Science.gov

Sample records for amphidiploid triticum aestivum

  1. [Genetics determination of wheat resistance to Puccinia graminis F. sp. tritici deriving from Aegilops cylindrica, Triticum erebuni and amphidiploid 4].

    PubMed

    Babaiants, O V; Babaiants, L T; Horash, A F; Vasil'ev, A A; Trackovetskaia, V A; Paliasn'iĭĭ, V A

    2012-01-01

    The lines of winter soft wheat developed in the Plant Breeding and Genetics Institute contain new effective introgressive Sr-genes. Line 85/06 possess SrAc1 gene, lines 47/06, 54/06, 82/06, 85/06, 87/06, 238/06, and 367/06 possess SrAc1 and SrAc2 derived from Aegilops cylindrica, line 352/06 - SrTe1 and SrTe2 from Triticum erebuni, line 12/86-04 - SrAd1 and SrAd2 from Amphidiploid 4 (Triticum dicoccoides x Triticum tauschii).

  2. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement.

    PubMed

    Nemeth, Csilla; Yang, Cai-yun; Kasprzak, Paul; Hubbart, Stella; Scholefield, Duncan; Mehra, Surbhi; Skipper, Emma; King, Ian; King, Julie

    2015-02-01

    We aim to improve diversity of domesticated wheat by transferring genetic variation for important target traits from related wild and cultivated grass species. The present study describes the development of F1 hybrids between wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum and production of new amphidiploids. Amphidiploid lines were produced from 20 different distant relatives. Both colchicine and caffeine were successfully used to double the chromosome numbers. The genomic constitution of the newly formed amphidiploids derived from seven distant relatives was determined using genomic in situ hybridization (GISH). Altogether, 42 different plants were analysed, 19 using multicolour GISH separating the chromosomes from the A, B, and D genomes of wheat, as well as the distant relative, and 23 using single colour GISH. Restructuring of the allopolyploid genome, both chromosome losses and aneuploidy, was detected in all the genomes contained by the amphidiploids. From the observed chromosome numbers there is an indication that in amphidiploids the B genome of wheat suffers chromosome losses less frequently than the other wheat genomes. Phenotyping to realize the full potential of the wheat-related grass germplasm is underway, linking the analyzed genotypes to agronomically important target traits.

  3. [Comparative Characteristic of Triticum aestivum/Triticum durum and Triticum aestivum/Triticum dicoccum hybrid lines by genomic composition and resistance to fungal diseases under different environmental conditions].

    PubMed

    Leonova, I N; Badaeva, E D; Orlovskaya, O A; Roder, M S; Khotyleva, L V; Salina, E A; Shumny, V K

    2013-11-01

    The genetic diversity of common wheat hybrid lines Triticum aestivum/Triticum durum and Triticum aestivum/Triticum dicoccum (2n = 42, F(6-7)) using chromosome-specific microsatellite (SSR) markers and C-staining of chromosomes was studied. Cluster analysis of data obtained by 42 SSR markers indicated that the hybrid lines can be broken into three groups according to their origin. There were two cases of complete genetic similarity between lines 183(2)-2/184(1)-6 and-208-3/213-1, which were obtained using common wheat as the parental plants. In cross combinations, when the stabilization of the nuclear genome of hexaploid lines occurred against a background of the cytoplasmic genome of tetraploid wheats, there was a high level of divergence between sister lines, in some cases exceeding 50%. The evaluation of the degree of susceptibility of the lines to powdery mildew, leaf and stem rust, and septoria leafblotch was performed under different environmental conditions. It was shown that resistance to powdery mildew and leaf rust significantly depended on the region where assays were conducted. An evaluation of the field data showed that he lines 195-3, 196-1, and 221-1 with T. durum genetic material displayed complex resistance to fungal pathogens in Western Siberia and the Republic of Belarus. For lines 195-3 and 196-1, one shows a possible contribution of chromosomes 4B and 5B in the formation of complex resistance to diseases. Hybrid lines with complex resistance can be used to expand the genetic diversity of modern common wheat cultivars for genes of immunity.

  4. Determination of flavonoids in Triticum aestivum L. treated with ampicillin

    NASA Astrophysics Data System (ADS)

    Soran, M. L.; Opriş, O.; Copaciu, F.; Varodi, C.

    2012-02-01

    Pharmaceutical residues in the environment, and their potential toxic effects, have been recognized as one of the emerging research area in the environmental chemistry. Antibiotics can reach plants from treated soil or due to irrigation. The flavonoids extraction from Triticum aestivum L. treated with ampicillin and separation of flavonoids are presented in this study. There were used classical and modern extraction techniques (maceration, microwave assisted solvents, etc). The efficiency of extraction process was spectrophotometricaly evaluated by determining the total flavonoids content and by HPTLC on silica gel plates using the mixture: carbon tetrachloride - acetone - formic acid (35:11:3, v/v) as mobile phase. The developed plates were inspected both in ultraviolet and visible after visualization with NTS reagent (diphenylboryloxyethylamin). The chromatographic plates were compared in respect to determine the changes in extract composition due to the different extraction techniques. Depending on the concentration of ampicillin administered to plants, comparative studies on flavonoids content were performed.

  5. Intergenerational responses of wheat (Triticum aestivum L.) to ...

    EPA Pesticide Factsheets

    The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds from plants that were exposed to 0, 125, and 500 mg CeO2-NPs/kg soil (Ce-0, Ce-125 or Ce-500, respectively) in first generation (S1) were cultivated in factorial combinations of Ce-0, Ce-125 or Ce-500 to produce second generation (S2) plants. The factorial combinations for first/second generation treatments in Ce-125 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-125, S1-Ce-125/S2-Ce-0 and S1-Ce-125/S2-Ce-125, and in Ce-500 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-500, S1-Ce-500/S2-Ce-0 and S1-Ce-500/S2-Ce-500. Agronomic, elemental, and isotopic data were collected in second generation plants. Results showed that plants treated during the first generation only with either Ce-125 or Ce-500 (e.g. S1-Ce-125/S2-Ce-0 or S1-Ce-500/S2-Ce-0) had reduced accumulation of Ce (61 or 50%), Fe (49 or 58%) and Mn (34 or 41%) in roots, and δ15N (11 or 8%) in grains compared to the plants not treated in both generations (i.e. S1-Ce-0/S2-Ce-0). In addition, plants treated in both generations with Ce-125 (i.e. S1-Ce-125/S2-Ce-125) produced grains that had lower Mn, Ca, K, Mg and P relative to plants treated in the second generation only (i.e. S1-Ce-0/S2-Ce-125). The findings demonstrated that first generation exposure of

  6. Combining ability for tolerance to pre-harvest sprouting in common wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pre-harvest sprouting (PHS) affects wheat (Triticum aestivum L.) yield and end-use product quality leading to massive economic losses. Red wheat cultivars are typically more resistant to PHS than white wheat. The objective of this study was to identify red wheat genotypes capable of donating genes f...

  7. Distribution of cadmium, iron and zinc in millstreams of hard winter wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hard winter wheat (Triticum aestivum L.) is a major crop in the Great Plains of the United 14 States, and our previous work demonstrated that wheat genotypes vary for grain cadmium 15 accumulation, with some exceeding the CODEX standard (0.2 mg kg-1). Previous reports of 16 cadmium distribution in ...

  8. A review of the occurrence of grain softness protein-1 genes in wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain softness protein-1 (Gsp-1) is a small, 495-bp intronless gene found throughout the Triticeae tribe at the distal end of group 5 chromosomes. With the Puroindolines, it constitutes a key component of the Hardness locus. In the polyploid wheats, Triticum aestivum and T. turgidum, the gene is pr...

  9. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure

    EPA Science Inventory

    The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds f...

  10. Did the house mouse (Mus musculus L.) shape the evolutionary trajectory of wheat (Triticum aestivum L.)?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum L.) is one of the most successful domesticated plant species in the world. The majority of wheat carries mutations in the Puroindoline genes that result in a hard kernel phenotype. An explanation as to the selection of these hard-kernel mutations has not been established. He...

  11. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain polyphenol oxidase (PPO) activity can cause discoloration of wheat (Triticum aestivum L.) food products. Five crosses (PI 117635/Antelope; Fielder/NW03681; Fielder/Antelope; NW07OR1070/Antelope; NW07OR1066/OR2050272H) were selected to study the genetic inheritance of PPO activity. STS marker...

  12. Molecular and phylogenetic characterization of the homoeologous EPSP Synthase genes of allohexaploid wheat, Triticum aestivum (L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the sixth and penultimate enzyme in the shikimate biosynthesis pathway. The EPSPS genes of allohexaploid wheat (Triticum aestivum, AABBDD) have not been well characterized. Herein, the three homoeologous copies of the wheat EPSPS gen...

  13. Ractopamine uptake by alfalfa (Medicago sativa) and wheat (Triticum aestivum) from soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ractopamine is a beta adrenergic agonist used as a growth promoter in swine, cattle and turkeys. To test whether ractopamine has the potential to accumulate in plants grown in contaminated soil, a greenhouse study was conducted with alfalfa (Medicago sativa) and wheat (Triticum aestivum) grown in t...

  14. Analysis of gene-derived SNP marker polymorphism in wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we analyzed 359 single nucleotide polymorphisms (SNPs) previously discovered in intron sequences of wheat genes to evaluate SNP marker polymorphism in common wheat (Triticum aestivum L.). These SNPs showed an average polymorphism information content (PIC) of 0.181 among 20 US wheat c...

  15. Development of a set of compensating Triticum aestivum-Dasypyrum villosum Robertsonian translocation lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dasypyrum villosum (L.) Candargy, a wild relative of bread wheat (Triticum aestivum L.) is the source of agronomically important genes for wheat improvement. The first step in exploiting this variation is the production of compensating Robertsonian translocations (cRobTs) consisting of D. villosum c...

  16. Dynamics of rhizosphere properties and antioxidative responses in wheat (Triticum aestivum L.) under cadmium stress.

    PubMed

    Li, Yonghua; Wang, Li; Yang, Linsheng; Li, Hairong

    2014-04-01

    In this study, we performed a rhizobox experiment to examine the dynamic changes in the rhizosphere properties and antioxidant enzyme responses of Triticum aestivum L. under three levels of cadmium stress. A set of micro-techniques (i.e., Rhizobox and Rhizon SMS) were applied for the dynamically non-destructive collection of the rhizosphere soil solution to enable the observation at a high temporal resolution. The dynamics of soluble cadmium and dissolved organic carbon (DOC) in the rhizosphere soil solutions of the Triticum aestivum L. were characterised by the sequence week 0 after sowing (WAS0)<3 weeks after sowing (WAS3)<10 weeks after sowing (WAS10), whereas the soil solution pH was found to follow an opposite distribution pattern. Systematically, both superoxide dismutase (SOD) and catalase (CAT) activities in the leaves of the Triticum aestivum L. increased concomitantly with increasing cadmium levels (p>0.05) and growth duration (p<0.05), whilst ascorbate peroxidase (APX) activity was induced to an elevated level at moderate cadmium stress with a decrease at high cadmium stress (p>0.05). These results suggested the enhancement of DOC production and the greater antioxidant enzyme activities were two important protective mechanisms of Triticum aestivum L. under cadmium stress, whereas rhizosphere acidification might be an important mechanism for the mobilisation of soil cadmium. The results also revealed that plant-soil interactions strongly influence the soil solution chemistry in the rhizosphere of Triticum aestivum L., that, in turn, can stimulate chemical and biochemical responses in the plants. In most cases, these responses to cadmium stress were sensitive and might allow us to develop strategies for reducing the risks of the cadmium contamination to crop production.

  17. Transfer of soft kernel texture from Triticum aestivum to durum wheat, Triticum turgidum ssp. durum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat (Triticum turgidum ssp. durum) is a leading cereal grain whose primary use is the production of semolina and then pasta. Its rich culinary relationship to humans is related, in part, to its very hard kernel texture. This very hard texture is due to the loss of the Puroindoline genes whi...

  18. Genome-wide genetic dissection of supernumerary spikelet and related traits in common wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wheat (Triticum aestivum L), exotic genotypes express a broad range of spike-related traits and could be used as a source of new genes to enrich the germplasm for wheat breeding programs. In the present study, a population of 163 recombinant inbred lines derived from a cross between an elite line...

  19. Heading date QTL in winter wheat (Triticum aestivum L.) coincide with major developmental genes Vernalization-1 and Photoperiod-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wheat (Triticum aestivum L.), time from planting to spike emergence is influenced by genes controlling vernalization requirement and photoperiod response. Characterizing the available genetic diversity of known and novel alleles of Vernalization-1 (Vrn-1) and Photoperiod-1 (Ppd-1) in winter wheat...

