivan, Kathleen; Terrell, Scott; Wertan, Nina; Wheaton, Catharine J.; Wilson, Brad; Valdes, Eduardo V.

    2015-01-01

    Amphibian biology is intricate, and there are many inter-related factors that need to be understood before establishing successful Conservation Breeding Programs (CBPs). Nutritional needs of amphibians are highly integrated with disease and their husbandry needs, and the diversity of developmental stages, natural habitats, and feeding strategies result in many different recommendations for proper care and feeding. This review identifies several areas where there is substantial room for improvement in maintaining healthy ex situ amphibian populations specifically in the areas of obtaining and utilizing natural history data for both amphibians and their dietary items, achieving more appropriate environmental parameters, understanding stress and hormone production, and promoting better physical and population health. Using a scientific or research framework to answer questions about disease, nutrition, husbandry, genetics, and endocrinology of ex situ amphibians will improve specialists’ understanding of the needs of these species. In general, there is a lack of baseline data and comparative information for most basic aspects of amphibian biology as well as standardized laboratory approaches. Instituting a formalized research approach in multiple scientific disciplines will be beneficial not only to the management of current ex situ populations, but also in moving forward with future conservation and reintroduction projects. This overview of gaps in knowledge concerning ex situ amphibian care should serve as a foundation for much needed future research in these areas. PMID:25296396

  17. Susceptibility to disease varies with ontogeny and immunocompetence in a threatened amphibian.

    PubMed

    Abu Bakar, Amalina; Bower, Deborah S; Stockwell, Michelle P; Clulow, Simon; Clulow, John; Mahony, Michael J

    2016-08-01

    Ontogenetic changes in disease susceptibility have been demonstrated in many vertebrate taxa, as immature immune systems and limited prior exposure to pathogens can place less developed juveniles at a greater disease risk. By causing the disease chytridiomycosis, Batrachochytrium dendrobatidis (Bd) infection has led to the decline of many amphibian species. Despite increasing knowledge on how Bd varies in its effects among species, little is known on the interaction between susceptibility and development within host species. We compared the ontogenetic susceptibility of post-metamorphic green and golden bell frogs Litoria aurea to chytridiomycosis by simultaneously measuring three host-pathogen responses as indicators of the development of the fungus-infection load, survival rate, and host immunocompetence-following Bd exposure in three life stages (recently metamorphosed juveniles, subadults, adults) over 95 days. Frogs exposed to Bd as recently metamorphosed juveniles acquired higher infection loads and experienced lower immune function and lower survivorship than subadults and adults, indicating an ontogenetic decline in chytridiomycosis susceptibility. By corresponding with an intrinsic developmental maturation in immunocompetence seen in uninfected frogs, we suggest these developmental changes in host susceptibility in L. aurea may be immune mediated. Consequently, the physiological relationship between ontogeny and immunity may affect host population structure and demography through variation in life stage survival, and understanding this can shape management targets for effective amphibian conservation.

  18. Culture Media and Individual Hosts Affect the Recovery of Culturable Bacterial Diversity from Amphibian Skin

    PubMed Central

    Medina, Daniel; Walke, Jenifer B.; Gajewski, Zachary; Becker, Matthew H.; Swartwout, Meredith C.; Belden, Lisa K.

    2017-01-01

    One current challenge in microbial ecology is elucidating the functional roles of the large diversity of free-living and host-associated bacteria identified by culture-independent molecular methods. Importantly, the characterization of this immense bacterial diversity will likely require merging data from culture-independent approaches with work on bacterial isolates in culture. Amphibian skin bacterial communities have become a recent focus of work in host-associated microbial systems due to the potential role of these skin bacteria in host defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which is associated with global amphibian population declines and extinctions. As there is evidence that some skin bacteria may inhibit growth of Bd and prevent infection in some cases, there is interest in using these bacteria as probiotic therapy for conservation of at-risk amphibians. In this study, we used skin swabs from American toads (Anaxyrus americanus) to: (1) assess the diversity and community structure of culturable amphibian skin bacteria grown on high and low nutrient culture media, (2) determine which culture media recover the highest proportion of the total skin bacterial community of individual toads relative to culture-independent data, and (3) assess whether the plated communities from the distinct media types vary in their ability to inhibit Bd growth in in-vitro assays. Overall, we found that culture media with low nutrient concentrations facilitated the growth of more diverse bacterial taxa and grew distinct communities relative to media with higher nutrient concentrations. Use of low nutrient media also resulted in culturing proportionally more of the bacterial diversity on individual toads relative to the overall community defined using culture-independent methods. However, while there were differences in diversity among media types, the variation among individual hosts was greater than variation among media types, suggesting that

  19. Culture Media and Individual Hosts Affect the Recovery of Culturable Bacterial Diversity from Amphibian Skin.

    PubMed

    Medina, Daniel; Walke, Jenifer B; Gajewski, Zachary; Becker, Matthew H; Swartwout, Meredith C; Belden, Lisa K

    2017-01-01

    One current challenge in microbial ecology is elucidating the functional roles of the large diversity of free-living and host-associated bacteria identified by culture-independent molecular methods. Importantly, the characterization of this immense bacterial diversity will likely require merging data from culture-independent approaches with work on bacterial isolates in culture. Amphibian skin bacterial communities have become a recent focus of work in host-associated microbial systems due to the potential role of these skin bacteria in host defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which is associated with global amphibian population declines and extinctions. As there is evidence that some skin bacteria may inhibit growth of Bd and prevent infection in some cases, there is interest in using these bacteria as probiotic therapy for conservation of at-risk amphibians. In this study, we used skin swabs from American toads ( Anaxyrus americanus ) to: (1) assess the diversity and community structure of culturable amphibian skin bacteria grown on high and low nutrient culture media, (2) determine which culture media recover the highest proportion of the total skin bacterial community of individual toads relative to culture-independent data, and (3) assess whether the plated communities from the distinct media types vary in their ability to inhibit Bd growth in in-vitro assays. Overall, we found that culture media with low nutrient concentrations facilitated the growth of more diverse bacterial taxa and grew distinct communities relative to media with higher nutrient concentrations. Use of low nutrient media also resulted in culturing proportionally more of the bacterial diversity on individual toads relative to the overall community defined using culture-independent methods. However, while there were differences in diversity among media types, the variation among individual hosts was greater than variation among media types, suggesting

  20. Batrachochytrium dendrobatidis infection dynamics in the Columbia spotted frog Rana luteiventris in north Idaho, USA.

    PubMed

    Russell, Danelle M; Goldberg, Caren S; Waits, Lisette P; Rosenblum, Erica Bree

    2010-11-01

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) is contributing to amphibian declines worldwide. Temperature plays an important role in both pathogen growth and host immune function, but little is known about seasonal dynamics of Bd infection in north temperate regions. Our objective was to increase understanding of Bd disease ecology by investigating patterns of Bd infection of Columbia spotted frogs Rana luteiventris across seasons, age classes, and sexes in north Idaho, USA. We collected skin swabs from 223 R. luteiventris in spring, summer, and fall 2009 at 7 ponds in the Palouse region and quantified Bd zoospores for each sample using quantitative PCR. Across seasons, Bd prevalence of adults was higher in summer than in spring or fall, suggesting that individuals may be clearing low-level infections over the summer. Among age classes, all but one late stage tadpole (Gosner stage 43-45) tested negative for Bd. Conversely, 100% of metamorphs tested positive for Bd and had the highest Bd loads of all age classes, suggesting they may be the most vulnerable age class. Adult R. luteiventris had high infection prevalence (> 60%) in all seasons, indicating that Bd infection is maintained within populations and that adults likely serve as disease reservoirs across seasons. Among adults, we also found weak evidence for females having higher infection prevalence than males. Further laboratory and field studies are needed to determine whether there are individual and population impacts from Bd on R. luteiventris and other amphibians in north Idaho.

  1. Comparison of the hazards posed to amphibians by the glyphosate spray control program versus the chemical and physical activities of coca production in Colombia.

    PubMed

    Brain, Richard A; Solomon, Keith R

    2009-01-01

    This study evaluates the cumulative multifactorial physical and chemical impacts resulting from coca production on amphibian populations in comparison with the potential impacts produced by the herbicide glyphosate (Glyphos), which, mixed with the surfactant Cosmo-Flux, is used in the spray control program for illicit crops in Colombia. Using similar worst-case assumptions for exposure, several other pesticides used for coca production, including mancozeb, lambda cyhalothrin, endosulfan, diazinon, malathion, and chlorpyrifos, were up to 10- to 100-fold more toxic to frogs than the Glyphos-Cosmo-Flux mixture. Comparing hazard quotients based on application rates, several of these compounds demonstrated hazards 3-383 times that of formulated glyphosate. Secondary effects, particularly of insecticides, are also a concern, as these agents selectively target the primary food source of amphibians, which may indirectly impact growth and development. Although the potential chemical impacts by other pesticides are considerable, physical activities associated with coca production, particularly deforestation of primary forests for new coca plots, portend the greatest hazard to amphibian populations. The entire production cycle of cocaine has been linked to ecosystem degradation. The clearing of pristine forests for coca propagation in Colombia is well documented, and some of these regions coincide with those that contain exceptional amphibian biodiversity. This is particularly problematic as coca production encroaches more deeply into more remote areas of tropical rain forest. Transportation of disease, including the chitrid fungus, to these remote regions via human intrusion may also adversely affect amphibian populations. Therefore, the cumulative impacts of coca production, through habitat destruction, application of agrochemicals, and potential transmission of disease, are judged to pose greater risks to amphibian populations in coca-growing regions than the glyphosate

  2. The state of amphibians in the United States

    USGS Publications Warehouse

    Muths, E.; Adams, M.J.; Grant, E.H.C.; Miller, D.; Corn, P.S.; Ball, L.C.

    2012-01-01

    More than 25 years ago, scientists began to identify unexplained declines in amphibian populations around the world. Much has been learned since then, but amphibian declines have not abated and the interactions among the various threats to amphibians are not clear. Amphibian decline is a problem of local, national, and international scope that can affect ecosystem function, biodiversity, and commerce. This fact sheet provides a snapshot of the state of the amphibians and introduces examples to illustrate the range of issues in the United States.

  3. The state of amphibians in the United States

    Treesearch

    E. Muths; M. J. Adams; E. H. C. Grant; D. Miller; P. S. Corn; L. C. Ball

    2012-01-01

    More than 25 years ago, scientists began to identify unexplained declines in amphibian populations around the world. Much has been learned since then, but amphibian declines have not abated and the interactions among the various threats to amphibians are not clear. Amphibian decline is a problem of local, national, and international scope that can affect ecosystem...

  4. Establishing causality in the decline and deformity of amphibians: The amphibian research and monitoring initiative model

    USGS Publications Warehouse

    Little, E.E.; Bridges, C.M.; Linder, G.; Boone, M.; ,

    2003-01-01

    Research to date has indicated that a range of environmental variables such as disease, parasitism, predation, competition, environmental contamination, solar ultraviolet radiation, climate change, or habitat alteration may be responsible for declining amphibian populations and the appearance of deformed organisms, yet in many cases no definitive environmental variable stands out as a causal factor. Multiple Stressors are often present in the habitat, and interactions among these can magnify injury to biota. This raises the possibility that the additive or synergistic impact of these Stressors may be the underlying cause of amphibian declines. Effective management for the restoration of amphibian populations requires the identification of causal factors contributing to their declines. A systematic approach to determine causality is especially important because initial impressions may be misleading or ambiguous. In addition, the evaluation of amphibian populations requires consideration of a broader spatial scale than commonly used in regulatory monitoring. We describe a systematic three-tiered approach to determine causality in amphibian declines and deformities. Tier 1 includes an evaluation of historic databases and extant data and would involve a desktop synopsis of the status of various stressors as well as site visits. Tier 2 studies are iterative, hypothesis driven studies beginning with general tests and continuing with analyses of increasing complexity as certain stressors are identified for further investigation. Tier 3 applies information developed in Tier 2 as predictive indicators of habitats and species at risk over broad landscape scales and provides decision support for the adaptive management of amphibian recovery. This comprehensive, tiered program could provide a mechanistic approach to identifying and addressing specific stressors responsible for amphibian declines across various landscapes.

  5. Ultrastructural characterization of melanosomes of the human pathogenic fungus Fonsecaea pedrosoi.

    PubMed

    Franzen, Anderson J; Cunha, Marcel M L; Miranda, Kildare; Hentschel, Joachim; Plattner, Helmut; da Silva, Moises B; Salgado, Claudio G; de Souza, Wanderley; Rozental, Sonia

    2008-04-01

    Melanin is a complex polymer widely distributed in nature and has been described as an important virulence factor in pathogenic fungi. In the majority of fungi, the mechanism of melanin formation remains unclear. In Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis, melanin is stored in intracellular vesicles, named melanosomes. This paper details the ultrastructural aspects of melanin formation, its storage and transportation to the cell wall in the human pathogenic fungus F. pedrosoi. In this fungus, melanin synthesis within melanosomes also begins with a fibrillar matrix formation, displaying morphological and structural features similar to melanosomes from amphibian and mammalian cells. Silver precipitation based on Fontana-Masson technique for melanin detection and immunocytochemistry showed that melanosome fuses with fungal cell membrane where the melanin is released and reaches the cell wall. Melanin deposition in the fungal cell wall occurs in concentric layers. Antibodies raised against F. pedrosoi melanin revealed the sites of melanin production and storage in the melanosomes. In addition, a preliminary description of the elemental composition of this organelle by X-ray microanalysis and elemental mapping revealed the presence of calcium, phosphorus and iron concentrated in its matrix, suggesting a new functional role for these organelles as iron storage compartments.

  6. DEVELOPMENTAL DIVERSITY OF AMPHIBIANS

    PubMed Central

    Elinson, Richard P.; del Pino, Eugenia M.

    2011-01-01

    The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother’s back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes. PMID:22662314

  7. Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America

    USGS Publications Warehouse

    Chestnut, Tara E.; Anderson, Chauncey; Popa, Radu; Blaustein, Andrew R.; Voytek, Mary; Olson, Deanna H.; Kirshtein, Julie

    2014-01-01

    Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd), is a contributor to amphibian declines worldwide. Bd research has focused on the dynamics of the pathogen in its amphibian hosts, with little emphasis on investigating the dynamics of free-living Bd. Therefore, we investigated patterns of Bd occupancy and density in amphibian habitats using occupancy models, powerful tools for estimating site occupancy and detection probability. Occupancy models have been used to investigate diseases where the focus was on pathogen occurrence in the host. We applied occupancy models to investigate free-living Bd in North American surface waters to determine Bd seasonality, relationships between Bd site occupancy and habitat attributes, and probability of detection from water samples as a function of the number of samples, sample volume, and water quality. We also report on the temporal patterns of Bd density from a 4-year case study of a Bd-positive wetland. We provide evidence that Bd occurs in the environment year-round. Bd exhibited temporal and spatial heterogeneity in density, but did not exhibit seasonality in occupancy. Bd was detected in all months, typically at less than 100 zoospores L−1. The highest density observed was ∼3 million zoospores L−1. We detected Bd in 47% of sites sampled, but estimated that Bd occupied 61% of sites, highlighting the importance of accounting for imperfect detection. When Bd was present, there was a 95% chance of detecting it with four samples of 600 ml of water or five samples of 60 mL. Our findings provide important baseline information to advance the study of Bd disease ecology, and advance our understanding of amphibian exposure

  8. Agricultural ponds support amphibian populations

    USGS Publications Warehouse

    Knutson, M.G.; Richardson, W.B.; Reineke, D.M.; Gray, B.R.; Parmelee, J.R.; Weick, S.E.

    2004-01-01

    In some agricultural regions, natural wetlands are scarce, and constructed agricultural ponds may represent important alternative breeding habitats for amphibians. Properly managed, these agricultural ponds may effectively increase the total amount of breeding habitat and help to sustain populations. We studied small, constructed agricultural ponds in southeastern Minnesota to assess their value as amphibian breeding sites. Our study examined habitat factors associated with amphibian reproduction at two spatial scales: the pond and the landscape surrounding the pond. We found that small agricultural ponds in southeastern Minnesota provided breeding habitat for at least 10 species of amphibians. Species richness and multispecies reproductive success were more closely associated with characteristics of the pond (water quality, vegetation, and predators) compared with characteristics of the surrounding landscape, but individual species were associated with both pond and landscape variables. Ponds surrounded by row crops had similar species richness and reproductive success compared with natural wetlands and ponds surrounded by nongrazed pasture. Ponds used for watering livestock had elevated concentrations of phosphorus, higher turbidity, and a trend toward reduced amphibian reproductive success. Species richness was highest in small ponds, ponds with lower total nitrogen concentrations, tiger salamanders (Ambystoma tigrinum) present, and lacking fish. Multispecies reproductive success was best in ponds with lower total nitrogen concentrations, less emergent vegetation, and lacking fish. Habitat factors associated with higher reproductive success varied among individual species. We conclude that small, constructed farm ponds, properly managed, may help sustain amphibian populations in landscapes where natural wetland habitat is rare. We recommend management actions such as limiting livestock access to the pond to improve water quality, reducing nitrogen input, and

  9. Chironomidae bloodworms larvae as aquatic amphibian food.

    PubMed

    Fard, Mojdeh Sharifian; Pasmans, Frank; Adriaensen, Connie; Laing, Gijs Du; Janssens, Geert Paul Jules; Martel, An

    2014-01-01

    Different species of chironomids larvae (Diptera: Chironomidae) so-called bloodworms are widely distributed in the sediments of all types of freshwater habitats and considered as an important food source for amphibians. In our study, three species of Chironomidae (Baeotendipes noctivagus, Benthalia dissidens, and Chironomus riparius) were identified in 23 samples of larvae from Belgium, Poland, Russia, and Ukraine provided by a distributor in Belgium. We evaluated the suitability of these samples as amphibian food based on four different aspects: the likelihood of amphibian pathogens spreading, risk of heavy metal accumulation in amphibians, nutritive value, and risk of spreading of zoonotic bacteria (Salmonella, Campylobacter, and ESBL producing Enterobacteriaceae). We found neither zoonotic bacteria nor the amphibian pathogens Ranavirus and Batrachochytrium dendrobatidis in these samples. Our data showed that among the five heavy metals tested (Hg, Cu, Cd, Pb, and Zn), the excess level of Pb in two samples and low content of Zn in four samples implicated potential risk of Pb accumulation and Zn inadequacy. Proximate nutritional analysis revealed that, chironomidae larvae are consistently high in protein but more variable in lipid content. Accordingly, variations in the lipid: protein ratio can affect the amount and pathway of energy supply to the amphibians. Our study indicated although environmentally-collected chironomids larvae may not be vectors of specific pathogens, they can be associated with nutritional imbalances and may also result in Pb bioaccumulation and Zn inadequacy in amphibians. Chironomidae larvae may thus not be recommended as single diet item for amphibians. © 2014 Wiley Periodicals, Inc.

  10. Linking ecology and epidemiology to understand predictors of multi-host responses to an emerging pathogen, the amphibian chytrid fungus

    Treesearch

    Stephanie S. Gervasi; Patrick R. Stephens; Jessica Hua; Catherine L. Searle; Gisselle Yang Xie; Jenny Urbina; Deanna H. Olson; Betsy A. Bancroft; Virginia Weis; John I. Hammond; Rick A. Relyea; Andrew R. Blaustein; Stefan Lötters

    2017-01-01

    Variation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different...

  11. Suitability of amphibians and reptiles for translocation.

    PubMed

    Germano, Jennifer M; Bishop, Phillip J

    2009-02-01

    Translocations are important tools in the field of conservation. Despite increased use over the last few decades, the appropriateness of translocations for amphibians and reptiles has been debated widely over the past 20 years. To provide a comprehensive evaluation of the suitability of amphibians and reptiles for translocation, we reviewed the results of amphibian and reptile translocation projects published between 1991 and 2006. The success rate of amphibian and reptile translocations reported over this period was twice that reported in an earlier review in 1991. Success and failure rates were independent of the taxonomic class (Amphibia or Reptilia) released. Reptile translocations driven by human-wildlife conflict mitigation had a higher failure rate than those motivated by conservation, and more recent projects of reptile translocations had unknown outcomes. The outcomes of amphibian translocations were significantly related to the number of animals released, with projects releasing over 1000 individuals being most successful. The most common reported causes of translocation failure were homing and migration of introduced individuals out of release sites and poor habitat. The increased success of amphibian and reptile translocations reviewed in this study compared with the 1991 review is encouraging for future conservation projects. Nevertheless, more preparation, monitoring, reporting of results, and experimental testing of techniques and reintroduction questions need to occur to improve translocations of amphibians and reptiles as a whole.

  12. Cool temperatures reduce antifungal activity of symbiotic bacteria of threatened amphibians--implications for disease management and patterns of decline.

    PubMed

    Daskin, Joshua H; Bell, Sara C; Schwarzkopf, Lin; Alford, Ross A

    2014-01-01

    Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a widespread disease of amphibians responsible for population declines and extinctions. Some bacteria from amphibians' skins produce antimicrobial substances active against Bd. Supplementing populations of these cutaneous antifungal bacteria might help manage chytridiomycosis in wild amphibians. However, the activity of protective bacteria may depend upon environmental conditions. Biocontrol of Bd in nature thus requires knowledge of how environmental conditions affect their anti-Bd activity. For example, Bd-driven amphibian declines have often occurred at temperatures below Bd's optimum range. It is possible these declines occurred due to reduced anti-Bd activity of bacterial symbionts at cool temperatures. Better understanding of the effects of temperature on chytridiomycosis development could also improve risk evaluation for amphibian populations yet to encounter Bd. We characterized, at a range of temperatures approximating natural seasonal variation, the anti-Bd activity of bacterial symbionts from the skins of three species of rainforest tree frogs (Litoria nannotis, Litoria rheocola, and Litoria serrata). All three species declined during chytridiomycosis outbreaks in the late 1980s and early 1990s and have subsequently recovered to differing extents. We collected anti-Bd bacterial symbionts from frogs and cultured the bacteria at constant temperatures from 8 °C to 33 °C. Using a spectrophotometric assay, we monitored Bd growth in cell-free supernatants (CFSs) from each temperature treatment. CFSs from 11 of 24 bacteria showed reduced anti-Bd activity in vitro when they were produced at cool temperatures similar to those encountered by the host species during population declines. Reduced anti-Bd activity of metabolites produced at low temperatures may, therefore, partially explain the association between Bd-driven declines and cool temperatures. We show that to avoid

  13. Impending conservation crisis for Southeast Asian amphibians.

    PubMed

    Rowley, Jodi; Brown, Rafe; Bain, Raoul; Kusrini, Mirza; Inger, Robert; Stuart, Bryan; Wogan, Guin; Thy, Neang; Chan-Ard, Tanya; Trung, Cao Tien; Diesmos, Arvin; Iskandar, Djoko T; Lau, Michael; Ming, Leong Tzi; Makchai, Sunchai; Truong, Nguyen Quang; Phimmachak, Somphouthone

    2010-06-23

    With an understudied amphibian fauna, the highest deforestation rate on the planet and high harvesting pressures, Southeast Asian amphibians are facing a conservation crisis. Owing to the overriding threat of habitat loss, the most critical conservation action required is the identification and strict protection of habitat assessed as having high amphibian species diversity and/or representing distinctive regional amphibian faunas. Long-term population monitoring, enhanced survey efforts, collection of basic biological and ecological information, continued taxonomic research and evaluation of the impact of commercial trade for food, medicine and pets are also needed. Strong involvement of regional stakeholders, students and professionals is essential to accomplish these actions.

  14. Impending conservation crisis for Southeast Asian amphibians

    PubMed Central

    Rowley, Jodi; Brown, Rafe; Bain, Raoul; Kusrini, Mirza; Inger, Robert; Stuart, Bryan; Wogan, Guin; Thy, Neang; Chan-ard, Tanya; Trung, Cao Tien; Diesmos, Arvin; Iskandar, Djoko T.; Lau, Michael; Ming, Leong Tzi; Makchai, Sunchai; Truong, Nguyen Quang; Phimmachak, Somphouthone

    2010-01-01

    With an understudied amphibian fauna, the highest deforestation rate on the planet and high harvesting pressures, Southeast Asian amphibians are facing a conservation crisis. Owing to the overriding threat of habitat loss, the most critical conservation action required is the identification and strict protection of habitat assessed as having high amphibian species diversity and/or representing distinctive regional amphibian faunas. Long-term population monitoring, enhanced survey efforts, collection of basic biological and ecological information, continued taxonomic research and evaluation of the impact of commercial trade for food, medicine and pets are also needed. Strong involvement of regional stakeholders, students and professionals is essential to accomplish these actions. PMID:20007165

  15. The Metamorphosis of Amphibian Toxicogenomics

    PubMed Central

    Helbing, Caren C.

    2012-01-01

    Amphibians are important vertebrates in toxicology often representing both aquatic and terrestrial forms within the life history of the same species. Of the thousands of species, only two have substantial genomics resources: the recently published genome of the Pipid, Xenopus (Silurana) tropicalis, and transcript information (and ongoing genome sequencing project) of Xenopus laevis. However, many more species representative of regional ecological niches and life strategies are used in toxicology worldwide. Since Xenopus species diverged from the most populous frog family, the Ranidae, ~200 million years ago, there are notable differences between them and the even more distant Caudates (salamanders) and Caecilians. These differences include genome size, gene composition, and extent of polyploidization. Application of toxicogenomics to amphibians requires the mobilization of resources and expertise to develop de novo sequence assemblies and analysis strategies for a broader range of amphibian species. The present mini-review will present the advances in toxicogenomics as pertains to amphibians with particular emphasis upon the development and use of genomic techniques (inclusive of transcriptomics, proteomics, and metabolomics) and the challenges inherent therein. PMID:22435070

  16. First line of defence: the role of sloughing in the regulation of cutaneous microbes in frogs

    PubMed Central

    Cramp, Rebecca L.; McPhee, Rebecca K.; Meyer, Edward A.; Ohmer, Michel E.; Franklin, Craig E.

    2014-01-01

    Amphibian populations worldwide are currently experiencing unprecedented declines due to the combined effects of emerging infectious disease and climate change. The skin is the first line of defence in preventing establishment of pathogens and associated infections. Although amphibians undergo regular sloughing of the outer layer of the skin, the potential for regular sloughing to play a role in influencing cutaneous microbial populations and pathogens has been largely overlooked. In the present study, we assessed the effect of skin sloughing on cultivable cutaneous bacterial abundance in the green tree frog (Litoria caerulea). We also examined the effects of temperature and hydric environment on sloughing frequency and microbial re-establishment rates. Our data showed that cultivable cutaneous bacterial abundance was significantly reduced by sloughing events, and frogs kept at ‘summer’ temperatures (23–33°C) sloughed almost twice as frequently as those maintained at ‘winter’ temperatures (13–23°C). No effect of hydric environment on sloughing frequency was observed, but we did find that sloughing in L. caerulea appeared to be linked to ambient light cycles. Examination of the effect of sloughing on microbial recolonization indicated that at cool temperatures, an extended intermoult interval allowed microbial abundance to reach higher levels than at warmer ‘summer’ temperatures (when the intermoult interval was significantly reduced). Our data suggest that sloughing may significantly influence the establishment and/or maintenance of cutaneous bacterial populations (pathogenic, mutualistic and/or commensal) and this, in turn, may be affected by environmental factors, such as ambient light and temperature. These findings are likely to be important for our understanding of the ecology of skin-based pathogens, such as the amphibian chytrid fungus, Batrachochytrium dendrobatidis. PMID:27293633

  17. [Jaws of amphibians and reptiles].

    PubMed

    Tanimoto, Masahiro

    2005-04-01

    Big jaws of amphibians and reptiles are mainly treated in this article. In amphibians enlarged skulls are for the big jaw in contrast with human's skulls for the brain. For example, famous fossils of Homo diluvii testis are ones of salamanders in fact. In reptiles, mosasaur jaws and teeth and their ecology are introduced for instance.

  18. Panamanian frog species host unique skin bacterial communities

    PubMed Central

    Belden, Lisa K.; Hughey, Myra C.; Rebollar, Eria A.; Umile, Thomas P.; Loftus, Stephen C.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; House, Leanna L.; Jensen, Roderick V.; Becker, Matthew H.; Walke, Jenifer B.; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N.

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  19. The North American Amphibian Monitoring Program. [abstract

    USGS Publications Warehouse

    Griffin, J.

    1998-01-01

    The North American Amphibian Monitoring Program has been under development for the past three years. The monitoring strategy for NAAMP has five main prongs: terrestrial salamander surveys, calling surveys, aquatic surveys, western surveys, and atlassing. Of these five, calling surveys were selected as one of the first implementation priorities due to their friendliness to volunteers of varying knowledge levels, relative low cost, and the fact that several groups had already pioneered the techniques involved. While some states and provinces had implemented calling surveys prior to NAAMP, like WI and IL, most states and provinces had little or no history of state/provincewide amphibian monitoring. Thus, the majority of calling survey programs were initiated in the past two years. To assess the progress of this pilot phase, a program review was conducted on the status of the NAAMP calling survey program, and the results of that review will be presented at the meeting. Topics to be discussed include: who is doing what where, extent of route coverage, the continuing random route discussions, quality assurance, strengths and weaknesses of calling surveys, reliability of data, and directions for the future. In addition, a brief overview of the DISPro project will be included. DISPro is a new amphibian monitoring program in National Parks, funded by the Demonstration of Intensive Sites Program (DISPro) through the EPA and NPS. It will begin this year at Big Bend and Shenandoah National Parks. The purpose of the DISPro Amphibian Project will be to investigate relationships between environmental factors and stressors and the distribution, abundance, and health of amphibians in these National Parks. At each Park, amphibian long-term monitoring protocols will be tested, distributions and abundance of amphibians will be mapped, and field research experiments will be conducted to examine stressor effects on amphibians (e.g., ultraviolet radiation, contaminants, acidification).

  20. Prodigiosin, Violacein, and Volatile Organic Compounds Produced by Widespread Cutaneous Bacteria of Amphibians Can Inhibit Two Batrachochytrium Fungal Pathogens.

    PubMed

    Woodhams, Douglas C; LaBumbard, Brandon C; Barnhart, Kelly L; Becker, Matthew H; Bletz, Molly C; Escobar, Laura A; Flechas, Sandra V; Forman, Megan E; Iannetta, Anthony A; Joyce, Maureen D; Rabemananjara, Falitiana; Gratwicke, Brian; Vences, Miguel; Minbiole, Kevin P C

    2018-05-01

    Symbiotic bacteria can produce secondary metabolites and volatile compounds that contribute to amphibian skin defense. Some of these symbionts have been used as probiotics to treat or prevent the emerging disease chytridiomycosis. We examined 20 amphibian cutaneous bacteria for the production of prodigiosin or violacein, brightly colored defense compounds that pigment the bacteria and have characteristic spectroscopic properties making them readily detectable, and evaluated the antifungal activity of these compounds. We detected violacein from all six isolates of Janthinobacterium lividum on frogs from the USA, Switzerland, and on captive frogs originally from Panama. We detected prodigiosin from five isolates of Serratia plymuthica or S. marcescens, but not from four isolates of S. fonticola or S. liquefaciens. All J. lividum isolates produced violacein when visibly purple, while prodigiosin was only detected on visibly red Serratia isolates. When applied to cultures of chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), prodigiosin caused significant growth inhibition, with minimal inhibitory concentrations (MIC) of 10 and 50 μM, respectively. Violacein showed a MIC of 15 μM against both fungi and was slightly more active against Bsal than Bd at lower concentrations. Although neither violacein nor prodigiosin showed aerosol activity and is not considered a volatile organic compound (VOC), J. lividum and several Serratia isolates did produce antifungal VOCs. White Serratia isolates with undetectable prodigiosin levels could still inhibit Bd growth indicating additional antifungal compounds in their chemical arsenals. Similarly, J. lividum can produce antifungal compounds such as indole-3-carboxaldehyde in addition to violacein, and isolates are not always purple, or turn purple under certain growth conditions. When Serratia isolates were grown in the presence of cell-free supernatant (CFS) from the fungi, CFS from Bd inhibited

  1. Effectiveness of amphibians as biodiversity surrogates in pond conservation.

    PubMed

    Ilg, Christiane; Oertli, Beat

    2017-04-01

    Amphibian decline has led to worldwide conservation efforts, including the identification and designation of sites for their protection. These sites could also play an important role in the conservation of other freshwater taxa. In 89 ponds in Switzerland, we assessed the effectiveness of amphibians as a surrogate for 4 taxonomic groups that occur in the same freshwater ecosystems as amphibians: dragonflies, aquatic beetles, aquatic gastropods, and aquatic plants. The ponds were all of high value for amphibian conservation. Cross-taxon correlations were tested for species richness and conservation value, and Mantel tests were used to investigate community congruence. Species richness, conservation value, and community composition of amphibians were weakly congruent with these measures for the other taxonomic groups. Paired comparisons for the 5 groups considered showed that for each metric, amphibians had the lowest degree of congruence. Our results imply that site designation for amphibian conservation will not necessarily provide protection for freshwater biodiversity as a whole. To provide adequate protection for freshwater species, we recommend other taxonomic groups be considered in addition to amphibians in the prioritization and site designation process. © 2016 Society for Conservation Biology.

  2. The chemistry of poisons in amphibian skin.

    PubMed Central

    Daly, J W

    1995-01-01

    Poisons are common in nature, where they often serve the organism in chemical defense. Such poisons either are produced de novo or are sequestered from dietary sources or symbiotic organisms. Among vertebrates, amphibians are notable for the wide range of noxious agents that are contained in granular skin glands. These compounds include amines, peptides, proteins, steroids, and both water-soluble and lipid-soluble alkaloids. With the exception of the alkaloids, most seem to be produced de novo by the amphibian. The skin of amphibians contains many structural classes of alkaloids previously unknown in nature. These include the batrachotoxins, which have recently been discovered to also occur in skin and feathers of a bird, the histrionicotoxins, the gephyrotoxins, the decahydroquinolines, the pumiliotoxins and homopumiliotoxins, epibatidine, and the samandarines. Some amphibian skin alkaloids are clearly sequestered from the diet, which consists mainly of small arthropods. These include pyrrolizidine and indolizidine alkaloids from ants, tricyclic coccinellines from beetles, and pyrrolizidine oximes, presumably from millipedes. The sources of other alkaloids in amphibian skin, including the batrachotoxins, the decahydroquinolines, the histrionicotoxins, the pumiliotoxins, and epibatidine, are unknown. While it is possible that these are produced de novo or by symbiotic microorganisms, it appears more likely that they are sequestered by the amphibians from as yet unknown dietary sources. PMID:7816854

  3. Estimating Herd Immunity to Amphibian Chytridiomycosis in Madagascar Based on the Defensive Function of Amphibian Skin Bacteria

    PubMed Central

    Bletz, Molly C.; Myers, Jillian; Woodhams, Douglas C.; Rabemananjara, Falitiana C. E.; Rakotonirina, Angela; Weldon, Che; Edmonds, Devin; Vences, Miguel; Harris, Reid N.

    2017-01-01

    For decades, Amphibians have been globally threatened by the still expanding infectious disease, chytridiomycosis. Madagascar is an amphibian biodiversity hotspot where Batrachochytrium dendrobatidis (Bd) has only recently been detected. While no Bd-associated population declines have been reported, the risk of declines is high when invasive virulent lineages become involved. Cutaneous bacteria contribute to host innate immunity by providing defense against pathogens for numerous animals, including amphibians. Little is known, however, about the cutaneous bacterial residents of Malagasy amphibians and the functional capacity they have against Bd. We cultured 3179 skin bacterial isolates from over 90 frog species across Madagascar, identified them via Sanger sequencing of approximately 700 bp of the 16S rRNA gene, and characterized their functional capacity against Bd. A subset of isolates was also tested against multiple Bd genotypes. In addition, we applied the concept of herd immunity to estimate Bd-associated risk for amphibian communities across Madagascar based on bacterial antifungal activity. We found that multiple bacterial isolates (39% of all isolates) cultured from the skin of Malagasy frogs were able to inhibit Bd. Mean inhibition was weakly correlated with bacterial phylogeny, and certain taxonomic groups appear to have a high proportion of inhibitory isolates, such as the Enterobacteriaceae, Pseudomonadaceae, and Xanthamonadaceae (84, 80, and 75% respectively). Functional capacity of bacteria against Bd varied among Bd genotypes; however, there were some bacteria that showed broad spectrum inhibition against all tested Bd genotypes, suggesting that these bacteria would be good candidates for probiotic therapies. We estimated Bd-associated risk for sampled amphibian communities based on the concept of herd immunity. Multiple amphibian communities, including those in the amphibian diversity hotspots, Andasibe and Ranomafana, were estimated to be below

  4. Ecotoxicology of organic contaminants to amphibians

    USGS Publications Warehouse

    Sparling, D.W.; Sparling, Donald W.; Linder, Greg L.; Bishop, Christine A.

    2000-01-01

    The effects of organic contaminants on amphibians are poorly known but of considerable interest. These contaminants include the highly toxic dioxins and furans as well as PCBs, PAHs and organochlorine pesticides. Although these compounds may have lower acute toxicity than dioxins and furans, they have been implicated in several problems associated with genotoxicity, endocrine disruption, malformations and reduced growth. There is evidence that amphibian tadpoles bioaccumulate these organic compounds and may have biological concentrating factors ranging in the hundreds. This chapter reviews what is known about the effects and concentrations of organic contaminants in amphibians and provides recommendations for further research

  5. Amphibians and wildfire in the U.S. Northwest

    Treesearch

    Blake R. Hossack

    2006-01-01

    Recent evidence of amphibian declines along with outbreaks of large wildfires in western North American conifer forests has underscored our lack of knowledge about effects of fire on amphibians in these ecosystems. Understanding the connection between amphibian declines and wildfire is proving complex in some areas because the past century of fire suppression and other...

  6. Monitoring amphibians in Great Smoky Mountains National Park

    USGS Publications Warehouse

    Dodd, C. Kenneth

    2003-01-01

    This report provides an overview of the Park’s amphibians, the factors affecting their distribution, a review of important areas of biodiversity, and a summary of amphibian life history in the Southern Appalachians. In addition, survey techniques are described as well as examples of how the techniques are set up, a critique of what the results tell the observer, and a discussion of the limitations of the techniques and the data. The report reviews considerations for site selection, outlines steps for biosecurity and for processing diseased or dying animals, and provides resource managers with a decision tree on how to monitor the Park’s amphibians based on different levels of available resources. It concludes with an extensive list of references for inventorying and monitoring amphibians. USGS and Great Smoky Mountains National Park biologists need to establish cooperative efforts and training to ensure that congressionally mandated amphibian surveys are performed in a statistically rigorous and biologically meaningful manner, and that amphibian populations on Federal lands are monitored to ensure their long-term survival. The research detailed in this report will aid these cooperative efforts.

  7. Batrachochytrium dendrobatidis in amphibians confiscated from illegal wildlife trade and used in an ex situ breeding program in Brazil.