  20. Use of student’s t statistic as a phenotype of relative consumption preference of wheat (Triticum aestivum L.) grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole-grain wheat (Triticum aestivum L.) products provide essential nutrients to humans, but bran attributes may hinder consumption. Differences in grain attributes including flabor/aroma can be indentified using the house mouse (Mus musculus L.) as a model system. A potential application of this mo...

  1. Repeatability of mice consumption discrimination of wheat (Triticum aestivum L.) varieties across field experiments and mouse cohorts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole grain wheat (Triticum aestivum L.) foods can provide critical nutrients for health and nutrition in the human diet. However, undesirable flavors are often suggested as a barrier to increased whole-grain consumption, yet flavor differences among wheat varieties have not been widely studied. Pot...

  2. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  3. Complementary epistasis involving Sr12 explains adult plant resistance to stem rust in Thatcher wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult plant resistance (APR) in wheat (Triticum aestivum L.) to stem rust, caused by Puccinia graminis f. sp. tritici, is desirable because this resistance can be race non-specific. Resistance derived from cultivar Thatcher can confer high levels of APR to the virulent P. graminis f. sp. tritici rac...

  4. Heavy Metal Uptake, Translocation, and Bioaccumulation Studies of Triticum aestivum Cultivated in Contaminated Dredged Materials

    PubMed Central

    Shumaker, Ketia L.; Begonia, Gregorio

    2005-01-01

    Phytoremediation is a technology that uses vegetation to remediate contaminants from water, soil, and sediments. Unlike traditional remediation techniques such as soil washing or vitrification, phytoremediation offers a technology that is solar-driven, aesthetically pleasing, and cost effective. Recent studies indicate that winter wheat (Triticum aestivum L.) is a potential accumulator for heavy metals such as lead (Pb) and cadmium (Cd) in hydroponic systems. Based on these findings, a laboratory study was conducted with the primary objective of determining the phytoaccumulation capability of this plant species for heavy metals from contaminated dredged materials (DMs) originating from two confined disposal facilities (CDF). The United States Army Corps of Engineers (USACE) manages several hundred million cubic meters of DMs each year, and 5 to 10 % of these DMs require special handling because they are contaminated with hazardous substances that can move from the substrates into food webs causing unacceptable risk outside CDFs. Phytoremediation may offer an alternative to decrease this risk. Chemical analyses by USACE personnel identified 17 metals in various DMs, but in this present study, only zinc (Zn) and Cd were investigated. Pre-germinated seeds of the test plants were planted under laboratory conditions in pots containing the various DMs and reference soil. Four weeks after planting, plants were harvested and separated into roots and shoots for biomass production and tissue metal concentrations analyses. Results showed that T. aestivum plants have the capacity to tolerate and grow in multiple-metal contaminated DMs with the potential of accumulating various amounts of Zn and Cd. Root and shoot biomass of T. aestivum were not significantly affected by the DMs on which the plants were grown suggesting that this plant species can grow just as well on DMs contaminated by various metals as in the reference soil. No significant differences in the Zn tissue

  5. Distribution of Cadmium, Iron, and Zinc in Millstreams of Hard Winter Wheat (Triticum aestivum L.).

    PubMed

    Guttieri, Mary J; Seabourn, Bradford W; Liu, Caixia; Baenziger, P Stephen; Waters, Brian M

    2015-12-16

    Hard winter wheat (Triticum aestivum L.) is a major crop in the Great Plains of the United States, and our previous work demonstrated that wheat genotypes vary for grain cadmium accumulation with some exceeding the CODEX standard (0.2 mg kg(-1)). Previous reports of cadmium distribution in flour milling fractions have not included high cadmium grain. This study measured the distribution of cadmium, zinc, and iron in flour and bran streams from high cadmium (0.352 mg kg(-1)) grain on a pilot mill that produced 12 flour and four bran streams. Recovery in flour was substantially greater for cadmium (50%) than for zinc (31%) or iron (22%). Cadmium, zinc, and iron in the lowest mineral concentration flour stream, representing the purest endosperm fraction, were 52, 22, and 11%, respectively, of initial grain concentration. Our results indicate that, relative to zinc and iron, a greater proportion of cadmium is stored in the endosperm, the source of white flour.

  6. Did the house mouse (Mus musculus L.) shape the evolutionary trajectory of wheat (Triticum aestivum L.)?

    PubMed Central

    Morris, C F; Fuerst, E P; Beecher, B S; Mclean, D J; James, C P; Geng, H W

    2013-01-01

    Wheat (Triticum aestivum L.) is one of the most successful domesticated plant species in the world. The majority of wheat carries mutations in the Puroindoline genes that result in a hard kernel phenotype. An evolutionary explanation, or selective advantage, for the spread and persistence of these hard kernel mutations has yet to be established. Here, we demonstrate that the house mouse (Mus musculus L.) exerts a pronounced feeding preference for soft over hard kernels. When allele frequencies ranged from 0.5 to 0.009, mouse predation increased the hard allele frequency as much as 10-fold. Studies involving a single hard kernel mixed with ∼1000 soft kernels failed to recover the mutant kernel. Nevertheless, the study clearly demonstrates that the house mouse could have played a role in the evolution of wheat, and therefore the cultural trajectory of humankind. PMID:24223281

  7. Physiological and Antioxidant Responses in Wheat (Triticum aestivum) to HHCB in Soil.

    PubMed

    Chen, Cuihong; Cai, Zhang

    2015-08-01

    Seedlings of wheat (Triticum aestivum) were exposed in soil to the polycyclic musk chemical, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran (HHCB) for 21 days, to evaluate its effect upon chlorophyll (CHL), lipid peroxidation and the antioxidant system. The content of CHL in leaves was inhibited significantly after 14- and 21-days exposures, whereas it was significantly induced by a low level of HHCB after a 7-days exposure. The content of malondialdehyde (MDA) in wheat leaves increased with an increase in the concentration of HHCB in soil, indicating that oxidative stress could be induced by HHCB. Moreover, HHCB exposure induced significant antioxidant responses in wheat. The activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in wheat leaves were induced by HHCB after 14 and 21 days of exposure. However, the changing trend of the antioxidant enzymes in wheat roots was different from that in leaves. The results suggested that the assayed parameters of T. aestivum could be used as responsive biomarkers for oxidative stress in the soil environment.

  8. Isolation, chemical characterization, and free radical scavenging activity of phenolics from Triticum aestivum L. aerial parts.

    PubMed

    Kowalska, Iwona; Pecio, Lukasz; Ciesla, Lukasz; Oleszek, Wieslaw; Stochmal, Anna

    2014-11-19

    Fourteen phenolic compounds (flavonoids and phenolic acids) were isolated and 19 were identified in the aerial parts of Triticum aestivum L. The structures of these compounds were established on the basis of the data obtained by electrospray ionization-mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) techniques. T. aestivum L. was found to be rich in flavones, especially in luteolin derivatives. Three of the isolated compounds, including luteolin 6-C-[6Glc″-O-E-caffeoyl-β-D-glucopyranosyl(1″→2)-β-glucopyranoside], luteolin 6-C-[5Rib″-O-E-feruoyl-β-D-ribofuranosyl(1″→2)-β-glucopyranoside], and 3',4',5'-O-trimethyltricetin 7-O-[β-D-glucuropyranosyl(1″→2)-β-D-glucopyranoside], have been reported for the first time in the plant kingdom. The amount of individual phenolics, in winter wheat, was also determined. Additionally, the free radical scavenging potential of the isolated compounds was tested in a simple and rapid thin-layer chromatography-2,2-diphenyl-1-picrylhydrazyl radical test (TLC-DPPH•) with image processing.

  9. Molecular diversity of α-gliadin expressed genes in genetically contrasted spelt (Triticum aestivum ssp. spelta) accessions and comparison with bread wheat (T. aestivum ssp. aestivum) and related diploid Triticum and Aegilops species.

    PubMed

    Dubois, Benjamin; Bertin, Pierre; Mingeot, Dominique

    2016-01-01

    The gluten proteins of cereals such as bread wheat (Triticum aestivum ssp. aestivum) and spelt (T. aestivum ssp. spelta) are responsible for celiac disease (CD). The α-gliadins constitute the most immunogenic class of gluten proteins as they include four main T-cell stimulatory epitopes that affect CD patients. Spelt has been less studied than bread wheat and could constitute a source of valuable diversity. The objective of this work was to study the genetic diversity of spelt α-gliadin transcripts and to compare it with those of bread wheat. Genotyping data from 85 spelt accessions obtained with 19 simple sequence repeat (SSR) markers were used to select 11 contrasted accessions, from which 446 full open reading frame α-gliadin genes were cloned and sequenced, which revealed a high allelic diversity. High variations among the accessions were highlighted, in terms of the proportion of α-gliadin sequences from each of the three genomes (A, B and D), and their composition in the four T-cell stimulatory epitopes. An accession from Tajikistan stood out, having a particularly high proportion of α-gliadins from the B genome and a low immunogenic content. Even if no clear separation between spelt and bread wheat sequences was shown, spelt α-gliadins displayed specific features concerning e.g. the frequencies of some amino acid substitutions. Given this observation and the variations in toxicity revealed in the spelt accessions in this study, the high genetic diversity held in spelt germplasm collections could be a valuable resource in the development of safer varieties for CD patients.

  10. Effects of simulated acidic rain on yields of Raphanus sativus, Lactuca sativa, Triticum aestivum and Medicago sativa

    SciTech Connect

    Evans, L.S.; Gmur, N.F.; Mancini, D.

    1982-01-01

    Experiments were performed to determine effects of simulated acidic rain on radishes (Raphanus sativus), wheat(Triticum aestivum) and alfalfa (Medicago sativa) grown under greenhouse conditions. Experimental designs allowed the detection of statistically significant differences among means that differed by less than 10%. These results suggest that the efficiency of radish foliage in increasing; root mass decreases with increased rainfall acidity since only foliage was exposed to the treatments.

  11. Genetic characterization and expression analysis of wheat (Triticum aestivum) line 07OR1074 exhibiting very low polyphenol oxidase (PPO) activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum) polyphenol oxidase (PPO) contributes to the time dependent discoloration of Asian noodles. Wheat contains multiple paralogous and orthologous PPO genes , Ppo-A1, Ppo-D1, Ppo-A2, Ppo-D2, and Ppo-B2, expressed in wheat kernels, Ppo-A1, Ppo-D1, Ppo-A2, Ppo-D2, and Ppo-B2. To d...

  12. Analysis of Triticum aestivum seedling response to the excess of zinc.

    PubMed

    Glińska, Sława; Gapińska, Magdalena; Michlewska, Sylwia; Skiba, Elżbieta; Kubicki, Jakub

    2016-03-01

    The effects of 50 and 300 mg L(-1) Zn(2+) (50 Zn and 300 Zn) were investigated in Triticum aestivum (cv. Żura) grown hydroponically for 7 days. Although wheat treated with 50 Zn took up relatively high amount of the metal (8,943 and 1,503 mg kg(-1) DW in roots and shoots, respectively), none of the morphological and cytological parameters were changed. After 300 Zn, the metal concentration increased to 32,205 and 5,553 mg kg(-1) DW in roots and shoots, respectively. It was connected with the depletion of shoot and root growth, their fresh and dry weight, water content and mitotic index of root meristematic cells. Microelement contents (Cu, Mn and Fe) after 50 Zn were changed only in roots, while 300 Zn disturbed ion balance in whole plants. The most evident ultrastructural alterations of root meristematic cells caused by both tested Zn(2+) doses included increased vacuolization, accumulation of granular deposits inside vacuoles and cell wall thickening. The effect of 300 Zn on root cell ultrastructure was greater that of 50 Zn. The majority of mitochondria had condensed matrix and swollen cristae, plastids contained plastoglobuli, nucleoli were ring-shaped, thinned down cytoplasm with lipid droplets and swollen endoplasmic reticulum cisternae appeared. In mesophyll cells, 50 Zn caused slight reorganization of chloroplast thylakoids and formation of condensed mitochondria. Three hundred Zn triggered more extensive, but not degenerative, changes: plasmolysis of some cells; chloroplasts with protrusions, changed thylakoid organisation and often large starch grains; irregular, condensed mitochondria. The results indicate that T. aestivum cv. Żura is relatively tolerant to Zn stress.

  13. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum)

    PubMed Central

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X.; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions. PMID:25941807

  14. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum).

    PubMed

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  15. Characterization and Expression Analysis of Phytoene Synthase from Bread Wheat (Triticum aestivum L.)

    PubMed Central

    Flowerika; Alok, Anshu; Kumar, Jitesh; Thakur, Neha; Pandey, Ashutosh; Pandey, Ajay Kumar; Upadhyay, Santosh Kumar; Tiwari, Siddharth

    2016-01-01

    Phytoene synthase (PSY) regulates the first committed step of the carotenoid biosynthetic pathway in plants. The present work reports identification and characterization of the three PSY genes (TaPSY1, TaPSY2 and TaPSY3) in wheat (Triticum aestivum L.). The TaPSY1, TaPSY2, and TaPSY3 genes consisted of three homoeologs on the long arm of group 7 chromosome (7L), short arm of group 5 chromosome (5S), and long arm of group 5 chromosome (5L), respectively in each subgenomes (A, B, and D) with a similarity range from 89% to 97%. The protein sequence analysis demonstrated that TaPSY1 and TaPSY3 retain most of conserved motifs for enzyme activity. Phylogenetic analysis of all TaPSY revealed an evolutionary relationship among PSY proteins of various monocot species. TaPSY derived from A and D subgenomes shared proximity to the PSY of Triticum urartu and Aegilops tauschii, respectively. The differential expression of TaPSY1, TaPSY2, and TaPSY3 in the various tissues, seed development stages, and stress treatments suggested their role in plant development, and stress condition. TaPSY3 showed higher expression in all tissues, followed by TaPSY1. The presence of multiple stress responsive cis-regulatory elements in promoter region of TaPSY3 correlated with the higher expression during drought and heat stresses has suggested their role in these conditions. The expression pattern of TaPSY3 was correlated with the accumulation of β-carotene in the seed developmental stages. Bacterial complementation assay has validated the functional activity of each TaPSY protein. Hence, TaPSY can be explored in developing genetically improved wheat crop. PMID:27695116

  16. Classification of 31 Korean Wheat (Triticum aestivum L.) Cultivars Based on the Chemical Compositions.

    PubMed

    Choi, Induck; Kang, Chon-Sik; Lee, Choon-Kee; Kim, Sun-Lim

    2016-12-01

    Whole grain wheat flour (WGWF) is the entire grain (bran, endosperm, and germ) milled to make flour. The WGWF of 31 Korean wheat (Triticum aestivum L.) cultivars were analyzed for the chemical compositions, and classified into groups by hierarchical cluster analysis (HCL). The average composition values showed a substantial variation among wheat varieties due to different wheat varieties. Wheat cv. Shinmichal1 (waxy wheat) had the highest ash, lipid, and total dietary fiber contents of 1.76, 3.14, and 15.49 g/100 g, respectively. Using HCL efficiently classified wheat cultivars into 7 clusters. Namhae, Sukang, Gobun, and Joeun contained higher protein values (12.88%) and dietary fiber (13.74 %). Regarding multi-trait crop breeding, the variation in chemical compositions found between the clusters might be attributed to wheat genotypes, which was an important factor in accumulating those chemicals in wheat grains. Thus, once wheat cultivars with agronomic characteristics were identified, those properties might be included in the breeding process to develop a new variety of wheat with the trait.

  17. Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (Triticum aestivum) grain.

    PubMed

    Pongrac, Paula; Kreft, Ivan; Vogel-Mikus, Katarina; Regvar, Marjana; Germ, Mateja; Vavpetic, Primoz; Grlj, Natasa; Jeromel, Luka; Eichert, Diane; Budic, Bojan; Pelicon, Primoz

    2013-07-06

    Bulk element concentrations of whole grain and element spatial distributions at the tissue level were investigated in wheat (Triticum aestivum) grain grown in Zn-enriched soil. Inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry were used for bulk analysis, whereas micro-proton-induced X-ray emission was used to resolve the two-dimensional localization of the elements. Soil Zn application did not significantly affect the grain yield, but did significantly increase the grain Ca, Fe and Zn concentrations, and decrease the grain Na, P and Mo concentrations; bulk Mg, S, K, Mn, Cu, Cd and Pb concentrations remained unchanged. These changes observed in bulk element concentrations are the reflection of tissue-specific variations within the grain, revealing that Zn application to soil can lead to considerable alterations in the element distributions within the grain, which might ultimately influence the quality of the milling fractions. Spatially resolved investigations into the partitioning of the element concentrations identified the tissues with the highest element concentrations, which is of utmost importance for accurate prediction of element losses during the grain milling and polishing processes.

  18. Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Prakash, Meppaloor G; Chung, Ill Min

    2016-09-01

    The effect of zinc oxide nanoparticles (ZnONPs) was studied in wheat (Triticum aestivum L.) seedlings under in vitro exposure conditions. To avoid precipitation of nanoparticles, the seedlings were grown in half strength semisolid Murashige and Skoog medium containing 0, 50, 100, 200, 400 and 500 mg L(-1) of ZnONPs. Analysis of zinc (Zn) content showed significant increase in roots. In vivo detection using fluorescent probe Zynpyr-1 indicated accumulation of Zn in primary and lateral root tips. All concentrations of ZnONPs significantly reduced root growth. However, significant decrease in shoot growth was observed only after exposure to 400 and 500 mg L(-1) of ZnONPs. The reactive oxygen species and lipid peroxidation levels significantly increased in roots. Significant increase in cell-wall bound peroxidase activity was observed after exposure to 500 mg L(-1) of ZnONPs. Histochemical staining with phloroglucinol-HCl showed lignification of root cells upon exposure to 500 mg L(-1) of ZnONPs. Treatment with propidium iodide indicated loss of cell viability in root tips of wheat seedlings. These results suggest that redox imbalances, lignification and cell death has resulted in reduction of root growth in wheat seedlings exposed to ZnONPs nanoparticles.

  19. Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.).

    PubMed

    Zhou, Lina; Xia, Mengjie; Wang, Li; Mao, Hui

    2016-09-01

    As a persistent organic pollutant in the environment, perfluorooctanoic acid (PFOA) has been extensively investigated. It can accumulate in food chains and in the human body. This work investigated the effect of PFOA on wheat (Triticum aestivum L.) germination and seedling growth by conducting a germination trial and a pot trial. A stimulatory effect of PFOA on seedling growth and root length of wheat was found at <0.2 mg kg(-1), while >800 mg kg(-1) PFOA inhibited germination rate, index, and root and shoot growth. In the pot trial, PFOA concentration in root was double that in the shoot. Soil and plant analyzer development (SPAD) and plant height of wheat seedling were inhibited by adding 200 mg kg(-1) PFOA. Proline content and POD activity in wheat seedlings increased as PFOA increased, while CAT activity decreased. Using logarithmic equations, proline content was selected as the most sensitive index by concentration for 50% of maximal effect (EC50). Hence, the tolerance of wheat seedlings to PFOA levels could be evaluated on the basis of the physiological index.

  20. Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (Triticum aestivum) grain

    PubMed Central

    Pongrac, Paula; Kreft, Ivan; Vogel-Mikuš, Katarina; Regvar, Marjana; Germ, Mateja; Vavpetič, Primož; Grlj, Nataša; Jeromel, Luka; Eichert, Diane; Budič, Bojan; Pelicon, Primož

    2013-01-01

    Bulk element concentrations of whole grain and element spatial distributions at the tissue level were investigated in wheat (Triticum aestivum) grain grown in Zn-enriched soil. Inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry were used for bulk analysis, whereas micro-proton-induced X-ray emission was used to resolve the two-dimensional localization of the elements. Soil Zn application did not significantly affect the grain yield, but did significantly increase the grain Ca, Fe and Zn concentrations, and decrease the grain Na, P and Mo concentrations; bulk Mg, S, K, Mn, Cu, Cd and Pb concentrations remained unchanged. These changes observed in bulk element concentrations are the reflection of tissue-specific variations within the grain, revealing that Zn application to soil can lead to considerable alterations in the element distributions within the grain, which might ultimately influence the quality of the milling fractions. Spatially resolved investigations into the partitioning of the element concentrations identified the tissues with the highest element concentrations, which is of utmost importance for accurate prediction of element losses during the grain milling and polishing processes. PMID:23676898

  1. Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum).

    PubMed

    Wang, Caixia; Zhang, Qingming

    2017-03-01

    The role of exogenous salicylic acid (SA) in protecting wheat plants (Triticum aestivum) from contamination by the insecticide chlorpyrifos was investigated in this study. The wheat plants were grown in soils with different concentrations (5, 10, 20, and 40mgkg(-1)) of chlorpyrifos. When the third leaf emerged, the wheat leaves were sprayed with 1, 2, 4, 8, and 16mgL(-1) of SA once a day for 6 days. The results showed that wheat exposed to higher concentrations of chlorpyrifos (≥20mgkg(-1)) caused declines in growth and chlorophyll content and altered the activities of a series of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). Interestingly, treatments with different concentrations of SA mitigated the stress generated by chlorpyrifos and improved the measured parameters to varying degrees. Furthermore, a reverse transcription and quantitative PCR experiment revealed that the activities of SOD and CAT can be regulated by their target gene in wheat when treated with SA. We also found that SA is able to block the accumulation of chlorpyrifos in wheat. However, the effect of SA was related to its concentration. In this study, the application of 2mgL(-1) of SA had the greatest ameliorating effect on chlorpyrifos toxicity in wheat plants.

  2. Hexaconazole-Cu complex improves the salt tolerance of Triticum aestivum seedlings.

    PubMed

    Li, Jie; Sun, Cuiyu; Yu, Nan; Wang, Chen; Zhang, Tongtong; Bu, Huaiyu

    2016-02-01

    Hexaconazole is one of the triazole complexes that are broadly used as systemic fungicides with non-traditional plant growth regulator properties. Hexaconazole-Cu complex (Hex-Cu) is a new triazole derivative, and the biological effect of Hex-Cu has been rarely studied. In this work, we investigated the functions of Hex-Cu in regulating growth and the response to salt stress in the seedlings of Triticum aestivum. Pretreated with 60μmolL(-1) Hex-Cu, the seedling plants got increased root/shoot ratio by 42.0%, and the contents of chlorophyll and soluble protein were also increased by 38.1% and 27.9%, respectively. Furthermore, Hex-Cu alleviated the growth inhibition caused by salt stress, enabled the seedlings to maintain a higher proline content and lower malondialdehyde accumulation. The functions of Hex-Cu in regulating the expression of proline synthetase (P5CS and P5CR) genes were investigated by quantitative real-time PCR (qPCR). Under 100mmolL(-1) NaCl stress, the expression of P5CS and P5CR in the seedlings by Hex-Cu pretreatment were significantly up-regulated. It attributed to the enhanced salt tolerance in plants.

  3. Functional study of a salt-inducible TaSR gene in Triticum aestivum.

    PubMed

    Ma, Xiao-Li; Cui, Wei-Na; Zhao, Qian; Zhao, Jing; Hou, Xiao-Na; Li, Dong-Yan; Chen, Zhao-Liang; Shen, Yin-Zhu; Huang, Zhan-Jing

    2016-01-01

    The gene expression chip of a salt-tolerant wheat mutant under salt stress was used to clone a salt-induced gene with unknown functions. This gene was designated as TaSR (Triticum aestivum salt-response gene) and submitted to GenBank under accession number EF580107. Quantitative polymerase chain reaction (PCR) analysis showed that gene expression was induced by salt stress. Arabidopsis and rice (Oryza sativa) plants expressing TaSR presented higher salt tolerance than the controls, whereas AtSR mutant and RNA interference rice plants were more sensitive to salt. Under salt stress, TaSR reduced Na(+) concentration and improved cellular K(+) and Ca(2+) concentrations; this gene was also localized on the cell membrane. β-Glucuronidase (GUS) staining and GUS fluorescence quantitative determination were conducted through fragmentation cloning of the TaSR promoter. Salt stress-responsive elements were detected at 588-1074 bp upstream of the start codon. GUS quantitative tests of the full-length promoter in different tissues indicated that promoter activity was highest in the leaf under salt stress. Bimolecular fluorescence complementation and yeast two-hybrid screening further showed the correlation of TaSR with TaPRK and TaKPP. In vitro phosphorylation of TaSR and TaPRK2697 showed that TaPRK2697 did not phosphorylate TaSR. This study revealed that the novel TaSR may be used to improve plant tolerance to salt stress.