    PubMed

    De Paula, C D; Pacífico-Assis, E C; Catão-Dias, J L

    2012-03-20

    This paper describes an outbreak of chytridiomycosis affecting a group of Dendrobates tinctorius, a Neotropical anuran species, confiscated from the illegal wildlife trade and housed in a private zoo in Brazil as part of an ex situ breeding program. We examined histological sections of the skin of 30 D. tinctorius and 20 Adelphobates galactonotus individuals. Twenty D. tinctorius (66.7%) and none of the A. galactonotus were positive for Batrachochytrium dendrobatidis (Bd). Multiple development stages of Bd infection were observed. The reasons for the inter-specific difference in the rate of infection could not be determined, and further studies are advised. Because the examined population consisted of confiscated frogs, detailed epidemiological aspects could not be investigated, and the source of the fungus remains uncertain. The existence of ex situ amphibian populations is important for protecting species at higher risk in the wild, and ex situ amphibian conservation and breeding programs in Brazil may be established using confiscated frogs as founders. However, this paper alerts these programs to the urgency of strict quarantine procedures to prevent the introduction of potential pathogens, particularly Bd, into ex situ conservation programs.

  8. Amphibian populations in the terrestrial environment: Is there evidence of declines of terrestrial forest amphibians in northwestern California?

    USGS Publications Warehouse

    Welsh, H.H.; Fellers, G.M.; Lind, A.J.

    2007-01-01

    Amphibian declines have been documented worldwide; however the vast majority are species associated with aquatic habitats. Information on the status and trends of terrestrial amphibians is almost entirely lacking. Here we use data collected across a 12-yr period (sampling from 1984-86 and from 1993-95) to address the question of whether evidence exists for declines among terrestrial amphibians in northwestern California forests. The majority of amphibians, both species and relative numbers, in these forests are direct-developing salamanders of the family Plethodontidae. We examined amphibian richness and evenness, and the relative abundances of the four most common species of plethodontid salamanders. We examined evidence of differences between years in two ecological provinces (coastal and interior) and across young, mature, and late seral forests and with reference to a moisture gradient from xeric to hydric within late seral forests. We found evidence of declines in species richness across years on late seral mesic stands and in the coastal ecological province, but these differences appeared to be caused by differences in the detection of rarer species, rather than evidence of an overall pattern. We also found differences among specific years in numbers of individuals of the most abundant species, Ensatina eschscholtzii, but these differences also failed to reflect a consistent pattern of declines between the two decadal sample periods. Results showing differences in richness, evenness, and relative abundances along both the seral and moisture continua were consistent with previous research. Overall, we found no compelling evidence of a downward trend in terrestrial plethodontid salamanders. We believe that continued monitoring of terrestrial salamander populations is important to understanding mechanisms of population declines in amphibian species. Copyright 2007 Society for the Study of Amphibians and Reptiles.

  9. Conceptual Design for the Amphibian Research and Monitoring Initiative (ARMI)

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.; Langtimm, C. A.; Adams, M. J.; Gallant, A. L.; James, D. L.

    2001-12-01

    In 2000, the President of the United States (US) and Congress directed Department of Interior (DOI) agencies to develop a program for monitoring trends in amphibian populations on DOI lands and to conduct research into causes of declines. The U.S. Geological Survey (USGS) was given lead responsibility for planning and implementing the Amphibian Research and Monitoring Initiative (ARMI) in cooperation with the National Park Service (NPS), Fish and Wildlife Service, and Bureau of Land Management. The program objectives are to (1) establish a network for monitoring the status and distribution of amphibian species on DOI lands; (2) identify and monitor environmental conditions known to affect amphibian populations; (3) conduct research on causes of amphibian population change and malformations; and (4) provide information to resource managers, policy makers, and the public in support of amphibian conservation. The ARMI program will integrate research efforts of USGS, other Federal, and non-federal herpetologists, hydrologists, and geographers across the Nation. ARMI will conduct a small number (~20) of intensive research efforts (for example, studies linking amphibian population changes to hydrologic conditions) and a larger number (~50) of more generalized inventory and monitoring studies encompassing broader areas such as NPS units. ARMI will coordinate with and try to augment other amphibian inventory studies such as the National Amphibian Atlas and the North American Amphibian Monitoring Program. ARMI will develop and test protocols for the standardized collection of amphibian data and provide a centrally managed database designed to simplify data entry, retrieval, and analysis. ARMI pilot projects are underway at locations across the US.

  10. Chytridiomycosis: a global threat to amphibians.

    PubMed

    Pereira, P L L; Torres, A M C; Soares, D F M; Hijosa-Valsero, M; Bécares, E

    2013-12-01

    Chytridiomycosis, which is caused by Batrachochytrium dendrobatidis, is an emerging infectious disease of amphibians. The disease is one of the main causes of the global decline in amphibians. The aetiological agent is ubiquitous, with worldwide distribution, and affects a large number of amphibian species in several biomes. In the last decade, scientific research has substantially increased knowledge of the aetiological agent and the associated infection. However, important epidemiological aspects of the environment-mediated interactions between the aetiological agent and the host are not yet clear. The objective of the present review is to describe chytridiomycosis with regard to the major features of the aetiological agent, the host and the environment.

  11. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection

    PubMed Central

    Jani, Andrea J.; Briggs, Cheryl J.

    2014-01-01

    Symbiotic microbial communities may interact with infectious pathogens sharing a common host. The microbiome may limit pathogen infection or, conversely, an invading pathogen can disturb the microbiome. Documentation of such relationships during naturally occurring disease outbreaks is rare, and identifying causal links from field observations is difficult. This study documented the effects of an amphibian skin pathogen of global conservation concern [the chytrid fungus Batrachochytrium dendrobatidis (Bd)] on the skin-associated bacterial microbiome of the endangered frog, Rana sierrae, using a combination of population surveys and laboratory experiments. We examined covariation of pathogen infection and bacterial microbiome composition in wild frogs, demonstrating a strong and consistent correlation between Bd infection load and bacterial community composition in multiple R. sierrae populations. Despite the correlation between Bd infection load and bacterial community composition, we observed 100% mortality of postmetamorphic frogs during a Bd epizootic, suggesting that the relationship between Bd and bacterial communities was not linked to variation in resistance to mortal disease and that Bd infection altered bacterial communities. In a controlled experiment, Bd infection significantly altered the R. sierrae microbiome, demonstrating a causal relationship. The response of microbial communities to Bd infection was remarkably consistent: Several bacterial taxa showed the same response to Bd infection across multiple field populations and the laboratory experiment, indicating a somewhat predictable interaction between Bd and the microbiome. The laboratory experiment demonstrates that Bd infection causes changes to amphibian skin bacterial communities, whereas the laboratory and field results together strongly support Bd disturbance as a driver of bacterial community change during natural disease dynamics. PMID:25385615

  12. Amphibians

    Treesearch

    Harold E. Basey; David A. Sinclear

    1980-01-01

    This chapter offers the most recent information available on the habitat relations of teh 26 speicies of amphibians and 27 species of reptiles know to occur in the west slope of the Sierra Nevada. nomenclature used follows that in the most recent literature for each species. the species are arrange in phylogenetic order and numbered in sequence, with prefix "A...

  13. Modeling effects of conservation grassland losses on amphibian habitat

    USGS Publications Warehouse

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  14. Countryside biogeography of Neotropical reptiles and amphibians.

    PubMed

    Mendenhall, Chase D; Frishkoff, Luke O; Santos-Barrera, Georgina; Pacheco, Jesús; Mesfun, Eyobed; Mendoza Quijano, Fernando; Ehrlich, Paul R; Ceballos, Gerardo; Daily, Gretchen C; Pringle, Robert M

    2014-04-01

    The future of biodiversity and ecosystem services depends largely on the capacity of human-dominated ecosystems to support them, yet this capacity remains largely unknown. Using the framework of countryside biogeography, and working in the Las Cruces system of Coto Brus, Costa Rica, we assessed reptile and amphibian assemblages within four habitats that typify much of the Neotropics: sun coffee plantations (12 sites), pasture (12 sites), remnant forest elements (12 sites), and a larger, contiguous protected forest (3 sites in one forest). Through analysis of 1678 captures of 67 species, we draw four primary conclusions. First, we found that the majority of reptile (60%) and amphibian (70%) species in this study used an array of habitat types, including coffee plantations and actively grazed pastures. Second, we found that coffee plantations and pastures hosted rich, albeit different and less dense, reptile and amphibian biodiversity relative to the 326-ha Las Cruces Forest Reserve and neighboring forest elements. Third, we found that the small ribbons of "countryside forest elements" weaving through farmland collectively increased the effective size of a 326-ha local forest reserve 16-fold for reptiles and 14-fold for amphibians within our 236-km2 study area. Therefore, countryside forest elements, often too small for most remote sensing techniques to identify, are contributing -95% of the available habitat for forest-dependent reptiles and amphibians in our largely human-dominated study region. Fourth, we found large and pond-reproducing amphibians to prefer human-made habitats, whereas small, stream-reproducing, and directly developing species are more dependent on forest elements. Our investigation demonstrates that tropical farming landscapes can support substantial reptile and amphibian biodiversity. Our approach provides a framework for estimating the conservation value of the complex working landscapes that constitute roughly half of the global land surface

  15. Partners in amphibian and reptile conservation 2013 annual report

    USGS Publications Warehouse

    Conrad, Paulette M.; Weir, Linda A.; Nanjappa, Priya

    2014-01-01

    Partners in Amphibian and Reptile Conservation (PARC) was established in 1999 to address the widespread declines, extinctions, and range reductions of amphibians and reptiles, with a focus on conservation of taxa and habitats in North America. Amphibians and reptiles are affected by a broad range of human activities, both as incidental effects of habitat alteration and direct effect from overexploitation; these animals are also challenged by the perception that amphibians and reptiles are either dangerous or of little environmental or economic value. However, PARC members understand these taxa are important parts of our natural an cultural heritage and they serve important roles in ecosystems throughout the world. With many amphibians and reptiles classified as threatened with extinction, conservation of these animals has never been more important.

  16. Amphibian recovery after a decrease in acidic precipitation.

    PubMed

    Dolmen, Dag; Finstad, Anders Gravbrøt; Skei, Jon Kristian

    2018-04-01

    We here report the first sign of amphibian recovery after a strong decline due to acidic precipitation over many decades and peaking around 1980-90. In 2010, the pH level of ponds and small lakes in two heavily acidified areas in southwestern Scandinavia (Aust-Agder and Østfold in Norway) had risen significantly at an (arithmetic) average of 0.14 since 1988-89. Parallel with the general rise in pH, amphibians (Rana temporaria, R. arvalis, Bufo bufo, Lissotriton vulgaris, and Triturus cristatus) had become significantly more common: the frequency of amphibian localities rose from 33% to 49% (n = 115), and the average number of amphibian species per locality had risen from 0.51 to 0.88. In two other (reference) areas, one with better buffering capacity (Telemark, n = 21) and the other with much less input of acidic precipitation (Nord-Trøndelag, n = 106), there were no significant changes in pH or amphibians.

  17. Amphibian decline in Yellowstone National Park

    Treesearch

    Debra A. Patla; Charles R. Peterson; Paul Stephen Corn

    2009-01-01

    We conduct long-term amphibian monitoring in Yellowstone National Park (YNP) (1) and read McMenamin et al.'s article (2) with interest. This study documents decline in the extent of seasonal wetlands in the Lamar Valley of YNP during extended drought, but the conclusion, widely reported in the media, of "severe declines in 4 once-common amphibian species,...

  18. Endemic Asian Chytrid Strain Infection in Threatened and Endemic Anurans of the Northern Western Ghats, India

    PubMed Central

    Dahanukar, Neelesh; Krutha, Keerthi; Paingankar, Mandar S.; Padhye, Anand D.; Modak, Nikhil; Molur, Sanjay

    2013-01-01

    The Western Ghats of India harbors a rich diversity of amphibians with more than 77% species endemic to this region. At least 42% of the endemic species are threatened due to several anthropogenic stressors. However, information on amphibian diseases and their impacts on amphibian populations in this region are scarce. We report the occurrence of Batrachochytridium dendrobatidis (Bd), an epidermal aquatic fungal pathogen that causes chytridiomycosis in amphibians, from the Western Ghats. In the current study we detected the occurrence of a native Asian Bd strain from three endemic and threatened species of anurans, Bombay Night Frog Nyctibatrachus humayuni, Leith's Leaping Frog Indirana leithii and Bombay Bubble Nest Frog Raorchestes bombayensis, for the first time from the northern Western Ghats of India based on diagnostic nested PCR, quantitative PCR, DNA sequencing and histopathology. While, the Bd infected I. leithii and R. bombayensis did not show any external symptoms, N. humayuni showed lesions on the skin, browning of skin and sloughing. Sequencing of Bd 5.8S ribosomal RNA gene, and the ITS1 and ITS2 regions, revealed that the current Bd strain is related to a haplotype endemic to Asia. Our findings confirm the presence of Bd in northern Western Ghats and the affected amphibians may or may not show detectable clinical symptoms. We suggest that the significance of diseases as potential threat to amphibian populations of the Western Ghats needs to be highlighted from the conservation point of view. PMID:24147018

  19. Invasive reptiles and amphibians.

    PubMed

    Moutou, F; Pastoret, P P

    2010-08-01

    Although they are frequently lumped together, reptiles and amphibians belong to two very different zoological groups. Nevertheless, one fact is clear: while numerous reptile and amphibian species on Earth are in decline, others have taken advantage of trade or human movements to become established in new lands, adopting different, and sometimes unusual, strategies. The authors have taken a few examples from these two zoological groups that illustrate the majority of cases. A brief analysis of the causes and effects of their introductions into new areas reveals connections with economic interests, trade in companion animals, medical research and public health.

  20. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians

    PubMed Central

    Sloggett, John J.

    2012-01-01

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups. PMID:26466621

  1. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians.

    PubMed

    Sloggett, John J

    2012-07-18

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups.

  2. Ecopathology of Ranaviruses Infecting Amphibians

    PubMed Central

    Miller, Debra; Gray, Matthew; Storfer, Andrew

    2011-01-01

    Ranaviruses are capable of infecting amphibians from at least 14 families and over 70 individual species. Ranaviruses infect multiple cell types, often culminating in organ necrosis and massive hemorrhaging. Subclinical infections have been documented, although their role in ranavirus persistence and emergence remains unclear. Water is an effective transmission medium for ranaviruses, and survival outside the host may be for significant duration. In aquatic communities, amphibians, reptiles and fish may serve as reservoirs. Controlled studies have shown that susceptibility to ranavirus infection and disease varies among amphibian species and developmental stages, and likely is impacted by host-pathogen coevolution, as well as, exogenous environmental factors. Field studies have demonstrated that the likelihood of epizootics is increased in areas of cattle grazing, where aquatic vegetation is sparse and water quality is poor. Translocation of infected amphibians through commercial trade (e.g., food, fish bait, pet industry) contributes to the spread of ranaviruses. Such introductions may be of particular concern, as several studies report that ranaviruses isolated from ranaculture, aquaculture, and bait facilities have greater virulence (i.e., ability to cause disease) than wild-type isolates. Future investigations should focus on the genetic basis for pathogen virulence and host susceptibility, ecological and anthropogenic mechanisms contributing to emergence, and vaccine development for use in captive populations and species reintroduction programs. PMID:22163349

  3. Trends in amphibian occupancy in the United States

    USGS Publications Warehouse

    Adams, Michael J.; Miller, David A.W.; Muths, Erin; Corn, Paul Stephen; Grant, Evan H. Campbell; Bailey, Larissa L.; Fellers, Gary M.; Fisher, Robert N.; Sadinski, Walter J.; Waddle, Hardin; Walls, Susan C.

    2013-01-01

    Though a third of amphibian species worldwide are thought to be imperiled, existing assessments simply categorize extinction risk, providing little information on the rate of population losses. We conducted the first analysis of the rate of change in the probability that amphibians occupy ponds and other comparable habitat features across the United States. We found that overall occupancy by amphibians declined 3.7% annually from 2002 to 2011. Species that are Red-listed by the International Union for Conservation of Nature (IUCN) declined an average of 11.6% annually. All subsets of data examined had a declining trend including species in the IUCN Least Concern category. This analysis suggests that amphibian declines may be more widespread and severe than previously realized.

  4. Amphibian Population Sensitivity to Environmental and ...

    EPA Pesticide Factsheets

    Anticipating chronic effects of contaminant exposure on amphibian species is complicated both by toxicological and ecological uncertainty. Data for both chemical exposures and amphibian vital rates, including altered growth, are sparse. Developmental plasticity in amphibians further complicates evaluation of chemical impacts as metamorphosis is also influenced by other biotic and abiotic stressors, such as temperature, hydroperiod, predation, and conspecific density. Determining the effect of delayed tadpole development on survival through metamorphosis and subsequent recruitment must include possible effects of pond drying accelerating metamorphosis near the end of the larval stage. This model considers the combined influence of delayed onset of metamorphosis in a cohort as well as accelerated metamorphosis toward the end of the hydroperiod and determines the net influence of counteracting forces on tadpole development and survival. Amphibian populations with greater initial density dependence have less capacity for developmental plasticity and are therefore more vulnerable to delayed development and reduced hydroperiod. The consequential reduction in larval survival has a relatively greater impact on species with a shorter lifespan, allowing for fewer breeding seasons during which to successfully produce offspring. In response to risk assessment approaches that consider only survival and reproductive endpoints in population evaluation, we calculate conta

  5. Disease in a more variable and unpredictable climate

    NASA Astrophysics Data System (ADS)

    McMahon, T. A.; Raffel, T.; Rohr, J. R.; Halstead, N.; Venesky, M.; Romansic, J.

    2014-12-01

    Global climate change is shifting the dynamics of infectious diseases of humans and wildlife with potential adverse consequences for disease control. Despite this, the role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial. Climate change is expected to increase climate variability in addition to increasing mean temperatures, making climate less predictable. However, few empirical or theoretical studies have considered the effects of climate variability or predictability on disease, despite it being likely that hosts and parasites will have differential responses to climatic shifts. Here we present a theoretical framework for how temperature variation and its predictability influence disease risk by affecting host and parasite acclimation responses. Laboratory experiments and field data on disease-associated frog declines in Latin America support this framework and provide evidence that unpredictable temperature fluctuations, on both monthly and diurnal timescales, decrease frog resistance to the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Furthermore, the pattern of temperature-dependent growth of the fungus on frogs was inconsistent with the pattern of Bd growth in culture, emphasizing the importance of accounting for the host-parasite interaction when predicting climate-dependent disease dynamics. Consistent with our laboratory experiments, increased regional temperature variability associated with global El Niño climatic events was the best predictor of widespread amphibian losses in the genus Atelopus. Thus, incorporating the effects of small-scale temporal variability in climate can greatly improve our ability to predict the effects of climate change on disease.

  6. Global rates of habitat loss and implications for amphibian conservation

    USGS Publications Warehouse

    Gallant, Alisa L.; Klaver, R.W.; Casper, G.S.; Lannoo, M.J.

    2007-01-01

    A large number of factors are known to affect amphibian population viability, but most authors agree that the principal causes of amphibian declines are habitat loss, alteration, and fragmentation. We provide a global assessment of land use dynamics in the context of amphibian distributions. We accomplished this by compiling global maps of amphibian species richness and recent rates of change in land cover, land use, and human population growth. The amphibian map was developed using a combination of published literature and digital databases. We used an ecoregion framework to help interpret species distributions across environmental, rather than political, boundaries. We mapped rates of land cover and use change with statistics from the World Resources Institute, refined with a global digital dataset on land cover derived from satellite data. Temporal maps of human population were developed from the World Resources Institute database and other published sources. Our resultant map of amphibian species richness illustrates that amphibians are distributed in an uneven pattern around the globe, preferring terrestrial and freshwater habitats in ecoregions that are warm and moist. Spatiotemporal patterns of human population show that, prior to the 20th century, population growth and spread was slower, most extensive in the temperate ecoregions, and largely exclusive of major regions of high amphibian richness. Since the beginning of the 20th century, human population growth has been exponential and has occurred largely in the subtropical and tropical ecoregions favored by amphibians. Population growth has been accompanied by broad-scale changes in land cover and land use, typically in support of agriculture. We merged information on land cover, land use, and human population growth to generate a composite map showing the rates at which humans have been changing the world. When compared with the map of amphibian species richness, we found that many of the regions of the

  7. Amphibian (Xenopus sp.) iodothyronine deiodinase ...

    EPA Pesticide Factsheets

    The U.S. EPA-MED amphibian thyroid group is currently screening chemicals for inhibition of human iodothyronine deiodinase activity as components of the thyroid system important in human development. Amphibians are a bellwether taxonomic group to gauge toxicity of chemicals in the environment. Amphibian thyroid function is not only important in development but also metamorphosis. Xenopus sp. have been used extensively as model organisms and are well characterized genetically. We propose to screen a list of chemicals (selected from the human DIO screening results) to test for inhibition of Xenopus deiodinases. Large quantities of the enzymes will be produced using an adenovirus system. Our preliminary results show that there may be catalytic differences between human and Xenopus deiodinases. The Twin Ports Early Career Scientists is a new group formed within the Duluth-Superior scientific community. This presentation will provide a basic introduction to my research and our mission at EPA, and help to establish networking and collaboration relationships across disciplines and institutions.

  8. AmphiBase: A new genomic resource for non-model amphibian species.

    PubMed

    Kwon, Taejoon

    2017-01-01

    More than five thousand genes annotated in the recently published Xenopus laevis and Xenopus tropicalis genomes do not have a candidate orthologous counterpart in other vertebrate species. To determine whether these sequences represent genuine amphibian-specific genes or annotation errors, it is necessary to analyze them alongside sequences from other amphibian species. However, due to large genome sizes and an abundance of repeat sequences, there are limited numbers of gene sequences available from amphibian species other than Xenopus. AmphiBase is a new genomic resource covering non-model amphibian species, based on public domain transcriptome data and computational methods developed during the X. laevis genome project. Here, I review the current status of AmphiBase, including amphibian species with available transcriptome data or biological samples, and describe the challenges of building a comprehensive amphibian genomic resource in the absence of genomes. This mini-review will be informative for researchers interested in functional genomic experiments using amphibian model organisms, such as Xenopus and axolotl, and will assist in interpretation of results implicating "orphan genes." Additionally, this study highlights an opportunity for researchers working on non-model amphibian species to collaborate in their future efforts and develop amphibian genomic resources as a community. © 2017 Wiley Periodicals, Inc.

  9. Current and Future Effects of Climate Change on Montane Amphibians

    NASA Astrophysics Data System (ADS)

    Corn, S.

    2002-05-01

    Breeding phenology of amphibians in inextricably linked to weather, and change in the timing of breeding resulting from climate change may have consequences for the fitness of individuals and may affect persistence of amphibian populations. Amphibians in some north temperate locations have been observed to breed earlier in recent years in response to warmer spring temperatures, but this is not a universal phenomenon. In mountain populations, phenology is influenced by snow deposition as much as temperature. A trend towards earlier breeding, associated with increasing El Niño frequency, may be occurring in the Cascade Mountains in Oregon, but only at lower elevations. There is no evidence for changes in the dates of breeding activity by amphibians in the Rocky Mountains. Too few amphibian species have been studied, and those for which data exist have been studied for too brief a span of years to allow general conclusions about the effects of climate change. However, regardless of whether climate change has contributed to current amphibian declines, changes in temperature and the extent and duration of snow cover predicted for the next century will have increasingly severe consequences for the persistence of some species. Additional observations from amphibian populations, and spatial and temporal modeling of climate variables are needed to generate predictions of past and future breeding phenology, and the effects on amphibian population dynamics.

  10. Ranavirus outbreaks in amphibian populations of northern Idaho

    USGS Publications Warehouse

    Russell, Danelle M.; Goldberg, Caren S.; Sprague, Laura; Waits, Lisette P.; Green, D. Earl; Schuler, Krysten L.; Rosenblum, Erica Bree

    2011-01-01

    Ranavirus outbreaks, caused by pathogens in the genus Ranavirus (Family Iridoviridae), were the largest single cause of reported amphibian mass mortality events in the United States from 1996–2001 (Green et al. 2002). Mortality events associated with ranaviruses have been documented on five continents and throughout the latitudes and elevations where amphibians occur (Gray et al. 2009). However, the threat of ranaviruses to amphibian and reptile populations in specific regions is still largely unknown (Chinchar 2002; Gray et al. 2009).

  11. Incorporating Amphibian Malformations into Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Talley, Brooke L.

    2007-01-01

    Amphibians, a class of vertebrates consisting of frogs and toads, salamanders, and caecilians, are excellent organisms for middle school science students to study because of their ecological significance. Because they exchange oxygen and carbon dioxide through their skin, amphibians absorb any chemicals or substances present in their immediate…

  12. Red List of amphibians and reptiles of the Wadden Sea area

    NASA Astrophysics Data System (ADS)

    Fog, K.; Podloucky, R.; Dierking, U.; Stumpel, A. H. P.

    1996-10-01

    In the Wadden Sea, in total, 8 species of amphibians and 4 species of reptiles are threatened in at least one subregion. Of these, 7 species of amphibians and all 4 species of reptiles are threatened in the entire area and are therefore placed on the trilateral Red List. 1 species of the listed reptiles is (probably) extinct in the entire Wadden Sea area. The status of 1 species of amphibians is endangered, the status of (probably) 4 species of amphibians and 3 species of reptiles are vulnerable and of 2 species of amphibians susceptible.

  13. Parasite fitness traits under environmental variation: disentangling the roles of a chytrid's immediate host and external environment.

    PubMed

    Van den Wyngaert, Silke; Vanholsbeeck, Olivier; Spaak, Piet; Ibelings, Bas W

    2014-10-01

    Parasite environments are heterogeneous at different levels. The first level of variability is the host itself. The second level represents the external environment for the hosts, to which parasites may be exposed during part of their life cycle. Both levels are expected to affect parasite fitness traits. We disentangle the main and interaction effects of variation in the immediate host environment, here the diatom Asterionella formosa (variables host cell volume and host condition through herbicide pre-exposure) and variation in the external environment (variables host density and acute herbicide exposure) on three fitness traits (infection success, development time and reproductive output) of a chytrid parasite. Herbicide exposure only decreased infection success in a low host density environment. This result reinforces the hypothesis that chytrid zoospores use photosynthesis-dependent chemical cues to locate its host. At high host densities, chemotaxis becomes less relevant due to increasing chance contact rates between host and parasite, thereby following the mass-action principle in epidemiology. Theoretical support for this finding is provided by an agent-based simulation model. The immediate host environment (cell volume) substantially affected parasite reproductive output and also interacted with the external herbicide exposed environment. On the contrary, changes in the immediate host environment through herbicide pre-exposure did not increase infection success, though it had subtle effects on zoospore development time and reproductive output. This study shows that both immediate host and external environment as well as their interaction have significant effects on parasite fitness. Disentangling these effects improves our understanding of the processes underlying parasite spread and disease dynamics.

  14. Invasive and introduced reptiles and amphibians: Chapter 28

    USGS Publications Warehouse

    Reed, Robert N.; Krysko, Kenneth L.; Mader, Douglas R.; Divers, Stephen J.

    2014-01-01

    Why is there a section on introduced amphibians and reptiles in this volume, and why should veterinarians care about this issue? Globally, invasive species are a major threat to the stability of native ecosystems,1,2 and amphibians and reptiles are attracting increased attention as potential invaders. Some introduced amphibians and reptiles have had a major impact (e.g., Brown Tree Snakes [Boiga irregularis] wiping out the native birds of Guam3 or Cane Toads [Rhinella marina] poisoning native Australian predators).4 For the vast majority of species, however, the ecological, economic, and sociopolitical effects of introduced amphibians and reptiles are generally poorly quantified, largely because of a lack of focused research effort rather than because such effects are nonexistent. This trend is alarming given that rates of introduction have increased exponentially in recent decades.

  15. Multiple stressor effects in relation to declining amphibian populations

    USGS Publications Warehouse

    Linder, Greg L.; Krest, Sherry K.; Sparling, Donald; Little, E.

    2003-01-01

    Original research discusses the protocols and approaches to studying the effects of multiple environmental stressors on amphibian populations and gives new perspectives on this complicated subject. This new publication integrates a variety of stressors that can act in concert and may ultimately cause a decline in amphibian populations.Sixteen peer-reviewed papers cover:Toxicity Assessment examines methods, which range from long-established laboratory approaches for evaluating adverse chemical effects to amphibians, to methods that link chemicals in surface waters, sediments, and soils with adverse effects observed among amphibians in the field.Field and Laboratory Studies illustrates studies in the evaluation of multiple stressor effects that may lead to declining amphibian populations. A range of laboratory and field studies of chemicals, such as herbicides, insecticides, chlorinated organic compounds, metals, and complex mixtures are also included.Causal Analysis demonstrates the range of tools currently available for evaluating "cause-effect" relationships between environmental stressors and declining amphibian populations.Audience: This new publication is a must-have for scientists and resource management professionals from diverse fields, including ecotoxicology, chemistry, ecology, field biology, conservation biology, and natural resource management.

  16. Microbiota and Mucosal Immunity in Amphibians

    PubMed Central

    Colombo, Bruno M.; Scalvenzi, Thibault; Benlamara, Sarah; Pollet, Nicolas

    2015-01-01

    We know that animals live in a world dominated by bacteria. In the last 20 years, we have learned that microbes are essential regulators of mucosal immunity. Bacteria, archeas, and viruses influence different aspects of mucosal development and function. Yet, the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: (i) the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and (ii) the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small-animal model to improve the fundamental knowledge on immunological functions of gut microbiota. PMID:25821449

  17. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen

    Treesearch

    C.L. Searle; S.S. Gervasi; J. Hua; J.I. Hammond; R.A. Relyea; D.H. Olson; A.R. Blaustein

    2011-01-01

    The amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) has received considerable attention due to its role in amphibian population declines worldwide. Although many amphibian species appear to be affected by Bd, there is little information on species-specific differences in susceptibility to this pathogen. We used a comparative...

  18. Direct and indirect effects of climate change on amphibian populations

    USGS Publications Warehouse

    Blaustein, Andrew R.; Walls, Susan C.; Bancroft, Betsy A.; Lawler, Joshua J.; Searle, Catherine L.; Gervasi, Stephanie S.

    2010-01-01

    As part of an overall decline in biodiversity, populations of many organisms are declining and species are being lost at unprecedented rates around the world. This includes many populations and species of amphibians. Although numerous factors are affecting amphibian populations, we show potential direct and indirect effects of climate change on amphibians at the individual, population and community level. Shifts in amphibian ranges are predicted. Changes in climate may affect survival, growth, reproduction and dispersal capabilities. Moreover, climate change can alter amphibian habitats including vegetation, soil, and hydrology. Climate change can influence food availability, predator-prey relationships and competitive interactions which can alter community structure. Climate change can also alter pathogen-host dynamics and greatly influence how diseases are manifested. Changes in climate can interact with other stressors such as UV-B radiation and contaminants. The interactions among all these factors are complex and are probably driving some amphibian population declines and extinctions.

  19. AMPHIBIAN POPULATION DYNAMICS

    EPA Science Inventory

    Agriculture has contributed to loss of vertebrate biodiversity in many regions, including the U.S. Corn Belt. Amphibian populations, in particular, have experienced widespread and often inexplicable declines, range reductions, and extinctions. However, few attempts have been made...

  20. Ecotoxicology of Amphibians and Reptiles

    USGS Publications Warehouse

    2000-01-01

    For many years, ecological research on amphibians and reptiles has lagged behind that of other vertebrates such as fishes, birds, and mammals, despite the known importance of these animals in their environments. The lack of study has been particularly acute in the he area of ecotoxicology where the number of published scientific papers is a fraction of that found for the other vertebrate classes. Recently, scientists have become aware of severe crises among amphibian populations, including unexplained and sudden extinctions, worldwide declines, and hideous malformations. In many of these instances, contaminants have been listed as probable contributors. Data on the effects of contaminants on reptiles are so depauperate that even the most elementary interpretations are difficult. This state-of-the-science review and synthesis of amphibian and reptile ecotoxicology demonstrates the inter-relationships among distribution, ecology, physiology, and contaminant exposure, and interprets these topics as they pertain to comparative toxicity, population declines, malformations, and risk assessment . In this way, the book identifies and serves as a basis for the most pressing research needs in the coming years. The editors have invited 27 other internationally respected experts to examine the state of existing data in specific areas, interpret it in light of current problems, and identify research gaps and needs. Through its emphasis on recent research, extensive reviews and synthesis, Ecotoxicology of Amphibians and Reptiles will remain a definitive reference work well into the new century.

  1. Pesticide Uptake Across the Amphibian Dermis Through Soil and Overspray Exposures

    EPA Science Inventory

    For terrestrial amphibians, accumulation ofpesticides through dermal contact is a primary route ofexposure in agricultural landscapes and may be contributingto widespread amphibian declines. To show pesticidetransfer across the amphibian dermis at permitted labelapplication rates...

  2. Developments in amphibian captive breeding and reintroduction programs.

    PubMed

    Harding, Gemma; Griffiths, Richard A; Pavajeau, Lissette

    2016-04-01

    Captive breeding and reintroduction remain high profile but controversial conservation interventions. It is important to understand how such programs develop and respond to strategic conservation initiatives. We analyzed the contribution to conservation made by amphibian captive breeding and reintroduction since the launch of the International Union for Conservation of Nature (IUCN) Amphibian Conservation Action Plan (ACAP) in 2007. We assembled data on amphibian captive breeding and reintroduction from a variety of sources including the Amphibian Ark database and the IUCN Red List. We also carried out systematic searches of Web of Science, JSTOR, and Google Scholar for relevant literature. Relative to data collected from 1966 to 2006, the number of species involved in captive breeding and reintroduction projects increased by 57% in the 7 years since release of the ACAP. However, there have been relatively few new reintroductions over this period; most programs have focused on securing captive-assurance populations (i.e., species taken into captivity as a precaution against extinctions in the wild) and conservation-related research. There has been a shift to a broader representation of frogs, salamanders, and caecilians within programs and an increasing emphasis on threatened species. There has been a relative increase of species in programs from Central and South America and the Caribbean, where amphibian biodiversity is high. About half of the programs involve zoos and aquaria with a similar proportion represented in specialist facilities run by governmental or nongovernmental agencies. Despite successful reintroduction often being regarded as the ultimate milestone for such programs, the irreversibility of many current threats to amphibians may make this an impractical goal. Instead, research on captive assurance populations may be needed to develop imaginative solutions to enable amphibians to survive alongside current, emerging, and future threats. © 2015

  3. Conservation needs of amphibians in China: a review.

    PubMed

    Xie, Feng; Lau, Michael Wai Neng; Stuart, Simon N; Chanson, Janice S; Cox, Neil A; Fischman, Debra L

    2007-04-01

    The conservation status of all the amphibians in China is analyzed, and the country is shown to be a global priority for conservation in comparison to many other countries of the world. Three Chinese regions are particularly rich in amphibian diversity: Hengduan, Nanling, and Wuyi mountains. Salamanders are more threatened than frogs and toads. Several smaller families show a high propensity to become seriously threatened: Bombinatoridae, Cryptobranchidae, Hynobiidae and Salamandridae. Like other parts of the world, stream-breeding, high-elevation forest amphibians have a much higher likelihood of being seriously threatened. Habitat loss, pollution, and over-harvesting are the most serious threats to Chinese amphibians. Over-harvesting is a less pervasive threat than habitat loss, but it is more likely to drive a species into rapid decline. Five conservation challenges are mentioned with recommendations for the highest priority research and conservation actions.

  4. Amphibian populations in the terrestrial environment: Is there evidence of declines of terrestrial forest amphibians in northwestern California?

    Treesearch

    Hartwell H. Welsh Jr.; Gary M. Fellers; Amy J. Lind

    2007-01-01

    Amphibian declines have been documented worldwide; however the vast majority are species associated with aquatic habitats. Information on the status and trends of terrestrial amphibians is almost entirely lacking. Here we use data collected across a 12-yr period (sampling from 1984–86 and from 1993–95) to address the question of whether evidence exists for declines...

  5. Vulnerability of amphibians to climate change: implications for rangeland management

    Treesearch

    Karen E. Bagne; Deborah M. Finch; Megan M. Friggens

    2011-01-01

    Many amphibian populations have declined drastically in recent years due to a large number of factors including the emerging threat of climate change (Wake 2007). Rangelands provide important habitat for amphibians. In addition to natural wetlands, stock tanks and other artificial water catchments provide habitat for many amphibian species (Euliss et al. 2004).

  6. Helping Your Local Amphibians (HYLA): An Internet-based Amphibian Course for Educators.

    ERIC Educational Resources Information Center

    Murphy, Tony P.

    2001-01-01

    Introduces an online zoology course that was offered primarily to upper elementary and middle school teachers in which teachers were expected to take action to help the local amphibian population. (Author/YDS)

  7. ASSESSMENT OF THE RISK OF SOLAR ULTRAVIOLET RADIATION TO AMPHIBIANS. II: IN SITU CHARACTERIZATION OF SOLAR ULTRAVIOLET RADIATION IN AMPHIBIAN HABITATS

    EPA Science Inventory

    Ultraviolet B (UVB) radiation has been hypothesized as a potential cause of amphibian population declines and increased incidences of malformations. Realistic studies documenting UV irradiance or dose have rarely been conducted in wetlands used by amphibians. We demonstrate that ...

  8. Global patterns in threats to vertebrates by biological invasions

    PubMed Central

    Bellard, C.; Genovesi, P.; Jeschke, J. M.

    2016-01-01

    Biological invasions as drivers of biodiversity loss have recently been challenged. Fundamentally, we must know where species that are threatened by invasive alien species (IAS) live, and the degree to which they are threatened. We report the first study linking 1372 vertebrates threatened by more than 200 IAS from the completely revised Global Invasive Species Database. New maps of the vulnerability of threatened vertebrates to IAS permit assessments of whether IAS have a major influence on biodiversity, and if so, which taxonomic groups are threatened and where they are threatened. We found that centres of IAS-threatened vertebrates are concentrated in the Americas, India, Indonesia, Australia and New Zealand. The areas in which IAS-threatened species are located do not fully match the current hotspots of invasions, or the current hotspots of threatened species. The relative importance of biological invasions as drivers of biodiversity loss clearly varies across regions and taxa, and changes over time, with mammals from India, Indonesia, Australia and Europe are increasingly being threatened by IAS. The chytrid fungus primarily threatens amphibians, whereas invasive mammals primarily threaten other vertebrates. The differences in IAS threats between regions and taxa can help efficiently target IAS, which is essential for achieving the Strategic Plan 2020 of the Convention on Biological Diversity. PMID:26817767

  9. Deciphering amphibian diversity through DNA barcoding: chances and challenges.

    PubMed

    Vences, Miguel; Thomas, Meike; Bonett, Ronald M; Vieites, David R

    2005-10-29

    Amphibians globally are in decline, yet there is still a tremendous amount of unrecognized diversity, calling for an acceleration of taxonomic exploration. This process will be greatly facilitated by a DNA barcoding system; however, the mitochondrial population structure of many amphibian species presents numerous challenges to such a standardized, single locus, approach. Here we analyse intra- and interspecific patterns of mitochondrial variation in two distantly related groups of amphibians, mantellid frogs and salamanders, to determine the promise of DNA barcoding with cytochrome oxidase subunit I (cox1) sequences in this taxon. High intraspecific cox1 divergences of 7-14% were observed (18% in one case) within the whole set of amphibian sequences analysed. These high values are not caused by particularly high substitution rates of this gene but by generally deep mitochondrial divergences within and among amphibian species. Despite these high divergences, cox1 sequences were able to correctly identify species including disparate geographic variants. The main problems with cox1 barcoding of amphibians are (i) the high variability of priming sites that hinder the application of universal primers to all species and (ii) the observed distinct overlap of intraspecific and interspecific divergence values, which implies difficulties in the definition of threshold values to identify candidate species. Common discordances between geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a single-locus approach can be problematic when high accuracy of DNA barcoding is required. We suggest that a number of mitochondrial and nuclear genes may be used as DNA barcoding markers to complement cox1.