  4. Composition of cuticular waxes coating flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem.

    PubMed

    Racovita, Radu C; Hen-Avivi, Shelly; Fernandez-Moreno, Josefina-Patricia; Granell, Antonio; Aharoni, Asaph; Jetter, Reinhard

    2016-10-01

    The work herein presents comprehensive analyses of the cuticular wax mixtures covering the flag leaf blade and peduncle of bread wheat (Triticum aestivum) cv. Bethlehem. Overall, Gas Chromatography-Mass Spectrometry and Flame Ionization Detection revealed a wax coverage of flag leaf blades (16 μg/cm(2)) a third that of peduncles (49 μg/cm(2)). Flag leaf blade wax was dominated by 1-alkanols, while peduncle wax contained primarily β-diketone and hydroxy-β-diketones, thus suggesting differential regulation of the acyl reduction and β-diketone biosynthetic pathways in the two analyzed organs. The characteristic chain length distributions of the various wax compound classes are discussed in light of their individual biosynthetic pathways and biosynthetic relationships between classes. Along with previously reported wheat wax compound classes (fatty acids, 1-alkanols, 1-alkanol esters, aldehydes, alkanes, β-diketone, hydroxy-β-diketones, alkylresorcinols and methyl alkylresorcinols), esters of 2-alkanols and three types of aromatic esters (benzyl, phenethyl and p-hydroxyphenethyl) are also reported. In particular, 2-heptanol esters were identified. Detailed analyses of the isomer distributions within 1-alkanol and 2-alkanol ester homologs revealed distinct patterns of esterified acids and alcohols, suggesting several wax ester synthases with very different substrate preferences in both wheat organs. Terpenoids, including two terpenoid esters, were present only in peduncle wax.

  5. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds.

    PubMed

    Nilthong, Somrudee; Graybosch, R A; Baenziger, P S

    2012-12-01

    Grain polyphenol oxidase (PPO) activity can cause discoloration of wheat (Triticum aestivum L.) food products. Five crosses (PI 117635/Antelope; Fielder/NW03681; Fielder/Antelope; NW07OR1070/Antelope; NW07OR1066/OR2050272H) were selected to study the genetic inheritance of PPO activity. STS markers, PPO18, PPO29 and STS01, were used to identify lines with putative alleles at the Ppo-A1 and Ppo-D1 loci conditioning low or high PPO activity. ANOVA showed significant genotypic effects on PPO activity (P < 0.0001) in all populations. The generations and generation × genotype effects were not significant in any population. A putative third (null) genotype at Ppo-A1 (no PCR fragments for PPO18) was discovered in NW07OR1066 and NW07OR1070 derived populations, and these had the lowest mean PPO activities. Results demonstrated that both Ppo-A1 and Ppo-D1 loci affect the kernel PPO activity, but the Ppo-A1 has the major effect. In three populations, contrary results were observed to those predicted from previous work with Ppo-D1 alleles, suggesting the markers for Ppo-D1 allele might give erroneous results in some genetic backgrounds or lineages. Results suggest that selection for low or null alleles only at Ppo-A1 might allow development of low PPO wheat cultivars.

  6. Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.).

    PubMed

    Rico, Cyren M; Lee, Sang Chul; Rubenecia, Rosnah; Mukherjee, Arnab; Hong, Jie; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2014-10-08

    The implications of engineered nanomaterials on crop productivity and food quality are not yet well understood. The impact of cerium oxide nanoparticles (nCeO2) on growth and yield attributes and nutritional composition in wheat (Triticum aestivum L.) was examined. Wheat was cultivated to grain production in soil amended with 0, 125, 250, and 500 mg of nCeO2/kg (control, nCeO2-L, nCeO2-M, and nCeO2-H, respectively). At harvest, grains and tissues were analyzed for mineral, fatty acid, and amino acid content. Results showed that, relative to the control, nCeO2-H improved plant growth, shoot biomass, and grain yield by 9.0%, 12.7%, and 36.6%, respectively. Ce accumulation in roots increased at increased nCeO2 concentration but did not change across treatments in leaves, hull, and grains, indicating a lack of Ce transport to the above-ground tissues. nCeO2 modified S and Mn storage in grains. nCeO2-L modified the amino acid composition and increased linolenic acid by up to 6.17% but decreased linoleic acid by up to 1.63%, compared to the other treatments. The findings suggest the potential of nanoceria to modify crop physiology and food quality with unknown consequences for living organisms.

  7. Classification of 31 Korean Wheat (Triticum aestivum L.) Cultivars Based on the Chemical Compositions

    PubMed Central

    Choi, Induck; Kang, Chon-Sik; Lee, Choon-Kee; Kim, Sun-Lim

    2016-01-01

    Whole grain wheat flour (WGWF) is the entire grain (bran, endosperm, and germ) milled to make flour. The WGWF of 31 Korean wheat (Triticum aestivum L.) cultivars were analyzed for the chemical compositions, and classified into groups by hierarchical cluster analysis (HCL). The average composition values showed a substantial variation among wheat varieties due to different wheat varieties. Wheat cv. Shinmichal1 (waxy wheat) had the highest ash, lipid, and total dietary fiber contents of 1.76, 3.14, and 15.49 g/100 g, respectively. Using HCL efficiently classified wheat cultivars into 7 clusters. Namhae, Sukang, Gobun, and Joeun contained higher protein values (12.88%) and dietary fiber (13.74 %). Regarding multi-trait crop breeding, the variation in chemical compositions found between the clusters might be attributed to wheat genotypes, which was an important factor in accumulating those chemicals in wheat grains. Thus, once wheat cultivars with agronomic characteristics were identified, those properties might be included in the breeding process to develop a new variety of wheat with the trait. PMID:28078265

  8. Identification of Alleles of Puroindoline Genes and Their Effect on Wheat (Triticum aestivum L.) Grain Texture

    PubMed Central

    Štiasna, Klára; Vyhnánek, Tomáš; Trojan, Václav; Mrkvicová, Eva; Hřivna, Luděk; Havel, Ladislav

    2016-01-01

    Summary Grain hardness is one of the most important quality characteristics of wheat (Triticum aestivum L.). It is a significant property of wheat grains and relates to milling quality and end product quality. Grain hardness is caused by the presence of puroindoline genes (Pina and Pinb). A collection of 25 genotypes of wheat with unusual grain colour (blue aleurone, purple and white pericarp, yellow endosperm) was studied by polymerase chain reaction (PCR) for the diversity within Pina and Pinb (alleles: Pina-D1a, Pina-D1b, Pinb-D1a, Pinb- -D1b, Pinb-D1c and Pinb-D1d). The endosperm structure was determined by a non-destructive method using light transflectance meter and grain hardness by a texture analyser. Genotype Novosibirskaya 67 and isogenic ANK lines revealed hitherto unknown alleles at the locus for the annealing of primers of Pinb-D1. Allele Pinb-D1c was found to be absent from each genotype. The mealy endosperm ranged from 0 to 100% and grain hardness from 15.10 to 26.87 N per sample. PMID:27904399

  9. Measurement of phloem transport rates by an indicator-dilution technique. [Triticum aestivum L

    SciTech Connect

    Fisher, D.B. )

    1990-10-01

    An indicator-dilution technique for the measurement of flow rates, commonly used by animal physiologists for circulation measurements, was adapted to the measurement of phloem translocation rates in the wheat (Triticum aestivum L.) peduncle. The approach is based on the observation that, during the transport of a given amount of solute, its mean concentration will be inversely proportional to flow rate. For phloem transport in the wheat peduncle, the necessary measurements are (a) the time course of tracer kinetics in the peduncle phloem, (b)the volume of sieve tubes and companion cells in the monitored segment of the peduncle, and (c) the amount of tracer transported past that point. The method was evaluated by in situ monitoring of {sup 32}PO{sub 4} transport in pulse-labeling experiments. Specific activities (i.e. {sup 32}P concentrations) of phloem exudate were in good agreement with those calculated from in situ count rates and measured phloem areas. Mass transport rates, calculated from volume flow rates and phloem exudate dry matter content, also agreed well with expected mass transport rates based on measurements of grain growth rate and net CO{sub 2} exchange by the ear. The indicator-dilution technique appears to offer good precision and accuracy for short-term measurements of phloem transport rates in the wheat peduncle and should be useful for other systems as well.

  10. Water movement into dormant and non-dormant wheat (Triticum aestivum L.) grains

    PubMed Central

    Rathjen, Judith R.; Strounina, Ekaterina V.; Mares, Daryl J.

    2009-01-01

    The movement of water into harvest-ripe grains of dormant and non-dormant genotypes of wheat (Triticum aestivum L.) was investigated using Magnetic Resonance Micro-Imaging (MRMI). Images of virtual sections, both longitudinal and transverse, throughout the grain were collected at intervals after the start of imbibition and used to reconstruct a picture of water location within the different grain tissues and changes over time. The observations were supplemented by the weighing measurements of water content and imbibition of grains in water containing I2/KI which stains starch and lipid, thereby acting as a marker for water. In closely related genotypes, with either a dormant or a non-dormant phenotype, neither the rate of increase in water content nor the pattern of water distribution within the grain was significantly different until 18 h, when germination became apparent in the non-dormant genotype. Water entered the embryo and scutellum during the very early stages of imbibition through the micropyle and by 2 h water was clearly evident in the micropyle channel. After 12 h of imbibition, embryo structures such as the coleoptile and radicle were clearly distinguished. Although water accumulated between the inner (seed coat) and outer (pericarp) layers of the coat surrounding the grain, there was no evidence for movement of water directly across the coat and into the underlying starchy endosperm. PMID:19386615

  11. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture.

    PubMed

    Zörb, Christian; Langenkämper, Georg; Betsche, Thomas; Niehaus, Karsten; Barsch, Aiko

    2006-10-18

    In some European community countries up to 8% of the agricultural area is managed organically. The aim was to obtain a metabolite profile for wheat (Triticum aestivum L.) grains grown under comparable organic and conventional conditions. These conditions cannot be found in plant material originating from different farms or from products purchased in supermarkets. Wheat grains from a long-term biodynamic, bioorganic, and conventional farming system from the harvest 2003 from Switzerland were analyzed. The presented data show that using a high throughput GC-MS technique, it was possible to determine relative levels of a set of 52 different metabolites including amino acids, organic acids, sugars, sugar alcohols, sugar phosphates, and nucleotides from wheat grains. Within the metabolites from all field trials, there was at the most a 50% reduction comparing highest and lowest mean values. The statistical analysis of the data shows that the metabolite status of the wheat grain from organic and mineralic farming did not differ in concentrations of 44 metabolites. This result indicates no impact or a small impact of the different farming systems. In consequence, we did not detect extreme differences in metabolite composition and quality of wheat grains.

  12. Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.).

    PubMed

    Kang, Guozhang; Li, Gezi; Zheng, Beibei; Han, Qiaoxia; Wang, Chenyang; Zhu, Yunji; Guo, Tiancai

    2012-12-01

    The influence of salicylic acid (SA) on the salt tolerance mechanism in seedlings of common wheat (Triticum aestivum L.) was investigated using physiological measurements combined with global expression profiling (proteomics). In the present study, 0.5mM SA significantly reduced NaCl-induced growth inhibition in wheat seedlings, manifesting as increased fresh weights, dry weights, and photosynthetic pigments, but decreased lipid peroxidation. Two-week-old wheat seedlings treated with 0.5mM SA, 250 mM NaCl and 250 mM NaCl+0.5mM SA for 3 days were used for the proteomic analyses. In total, 39 proteins differentially regulated by both salt and SA were revealed by 2D PAGE, and 38 proteins were identified by MALDI-TOF/TOF MS. The identified proteins were involved in various cellular responses and metabolic processes including signal transduction, stress defense, energy, metabolism, photosynthesis, and others of unknown function. All protein spots involved in signal transduction and the defense response were significantly upregulated by SA under salt stress, suggesting that these proteins could play a role in the SA-induced salt resistance in wheat seedlings.

  13. A review of the occurrence of Grain softness protein-1 genes in wheat (Triticum aestivum L.).

    PubMed

    Morris, Craig F; Geng, Hongwei; Beecher, Brian S; Ma, Dongyun

    2013-12-01

    Grain softness protein-1 (Gsp-1) is a small, 495-bp intronless gene found throughout the Triticeae tribe at the distal end of group 5 chromosomes. With the Puroindolines, it constitutes a key component of the Hardness locus. Gsp-1 likely plays little role in grain hardness, but has direct interest due to its utility in phylogeny and its role in arabinogalactan peptides. Further role(s) remain to be identified. In the polyploid wheats, Triticum aestivum and T. turgidum, the gene is present in a homoeologous series. Since its discovery, there have been conflicting reports and data as to the number of Gsp-1 genes and the level of sequence polymorphism. Little is known about allelic variation within a species. In the simplest model, a single Gsp-1 gene is present in each wheat and Aegilops tauschii genome. The present review critically re-examines the published and some unpublished data (sequence available in the NCBI nucleotide and MIPS Wheat Genome Databases). A number of testable hypotheses are identified, and include the level of polymorphism that may represent (and define) different Gsp-1 alleles, the existence of a fourth Gsp-1 gene, and the apparent, at times, high level of naturally-occurring or artifactual gene chimeras. In summary, the present data provide firm evidence for at most, three Gsp-1 genes in wheat, although there are numerous data that suggest a more complex model.