  10. MOJAVE DESERT SPRING: THE AMPHIBIAN POINT OF VIEW

    EPA Science Inventory

    Numerous springs are scattered throughout the eastern Mojave Desert, most of which are concentrated near the bases of mountain ranges. Spring-fed wetlands in this region comprise nearly all the available habitat for amphibians. We surveyed 128 springs for amphibians and habitat t...

  11. Larval nematodes found in amphibians from northeastern Argentina.

    PubMed

    González, C E; Hamann, M I

    2010-11-01

    Five species of amphibians, Leptodactylus podicipinus, Scinax acuminatus, S. nasicus, Rhinella fernandezae and Pseudis paradoxa, were collected in Corrientes province, Argentina and searched for larval nematodes. All larval nematodes were found as cysts in the serous of the stomach of hosts. Were identified one superfamily, Seuratoidea; one genus, Spiroxys (Superfamily Gnathostomatoidea) and one family, Rhabdochonidae (Superfamily Thelazioidea). We present a description and illustrations of these taxa. These nematodes have an indirect life cycle and amphibians are infected by consuming invertebrate, the intermediate hosts. The genus Spiroxys and superfamily Seuratoidea were reported for the first time for Argentinean amphibians.

  12. Estimating terrestrial amphibian pesticide body burden through dermal exposure.

    PubMed

    Van Meter, Robin J; Glinski, Donna A; Hong, Tao; Cyterski, Mike; Henderson, W Matthew; Purucker, S Thomas

    2014-10-01

    Dermal exposure presents a potentially significant but understudied route for pesticide uptake in terrestrial amphibians. Our study measured dermal uptake of pesticides of varying hydrophobicity (logKow) in frogs. Amphibians were indirectly exposed to one of five pesticide active ingredients through contact with contaminated soil: imidacloprid (logKow = 0.57), atrazine (logKow = 2.5), triadimefon (logKow = 3.0), fipronil (logKow = 4.11) or pendimethalin (logKow = 5.18). All amphibians had measurable body burdens at the end of the exposure in concentrations ranging from 0.019 to 14.562 μg/g across the pesticides tested. Atrazine produced the greatest body burdens and bioconcentration factors, but fipronil was more permeable to amphibian skin when application rate was considered. Soil partition coefficient and water solubility were much better predictors of pesticide body burden, bioconcentration factor, and skin permeability than logKow. Dermal uptake data can be used to improve risk estimates of pesticide exposure among amphibians as non-target organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Seasonal Ecology and Behavior of an Endangered Rainforest Frog (Litoria rheocola) Threatened by Disease

    PubMed Central

    Roznik, Elizabeth A.; Alford, Ross A.

    2015-01-01

    One of the most devastating wildlife diseases ever recorded is chytridiomycosis, a recently emerged amphibian disease that is caused by the chytrid fungus Batrachochytrium dendrobatidis. Understanding, predicting, and managing the impacts of chytridiomycosis on any amphibian species will require detailed information on its ecology and behavior because this pathogen is transmitted by contact with water or other individuals, and pathogen growth rates are thermally sensitive. The common mistfrog (Litoria rheocola) is an endangered tropical rainforest frog that has declined due to chytridiomycosis. We tracked L. rheocola during the winter (cool/dry) and summer (warm/wet) seasons at a low- and high-elevation site. We found that seasonal differences in environmental temperatures and frog behavior should render this species most vulnerable to B. dendrobatidis during cooler months and at higher elevations, which matches observed patterns of infection prevalence in this species. During winter, frogs moved shorter distances than during summer, and they spent less time in vegetation and more time in the stream, which should increase exposure to aquatic B. dendrobatidis zoospores. At a low-elevation site (40 m ASL), estimated body temperatures were within the optimal range for B. dendrobatidis growth (15-25°C) most of the time during winter, but they reached temperatures above this threshold frequently in summer. At a higher elevation (750 m ASL), estimated body temperatures were within the range most favorable for B. dendrobatidis year-round, and did not exceed 25°C, even during summer. Our study provides the first detailed information on the ecology and behavior of L. rheocola and suggests ecological mechanisms for infection dynamics that have been observed in this endangered species. PMID:25993520

  14. Seasonal Ecology and Behavior of an Endangered Rainforest Frog (Litoria rheocola) Threatened by Disease.

    PubMed

    Roznik, Elizabeth A; Alford, Ross A

    2015-01-01

    One of the most devastating wildlife diseases ever recorded is chytridiomycosis, a recently emerged amphibian disease that is caused by the chytrid fungus Batrachochytrium dendrobatidis. Understanding, predicting, and managing the impacts of chytridiomycosis on any amphibian species will require detailed information on its ecology and behavior because this pathogen is transmitted by contact with water or other individuals, and pathogen growth rates are thermally sensitive. The common mistfrog (Litoria rheocola) is an endangered tropical rainforest frog that has declined due to chytridiomycosis. We tracked L. rheocola during the winter (cool/dry) and summer (warm/wet) seasons at a low- and high-elevation site. We found that seasonal differences in environmental temperatures and frog behavior should render this species most vulnerable to B. dendrobatidis during cooler months and at higher elevations, which matches observed patterns of infection prevalence in this species. During winter, frogs moved shorter distances than during summer, and they spent less time in vegetation and more time in the stream, which should increase exposure to aquatic B. dendrobatidis zoospores. At a low-elevation site (40 m ASL), estimated body temperatures were within the optimal range for B. dendrobatidis growth (15-25 °C) most of the time during winter, but they reached temperatures above this threshold frequently in summer. At a higher elevation (750 m ASL), estimated body temperatures were within the range most favorable for B. dendrobatidis year-round, and did not exceed 25 °C, even during summer. Our study provides the first detailed information on the ecology and behavior of L. rheocola and suggests ecological mechanisms for infection dynamics that have been observed in this endangered species.

  15. Why Amphibians Are More Sensitive than Mammals to Xenobiotics

    PubMed Central

    Quaranta, Angelo; Bellantuono, Vito; Cassano, Giuseppe; Lippe, Claudio

    2009-01-01

    Dramatic declines in amphibian populations have been described all over the world since the 1980s. The evidence that the sensitivity to environmental threats is greater in amphibians than in mammals has been generally linked to the observation that amphibians are characterized by a rather permeable skin. Nevertheless, a numerical comparison of data of percutaneous (through the skin) passage between amphibians and mammals is lacking. Therefore, in this investigation we have measured the percutaneous passage of two test molecules (mannitol and antipyrine) and three heavily used herbicides (atrazine, paraquat and glyphosate) in the skin of the frog Rana esculenta (amphibians) and of the pig ear (mammals), by using the same experimental protocol and a simple apparatus which minimizes the edge effect, occurring when the tissue is clamped in the usually used experimental device. The percutaneous passage (P) of each substance is much greater in frog than in pig. LogP is linearly related to logKow (logarithm of the octanol-water partition coefficient). The measured P value of atrazine was about 134 times larger than that of glyphosate in frog skin, but only 12 times in pig ear skin. The FoD value (Pfrog/Ppig) was 302 for atrazine, 120 for antipyrine, 66 for mannitol, 29 for paraquat, and 26 for glyphosate. The differences in structure and composition of the skin between amphibians and mammals are discussed. PMID:19888346

  16. Why amphibians are more sensitive than mammals to xenobiotics.

    PubMed

    Quaranta, Angelo; Bellantuono, Vito; Cassano, Giuseppe; Lippe, Claudio

    2009-11-04

    Dramatic declines in amphibian populations have been described all over the world since the 1980s. The evidence that the sensitivity to environmental threats is greater in amphibians than in mammals has been generally linked to the observation that amphibians are characterized by a rather permeable skin. Nevertheless, a numerical comparison of data of percutaneous (through the skin) passage between amphibians and mammals is lacking. Therefore, in this investigation we have measured the percutaneous passage of two test molecules (mannitol and antipyrine) and three heavily used herbicides (atrazine, paraquat and glyphosate) in the skin of the frog Rana esculenta (amphibians) and of the pig ear (mammals), by using the same experimental protocol and a simple apparatus which minimizes the edge effect, occurring when the tissue is clamped in the usually used experimental device.The percutaneous passage (P) of each substance is much greater in frog than in pig. LogP is linearly related to logKow (logarithm of the octanol-water partition coefficient). The measured P value of atrazine was about 134 times larger than that of glyphosate in frog skin, but only 12 times in pig ear skin. The FoD value (Pfrog/Ppig) was 302 for atrazine, 120 for antipyrine, 66 for mannitol, 29 for paraquat, and 26 for glyphosate.The differences in structure and composition of the skin between amphibians and mammals are discussed.

  17. Questions concerning the potential impact of glyphosate-based herbicides on amphibians.

    PubMed

    Wagner, Norman; Reichenbecher, Wolfram; Teichmann, Hanka; Tappeser, Beatrix; Lötters, Stefan

    2013-08-01

    Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration. Copyright © 2013 SETAC.

  18. Translocations of amphibians: Proven management method or experimental technique

    USGS Publications Warehouse

    Seigel, Richard A.; Dodd, C. Kenneth

    2002-01-01

    In an otherwise excellent review of metapopulation dynamics in amphibians, Marsh and Trenham (2001) make the following provocative statements (emphasis added): If isolation effects occur primarily in highly disturbed habitats, species translocations may be necessary to promote local and regional population persistence. Because most amphibians lack parental care, they areprime candidates for egg and larval translocations. Indeed, translocations have already proven successful for several species of amphibians. Where populations are severely isolated, translocations into extinct subpopulations may be the best strategy to promote regional population persistence. We take issue with these statements for a number of reasons. First, the authors fail to cite much of the relevant literature on species translocations in general and for amphibians in particular. Second, to those unfamiliar with current research in amphibian conservation biology, these comments might suggest that translocations are a proven management method. This is not the case, at least in most instances where translocations have been evaluated for an appropriate period of time. Finally, the authors fail to point out some of the negative aspects of species translocation as a management method. We realize that Marsh and Trenham's paper was not concerned primarily with translocations. However, because Marsh and Trenham (2001) made specific recommendations for conservation planners and managers (many of whom are not herpetologists or may not be familiar with the pertinent literature on amphibians), we believe that it is essential to point out that not all amphibian biologists are as comfortable with translocations as these authors appear to be. We especially urge caution about advocating potentially unproven techniques without a thorough review of available options.

  19. [Strategies for Conservation of Endangered Amphibian and Reptile Species].

    PubMed

    Anan'eva, N B; Uteshev, V K; Orlova, N L; Gakhova, E N

    2015-01-01

    Strategies for conservation of endangered amphibian and reptile species are discussed. One-fifth of all vertebrates belongs to the category of "endangered species," and amphibians are first on the list (41%). Every fifth reptile species is in danger of extinction, and insufficient information is characteristic of every other fifth. As has been demonstrated, efficient development of a network of nature conservation areas, cryopreservation, and methods for laboratory breeding and reintroduction play.the key roles in adequate strategies for preservation of amphibians and reptiles.

  20. Amphibian molecular ecology and how it has informed conservation.

    PubMed

    McCartney-Melstad, Evan; Shaffer, H Bradley

    2015-10-01

    Molecular ecology has become one of the key tools in the modern conservationist's kit. Here we review three areas where molecular ecology has been applied to amphibian conservation: genes on landscapes, within-population processes, and genes that matter. We summarize relevant analytical methods, recent important studies from the amphibian literature, and conservation implications for each section. Finally, we include five in-depth examples of how molecular ecology has been successfully applied to specific amphibian systems. © 2015 John Wiley & Sons Ltd.

  1. Amphibian monitoring in the Atchafalaya Basin

    USGS Publications Warehouse

    Waddle, Hardin

    2011-01-01

    Amphibians are a diverse group of animals that includes frogs, toads, and salamanders. They are adapted to living in a variety of habitats, but most require water for at least one life stage. Amphibians have recently become a worldwide conservation concern because of declines and extinctions even in remote protected areas previously thought to be safe from the pressures of habitat loss and degradation. Amphibians are an important part of ecosystem dynamics because they can be quite abundant and serve both as a predator of smaller organisms and as prey to a suite of vertebrate predators. Their permeable skin and aquatic life history also make them useful as indicators of ecosystem health. Since 2002, the U.S. Geological Survey has been studying the frog and toad species inhabiting the Atchafalaya Basin to monitor for population declines and to better understand how the species are potentially affected by disease, environmental contaminants, and climate change.

  2. Female sexual arousal in amphibians.

    PubMed

    Wilczynski, Walter; Lynch, Kathleen S

    2011-05-01

    Rather than being a static, species specific trait, reproductive behavior in female amphibians is variable within an individual during the breeding season when females are capable of reproductive activity. Changes in receptivity coincide with changes in circulating estrogen. Estrogen is highest at the point when females are ready to choose a male and lay eggs. At this time female receptivity (her probability of responding to a male vocal signal) is highest and her selectivity among conspecific calls (measured by her probability of responding to a degraded or otherwise usually unattractive male signal) is lowest. These changes occur even though females retain the ability to discriminate different acoustic characteristics of various conspecific calls. After releasing her eggs, female amphibians quickly become less receptive and more choosy in terms of their responses to male sexual advertisement signals. Male vocal signals stimulate both behavior and estrogen changes in amphibian females making mating more probable. The changes in female reproductive behavior are the same as those generally accepted as indicative of a change in female sexual arousal leading to copulation. They are situationally triggered, gated by interactions with males, and decline with the consummation of sexual reproduction with a chosen male. The changes can be triggered by either internal physiological state or by the presence of stimuli presented by males, and the same stimuli change both behavior and physiological (endocrine) state in such a way as to make acceptance of a male more likely. Thus amphibian females demonstrate many of the same general characteristics of changing female sexual state that in mammals indicate sexual arousal. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. All about Amphibians. Animal Life for Children. [Videotape].

    ERIC Educational Resources Information Center

    2000

    This videotape teaches children about their favorite amphibious creatures, as well as amphibians' nearest cousins--toads, newts, and salamanders. Young students discover how these amazing creatures can live both in and out of water, learn about the amphibious life cycle, and compare the differences between amphibians and reptiles. This videotape…

  4. Assessing effects of pesticides on amphibians and reptiles: status and needs

    USGS Publications Warehouse

    Hall, R.J.; Henry, P.F.P.

    1992-01-01

    Growing concern about the decline of certain amphibian populations and for conservation of amphibians and reptiles has led to renewed awareness of problems from pesticides. Testing amphibians and reptiles as a requirement for chemical registration has been proposed but is difficult because of the phylogenetic diversity of these groups. Information from the literature and research may determine whether amphibians and reptiles are adequately protected by current tests for mammals, birds, and fish. Existing information indicates that amphibians are unpredictably more resistant to certain cholinesterase inhibitors, and more sensitive to two chemicals used in fishery applications than could have been predicted. A single study on one species of lizard suggests that reptiles may be close in sensitivity to mammals and birds. Research on effects of pesticides on amphibians and reptiles should compare responses to currently tested groups and should seek to delineate those taxa and chemicals for which cross-group prediction is not possible. New tests for amphibians and reptiles should rely to the greatest extent possible on existing data bases, and should be designed for maximum economy and minimum harm to test animals. A strategy for developing the needed information is proposed. Good field testing and surveillance of chemicals in use may compensate for failures of predictive evaluations and may ultimately lead to improved tests.

  5. Amphibian and reptile declines over 35 years at La Selva, Costa Rica.

    PubMed

    Whitfield, Steven M; Bell, Kristen E; Philippi, Thomas; Sasa, Mahmood; Bolaños, Federico; Chaves, Gerardo; Savage, Jay M; Donnelly, Maureen A

    2007-05-15

    Amphibians stand at the forefront of a global biodiversity crisis. More than one-third of amphibian species are globally threatened, and over 120 species have likely suffered global extinction since 1980. Most alarmingly, many rapid declines and extinctions are occurring in pristine sites lacking obvious adverse effects of human activities. The causes of these "enigmatic" declines remain highly contested. Still, lack of long-term data on amphibian populations severely limits our understanding of the distribution of amphibian declines, and therefore the ultimate causes of these declines. Here, we identify a systematic community-wide decline in populations of terrestrial amphibians at La Selva Biological Station, a protected old-growth lowland rainforest in lower Central America. We use data collected over 35 years to show that population density of all species of terrestrial amphibians has declined by approximately 75% since 1970, and we show identical trends for all species of common reptiles. The trends we identify are neither consistent with recent emergence of chytridiomycosis nor the climate-linked epidemic hypothesis, two leading putative causes of enigmatic amphibian declines. Instead, our data suggest that declines are due to climate-driven reductions in the quantity of standing leaf litter, a critical microhabitat for amphibians and reptiles in this assemblage. Our results raise further concerns about the global persistence of amphibian populations by identifying widespread declines in species and habitats that are not currently recognized as susceptible to such risks.

  6. Amphibian and reptile declines over 35 years at La Selva, Costa Rica

    PubMed Central

    Whitfield, Steven M.; Bell, Kristen E.; Philippi, Thomas; Sasa, Mahmood; Bolaños, Federico; Chaves, Gerardo; Savage, Jay M.; Donnelly, Maureen A.

    2007-01-01

    Amphibians stand at the forefront of a global biodiversity crisis. More than one-third of amphibian species are globally threatened, and over 120 species have likely suffered global extinction since 1980. Most alarmingly, many rapid declines and extinctions are occurring in pristine sites lacking obvious adverse effects of human activities. The causes of these “enigmatic” declines remain highly contested. Still, lack of long-term data on amphibian populations severely limits our understanding of the distribution of amphibian declines, and therefore the ultimate causes of these declines. Here, we identify a systematic community-wide decline in populations of terrestrial amphibians at La Selva Biological Station, a protected old-growth lowland rainforest in lower Central America. We use data collected over 35 years to show that population density of all species of terrestrial amphibians has declined by ≈75% since 1970, and we show identical trends for all species of common reptiles. The trends we identify are neither consistent with recent emergence of chytridiomycosis nor the climate-linked epidemic hypothesis, two leading putative causes of enigmatic amphibian declines. Instead, our data suggest that declines are due to climate-driven reductions in the quantity of standing leaf litter, a critical microhabitat for amphibians and reptiles in this assemblage. Our results raise further concerns about the global persistence of amphibian populations by identifying widespread declines in species and habitats that are not currently recognized as susceptible to such risks. PMID:17449638

  7. Estimating terrestrial amphibian pesticide body burden through dermal exposure

    EPA Science Inventory

    Dermal exposure presents a potentially significant but understudied route for pesticide uptake in terrestrial amphibians. Our study measured dermal uptake of pesticides of varying hydrophobicity (logKow) in frogs. Amphibians were indirectly exposed to one of five pesticide active...

  8. Amphibian mortality events and ranavirus outbreaks in the Greater Yellowstone Ecosystem

    USGS Publications Warehouse

    Patla, Debra A.; St-Hilaire, Sophia; Rayburn, Andrew P.; Hossack, Blake R.; Peterson, Charles R.

    2016-01-01

    Mortality events in wild amphibians go largely undocumented, and where events are detected, the numbers of dead amphibians observed are probably a small fraction of actual mortality (Green and Sherman 2001; Skerratt et al. 2007). Incidental observations from field surveys can, despite limitations, provide valuable information on the presence, host species, and spatial distribution of diseases. Here we summarize amphibian mortality events and diagnoses recorded from 2000 to 2014 in three management areas: Yellowstone National Park; Grand Teton National Park (including John D. Rockefeller, Jr. Memorial Parkway); and the National Elk Refuge, which together span a large portion of protected areas within the Greater Yellowstone Ecosystem (GYE; Noss et al. 2002). Our combined amphibian monitoring projects (e.g., Gould et al. 2012) surveyed an average of 240 wetlands per year over the 15 years. Field crews recorded amphibian mortalities during visual encounter and dip-netting surveys and collected moribund and dead specimens for diagnostic examinations. Amphibian and fish research projects during these years contributed additional mortality observations, specimens, and diagnoses.

  9. Amphibian Oasis: Designing and Building a Schoolyard Pond.

    ERIC Educational Resources Information Center

    Gosselin, Heather; Johnson, Bob

    1996-01-01

    Building a pond in a schoolyard is a rewarding way to help boost local populations of amphibians, to increase the natural value of school grounds, and to serve as a locale for observing the life cycles of plants, invertebrates, and amphibians. This article outlines important considerations in designing and building a pond from siting through…

  10. Amphibians and Reptiles from Paramakatoi and Kato, Guyana

    USGS Publications Warehouse

    MacCulloch, Ross D.; Reynolds, Robert P.

    2012-01-01

    We report the herpetofauna of two neighboring upland locations in west-central Guyana. Twenty amphibian and 24 reptile species were collected. Only 40% of amphibians and 12.5% of reptiles were collected in both locations. This is one of the few collections made at upland (750–800 m) locations in the Guiana Shield.

  11. Checklist of nematode parasites of amphibians from Argentina.

    PubMed

    González, Cynthya Elizabeth; Inés, Hamann Monika

    2015-07-01

    This review includes information about 47 taxa of nematode parasites reported from 34 species of Argentinean amphibians, all belonging to order Anura (33 native species and 1 introduced species). Thirty four nematode species have been reported as adults and 13 species were reported as larvae (10 taxa) or juveniles (3 taxa). Two species, Cosmocerca parva and C. podicipinus (Cosmocercidae), collected as adults, are the most commonly occurring adult nematodes in Argentinean amphibians; each of them parasitize 14 amphibian species. The bufonid Rhinella schneideri and the leptodactylid Leptodactylus bufonius present the highest species richness of parasitic nematodes (9 species); followed by Rhinella fernandezae, R. arenarum and Leptodactylus chaquensis, each of which is parasitized by 8 nematode species. Mean species richenss was highest for the family Bufonidae (4.5±3.4; range: 1-9); followed by the Leptodactylidae (3.5±2.8; range: 1-9). Data on hosts, geographical distribution, site of infection, location of deposited materials, and information about life cycles are provided. This is the first compilation of information on nematode parasites of amphibians in Argentina.

  12. Amphibian research and monitoring initiative: Concepts and implementation

    USGS Publications Warehouse

    Corn, P.S.; Adams, M.J.; Battaglin, W.A.; Gallant, Alisa L.; James, D.L.; Knutson, M.; Langtimm, C.A.; Sauer, J.R.

    2005-01-01

    This report provides the basis for discussion and subsequent articulation of a national plan for the Amphibian Research and Monitoring Initiative (ARMI). The authors were members of a task force formed from within the U.S. Geological Survey (USGS) that included scientists with expertise in biology, cartography, hydrology, and statistics. The assignment of the task force was to extend work begun by the National Amphibian Leadership Group. This group, composed of senior USGS scientists, managers, and external authorities, met in Gainesville, Florida, in February 20001. The product of this meeting was a document outlining the framework for a national program to monitor amphibian populations and to conduct research into the causes of declines.

  13. Perspectives from the Aldo Leopold Wilderness Research Institute: Amphibians and wilderness

    USGS Publications Warehouse

    Corn, Paul Stephen

    2001-01-01

    The decline of amphibian species has emerged as a major global conservation issue in the last decade. Last year, the Department of the Interior (DOI) initiated a major national initiative to detect trends in amphibian populations and research the causes of declines. The program, conducted principally by the U.S. Geological Survey (USGS), emphasizes lands managed by DOI, but collaboration with the Forest Service is encouraged to increase the scope of inference about population trends. Although amphibians are not usually the first group of animals that comes to mind when one thinks of wilderness, conservation of amphibian populations is clearly a wilderness issue.

  14. Spatial Biodiversity Patterns of Madagascar's Amphibians and Reptiles

    PubMed Central

    Brown, Jason L.; Sillero, Neftali; Glaw, Frank; Bora, Parfait; Vieites, David R.; Vences, Miguel

    2016-01-01

    Madagascar has become a model region for testing hypotheses of species diversification and biogeography, and many studies have focused on its diverse and highly endemic herpetofauna. Here we combine species distribution models of a near-complete set of species of reptiles and amphibians known from the island with body size data and a tabulation of herpetofaunal communities from field surveys, compiled up to 2008. Though taxonomic revisions and novel distributional records arose since compilation, we are confident that the data are appropriate for inferring and comparing biogeographic patterns among these groups of organisms. We observed species richness of both amphibians and reptiles was highest in the humid rainforest biome of eastern Madagascar, but reptiles also show areas of high richness in the dry and subarid western biomes. In several amphibian subclades, especially within the Mantellidae, species richness peaks in the central eastern geographic regions while in reptiles different subclades differ distinctly in their richness centers. A high proportion of clades and subclades of both amphibians and reptiles have a peak of local endemism in the topographically and bioclimatically diverse northern geographic regions. This northern area is roughly delimited by a diagonal spanning from 15.5°S on the east coast to ca. 15.0°S on the west coast. Amphibian diversity is highest at altitudes between 800–1200 m above sea-level whereas reptiles have their highest richness at low elevations, probably reflecting the comparatively large number of species specialized to the extended low-elevation areas in the dry and subarid biomes. We found that the range sizes of both amphibians and reptiles strongly correlated with body size, and differences between the two groups are explained by the larger body sizes of reptiles. However, snakes have larger range sizes than lizards which cannot be readily explained by their larger body sizes alone. Range filling, i.e., the amount

  15. Spatial Biodiversity Patterns of Madagascar's Amphibians and Reptiles.

    PubMed

    Brown, Jason L; Sillero, Neftali; Glaw, Frank; Bora, Parfait; Vieites, David R; Vences, Miguel

    2016-01-01

    Madagascar has become a model region for testing hypotheses of species diversification and biogeography, and many studies have focused on its diverse and highly endemic herpetofauna. Here we combine species distribution models of a near-complete set of species of reptiles and amphibians known from the island with body size data and a tabulation of herpetofaunal communities from field surveys, compiled up to 2008. Though taxonomic revisions and novel distributional records arose since compilation, we are confident that the data are appropriate for inferring and comparing biogeographic patterns among these groups of organisms. We observed species richness of both amphibians and reptiles was highest in the humid rainforest biome of eastern Madagascar, but reptiles also show areas of high richness in the dry and subarid western biomes. In several amphibian subclades, especially within the Mantellidae, species richness peaks in the central eastern geographic regions while in reptiles different subclades differ distinctly in their richness centers. A high proportion of clades and subclades of both amphibians and reptiles have a peak of local endemism in the topographically and bioclimatically diverse northern geographic regions. This northern area is roughly delimited by a diagonal spanning from 15.5°S on the east coast to ca. 15.0°S on the west coast. Amphibian diversity is highest at altitudes between 800-1200 m above sea-level whereas reptiles have their highest richness at low elevations, probably reflecting the comparatively large number of species specialized to the extended low-elevation areas in the dry and subarid biomes. We found that the range sizes of both amphibians and reptiles strongly correlated with body size, and differences between the two groups are explained by the larger body sizes of reptiles. However, snakes have larger range sizes than lizards which cannot be readily explained by their larger body sizes alone. Range filling, i.e., the amount of

  16. Control of respiration in fish, amphibians and reptiles.

    PubMed

    Taylor, E W; Leite, C A C; McKenzie, D J; Wang, T

    2010-05-01

    Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG) located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.

  17. Annual Report: 2014: Partners in Amphibian and Reptile Conservation (PARC)

    USGS Publications Warehouse

    Weir, Linda A.; Nanjappa, P.; Apodaca, J.J.; Williams, J.

    2015-01-01

    Partners in Amphibian and Reptile Conservation (PARC) was established in 1999 to address the widespread declines, extinctions, and range reductions of amphibians and reptiles, with a focus on conservation of taxa and habitats in North America. Amphibians and reptiles are affected by a broad range of human activities, both as incidental effects of habitat alteration and direct effects from overexploitation; these animals are also burdened by humans attitudes – that amphibians and reptiles are either dangerous or of little environmental or economic value. However, PARC members understand these taxa are important parts of our natural and cultural heritage and they serve important roles in ecosystems throughout the world. With many amphibians and reptiles classified as threatened with extinction, conservation to ensure healthy populations of these animals has never been more important. As you will see herein, PARC’s 15th anniversary has been marked with major accomplishments and an ever-increasing momentum. With your help, PARC can continue to build on its successes and protect these vital species.

  18. Zoonotic diseases associated with reptiles and amphibians: an update.

    PubMed

    Mitchell, Mark A

    2011-09-01

    Reptiles and amphibians are popular as pets. There are increased concerns among public health officials because of the zoonotic potential associated with these animals. Encounters with reptiles and amphibians are also on the rise in the laboratory setting and with wild animals; in both of these practices, there is also an increased likelihood for exposure to zoonotic pathogens. It is important that veterinarians remain current with the literature as it relates to emerging and reemerging zoonotic diseases attributed to reptiles and amphibians so that they can protect themselves, their staff, and their clients from potential problems.

  19. Amphibian Population Sensitivity to Environmental and Anthropogenic Impacts on Larval Development and Survival

    EPA Science Inventory

    Anticipating chronic effects of contaminant exposure on amphibian species is complicated both by toxicological and ecological uncertainty. Data for both chemical exposures and amphibian vital rates, including altered growth, are sparse. Developmental plasticity in amphibians fu...

  20. Assessing Changes in Amphibian Population Dynamics Following Experimental Manipulations of Introduced Fish

    Treesearch

    Karen L. Pope

    2008-01-01

    Sport-fish introductions are now recognized as an important cause of amphibian decline, but few researchers have quantified the demographic responses of amphibians to current options in fisheries management designed to minimize effects on sensitive amphibians. Demographic analyses with mark–recapture data allow researchers to assess the relative importance of...

  1. Amphibian malformations and body condition across an agricultural landscape of northwest Argentina.

    PubMed

    Guerra, Cecilia; Aráoz, Ezequiel

    2016-09-26

    Agricultural landscapes support large amphibian populations because they provide habitat for many species, although agriculture affects amphibians through various mechanisms. Pollution with agrochemicals is the major threat to amphibian populations after habitat loss, as chemicals alter the ecophysiology of amphibians, putting their health and survival at risk. We aimed to assess the effect of different environments, sites, width of forest buffers and sampling years on the health of amphibians, which was estimated through the prevalence of malformations and body condition. During 3 yr of pitfall trapping, we captured 4491 amphibians. The prevalence of malformations was higher in the croplands than in the forests, while the body condition was better within forests. The prevalence of malformations was higher in the narrower forest site than in the wider forest site. The prevalence of malformations and the body condition were higher in the third year. The prevalence of malformations differed by species. We found 11 types of malformation, which mainly affected limbs and were unilateral or bilaterally asymmetrical. Our results showed that the prevalence of malformations and body condition reflect different aspects of the health of amphibians and that forest individuals are healthier than those from croplands. The results also highlight the importance of spatial configuration besides the conservation of natural habitats to preserve healthy amphibians in agricultural landscapes. The types of malformation that we found suggest that agrochemicals could be an important cause of malformations.

  2. Amphibian pathogens in Southeast Asian frog trade.

    PubMed

    Gilbert, Martin; Bickford, David; Clark, Leanne; Johnson, Arlyne; Joyner, Priscilla H; Ogg Keatts, Lucy; Khammavong, Kongsy; Nguyễn Văn, Long; Newton, Alisa; Seow, Tiffany P W; Roberton, Scott; Silithammavong, Soubanh; Singhalath, Sinpakhone; Yang, Angela; Seimon, Tracie A

    2012-12-01

    Amphibian trade is known to facilitate the geographic spread of pathogens. Here we assess the health of amphibians traded in Southeast Asia for food or as pets, focusing on Batrachochytrium dendrobatidis (Bd), ranavirus and general clinical condition. Samples were collected from 2,389 individual animals at 51 sites in Lao PDR, Cambodia, Vietnam and Singapore for Bd screening, and 74 animals in Cambodia and Vietnam for ranavirus screening. Bd was found in one frog (n = 347) in Cambodia and 13 in Singapore (n = 419). No Bd was found in Lao PDR (n = 1,126) or Vietnam (n = 497), and no ranavirus was found in Cambodia (n = 70) or Vietnam (n = 4). Mild to severe dermatological lesions were observed in all East Asian bullfrogs Hoplobatrachus rugolosus (n = 497) sampled in farms in Vietnam. Histologic lesions consistent with sepsis were found within the lesions of three frogs and bacterial sepsis in two (n = 4); one had Gram-negative bacilli and one had acid-fast organisms consistent with mycobacterium sp. These results confirm that Bd is currently rare in amphibian trade in Southeast Asia. The presence of Mycobacterium-associated disease in farmed H. rugolosus is a cause for concern, as it may have public health implications and indicates the need for improved biosecurity in amphibian farming and trade.

  3. Methods for Evaluating Wetland Condition #12: Using Amphibians in Bioassessments of Wetlands

    USGS Publications Warehouse

    Sparling, D.W.; Richter, K.O.; Calhoun, A.; Micacchion, M.

    2001-01-01

    Because amphibians have both aquatic and terrestrial life stages they can serve in a unique way among vertebrates as sources of information for bioassessments of both wetlands and surrounding habitats. Although there are many data gaps in our knowledge about the habitat requirements and ecology of many amphibian species, it is apparent that community composition, presence and frequency of abnormalities, various mensural characteristics (e.g. snout vent length divided by body weight) and laboratory diagnostics (e.g. cholinesterase activity, blood chemistry) can be used in developing metrics for an index of biotic integrity. In addition, potential metrics can be derived from the various life stages that most amphibians experience such as egg clusters; embryonic development and hatching rates; tadpole growth, development, and survival; progress and success of metamorphosis; and breeding behavior and presence of adults. It is important, however, to focus on regional biodiversity and species assemblages of amphibians in the development of metrics rather than to strive for broadscale application of common metrics. This report discusses the procedures of developing an index of biotic integrity based on amphibians, explains potential pitfalls in using amphibians in bioassessments, and demonstrates where more research is needed to enhance the use of amphibians in evaluating wetland conditions.

  4. A field guide to amphibian larvae and eggs of Minnesota, Wisconsin, and Iowa

    USGS Publications Warehouse

    Parmelee, J.R.; Knutson, M.G.; Lyon, J.E.

    2002-01-01

    Apparent worldwide declines in amphibian populations (Pechmann and Wake 1997) have stimulated interest in amphibians as bioindicators of the health of ecosystems. Because we have little information on the population status of many species, there is interest by public and private land management agencies in monitoring amphibian populations. Amphibian egg and larval surveys are established methods of surveying pond-breeding amphibians. Adults may be widely dispersed across the landscape, but eggs and larvae are confined to the breeding site during a specific season of the year. Also, observations of late-stage larvae or metamorphs are evidence of successful reproduction, which is an important indicator of the viability of the population. The goal of this guide is to help students, natural resources personnel, and biologists identify eggs and larval stages of amphibians in the field without the aid of a microscope.

  5. Uses and Doses of Local Anesthetics in Fish, Amphibians, and Reptiles.

    PubMed

    Chatigny, Frederic; Kamunde, Collins; Creighton, Catherine M; Stevens, E Don

    2017-05-01

    Local anesthetics are an integral part of routine pain management in mammals, yet their use is relatively limited in fish, amphibians and reptiles. These animals frequently undergo potentially painful surgical procedures and therefore could possibly benefit from those drugs. Some recommendations are currently available in the literature concerning analgesic use in these animals. However the pharmacological properties, safety and often efficacy of local anesthetic drugs have not been investigated yet in fish, amphibians, or reptiles. This review compiled current information concerning the use of those agents in fish, reptiles and amphibians to help clinicians make an informed decision as to which dose and drug to use. The resulting literature search showed that the literature concerning use of local analgesics in fish and amphibians is very limited while the literature for reptiles is more extensive. We found few experimental studies evaluating the efficacy of local anesthetics. Further studies would provide additional information for developing guidelines to improve the welfare of fish, amphibians and reptiles.

  6. Uses and Doses of Local Anesthetics in Fish, Amphibians, and Reptiles

    PubMed Central

    Chatigny, Frederic; Kamunde, Collins; Creighton, Catherine M; Stevens, E Don

    2017-01-01

    Local anesthetics are an integral part of routine pain management in mammals, yet their use is relatively limited in fish, amphibians and reptiles. These animals frequently undergo potentially painful surgical procedures and therefore could possibly benefit from those drugs. Some recommendations are currently available in the literature concerning analgesic use in these animals. However the pharmacological properties, safety and often efficacy of local anesthetic drugs have not been investigated yet in fish, amphibians, or reptiles. This review compiled current information concerning the use of those agents in fish, reptiles and amphibians to help clinicians make an informed decision as to which dose and drug to use. The resulting literature search showed that the literature concerning use of local analgesics in fish and amphibians is very limited while the literature for reptiles is more extensive. We found few experimental studies evaluating the efficacy of local anesthetics. Further studies would provide additional information for developing guidelines to improve the welfare of fish, amphibians and reptiles. PMID:28535859

  7. Amphibians and Reptiles of Los Alamos County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teralene S. Foxx; Timothy K. Haarmann; David C. Keller

    Recent studies have shown that amphibians and reptiles are good indicators of environmental health. They live in terrestrial and aquatic environments and are often the first animals to be affected by environmental change. This publication provides baseline information about amphibians and reptiles that are present on the Pajarito Plateau. Ten years of data collection and observations by researchers at Los Alamos National Laboratory, the University of New Mexico, the New Mexico Department of Game and Fish, and hobbyists are represented.

  8. A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians.

    PubMed

    Baker, Nick J; Bancroft, Betsy A; Garcia, Tiffany S

    2013-04-01

    The input of agrochemicals has contributed to alteration of community composition in managed and associated natural systems, including amphibian biodiversity. Pesticides and fertilizers negatively affect many amphibian species and can cause mortality and sublethal effects, such as reduced growth and increased susceptibility to disease. However, the effect of pesticides and fertilizers varies among amphibian species. We used meta-analytic techniques to quantify the lethal and sublethal effects of pesticides and fertilizers on amphibians in an effort to review the published work to date and produce generalized conclusions. We found that pesticides and fertilizers had a negative effect on survival of -0.9027 and growth of -0.0737 across all reported amphibian species. We also observed differences between chemical classes in their impact on amphibians: inorganic fertilizers, organophosphates, chloropyridinyl, phosphonoglycines, carbamates, and triazines negatively affected amphibian survival, while organophosphates and phosphonoglycines negatively affected amphibian growth. Our results suggest that pesticides and fertilizers are an important stressor for amphibians in agriculturally dominated systems. Furthermore, certain chemical classes are more likely to harm amphibians. Best management practices in agroecosystems should incorporate amphibian species-specific response to agrochemicals as well as life stage dependent susceptibility to best conserve amphibian biodiversity in these landscapes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Mapping amphibian disease patterns

    Treesearch

    Noreen Parks

    2013-01-01

    Over the past two decades the worldwide emergence of the fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, has drastically impacted populations of frogs, toads, and salamanders. Currently, as much as 40% of the roughly 6300 known amphibian species are deemed imperiled, and chytridiomycosis is...

  10. The cause of global amphibian declines: a developmental endocrinologist's perspective.

    PubMed

    Hayes, T B; Falso, P; Gallipeau, S; Stice, M

    2010-03-15

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis.

  11. The cause of global amphibian declines: a developmental endocrinologist's perspective

    PubMed Central

    Hayes, T. B.; Falso, P.; Gallipeau, S.; Stice, M.

    2010-01-01

    Greater than 70% of the world's amphibian species are in decline. We propose that there is probably not a single cause for global amphibian declines and present a three-tiered hierarchical approach that addresses interactions among and between ultimate and proximate factors that contribute to amphibian declines. There are two immediate (proximate) causes of amphibian declines: death and decreased recruitment (reproductive failure). Although much attention has focused on death, few studies have addressed factors that contribute to declines as a result of failed recruitment. Further, a great deal of attention has focused on the role of pathogens in inducing diseases that cause death, but we suggest that pathogen success is profoundly affected by four other ultimate factors: atmospheric change, environmental pollutants, habitat modification and invasive species. Environmental pollutants arise as likely important factors in amphibian declines because they have realized potential to affect recruitment. Further, many studies have documented immunosuppressive effects of pesticides, suggesting a role for environmental contaminants in increased pathogen virulence and disease rates. Increased attention to recruitment and ultimate factors that interact with pathogens is important in addressing this global crisis. PMID:20190117

  12. Selecting for extinction: nonrandom disease-associated extinction homogenizes amphibian biotas.

    PubMed

    Smith, Kevin G; Lips, Karen R; Chase, Jonathan M

    2009-10-01

    Studying the patterns in which local extinctions occur is critical to understanding how extinctions affect biodiversity at local, regional and global spatial scales. To understand the importance of patterns of extinction at a regional spatial scale, we use data from extirpations associated with a widespread pathogenic agent of amphibian decline, Batrachochytrium dendrobatidis (Bd) as a model system. We apply novel null model analyses to these data to determine whether recent extirpations associated with Bd have resulted in selective extinction and homogenization of diverse tropical American amphibian biotas. We find that Bd-associated extinctions in this region were nonrandom and disproportionately, but not exclusively, affected low-occupancy and endemic species, resulting in homogenization of the remnant amphibian fauna. The pattern of extirpations also resulted in phylogenetic homogenization at the family level and ecological homogenization of reproductive mode and habitat association. Additionally, many more species were extirpated from the region than would be expected if extirpations occurred randomly. Our results indicate that amphibian declines in this region are an extinction filter, reducing regional amphibian biodiversity to highly similar relict assemblages and ultimately causing amplified biodiversity loss at regional and global scales.

  13. Does fire affect amphibians and reptiles in eastern U.S. oak forests?

    Treesearch

    Rochelle B. Renken

    2006-01-01

    Current information about the effect of fire on amphibians and reptiles in oak forests of the Eastern and Central United States is reviewed. Current data suggest that fire results in little direct mortality of amphibians and reptiles. Fire has no effect on overall amphibian abundance, diversity, and number of species in comparisons of burned and unburned plots, though...

  14. AMPHIBIAN DECLINES AND ENVIRONMENTAL CHANGE IN THE EASTERN "MOJAVE DESERT"

    EPA Science Inventory

    A number of amphibian species historically inhabited sparsely distributed wetlands in the Mojave Desert, USA, habitats that have been dramatically altered or eliminated as a result of human activities. The population status and distribution of amphibians were investigated in a 20...

  15. Polarity of the Amphibian Egg

    NASA Technical Reports Server (NTRS)

    Malacinski, G. M.

    1983-01-01

    Amphibian egg polarity and the mechanism which generates the polarity is addressed. Of particular concern is the question of whether the activation rotation which responds to gravity is a prerequisite for normal development.

  16. Common procedures in reptiles and amphibians.

    PubMed

    de la Navarre, Byron J S

    2006-05-01

    Reptiles and amphibians continue to be popular as pets in the United States and throughout the world. It therefore behooves veterinarians interested in caring for these exotic species to continually gather knowledge concerning both their proper husbandry and the conditions that require medical and/or surgical intervention. This article covers husbandry, physical examination, and clinical and diagnostic techniques in an effort to present guidelines for the evaluation of the reptile or amphibian patient. Gathering clinical data will aid veterinarians in arriving at the proper diagnosis,increasing the chances of success with treatment protocols, and educating the clients in proper nutrition and husbandry for their pets.

  17. Effects of experimental canopy manipulation on amphibian egg deposition

    Treesearch

    Zachary I. Felix; Yong Wang; Callie J. Schweitzer

    2010-01-01

    Although effects of forest management on amphibians are relatively well studied, few studies have examined how these practices affect egg deposition by adults, which can impact population recruitment. We quantified the effects of 4 canopy tree-retention treatments on amphibian oviposition patterns in clusters of 60-L aquatic mesocosms located in each treatment. We also...

  18. Alien mink predation induces prolonged declines in archipelago amphibians

    PubMed Central

    Ahola, Markus; Nordström, Mikael; Banks, Peter B; Laanetu, Nikolai; Korpimäki, Erkki

    2006-01-01

    Amphibians are undergoing enigmatic global declines variously attributed to a complex web of anthropogenic forces. Alien predators pose a fundamental threat to biodiversity generally that is predicted to be most acute in island ecosystems. While amphibian eggs and tadpoles are vulnerable to aquatic predators, the effect of predators on adult, reproducing frogs, which most influence amphibian population processes, is unknown. Here, we report on the responses of amphibian populations in the outer Finnish Archipelago to a long-term, large-scale removal of American mink (Mustela vison Schreb.), an invasive predator linked to recent biodiversity loss across Europe. Removal increased both the densities and distribution of common frogs (Rana temporaria L.) but not those of common toads (Bufo bufo L.), which appear to escape mink predation because of their unpalatable skin. Importantly, the largest benefits of mink removal to frog recovery were slow to appear as frogs apparently have a delayed maturation in these harsh environments, which means we must be cautious about reliance upon short-term results. PMID:16720400

  19. Forecasting changes in amphibian biodiversity: aiming at a moving target

    PubMed Central

    Collins, James P; Halliday, Tim

    2005-01-01

    Amphibian population declines and sudden species' extinctions began to be noted at the beginning of the 1980s. Understanding the causes of the losses is hampered by our poor knowledge of the amphibian fauna in many parts of the world. Amphibian taxa are still being described at a high rate, especially in the tropics, which means that even quantifying species lost as a percentage of the current fauna can be a misleading statistic in some parts of the globe. The number of species that have gone missing is only one measure of the loss of biodiversity. Long-term studies of single-species populations are needed, but this approach has its limits. Amphibian populations often show great annual variation in population size making it difficult, if not impossible, to use short-term studies as a basis for deciding if a population is increasing or decreasing in the long term. Aggregating single studies into databases and searching for patterns of variation is a way of overcoming this limitation. Several databases on species and population time series are available or in development. These records show that declines are continuing worldwide with some species and populations, especially in the tropics and at higher elevations, at greater risk of extinction than others. Unfortunately, amphibian databases with population time series have much less information for the tropics compared to the temperate zone, and less for Africa and Asia compared with Europe and North America. Focusing limited resources using comprehensive statistical designs is a way to maximize the efficiency and effectiveness of monitoring efforts. It is clear that, in the first decades of the twenty-first century, the regions of the globe with the highest diversity of amphibian species will experience the greatest rates of decrease of forests and increase in human population size, fertilizer use, agricultural production, creation of new croplands and irrigation. Many of these changes are likely negatively to

  20. Forecasting changes in amphibian biodiversity: aiming at a moving target.

    PubMed

    Collins, James P; Halliday, Tim

    2005-02-28

    Amphibian population declines and sudden species' extinctions began to be noted at the beginning of the 1980s. Understanding the causes of the losses is hampered by our poor knowledge of the amphibian fauna in many parts of the world. Amphibian taxa are still being described at a high rate, especially in the tropics, which means that even quantifying species lost as a percentage of the current fauna can be a misleading statistic in some parts of the globe. The number of species that have gone missing is only one measure of the loss of biodiversity. Long-term studies of single-species populations are needed, but this approach has its limits. Amphibian populations often show great annual variation in population size making it difficult, if not impossible, to use short-term studies as a basis for deciding if a population is increasing or decreasing in the long term. Aggregating single studies into databases and searching for patterns of variation is a way of overcoming this limitation. Several databases on species and population time series are available or in development. These records show that declines are continuing worldwide with some species and populations, especially in the tropics and at higher elevations, at greater risk of extinction than others. Unfortunately, amphibian databases with population time series have much less information for the tropics compared to the temperate zone, and less for Africa and Asia compared with Europe and North America. Focusing limited resources using comprehensive statistical designs is a way to maximize the efficiency and effectiveness of monitoring efforts. It is clear that, in the first decades of the twenty-first century, the regions of the globe with the highest diversity of amphibian species will experience the greatest rates of decrease of forests and increase in human population size, fertilizer use, agricultural production, creation of new croplands and irrigation. Many of these changes are likely negatively to

  1. [Nested species subsets of amphibians and reptiles in Thousand Island Lake].

    PubMed

    Wang, Xi; Wang, Yan-Ping; Ding, Ping

    2012-10-01

    Habitat fragmentation is a main cause for the loss of biological diversity. Combining line-transect methods to survey the amphibians and reptiles on 23 islands on Thousand Island Lake in Zhejiang province, along with survey data on nearby plant species and habitat variables collected by GIS, we used the"BINMATNEST (binary matrix nestedness temperature calculator)" software and the Spearman rank correlation to examine whether amphibians and reptiles followed nested subsets and their influencing factors. The results showed that amphibians and reptiles were significantly nested, and that the island area and habitat type were significantly associated with their nested ranks. Therefore, to effectively protect amphibians and reptiles in the Thousand Islands Lake area we should pay prior attention to islands with larger areas and more habitat types.

  2. Extremely low prevalence of Batrachochytrium dendrobatidis in frog populations from neotropical dry forest of Costa Rica supports the existence of a climatic refuge from disease.

    PubMed

    Zumbado-Ulate, Héctor; Bolaños, Federico; Gutiérrez-Espeleta, Gustavo; Puschendorf, Robert

    2014-12-01

    Population declines and extinctions of numerous species of amphibians, especially stream-breeding frogs, have been linked to the emerging infectious disease chytridiomycosis, caused by the chytrid fungus, Batrachochytrium dendrobatidis. In Central America, most of the 34 species of the Craugastor punctariolus species group have disappeared in recent years in high- and low-elevation rainforests. Distribution models for B. dendrobatidis and the continuous presence of the extirpated stream-dwelling species, Craugastor ranoides, in the driest site of Costa Rica (Santa Elena Peninsula), suggest that environmental conditions might restrict the growth and development of B. dendrobatidis, existing as a refuge from chytridiomycosis-driven extinction. We conducted field surveys to detect and quantify the pathogen using Real-time PCR in samples from 15 species of frogs in two locations of tropical dry forest. In Santa Elena Peninsula, we swabbed 310 frogs, and only one sample of the species, C. ranoides, tested positive for B. dendrobatidis (prevalence <0.1%). In Santa Rosa Station, we swabbed 100 frogs, and nine samples from three species tested positive (prevalence = 9.0%). We failed to detect signs of chytridiomycosis in any of the 410 sampled frogs, and low quantities of genetic equivalents (between 0 and 1073) were obtained from the ten positive samples. The difference in the prevalence between locations might be due not only to the hotter and drier conditions of Santa Elena Peninsula but also to the different compositions of species in both locations. Our results suggest that B. dendrobatidis is at the edge of its distribution in these dry and hot environments of tropical dry forest. This study supports the existence of climatic refuges from chytridiomycosis and highlights the importance of tropical dry forest conservation for amphibians in the face of epidemic disease.

  3. Seasonal Pattern of Batrachochytrium dendrobatidis Infection and Mortality in Lithobates areolatus: Affirmation of Vredenburg's “10,000 Zoospore Rule”

    PubMed Central

    Kinney, Vanessa C.; Heemeyer, Jennifer L.; Pessier, Allan P.; Lannoo, Michael J.

    2011-01-01

    To fully comprehend chytridiomycosis, the amphibian disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), it is essential to understand how Bd affects amphibians throughout their remarkable range of life histories. Crawfish Frogs (Lithobates areolatus) are a typical North American pond-breeding species that forms explosive spring breeding aggregations in seasonal and semipermanent wetlands. But unlike most species, when not breeding Crawfish Frogs usually live singly—in nearly total isolation from conspecifics—and obligately in burrows dug by crayfish. Crayfish burrows penetrate the water table, and therefore offer Crawfish Frogs a second, permanent aquatic habitat when not breeding. Over the course of two years we sampled for the presence of Bd in Crawfish Frog adults. Sampling was conducted seasonally, as animals moved from post-winter emergence through breeding migrations, then back into upland burrow habitats. During our study, 53% of Crawfish Frog breeding adults tested positive for Bd in at least one sample; 27% entered breeding wetlands Bd positive; 46% exited wetlands Bd positive. Five emigrating Crawfish Frogs (12%) developed chytridiomycosis and died. In contrast, all 25 adult frogs sampled while occupying upland crayfish burrows during the summer tested Bd negative. One percent of postmetamorphic juveniles sampled were Bd positive. Zoospore equivalents/swab ranged from 0.8 to 24,436; five out of eight frogs with zoospore equivalents near or >10,000 are known to have died. In summary, Bd infection rates in Crawfish Frog populations ratchet up from near zero during the summer to over 25% following overwintering; rates then nearly double again during and just after breeding—when mortality occurs—before the infection wanes during the summer. Bd-negative postmetamorphic juveniles may not be exposed again to this pathogen until they take up residence in crayfish burrows, or until their first breeding, some years later. PMID:21423745

  4. Evaluation of seven aquatic sampling methods for amphibians and other aquatic fauna

    USGS Publications Warehouse

    Gunzburger, M.S.

    2007-01-01

    To design effective and efficient research and monitoring programs researchers must have a thorough understanding of the capabilities and limitations of their sampling methods. Few direct comparative studies exist for aquatic sampling methods for amphibians. The objective of this study was to simultaneously employ seven aquatic sampling methods in 10 wetlands to compare amphibian species richness and number of individuals detected with each method. Four sampling methods allowed counts of individuals (metal dipnet, D-frame dipnet, box trap, crayfish trap), whereas the other three methods allowed detection of species (visual encounter, aural, and froglogger). Amphibian species richness was greatest with froglogger, box trap, and aural samples. For anuran species, the sampling methods by which each life stage was detected was related to relative length of larval and breeding periods and tadpole size. Detection probability of amphibians varied across sampling methods. Box trap sampling resulted in the most precise amphibian count, but the precision of all four count-based methods was low (coefficient of variation > 145 for all methods). The efficacy of the four count sampling methods at sampling fish and aquatic invertebrates was also analyzed because these predatory taxa are known to be important predictors of amphibian habitat distribution. Species richness and counts were similar for fish with the four methods, whereas invertebrate species richness and counts were greatest in box traps. An effective wetland amphibian monitoring program in the southeastern United States should include multiple sampling methods to obtain the most accurate assessment of species community composition at each site. The combined use of frogloggers, crayfish traps, and dipnets may be the most efficient and effective amphibian monitoring protocol. ?? 2007 Brill Academic Publishers.

  5. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    USGS Publications Warehouse

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (<100 ??S/cm), but increased post-storm at the overwashed wetlands (x?? = 7,613 ??S/cm). Increased specific conductance was strongly correlated with increases in chloride concentrations. Amphibian species richness showed no correlation with specific conductance. One month post-storm we observed slightly fewer species in overwashed compared with non-overwashed wetlands, but this trend did not continue in 2006. More species were detected across all wetlands pre-storm, but there was no difference between overwashed and non-overwashed wetlands when considering all amphibian species or adult anurans and larval anurans separately. Amphibian species richness did not appear to be correlated with pH or presence of fish although the amphibian community composition differed between wetlands with and without fish. Our results suggest that amphibian communities in wetlands in the southeastern United States adjacent to marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  6. Qualitative risk analysis of introducing Batrachochytrium dendrobatidis to the UK through the importation of live amphibians.

    PubMed

    Peel, Alison J; Hartley, Matt; Cunningham, Andrew A

    2012-03-20

    The international amphibian trade is implicated in the emergence and spread of the amphibian fungal disease chytridiomycosis, which has resulted in amphibian declines and extinctions globally. The establishment of the causal pathogen, Batrachochytrium dendrobatidis (Bd), in the UK could negatively affect the survival of native amphibian populations. In recognition of the ongoing threat that it poses to amphibians, Bd was recently included in the World Organisation for Animal Health Aquatic Animal Health Code, and therefore is in the list of international notifiable diseases. Using standardised risk analysis guidelines, we investigated the likelihood that Bd would be introduced to and become established in wild amphibians in the UK through the importation of live amphibians. We obtained data on the volume and origin of the amphibian trade entering the UK and detected Bd infection in amphibians being imported for the pet and private collection trade and also in amphibians already held in captive pet, laboratory and zoological collections. We found that current systems for recording amphibian trade into the UK underestimate the volume of non-European Union trade by almost 10-fold. We identified high likelihoods of entry, establishment and spread of Bd in the UK and the resulting major overall impact. Despite uncertainties, we determined that the overall risk estimation for the introduction of Bd to the UK through the importation of live amphibians is high and that risk management measures are required, whilst ensuring that negative effects on legal trade are minimised.

  7. Role of Antimicrobial Peptides in Amphibian Defense Against Trematode Infection

    PubMed Central

    Calhoun, Dana M.; Woodhams, Doug; Howard, Cierra; LaFonte, Bryan E.; Gregory, Jacklyn R.; Johnson, Pieter T. J.

    2016-01-01

    Antimicrobial peptides (AMPs) contribute to the immune defenses of many vertebrates, including amphibians. As larvae, amphibians are often exposed to the infectious stages of trematode parasites, many of which must penetrate the host’s skin, potentially interacting with host AMPs. We tested the effects of the natural AMPs repertoires on both the survival of trematode infectious stages as well as their ability to infect larval amphibians. All five trematode species exhibited decreased survival of cercariae in response to higher concentrations of adult bullfrog AMPs, but no effect when exposed to AMPs from larval bullfrogs. Similarly, the use of norepinephrine to remove AMPs from larval bullfrogs, Pacific chorus frogs, and gray treefrogs had only weak (gray treefrogs) or non-significant (other tested species) effects on infection success by Ribeiroia ondatrae. We nonetheless observed strong differences in parasite infection as a function of both host stage (first- versus second-year bullfrogs) and host species (Pacific chorus frogs versus gray treefrogs) that were apparently unrelated to AMPs. Taken together, our results suggest that AMPs do not play a significant role in defending larval amphibians against trematode cercariae, but that they could be one mechanism helping to prevent infection of post-metamorphic amphibians, particularly for highly aquatic species. PMID:26911920

  8. Amphibian Bioacoustics

    NASA Astrophysics Data System (ADS)

    Christensen-Dalsgaard, Jakob

    Anuran amphibians (frogs and toads) of most of the 3,500 species that exist today are highly vocal animals. In most frogs, males will spend considerable energy on calling and incur sizeable predation risks and the females’ detection and localization of the calls of conspecific males is often a prerequisite for successful mating. Therefore, acoustic communication is evidently evolutionarily important in the anurans, and their auditory system is probably shaped by the selective pressures associated with production, detection and localization of the communication calls.

  9. Measuring the meltdown: drivers of global amphibian extinction and decline.

    PubMed

    Sodhi, Navjot S; Bickford, David; Diesmos, Arvin C; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W; Sekercioglu, Cagan H; Bradshaw, Corey J A

    2008-02-20

    Habitat loss, climate change, over-exploitation, disease and other factors have been hypothesised in the global decline of amphibian biodiversity. However, the relative importance of and synergies among different drivers are still poorly understood. We present the largest global analysis of roughly 45% of known amphibians (2,583 species) to quantify the influences of life history, climate, human density and habitat loss on declines and extinction risk. Multi-model Bayesian inference reveals that large amphibian species with small geographic range and pronounced seasonality in temperature and precipitation are most likely to be Red-Listed by IUCN. Elevated habitat loss and human densities are also correlated with high threat risk. Range size, habitat loss and more extreme seasonality in precipitation contributed to decline risk in the 2,454 species that declined between 1980 and 2004, compared to species that were stable (n = 1,545) or had increased (n = 28). These empirical results show that amphibian species with restricted ranges should be urgently targeted for conservation.

  10. Amphibian and Avian Karyotype Evolution: Insights from Lampbrush Chromosome Studies

    PubMed Central

    Zlotina, Anna; Dedukh, Dmitry; Krasikova, Alla

    2017-01-01

    Amphibian and bird karyotypes typically have a complex organization, which makes them difficult for standard cytogenetic analysis. That is, amphibian chromosomes are generally large, enriched with repetitive elements, and characterized by the absence of informative banding patterns. The majority of avian karyotypes comprise a small number of relatively large macrochromosomes and numerous tiny morphologically undistinguishable microchromosomes. A good progress in investigation of amphibian and avian chromosome evolution became possible with the usage of giant lampbrush chromosomes typical for growing oocytes. Due to the giant size, peculiarities of organization and enrichment with cytological markers, lampbrush chromosomes can serve as an opportune model for comprehensive high-resolution cytogenetic and cytological investigations. Here, we review the main findings on chromosome evolution in amphibians and birds that were obtained using lampbrush chromosomes. In particular, we discuss the data on evolutionary chromosomal rearrangements, accumulation of polymorphisms, evolution of sex chromosomes as well as chromosomal changes during clonal reproduction of interspecies hybrids. PMID:29117127

  11. Efficacy of Three Funnel Traps for Capturing Amphibian Larvae in Seasonal Forest Ponds

    Treesearch

    Richard R. Buech; Leanna M. Egeland

    2002-01-01

    Among the many techniques that have been used to study amphibians, funnel traps are commonly recommended to determine species presence, breeding success, and relative abundance of amphibian larvae in aquatic habitats. Several authors have discussed the advantages and disadvantages of funnel traps for sampling amphibian larvae (Adams et al. 1997; Fronzuto and Verrell...

  12. Advective and diffusive dermal processes for estimating terrestrial amphibian pesticide exposure

    EPA Science Inventory

    Background/Question/Methods Dermal exposure presents a potentially significant but understudied route for pesticide uptake in terrestrial amphibians. Historically, evaluation of pesticide risk to both amphibians and reptiles has been achieved by comparing ingestion and inhalat...

  13. Detection probabilities and site occupancy estimates for amphibians at Okefenokee National Wildlife Refuge

    USGS Publications Warehouse

    Smith, L.L.; Barichivich, W.J.; Staiger, J.S.; Smith, Kimberly G.; Dodd, C.K.

    2006-01-01

    We conducted an amphibian inventory at Okefenokee National Wildlife Refuge from August 2000 to June 2002 as part of the U.S. Department of the Interior's national Amphibian Research and Monitoring Initiative. Nineteen species of amphibians (15 anurans and 4 caudates) were documented within the Refuge, including one protected species, the Gopher Frog Rana capito. We also collected 1 y of monitoring data for amphibian populations and incorporated the results into the inventory. Detection probabilities and site occupancy estimates for four species, the Pinewoods Treefrog (Hyla femoralis), Pig Frog (Rana grylio), Southern Leopard Frog (R. sphenocephala) and Carpenter Frog (R. virgatipes) are presented here. Detection probabilities observed in this study indicate that spring and summer surveys offer the best opportunity to detect these species in the Refuge. Results of the inventory suggest that substantial changes may have occurred in the amphibian fauna within and adjacent to the swamp. However, monitoring the amphibian community of Okefenokee Swamp will prove difficult because of the logistical challenges associated with a rigorous statistical assessment of status and trends.

  14. Occurrence of amphibians in northern California coastal dune drainages

    USGS Publications Warehouse

    Halstead, Brian J.; Kleeman, Patrick M.

    2017-01-01

    Many coastal dune ecosystems have been degraded by non-native dune vegetation, but these systems might still provide valuable habitat for some taxa, including amphibians. Because restoration of degraded dune systems is occurring and likely to continue, we examined the occurrence of amphibians in drainages associated with a coastal dune ecosystem degraded by invasive plants (European Beachgrass, Ammophila arenaria, and Iceplant, Carpobrotus edulis). We found that occupancy of 3 amphibian species (California Red-legged Frog, Rana draytonii; Sierran Treefrog, Hyliola sierra; and Rough-skinned Newt, Taricha granulosa) among 21 coastal-dune drainages was high, with most coastal-dune drainages occupied by all 3 species. Furthermore, reproduction of Sierran Treefrogs and California Red-legged Frogs was estimated to occur in approximately ½ and ⅓ of the drainages, respectively. The probability of occurrence of Rough-skinned Newts and pre-metamorphic life stages of both anurans decreased during the study, perhaps because of ongoing drought in California or precipitation-induced changes in phenology during the final year of the study. Maintaining structural cover and moist features during dune restoration will likely benefit native amphibian populations inhabiting coastal-dune ecosystems.

  15. Movement patterns and the conservation of amphibians breeding in small, temporary wetlands

    USGS Publications Warehouse

    Dodd, C.K.; Cade, B.S.

    1998-01-01

    Many amphibians breed in water but live most of their lives in terrestrial habitats. Little is known, however, about the spatial distribution of these habitats or of the distances and directions amphibians move to reach breeding sites. The amphibian community at a small, temporary pond in northcentral Florida was monitored for 5 years. Based on captures and recaptures of more than 2500 striped newts (Notophthalmus perstriatus) and 5700 eastern narrow-mouthed toads (Gastrophryne carolinensis), we tabulated the angles of orientation that these amphibians entered and exited the pond basin. Our results showed that movements of these species between the pond and terrestrial habitats were nonrandom in orientation, but that narrow corridors did not appear to be used. Differences between the species likely reflect differences in habitat preferences, whereas intraspecific differences among years and between the sexes likely reflect variation among individuals. For terrestrial buffer zones to be effective at conserving pond-breeding amphibian communities, they need both a distance and a directional component. The determination of a directional component may be obscured if studies are carried out over a short time span. Conservation efforts for wetland-breeding amphibians that concentrate solely on the wetland likely will fail without consideration of the adjacent terrestrial habitat.

  16. Vast underestimation of Madagascar's biodiversity evidenced by an integrative amphibian inventory

    PubMed Central

    Vieites, David R.; Wollenberg, Katharina C.; Andreone, Franco; Köhler, Jörn; Glaw, Frank; Vences, Miguel

    2009-01-01

    Amphibians are in decline worldwide. However, their patterns of diversity, especially in the tropics, are not well understood, mainly because of incomplete information on taxonomy and distribution. We assess morphological, bioacoustic, and genetic variation of Madagascar's amphibians, one of the first near-complete taxon samplings from a biodiversity hotspot. Based on DNA sequences of 2,850 specimens sampled from over 170 localities, our analyses reveal an extreme proportion of amphibian diversity, projecting an almost 2-fold increase in species numbers from the currently described 244 species to a minimum of 373 and up to 465. This diversity is widespread geographically and across most major phylogenetic lineages except in a few previously well-studied genera, and is not restricted to morphologically cryptic clades. We classify the genealogical lineages in confirmed and unconfirmed candidate species or deeply divergent conspecific lineages based on concordance of genetic divergences with other characters. This integrative approach may be widely applicable to improve estimates of organismal diversity. Our results suggest that in Madagascar the spatial pattern of amphibian richness and endemism must be revisited, and current habitat destruction may be affecting more species than previously thought, in amphibians as well as in other animal groups. This case study suggests that worldwide tropical amphibian diversity is probably underestimated at an unprecedented level and stresses the need for integrated taxonomic surveys as a basis for prioritizing conservation efforts within biodiversity hotspots. PMID:19416818

  17. Vast underestimation of Madagascar's biodiversity evidenced by an integrative amphibian inventory.

    PubMed

    Vieites, David R; Wollenberg, Katharina C; Andreone, Franco; Köhler, Jörn; Glaw, Frank; Vences, Miguel

    2009-05-19

    Amphibians are in decline worldwide. However, their patterns of diversity, especially in the tropics, are not well understood, mainly because of incomplete information on taxonomy and distribution. We assess morphological, bioacoustic, and genetic variation of Madagascar's amphibians, one of the first near-complete taxon samplings from a biodiversity hotspot. Based on DNA sequences of 2,850 specimens sampled from over 170 localities, our analyses reveal an extreme proportion of amphibian diversity, projecting an almost 2-fold increase in species numbers from the currently described 244 species to a minimum of 373 and up to 465. This diversity is widespread geographically and across most major phylogenetic lineages except in a few previously well-studied genera, and is not restricted to morphologically cryptic clades. We classify the genealogical lineages in confirmed and unconfirmed candidate species or deeply divergent conspecific lineages based on concordance of genetic divergences with other characters. This integrative approach may be widely applicable to improve estimates of organismal diversity. Our results suggest that in Madagascar the spatial pattern of amphibian richness and endemism must be revisited, and current habitat destruction may be affecting more species than previously thought, in amphibians as well as in other animal groups. This case study suggests that worldwide tropical amphibian diversity is probably underestimated at an unprecedented level and stresses the need for integrated taxonomic surveys as a basis for prioritizing conservation efforts within biodiversity hotspots.

  18. METAPOPULATION DYNAMICS AND AMPHIBIAN CONSERVATION

    EPA Science Inventory

    In many respects, amphibian spatial dynamics resemble classical metapopulation models, where subpopulations in breeding ponds blink in and out of existance and where extinction and colonization rates are functions of pond spatial arrangement. This "ponds-as-patches" view of amphi...

  19. Amphibians and plant-protection products: what research and action is needed?

    PubMed

    Aldrich, Annette; Junghans, Marion; Aeberli, Caroline; Brühl, Carsten A; Streissl, Franz; Schmidt, Benedikt R

    2016-01-01

    The majority of Swiss amphibians are threatened. There is a range of factors which have been discussed as possible causes for their decline, including plant protection products (PPPs). The influence of PPPs on amphibian populations has not yet been studied to any great extent, neither for active ingredients nor for the wetting agents, breakdown products or tank mixtures. A further topic of discussion was how to better protect amphibians by reducing their exposure to PPPs in agricultural fields. Experts at a workshop concluded that further research is needed.

  20. Helminth parasites of amphibians and reptiles from the Ucayali Region, Peru.

    PubMed

    McAllister, Chris T; Bursey, Charles R; Freed, Paul S

    2010-04-01

    Twenty individual amphibians representing 9 species within 6 families and 44 individual reptiles representing 15 species within 8 families from the Ucayali Region, Peru, were examined for helminths. Seven (35%) of the amphibian species and 15 (34%) of the reptiles were found to harbor at least 1 species of helminth; 5 (25%) of the amphibians and 4 (9%) of the reptiles harbored multiple infections. A cyclophyllidean cestode and 14 taxa of nematodes within 7 families were found in the herpetofauna surveyed. Thirteen new host and 6 new geographic distribution records are documented.

  1. Investigating the Influence of Environmental Factors on Pesticide Exposure in Amphibians

    EPA Science Inventory

    Environmental factors such as temporal weather patterns and soil characterization coupled with pesticide application rates are known to influence exposure and subsequent absorption of these compounds in amphibians. Amphibians are a unique class of vertebrates due to their varied ...

  2. Non-native fish introductions and the reversibility of amphibian declines in the Sierra Nevada

    Treesearch

    Roland A. Knapp

    2004-01-01

    Amphibians are declining worldwide for a variety of reasons, including habitat alteration, introduction of non-native species, disease, climate change, and environmental contaminants. Amphibians often play important roles in structuring ecosystems, and, as a result, amphibian population declines or extinctions are likely to affect other trophic levels (Matthews and...

  3. Rainforest: Reptiles and Amphibians

    ERIC Educational Resources Information Center

    Olson, Susanna

    2006-01-01

    Rainforest reptiles and amphibians are a vibrantly colored, multimedia art experience. To complete the entire project one may need to dedicate many class periods to production, yet in each aspect of the project a new and important skill, concept, or element is being taught or reinforced. This project incorporates the study of warm and cool color…

  4. Sampling methods for amphibians in streams in the Pacific Northwest.

    Treesearch

    R. Bruce Bury; Paul Stephen Corn

    1991-01-01

    Methods describing how to sample aquatic and semiaquatic amphibians in small streams and headwater habitats in the Pacific Northwest are presented. We developed a technique that samples 10-meter stretches of selected streams, which was adequate to detect presence or absence of amphibian species and provided sample sizes statistically sufficient to compare abundance of...

  5. Coordinated Studies of Ultraviolet Radiation and Amphibians in Lentic Wetland Habitats

    EPA Science Inventory

    Ultraviolet radiation (UVR) has been suggested as a potential cause of population declines and increases in malformations in amphibians. This study indicates that the present distributions of amphibians in four western U.S. National Parks are not related to UVR exposure, and sugg...

  6. Measuring the Meltdown: Drivers of Global Amphibian Extinction and Decline

    PubMed Central

    Sodhi, Navjot S.; Bickford, David; Diesmos, Arvin C.; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W.; Sekercioglu, Cagan H.; Bradshaw, Corey J. A.

    2008-01-01

    Habitat loss, climate change, over-exploitation, disease and other factors have been hypothesised in the global decline of amphibian biodiversity. However, the relative importance of and synergies among different drivers are still poorly understood. We present the largest global analysis of roughly 45% of known amphibians (2,583 species) to quantify the influences of life history, climate, human density and habitat loss on declines and extinction risk. Multi-model Bayesian inference reveals that large amphibian species with small geographic range and pronounced seasonality in temperature and precipitation are most likely to be Red-Listed by IUCN. Elevated habitat loss and human densities are also correlated with high threat risk. Range size, habitat loss and more extreme seasonality in precipitation contributed to decline risk in the 2,454 species that declined between 1980 and 2004, compared to species that were stable (n = 1,545) or had increased (n = 28). These empirical results show that amphibian species with restricted ranges should be urgently targeted for conservation. PMID:18286193

  7. Pesticide Detection in Rainwater, Stemflow, and Amphibians from Agricultural Spray Drift in Southern Georgia, USA

    EPA Science Inventory

    Amphibians are important sentinel environmental species since they integrate stressors from both aquatic and terrestrial ecosystems. Pesticides are well established as a significant stressor for amphibians. In order to study spray-drift contributions to amphibian habitats, pestic...

  8. An Unprecedented Role Reversal: Ground Beetle Larvae (Coleoptera: Carabidae) Lure Amphibians and Prey upon Them

    PubMed Central

    Wizen, Gil; Gasith, Avital

    2011-01-01

    Amphibians often feed on beetle larvae, including those of ground beetles (Carabidae). Preliminary reports have detailed an unusual trophic interaction in which, in contrast, larvae of the ground beetle Epomis prey upon juvenile and adult amphibians. While it is known that these larvae feed exclusively on amphibians, how the predator-prey encounter occurs to the advantage of the beetle larvae had been unknown to date. Using laboratory observations and controlled experiments, we recorded the feeding behavior of Epomis larvae, as well as the behavior of their amphibian prey. Here we reveal that larvae of two species of Epomis (E. circumscriptus and E. dejeani) lure their potential predator, taking advantage of the amphibian's predation behavior. The Epomis larva combines a sit-and-wait strategy with unique movements of its antennae and mandibles to draw the attention of the amphibian to the presence of a potential prey. The intensity of this enticement increases with decreasing distance between the larva and the amphibian. When the amphibian attacks, the larva almost always manages to avoid the predator's protracted tongue, exploiting the opportunity to attach itself to the amphibian's body and initiate feeding. Our findings suggest that the trophic interaction between Epomis larvae and amphibians is one of the only natural cases of obligatory predator-prey role reversal. Moreover, this interaction involves a small insect larva that successfully lures and preys on a larger vertebrate. Such role reversal is exceptional in the animal world, extending our perspective of co-evolution in the arms race between predator and prey, and suggesting that counterattack defense behavior has evolved into predator-prey role reversal. PMID:21957480

  9. Monitoring and Management of a Sensitive Resource: A Landscape-level Approach with Amphibians

    DTIC Science & Technology

    2001-03-01

    Results show that each technique is effective for a portion of the amphibian community and that the use of multiple techniques is essential to any...combinations of species. These results show that multiple techniques are needed for a full assessment of amphibian populations and communities at...against which future assessments of amphibian populations and communities on each installation can be evaluated. The standardized techniques used in FY

  10. The Creatures beneath Our Feet: Amphibian Monitors Take to the Road.

    ERIC Educational Resources Information Center

    Daigle, Cheryl Perusse

    1999-01-01

    The Nature Conservancy's Berkshire Program involves community volunteers in monitoring migration routes of amphibians that rely on vernal pools for breeding success. Vernal-pool workshops provide basic knowledge of amphibian lifecycles and detailed monitoring instructions. Nighttime field trips for adults and children and monitoring experiences…

  11. Parasite (Ribeiroia ondatrae) infection linked to amphibian malformations in the western United States

    USGS Publications Warehouse

    Johnson, P.T.J.; Lunde, K.B.; Thurman, E.M.; Ritchie, E.G.; Wray, S.N.; Sutherland, D.R.; Kapfer, J.M.; Frest, T.J.; Bowerman, J.; Blaustein, A.R.