  14. Structural and functional analysis of chitinase gene family in wheat (Triticum aestivum).

    PubMed

    Mishra, A K; Pandey, Bharati; Tyagi, Chetna; Chakraborty, Ohika; Kumar, Amrender; Jain, A K

    2015-04-01

    Chitinases are the hydrolytic enzymes which protect plants against pathogen attack. However, the precise role of chitinases in disease resistance has not been explored in wheat. In the present study, in silico approach, including secondary structure analysis, detailed signature pattern study, cis-acting regulatory elements survey, evolutionary trends and three-dimensional molecular modeling was used for different chitinase classes of wheat (Triticum aestivum). Homology modeling of class I, II, IV and 3 chitinase proteins was performed using the template crystal structure. The model structures were further refined by molecular mechanics methods using different tools, such as Procheck, ProSA and Verify3D. Secondary structure studies revealed greater percentage of residues forming a helix conformation with specific signature pattern, similar to casein kinase II phosphorylation site, amidation site, N-myristoylation (N-MYR) site and protein kinase C phoshorylation site. The expression profile suggested that wheat chitinase gene was highly expressed in cell culture and callus. We found that wheat chitinases showed more functional similarity with rice and barley. The results provide insight into the evolution of the chitinase family, constituting a diverse array of pathogenesis-related proteins. The study also provides insight into the possible binding sites of chitinase proteins and may further enhance our knowledge of fungal resistance mechanism in plants.

  15. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure

    PubMed Central

    Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R

    2015-01-01

    Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. PMID:26400058

  16. Overexpression of a Triticum aestivum Calreticulin gene (TaCRT1) Improves Salinity Tolerance in Tobacco

    PubMed Central

    Song, Min; Wang, Yun; Xu, Wenqi; Wu, Lintao; Wang, Hancheng; Ma, Zhengqiang

    2015-01-01

    Calreticulin (CRT) is a highly conserved and abundant multifunctional protein that is encoded by a small gene family and is often associated with abiotic/biotic stress responses in plants. However, the roles played by this protein in salt stress responses in wheat (Triticum aestivum) remain obscure. In this study, three TaCRT genes were identified in wheat and named TaCRT1, TaCRT2 and TaCRT3-1 based on their sequence characteristics and their high homology to other known CRT genes. Quantitative real-time PCR expression data revealed that these three genes exhibit different expression patterns in different tissues and are strongly induced under salt stress in wheat. The calcium-binding properties of the purified recombinant TaCRT1 protein were determined using a PIPES/Arsenazo III analysis. TaCRT1 gene overexpression in Nicotiana tabacum decreased salt stress damage in transgenic tobacco plants. Physiological measurements indicated that transgenic tobacco plants showed higher activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) than non-transgenic tobacco under normal growth conditions. Interestingly, overexpression of the entire TaCRT1 gene or of partial TaCRT1 segments resulted in significantly higher tolerance to salt stress in transgenic plants compared with their WT counterparts, thus revealing the essential role of the C-domain of TaCRT1 in countering salt stress in plants. PMID:26469859

  17. Diallel cross analysis of plesiomorphic traits in Triticum aestivum L. genotypes.

    PubMed

    Shehzad, M; Hussain, S B; Qureshi, M K; Akbar, M; Javed, M; Imran, H M; Manzoor, S A

    2015-10-28

    We conducted a 5 x 5 complete diallel cross experiment in bread wheat (Triticum aestivum) with the genotypes 6309, Chkwal-50, Dhrabi, Bhkhar-02, and FS-08. Our objective was to evaluate the type of gene action and the general and specific combining abilities required for various morphological traits in wheat. The results of analysis of variance revealed highly significant differences among genotypes for all the investigated traits. The results of joint regression analysis showed that the data for all the investigated traits fitted a simple additive dominance model. Graphical representation of variance and covariance suggested that most of the investigated traits were controlled by overdominance gene action. However, the peduncle length and plant height were controlled by additive gene action. Variety 6309 carried the highest number of dominant genes for the number of spikelets per spike, number of tillers per plant, plant height, number of fertile tillers per plant, and grain yield per plant. Chakwal-50 carried the highest number of recessive genes for grain yield per plant, number of tillers per plant, number of grains per spike, number of fertile tillers per plant, and plant height. Chakwal-50 and 6309 were the best general combiners for number of spikelets per spike, number of grains per spike, grain yield per plant, 1000-grain weight, number of fertile tillers per plant, and number of tillers per plant. On other hand, 6309 performed well in specific crosses with Chakwal-50, FS-08, and Bhakhar-02 for spike length and number of tillers per plant.

  18. Uptake, localization, and speciation of cobalt in Triticum aestivum L. (wheat) and Lycopersicon esculentum M. (tomato).

    PubMed

    Collins, Richard N; Bakkaus, Estelle; Carrière, Marie; Khodja, Hicham; Proux, Olivier; Morel, Jean-Louis; Gouget, Barbara

    2010-04-15

    The root-to-shoot transfer, localization, and chemical speciation of Co were investigated in a monocotyledon (Triticum aestivum L., wheat) and a dicotyledon (Lycopersicon esculentum M., tomato) plant species grown in nutrient solution at low (5 muM) and high (20 muM) Co(II) concentrations. Cobalt was measured in the roots and shoots by inductively coupled plasma-mass spectrometry. X-ray absorption spectroscopy measurements were used to identify the chemical structure of Co within the plants and Co distribution in the leaves was determined by micro-PIXE (particle induced X-ray emission). Although the root-to-shoot transport was higher for tomato plants exposed to excess Co, both plants appeared as excluders. The oxidation state of Co(II) was not transformed by either plant in the roots or shoots and Co appeared to be present as Co(II) in a complex with carboxylate containing organic acids. Cobalt was also essentially located in the vascular system of both plant species indicating that neither responded to Co toxicity via sequestration in epidermal or trichome tissues as has been observed for other metals in metal hyperaccumulating plants.

  19. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.)

    PubMed Central

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser355 was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination. PMID:26635843

  20. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control.

    PubMed

    Lopes, Thomas; Hatt, Séverin; Xu, Qinxuan; Chen, Julian; Liu, Yong; Francis, Frédéric

    2016-12-01

    Wheat (Triticum aestivum L.) is one of the most cultivated crops in temperate climates. As its pests are mainly controlled with insecticides that are harmful to the environment and human health, alternative practices such as intercropping have been studied for their potential to promote biological control. Based on the published literature, this study aimed to review the effect of wheat-based intercropping systems on insect pests and their natural enemies. Fifty original research papers were obtained from a systematic search of the peer-reviewed literature. Results from a vote-counting analysis indicated that, in the majority of studies, pest abundance was significantly reduced in intercropping systems compared with pure stands. However, the occurrence of their natural enemies as well as predation and parasitism rates were not significantly increased. The country where the studies took place, the type of intercropping and the crop that was studied in the association had significant effects on these results. These findings show that intercropping is a viable practice to reduce insecticide use in wheat production systems. Nevertheless, other practices could be combined with intercropping to favour natural enemies and enhance pest control. © 2016 Society of Chemical Industry.

  1. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure.

    PubMed

    Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R

    2015-11-01

    Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period.

  2. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.).

    PubMed

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser(355) was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination.

  3. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants.

    PubMed

    Soltani, Ali; Kumar, Ajay; Mergoum, Mohamed; Pirseyedi, Seyed Mostafa; Hegstad, Justin B; Mazaheri, Mona; Kianian, Shahryar F

    2016-03-01

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversity. The magnitude and essence of intergenomic interactions between nuclear and cytoplasmic genomes remain unknown due to the direction of many crosses. This study was conducted to address the role of nuclear-cytoplasmic interactions as a source of variation upon hybridization. Wheat (Triticum aestivum) alloplasmic lines carrying the cytoplasm of Aegilops mutica along with an integrated approach utilizing comparative quantitative trait locus (QTL) and epigenome analysis were used to dissect this interaction. The results indicate that cytoplasmic genomes can modify the magnitude of QTL controlling certain physiological traits such as dry matter weight. Furthermore, methylation profiling analysis detected eight polymorphic regions affected by the cytoplasm type. In general, these results indicate that novel nuclear-cytoplasmic interactions can potentially trigger an epigenetic modification cascade in nuclear genes which eventually change the genetic network controlling physiological traits. These modified genetic networks can serve as new sources of variation to accelerate the evolutionary process. Furthermore, this variation can synthetically be produced by breeders in their programs to develop epigenomic-segregating lines.

  4. Ractopamine up take by alfalfa (Medicago sativa) and wheat (Triticum aestivum) from soil.

    PubMed

    Shelver, Weilin L; DeSutter, Thomas M

    2015-08-01

    Ractopamine is a beta adrenergic agonist used as a growth promoter in swine, cattle and turkeys. To test whether ractopamine has the potential to accumulate in plants grown in contaminated soil, a greenhouse study was conducted with alfalfa (Medicago sativa) and wheat (Triticum aestivum) grown in two soils having different concentrations of organic matter (1.3% and 2.1%), amended with 0, 0.5, and 10 μg/g of ractopamine. Plant growth ranged from 2.7 to 8.8 g dry weight (dw) for alfalfa, and 8.7 to 40 g dw for wheat and was generally greater in the higher organic matter content soil. The uptake of ractopamine in plant tissues ranged from non-detectable to 897 ng/g and was strongly dependent on soil ractopamine concentration across soil and plant tissue. When adjusted to the total fortified quantities, the amount of ractopamine taken up by the plant tissue was low, <0.01% for either soil.

  5. Effect of Lead stress on phosphatase activity and reducing power assay of Triticum aestivum.

    PubMed

    Gubrelay, U; Agnihotri, R K; Shrotriya, S; Sharma, R

    2015-06-24

    Lead (Pb) is a highly toxic heavy metal for both plants and animals; the environment is increasingly polluted with heavy metals and reduces crop productivity. Plants possess homeostatic mechanisms that allow them to keep correct concentrations of essential metal ions in cellular compartments and to minimize the damaging effects of an excess of nonessential ones. One of their adverse effects on plants are the generation of harmful active oxygen species, leading to oxidative stress and the antioxidative activity seems to be of fundamental importance for adaptive response of plant against environmental stress. The present study explores the effects of lead (soil treated twice/ week) with (10, 30 and 60 mM) on the specific activities of phosphatases which might lead to reducing power assay in (Triticum aestivum PBW344) seedling. A significant decrease in the redox potential of shoot compared to root was observed at the similar concentration of lead. A similar trend on leaves was also noted. Acid and alkaline phosphatase activities were significantly higher in roots than in shoot at all the three concentration of lead i.e. 10, 30 and 60 mM, compared to controls. The above mentioned changes were more pronounced at 60 mM concentration of lead than two other concentrations. These results lead us to suggest that increased lead concentration in soil might lead to adverse effects on plant growth and phosphatase activities.

  6. NsLTP1 and NsLTP2 isoforms in soft wheat (Triticum aestivum Cv. Centauro) and farro (Triticum dicoccon Schrank) bran.

    PubMed

    Capocchi, Antonella; Fontanini, Debora; Muccilli, Vera; Cunsolo, Vincenzo; Saviozzi, Franco; Saletti, Rosaria; Lorenzi, Roberto; Foti, Salvatore; Galleschi, Luciano

    2005-10-05

    Isoforms of nonspecific lipid-transfer protein 1 (nsLTP1) and nonspecific lipid-transfer protein 2 (nsLTP2) were investigated in bran tissues isolated from caryopses of two cereal crops quite relevant for the Italian market, the cultivar Centauro of soft wheat (Triticum aestivum) and Italian emmer or farro (Triticum dicoccon Schrank). By sequential separation of the bran extracts on cation-exchange and gel filtration chromatographies, fractions containing only proteins belonging to the nsLTP1 and nsLTP2 classes were obtained. The proteins were roughly identified by SDS-PAGE and by immunoreactions in Western blotting experiments. By MALDI-MS and RP-HPLC/ESI-MS analyses we were able to show the presence of several LTP1 and LTP2 isoforms in the investigated species. Bioinformatic searches based on the determined Mr indicated that (i) two nsLTP1s already identified in T. aestivum have Mr and number of Cys residues identical to that of a 9.6 kDa protein present both in soft wheat cv. Centauro and in farro; (ii) two isoforms of nsLTP2 detected in T. aestivum have the same Mr and number of Cys residues of two 7 kDa proteins found in Centauro; and (iii) a nsLTP1 detected in Ambrosia artemisiifolia has Mr and number of Cys residues coincident to that of a 9.9 kDa protein found both in soft wheat cv. Centauro and in farro.