    2002-01-01

    Parasites and pathogens can influence the survivorship, behavior, and very structure of their host species. For example, experimental studies have shown that trematode parasites can cause high frequencies of severe limb malformations in amphibians. In a broad-scale field survey covering parts of California, Oregon, Washington, Idaho, and Montana, we examined relationships between the frequency and types of morphological abnormalities in amphibians and the abundance of trematode parasite infection, pH, concentrations of 61 pesticides, and levels of orthophosphate and total nitrate. We recorded severe malformations at frequencies ranging from 1% to 90% in nine amphibian species from 53 aquatic systems. Infection of larvae by the trematode Ribeiroia ondatrae was associated with, and functionally related to, higher frequencies of amphibian limb malformations than found in uninfected populations (≤5%). Parasites were concentrated around the basal tissue of hind limbs in infected anurans, and malformations associated with infection included skin webbings, supernumerary limbs and digits, and missing or malformed hind limbs. In the absence of Ribeiroia, amphibian populations exhibited low (0-5%) frequencies of abnormalities involving missing digits or distal portions of a hind limb. Species were affected differentially by the parasite, and Ambystoma macrodactylum, Hyla regilla, Rand aurora, R. luteiventris, and Taricha torosa typically exhibited the highest frequencies of abnormalities. None of the water-quality variables measured was associated with malformed amphibians, but aquatic snail hosts (Planorbella spp.) were significant predictors of the presence and abundance of Ribeiroia infection. Morphological comparisons of adult specimens of Ribeiroia collected from different sites and raised in experimental definitive hosts suggested that all samples represented the same species - R. ondatrae. These field results, coupled with experimental research on the effects of

  12. Understanding of the impact of chemicals on amphibians: a meta-analytic review.

    PubMed

    Egea-Serrano, Andrés; Relyea, Rick A; Tejedo, Miguel; Torralva, Mar

    2012-07-01

    Many studies have assessed the impact of different pollutants on amphibians across a variety of experimental venues (laboratory, mesocosm, and enclosure conditions). Past reviews, using vote-counting methods, have described pollution as one of the major threats faced by amphibians. However, vote-counting methods lack strong statistical power, do not permit one to determine the magnitudes of effects, and do not compare responses among predefined groups. To address these challenges, we conducted a meta-analysis of experimental studies that measured the effects of different chemical pollutants (nitrogenous and phosphorous compounds, pesticides, road deicers, heavy metals, and other wastewater contaminants) at environmentally relevant concentrations on amphibian survival, mass, time to hatching, time to metamorphosis, and frequency of abnormalities. The overall effect size of pollutant exposure was a medium decrease in amphibian survival and mass and a large increase in abnormality frequency. This translates to a 14.3% decrease in survival, a 7.5% decrease in mass, and a 535% increase in abnormality frequency across all studies. In contrast, we found no overall effect of pollutants on time to hatching and time to metamorphosis. We also found that effect sizes differed among experimental venues and among types of pollutants, but we only detected weak differences among amphibian families. These results suggest that variation in sensitivity to contaminants is generally independent of phylogeny. Some publication bias (i.e., selective reporting) was detected, but only for mass and the interaction effect size among stressors. We conclude that the overall impact of pollution on amphibians is moderately to largely negative. This implies that pollutants at environmentally relevant concentrations pose an important threat to amphibians and may play a role in their present global decline.

  13. Development of a mobile application for amphibian species recognition

    NASA Astrophysics Data System (ADS)

    Parveen, B.; H, Chew T.; Shamsir, M. S.; Ahmad, N.

    2014-02-01

    The smartphones mobility and its pervasiveness are beginning to transform practices in biodiversity conservation. The integrated functionalities of a smartphone have created for the public and biodiversity specialists means to identify, gather and record biodiversity data while simultaneously creating knowledge portability in the digital forms of mobile guides. Smartphones enable beginners to recreate the delight of species identification usually reserved for specialist with years of experience. Currently, the advent of Android platform has enabled stakeholders in biodiversity to harness the ubiquity of this platform and create various types of mobile application or "apps" for use in biodiversity research and conservation. However, there is an apparent lack of application devoted to the identification in herpetofauna or amphibian science. Amphibians are a large class of animals with many different species still unidentified under this category. Here we describe the development of an app called Amphibian Recognition Android Application (ARAA) to identify frog amphibian species as well as an accompanying field guide. The app has the amphibian taxonomic key which assists the users in easy and rapid species identification, thus facilitating the process of identification and recording of species occurrences in conservation work. We will also present an overview of the application work flow and how it is designed to meet the needs a conservationist. As this application is still in its beta phase, further research is required to improve the application to include tools such automatic geolocation and geotagging, participative sensing via crowdsourcing and automated identification via image capture. We believe that the introduction of this app will create an impetus to the awareness of nature via species identification.

  14. Utilization of surface mine ponds in East Tennessee by breeding amphibians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, L.J.; Fowler, D.K.

    1981-06-01

    Of 24 ponds examined on Ollis Creek Surface Mine, Campbell County, Tennessee, 21 contained breeding amphibians. Twelve species of amphibians were identified in ponds that ranged from 4.0 to 8.0 in pH. Although ponds with low pH values were used by breeding amphibians, significantly more amphibian species were found in ponds with higher pH values. The average pH of ponds occupied by each amphibian species varied. Spring peepers (Hyla crucifer) occupied ponds with the lowest average pH (5.22) while upland chorus frogs (Pseudacris triseriata feriarum) utilized ponds with the highest average pH (6.33). Findings indicated high biological productivity in surfacemore » mine ponds. Aquatic vegetation was present in 20 of the 24 ponds. Aquatic insects and a diverse wildlife fauna utilized the study ponds. Large mammals (3 species), waterbirds (17 species), and snakes (2 species) were among those species observed. Surface mine ponds were found to supply an important habitat component for a variety of wildlife species and therefore improve the quality of wildlife habitat on the surface mines. In some areas, mine ponds are the only source of surface water available for wildlife use. 23 references, 9 figures, 5 tables.« less

  15. Contradicting habitat type-extinction risk relationships between living and fossil amphibians

    NASA Astrophysics Data System (ADS)

    Tietje, Melanie; Rödel, Mark-Oliver

    2017-05-01

    Trait analysis has become a crucial tool for assessing the extinction risk of species. While some extinction risk-trait relationships have been often identical between different living taxa, a temporal comparison of fossil taxa with related current taxa was rarely considered. However, we argue that it is important to know if extinction risk-trait relations are constant or changing over time. Herein we investigated the influence of habitat type on the persistence length of amphibian species. Living amphibians are regarded as the most threatened group of terrestrial vertebrates and thus of high interest to conservationists. Species from different habitat types show differences in extinction risk, i.e. species depending on flowing waters being more threatened than those breeding in stagnant sites. After assessing the quality of the available amphibian fossil data, we show that today's habitat type-extinction risk relationship is reversed compared to fossil amphibians, former taxa persisting longer when living in rivers and streams, thus suggesting a change of effect direction of this trait. Neither differences between amphibian orders nor environmentally caused preservation effects could explain this pattern. We argue this change to be most likely a result of anthropogenic influence, which turned a once favourable strategy into a disadvantage.

  16. A test of the substitution-habitat hypothesis in amphibians.

    PubMed

    Martínez-Abraín, Alejandro; Galán, Pedro

    2018-06-01

    Most examples that support the substitution-habitat hypothesis (human-made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16-0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11-0.14), and low probability of occurrence in refuge habitats (0.05-0.08). Thus, the substitution-habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats. © 2017 Society for Conservation Biology.

  17. Can Myxosporean parasites compromise fish and amphibian reproduction?

    PubMed Central

    Sitjà-Bobadilla, Ariadna

    2009-01-01

    Research into fish and amphibian reproduction has increased exponentially in recent years owing to the expansion of the aquaculture industry, the need to recover fishery populations, the impact of endocrine disruptors on the aquatic environment and the global decline of amphibian populations. This review focuses on a group of parasites, the Myxozoa, that affect fish and amphibian reproduction. Lists of the myxosporeans that specifically infect gonads are provided. Most of these are parasitic of freshwater hosts, and most amphibian cases are reported from testes. Sex specificity and sex reversal are discussed in relation to gonadal parasitism. The immune response of the fish to the infection is described, and the contribution of the immunoprivilege of gonads to host invasion is emphasized. The pathological effect of these parasites can be significant, especially in aquacultured broodstocks, on some occasions, leading to parasitic castration. Although myxosporean parasites are currently not very frequent in gonads, their impact could increase in the future owing to the transactions in the global market. Their easy release into the aquatic environment with spawning could make their spreading even more feasible. In the absence of commercial drugs or vaccines to treat and prevent these infections, there is an urgent need to develop specific, rapid and reliable diagnostic tools to control and manage animal movements. In addition, much effort is still to be made on deciphering the life cycle of these organisms, their invasion strategies and their immune evasion mechanisms. PMID:19474043

  18. Can myxosporean parasites compromise fish and amphibian reproduction?

    PubMed

    Sitjà-Bobadilla, Ariadna

    2009-08-22

    Research into fish and amphibian reproduction has increased exponentially in recent years owing to the expansion of the aquaculture industry, the need to recover fishery populations, the impact of endocrine disruptors on the aquatic environment and the global decline of amphibian populations. This review focuses on a group of parasites, the Myxozoa, that affect fish and amphibian reproduction. Lists of the myxosporeans that specifically infect gonads are provided. Most of these are parasitic of freshwater hosts, and most amphibian cases are reported from testes. Sex specificity and sex reversal are discussed in relation to gonadal parasitism. The immune response of the fish to the infection is described, and the contribution of the immunoprivilege of gonads to host invasion is emphasized. The pathological effect of these parasites can be significant, especially in aquacultured broodstocks, on some occasions, leading to parasitic castration. Although myxosporean parasites are currently not very frequent in gonads, their impact could increase in the future owing to the transactions in the global market. Their easy release into the aquatic environment with spawning could make their spreading even more feasible. In the absence of commercial drugs or vaccines to treat and prevent these infections, there is an urgent need to develop specific, rapid and reliable diagnostic tools to control and manage animal movements. In addition, much effort is still to be made on deciphering the life cycle of these organisms, their invasion strategies and their immune evasion mechanisms.

  19. Mitogenomic perspectives on the origin and phylogeny of living amphibians.

    PubMed

    Zhang, Peng; Zhou, Hui; Chen, Yue-Qin; Liu, Yi-Fei; Qu, Liang-Hu

    2005-06-01

    Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution.

  20. Evaluation of episodic acidification and amphibian declines in the Rocky Mountains

    Treesearch

    Frank A. Vertucci; Paul Stephen Corn

    1996-01-01

    We define criteria for documenting episodic acidification of amphibian breeding habitats and examine whether episodic acidification is responsible for observed declines of amphibian populations in the Rocky Mountains. Anthropogenic episodic acidification, caused by atmospheric deposition of sulfate and nitrate, occurs when the concentration of acid anions increases...

  1. Remarkable amphibian biomass and abundance in an isolated wetland: implications for wetland conservation.

    PubMed

    Gibbons, J Whitfield; Winne, Christopher T; Scott, David E; Willson, John D; Glaudas, Xavier; Andrews, Kimberly M; Todd, Brian D; Fedewa, Luke A; Wilkinson, Lucas; Tsaliagos, Ria N; Harper, Steven J; Greene, Judith L; Tuberville, Tracey D; Metts, Brian S; Dorcas, Michael E; Nestor, John P; Young, Cameron A; Akre, Tom; Reed, Robert N; Buhlmann, Kurt A; Norman, Jason; Croshaw, Dean A; Hagen, Cris; Rothermel, Betsie B

    2006-10-01

    Despite the continuing loss of wetland habitats and associated declines in amphibian populations, attempts to translate wetland losses into measurable losses to ecosystems have been lacking. We estimated the potential productivity from the amphibian community that would be compromised by the loss of a single isolated wetland that has been protected from most industrial, agricultural, and urban impacts for the past 54 years. We used a continuous drift fence at Ellenton Bay, a 10-ha freshwater wetland on the Savannah River Site, near Aiken, South Carolina (U.S.A.), to sample all amphibians for 1 year following a prolonged drought. Despite intensive agricultural use of the land surrounding Ellenton Bay prior to 1951, we documented 24 species and remarkably high numbers and biomass of juvenile amphibians (>360,000 individuals; >1,400 kg) produced during one breeding season. Anurans (17 species) were more abundant than salamanders (7 species), comprising 96.4% of individual captures. Most (95.9%) of the amphibian biomass came from 232095 individuals of a single species of anuran (southern leopard frog[Rana sphenocephala]). Our results revealed the resilience of an amphibian community to natural stressors and historical habitat alteration and the potential magnitude of biomass and energy transfer from isolated wetlands to surrounding terrestrial habitat. We attributed the postdrought success of amphibians to a combination of adult longevity (often >5 years), a reduction in predator abundance, and an abundance of larval food resources. Likewise, the increase of forest cover around Ellenton Bay from <20% in 1951 to >60% in 2001 probably contributed to the long-term persistence of amphibians at this site. Our findings provide an optimistic counterpoint to the issue of the global decline of biological diversity by demonstrating that conservation efforts can mitigate historical habitat degradation.

  2. What we know and don't know about amphibian declines in the West

    USGS Publications Warehouse

    Corn, Paul Stephen

    1994-01-01

    The problem of declining amphibian species is thought to be particularly acute in western North America, but there are many gaps in our knowledge. Although several declines have been well-documented, other declines are anecdotal or hypothesized. Most documented declines are of ranid frogs or toads (Bufo). Species from montane habitats and those occurring in California have been best studied. Status of many desert species is unknown. Habitat destruction and introduced predators are the most common threats to amphibian populations. Some declines may represent natural variation in population size. Causes have not been determined for several cases where common species have declined over large areas. There are important considerations for ecosystem management, whether changes in amphibian populations are natural or caused by human activities. Causes for declines must be known so that management can be prescribed (or proscribed) to eliminate or minimize these causes. The natural variability of amphibian population numbers and the complexity of metapopulation structure emphasize the necessity of considering multiple temporal and spatial scales in ecosystem management. The decline of amphibian species throughout the world has received considerable recent attention (e.g., Blaustein and Wake 1990, Griffiths and Beebee 1992, Yoffe 1992). Much of this attention derives from a workshop held in February, 1990 on declining amphibians sponsored by the National Research Council Board (NRC) on Biology in Irvine, California (Barinaga 1990, Borchelt 1990). Because of media attention in the aftermath of this conference, it is a popular perception that amphibian declines are a new phenomenon that herpetologists have been slow to recognize (Griffiths and Beebee 1992, Quammen 1993). However, concern about amphibian populations in the United States dates back over 20 years. Beginning in the 1960s, a large, well-documented decline of northern leopard frogs (Rana pipiens) occurred in the

  3. Reptiles as potential vectors and hosts of the amphibian pathogen Batrachochytrium dendrobatidis in Panama.

    PubMed

    Kilburn, Vanessa L; Ibáñez, Roberto; Green, David M

    2011-12-06

    Chytridiomycosis, the disease caused by Batrachochytrium dendrobatidis, is considered to be a disease exclusively of amphibians. However, B. dendrobatidis may also be capable of persisting in the environment, and non-amphibian vectors or hosts may contribute to disease transmission. Reptiles living in close proximity to amphibians and sharing similar ecological traits could serve as vectors or reservoir hosts for B. dendrobatidis, harbouring the organism on their skin without succumbing to disease. We surveyed for the presence of B. dendrobatidis DNA among 211 lizards and 8 snakes at 8 sites at varying elevations in Panama where the syntopic amphibians were at pre-epizootic, epizootic or post-epizootic stages of chytridiomycosis. Detection of B. dendrobatidis DNA was done using qPCR analysis. Evidence of the amphibian pathogen was present at varying intensities in 29 of 79 examined Anolis humilis lizards (32%) and 9 of 101 A. lionotus lizards (9%), and in one individual each of the snakes Pliocercus euryzonus, Imantodes cenchoa, and Nothopsis rugosus. In general, B. dendrobatidis DNA prevalence among reptiles was positively correlated with the infection prevalence among co-occurring anuran amphibians at any particular site (r = 0.88, p = 0.004). These reptiles, therefore, may likely be vectors or reservoir hosts for B. dendrobatidis and could serve as disease transmission agents. Although there is no evidence of B. dendrobatidis disease-induced declines in reptiles, cases of coincidence of reptile and amphibian declines suggest this potentiality. Our study is the first to provide evidence of non-amphibian carriers for B. dendrobatidis in a natural Neotropical environment.

  4. Acute oral toxicity of chemicals in terrestrial life stages of amphibians: Comparisons to birds and mammals.

    PubMed

    Crane, Mark; Finnegan, Meaghean; Weltje, Lennart; Kosmala-Grzechnik, Sylwia; Gross, Melanie; Wheeler, James R

    2016-10-01

    Amphibians are currently the most threatened and rapidly declining group of vertebrates and this has raised concerns about their potential sensitivity and exposure to plant protection products and other chemicals. Current environmental risk assessment procedures rely on surrogate species (e.g. fish and birds) to cover the risk to aquatic and terrestrial life stages of amphibians, respectively. Whilst a recent meta-analysis has shown that in most cases amphibian aquatic life stages are less sensitive to chemicals than fish, little research has been conducted on the comparative sensitivity of terrestrial amphibian life stages. Therefore, in this paper we address the questions "What is the relative sensitivity of terrestrial amphibian life stages to acute chemical oral exposure when compared with mammals and birds?" and "Are there correlations between oral toxicity data for amphibians and data for mammals or birds?" Identifying a relationship between these data may help to avoid additional vertebrate testing. Acute oral amphibian toxicity data collected from the scientific literature and ecotoxicological databases were compared with toxicity data for mammals and birds. Toxicity data for terrestrial amphibian life stages are generally sparse, as noted in previous reviews. Single-dose oral toxicity data for terrestrial amphibian life stages were available for 26 chemicals and these were positively correlated with LD50 values for mammals, while no correlation was found for birds. Further, the data suggest that oral toxicity to terrestrial amphibian life stages is similar to or lower than that for mammals and birds, with a few exceptions. Thus, mammals or birds are considered adequate toxicity surrogates for use in the assessment of the oral exposure route in amphibians. However, there is a need for further data on a wider range of chemicals to explore the wider applicability of the current analyses and recommendations. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Validity of fish, birds and mammals as surrogates for amphibians and reptiles in pesticide toxicity assessment.

    PubMed

    Ortiz-Santaliestra, Manuel E; Maia, Joao P; Egea-Serrano, Andrés; Lopes, Isabel

    2018-02-28

    Amphibians and reptiles are the two most endangered groups of vertebrates. Environmental pollution by pesticides is recognised as one of the major factors threatening populations of these groups. However, the effects of pesticides on amphibians and reptiles have been studied for few substances, which is partly related to the fact that these animals are not included in the mandatory toxicity testing conducted as part of environmental risk assessments of pesticides. Whether risks of pesticides to amphibians and reptiles are addressed by surrogate taxa used in risk assessment is currently under debate. In order to develop a scientifically sound and robust risk assessment scheme, information needs to be gathered to examine whether fish, birds and mammals are valid surrogates for amphibians and reptiles. We updated a systematic review of scientific literature that was recently published compiling toxicity data on amphibians and reptiles. The outcome of this review was analysed with the purposes to (1) compare endpoints from amphibians and reptiles with the available information from fish, birds and mammals, and (2) develop species sensitivity distributions (SSDs) for those substances tested in at least six amphibian species (no substances were found tested in at least six reptile species) to identify a candidate amphibian model species to be used as surrogate in risk assessment. A positive correlation was found between toxicity recorded on fish and amphibians, the former revealing, in general, to be more sensitive than the latter to waterborne pollutants. In the terrestrial environment, although birds and mammals were more sensitive than amphibians and reptiles to at least 60% of tested substances, just a few weak significant correlations were observed. As a general rule, homoeothermic vertebrates are not good surrogates for reptiles and terrestrial amphibians in pesticide risk assessment. However, some chemical-dependent trends were detected, with pyrethroids and

  6. Global patterns of evolutionary distinct and globally endangered amphibians and mammals.

    PubMed

    Safi, Kamran; Armour-Marshall, Katrina; Baillie, Jonathan E M; Isaac, Nick J B

    2013-01-01

    Conservation of phylogenetic diversity allows maximising evolutionary information preserved within fauna and flora. The "EDGE of Existence" programme is the first institutional conservation initiative that prioritises species based on phylogenetic information. Species are ranked in two ways: one according to their evolutionary distinctiveness (ED) and second, by including IUCN extinction status, their evolutionary distinctiveness and global endangerment (EDGE). Here, we describe the global patterns in the spatial distribution of priority ED and EDGE species, in order to identify conservation areas for mammalian and amphibian communities. In addition, we investigate whether environmental conditions can predict the observed spatial pattern in ED and EDGE globally. Priority zones with high concentrations of ED and EDGE scores were defined using two different methods. The overlap between mammal and amphibian zones was very small, reflecting the different phylo-biogeographic histories. Mammal ED zones were predominantly found on the African continent and the neotropical forests, whereas in amphibians, ED zones were concentrated in North America. Mammal EDGE zones were mainly in South-East Asia, southern Africa and Madagascar; for amphibians they were in central and south America. The spatial pattern of ED and EDGE was poorly described by a suite of environmental variables. Mapping the spatial distribution of ED and EDGE provides an important step towards identifying priority areas for the conservation of mammalian and amphibian phylogenetic diversity in the EDGE of existence programme.

  7. Applied reproductive technologies and genetic resource banking for amphibian conservation.

    PubMed

    Kouba, Andrew J; Vance, Carrie K

    2009-01-01

    As amphibian populations continue to decline, both government and non-government organisations are establishing captive assurance colonies to secure populations deemed at risk of extinction if left in the wild. For the most part, little is known about the nutritional ecology, reproductive biology or husbandry needs of the animals placed into captive breeding programs. Because of this lack of knowledge, conservation biologists are currently facing the difficult task of maintaining and reproducing these species. Academic and zoo scientists are beginning to examine different technologies for maintaining the genetic diversity of founder populations brought out of the wild before the animals become extinct from rapidly spreading epizootic diseases. One such technology is genetic resource banking and applied reproductive technologies for species that are difficult to reproduce reliably in captivity. Significant advances have been made in the last decade for amphibian assisted reproduction including the use of exogenous hormones for induction of spermiation and ovulation, in vitro fertilisation, short-term cold storage of gametes and long-term cryopreservation of spermatozoa. These scientific breakthroughs for a select few species will no doubt serve as models for future assisted breeding protocols and the increasing number of amphibians requiring conservation intervention. However, the development of specialised assisted breeding protocols that can be applied to many different families of amphibians will likely require species-specific modifications considering their wide range of reproductive modes. The purpose of this review is to summarise the current state of knowledge in the area of assisted reproduction technologies and gene banking for the conservation of amphibians.

  8. Agrochemicals increase trematode infections in a declining amphibian species.

    PubMed

    Rohr, Jason R; Schotthoefer, Anna M; Raffel, Thomas R; Carrick, Hunter J; Halstead, Neal; Hoverman, Jason T; Johnson, Catherine M; Johnson, Lucinda B; Lieske, Camilla; Piwoni, Marvin D; Schoff, Patrick K; Beasley, Val R

    2008-10-30

    Global amphibian declines have often been attributed to disease, but ignorance of the relative importance and mode of action of potential drivers of infection has made it difficult to develop effective remediation. In a field study, here we show that the widely used herbicide, atrazine, was the best predictor (out of more than 240 plausible candidates) of the abundance of larval trematodes (parasitic flatworms) in the declining northern leopard frog Rana pipiens. The effects of atrazine were consistent across trematode taxa. The combination of atrazine and phosphate--principal agrochemicals in global corn and sorghum production--accounted for 74% of the variation in the abundance of these often debilitating larval trematodes (atrazine alone accounted for 51%). Analysis of field data supported a causal mechanism whereby both agrochemicals increase exposure and susceptibility to larval trematodes by augmenting snail intermediate hosts and suppressing amphibian immunity. A mesocosm experiment demonstrated that, relative to control tanks, atrazine tanks had immunosuppressed tadpoles, had significantly more attached algae and snails, and had tadpoles with elevated trematode loads, further supporting a causal relationship between atrazine and elevated trematode infections in amphibians. These results raise concerns about the role of atrazine and phosphate in amphibian declines, and illustrate the value of quantifying the relative importance of several possible drivers of disease risk while determining the mechanisms by which they facilitate disease emergence.

  9. Synergistic effects of the invasive Chinese tallow (Triadica sebifera) and climate change on aquatic amphibian survival

    PubMed Central

    Saenz, Daniel; Fucik, Erin M; Kwiatkowski, Matthew A

    2013-01-01

    Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms. PMID:24363907

  10. Synergistic effects of the invasive Chinese tallow (Triadica sebifera) and climate change on aquatic amphibian survival.

    PubMed

    Saenz, Daniel; Fucik, Erin M; Kwiatkowski, Matthew A

    2013-11-01

    Changes in climate and the introduction of invasive species are two major stressors to amphibians, although little is known about the interaction between these two factors with regard to impacts on amphibians. We focused our study on an invasive tree species, the Chinese tallow (Triadica sebifera), that annually sheds its leaves and produces leaf litter that is known to negatively impact aquatic amphibian survival. The purpose of our research was to determine whether the timing of leaf fall from Chinese tallow and the timing of amphibian breeding (determined by weather) influence survival of amphibian larvae. We simulated a range of winter weather scenarios, ranging from cold to warm, by altering the relative timing of when leaf litter and amphibian larvae were introduced into aquatic mesocosms. Our results indicate that amphibian larvae survival was greatly affected by the length of time Chinese tallow leaf litter decomposes in water prior to the introduction of the larvae. Larvae in treatments simulating warm winters (early amphibian breeding) were introduced to the mesocosms early in the aquatic decomposition process of the leaf litter and had significantly lower survival compared with cold winters (late amphibian breeding), likely due to significantly lower dissolved oxygen levels. Shifts to earlier breeding phenology, linked to warming climate, have already been observed in many amphibian taxa, and with most climate models predicting a significant warming trend over the next century, the trend toward earlier breeding should continue if not increase. Our results strongly suggest that a warming climate can interact with the effects of invasive plant species, in ways we have not previously considered, to reduce the survival of an already declining group of organisms.

  11. Optical characteristics of natural waters protect amphibians from UV-B in the U.S. Pacific Northwest

    USGS Publications Warehouse

    Palen, Wendy J.; Schindler, David E.; Adams, Michael J.; Pearl, Christopher A.; Bury, R. Bruce; Diamond, S.A.

    2002-01-01

    Increased exposure to ultraviolet-B (UV-B) radiation has been proposed as a major environmental stressor leading to global amphibian declines. Prior experimental evidence from the U.S. Pacific Northwest (PNW) indicating the acute embryonic sensitivity of at least four amphibian species to UV-B has been central to the literature about amphibian decline. However, these results have not been expanded to address population-scale effects and natural landscape variation in UV-B transparency of water at amphibian breeding sites: both necessary links to assess the importance of UV-B for amphibian declines. We quantified the UV-B transparency of 136 potential amphibian breeding sites to establish the pattern of UV-B exposure across two montane regions in the PNW. Our data suggest that 85% of sites are naturally protected by dissolved organic matter in pond water, and that only a fraction of breeding sites are expected to experience UV-B intensities exceeding levels associated with elevated egg mortality. Thus, the spectral characteristics of natural waters likely mediate the physiological effects of UV-B on amphibian eggs in all but the clearest waters. These data imply that UV-B is unlikely to cause broad amphibian declines across the landscape of the American Northwest.

  12. Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining states.

    PubMed

    Lemos-Espinal, Julio A; Smith, Geoffrey R

    2016-01-01

    We compiled a checklist of the amphibians and reptiles of the state of Coahuila, Mexico. The list comprises 133 species (24 amphibians, 109 reptiles), representing 27 families (9 amphibians, 18 reptiles) and 65 genera (16 amphibians, 49 reptiles). Coahuila has a high richness of lizards in the genus Sceloporus. Coahuila has relatively few state endemics, but has several regional endemics. Overlap in the herpetofauna of Coahuila and bordering states is fairly extensive. Of the 132 species of native amphibians and reptiles, eight are listed as Vulnerable, six as Near Threatened, and six as Endangered in the IUCN Red List. In the SEMARNAT listing, 19 species are Subject to Special Protection, 26 are Threatened, and three are in Danger of Extinction. Coahuila is home to several species of conservation concern, especially lizards and turtles. Coahuila is an important state for the conservation of the native regional fauna.

  13. Amphibians and reptiles of the state of Coahuila, Mexico, with comparison with adjoining states

    PubMed Central

    Lemos-Espinal, Julio A.; Smith, Geoffrey R.

    2016-01-01

    Abstract We compiled a checklist of the amphibians and reptiles of the state of Coahuila, Mexico. The list comprises 133 species (24 amphibians, 109 reptiles), representing 27 families (9 amphibians, 18 reptiles) and 65 genera (16 amphibians, 49 reptiles). Coahuila has a high richness of lizards in the genus Sceloporus. Coahuila has relatively few state endemics, but has several regional endemics. Overlap in the herpetofauna of Coahuila and bordering states is fairly extensive. Of the 132 species of native amphibians and reptiles, eight are listed as Vulnerable, six as Near Threatened, and six as Endangered in the IUCN Red List. In the SEMARNAT listing, 19 species are Subject to Special Protection, 26 are Threatened, and three are in Danger of Extinction. Coahuila is home to several species of conservation concern, especially lizards and turtles. Coahuila is an important state for the conservation of the native regional fauna. PMID:27408554

  14. AN OVERVIEW OF OECD AND EPA/ORD ACTIVITIES RELATED TO AMPHIBIAN TESTING

    EPA Science Inventory

    There has been significant recent activity related to testing amphibians in a regulatory setting. Much of this has emanated from interest by the US Environmental Protection Agency (EPA) and the Office of Economic Cooperation and Development (OECD) in utilizing amphibians in scree...

  15. Amphibian (Xenopus sp.) iodothyronine deiodinase production for screening of thyroid-disrupting chemicals

    EPA Science Inventory

    The U.S. EPA-MED amphibian thyroid group is currently screening chemicals for inhibition of human iodothyronine deiodinase activity as components of the thyroid system important in human development. Amphibians are a bellwether taxonomic group to gauge toxicity of chemicals in th...

  16. Rapid increases and time-lagged declines in amphibian occupancy after wildfire.

    PubMed

    Hossack, Blake R; Lowe, Winsor H; Corn, Paul Stephen

    2013-02-01

    Climate change is expected to increase the frequency and severity of drought and wildfire. Aquatic and moisture-sensitive species, such as amphibians, may be particularly vulnerable to these modified disturbance regimes because large wildfires often occur during extended droughts and thus may compound environmental threats. However, understanding of the effects of wildfires on amphibians in forests with long fire-return intervals is limited. Numerous stand-replacing wildfires have occurred since 1988 in Glacier National Park (Montana, U.S.A.), where we have conducted long-term monitoring of amphibians. We measured responses of 3 amphibian species to fires of different sizes, severity, and age in a small geographic area with uniform management. We used data from wetlands associated with 6 wildfires that burned between 1988 and 2003 to evaluate whether burn extent and severity and interactions between wildfire and wetland isolation affected the distribution of breeding populations. We measured responses with models that accounted for imperfect detection to estimate occupancy during prefire (0-4 years) and different postfire recovery periods. For the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), occupancy was not affected for 6 years after wildfire. But 7-21 years after wildfire, occupancy for both species decreased ≥ 25% in areas where >50% of the forest within 500 m of wetlands burned. In contrast, occupancy of the boreal toad (Anaxyrus boreas) tripled in the 3 years after low-elevation forests burned. This increase in occupancy was followed by a gradual decline. Our results show that accounting for magnitude of change and time lags is critical to understanding population dynamics of amphibians after large disturbances. Our results also inform understanding of the potential threat of increases in wildfire frequency or severity to amphibians in the region. ©2012 Society for Conservation Biology.

  17. Rapid increases and time-lagged declines in amphibian occupancy after wildfire

    USGS Publications Warehouse

    Hossack, Blake R.; Lowe, Winsor H.; Corn, Paul Stephen

    2013-01-01

    Climate change is expected to increase the frequency and severity of drought and wildfire. Aquatic and moisture-sensitive species, such as amphibians, may be particularly vulnerable to these modified disturbance regimes because large wildfires often occur during extended droughts and thus may compound environmental threats. However, understanding of the effects of wildfires on amphibians in forests with long fire-return intervals is limited. Numerous stand-replacing wildfires have occurred since 1988 in Glacier National Park (Montana, U.S.A.), where we have conducted long-term monitoring of amphibians. We measured responses of 3 amphibian species to fires of different sizes, severity, and age in a small geographic area with uniform management. We used data from wetlands associated with 6 wildfires that burned between 1988 and 2003 to evaluate whether burn extent and severity and interactions between wildfire and wetland isolation affected the distribution of breeding populations. We measured responses with models that accounted for imperfect detection to estimate occupancy during prefire (0-4 years) and different postfire recovery periods. For the long-toed salamander (Ambystoma macrodactylum) and Columbia spotted frog (Rana luteiventris), occupancy was not affected for 6 years after wildfire. But 7-21 years after wildfire, occupancy for both species decreased ≥ 25% in areas where >50% of the forest within 500 m of wetlands burned. In contrast, occupancy of the boreal toad (Anaxyrus boreas) tripled in the 3 years after low-elevation forests burned. This increase in occupancy was followed by a gradual decline. Our results show that accounting for magnitude of change and time lags is critical to understanding population dynamics of amphibians after large disturbances. Our results also inform understanding of the potential threat of increases in wildfire frequency or severity to amphibians in the region.

  18. Impact of forestry practices at a landscape scale on the dynamics of amphibian populations.

    PubMed

    Harper, Elizabeth B; Patrick, David A; Gibbs, James P

    2015-12-01

    Forest loss is a primary cause of worldwide amphibian decline. Timber harvesting in the United States has caused dramatic changes in quality and extent of forest ecosystems, and intensive forest management still occurs. Although numerous studies have documented substantial reductions in amphibian densities related to timber harvest, subsequent extinctions are rare. To better understand the population dynamics that have allowed so many amphibian species to persist in the face of widespread forest disturbance, we developed spatially explicit metapopulation models for four forest-dependent amphibian species (Lithobates sylvaticus, Ambystoma opacum, A. talpoideum, and A. maculatum) that incorporated demographic and habitat selection data derived from experiments conducted as part of the Land Use Effects on Amphibian Populations Project (LEAP). We projected local and landscape-scale population persistence under 108 different forestry practice scenarios, varying treatment (partial cut, clear-cut with coarse woody debris [CWD] removed, and clearcut with CWD retained), cut patch size (1, 10, or 50 ha), total area cut (10, 20, or 30%), and initial amphibian population size (5, 50, or 500 adult females per local breeding population). Under these scenarios, landscape-scale extinction was highly unlikely, occurring in < 1% of model runs and for only 2 of the 4 species, because landscape-scale populations were able to persist via dispersal even despite frequent local extinctions. Yet for all species, population sizes were reduced to -50% in all clear-cut scenarios, regardless of the size of harvested patches. These findings suggest that debate over timber harvesting on pool-breeding amphibian populations in the United States should focus not on questions of landscape-scale extinction but on the ecological consequences of dramatic reductions in amphibian biomass, including changes in trophic interactions, nutrient cycling, and energy transfer. Additionally, we conclude that

  19. Diversity of form in the amphibian papilla of Puerto Rican frogs

    NASA Technical Reports Server (NTRS)

    Lewis, E. R.; Hecht, E. I.; Narins, P. M.

    1992-01-01

    In modern frogs, the amphibian papilla exhibits a caudal extension whose shape, relative length, and proportion of hair cells vary markedly from species to species. Tuning in the caudal extension is organized tonotopically and evidently involves the tectorium. In terms of the proportion of amphibian-papillar hair cells in the caudal extension, we report more diversity among 8 species of a single genus (Eleutherodactylus) on a single island (Puerto Rico) than has been found so far among all of the (more than 50) other modern anurans examined for this feature from around the world. These 8 Puerto Rican species have overlapping habitat and conspicuous diversity in the male advertisement call. For 7 of the 8 species, we report that the call has transient spectral components in the frequency range of the amphibian papilla, and that the proportion of caudal extension hair cells and the frequency distribution of those components are correlated. Thus one might conclude that the selective pressures that led to diversity of calls among the 8 species also led to diversity in form of the amphibian papilla.

  20. A Review on Bradykinin-Related Peptides Isolated from Amphibian Skin Secretion

    PubMed Central

    Xi, Xinping; Li, Bin; Chen, Tianbao; Kwok, Hang Fai

    2015-01-01

    Amphibian skin secretion has great potential for drug discovery and contributes hundreds of bioactive peptides including bradykinin-related peptides (BRPs). More than 50 BRPs have been reported in the last two decades arising from the skin secretion of amphibian species. They belong to the families Ascaphidae (1 species), Bombinatoridae (3 species), Hylidae (9 speices) and Ranidae (25 species). This paper presents the diversity of structural characteristics of BRPs with N-terminal, C-terminal extension and amino acid substitution. The further comparison of cDNA-encoded prepropeptides between the different species and families demonstrated that there are various forms of kininogen precursors to release BRPs and they constitute important evidence in amphibian evolution. The pharmacological activities of isolated BRPs exhibited unclear structure–function relationships, and therefore the scope for drug discovery and development is limited. However, their diversity shows new insights into biotechnological applications and, as a result, comprehensive and systematic studies of the physiological and pharmacological activities of BRPs from amphibian skin secretion are needed in the future. PMID:25793726

  1. Optimizing protection efforts for amphibian conservation in Mediterranean landscapes

    NASA Astrophysics Data System (ADS)

    García-Muñoz, Enrique; Ceacero, Francisco; Carretero, Miguel A.; Pedrajas-Pulido, Luis; Parra, Gema; Guerrero, Francisco

    2013-05-01

    Amphibians epitomize the modern biodiversity crisis, and attract great attention from the scientific community since a complex puzzle of factors has influence on their disappearance. However, these factors are multiple and spatially variable, and declining in each locality is due to a particular combination of causes. This study shows a suitable statistical procedure to determine threats to amphibian species in medium size administrative areas. For our study case, ten biological and ecological variables feasible to affect the survival of 15 amphibian species were categorized and reduced through Principal Component Analysis. The principal components extracted were related to ecological plasticity, reproductive potential, and specificity of breeding habitats. Finally, the factor scores of species were joined in a presence-absence matrix that gives us information to identify where and why conservation management are requires. In summary, this methodology provides the necessary information to maximize benefits of conservation measures in small areas by identifying which ecological factors need management efforts and where should we focus them on.

  2. Vitamin A (Retinoid) Metabolism and Actions: What We Know and What We Need to Know About Amphibians

    PubMed Central

    Clugston, Robin D.; Blaner, William S.

    2015-01-01

    Vitamin A status is an important consideration in the health of both wild and captive amphibians. Data concerning whole body vitamin A homeostasis in amphibians are scarce, although these animals have been used as experimental models to study the actions of vitamin A in vision, limb regeneration and embryogenesis. The available data suggest that many aspects of vitamin A biology in amphibians are similar to the canonical characteristics of vitamin A metabolism and actions established in mammals. This is consistent with the evolutionary conservation of these important biological processes. Amphibians must obtain vitamin A in their diet, with captive animals being prone to vitamin A deficiency. There is still much to be learned about vitamin A biology in amphibians that can only be achieved through rigorous scientific research. Improved understanding of amphibian vitamin A biology will aid the conservation of endangered amphibians in the wild, as well as the successful maintenance of ex situ populations. PMID:24958673

  3. The Current and Historical Distribution of Special Status Amphibians at the Livermore Site and Site 300

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattem, M V; Paterson, L; Woollett, J

    2008-08-20

    65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Ranamore » catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.« less

  4. ELASTICITY ANALYSIS OF AMPHIBIAN LIFE HISTORIES

    EPA Science Inventory

    By comparing life history parameters (e.g., age at metamorphosis, age at sexual maturation, egg number, longevity) and phenology of different species, we gain valuable insight into why growth rates differ across populations. Although the demography of most amphibians is lacking, ...

  5. Decision making for mitigating wildlife diseases: From theory to practice for an emerging fungal pathogen of amphibians

    USGS Publications Warehouse

    Canessa, Stefano; Bozzutto, Claudio; Grant, Evan H. Campbell; Cruickshank, Sam S.; Fisher, Matthew C.; Koella, Jacob C.; Lotters, Stefan; Martel, An; Pasmans, Frank; Scheele, Ben C.; Spitzen-van der Sluijs, Annemarieke; Steinfartz, Sebastian; Schmidt, Benedikt R.

    2018-01-01

    Conservation science can be most effective in its decision‐support role when seeking answers to clearly formulated questions of direct management relevance. Emerging wildlife diseases, a driver of global biodiversity loss, illustrate the challenges of performing this role: in spite of considerable research, successful disease mitigation is uncommon. Decision analysis is increasingly advocated to guide mitigation planning, but its application remains rare.Using an integral projection model, we explored potential mitigation actions for avoiding population declines and the ongoing spatial spread of the fungus Batrachochytrium salamandrivorans (Bsal). This fungus has recently caused severe amphibian declines in north‐western Europe and currently threatens Palearctic salamander diversity.Available evidence suggests that a Bsal outbreak in a fire salamander (Salamandra salamandra) population will lead to its rapid extirpation. Treatments such as antifungals or probiotics would need to effectively interrupt transmission (reduce probability of infection by nearly 90%) in order to reduce the risk of host extirpation and successfully eradicate the pathogen.Improving the survival of infected hosts is most likely to be detrimental as it increases the potential for pathogen transmission and spread. Active removal of a large proportion of the host population has some potential to locally eradicate Bsal and interrupt its spread, depending on the presence of Bsal reservoirs and on the host's spatial dynamics, which should therefore represent research priorities.Synthesis and applications. Mitigation of Batrachochytrium salamandrivoransepidemics in susceptible host species is highly challenging, requiring effective interruption of transmission and radical removal of host individuals. More generally, our study illustrates the advantages of framing conservation science directly in the management decision context, rather than adapting to it a posteriori.

  6. The role of multiple stressor causes in declining amphibian populations: a wingspread workshop summary

    USGS Publications Warehouse

    Krest, S.K.; Linder, G.; Sparling, D.W.; Linder, Gregory L.; Krest, Sherry K.; Sparling, Donald W.; Little, Edward E.

    2003-01-01

    Numerous studies have documented the decline of amphibian populations over the past decade and no single factor has been the linked to these widespread declines. Determining the causes of declining amphibian populations worldwide has proven difficult because of the variety of anthropogenic and natural suspect agents. A Wingspread workshop, convened by The Society of Environmental Toxicology and Chemistry (SETAC), brought together individuals with expertise in the areas of amphibian biology, ecotoxicology, natural resource management, and environmental policy. This workshop had three objectives: 1) create a network for future discussions on multiple stressor causes of declines; 2) characterize and prioritize technical issues critical to the analysis of the decline problem; and 3) identify and develop resource management approaches to promote sustainable and healthy amphibian populations. The workshop proceedings will be summarized in a book entitled, 'Multiple Stressors and Declining Amphibian Populations: Evaluating Cause and Effect.' This paper summarizes the results of the workshop.

  7. The role of multiple stressor causes in declining amphibian populations: A wingspread workshop summary

    USGS Publications Warehouse

    Krest, S.K.; Linder, G.; Sparling, D.W.; ,

    2003-01-01

    Numerous studies have documented the decline of amphibian populations over the past decade and no single factor has been the linked to these widespread declines. Determining the causes of declining amphibian populations worldwide has proven difficult because of the variety of anthropogenic and natural suspect agents. A Wingspread workshop, convened by The Society of Environmental Toxicology and Chemistry (SETAC), brought together individuals with expertise in the areas of amphibian biology, ecotoxicology, natural resource management, and environmental policy. This workshop had three objectives: 1) create a network for future discussions on multiple Stressor causes of declines; 2) characterize and prioritize technical issues critical to the analysis of the decline problem; and 3) identify and develop resource management approaches to promote sustainable and healthy amphibian populations. The workshop proceedings will be summarized in a book entitled, "Multiple Stressors and Declining Amphibian Populations: Evaluating Cause and Effect." This paper summarizes the results of the workshop.

  8. A survey of the amphibians of Savannah National Wildlife Refuge, South Carolina and Georgia

    USGS Publications Warehouse

    Dodd, C. Kenneth; Barichivich, William J.

    2017-01-01

    From 2004 to 2006, we used a variety of sampling techniques to survey the amphibians of Savannah National Wildlife Refuge (SNWR), a large protected area straddling the lower portions of the Savannah River on the border between South Carolina and Georgia. We documented 22 amphibian species—15 frogs and 7 salamanders—with a possible 23rd species present. Species richness was lower than what might be expected from amphibian field guides of species inhabiting the adjacent Coastal Plain, likely due to a lack of specialized habitats, such as temporary ponds and upland pine forest. Amphibians occupied a variety of habitats and appeared tolerant of the mildly acidic and low-oxygen conditions of many of the wetlands. Although additional species may be found at SNWR, this initial survey provides a historic baseline for monitoring amphibian populations as areas adjacent to the refuge are disturbed, the climate changes, and multi-use management objectives are implemented within refuge boundaries.

  9. Ranid Herpesvirus 3 and Proliferative Dermatitis in Free-Ranging Wild Common Frogs (Rana Temporaria).

    PubMed

    Origgi, F C; Schmidt, B R; Lohmann, P; Otten, P; Akdesir, E; Gaschen, V; Aguilar-Bultet, L; Wahli, T; Sattler, U; Stoffel, M H

    2017-07-01

    Amphibian pathogens are of current interest as contributors to the global decline of amphibians. However, compared with chytrid fungi and ranaviruses, herpesviruses have received relatively little attention. Two ranid herpesviruses have been described: namely, Ranid herpesvirus 1 (RHV1) and Ranid herpesvirus 2 (RHV2). This article describes the discovery and partial characterization of a novel virus tentatively named Ranid herpesvirus 3 (RHV3), a candidate member of the genus Batrachovirus in the family Alloherpesviridae. RHV3 infection in wild common frogs (Rana temporaria) was associated with severe multifocal epidermal hyperplasia, dermal edema, a minor inflammatory response, and variable mucous gland degeneration. Intranuclear inclusions were numerous in the affected epidermis together with unique extracellular aggregates of herpesvirus-like particles. The RHV3-associated skin disease has features similar to those of a condition recognized in European frogs for the last 20 years and whose cause has remained elusive. The genome of RHV3 shares most of the features of the Alloherpesviruses. The characterization of this presumptive pathogen may be of value for amphibian conservation and for a better understanding of the biology of Alloherpesviruses.

  10. Effects of Terrestrial Buffer Zones on Amphibians on Golf Courses

    PubMed Central

    Puglis, Holly J.; Boone, Michelle D.

    2012-01-01

    A major cause of amphibian declines worldwide is habitat destruction or alteration. Public green spaces, such as golf courses and parks, could serve as safe havens to curb the effects of habitat loss if managed in ways to bolster local amphibian communities. We reared larval Blanchard's cricket frogs (Acris blanchardi) and green frogs (Rana clamitans) in golf course ponds with and without 1 m terrestrial buffer zones, and released marked cricket frog metamorphs at the golf course ponds they were reared in. Larval survival of both species was affected by the presence of a buffer zone, with increased survival for cricket frogs and decreased survival for green frogs when reared in ponds with buffer zones. No marked cricket frog juveniles were recovered at any golf course pond in the following year, suggesting that most animals died or migrated. In a separate study, we released cricket frogs in a terrestrial pen and allowed them to choose between mown and unmown grass. Cricket frogs had a greater probability of using unmown versus mown grass. Our results suggest that incorporating buffer zones around ponds can offer suitable habitat for some amphibian species and can improve the quality of the aquatic environment for some sensitive local amphibians. PMID:22761833

  11. Competency of reptiles and amphibians for eastern equine encephalitis virus.

    PubMed

    White, Gregory; Ottendorfer, Christy; Graham, Sean; Unnasch, Thomas R

    2011-09-01

    Eastern equine encephalitis virus (EEEV) is endemic throughout most of the eastern United States. Although it is transmitted year round in Florida, transmission elsewhere is seasonal. The mechanism that enables EEEV to overwinter in seasonal foci remains obscure. In previous field studies, early season EEEV activity was detected in mosquito species that feed primarily upon ectothermic hosts, suggesting that reptiles and amphibians might represent overwintering reservoir hosts for EEEV. To determine if this might be possible, two commonly fed upon amphibian and reptile species were evaluated as hosts for the North American subtype I strain of EEEV. Neither amphibian species was a competent host. However, circulating viremias were detected in both reptile species examined. Hibernating infected garter snakes remained viremic after exiting hibernation. These data suggest that snakes may represent an overwintering host for North American EEEV.

  12. Conserving Prairie Pothole Region wetlands and surrounding grasslands: evaluating effects on amphibians

    USGS Publications Warehouse

    Mushet, David M.; Neau, Jordan L.

    2014-01-01

    The maintenance of viable and genetically diverse populations of amphibians in the Prairie Pothole Region of the United States depends on upland as well as wetland over-wintering and landscape level habitat features.Prairie pothole wetlands provide important amphibian breeding habitat while grasslands surrounding these wetlands provide foraging habitat for adults, overwintering habitat for some species, and important connectivity among breeding wetlands.Grasslands surrounding wetlands were found to be especially important for wood frogs and northern leopard frogs, while croplands dominated habitat utilized by Great Plains toads and Woodhouse’s toads.Habitat suitability mapping highlighted (1) the influence of deep-water overwintering wetlands on suitable habitat for four of five anuran species encountered; (2) the lack of overlap between areas of core habitat for both the northern leopard frog and wood frog compared to the core habitat for both toad species; and (3) the importance of conservation programs in providing grassland components of northern leopard frog and wood frog habitat.Currently, there are approximately 7.2 million acres (2.9 million hectares, ha) of habitat in the PPR identified as suitable for amphibians. WRP and CRP wetland and grassland habitats accounted for approximately 1.9 million acres (0.75 million ha) or 26 percent of this total area.Continued loss of amphibian habitat resulting from an ongoing trend of returning PPR conservation lands to crop production, will likely have significant negative effects on the region’s ability to maintain amphibian biodiversity. Conversely, increases in conservation wetlands and surrounding grasslands on the PPR landscape have great potential to positively influence the region’s amphibian populations.

  13. Descriptive risk assessment of the effects of acidic deposition on Rocky Mountain amphibians

    USGS Publications Warehouse

    Corn, Paul Stephen; Vertucci, Frank A.

    1992-01-01

    We evaluated the risk of habitat acidification to the six species of amphibians that occur in the mountains of Colorado and Wyoming. Our evaluation included extrinsic environmental factors (habitat sensitivity and amount of acidic atmospheric deposition) and species-specific intrinsic factors (sensitivity to acid conditions, habitat preferences, and timing of breeding). Only one of 57 surveyed localities had both acid neutralizing capacity μeq/L and sulfate deposition >10 kg/ha/yr, extrinsic conditions with a possible risk of acidification. Amphibian breeding habitats in the Rocky Mountains do not appear to be sufficiently acidic to kill amphibian embryos. Some species breed in high-elevation vernal pools during snowmelt, and an acidic pulse during snowmelt may pose a risk to embryos of these species. However, the acidic pulse, if present, probably occurs before open water appears and before breeding begins. Although inherent variability of amphibian population size may make detection of declines from anthropogenic effects difficult, acidic deposition is unlikely to have caused the observed declines of Bufo boreas and Rana pipiens in Colorado and Wyoming. Amphibians in the Rocky Mountains are not likely to be at risk with acidification inputs at present levels.

  14. Ticks infesting amphibians and reptiles in Pernambuco, Northeastern Brazil.

    PubMed

    Dantas-Torres, Filipe; Oliveira-Filho, Edmilson F; Soares, Fábio Angelo M; Souza, Bruno O F; Valença, Raul Baltazar P; Sá, Fabrício B

    2008-01-01

    Ticks infesting amphibians and reptiles in the State of Pernambuco are reviewed, based on the current literature and new collections recently carried out by the authors. To date, three tick species have been found on amphibians and reptiles in Pernambuco. Amblyomma fuscum appears to be exclusively associated with Boa constrictor, its type host. Amblyomma rotundatum has a relatively low host-specificity, being found on toads, snakes, and iguana. Amblyomma dissimile has been found on a lizard and also small mammals (i.e., rodents and marsupials). New tick-host associations and locality records are given.

  15. Small Mammals, Reptiles, and Amphibians

    Treesearch

    Bryce Rickel

    2005-01-01

    This chapter focuses on small mammals, reptiles, and amphibians that inhabit the grasslands within the Southwestern Region of the USDA Forest Service. The chapter is not intended to be an all inclusive list of species, but rather to address the species that play important roles in grassland ecosystems and that often are associated with the management of grasslands....

  16. Acute toxicities of toxaphene and endrin to larvae of seven species of amphibians

    USGS Publications Warehouse

    Hall, R.J.; Swineford, D.M.

    1981-01-01

    Seven species of amphibian larvae were exposed to toxaphene and endrin in a continuous-flow dosing system to determine differences in sensitivity to the two compounds, EC50 and LC50 estimates varied from those for Rana sphenocephala by no more than one order of magnitude when calculated on the basis of intended concentrations. Removal of pesticides from water by the test animals was significant and it makes interpretation of results difficult. Continuous-flow toxicity tests conflict with the adaptations of amphibian larvae for static water; use of such tests for amphibians requires further evaluation.

  17. Projected climate impacts for the amphibians of the western hemisphere

    USGS Publications Warehouse

    Lawler, Joshua J.; Shafer, Sarah L.; Bancroft, Betsy A.; Blaustein, Andrew R.

    2010-01-01

    Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing

  18. Reservoir-host amplification of disease impact in an endangered amphibian.

    PubMed

    Scheele, Ben C; Hunter, David A; Brannelly, Laura A; Skerratt, Lee F; Driscoll, Don A

    2017-06-01

    Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts-species that carry infection while maintaining high abundance but are rarely killed by disease-can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined

  19. Inventory of amphibians and reptiles at Death Valley National Park

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.

    2006-01-01

    As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Death Valley National Park in 2002-04. Objectives for this inventory were to: 1) Inventory and document the occurrence of reptile and amphibian species occurring at DEVA, primarily within priority sampling areas, with the goal of documenting at least 90% of the species present; 2) document (through collection or museum specimen and literature review) one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are federally or state listed, rare, or worthy of special consideration that occur within priority sampling locations; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys, road driving, and pitfall trapping. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 37 species during our surveys, including two species new to the park. During literature review and museum specimen database searches, we recorded three additional species from DEVA, elevating the documented species list to 40 (four amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 92% for Death Valley and an inventory completeness of 73% for amphibians and 95% for reptiles. Key Words: Amphibians, reptiles, Death Valley National Park, Inyo County, San Bernardino County, Esmeralda County, Nye County, California, Nevada, Mojave Desert, Great Basin Desert, inventory, NPSpecies.

  20. Projected climate impacts for the amphibians of the Western hemisphere.

    PubMed

    Lawler, Joshua J; Shafer, Sarah L; Bancroft, Betsy A; Blaustein, Andrew R

    2010-02-01

    Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate-driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071-2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate-change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted-range species not included in our range-shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted-range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad-scale guidance for directing

  1. Atrazine Contamination in Water and the Impact on Amphibian Populations: A Bioassay That Measures Water Quality

    NASA Astrophysics Data System (ADS)

    Hayes, T. B.

    2001-12-01

    In recent laboratory studies, we showed that atrazine, a common herbicide, can inhibit metamorphosis, produce hermaphrodites, and inhibit male development in amphibians. In part, these effects are due to a decrease in androgen levels. These effects occur at ecologically relevant low doses (0.1 ppb), and the effective levels are below the current drinking level standard and below contaminant levels found even in rainfall in some areas. Thus, the impact of this widespread compound on free-ranging amphibians is a concern. We undertook a large-scale study to examine atrazine levels in a variety of habitats (temporary pools, rivers, lakes and ponds, and field runoff) across the US where atrazine is used and areas that report no atrazine use. Also, we collected amphibians at each site to examine them for developmental abnormalities. These ongoing studies will help determine the extent of atrazine contamination and its potential impact on amphibian populations. The concern for atrazine's impact is increased, because the mechanism through which the compound produces this effect (inhibition of androgen production) is commonly observed in fish, reptiles and mammals in addition to amphibians, although amphibians appear to sensitive at much lower doses. Thus, effects on amphibians may indicate a much broader impact.

  2. A statistical assessment of population trends for data deficient Mexican amphibians

    PubMed Central

    Thessen, Anne E.; Arias-Caballero, Paulina; Ayala-Orozco, Bárbara

    2014-01-01

    Background. Mexico has the world’s fifth largest population of amphibians and the second country with the highest quantity of threatened amphibian species. About 10% of Mexican amphibians lack enough data to be assigned to a risk category by the IUCN, so in this paper we want to test a statistical tool that, in the absence of specific demographic data, can assess a species’ risk of extinction, population trend, and to better understand which variables increase their vulnerability. Recent studies have demonstrated that the risk of species decline depends on extrinsic and intrinsic traits, thus including both of them for assessing extinction might render more accurate assessment of threats. Methods. We harvested data from the Encyclopedia of Life (EOL) and the published literature for Mexican amphibians, and used these data to assess the population trend of some of the Mexican species that have been assigned to the Data Deficient category of the IUCN using Random Forests, a Machine Learning method that gives a prediction of complex processes and identifies the most important variables that account for the predictions. Results. Our results show that most of the data deficient Mexican amphibians that we used have decreasing population trends. We found that Random Forests is a solid way to identify species with decreasing population trends when no demographic data is available. Moreover, we point to the most important variables that make species more vulnerable for extinction. This exercise is a very valuable first step in assigning conservation priorities for poorly known species. PMID:25548736

  3. A statistical assessment of population trends for data deficient Mexican amphibians.

    PubMed

    Quintero, Esther; Thessen, Anne E; Arias-Caballero, Paulina; Ayala-Orozco, Bárbara

    2014-01-01

    Background. Mexico has the world's fifth largest population of amphibians and the second country with the highest quantity of threatened amphibian species. About 10% of Mexican amphibians lack enough data to be assigned to a risk category by the IUCN, so in this paper we want to test a statistical tool that, in the absence of specific demographic data, can assess a species' risk of extinction, population trend, and to better understand which variables increase their vulnerability. Recent studies have demonstrated that the risk of species decline depends on extrinsic and intrinsic traits, thus including both of them for assessing extinction might render more accurate assessment of threats. Methods. We harvested data from the Encyclopedia of Life (EOL) and the published literature for Mexican amphibians, and used these data to assess the population trend of some of the Mexican species that have been assigned to the Data Deficient category of the IUCN using Random Forests, a Machine Learning method that gives a prediction of complex processes and identifies the most important variables that account for the predictions. Results. Our results show that most of the data deficient Mexican amphibians that we used have decreasing population trends. We found that Random Forests is a solid way to identify species with decreasing population trends when no demographic data is available. Moreover, we point to the most important variables that make species more vulnerable for extinction. This exercise is a very valuable first step in assigning conservation priorities for poorly known species.

  4. Inventory of Amphibians and Reptiles at Manzanar National Historic Site, California

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.; Hillard, Scott

    2006-01-01

    We conducted a baseline inventory for amphibians and reptiles at Manzanar National Historic Site (MANZ), Inyo County, California, in 2002-3. Objectives for this inventory were to: 1) inventory and document the occurrence of reptile and amphibian species at MANZ, with the goal of documenting at least 90% of the species present; 2) provide one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are known to be federally- or state-listed, rare, or worthy of special consideration that occur at MANZ; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Survey methods included time-area constrained searches, lizard line transects, general surveys, nighttime road driving, and pitfall trapping. We documented the occurrence of ten reptile species (seven lizards and three snakes), but found no amphibians. Based on our findings, as well as literature review and searches for museum specimen records, we estimate inventory completeness for Manzanar to be 50%. Although the distribution and relative abundance of common lizard species is now known well enough to begin development of a monitoring protocol for that group, additional inventory work is needed in order to establish a baseline of species occurrence of amphibians and snakes at Manzanar. Key Words: amphibians, reptiles, Manzanar National Historic Site, Inyo County, California, Owens Valley, Mojave Desert, Great Basin Desert, inventory.

  5. Behavior of amphibians on the road in response to car traffic

    USGS Publications Warehouse

    Mazerolle, M.J.; Huot, M.; Gravel, M.

    2005-01-01

    Nocturnal car traffic often results in amphibian casualties, especially during rainy nights. The behavior of amphibians presumably influences their vulnerability to mortality on the road, but this hypothesis remains untested. We investigated the behavioral response of individuals of six species of amphibians on roads when confronted by an approaching vehicle. We first conducted a field study consisting of 50 night-driving surveys over 4 yr during which we recorded the behavior (i.e., moving or immobile) of frogs, toads, tree frogs, and salamanders encountered on a 20-km stretch of road. In an effort to tease apart the effects of headlights and the sound of motors on amphibian behavior, we carried out a field experiment on a test road where we exposed individuals to different car-associated stimuli. Here, we tested the hypothesis that simultaneous exposure to headlights and the sound of a car motor would elicit a stronger response than exposure to a single stimulus or a control. Based on the observations of the 2767 individuals in the field survey, immobility was the most common response to the approach of a car (mean probability of 0.82 of remaining immobile); the response differed across species but depended on the season of the survey (May-June vs. July-September). Similarly, the 91 individuals included in the field experiment were more likely to move during the control treatment than during any of the car-associated treatments. The combined stimuli elicited the strongest response, followed by the headlights-only and the motor-only treatments. Spring peepers (Pseudacris crucifer) tended to move more often than the other species we tested in the field experiment, which suggests they spend less time on the road and are less vulnerable to traffic mortality than other species. Both the field survey and field experiment consistently indicated that amphibians tend to remain immobile at the approach of a vehicle. This behavior highlights the vulnerability of amphibians

  6. Culture of Cells from Amphibian Embryos.

    ERIC Educational Resources Information Center

    Stanisstreet, Martin

    1983-01-01

    Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)

  7. Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate

    USGS Publications Warehouse

    Walls, Susan C.; Barichivich, William J.; Brown, Mary E.

    2013-01-01

    The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change—that of extreme variation in precipitation—may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall “pulses” are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity.

  8. Phylogenetically-informed priorities for amphibian conservation.

    PubMed

    Isaac, Nick J B; Redding, David W; Meredith, Helen M; Safi, Kamran

    2012-01-01

    The amphibian decline and extinction crisis demands urgent action to prevent further large numbers of species extinctions. Lists of priority species for conservation, based on a combination of species' threat status and unique contribution to phylogenetic diversity, are one tool for the direction and catalyzation of conservation action. We describe the construction of a near-complete species-level phylogeny of 5713 amphibian species, which we use to create a list of evolutionarily distinct and globally endangered species (EDGE list) for the entire class Amphibia. We present sensitivity analyses to test the robustness of our priority list to uncertainty in species' phylogenetic position and threat status. We find that both sources of uncertainty have only minor impacts on our 'top 100' list of priority species, indicating the robustness of the approach. By contrast, our analyses suggest that a large number of Data Deficient species are likely to be high priorities for conservation action from the perspective of their contribution to the evolutionary history.

  9. Two-stage recovery of amphibian assemblages following selective logging of tropical forests.

    PubMed

    Adum, Gilbert Baase; Eichhorn, Markus Peter; Oduro, William; Ofori-Boateng, Caleb; Rödel, Mark-Oliver

    2013-04-01

    There is a lack of quantitative information on the effectiveness of selective-logging practices in ameliorating effects of logging on faunal communities. We conducted a large-scale replicated field study in 3 selectively logged moist semideciduous forests in West Africa at varying times after timber extraction to assess post logging effects on amphibian assemblages. Specifically, we assessed whether the diversity, abundance, and assemblage composition of amphibians changed over time for forest-dependent species and those tolerant of forest disturbance. In 2009, we sampled amphibians in 3 forests (total of 48 study plots, each 2 ha) in southwestern Ghana. In each forest, we established plots in undisturbed forest, recently logged forest, and forest logged 10 and 20 years previously. Logging intensity was constant across sites with 3 trees/ha removed. Recently logged forests supported substantially more species than unlogged forests. This was due to an influx of disturbance-tolerant species after logging. Simultaneously Simpson's index decreased, with increased in dominance of a few species. As time since logging increased richness of disturbance-tolerant species decreased until 10 years after logging when their composition was indistinguishable from unlogged forests. Simpson's index increased with time since logging and was indistinguishable from unlogged forest 20 years after logging. Forest specialists decreased after logging and recovered slowly. However, after 20 years amphibian assemblages had returned to a state indistinguishable from that of undisturbed forest in both abundance and composition. These results demonstrate that even with low-intensity logging (≤3 trees/ha) a minimum 20-year rotation of logging is required for effective conservation of amphibian assemblages in moist semideciduous forests. Furthermore, remnant patches of intact forests retained in the landscape and the presence of permanent brooks may aid in the effective recovery of amphibian

  10. Beyond the swab: ecosystem sampling to understand the persistence of an amphibian pathogen.

    PubMed

    Mosher, Brittany A; Huyvaert, Kathryn P; Bailey, Larissa L

    2018-06-02

    Understanding the ecosystem-level persistence of pathogens is essential for predicting and measuring host-pathogen dynamics. However, this process is often masked, in part due to a reliance on host-based pathogen detection methods. The amphibian pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal) are pathogens of global conservation concern. Despite having free-living life stages, little is known about the distribution and persistence of these pathogens outside of their amphibian hosts. We combine historic amphibian monitoring data with contemporary host- and environment-based pathogen detection data to obtain estimates of Bd occurrence independent of amphibian host distributions. We also evaluate differences in filter- and swab-based detection probability and assess inferential differences arising from using different decision criteria used to classify samples as positive or negative. Water filtration-based detection probabilities were lower than those from swabs but were > 10%, and swab-based detection probabilities varied seasonally, declining in the early fall. The decision criterion used to classify samples as positive or negative was important; using a more liberal criterion yielded higher estimates of Bd occurrence than when a conservative criterion was used. Different covariates were important when using the liberal or conservative criterion in modeling Bd detection. We found evidence of long-term Bd persistence for several years after an amphibian host species of conservation concern, the boreal toad (Anaxyrus boreas boreas), was last detected. Our work provides evidence of long-term Bd persistence in the ecosystem, and underscores the importance of environmental samples for understanding and mitigating disease-related threats to amphibian biodiversity.

  11. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors

    USGS Publications Warehouse

    Knapp, Roland A.; Fellers, Gary M.; Kleeman, Patrick M.; Miller, David A. W.; Vrendenburg, Vance T.; Rosenblum, Erica Bree; Briggs, Cheryl J.

    2016-01-01

    Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth’s amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species’ adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale.

  12. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors.

    PubMed

    Knapp, Roland A; Fellers, Gary M; Kleeman, Patrick M; Miller, David A W; Vredenburg, Vance T; Rosenblum, Erica Bree; Briggs, Cheryl J

    2016-10-18

    Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth's amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species' adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale.

  13. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance.

    PubMed

    Ficetola, Gentile Francesco; Maiorano, Luigi

    2016-07-01

    Climate change is determining a generalized phenological advancement, and amphibians are among the taxa showing the strongest phenological responsiveness to warming temperatures. Amphibians are strongly influenced by climate change, but we do not have a clear picture of how climate influences important parameters of amphibian populations, such as abundance, survival, breeding success and morphology. Furthermore, the relative impact of temperature and precipitation change remains underappreciated. We used Bayesian meta-analysis and meta-regression to quantify the impact of temperature and precipitation change on amphibian phenology, abundance, individual features and performance. We obtained effect sizes from studies performed in five continents. Temperature increase was the major driver of phenological advancement, while the impact of precipitation on phenology was weak. Conversely, population dynamics was mostly determined by precipitation: negative trends were associated with drying regimes. The impact of precipitation on abundance was particularly strong in tropical areas, while the importance of temperature was feeble. Both temperature and precipitation influenced parameters representing breeding performance, morphology, developmental rate and survival, but the response was highly heterogeneous among species. For instance, warming temperature increased body size in some species, and decreased size in others. Similarly, rainy periods increased survival of some species and reduced the survival of others. Our study showed contrasting impacts of temperature and precipitation changes on amphibian populations. Both climatic parameters strongly influenced amphibian performance, but temperature was the major determinant of the phenological changes, while precipitation had the major role on population dynamics, with alarming declines associated with drying trends.

  14. Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors

    PubMed Central

    Knapp, Roland A.; Fellers, Gary M.; Kleeman, Patrick M.; Miller, David A. W.; Rosenblum, Erica Bree; Briggs, Cheryl J.

    2016-01-01

    Amphibians are one of the most threatened animal groups, with 32% of species at risk for extinction. Given this imperiled status, is the disappearance of a large fraction of the Earth’s amphibians inevitable, or are some declining species more resilient than is generally assumed? We address this question in a species that is emblematic of many declining amphibians, the endangered Sierra Nevada yellow-legged frog (Rana sierrae). Based on >7,000 frog surveys conducted across Yosemite National Park over a 20-y period, we show that, after decades of decline and despite ongoing exposure to multiple stressors, including introduced fish, the recently emerged disease chytridiomycosis, and pesticides, R. sierrae abundance increased sevenfold during the study and at a rate of 11% per year. These increases occurred in hundreds of populations throughout Yosemite, providing a rare example of amphibian recovery at an ecologically relevant spatial scale. Results from a laboratory experiment indicate that these increases may be in part because of reduced frog susceptibility to chytridiomycosis. The disappearance of nonnative fish from numerous water bodies after cessation of stocking also contributed to the recovery. The large-scale increases in R. sierrae abundance that we document suggest that, when habitats are relatively intact and stressors are reduced in their importance by active management or species’ adaptive responses, declines of some amphibians may be partially reversible, at least at a regional scale. Other studies conducted over similarly large temporal and spatial scales are critically needed to provide insight and generality about the reversibility of amphibian declines at a global scale. PMID:27698128

  15. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis

    PubMed Central

    Oh, Dong-Chan; Poulsen, Michael; Currie, Cameron R.; Clardy, Jon

    2009-01-01

    Fungus-growing ants engage in mutualistic associations with both the fungus they cultivate for food and actinobacteria (Pseudonocardia spp.) that produce selective antibiotics to defend that fungus from specialized fungal parasites. In the first system to be analyzed at the molecular level, the bacterium associated with the ant Apterostigma dentigerum produces dentigerumycin, a cyclic depsipeptide with highly modified amino acids, to selectively inhibit the parasitic fungus (Escovopsis sp.). PMID:19330011

  16. Water-quality and amphibian population data for Maryland, Washington, D.C., and Virginia, 2001-2004

    USGS Publications Warehouse

    Rice, K.C.; Jung, R.E.

    2004-01-01

    Data on the chemical composition of water and on amphibian populations were collected at least annually from vernal pool and stream sites in Maryland, Washington, D.C., and Virginia, from 2001 through 2004. The data were collected as part of long-term monitoring projects of the Northeast Region of the Amphibian Research and Monitoring Initiative (ARMI) of the U.S. Geological Survey. Water samples were analyzed for temperature, specific conductance, pH, dissolved-oxygen concentration, acid-neutralizing capacity, and concentrations of total Kjeldahl nitrogen and total phosphorus; in 2004, samples also were analyzed for nitrite plus nitrate concentrations and total nitrogen concentrations. Field and laboratory analytical results of water samples and quality-assurance information are presented. Amphibian population data include the presence of amphibian species and the maximum number of egg masses of wood frogs and spotted salamanders at vernal pools, and counts of amphibians made during stream transect and stream quadrat surveys.

  17. Amphibians and reptiles of the state of Chihuahua, Mexico, with comparisons with adjoining states

    PubMed Central

    Lemos-Espinal, Julio A.; Smith, Geoffrey R.; Woolrich-Piña, Guillermo A.; Cruz, Alexander

    2017-01-01

    Abstract Chihuahua is Mexico’s largest state, and its physiographic complexity affects the distribution of its herpetofauna. We list amphibians and reptiles for the state of Chihuahua, with their conservation status. We also compare this list to those of six adjoining states in the United States and Mexico (New Mexico, Texas, Coahuila, Durango, Sinaloa, and Sonora). A total of 175 species of amphibians and reptiles is found in Chihuahua. Thirty-eight are amphibians, and 137 reptiles. Chihuahuan amphibians and reptiles represent just over 37% of such species from Chihuahua and neighboring states. Chihuahua shares the highest proportion of its herpetofauna with Sonora and Durango. Most of the herpetofauna of Chihuahua falls in IUCNs least concern category and is not listed by SEMARNAT. However, turtles in Chihuahua are a group of particular conservation concern. PMID:28435388

  18. Amphibians and reptiles of the state of Chihuahua, Mexico, with comparisons with adjoining states.

    PubMed

    Lemos-Espinal, Julio A; Smith, Geoffrey R; Woolrich-Piña, Guillermo A; Cruz, Alexander

    2017-01-01

    Chihuahua is Mexico's largest state, and its physiographic complexity affects the distribution of its herpetofauna. We list amphibians and reptiles for the state of Chihuahua, with their conservation status. We also compare this list to those of six adjoining states in the United States and Mexico (New Mexico, Texas, Coahuila, Durango, Sinaloa, and Sonora). A total of 175 species of amphibians and reptiles is found in Chihuahua. Thirty-eight are amphibians, and 137 reptiles. Chihuahuan amphibians and reptiles represent just over 37% of such species from Chihuahua and neighboring states. Chihuahua shares the highest proportion of its herpetofauna with Sonora and Durango. Most of the herpetofauna of Chihuahua falls in IUCNs least concern category and is not listed by SEMARNAT. However, turtles in Chihuahua are a group of particular conservation concern.

  19. Physical habitat and its alteration: A common ground for exposure of amphibians to environmental stressors

    USGS Publications Warehouse

    Bishop, Christine A.; Cunnington, David C.; Fellers, Gary M.; Gibbs, James P.; Pauli, Bruce D.; Rothermel, Betsie B.; Linder, Greg L.; Krest, Sherry K.; Sparling, Donald W.

    2003-01-01

    Amphibians as a class of vertebrates have persisted for hundreds of millions of years (Stebbins and Cohen 1995), but they are currently threatened by a variety of stressors, many resulting from human-related alterations of the environment. Most species of amphibians live closely associated with moist environments throughout their life and have evolved specialized adaptations that conserve water and reduce desiccation (Stebbins and Cohen 1995; Henry 2000; Chapter 2A). Amphibians are ectotherms, so their body temperatures fluctuate with the local environment. Latitude, elevation, and habitat affect environmental temperature and have a strong influence on amphibian distributions. Despite these physiological and habitat constraints, the 4750 species of amphibians in the world today have exploited a wide variety of habitats that range from dry deserts to tropical rain forests and from sea level to elevations above 4000 m (McDairmid and Mitchell 2000).The direct loss of suitable habitat has had a profound effect on amphibian populations (Johnson 1992), as it has on nearly all species of wildlife. In the U.S., 53% of wetlands have been lost to human development in the last 200 years (Dahl 1990). Similar loss of wetlands has occurred throughout much of the world, especially in developing countries (Miller 1993). In many regions, deforestation has reduced or eliminated suitable terrestrial habitats, and this may prove to be the largest global threat to amphibian populations (Johnson 1992). Eight thousand years ago, forests covered approximately 40% of the world’s land (6 billion hectares), but by 1997, the world’s forests had been reduced to 3.5 billion hectares, a 42% loss worldwide (CIDA 2001). The effect of habitat loss is generally both obvious and predictable; with increasing restriction of suitable habitat, amphibian populations will probably not survive. The anthropogenic effects on the quality of the habitat that remains are often less obvious.

  20. Evidence of continued effects from timber harvesting on lotic amphibians in redwood forests of northwestern California

    Treesearch

    Donald T. Ashton; Sharyn B. Marks; Hartwell H. Welsh Jr.

    2006-01-01

    We compared species richness and relative abundance of stream-associated amphibians in late-seral redwood forests with those in mid-seral, second-growth forests to examine the continued (as opposed to immediate) effects of timber harvest on amphibian populations. Lacking pre-harvest data on amphibian abundances for streams in the second-growth stands, we assumed that...

  1. Count data, detection probabilities, and the demography, dynamics, distribution, and decline of amphibians.

    PubMed

    Schmidt, Benedikt R

    2003-08-01

    The evidence for amphibian population declines is based on count data that were not adjusted for detection probabilities. Such data are not reliable even when collected using standard methods. The formula C = Np (where C is a count, N the true parameter value, and p is a detection probability) relates count data to demography, population size, or distributions. With unadjusted count data, one assumes a linear relationship between C and N and that p is constant. These assumptions are unlikely to be met in studies of amphibian populations. Amphibian population data should be based on methods that account for detection probabilities.

  2. Acute toxicity tests and meta-analysis identify gaps in tropical ecotoxicology for amphibians.

    PubMed

    Ghose, Sonia L; Donnelly, Maureen A; Kerby, Jacob; Whitfield, Steven M

    2014-09-01

    Amphibian populations are declining worldwide, particularly in tropical regions where amphibian diversity is highest. Pollutants, including agricultural pesticides, have been identified as a potential contributor to decline, yet toxicological studies of tropical amphibians are very rare. The present study assesses toxic effects on amphibians of 10 commonly used commercial pesticides in tropical agriculture using 2 approaches. First, the authors conducted 8-d toxicity assays with formulations of each pesticide using individually reared red-eyed tree frog (Agalychnis callidryas) tadpoles. Second, they conducted a review of available data for the lethal concentration to kill 50% of test animals from the US Environmental Protection Agency's ECOTOX database to allow comparison with their findings. Lethal concentration estimates from the assays ranged over several orders of magnitude. The nematicides terbufos and ethoprophos and the fungicide chlorothalonil were very highly toxic, with evident effects within an order of magnitude of environmental concentrations. Acute toxicity assays and meta-analysis show that nematicides and fungicides are generally more toxic than herbicides yet receive far less research attention than less toxic herbicides. Given that the tropics have a high diversity of amphibians, the findings emphasize the need for research into the effects of commonly used pesticides in tropical countries and should help guide future ecotoxicological research in tropical regions. © 2014 SETAC.

  3. Genetic variability and ontogeny predict microbiome structure in a disease-challenged montane amphibian.

    PubMed

    Griffiths, Sarah M; Harrison, Xavier A; Weldon, Ché; Wood, Michael D; Pretorius, Abigail; Hopkins, Kevin; Fox, Graeme; Preziosi, Richard F; Antwis, Rachael E

    2018-06-25

    Amphibian populations worldwide are at risk of extinction from infectious diseases, including chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Amphibian cutaneous microbiomes interact with Bd and can confer protective benefits to the host. The composition of the microbiome itself is influenced by many environment- and host-related factors. However, little is known about the interacting effects of host population structure, genetic variation and developmental stage on microbiome composition and Bd prevalence across multiple sites. Here we explore these questions in Amietia hymenopus, a disease-affected frog in southern Africa. We use microsatellite genotyping and 16S amplicon sequencing to show that the microbiome associated with tadpole mouthparts is structured spatially, and is influenced by host genotype and developmental stage. We observed strong genetic structure in host populations based on rivers and geographic distances, but this did not correspond to spatial patterns in microbiome composition. These results indicate that demographic and host genetic factors affect microbiome composition within sites, but different factors are responsible for host population structure and microbiome structure at the between-site level. Our results help to elucidate complex within- and among- population drivers of microbiome structure in amphibian populations. That there is a genetic basis to microbiome composition in amphibians could help to inform amphibian conservation efforts against infectious diseases.