  7. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings.

    PubMed

    Tripathi, Durgesh Kumar; Singh, Swati; Singh, Vijay Pratap; Prasad, Sheo Mohan; Dubey, Nawal Kishore; Chauhan, Devendra Kumar

    2017-01-01

    The role of silicon (Si) in alleviating biotic as well as abiotic stresses is well known. However, the potential of silicon nanoparticle (SiNP) in regulating abiotic stress and associated mechanisms have not yet been explored. Therefore, in the present study hydroponic experiments were conducted to investigate whether Si or SiNp are more effective in the regulation of UV-B stress. UV-B (ambient and enhanced) radiation caused adverse effect on growth of wheat (Triticum aestivum) seedlings, which was accompanied by declined photosynthetic performance and altered vital leaf structures. Levels of superoxide radical and H2O2 were enhanced by UV-B as also evident from their histochemical stainings, which was accompanied by increased lipid peroxidation (LPO) and electrolyte leakage. Activities of superoxide dismutase and ascorbate peroxidase were inhibited by UV-B while catalase and guaiacol peroxidase, and all non-enzymatic antioxidants were stimulated by UV-B. Although, nitric oxide (NO) content was increased at all tested combinations, but its maximum content was observed under SiNps together with UV-B enhanced treatment. Pre-additions of SiNp as well as Si protected wheat seedlings against UV-B by regulating oxidative stress through enhanced antioxidants. Data indicate that SiNp might have protected wheat seedlings through NO-mediated triggering of antioxidant defense system, which subsequently counterbalance reactive oxygen species-induced damage to photosynthesis. Further, SiNp appear to be more effective in reducing UV-B stress than Si, which is related to its greater availability to wheat seedlings.

  8. Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings.

    PubMed

    Li, Lian-Zhen; Tu, Chen; Peijnenburg, Willie J G M; Luo, Yong-Ming

    2017-02-01

    Wheat is one of several cereals that is capable of accumulating higher amounts of Cd in plant tissues. It is important to understand the Cd(2+) transport processes in roots that result in excess Cd accumulation. Traditional destructive technologies have limited capabilities in analyzing root samples due to methodological limitations, and sometimes may result in false conclusions. The mechanisms of Cd(2+) uptake into the roots of wheat seedlings (Triticum aestivum L.) were investigated by assessing the impact of various inhibitors and channel blockers on Cd accumulation as well as the real-time net Cd(2+) flux at roots with the non-destructive scanning ion-selective electrode technique. The P-type ATPase inhibitor Na3VO4 (500 μM) had little effect on Cd uptake (p < 0.05) and the kinetics of transport in the root of wheat, suggesting that Cd(2+) uptake into wheat root cells is not directly dependent on H(+) gradients. While, the uncoupler 2,4-dinitrophenol significantly limited Cd(2+) uptake (p < 0.05) and transport kinetics in the root of wheat, suggesting the existence of metabolic mediation in the Cd(2+) uptake process by wheat. The Cd content at the whole-plant level in wheat was significantly (p < 0.05) decreased upon pretreatment with the Ca(2+) channel blockers La(3+) or Gd(3+) and Verapamil, but not in case of pretreatment with the K(+) channel blocker tetraethylammonium (TEA). In addition, the inhibitors of the Ca(2+) channel, as well as high concentrations of Ca(2+), reduced the real-time net Cd(2+) fluxes at the root surface in SIET experiments. These results indicate that Cd(2+) moves across the plasma lemma of the wheat root via Ca(2+) channels. In addition, our results suggested a role for protein synthesis in mediating Cd(2+) uptake and transport by wheat.

  9. Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars.

    PubMed

    Liu, Weitao; Liang, Lichen; Zhang, Xue; Zhou, Qixing

    2015-06-01

    In recent years, heavy metal pollution in agricultural soil in China has received public concern. The concept of low-accumulation cultivars (LACs) was proposed to minimize the influx of pollutants to the human food chain. Variations in Cd and Pb accumulation, distribution, and tolerance among 30 wheat (Triticum aestivum L.) cultivars were studied in a hydroponic experiment to preliminary identify LACs of Cd or Pb for further field experiments. Of the 30 wheat cultivars tested, 27 and 26 wheat cultivars showed no effect of the Cd/Pb treatments on the shoot and root biomass, respectively. The results showed that the tested wheat cultivars had considerable tolerance to Cd and Pb toxicity. Significant (p < 0.05) differences in shoot Cd concentration were observed among the tested wheat cultivars under treatments Cd1.0 and Cd1.0Pb15, ranging from 0.91 to 6.74 and from 0.87 to 5.96, with the mean of 3.83 and 2.94 mg kg(-1) DW, respectively. Significant (p < 0.05) differences in shoot Pb concentration were also observed among the tested wheat cultivars under treatments Pb15 and Cd1.0Pb15, ranging from 22.18 to 94.03 and from 18.30 to 76.88, with the mean of 50.38 and 41.20 mg kg(-1) DW, respectively. Low accumulation and internal distribution may both affect the cultivar differences in Cd and Pb accumulation in wheat shoots. Overall, wheat cultivars LF-13, LF-16, and LF-21 had lower Cd-accumulating abilities in their shoots. Wheat cultivars LF-13, LF-23, LF-26, and LF-27 showed low Pb accumulation characteristics in their shoots. An antagonistic interaction occurred between Cd and Pb in accumulation in wheat roots and shoots, which will be further studied in field experiments.

  10. Exogenous application of putrescine at pre-anthesis enhances the thermotolerance of wheat (Triticum aestivum L.).

    PubMed

    Kumar, Ranjeet R; Sharma, Sushil K; Rai, Gyanendra K; Singh, Khushboo; Choudhury, Madhumanthi; Dhawan Gaurav; Singh, Gyaneshwar P; Goswami, Suneha; Pathak, Himanshu; Rai, Raj D

    2014-10-01

    Antioxidant enzymes, besides being involved in various developmental processes, are known to be important for environmental stress tolerance in plants. In this study, the effect of treatment of 2.5 mM putrescine (Put), heat stress (HS -42 degrees C for 2 h) and their combination on the expression and activity of antioxidant enzymes was studied at pre-anthesis in the leaves of two wheat (Triticum aestivum L.) cultivars--HDR77 (thermotolerant) and HD2329 (thermosusceptible). We observed that 2.5 mM Put before HS significantly enhanced the transcript levels of superoxide dismutase (SOD), catalase (CAT), cytoplasmic and peroxisomal ascorbate peroxidase (cAPX, pAPX) in both the cultivars. However, the activities of antioxidant enzymes (SOD, CAT, APX and GR), as well as accumulation of antioxidants (ascorbic acid and total thiol content) were higher in HDR77 than in HD2329 in response to the treatment 2.5 mM Put + HS. No significant change was observed in the proline accumulation in response to HS and combined treatment of 2.5 mM Put + HS. A decrease in the H2O2 accumulation, lipid peroxidation and increase in cell membrane stability (CMS) were observed in response to 2.5 mM Put + HS treatment, as compared to HS treatment alone in both the cultivars; HDR77 was, however, more responsive to 2.5 mM Put + HS treatment. Put (2.5 mM) treatment at pre-anthesis thus modulated the defense mechanism responsible for the thermotolerance capacity of wheat under the heat stress. Elicitors like Put, therefore, need to be further studied for temporarily manipulating the thermotolerance capacity of wheat grown under the field conditions in view of the impending global climate change.

  11. Chlorophenols induce lipid peroxidation and change antioxidant parameters in the leaves of wheat (Triticum aestivum L.).

    PubMed

    Michałowicz, Jaromir; Posmyk, Małgorzata; Duda, Wirgiliusz

    2009-04-01

    In this work, changes in superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) activity were determined in the leaves of wheat (Triticum aestivum L.) exposed to 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP). We analyzed the content of free phenols, the level of lipid peroxidation, and also the oxidation of dihydrorhodamine 123 by 2,4-DCP and PCP. Chlorophenols were spiked to soil in concentrations of 0.5 and 5.0 mg kg(-1). Plant seeds were raised in plastic pots containing soil at a temperature of 25 degrees C with a 16-h photoperiod and irradiance of 250 micromol m(-2) s(-1). The leaves were harvested on the third, sixth and twelfth days of the experiment. The inhibition of SOD activity in the leaves of wheat was observed for 2,4-DCP and PCP. 2,4-DCP and PCP induced changes in CAT activity with a stronger effect for PCP. The compounds markedly increased guaiacol POD activity during 12d of the exposition of wheat to their action. The increase in free phenol content was observed both for 2,4-DCP and PCP. Chlorophenols also induced a powerful lipid peroxidation process between the third and sixth days of the experiment. A higher concentration of chlorophenols used in our study induced greater changes in all of the investigated parameters. 2,4-DCP and PCP oxidized the fluorescent probe - dihydrorhodamine 123 - in the concentrations of 5 and 1 ppm, respectively, and the addition of magnesium ions enhanced the oxidative capacity of the examined xenobiotics.

  12. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.)

    DOE PAGES

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; ...

    2015-08-24

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII andmore » GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Lastly, our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.« less

  13. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.).

    PubMed

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; Ma, Xinming; Theg, Steven M

    2015-11-01

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.

  14. Assessment of Anticarcinogenic Potential of Vitex trifolia and Triticum aestivum Linn by In Vitro Rat Liver Microsomal Degranulation

    PubMed Central

    Mathankumar, Marimuthu; Tamizhselvi, Ramasamy; Manickam, Venkatraman; Purohit, Gaurav

    2015-01-01

    Objective: The main objective of this preliminary study is to confirm the synergistic anticarcinogenic potential of Vitex trifolia and Triticum aestivum ethanolic extracts. Materials and Methods: Rat hepatic microsomal degranulation is a short - term technique that has been used for the detection of potential chemical carcinogens, in vitro. The present study has been carried out to study the inhibition of ribosome- membrane disruption against 3, 8-Diamino-5-ethyl-6-pheylphenanthridinium bromide (EB), as the degranulating agent, by measuring the RNA/protein ratios of microsomal membranes in the presence or absence of V.trifolia and T. aestivum extracts. These two extracts were further evaluated for cytotoxic effect in HCT 116 and A549 cell lines. Results: V. trifolia and T. aestivum protects hepatic microsomes against the degranulatory attack by the carcinogen EB showed a significant reduction in the proliferation of the HCT 116 and A549 cancer cell lines. Conclusion: The ethanolic extracts of the plants, V. trifolia and T. aestivum individually possessed anti-degranulatory potential. Importantly they act synergistically, possess appreciable anticarcinogenic properties, based on their ability to inhibit EB induced liver microsomal degranulation. Further these extracts inhibit cell proliferation of cancer cell lines. PMID:26862271

  15. Effect of mechanical weeding on wild chamomile (Matricaria chamomilla L.) populations in winter wheat crop (Triticum aestivum L.).

    PubMed

    Jaunard, D; Bizoux, J P; Monty, A; Henriet, F; De Proft, M; Vancutsem, F; Mahy, G; Bodson, B

    2012-01-01

    Currently, economic, agronomic and environmental concerns lead to reduce the use of herbicides. Mechanical weeding can help to reach this objective. Dynamics and biology of wild chamomile (Matricaria chamomilla L.) populations were assessed as well as dynamic of winter wheat (Triticum aestivum L.) for four level of application of a weeder-harrow (0, 1, 2, 3 treatment(s)). After each treatment, an effect of mechanical weeding on wild chamomile density was observed. Density of wild chamomile decreased significantly with intensification of mechanical weeding. A third treatment allowed eliminating late emerged plants.

  16. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats.

    PubMed

    Ficco, Donatella B M; De Simone, Vanessa; Colecchia, Salvatore A; Pecorella, Ivano; Platani, Cristiano; Nigro, Franca; Finocchiaro, Franca; Papa, Roberto; De Vita, Pasquale

    2014-08-27

    Renewed interest in breeding for high anthocyanins in wheat (Triticum ssp.) is due to their antioxidant potential. A collection of different pigmented wheats was used to investigate the stability of anthocyanins over three crop years. The data show higher anthocyanins in blue-aleurone bread wheat (Triticum aestivum L.), followed by purple- and red-pericarp durum wheat (Triticum turgidum L. ssp. turgidum convar. durum), using cyanidin 3-O-glucoside as standard. HPLC of the anthocyanin components shows five to eight major anthocyanins for blue wheat extracts, compared to three anthocyanins for purple and red wheats. Delphinidin 3-O-rutinoside, delphinidin 3-O-glucoside, and malvidin 3-O-glucoside are predominant in blue wheat, with cyanidin 3-O-glucoside, peonidin 3-O-galactoside, and malvidin 3-O-glucoside in purple wheat. Of the total anthocyanins, 40-70% remain to be structurally identified. The findings confirm the high heritability for anthocyanins, with small genotype × year effects, which will be useful for breeding purposes, to improve the antioxidant potential of cereal-based foods.