  4. Xenopus laevis and Emerging Amphibian Pathogens in Chile.

    PubMed

    Soto-Azat, Claudio; Peñafiel-Ricaurte, Alexandra; Price, Stephen J; Sallaberry-Pincheira, Nicole; García, María Pía; Alvarado-Rybak, Mario; Cunningham, Andrew A

    2016-12-01

    Amphibians face an extinction crisis with no precedence. Two emerging infectious diseases, ranaviral disease caused by viruses within the genus Ranavirus and chytridiomycosis due to Batrachochytrium dendrobatidis (Bd), have been linked with amphibian mass mortalities and population declines in many regions of the globe. The African clawed frog (Xenopus laevis) has been indicated as a vector for the spread of these pathogens. Since the 1970s, this species has been invasive in central Chile. We collected X. laevis and dead native amphibians in Chile between 2011 and 2013. We conducted post-mortem examinations and molecular tests for Ranavirus and Bd. Eight of 187 individuals (4.3 %) tested positive for Ranavirus: seven X. laevis and a giant Chilean frog (Calyptocephallela gayi). All positive cases were from the original area of X. laevis invasion. Bd was found to be more prevalent (14.4 %) and widespread than Ranavirus, and all X. laevis Bd-positive animals presented low to moderate levels of infection. Sequencing of a partial Ranavirus gene revealed 100 % sequence identity with Frog Virus 3. This is the first report of Ranavirus in Chile, and these preliminary results are consistent with a role for X. laevis as an infection reservoir for both Ranavirus and Bd.

  5. Engineering a future for amphibians under climate change

    USGS Publications Warehouse

    Shoo, L.P.; Olson, D.H.; Mcmenamin, S.K.; Murray, K.A.; Van Sluys, M.; Donnelly, M.A.; Stratford, D.; Terhivuo, J.; Merino-Viteri, A.; Herbert, S.M.; Bishop, P.J.; Corn, P.S.; Dovey, L.; Griffiths, R.A.; Lowe, K.; Mahony, M.; McCallum, H.; Shuker, J.D.; Simpkins, C.; Skerratt, L.F.; Williams, S.E.; Hero, J.-M.

    2011-01-01

    1. Altered global climates in the 21st century pose serious threats for biological systems and practical actions are needed to mount a response for species at risk. 2. We identify management actions from across the world and from diverse disciplines that are applicable to minimizing loss of amphibian biodiversity under climate change. Actions were grouped under three thematic areas of intervention: (i) installation of microclimate and microhabitat refuges; (ii) enhancement and restoration of breeding sites; and (iii) manipulation of hydroperiod or water levels at breeding sites. 3. Synthesis and applications. There are currently few meaningful management actions that will tangibly impact the pervasive threat of climate change on amphibians. A host of potentially useful but poorly tested actions could be incorporated into local or regional management plans, programmes and activities for amphibians. Examples include: installation of irrigation sprayers to manipulate water potentials at breeding sites; retention or supplementation of natural and artificial shelters (e.g. logs, cover boards) to reduce desiccation and thermal stress; manipulation of canopy cover over ponds to reduce water temperature; and, creation of hydrologoically diverse wetland habitats capable of supporting larval development under variable rainfall regimes. We encourage researchers and managers to design, test and scale up new initiatives to respond to this emerging crisis.

  6. Independent evolution of the sexes promotes amphibian diversification

    PubMed Central

    De Lisle, Stephen P.; Rowe, Locke

    2015-01-01

    Classic ecological theory predicts that the evolution of sexual dimorphism constrains diversification by limiting morphospace available for speciation. Alternatively, sexual selection may lead to the evolution of reproductive isolation and increased diversification. We test contrasting predictions of these hypotheses by examining the relationship between sexual dimorphism and diversification in amphibians. Our analysis shows that the evolution of sexual size dimorphism (SSD) is associated with increased diversification and speciation, contrary to the ecological theory. Further, this result is unlikely to be explained by traditional sexual selection models because variation in amphibian SSD is unlikely to be driven entirely by sexual selection. We suggest that relaxing a central assumption of classic ecological models—that the sexes share a common adaptive landscape—leads to the alternative hypothesis that independent evolution of the sexes may promote diversification. Once the constraints of sexual conflict are relaxed, the sexes can explore morphospace that would otherwise be inaccessible. Consistent with this novel hypothesis, the evolution of SSD in amphibians is associated with reduced current extinction threat status, and an historical reduction in extinction rate. Our work reconciles conflicting predictions from ecological and evolutionary theory and illustrates that the ability of the sexes to evolve independently is associated with a spectacular vertebrate radiation. PMID:25694616

  7. Occurrence of Batrachochytrium dendrobatidis in an anuran community in the southeastern Talamanca Region of Costa Rica

    Treesearch

    Daniel Saenz; Cory K. Adams; Josh B. Pierce; David Laurencio

    2009-01-01

    Soon after the discovery of the amphibian disease chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd, Longcore et al. 1999), it became apparent that Bd was a major threat to amphibians resulting in mass die-offs and population declines throughout the world (Berger et aI. 1998; Blaustein and Keisecker 2002; Daszak et aI. 2003; McCallum...

  8. DNA barcoding applied to ex situ tropical amphibian conservation programme reveals cryptic diversity in captive populations.

    PubMed

    Crawford, Andrew J; Cruz, Catalina; Griffith, Edgardo; Ross, Heidi; Ibáñez, Roberto; Lips, Karen R; Driskell, Amy C; Bermingham, Eldredge; Crump, Paul

    2013-11-01

    Amphibians constitute a diverse yet still incompletely characterized clade of vertebrates, in which new species are still being discovered and described at a high rate. Amphibians are also increasingly endangered, due in part to disease-driven threats of extinctions. As an emergency response, conservationists have begun ex situ assurance colonies for priority species. The abundance of cryptic amphibian diversity, however, may cause problems for ex situ conservation. In this study we used a DNA barcoding approach to survey mitochondrial DNA (mtDNA) variation in captive populations of 10 species of Neotropical amphibians maintained in an ex situ assurance programme at El Valle Amphibian Conservation Center (EVACC) in the Republic of Panama. We combined these mtDNA sequences with genetic data from presumably conspecific wild populations sampled from across Panama, and applied genetic distance-based and character-based analyses to identify cryptic lineages. We found that three of ten species harboured substantial cryptic genetic diversity within EVACC, and an additional three species harboured cryptic diversity among wild populations, but not in captivity. Ex situ conservation efforts focused on amphibians are therefore vulnerable to an incomplete taxonomy leading to misidentification among cryptic species. DNA barcoding may therefore provide a simple, standardized protocol to identify cryptic diversity readily applicable to any amphibian community. © 2012 John Wiley & Sons Ltd.

  9. Effects of chlorinated solvents on four species of North American amphibians.

    PubMed

    McDaniel, T V; Martin, P A; Ross, N; Brown, S; Lesage, S; Pauli, B D

    2004-07-01

    Tetrachloroethylene (PCE), a dry cleaning and degreasing solvent, can enter groundwater through accidental leaks or spills, and concentrations as high as 75 mg/L have been reported in Canadian aquifers. Amphibians in wetlands receiving contaminated groundwater may be exposed to PCE and its degradation products, but little information is available on the impacts of these compounds on indigenous amphibian species. Acute (96-h static renewal) exposures to PCE and its major degradation products, trichloroethylene (TCE) and cisand trans-dichloroethylene, were conducted on embryos of four North American amphibian species: wood frogs (Rana sylvatica), green frogs (R. clamitans), American toads (Bufo americanus), and spotted salamanders (Ambystoma maculatum). Subsequently, chronic exposures to PCE and TCE were conducted with the larvae of American toads. Both PCE and TCE were teratogenic to amphibian embryos; median effective concentrations (EC50s) for developmental deformities produced by PCE and TCE exposure for wood frogs and green frogs were 12 and 40 mg/L, respectively. Embryonic survivorship, however, was not compromised at these concentrations. American toads were less sensitive; the EC50 for developmental abnormalities was not attained at the highest test concentrations, 45 and 85 mg/L PCE and TCE, respectively. These results are pertinent in assessing the impact of groundwater pollution on an aquifer-fed wetland.

  10. Inventory of Amphibians and Reptiles at Mojave National Preserve: Final Report

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.

    2007-01-01

    As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Mojave National Preserve in 2004-2005. Objectives for this inventory were to use fieldwork, museum collections, and literature review to document the occurrence of reptile and amphibian species occurring at MOJA. Our goals were to document at least 90% of the species present, provide one voucher specimen for each species identified, provide GIS-referenced distribution information for sensitive species, and provide all deliverables, including NPSpecies entries, as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys and nighttime road driving. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 31 species during our surveys. During literature review and museum specimen database searches, we found records for seven additional species from MOJA, elevating the documented species list to 38 (two amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 95% for Mojave National Preserve herpetofauna; 67% for amphibians and 97% for reptiles.

  11. Influence of conservation programs on amphibians using seasonal wetlands in the Prairie Pothole Region

    USGS Publications Warehouse

    Balas, Caleb J.; Euliss, Ned H.; Mushnet, David M.

    2012-01-01

    Extensive modification of upland habitats surrounding wetlands to facilitate agricultural production has negatively impacted amphibian communities in the Prairie Pothole Region of North America. In attempts to mitigate ecosystem damage associated with extensive landscape alteration, vast tracks of upland croplands have been returned to perennial vegetative cover (i.e., conservation grasslands) under a variety of U.S. Department of Agriculture programs. We evaluated the influence of these conservation grasslands on amphibian occupancy of seasonal wetlands in the Prairie Pothole Region. Using automated call surveys, aquatic funnel traps, and visual encounter surveys, we detected eight amphibian species using wetlands within three land-use categories (farmed, conservation grasslands, and native prairie grasslands) during the summers of 2005 and 2006. Seasonal wetlands within farmlands were used less frequently by amphibians than those within conservation and native prairie grasslands, and wetlands within conservation grasslands were used less frequently than those within native prairie grasslands by all species and life-stages we successfully modeled. Our results suggest that, while not occupied as frequently as wetlands within native prairie, wetlands within conservation grasslands provide important habitat for maintaining amphibian biodiversity in the Prairie Pothole Region

  12. Land Use Explains the Distribution of Threatened New World Amphibians Better than Climate

    PubMed Central

    Brum, Fernanda Thiesen; Gonçalves, Larissa Oliveira; Cappelatti, Laura; Carlucci, Marcos Bergmann; Debastiani, Vanderlei Júlio; Salengue, Elisa Viana; dos Santos Seger, Guilherme Dubal; Both, Camila; Bernardo-Silva, Jorge Sebastião; Loyola, Rafael Dias; da Silva Duarte, Leandro

    2013-01-01

    Background We evaluated the direct and indirect influence of climate, land use, phylogenetic structure, species richness and endemism on the distribution of New World threatened amphibians. Methodology/Principal Findings We used the WWF’s New World ecoregions, the WWFs amphibian distributional data and the IUCN Red List Categories to obtain the number of threatened species per ecoregion. We analyzed three different scenarios urgent, moderate, and the most inclusive scenario. Using path analysis we evaluated the direct and indirect effects of climate, type of land use, phylogenetic structure, richness and endemism on the number of threatened amphibians in New World ecoregions. In all scenarios we found strong support for direct influences of endemism, the cover of villages and species richness on the number of threatened species in each ecoregion. The proportion of wild area had indirect effects in the moderate and the most inclusive scenario. Phylogenetic composition was important in determining the species richness and endemism in each ecoregion. Climate variables had complex and indirect effects on the number of threatened species. Conclusion/Significance Land use has a more direct influence than climate in determining the distribution of New World threatened amphibians. Independently of the scenario analyzed, the main variables influencing the distribution of threatened amphibians were consistent, with endemism having the largest magnitude path coefficient. The importance of phylogenetic composition could indicate that some clades may be more threatened than others, and their presence increases the number of threatened species. Our results highlight the importance of man-made land transformation, which is a local variable, as a critical factor underlying the distribution of threatened amphibians at a biogeographic scale. PMID:23637764

  13. Habitat split and the global decline of amphibians.

    PubMed

    Becker, Carlos Guilherme; Fonseca, Carlos Roberto; Haddad, Célio Fernando Baptista; Batista, Rômulo Fernandes; Prado, Paulo Inácio

    2007-12-14

    The worldwide decline in amphibians has been attributed to several causes, especially habitat loss and disease. We identified a further factor, namely "habitat split"-defined as human-induced disconnection between habitats used by different life history stages of a species-which forces forest-associated amphibians with aquatic larvae to make risky breeding migrations between suitable aquatic and terrestrial habitats. In the Brazilian Atlantic Forest, we found that habitat split negatively affects the richness of species with aquatic larvae but not the richness of species with terrestrial development (the latter can complete their life cycle inside forest remnants). This mechanism helps to explain why species with aquatic larvae have the highest incidence of population decline. These findings reinforce the need for the conservation and restoration of riparian vegetation.

  14. Isolated Polynucleotides and Methods of Promoting a Morphology in a Fungus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasure, Linda L; Dai, Ziyu

    2008-10-21

    The invention includes isolated polynucleotide molecules that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention includes a method of enhancing a bioprocess utilizing a fungus. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to a promoter. The polynucleotide sequence is expressed to promote a first morphology. The first morphology of the transformed fungus enhances a bioprocess relative to the bioprocess utilizing a second morphology.

  15. Occurrence of pesticides in water and sediment collected from amphibian habitats located throughout the United States, 2009-10

    USGS Publications Warehouse

    Smalling, Kelly L.; Orlando, James L.; Calhoun, Daniel; Battaglin, William A.; Kuivila, Kathryn

    2012-01-01

    Water and bed-sediment samples were collected by the U.S. Geological Survey (USGS) in 2009 and 2010 from 11 sites within California and 18 sites total in Colorado, Georgia, Idaho, Louisiana, Maine, and Oregon, and were analyzed for a suite of pesticides by the USGS. Water samples and bed-sediment samples were collected from perennial or seasonal ponds located in amphibian habitats in conjunction with research conducted by the USGS Amphibian Research and Monitoring Initiative and the USGS Toxic Substances Hydrology Program. Sites selected for this study in three of the states (California, Colorado, and Orgeon) have no direct pesticide application and are considered undeveloped and remote. Sites selected in Georgia, Idaho, Louisiana, and Maine were in close proximity to either agricultural or suburban areas. Water and sediment samples were collected once in 2009 during amphibian breeding seasons. In 2010, water samples were collected twice. The first sampling event coincided with the beginning of the frog breeding season for the species of interest, and the second event occurred 10-12 weeks later when pesticides were being applied to the surrounding areas. Additionally, water was collected during each sampling event to measure dissolved organic carbon, nutrients, and the fungus, Batrachochytrium dendrobatidis, which has been linked to amphibian declines worldwide. Bed-sediment samples were collected once during the beginning of the frog breeding season, when the amphibians are thought to be most at risk to pesticides. Results of this study are reported for the following two geographic scales: (1) for a national scale, by using data from the 29 sites that were sampled from seven states, and (2) for California, by using data from the 11 sampled sites in that state. Water samples were analyzed for 96 pesticides by using gas chromatography/mass spectrometry. A total of 24 pesticides were detected in one or more of the 54 water samples, including 7 fungicides, 10

  16. The Amphibian Research and Monitoring Initiative in the Pacific Northwest

    USGS Publications Warehouse

    Adams, Michael J.

    2003-01-01

    Amphibians have been disappearing from many locations around the world with reports of declines increasing in recent decades. Some of the most dramatic declines have occurred in areas that were thought to be protected from human disturbance. For example, the once-common boreal toad has virtually disappeared from Rocky Mountain National Park in Colorado. Although there has been debate on whether these declines represent a short-term fluctuation in populations or major sustained losses, there is now general scientific consensus that something really is amiss with amphibian populations.

  17. Using monitoring data to map amphibian breeding hotspots and describe wetland vulnerability in Yellowstone and Grand Teton National Parks

    USGS Publications Warehouse

    Ray, Andrew M.; Legg, Kristin; Sepulveda, Adam; Hossack, Blake R.; Patla, Debra

    2015-01-01

    Amphibians have been selected as a “vital sign” by several National Park Service (NPS) Inventory and Monitoring (I&M) networks. An eight-year amphibian monitoring data set provided opportunities to examine spatial and temporal patterns in amphibian breeding richness and wetland desiccation across Yellowstone and Grand Teton National Parks. Amphibian breeding richness was variable across both parks and only four of 31 permanent monitoring catchments contained all four widely distributed species. Annual breeding richness was also variable through time and fluctuated by as much as 75% in some years and catchments. Wetland desiccation was also documented across the region, but alone did not explain variations in amphibian richness. High annual variability across the region emphasizes the need for multiple years of monitoring to accurately describe amphibian richness and wetland desiccation dynamics.

  18. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus.

    PubMed

    Brucker, Robert M; Harris, Reid N; Schwantes, Christian R; Gallaher, Thomas N; Flaherty, Devon C; Lam, Brianna A; Minbiole, Kevin P C

    2008-11-01

    Disease has spurred declines in global amphibian populations. In particular, the fungal pathogen Batrachochytrium dendrobatidis has decimated amphibian diversity in some areas unaffected by habitat loss. However, there is little evidence to explain how some amphibian species persist despite infection or even clear the pathogen beyond detection. One hypothesis is that certain bacterial symbionts on the skin of amphibians inhibit the growth of the pathogen. An antifungal strain of Janthinobacterium lividum, isolated from the skin of the red-backed salamander Plethodon cinereus, produces antifungal metabolites at concentrations lethal to B. dendrobatidis. Antifungal metabolites were identified by using reversed phase high performance liquid chromatography, high resolution mass spectrometry, nuclear magnetic resonance, and UV-Vis spectroscopy and tested for efficacy of inhibiting the pathogen. Two metabolites, indole-3-carboxaldehyde and violacein, inhibited the pathogen's growth at relatively low concentrations (68.9 and 1.82 microM, respectively). Analysis of fresh salamander skin confirmed the presence of J. lividum and its metabolites on the skin of host salamanders in concentrations high enough to hinder or kill the pathogen (51 and 207 microM, respectively). These results support the hypothesis that cutaneous, mutualistic bacteria play a role in amphibian resistance to fungal disease. Exploitation of this biological process may provide long-term resistance to B. dendrobatidis for vulnerable amphibians and serve as a model for managing future emerging diseases in wildlife populations.

  19. Carbon dioxide sensing in an obligate insect-fungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus.

    PubMed

    Römer, Daniela; Bollazzi, Martin; Roces, Flavio

    2017-01-01

    Defense against biotic or abiotic stresses is one of the benefits of living in symbiosis. Leaf-cutting ants, which live in an obligate mutualism with a fungus, attenuate thermal and desiccation stress of their partner through behavioral responses, by choosing suitable places for fungus-rearing across the soil profile. The underground environment also presents hypoxic (low oxygen) and hypercapnic (high carbon dioxide) conditions, which can negatively influence the symbiont. Here, we investigated whether workers of the leaf-cutting ant Acromyrmex lundii use the CO2 concentration as an orientation cue when selecting a place to locate their fungus garden, and whether they show preferences for specific CO2 concentrations. We also evaluated whether levels preferred by workers for fungus-rearing differ from those selected for themselves. In the laboratory, CO2 preferences were assessed in binary choices between chambers with different CO2 concentrations, by quantifying number of workers in each chamber and amount of relocated fungus. Leaf-cutting ants used the CO2 concentration as a spatial cue when selecting places for fungus-rearing. A. lundii preferred intermediate CO2 levels, between 1 and 3%, as they would encounter at soil depths where their nest chambers are located. In addition, workers avoided both atmospheric and high CO2 levels as they would occur outside the nest and at deeper soil layers, respectively. In order to prevent fungus desiccation, however, workers relocated fungus to high CO2 levels, which were otherwise avoided. Workers' CO2 preferences for themselves showed no clear-cut pattern. We suggest that workers avoid both atmospheric and high CO2 concentrations not because they are detrimental for themselves, but because of their consequences for the symbiotic partner. Whether the preferred CO2 concentrations are beneficial for symbiont growth remains to be investigated, as well as whether the observed preferences for fungus-rearing influences the ants

  20. Cognitive and Emotional Evaluation of an Amphibian Conservation Program for Elementary School Students

    ERIC Educational Resources Information Center

    Randler, Christoph; Ilg, Angelika; Kern, Janina

    2005-01-01

    The authors describe a study aimed at enhancing knowledge about amphibian species. Two classes of 3rd and 4th graders aged 9-11 years participated in the study. In addition, approximately one half of the students participated in an environmental conservation action designated to preserve migrating amphibians. During this action, students…

  1. Amphibian breeding phenology and reproductive outcome: an examination using terrestrial and aquatic sampling

    Treesearch

    C.H. Greenberg; S.A. Johnson; R. Owen; A. Storfer

    2017-01-01

    Worldwide amphibian declines highlight the need for programs that monitor species presence and track population trends. We sampled larval amphibians with a box trap at 3-week intervals for 23 months in eight wetlands, and concurrently trapped adults and juveniles with drift fences, to examine spatiotemporal patterns of tadpole occurrence; explore relationships between...

  2. Estrogens Can Disrupt Amphibian Mating Behavior

    PubMed Central

    Hoffmann, Frauke; Kloas, Werner

    2012-01-01

    The main component of classical contraceptives, 17α-ethinylestradiol (EE2), has high estrogenic activity even at environmentally relevant concentrations. Although estrogenic endocrine disrupting compounds are assumed to contribute to the worldwide decline of amphibian populations by adverse effects on sexual differentiation, evidence for EE2 affecting amphibian mating behaviour is lacking. In this study, we demonstrate that EE2 exposure at five different concentrations (0.296 ng/L, 2.96 ng/L, 29.64 ng/L, 2.96 µg/L and 296.4 µg/L) can disrupt the mating behavior of adult male Xenopus laevis. EE2 exposure at all concentrations lowered male sexual arousal, indicated by decreased proportions of advertisement calls and increased proportions of the call type rasping, which characterizes a sexually unaroused state of a male. Additionally, EE2 at all tested concentrations affected temporal and spectral parameters of the advertisement calls, respectively. The classical and highly sensitive biomarker vitellogenin, on the other hand, was only induced at concentrations equal or higher than 2.96 µg/L. If kept under control conditions after a 96 h EE2 exposure (2.96 µg/L), alterations of male advertisement calls vanish gradually within 6 weeks and result in a lower sexual attractiveness of EE2 exposed males toward females as demonstrated by female choice experiments. These findings indicate that exposure to environmentally relevant EE2 concentrations can directly disrupt male mate calling behavior of X. laevis and can indirectly affect the mating behavior of females. The results suggest the possibility that EE2 exposure could reduce the reproductive success of EE2 exposed animals and these effects might contribute to the global problem of amphibian decline. PMID:22355410

  3. Amphibians and reptiles of C. E. Miller Ranch and the Sierra Vieja, Chihuahuan Desert, Texas, USA

    PubMed Central

    Davis, Drew R.; LaDuc, Travis J.

    2018-01-01

    Abstract We report the occurrence of 50 species of amphibians and reptiles recently collected on C. E. Miller Ranch and the Sierra Vieja in the Chihuahuan Desert of Texas, USA and describe their perceived distribution and abundance across various habitat associations of the region. Our recent surveys follow intense, historic sampling of amphibians and reptiles from this region in 1948. Of the 50 species detected in recent surveys, six were not collected in 1948 and an additional three species documented in 1948 have yet to be detected in a 14-year period of recent surveys. Combining data from both historic and recent surveys, a total of 53 species of amphibians and reptiles are known from the ranch (11 amphibians, 42 reptiles). Land stewardship and conservation practices have likely contributed to the persistence of the majority of these species through time. Additionally, we discuss the status of amphibians and reptiles not collected during recent surveys and comment on potential species that have not yet been detected. PMID:29674864

  4. Amphibians and reptiles of C. E. Miller Ranch and the Sierra Vieja, Chihuahuan Desert, Texas, USA.

    PubMed

    Davis, Drew R; LaDuc, Travis J

    2018-01-01

    We report the occurrence of 50 species of amphibians and reptiles recently collected on C. E. Miller Ranch and the Sierra Vieja in the Chihuahuan Desert of Texas, USA and describe their perceived distribution and abundance across various habitat associations of the region. Our recent surveys follow intense, historic sampling of amphibians and reptiles from this region in 1948. Of the 50 species detected in recent surveys, six were not collected in 1948 and an additional three species documented in 1948 have yet to be detected in a 14-year period of recent surveys. Combining data from both historic and recent surveys, a total of 53 species of amphibians and reptiles are known from the ranch (11 amphibians, 42 reptiles). Land stewardship and conservation practices have likely contributed to the persistence of the majority of these species through time. Additionally, we discuss the status of amphibians and reptiles not collected during recent surveys and comment on potential species that have not yet been detected.

  5. Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline?

    PubMed

    Brühl, Carsten A; Schmidt, Thomas; Pieper, Silvia; Alscher, Annika

    2013-01-01

    Amphibians, a class of animals in global decline, are present in agricultural landscapes characterized by agrochemical inputs. Effects of pesticides on terrestrial life stages of amphibians such as juvenile and adult frogs, toads and newts are little understood and a specific risk assessment for pesticide exposure, mandatory for other vertebrate groups, is currently not conducted. We studied the effects of seven pesticide products on juvenile European common frogs (Rana temporaria) in an agricultural overspray scenario. Mortality ranged from 100% after one hour to 40% after seven days at the recommended label rate of currently registered products. The demonstrated toxicity is alarming and a large-scale negative effect of terrestrial pesticide exposure on amphibian populations seems likely. Terrestrial pesticide exposure might be underestimated as a driver of their decline calling for more attention in conservation efforts and the risk assessment procedures in place do not protect this vanishing animal group.

  6. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin.

    PubMed

    Longo, Ana V; Zamudio, Kelly R

    2017-09-01

    Host-associated bacterial communities on the skin act as the first line of defence against invading pathogens. Yet, for most natural systems, we lack a clear understanding of how temperature variability affects structure and composition of skin bacterial communities and, in turn, promotes or limits the colonization of opportunistic pathogens. Here, we examine how natural temperature fluctuations might be related to changes in skin bacterial diversity over time in three amphibian populations infected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Our focal host species (Eleutherodactylus coqui) is a direct-developing frog that has suffered declines at some populations in the last 20 years, while others have not experienced any changes. We quantified skin bacterial alpha- and beta-diversity at four sampling time points, a period encompassing two seasons and ample variation in natural infections and environmental conditions. Despite the different patterns of infection across populations, we detected an overall increase in bacterial diversity through time, characterized by the replacement of bacterial operational taxonomic units (OTUs). Increased frog body temperatures possibly allowed the colonization of bacteria as well as the recruitment of a subset of indicator OTUs, which could have promoted the observed changes in diversity patterns. Our results suggest that natural environmental fluctuations might be involved in creating opportunities for bacterial replacement, potentially attenuating pathogen transmission and thus contributing to host persistence in E. coqui populations. © 2017 John Wiley & Sons Ltd.

  7. Relictual amphibians and old-growth forest

    Treesearch

    H.H. Welsh

    1990-01-01

    Terrestrial and aquatic herpetofauna were sampled by pitfall traps, time-constrained searches, and areaconstrained searches (stream sites only) over a three-year period to examine the importance of forest age to amphibians and reptiles. Fifty-four terrestrial and 39 aquatic sites in Douglas-fir-dominated, mixed evergreen forests were located in southwestern Oregon and...

  8. Where have all the tadpoles gone? Individual genetic tracking of amphibian larvae until adulthood

    PubMed Central

    RINGLER, EVA; MANGIONE, ROSANNA; RINGLER, MAX

    2015-01-01

    Reliably marking larvae and reidentifying them after metamorphosis is a challenge that has hampered studies on recruitment, dispersal, migration and survivorship of amphibians for a long time, as conventional tags are not reliably retained through metamorphosis. Molecular methods allow unique genetic fingerprints to be established for individuals. Although microsatellite markers have successfully been applied in mark–recapture studies on several animal species, they have never been previously used in amphibians to follow individuals across different life cycle stages. Here, we evaluate microsatellites for genetic across-stages mark–recapture studies in amphibians and test the suitability of available software packages for genotype matching. We sampled tadpoles of the dendrobatid frog Allobates femoralis, which we introduced on a river island in the Nature Reserve ‘Les Nouragues’ in French Guiana. In two subsequent recapture sessions, we searched for surviving juveniles and adults, respectively. All individuals were genotyped at 14 highly variable microsatellite loci, which yielded unique genetic fingerprints for all individuals. We found large differences in the identification success of the programs tested. The pairwise-relatedness-based approach, conducted with the programs kingroup or ML-Relate, performed best with our data set. Matching ventral patterns of juveniles and adult individuals acted as a control for the reliability of the genetic identification. Our results demonstrate that microsatellite markers are a highly powerful tool for studying amphibian populations on an individual basis. The ability to individually track amphibian tadpoles throughout metamorphosis until adulthood will be of substantial value for future studies on amphibian population ecology and evolution. PMID:25388775

  9. Independent evolution of the sexes promotes amphibian diversification.

    PubMed

    De Lisle, Stephen P; Rowe, Locke

    2015-03-22

    Classic ecological theory predicts that the evolution of sexual dimorphism constrains diversification by limiting morphospace available for speciation. Alternatively, sexual selection may lead to the evolution of reproductive isolation and increased diversification. We test contrasting predictions of these hypotheses by examining the relationship between sexual dimorphism and diversification in amphibians. Our analysis shows that the evolution of sexual size dimorphism (SSD) is associated with increased diversification and speciation, contrary to the ecological theory. Further, this result is unlikely to be explained by traditional sexual selection models because variation in amphibian SSD is unlikely to be driven entirely by sexual selection. We suggest that relaxing a central assumption of classic ecological models-that the sexes share a common adaptive landscape-leads to the alternative hypothesis that independent evolution of the sexes may promote diversification. Once the constraints of sexual conflict are relaxed, the sexes can explore morphospace that would otherwise be inaccessible. Consistent with this novel hypothesis, the evolution of SSD in amphibians is associated with reduced current extinction threat status, and an historical reduction in extinction rate. Our work reconciles conflicting predictions from ecological and evolutionary theory and illustrates that the ability of the sexes to evolve independently is associated with a spectacular vertebrate radiation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Using a Bayesian network to clarify areas requiring research in a host-pathogen system.

    PubMed

    Bower, D S; Mengersen, K; Alford, R A; Schwarzkopf, L

    2017-12-01

    Bayesian network analyses can be used to interactively change the strength of effect of variables in a model to explore complex relationships in new ways. In doing so, they allow one to identify influential nodes that are not well studied empirically so that future research can be prioritized. We identified relationships in host and pathogen biology to examine disease-driven declines of amphibians associated with amphibian chytrid fungus (Batrachochytrium dendrobatidis). We constructed a Bayesian network consisting of behavioral, genetic, physiological, and environmental variables that influence disease and used them to predict host population trends. We varied the impacts of specific variables in the model to reveal factors with the most influence on host population trend. The behavior of the nodes (the way in which the variables probabilistically responded to changes in states of the parents, which are the nodes or variables that directly influenced them in the graphical model) was consistent with published results. The frog population had a 49% probability of decline when all states were set at their original values, and this probability increased when body temperatures were cold, the immune system was not suppressing infection, and the ambient environment was conducive to growth of B. dendrobatidis. These findings suggest the construction of our model reflected the complex relationships characteristic of host-pathogen interactions. Changes to climatic variables alone did not strongly influence the probability of population decline, which suggests that climate interacts with other factors such as the capacity of the frog immune system to suppress disease. Changes to the adaptive immune system and disease reservoirs had a large effect on the population trend, but there was little empirical information available for model construction. Our model inputs can be used as a base to examine other systems, and our results show that such analyses are useful tools for

  11. Amphibian Research and Monitoring Initiative (ARMI): A successful start to a national program in the United States

    USGS Publications Warehouse

    Muths, Erin; Jung, Robin E.; Bailey, Larissa L.; Adams, Michael J.; Corn, P. Stephen; Dodd, C. Kenneth; Fellers, Gary M.; Sadinski, Walter J.; Schwalbe, Cecil R.; Walls, Susan C.; Fisher, Robert N.; Gallant, Alisa L.; Battaglin, William A.; Green, D. Earl

    2005-01-01

    Most research to assess amphibian declines has focused on local-scale projects on one or a few species. The Amphibian Research and Monitoring Initiative (ARMI) is a national program in the United States mandated by congressional directive and implemented by the U.S. Department of the Interior (specifically the U.S. Geological Survey, USGS). Program goals are to monitor changes in populations of amphibians across U.S. Department of the Interior lands and to address research questions related to amphibian declines using a hierarchical framework of base-, mid- and apex-level monitoring sites. ARMI is currently monitoring 83 amphibian species (29% of species in the U.S.) at mid- and apex-level areas. We chart the progress of this 5-year-old program and provide an example of mid-level monitoring from 1 of the 7 ARMI regions.

  12. Evaluating the effects of land use on headwater wetland amphibian assemblages in coastal Alabama

    USGS Publications Warehouse

    Alix, Diane M.; Anderson, Christopher J.; Grand, James B.; Guyer, Craig

    2014-01-01

    Anthropogenic land use is known to impact aquatic ecosystems in several ways, including increased frequency and intensity of floods, stream channel incision, sedimentation, and loss of microtopography. Amphibians are susceptible to changes in wetland and surrounding habitats. This study evaluated amphibian assemblages of fifteen headwater slope wetlands in coastal Alabama across a gradient of land uses. Amphibians were surveyed on a seasonal basis and land use was delineated within wetland watersheds and within a 200-m buffer surrounding each wetland. Amphibian presence/absence and land use data were used to develop species occupancy models. Both urban and agricultural land use were shown to influence amphibian occurrence. Species richness ranged from five to ten species across sites; however, five species only occurred in wetlands surrounded by forested lands. Many species were detected more frequently on these wetlands compared to wetlands surrounded by urban or mixed land uses. Occupancy models showed Acris gryllus was negatively associated with the amount of agriculture within a buffer around the wetland. Hyla squirella, Lithobates clamitans, and L. sphenocephalus were positively associated with agricultural land within a watershed. Anaxyrus terrestris and the non-native Eleutherodactylus planirostris were positively associated with the amount of impervious surface area within the wetland buffer.

  13. Contamination of Pine Seeds by the Pitch Canker Fungus

    Treesearch

    L. David Dwinell; S.W. Fraedrich

    1999-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp. pini, has been identified as a significant problem in man pine seed orchards and nursuries in the South. THe fungus causes strobilus mortality, seed deterioation, and cankers on the main stem, branches, and shoots of pines Dwinell and others 1985). The pitche canker fungus...

  14. Initial diversification of living amphibians predated the breakup of Pangaea.

    PubMed

    San Mauro, Diego; Vences, Miguel; Alcobendas, Marina; Zardoya, Rafael; Meyer, Axel

    2005-05-01

    The origin and divergence of the three living orders of amphibians (Anura, Caudata, Gymnophiona) and their main lineages are one of the most hotly debated topics in vertebrate evolution. Here, we present a robust molecular phylogeny based on the nuclear RAG1 gene as well as results from a variety of alternative independent molecular clock calibrations. Our analyses suggest that the origin and early divergence of the three living amphibian orders dates back to the Palaeozoic or early Mesozoic, before the breakup of Pangaea, and soon after the divergence from lobe-finned fishes. The resulting new biogeographic scenario, age estimate, and the inferred rapid divergence of the three lissamphibian orders may account for the lack of fossils that represent plausible ancestors or immediate sister taxa of all three orders and the heretofore paradoxical distribution of some amphibian fossil taxa. Furthermore, the ancient and rapid radiation of the three lissamphibian orders likely explains why branch lengths connecting their early nodes are particularly short, thus rendering phylogenetic inference of implicated relationships especially difficult.

  15. 50 CFR 17.43 - Special rules-amphibians.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Special rules—amphibians. (a) San Marcos salamander (Eurycea nana). (1) All provisions of § 17.31 apply to... livestock. (c) California tiger salamander (Ambystoma californiense). (1) Which populations of the California tiger salamander are covered by this special rule? This rule covers the California tiger...

  16. Managing Amphibian Disease with Skin Microbiota.

    PubMed

    Woodhams, Douglas C; Bletz, Molly; Kueneman, Jordan; McKenzie, Valerie

    2016-01-16

    The contribution of emerging amphibian diseases to the sixth mass extinction is driving innovative wildlife management strategies, including the use of probiotics. Bioaugmentation of the skin mucosome, a dynamic environment including host and microbial components, may not provide a generalized solution. Multi-omics technologies and ecological context underlie effective implementation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Managing Amphibian Disease with Skin Microbiota.

    PubMed

    Woodhams, Douglas C; Bletz, Molly; Kueneman, Jordan; McKenzie, Valerie

    2016-03-01

    The contribution of emerging amphibian diseases to the sixth mass extinction is driving innovative wildlife management strategies, including the use of probiotics. Bioaugmentation of the skin mucosome, a dynamic environment including host and microbial components, may not provide a generalized solution. Multi-omics technologies and ecological context underlie effective implementation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Embryological evidence for a possible polyphyletic origin of the recent amphibians.

    PubMed

    Nieuwkoop, P D; Sutasurya, L A

    1976-02-01

    The markedly different mode of mesoderm formation in anuran and urodelan amphibians (which is related to the early double-layered nature of the anuran blastula wall in contrast to its single-layered nature in the urodeles), but particularly the fundamentally different place and mode of origin of the primordial germ cells in the two groups of amphibians, strongly pleads in favour of a very ancient bifurcation in the phylogenetic history of the two groups, even suggesting a polyphyletic origin from different ancestral fishes.

  19. Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds.

    PubMed

    Karraker, Nancy E; Ruthig, Gregory R

    2009-01-01

    Some causative agents of amphibian declines act synergistically to impact individual amphibians and their populations. In particular, pathogenic water molds (aquatic oomycetes) interact with environmental stressors and increase mortality in amphibian embryos. We documented colonization of eggs of three amphibian species, the wood frog (Rana sylvatica), the green frog (Rana clamitans), and the spotted salamander (Ambystoma maculatum), by water molds in the field and examined the interactive effects of road deicing salt and water molds, two known sources of mortality for amphibian embryos, on two species, R. clamitans and A. maculatum in the laboratory. We found that exposure to water molds did not affect embryonic survivorship in either A. maculatum or R. clamitans, regardless of the concentration of road salt to which their eggs were exposed. Road salt decreased survivorship of A. maculatum, but not R. clamitans, and frequency of malformations increased significantly in both species at the highest salinity concentration. The lack of an effect of water molds on survival of embryos and no interaction between road salt and water molds indicates that observations of colonization of these eggs by water molds in the field probably represent a secondary invasion of unfertilized eggs or of embryos that had died of other causes. Given increasing salinization of freshwater habitats on several continents and the global distribution of water molds, our results suggest that some amphibian species may not be susceptible to the combined effects of these factors, permitting amphibian decline researchers to devote their attention to other potential causes.

  20. The pituitary-skin connection in amphibians. Reciprocal regulation of melanotrope cells and dermal melanocytes.

    PubMed

    Vaudry, H; Chartrel, N; Desrues, L; Galas, L; Kikuyama, S; Mor, A; Nicolas, P; Tonon, M C

    1999-10-20

    In amphibians, alpha-MSH secreted by the pars intermedia of the pituitary plays a pivotal role in the process of skin color adaptation. Reciprocally, the skin of amphibians contains a number of regulatory peptides, some of which have been found to regulate the activity of pituitary melanotrope cells. In particular, the skin of certain species of amphibians harbours considerable amounts of thyrotropin-releasing hormone, a highly potent stimulator of alpha-MSH release. Recently, we have isolated and sequenced from the skin of the frog Phyllomedusa bicolor--a novel peptide named skin peptide tyrosine tyrosine (SPYY), which exhibits 94% similarity with PYY from the frog Rana ridibunda. For concentrations ranging from 5 x 10(-10) to 10(-7) M, SPYY induces a dose-related inhibition of alpha-MSH secretion. At a dose of 10(-7) M, SPYY totally abolished alpha-MSH release. These data strongly suggest the existence of a regulatory loop between the pars intermedia of the pituitary and the skin in amphibians.

  1. The Amphibians of Mount Oku, Cameroon: an updated species inventory and conservation review

    PubMed Central

    Doherty-Bone, Thomas M.; Gvoždík, Václav

    2017-01-01

    Abstract Amphibians are a disproportionately threatened group of vertebrates, the status of which in Sub-Saharan Africa is still uncertain, with heterogeneous fauna punctuated by mountains. Mount Oku, Cameroon is one such mountain, which holds many endemic and restricted-range species. The history of amphibian research on Mt Oku, current knowledge on biogeography and conservation biology is reviewed, including recent findings. This updated inventory adds 25 further species, with 50 species of amphibian so far recorded to the Oku Massif (c. 900 to 3,011 m). This includes 5 endemic to Mt Oku, 7 endemic to the Bamenda Highlands, 18 restricted to the highlands of Cameroon and Nigeria, and 20 with broader ranges across Africa. This includes a new mountain locality for the Critically Endangered Leptodactylodon axillaris. Among others, the first record of Phrynobatrachus schioetzi and Ptychadena taenioscelis from Cameroon are presented. The uncertainty of habitat affinities and elevational ranges are discussed. The proportion of threatened species on Mt Oku is 44.2%, but projected to increase to 47.9% due to new species descriptions and recent dramatic declines. The natural habitats of Mt Oku are irreplaceable refuges for its endemic and restricted-range amphibian populations under severe pressure elsewhere in their range. Threats to this important amphibian fauna are increasing, including agricultural encroachment, expanding aquaculture, livestock grazing, pollution, invasive species, forest loss and degradation. Past, present and desired conservation interventions to address these threats are discussed. PMID:28144180

  2. Simulated developmental and reproductive impacts on amphibian populations and implications for assessing long-term effects

    EPA Science Inventory

    Fish endpoints measured in early life stage toxicity tests are often used as representative of larval amphibian sensitivity in Ecological Risk Assessment (ERA). This application potentially overlooks the impact of developmental delays on amphibian metamorphosis, and thereby red...

  3. Toward immunogenetic studies of amphibian chytridiomycosis: Linking innate and acquired immunity

    USGS Publications Warehouse

    Richmond, J.Q.; Savage, Anna E.; Zamudio, Kelly R.; Rosenblum, E.B.

    2009-01-01

    Recent declines in amphibian diversity and abundance have contributed significantly to the global loss of biodiversity. The fungal disease chytridiomycosis is widely considered to be a primary cause of these declines, yet the critical question of why amphibian species differ in susceptibility remains unanswered. Considerable evidence links environmental conditions and interspecific variability of the innate immune system to differential infection responses, but other sources of individual, population, or species-typical variation may also be important. In this article we review the preliminary evidence supporting a role for acquired immune defenses against chytridiomycosis, and advocate for targeted investigation of genes controlling acquired responses, as well as those that functionally bridge the innate and acquired immune systems. Immunogenetic data promise to answer key questions about chytridiomycosis susceptibility and host-pathogen coevolution, and will draw much needed attention to the importance of considering evolutionary processes in amphibian conservation management and practice. ?? 2009 by American Institute of Biological Sciences.

  4. Fungus Amongus

    ERIC Educational Resources Information Center

    Wakeley, Deidra

    2005-01-01

    This role-playing simulation is designed to help teach middle level students about the typical lifecycle of a fungus. In this interactive simulation, students assume the roles of fungi, spores, living and dead organisms, bacteria, and rain. As they move around a playing field collecting food and water chips, they discover how the organisms…

  5. 76 FR 45603 - Agency Information Collection Activities: Comment Request for the North American Amphibian...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Collection Activities: Comment Request for the North American Amphibian Monitoring Program (NAAMP) AGENCY: U... Monitoring Program (NAAMP). As required by the Paperwork Reduction Act (PRA) of 1995, and as part of our... assigned survey routes that are part of the North American Amphibian Monitoring Program. Volunteers use an...

  6. Fungus-insect gall of Phlebopus portentosus.

    PubMed

    Zhang, Chun-Xia; He, Ming-Xia; Cao, Yang; Liu, Jing; Gao, Feng; Wang, Wen-Bing; Ji, Kai-Ping; Shao, Shi-Cheng; Wang, Yun

    2015-01-01

    Phlebopus portentosus is a popular edible wild mushroom found in the tropical Yunnan, China, and northern Thailand. In its natural habitats, a gall often has been found on some plant roots, around which fungal fruiting bodies are produced. The galls are different from common insect galls in that their cavity walls are not made from plant tissue but rather from the hyphae of P. portentosus. Therefore we have termed this phenomenon "fungus-insect gall". Thus far six root mealy bug species in the family Pseudococcidae that form fungus-insect galls with P. portentosus have been identified: Formicococcus polysperes, Geococcus satellitum, Planococcus minor, Pseudococcus cryptus, Paraputo banzigeri and Rastrococcus invadens. Fungus-insect galls were found on the roots of more than 21 plant species, including Delonix regia, Citrus maxima, Coffea arabica and Artocarpus heterophyllus. Greenhouse inoculation trials showed that fungus-insect galls were found on the roots of A. heterophyllus 1 mo after inoculation. The galls were subglobose to globose, fulvous when young and became dark brown at maturation. Each gall harbored one or more mealy bugs and had a chimney-like vent for ventilation and access to the gall. The cavity wall had three layers. Various shaped mealy bug wax deposits were found inside the wall. Fungal hyphae invaded the epidermis of plant roots and sometimes even the cortical cells during the late stage of gall development. The identity of the fungus inside the cavity was confirmed by molecular methods. © 2015 by The Mycological Society of America.

  7. Metabolism of pesticides after dermal exposure to amphibians

    EPA Science Inventory

    Understanding how pesticide exposure to non-target species influences toxicity is necessary to accurately assess the ecological risks these compounds pose. Aquatic, terrestrial, and arboreal amphibians are often exposed to pesticides during their agricultural application resultin...

  8. Where have all the tadpoles gone? Individual genetic tracking of amphibian larvae until adulthood.

    PubMed

    Ringler, Eva; Mangione, Rosanna; Ringler, Max

    2015-07-01

    Reliably marking larvae and reidentifying them after metamorphosis is a challenge that has hampered studies on recruitment, dispersal, migration and survivorship of amphibians for a long time, as conventional tags are not reliably retained through metamorphosis. Molecular methods allow unique genetic fingerprints to be established for individuals. Although microsatellite markers have successfully been applied in mark-recapture studies on several animal species, they have never been previously used in amphibians to follow individuals across different life cycle stages. Here, we evaluate microsatellites for genetic across-stages mark-recapture studies in amphibians and test the suitability of available software packages for genotype matching. We sampled tadpoles of the dendrobatid frog Allobates femoralis, which we introduced on a river island in the Nature Reserve 'Les Nouragues' in French Guiana. In two subsequent recapture sessions, we searched for surviving juveniles and adults, respectively. All individuals were genotyped at 14 highly variable microsatellite loci, which yielded unique genetic fingerprints for all individuals. We found large differences in the identification success of the programs tested. The pairwise-relatedness-based approach, conducted with the programs kingroup or ML-Relate, performed best with our data set. Matching ventral patterns of juveniles and adult individuals acted as a control for the reliability of the genetic identification. Our results demonstrate that microsatellite markers are a highly powerful tool for studying amphibian populations on an individual basis. The ability to individually track amphibian tadpoles throughout metamorphosis until adulthood will be of substantial value for future studies on amphibian population ecology and evolution. © 2014 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  9. Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity.

    PubMed

    Kueneman, Jordan G; Woodhams, Douglas C; Harris, Reid; Archer, Holly M; Knight, Rob; McKenzie, Valerie J

    2016-09-28

    Host-associated microbiomes perform many beneficial functions including resisting pathogens and training the immune system. Here, we show that amphibians developing in captivity lose substantial skin bacterial diversity, primarily due to reduced ongoing input from environmental sources. We combined studies of wild and captive amphibians with a database of over 1 000 strains that allows us to examine antifungal function of the skin microbiome. We tracked skin bacterial communities of 62 endangered boreal toads, Anaxyrus boreas, across 18 time points, four probiotic treatments, and two exposures to the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) in captivity, and compared these to 33 samples collected from wild populations at the same life stage. As the amphibians in captivity lost the Bd-inhibitory bacteria through time, the proportion of individuals exposed to Bd that became infected rose from 33% to 100% in subsequent exposures. Inoculations of the Bd-inhibitory probiotic Janthinobacterium lividum resulted in a 40% increase in survival during the second Bd challenge, indicating that the effect of microbiome depletion was reversible by restoring Bd-inhibitory bacteria. Taken together, this study highlights the functional role of ongoing environmental inputs of skin-associated bacteria in mitigating a devastating amphibian pathogen, and that long-term captivity decreases this defensive function. © 2016 The Author(s).

  10. Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity

    PubMed Central

    Kueneman, Jordan G.; Woodhams, Douglas C.; Harris, Reid; Archer, Holly M.; Knight, Rob

    2016-01-01

    Host-associated microbiomes perform many beneficial functions including resisting pathogens and training the immune system. Here, we show that amphibians developing in captivity lose substantial skin bacterial diversity, primarily due to reduced ongoing input from environmental sources. We combined studies of wild and captive amphibians with a database of over 1 000 strains that allows us to examine antifungal function of the skin microbiome. We tracked skin bacterial communities of 62 endangered boreal toads, Anaxyrus boreas, across 18 time points, four probiotic treatments, and two exposures to the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) in captivity, and compared these to 33 samples collected from wild populations at the same life stage. As the amphibians in captivity lost the Bd-inhibitory bacteria through time, the proportion of individuals exposed to Bd that became infected rose from 33% to 100% in subsequent exposures. Inoculations of the Bd-inhibitory probiotic Janthinobacterium lividum resulted in a 40% increase in survival during the second Bd challenge, indicating that the effect of microbiome depletion was reversible by restoring Bd-inhibitory bacteria. Taken together, this study highlights the functional role of ongoing environmental inputs of skin-associated bacteria in mitigating a devastating amphibian pathogen, and that long-term captivity decreases this defensive function. PMID:27655769

  11. Challenges with effective nutrient supplementation for amphibians: A review of cricket studies.

    PubMed

    Livingston, Shannon; Lavin, Shana R; Sullivan, Kathleen; Attard, Lydia; Valdes, Eduardo V

    2014-01-01

    Over the last 25 years, numerous studies have investigated the impact of insect supplementation on insect nutrient content. In light of recent nutrition related challenges with regards to zoo amphibians fed an insect based diet, this review attempts to comprehensively compile both anecdotal and published data in the context of practical application on this topic. Insects, primarily crickets, used for amphibian diets historically demonstrate low concentrations of key nutrients including calcium and vitamin A. Commonly used practices for supplementation involving powder dusting or gut loading have been shown to improve delivery of calcium and vitamin A, though often not reaching desired nutrient concentrations. The large variety of factors influencing insect nutrient content are difficult to control, making study design, and results often inconsistent. Formulation and availability of more effective gut loading diets, combined with a standardized protocol for insect husbandry and dietary management may be the most effective way to supplement insects for use in amphibian feeding programs. Ideally, the nutritional improvement of feeder insects would begin at the breeder level; however, until this becomes a viable choice, we confirm that supplementation of crickets through both gut-loading and dusting appear necessary to support the nutritional health of amphibians and other insectivores in managed collections. © 2014 Wiley Periodicals, Inc.

  12. Mine spoil prairies expand critical habitat for endangered and threatened amphibian and reptile species

    USGS Publications Warehouse

    Lannoo, Michael J.; Kinney, Vanessa C.; Heemeyer, Jennifer L.; Engbrecht, Nathan J.; Gallant, Alisa L.; Klaver, Robert W.

    2009-01-01

    Coal extraction has been occurring in the Midwestern United States for over a century. Despite the pre-mining history of the landscape as woodlands, spent surface coalfields are often reclaimed to grasslands. We assessed amphibian and reptile species on a large tract of coal spoil prairie and found 13 species of amphibians (nine frog and four salamander species) and 19 species of reptiles (one lizard, five turtle, and 13 snake species). Two state-endangered and three state species of special concern were documented. The amphibian diversity at our study site was comparable to the diversity found at a large restored prairie situated 175 km north, within the historic prairie peninsula.

  13. Influence of forest management on headwater stream amphibians at multiple spatial scales

    USGS Publications Warehouse

    Stoddard, Margo; Hayes, John P.; Erickson, Janet L.

    2004-01-01

    Background Amphibians are important components of headwater streams in forest ecosystems of the Pacific Northwest (PNW). They comprise the highest vertebrate biomass and density in these systems and are integral to trophic dynamics both as prey and as predators. The most commonly encountered amphibians in PNW headwater streams include the Pacific giant salamander (Dicamptodon tenebrosus), the tailed frog (Ascaphus truei), the southern torrent salamander (Rhyacotriton variegatus), and the Columbia torrent salamander (R. kezeri).

  14. RENO, NV, JANUARY 15, 2004: FACTORS IMPLICATED IN AMPHIBIAN POPULATION DECLINES IN THE UNITED STATES

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from 267 species accounts written in a standardized format by multiple authors in the forthcoming book, 'Status and Conservation of U.S. Amphibians'. Spec...

  15. What's Slithering around on Your School Grounds? Transforming Student Awareness of Reptile & Amphibian Diversity

    ERIC Educational Resources Information Center

    Tomasek, Terry M.; Matthews, Catherine E.; Hall, Jeff

    2005-01-01

    The protocols used in a research project on amphibian and reptile diversity at Cool Springs Environmental Education Center near New Bern, North Carolina is described. An increasing or stable number of amphibians and reptiles would indicate that the forest has a balance of invertebrates, leaf litter, moisture, pH, debris, burrows and habitat…

  16. From tails to toes: developing nonlethal tissue indicators of mercury exposure in five amphibian species.

    PubMed

    Pfleeger, Adam Z; Eagles-Smith, Collin A; Kowalski, Brandon M; Herring, Garth; Willacker, James J; Jackson, Allyson K; Pierce, John R

    2016-04-01

    Exposure to environmental contaminants has been implicated as a factor in global amphibian decline. Mercury (Hg) is a particularly widespread contaminant that biomagnifies in amphibians and can cause a suite of deleterious effects. However, monitoring contaminant exposure in amphibian tissues may conflict with conservation goals if lethal take is required. Thus, there is a need to develop non-lethal tissue sampling techniques to quantify contaminant exposure in amphibians. Some minimally invasive sampling techniques, such as toe-clipping, are common in population-genetic research, but it is unclear if these methods can adequately characterize contaminant exposure. We examined the relationships between mercury (Hg) concentrations in non-lethally sampled tissues and paired whole-bodies in five amphibian species. Specifically, we examined the utility of three different tail-clip sections from four salamander species and toe-clips from one anuran species. Both tail and toe-clips accurately predicted whole-body THg concentrations, but the relationships differed among species and the specific tail-clip section or toe that was used. Tail-clips comprised of the distal 0-2 cm segment performed the best across all salamander species, explaining between 82 and 92% of the variation in paired whole-body THg concentrations. Toe-clips were less effective predictors of frog THg concentrations, but THg concentrations in outer rear toes accounted for up to 79% of the variability in frog whole-body THg concentrations. These findings suggest non-lethal sampling of tails and toes has potential applications for monitoring contaminant exposure and risk in amphibians, but care must be taken to ensure consistent collection and interpretation of samples.

  17. Assessment of environmental stressors potentially responsible for malformations in North American anuran amphibians.

    PubMed

    Ankley, Gerald T; Degitz, S J; Diamond, S A; Tietge, J E

    2004-05-01

    Several species of anuran amphibians from different regions across North America have recently exhibited an increased occurrence of malformations, predominantly of the hindlimb. Research concerning the potential causes of these malformations has focused extensively on three stressors: chemical contaminants, ultraviolet (UV) radiation, and parasitic trematodes. In this overview of recent work with each of these stressors, we assess their plausibility as contributors to the malformations observed in field-collected amphibians. There is as yet little evidence that chemical contaminants are responsible for the limb malformations. This includes chemicals, such as the pesticide methoprene, that could affect retinoid-signaling pathways that are critical to limb development. Exposure to UV radiation also seems to be an unlikely explanation for hindlimb malformations in amphibians. Although solar UV can cause hindlimb deficiencies in amphibians, a probabilistic assessment based on empirical dose-response and exposure data indicates that UV exposures sufficient to induce limb defects would be uncommon in most wetlands. Results of controlled studies conducted with some affected species and field-monitoring work suggest infection by digenetic trematodes as a promising explanation for the malformations observed in anurans collected from many field sites. Controlled experimentation with additional species and monitoring across a broader range of affected sites are required to assess fully the role of trematodes in relation to other stressors in causing limb malformations. If trematode infestations are indeed related to the recent increases in malformed amphibians, then the question remains as to what alterations in the environment might be causing changes in the distribution and abundance of the parasites.

  18. Short-Term Exposure to Warm Microhabitats Could Explain Amphibian Persistence with Batrachochytrium dendrobatidis

    PubMed Central

    Daskin, Joshua H.; Alford, Ross A.; Puschendorf, Robert

    2011-01-01

    Environmental conditions can alter the outcomes of symbiotic interactions. Many amphibian species have declined due to chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), but many others persist despite high Bd infection prevalence. This indicates that Bd's virulence is lower, or it may even be a commensal, in some hosts. In the Australian Wet Tropics, chytridiomycosis extirpated Litoria nannotis from high-elevation rain forests in the early 1990 s. Although the species is recolonizing many sites, no population has fully recovered. Litoria lorica disappeared from all known sites in the early 1990 s and was thought globally extinct, but a new population was discovered in 2008, in an upland dry forest habitat it shares with L. nannotis. All frogs of both species observed during three population censuses were apparently healthy, but most carried Bd. Frogs perch on sun-warmed rocks in dry forest streams, possibly keeping Bd infections below the lethal threshold attained in cooler rain forests. We tested whether short-term elevated temperatures can hamper Bd growth in vitro over one generation (four days). Simulating the temperatures available to frogs on strongly and moderately warmed rocks in dry forests, by incubating cultures at 33°C for one hour daily, reduced Bd growth below that of Bd held at 15°C constantly (representing rain forest habitats). Even small decreases in the exponential growth rate of Bd on hosts may contribute to the survival of frogs in dry forests. PMID:22028834

  19. Short-term exposure to warm microhabitats could explain amphibian persistence with Batrachochytrium dendrobatidis.

    PubMed

    Daskin, Joshua H; Alford, Ross A; Puschendorf, Robert

    2011-01-01

    Environmental conditions can alter the outcomes of symbiotic interactions. Many amphibian species have declined due to chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), but many others persist despite high Bd infection prevalence. This indicates that Bd's virulence is lower, or it may even be a commensal, in some hosts. In the Australian Wet Tropics, chytridiomycosis extirpated Litoria nannotis from high-elevation rain forests in the early 1990 s. Although the species is recolonizing many sites, no population has fully recovered. Litoria lorica disappeared from all known sites in the early 1990 s and was thought globally extinct, but a new population was discovered in 2008, in an upland dry forest habitat it shares with L. nannotis. All frogs of both species observed during three population censuses were apparently healthy, but most carried Bd. Frogs perch on sun-warmed rocks in dry forest streams, possibly keeping Bd infections below the lethal threshold attained in cooler rain forests. We tested whether short-term elevated temperatures can hamper Bd growth in vitro over one generation (four days). Simulating the temperatures available to frogs on strongly and moderately warmed rocks in dry forests, by incubating cultures at 33°C for one hour daily, reduced Bd growth below that of Bd held at 15°C constantly (representing rain forest habitats). Even small decreases in the exponential growth rate of Bd on hosts may contribute to the survival of frogs in dry forests.

  20. Salmonella diversity associated with wild reptiles and amphibians in Spain.

    PubMed

    Briones, Víctor; Téllez, Sonia; Goyache, Joaquín; Ballesteros, Cristina; del Pilar Lanzarot, María; Domínguez, Lucas; Fernández-Garayzábal, José F

    2004-08-01

    During the spring and summer of 2001, faeces from 166 wild reptiles (94 individuals) and amphibians (72 individuals) from 21 different species found in central Spain were examined for the presence of Salmonella. Thirty-nine reptiles (41.5%) yielded 48 Salmonella isolates, whereas all the amphibians examined were negative. Subspecies Salmonella enterica enterica (I) accounted for up to 50% of isolates. Fourteen isolates (29.2%) belonged to subspecies diarizonae (IIIb), six isolates (12.5%) to subspecies salamae (II), and four isolates (8.3%) to subspecies arizonae (IIIa). Twenty-seven different serotypes were identified. Serotypes Anatum (12.5%), Herzliya (8.3%), Abony, 18:l,v:z, 9,12:z29:1,5 and 38:z10:z53 (6.2%/each) were the most frequently isolated. A high percentage (39.6%) of isolates belonged to serotypes previously associated with environmental sources. Also, 37.5% of isolates belonged to serotypes which had been related to human cases of salmonellosis. From these data, it is concluded that wild reptiles, but apparently not amphibians, may represent an important reservoir of Salmonella in nature and have potential implications for public health.

  1. 50 CFR 17.43 - Special rules-amphibians.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 2 2013-10-01 2013-10-01 false Special rules-amphibians. 17.43 Section 17.43 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER, EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) ENDANGERED AND...

  2. Environmental influences on amphibian assemblages across subalpine wet meadows in the Klamath Mountains, California.

    Treesearch

    Esther M. Cole; Malcolm North

    2014-01-01

    Many high-elevation regions in the western USA are protected public lands that remain relatively undisturbed by human impact. Over the last century, however, nonnative trout and cattle have been introduced to subalpine wetland habitats used by sensitive amphibian species. Our study compares the relative importance of cattle and trout impact on amphibian assemblages,...

  3. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    USGS Publications Warehouse

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  4. A new parameterization for integrated population models to document amphibian reintroductions

    USGS Publications Warehouse

    Duarte, Adam; Pearl, Christopher; Adams, Michael J.; Peterson, James T.

    2017-01-01

    Managers are increasingly implementing reintroduction programs as part of a global effort to alleviate amphibian declines. Given uncertainty in factors affecting populations and a need to make recurring decisions to achieve objectives, adaptive management is a useful component of these efforts. A major impediment to the estimation of demographic rates often used to parameterize and refine decision-support models is that life-stage-specific monitoring data are frequently sparse for amphibians. We developed a new parameterization for integrated population models to match the ecology of amphibians and capitalize on relatively inexpensive monitoring data to document amphibian reintroductions. We evaluate the capability of this model by fitting it to Oregon spotted frog (Rana pretiosa) monitoring data collected from 2007 to 2014 following their reintroduction within the Klamath Basin, Oregon, USA. The number of egg masses encountered and the estimated adult and metamorph abundances generally increased following reintroduction. We found that survival probability from egg to metamorph ranged from 0.01 in 2008 to 0.09 in 2009 and was not related to minimum spring temperatures, metamorph survival probability ranged from 0.13 in 2010–2011 to 0.86 in 2012–2013 and was positively related to mean monthly temperatures (logit-scale slope = 2.37), adult survival probability was lower for founders (0.40) than individuals recruited after reintroduction (0.56), and the mean number of egg masses per adult female was 0.74. Our study is the first to test hypotheses concerning Oregon spotted frog egg-to-metamorph and metamorph-to-adult transition probabilities in the wild and document their response at multiple life stages following reintroduction. Furthermore, we provide an example to illustrate how the structure of our integrated population model serves as a useful foundation for amphibian decision-support models within adaptive management programs. The integration of multiple

  5. Terrestrial habitat selection and strong density-dependent mortality in recently metamorphosed amphibians.

    PubMed

    Patrick, David A; Harper, Elizabeth B; Hunter, Malcolm L; Calhoun, Aram J K

    2008-09-01

    To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats

  6. A Comparison of the Efficacy of Survey Methods for Amphibians in Small Forest Ponds

    Treesearch

    Richard R. Buech; Leanna M. Egeland

    2002-01-01

    Although researchers have studied amphibians for many years, status assessments have been hampered by a lack of standards and protocols for inventory and monitoring. Heyer et al. (1994) and Olson et al. (1997) provide a foundation in their reviews of methods used for measuring and monitoring amphibian biodiversity. It is clear from these reviews that no single method...

  7. Assessing the global zoo response to the amphibian crisis through 20-year trends in captive collections.

    PubMed

    Dawson, Jeff; Patel, Freisha; Griffiths, Richard A; Young, Richard P

    2016-02-01

    Global amphibian declines are one of the biggest challenges currently facing the conservation community, and captive breeding is one way to address this crisis. Using information from the International Species Information System zoo network, we examined trends in global zoo amphibian holdings across species, zoo region, and species geographical region of origin from 1994 to 2014. These trends were compared before and after the 2004 Global Amphibian Assessment to assess whether any changes occurred and whether zoo amphibian conservation effort had increased. The numbers of globally threatened species (GTS) and their proportional representation in global zoo holdings increased and this rate of increase was significantly greater after 2004. North American, European, and Oceanian GTS were best represented in zoos globally, and proportions of Oceanian GTS held increased the most since 2004. South American and Asian GTS had the lowest proportional representation in zoos. At a regional zoo level, European zoos held the lowest proportions of GTS, and this proportion did not increase after 2004. Since 1994, the number of species held in viable populations has increased, and these species are distributed among more institutions. However, as of 2014, zoos held 6.2% of globally threatened amphibians, a much smaller figure than for other vertebrate groups and one that falls considerably short of the number of species for which ex situ management may be desirable. Although the increased effort zoos have put into amphibian conservation over the past 20 years is encouraging, more focus is needed on ex situ conservation priority species. This includes building expertise and capacity in countries that hold them and tracking existing conservation efforts if the evidence-based approach to amphibian conservation planning at a global level is to be further developed. © 2015 Society for Conservation Biology.

  8. A strategy for monitoring and managing declines in an amphibian community.

    PubMed

    Grant, Evan H Campbell; Zipkin, Elise F; Nichols, James D; Campbell, J Patrick

    2013-12-01

    Although many taxa have declined globally, conservation actions are inherently local. Ecosystems degrade even in protected areas, and maintaining natural systems in a desired condition may require active management. Implementing management decisions under uncertainty requires a logical and transparent process to identify objectives, develop management actions, formulate system models to link actions with objectives, monitor to reduce uncertainty and identify system state (i.e., resource condition), and determine an optimal management strategy. We applied one such structured decision-making approach that incorporates these critical elements to inform management of amphibian populations in a protected area managed by the U.S. National Park Service. Climate change is expected to affect amphibian occupancy of wetlands and to increase uncertainty in management decision making. We used the tools of structured decision making to identify short-term management solutions that incorporate our current understanding of the effect of climate change on amphibians, emphasizing how management can be undertaken even with incomplete information. Estrategia para Monitorear y Manejar Disminuciones en una Comunidad de Anfibios. © 2013 Society for Conservation Biology.

  9. Pentastomiasis and other parasitic zoonoses from reptiles and amphibians.

    PubMed

    Pantchev, Nikola; Tappe, Dennis

    2011-01-01

    Reptiles are growing in popularity as pets.The colonization of reptiles and amphibians by parasites and the resulting disease conditions are the most common problems seen in captive animals.This review focuses on pentastomiasis and sparganosis, important parasitic zoonoses of reptiles and amphibians, respectively, and free living-amoebae. Humans are suitable accidental hosts for some pentastomid species (particularly Armillifer and Porocephalus). In geographical areas with special ethnics, such as in West and Central Africa, and East Asia, 8-45% of the human population can be affected. Usually the larvae are coincidentally found during abdominal surgeries. However, fatalities have been described. Extreme caution is necessary when handling infected reptiles. Ocular or cerebral sparganosis is not uncommonly found in humans in East Asia. This disease is caused by spargana, tapeworm larvae (plerocercoids) of Spirometra sp. The infection occurs when uncooked meat from reptiles or amphibians is applied to wounds or eyes and the parasites migrate directly to human tissue, or by consumption of contaminated food or water. As a consequence of the reptile's predatory behaviour, the full spectrum of endo- and ectoparasites from potential prey animals can be found as transiting parasites in the intestinal tract, e. g. Hymenolepis nana, Cryptosporidium (C.) muris, C parvum or Capillaria hepatica. Occasionally, free-living amoebae are also found in reptile faeces (Acanthamoeba, Naegleria, Hartmanella, Vahlkampfia or Echinamoeba sp.).

  10. AMPHIBIAN DECLINE, ULTRAVIOLET RADIATION AND LOCAL POPULATION ADAPTATION

    EPA Science Inventory

    Amphibian population declines have been noted on both local and global scales. Causes for these declines are unknown although many hypotheses have been offered. In areas adjacent to human development, loss of habitat is a fairly well accepted cause. However in isolated, seemingl...

  11. FACTORS ADVERSELY AFFECTING AMPHIBIAN POPULATIONS IN THE US

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from species accounts written in a standardized format by multiple authors in a forthcoming book. Specific adverse factors were identified for 53 (58%) of...

  12. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome.

    PubMed

    Becker, C G; Longo, A V; Haddad, C F B; Zamudio, K R

    2017-08-30

    Deforestation has detrimental consequences on biodiversity, affecting species interactions at multiple scales. The associations among vertebrates, pathogens and their commensal/symbiotic microbial communities (i.e. microbiomes) have important downstream effects for biodiversity conservation, yet we know little about how deforestation contributes to changes in host microbial diversity and pathogen abundance. Here, we tested the effects of landcover, forest connectivity and infection by the chytrid fungus Batrachochytrium dendrobatidis ( Bd ) on amphibian skin bacterial diversity along deforestation gradients in Brazilian landscapes. If disturbance to natural habitat alters skin microbiomes as it does in vertebrate host communities, then we would expect higher host bacterial diversity in natural forest habitats. Bd infection loads are also often higher in these closed-canopy forests, which may in turn impact skin-associated bacterial communities. We found that forest corridors shaped composition of host skin microbiomes; high forest connectivity predicted greater similarity of skin bacterial communities among host populations. In addition, we found that host skin bacterial diversity and Bd loads increased towards natural vegetation. Because symbiotic bacteria can potentially buffer hosts from Bd infection, we also evaluated the bi-directional microbiome- Bd link but failed to find a significant effect of skin bacterial diversity reducing Bd infections. Although weak, we found support for Bd increasing bacterial diversity and/or for core bacteria dominance reducing Bd loads. Our research incorporates a critical element in the study of host microbiomes by linking environmental heterogeneity of landscapes to the host-pathogen-microbiome triangle. © 2017 The Author(s).

  13. From tails to toes: developing nonlethal tissue indicators of mercury exposure in five amphibian species

    USGS Publications Warehouse

    Pfleeger, Adam Z.; Eagles-Smith, Collin A.; Kowalski, Brandon M.; Herring, Garth; Willacker, James J.; Jackson, Allyson K.; Pierce, John

    2016-01-01

    Exposure to environmental contaminants has been implicated as a factor in global amphibian decline. Mercury (Hg) is a particularly widespread contaminant that biomagnifies in amphibians and can cause a suite of deleterious effects. However, monitoring contaminant exposure in amphibian tissues may conflict with conservation goals if lethal take is required. Thus, there is a need to develop non-lethal tissue sampling techniques to quantify contaminant exposure in amphibians. Some minimally invasive sampling techniques, such as toe-clipping, are common in population-genetic research, but it is unclear if these methods can adequately characterize contaminant exposure. We examined the relationships between mercury (Hg) concentrations in non-lethally sampled tissues and paired whole-bodies in five amphibian species. Specifically, we examined the utility of three different tail-clip sections from four salamander species and toe-clips from one anuran species. Both tail and toe-clips accurately predicted whole-body THg concentrations, but the relationships differed among species and the specific tail-clip section or toe that was used. Tail-clips comprised of the distal 0–2 cm segment performed the best across all salamander species, explaining between 82 and 92 % of the variation in paired whole-body THg concentrations. Toe-clips were less effective predictors of frog THg concentrations, but THg concentrations in outer rear toes accounted for up to 79 % of the variability in frog whole-body THg concentrations. These findings suggest non-lethal sampling of tails and toes has potential applications for monitoring contaminant exposure and risk in amphibians, but care must be taken to ensure consistent collection and interpretation of samples.

  14. OPTICAL CHARACTERISTICS OF NATURAL WATERS PROTECT AMPHIBIAN POPULATIONS FROM UV-B IN THE US PACIFIC NORTHWEST

    EPA Science Inventory

    Increased exposure to ultraviolet-B (UV-B) radiation has been proposed as a major environmental stressor leading to global amphibian declines. Prior experimental evidence from the US Pacific Northwest (PNW) indicating the acute embryonic sensitivity of at least 4 amphibian specie...

  15. Sampling methods for terrestrial amphibians and reptiles.

    Treesearch

    Paul Stephen Corn; R. Bruce Bury

    1990-01-01

    Methods described for sampling amphibians and reptiles in Douglas-fir forests in the Pacific Northwest include pitfall trapping, time-constrained collecting, and surveys of coarse woody debris. The herpetofauna of this region differ in breeding and nonbreeding habitats and vagility, so that no single technique is sufficient for a community study. A combination of...

  16. Biogeography of amphibians and reptiles in Arizona

    Treesearch

    Eric W. Stitt; Theresa M. Mau-Crimmins; Don E. Swann

    2005-01-01

    We examined patterns of species richness for amphibians and reptiles in Arizona and evaluated patterns in species distribution between ecoregions based on species range size. In Arizona, the Sonoran Desert has the highest herpetofauna diversity, and the southern ecoregions are more similar than other regions. There appear to be distinct low- and mid-elevational...

  17. Transmembrane adenylyl cyclase regulates amphibian sperm motility through Protein Kinase A activation

    PubMed Central

    O’Brien, Emma D.; Krapf, Darío; Cabada, Marcelo O.; Visconti, Pablo E.; Arranz, Silvia E.

    2014-01-01

    Sperm motility is essential for achieving fertilization. In animals with external fertilization as amphibians, spermatozoa are stored in a quiescent state in the testis. Spermiation to hypotonic fertilization media triggers activation of sperm motility. Bufo arenarum sperm are immotile in artificial seminal plasma (ASP) but acquire in situ flagellar beating upon dilution. In addition to the effect of low osmolarity on sperm motility activation, we report that diffusible factors of the egg jelly coat (EW) regulate motility patterns, switching from in situ to progressive movement. The signal transduction pathway involved in amphibian sperm motility activation is mostly unknown. In the present study, we show a correlation between motility activation triggered by low osmotic pressure and activation of protein kinase A (PKA). Moreover, this is the first study to present strong evidences that point toward a role of a transmembrane adenyl-cyclase (tmAC) in the regulation of amphibian sperm motility through PKA activation. PMID:21126515

  18. Amphibians and Reptiles of the state of Nuevo León, Mexico.

    PubMed

    Lemos-Espinal, Julio A; Smith, Geoffrey R; Cruz, Alexander

    2016-01-01

    We compiled a check list of the herpetofauna of Nuevo León. We documented 132 species (23 amphibians, 109 reptiles), representing 30 families (11 amphibians, 19 reptiles) and 73 genera (17 amphibians, 56 reptiles). Only two species are endemic to Nuevo León. Nuevo León contains a relatively high richness of lizards in the genus Sceloporus. Overlap in the herpetofauna of Nuevo León and states it borders is fairly extensive. Of 130 native species, 102 are considered species of Least Concern in the IUCN red list, four are listed as Vulnerable, five are listed as Near Threatened, and four are listed as Endangered. According to SEMARNAT, 78 species are not of conservation concern, 25 are subject to Special Protection, 27 are Threatened, and none are listed as in Danger of Extinction. Given current threats to the herpetofauna, additional efforts to understand the ecology and status of populations in Nuevo León are needed.

  19. Amphibians and Reptiles of the state of Nuevo León, Mexico

    PubMed Central

    Lemos-Espinal, Julio A.; Smith, Geoffrey R.; Cruz, Alexander

    2016-01-01

    Abstract We compiled a check list of the herpetofauna of Nuevo León. We documented 132 species (23 amphibians, 109 reptiles), representing 30 families (11 amphibians, 19 reptiles) and 73 genera (17 amphibians, 56 reptiles). Only two species are endemic to Nuevo León. Nuevo León contains a relatively high richness of lizards in the genus Sceloporus. Overlap in the herpetofauna of Nuevo León and states it borders is fairly extensive. Of 130 native species, 102 are considered species of Least Concern in the IUCN red list, four are listed as Vulnerable, five are listed as Near Threatened, and four are listed as Endangered. According to SEMARNAT, 78 species are not of conservation concern, 25 are subject to Special Protection, 27 are Threatened, and none are listed as in Danger of Extinction. Given current threats to the herpetofauna, additional efforts to understand the ecology and status of populations in Nuevo León are needed. PMID:27408562

  20. Practitioner and scientist perceptions of successful amphibian conservation.

    PubMed

    Meredith, Helen M R; St John, Freya A V; Collen, Ben; Black, Simon A; Griffiths, Richard A

    2018-04-01

    Conservation requires successful outcomes. However, success is perceived in many different ways depending on the desired outcome. Through a questionnaire survey, we examined perceptions of success among 355 scientists and practitioners working on amphibian conservation from over 150 organizations in more than 50 countries. We also sought to identify how different types of conservation actions and respondent experience and background influenced perceptions. Respondents identified 4 types of success: species and habitat improvements (84% of respondents); effective program management (36%); outreach initiatives such as education and public engagement (25%); and the application of science-based conservation (15%). The most significant factor influencing overall perceived success was reducing threats. Capacity building was rated least important. Perceptions were influenced by experience, professional affiliation, involvement in conservation practice, and country of residence. More experienced practitioners associated success with improvements to species and habitats and less so with education and engagement initiatives. Although science-based conservation was rated as important, this factor declined in importance as the number of programs a respondent participated in increased, particularly among those from less economically developed countries. The ultimate measure of conservation success-population recovery-may be difficult to measure in many amphibians; difficult to relate to the conservation actions intended to drive it; and difficult to achieve within conventional funding time frames. The relaunched Amphibian Conservation Action Plan provides a framework for capturing lower level processes and outcomes, identifying gaps, and measuring progress. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.