  17. Molecular characterization and expression analysis of Triticum aestivum squamosa-promoter binding protein-box genes involved in ear development.

    PubMed

    Zhang, Bin; Liu, Xia; Zhao, Guangyao; Mao, Xinguo; Li, Ang; Jing, Ruilian

    2014-06-01

    Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes (TaSPL genes) were isolated from wheat ((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups (G1-G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5 (TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions. On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development. This study provides a significant beginning of functional analysis of SBP-box genes in wheat.

  18. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.)

    NASA Technical Reports Server (NTRS)

    Bishop, D. L.; Bugbee, B. G.

    1998-01-01

    Efficient use of space and high yields are critical for long-term food production aboard the International Space Station. The selection of a full dwarf wheat (less than 30 cm tall) with high photosynthetic and yield potential is a necessary prerequisite for growing wheat in the controlled, volume-limited environments available aboard long-term spaceflight missions. This study evaluated the photosynthetic capacity and carbon partitioning of a full-dwarf wheat cultivar, Super Dwarf, which is routinely used in spaceflight studies aboard U.S. space shuttle and NASA/Mir missions and made comparisons with other dwarf and semi-dwarf wheat cultivars utilized in other ground-based studies in plant space biology. Photosynthetic capacity of the flag leaf in two dwarf (Super Dwarf, BB-19), and three semi-dwarf (Veery-10, Yecora Rojo, IBWSN 199) wheat cultivars (Triticum aestivum L.) was assessed by measuring: net maximum photosynthetic rate, RuBP carboxylation efficiency, chlorophyll concentration and flag leaf area. Dry mass partitioning of carbohydrates to the leaves, sheaths, stems and ear was also assessed. Plants were grown under controlled environmental conditions in three replicate studies: slightly enriched CO2 (370 micromoles mol-1), high photosynthetic photon flux (1000 micromoles m-2 s-1; 58 mol m-2 d-1) for a 16 h photoperiod, 22/15 degrees C day/night temperatures, ample nutrients and water provided by one-half strength Hoagland's nutrient solution (Hoagland and Arnon, 1950). Photosynthetic capacity of the flag leaf was determined at anthesis using net CO2 exchange rate versus internal CO2 concentration curves measured under saturating light (2000 micromoles m-2 s-1) and CO2 (1000 micromoles mol-1). Dwarf wheat cultivars had greater photosynthetic capacities than the taller semi-dwarfs, they averaged 20% higher maximum net photosynthetic rates compared to the taller semi-dwarfs, but these higher rates occurred only at anthesis, had slightly greater carboxylation

  19. Potentially toxic elements in foodcrops: Triticum aestivum L., Zea mays L.

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Fontana, Silvia; Squizzato, Stefania; Minello, Fabiola; Fornasier, Flavio; Wahsha, Mohammad

    2013-04-01

    Soil is the basis of the ecosystems and of our system of food production. Crops can uptake heavy metals and potentially toxic elements from the soil and store them in the roots or translocate them to the aerial parts. Excessive content of these elements in edible parts can produce toxic effects and, through the food chain and food consumption, result in a potential hazard for human health. In this study soils and plants (spring wheat, Triticum aestivum L. and maize, Zea mays L.) from a tannery district in North-East Italy were analyzed to determine pedological characters, soil microbial indicators and the content of some major and micro-nutrients and potentially toxic elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, S, Zn, V). The soils of the area are moderately polluted; Cr is the most important inorganic contaminant, followed by Ni, Cu and V. Factor analysis evidenced that the contaminants are in part anthropogenic and in part geogenic. Major anthropogenic origin was detected for Cr, Ni (from industrial activities), Zn, Cu, Cd (from agriculture practices). Biological Absorption Coefficient (BAC) from soil to plant roots and Translocation factor (TF) within the plant were calculated; major nutrients (K, P, S) and some micronutrients (Cu, Zn, Mg, Mn) are easily absorbed and translocated, whilst other nutrients (Ca, Fe) and potentially toxic elements or micronutrients (Al, Cd, Cr, Ni, Pb, V) are not accumulated in the seeds of the two considered species. However, the two edible species proved differently able to absorb and translocate elements, and this suggests to consider separately every species as potential PHEs transporter to the food chain and to humans. Cr concentrations in seeds and other aerial parts (stem and leaves) of the examined plants are higher than the values found for the same species and for other cereals grown on unpolluted soils. Comparing the Cr levels in edible parts with recommended dietary intake, besides other possible Cr sources

  20. The tRNATyr multigene family of Triticum aestivum: genome organization, sequence analyses and maturation of intron-containing pre-tRNAs in wheat germ extract.

    PubMed

    Arends, S; Kraus, J; Beier, H

    1996-04-22

    Southern analysis of Triticum DNA has revealed that nuclear tRNATyr genes are dispersed at a minimum of 16 loci in the genome. We have isolated six independent tRNATyr genes from a Triticum aestivum library in addition to three known members of the Triticum tRNATyr family. Four of the sequenced tRNATyr genes code for Triticum tRNA Tyr and two code for tRNA2Tyr. Three genes encode tRNAsTyr which carry one or two nucleotide substitutions as compared to the conventional genes. The nine Triticum tRNATyr genes possess highly conserved intron sequences ranging in size from 12 to 14 nucleotides. A common secondary intron structure with the 5' and 3' splice site loops separated by five base pairs can be formed by all pre-tRNAs Tyr which are efficiently spliced in the homologous wheat germ extract.

  1. Isolation of ABA-responsive mutants in allohexaploid bread wheat (Triticum aestivum L.): Drawing connections to grain dormancy, preharvest sprouting, and drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the isolation of Wheat ABA-responsive mutants (Warm) in Chinese spring background of allohexaploid Triticum aestivum. The plant hormone abscisic acid (ABA) is required for the induction of seed dormancy, the induction of stomatal closure and drought tolerance, and is associated...

  2. Genome-wide association mapping for stripe rust (Puccinia striiformis F. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stripe rust (Puccinia striiformis F. sp. tritici; also known as yellow rust) is a globally devastating disease of wheat (Triticum aestivum L.) and a major threat to wheat production in the US Pacific Northwest (PNW), therefore both adult plant and all-stage resistance have been introduced into the w...

  3. Effect of wheat (Triticum aestivum L.) seed color and hardness genes on the consumption preference of the house mouse (Mus musculus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Wheat (Triticum aestivum L.) grain is a staple food and provides necessary nutrients for human health and nutrition. Yet, flavor differences among wheat varieties are not well understood. Grain flavor and consumption preference can be examined using the house mouse (Mus musculus L.) as a...

  4. Molecular characterization of the Puroindolin a-D1b allele and develpment of an STS marker in wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kernel texture (grain hardness) is a leading quality characteristic of bread wheat (Triticum aestivum L.) as it dramatically influences its milling and processing properties, and consequently is utilized in the classification and marketing of grain. According to many previous reports (reviewed in Bh...

  5. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells is altered by high temperature during grain fill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. "Butte 86") was produced under a 24/17°C or 37/28°C day/nigh...

  6. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells are altered by high temperature during grain fill

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. ‘Butte 86’) was produced under a 24/17°C or 37/28°C day/nigh...

  7. High temperature during grain fill alters the morphology of protein and starch deposits in the starchy endosperm cells of the developing wheat (Triticum aestivum L.) grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperature during grain fill reduces wheat yield and alters flour quality. Starchy endosperm cell morphology was investigated in wheat (Triticum aestivum L. ‘Butte 86’) grain produced under a 24/17 °C or 37/28 °C day/night regimen imposed from anthesis to maturity to identify changes in cell s...

  8. Spelt (Triticum spelta L.) and winter wheat (Triticum aestivum L.) wholemeals have similar sterol profiles, as determined by quantitative liquid chromatography and mass spectrometry analysis.

    PubMed

    Ruibal-Mendieta, Nike L; Rozenberg, Raoul; Delacroix, Dominique L; Petitjean, Géraldine; Dekeyser, Adrien; Baccelli, Chiara; Marques, Carole; Delzenne, Nathalie M; Meurens, Marc; Habib-Jiwan, Jean-Louis; Quetin-Leclercq, Joëlle

    2004-07-28

    From a nutritional point of view, cereal lipids include valuable molecules, such as essential fatty acids, phytosterols, and fat-soluble vitamins. Spelt (Triticum spelta L.) is an alternative hulled bread cereal mostly grown in Belgium, where it is mainly intended for animal feed but should increasingly be used for human consumption. The present research focused on phytosterol quantification by LC/APCI-MS2 in saponified wholemeal extracts of 16 dehulled spelt and 5 winter wheat (Triticum aestivum L.) varieties grown in Belgium during 2001-2002 at the same location. Glycosylated sterols and free and formerly esterified sterols could be determined in saponified extracts. Results show that the mean phytosterol content is comparable in both cereals (whereas other lipids, such as oleic and linoleic acids, are increased in spelt wholemeal): spelt extract has, on average, 527.7 microg of free and esterified sterols g(-1) of wholemeal and 123.8 microg of glycosylated sterols g(-1) of wholemeal versus 528.5 and 112.6 microg x g(-1) in winter wheat (values not corrected for recoveries). This is the first report on the application and validation of an LC/MS2 method for the quantification of phytosterols in spelt and winter wheat.

  9. Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum).

    PubMed Central

    Kasarda, D D; Okita, T W; Bernardin, J E; Baecker, P A; Nimmo, C C; Lew, E J; Dietler, M D; Greene, F C

    1984-01-01

    The complete amino acid sequence for an alpha-type gliadin protein of wheat (Triticum aestivum Linnaeus) endosperm has been derived from a cloned cDNA sequence. An additional cDNA clone that corresponds to about 75% of a similar alpha-type gliadin has been sequenced and shows some important differences. About 97% of the composite sequence of A-gliadin (an alpha-type gliadin fraction) has also been obtained by direct amino acid sequencing. This sequence shows a high degree of similarity with amino acid sequences derived from both cDNA clones and is virtually identical to one of them. On the basis of sequence information, after loss of the signal sequence, the mature alpha-type gliadins may be divided into five different domains, two of which may have evolved from an ancestral gliadin gene, whereas the remaining three contain repeating sequences that may have developed independently. Images PMID:6589619

  10. Plant availability of nutrients recovered as solids from human urine tested in climate chamber on Triticum aestivum L.

    PubMed

    Ganrot, Zsófia; Dave, Göran; Nilsson, Eva; Li, Bo

    2007-11-01

    Recovered nutrients by freezing-thawing from human urine in combination with struvite precipitation and nitrogen adsorption on zeolite and activated carbon have been tested in pot trials with wheat, Triticum aestivum L., in a climate chamber during 21 days. A simple test design using sand as substrate was chosen to give a first, general evaluation of the nutrient (P and N) availability from these sources. Dry weight, plant growth morphology, total-P and total-N were analysed. The tests show a slow-release of nutrients (P and N) from struvite and from N-adsorbents. The nitrogen in all treatments was in the deficiency range for optimum yield for wheat. Higher pH than usual for soil tests contributed to the difficulties in plant uptake, especially in the pots with only struvite (with highest MgO addition) as nutrient source.

  11. Evolution and Distribution of Hydrolytic Enzyme Activities during Preharvest Sprouting of Wheat (Triticum aestivum) in the Field.

    PubMed

    Olaerts, Heleen; Roye, Chiara; Derde, Liesbeth J; Sinnaeve, Georges; Meza, Walter R; Bodson, Bernard; Courtin, Christophe M

    2016-07-20

    To date, research on preharvest sprouted (PHS) wheat has mostly been conducted on kernels germinated under laboratory conditions, which differ widely from conditions in the field. To obtain detailed knowledge of the evolution of hydrolytic enzyme activities in PHS wheat (Triticum aestivum), a broad collection of samples from three varieties was obtained by harvesting before, at, and after maturity. Delaying harvest time coupled with periods of heavy rainfall caused sprouting in the kernels, observed as a drop in Falling Number and an increase in α-amylase activity. The appearance of α- and β-amylase, peptidase, and endoxylanase activity during field sprouting was independent from each other. Consequently, Falling Number could not be used to predict activity of other hydrolytic enzymes. When differentiating endogenous from kernel-associated microbial enzymes, results showed that α- and β-amylase and peptidase activity of PHS kernels were predominantly of endogenous origin, whereas endoxylanase activity was largely from microbial origin.

  12. Genetic variability of the low-molecular-weight glutenin subunits in spelt wheat (Triticum aestivum ssp. spelta L. em Thell.).

    PubMed

    Caballero, L; Martín, L M; Alvarez, J B

    2004-03-01

    The low-molecular-weight glutenin subunit composition of a collection of 403 accessions of spelt wheat ( Triticum aestivum ssp. spelta L. em. Thell) was analyzed by SDS-PAGE. Extensive variation was found, including 46 different patterns for zone B and 16 for zone C. Patterns within zone B exhibited from two to six bands and patterns in zone C had between four and six bands in SDS-PAGE gels. A higher number of bands was observed when urea was added to the gels. Zone B exhibited between six and 11 bands, and we identified 14 new patterns in this zone. For zone C, up to ten new patterns that comprised between five and nine bands were detected. For both zones, 86 patterns were found. The variability detected in this material is greater than that detected in other hulled wheats.

  13. [Detection of genetic determinants that define the difference of near-isogenic Triticum aestivum L. Lines in photoperiodic sensitivity].

    PubMed

    Kiseleva, A A; Eggi, E E; Koshkin, V A; Sitnikov, M N; Roder, M; Salina, E A; Potokina, E K

    2014-07-01

    Identification of genetic determinants that define different degrees of line sensitivity to the photoperiod was conducted on material of near-isogenic lines of the soft hexaploid wheat Triticum aestivum L. using SSR markers and markers specific to the Vrn and Ppd genes. It was established that the Ppd-s line contains a dominant Ppd-Dla allele located on chromosome 2D. This allele is characterized by a vast deletion in the gene promoter region. For two other lines (Ppd-m and Ppd-w), introgression of the Ppd-B1 gene on chromosome 2B was shown from the parental Sonora variety, which is slightly sensitive to the length of the day; however, the previously described Ppd-Bla. 1 allele was not found. Another polymorphism that can cause weak photoperiodic sensitivity, an increased amount of the Ppd-B1 gene copies, was detected for these lines.

  14. Comparative effects of glyphosate and atrazine in chloroplast ultrastructure of wheat and downy brome. [Triticum aestivum; Bromus tectorum

    SciTech Connect

    Auge, R.M.; Gealy, D.R.; Ogg, A.G.; Franceschi, V.R.

    1987-04-01

    Developing and mature leaves of winter wheat (Triticum aestivum L. var. Daws) and the weed species downy brome (Bromus tectorum L.) were subjected to 10 mM (foliar application) and 1 mM (root application) herbicide solutions. Glyphosate (N-(phosphonomethyl) glycine) and atrazine (2-chloro-4-(ethyl-amino)-6-(isopropylamino)-s-triazine) were prepared in a carrier composed of 5% soybean oil concentrate, 35% acetone and 60% water. Penetration experiments with /sup 3/H-labelled herbicides assessed what percentage of herbicide entered leaves, and microautoradiography was used to determine qualitatively how much herbicide was present in the sections viewed with TEM. Tissue was excised at 4, 18, 62 and 200 hours, and then either freeze-substituted or fixed chemically. Ultrastructural effects of each herbicide on chloroplasts from leaves of newly-germinated seedlings and of well-tillered plants are depicted and discussed. Temporal differences in response of chloroplasts to each herbicide are noted.

  15. Sampling system for wheat (Triticum aestivum L) area estimation using digital LANDSAT MSS data and aerial photographs. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Batista, G. T.

    1984-01-01

    A procedure to estimate wheat (Triticum aestivum L) area using sampling technique based on aerial photographs and digital LANDSAT MSS data is developed. Aerial photographs covering 720 square km are visually analyzed. To estimate wheat area, a regression approach is applied using different sample sizes and various sampling units. As the size of sampling unit decreased, the percentage of sampled area required to obtain similar estimation performance also decreased. The lowest percentage of the area sampled for wheat estimation with relatively high precision and accuracy through regression estimation is 13.90% using 10 square km as the sampling unit. Wheat area estimation using only aerial photographs is less precise and accurate than those obtained by regression estimation.

  16. Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat (Triticum aestivum) at low temperatures.

    PubMed

    Zeng, Yan; Yu, Jing; Cang, Jing; Liu, Lijie; Mu, Yongchao; Wang, Junhong; Zhang, Da

    2011-01-01

    Carbohydrate accumulation is common in frost-resistant plants, and many enzymes participate in this process. The sugar content and expression levels of metabolic enzymes related to sugar biosynthesis in response to drops in temperature were measured in two cultivars of winter wheat (Triticum aestivum) with different cold tolerances. The results indicate that the two cultivars examined, Dongnongdongmai 1 and Jimai 22, accumulated high levels of carbohydrate before November 4 (above 0°C), and that accumulation decreased as temperatures fell. However, this decrease was more modest in Dongnongdongmai 1, which had a higher sugar content. Sucrose and fructose were the main soluble sugars, indicating an important role in freezing tolerance. Gene expression studies revealed that expression of the genes encoding chloroplastic enzymes was significantly upregulated in the tillering nodes. Expression upregulation of TaSS and TaTPT may be helpful for sugar accumulation before November 4.

  17. A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants.

    PubMed

    Cui, Peng; Liu, Huitao; Lin, Qiang; Ding, Feng; Zhuo, Guoyin; Hu, Songnian; Liu, Dongcheng; Yang, Wenlong; Zhan, Kehui; Zhang, Aimin; Yu, Jun

    2009-12-01

    Plant mitochondrial genomes, encoding necessary proteins involved in the system of energy production, play an important role in the development and reproduction of the plant. They occupy a specific evolutionary pattern relative to their nuclear counterparts. Here, we determined the winter wheat (Triticum aestivum cv. Chinese Yumai) mitochondrial genome in a length of 452 and 526 bp by shotgun sequencing its BAC library. It contains 202 genes, including 35 known protein-coding genes, three rRNA and 17 tRNA genes, as well as 149 open reading frames (ORFs; greater than 300 bp in length). The sequence is almost identical to the previously reported sequence of the spring wheat (T. aestivum cv. Chinese Spring); we only identified seven SNPs (three transitions and four transversions) and 10 indels (insertions and deletions) between the two independently acquired sequences, and all variations were found in non-coding regions. This result confirmed the accuracy of the previously reported mitochondrial sequence of the Chinese Spring wheat. The nucleotide frequency and codon usage of wheat are common among the lineage of higher plant with a high AT-content of 58%. Molecular evolutionary analysis demonstrated that plant mitochondrial genomes evolved at different rates, which may correlate with substantial variations in metabolic rate and generation time among plant lineages. In addition, through the estimation of the ratio of non-synonymous to synonymous substitution rates between orthologous mitochondrion-encoded genes of higher plants, we found an accelerated evolutionary rate that seems to be the result of relaxed selection.

  18. Responses of wheat (Triticum aestivum) and turnip (Brassica rapa) to the combined exposure of carbaryl and ultraviolet radiation.

    PubMed

    Lima, Maria P R; Soares, Amadeu M V M; Loureiro, Susana

    2015-07-01

    The increase of ultraviolet (UV) radiation reaching the Earth's surface as a result of increased ozone layer depletion has affected crop production systems and, in combination with pesticides used in agricultural activities, can lead to greater risks to the environment. The impact of UV radiation and carbaryl singly and in combination on Triticum aestivum (wheat) and Brassica rapa (turnip) was studied. The combined exposure was analyzed using the MixTox tool and was based on the conceptual model of independent action, where possible deviations to synergism or antagonism and dose-ratio or dose-level response pattern were also considered. Compared with the control, carbaryl and UV radiation individually led to reductions in growth, fresh and dry weight, and water content for both species. Combined treatment of UV and carbaryl was more deleterious compared with single exposure. For T. aestivum length, no interaction between the 2 stressors was found (independent action), and a dose-level deviation was the best description for the weight parameters. For B. rapa, dose-ratio deviations from the conceptual model were found when length and dry weight were analyzed, and a higher than expected effect on the fresh weight (synergism) occurred with combined exposure.

  19. Cytogenetic and molecular identification of three Triticum aestivum-Leymus racemosus translocation addition lines.

    PubMed

    Wang, Le; Yuan, Jianhua; Bie, Tongde; Zhou, Bo; Chen, Peidu

    2009-06-01

    Chromosome 2C from Aegilops cylindrica has the ability to induce chromosome breakage in common wheat (Tritivum aestivum). In the BC(1)F(3) generation of the T. aestivum cv. Chinese Spring and a hybrid between T. aestivum-Leymus racemosus Lr.7 addition line and T. aestivum-Ae. cylindrica 2C addition line, three disomic translocation addition lines (2n = 44) were selected by mitotic chromosome C-banding and genomic in situ hybridization. We further characterized these T. aestivum-L. racemosus translocation addition lines, NAU636, NAU637 and NAU638, by chromosome C-banding, in situ hybridization using the A- and D-genome-specific bacterial artificial chromosome (BAC) clones 676D4 and 9M13; plasmids pAs1 and pSc119.2, and 45S rDNA; as well as genomic DNA of L. racemosus as probes, in combination with double ditelosomic test cross and SSR marker analysis. The translocation chromosomes were designated as T3AS-Lr7S, T6BS-Lr7S, and T5DS-Lr7L. The translocation line T3AS-Lr7S was highly resistant to Fusarium head blight and will be useful germplasm for resistance breeding.

  20. Enhancement of phototropic response to a range of light doses in Triticum aestivum coleoptiles in clinostat-simulated microgravity

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Bircher, B. W.; Brown, A. H. (Principal Investigator)

    1987-01-01

    The phototropic dose-response relationship has been determined for Triticum aestivum cv. Broom coleoptiles growing on a purpose-built clinostat apparatus providing gravity compensation by rotation about a horizontal axis at 2 rev min-1. These data are compared with data sets obtained with the clinostat axis vertical and stationary, as a 1 g control, and rotating vertically to examine clinostat effects other than gravity compensation. Triticum at 1 g follows the well-established pattern of other cereal coleoptiles with a first positive curvature at low doses, followed by an indifferent response region, and a second positive response at progressively increasing doses. However, these response regions lie at higher dose levels than reported for Avena. There is no significant difference between the responses observed with the clinostat axis vertical in the rotating and stationary modes, but gravity compensation by horizontal rotation increases the magnitude of first and second positive curvatures some threefold at 100 min after stimulation. The indifferent response is replaced by a significant curvature towards the light source, but remains apparent as a reduced curvature response at these dose levels.

  1. Comparative germination responses to water potential across different populations of Aegilops geniculata and cultivar varieties of Triticum durum and Triticum aestivum.

    PubMed

    Orsenigo, S; Guzzon, F; Abeli, T; Rossi, G; Vagge, I; Balestrazzi, A; Mondoni, A; Müller, J V

    2017-03-01

    Crop Wild Relatives are often used to improve crop quality and yields because they contain genetically important traits that can contribute to stress resistance and adaptation. Seed germination of different populations of Aegilops geniculata Roth collected along a latitudinal gradient was studied under different drought stress in order to find populations suitable for improving drought tolerance in wheat. Different accessions of Aegilops neglecta Req. ex Bertol., Triticum aestivum L. and T. durum Desf. were used as comparison. Under full hydration, germination was high in all populations, but increasing drought stress led to reduced and delayed germination. Significant differences in final germination and mean time to germinate were detected among populations. Wheat, durum wheat and the southern population of Ae. geniculata were not significantly affected by drought stress, germinating similarly under all treatments. However, seed germination of the northern populations of Ae. geniculata was significantly reduced under high water stress treatment. Differences between populations of the same species could not be explained by annual rainfall across populations' distributions, but by rainfall during seed development and maturation. Differences in the germination responses to drought found here highlight the importance of source populations as criteria for genotype selection for pre-breeders.

  2. Combined effects of elevated temperature and CO2 concentration on Cd and Zn accumulation dynamics in Triticum aestivum L.

    PubMed

    Wang, Xiaoheng; Li, Yu; Lu, Hong; Wang, Shigong

    2016-09-01

    A simulated climate warming experiment was conducted to evaluate the combined effects of elevated temperature and CO2 concentration on the bioaccumulation, translocation and subcellular distributions of Cd and Zn in wheat seedlings (Triticum aestivum L. cv. Xihan 1.) at Dingxi, Gansu Province, China. The objective was to find evidence that global climate change is affecting the bioaccumulation of Cd and Zn in T. aestivum L. cv. Xihan 1. The results showed that compared to control A, elevated temperature and CO2 increased Cd bioaccumulation in the shoots by 1.4-2.5 times, and increased that in the roots by 1.2-1.5 times, but decreased Zn levels in wheat shoots by 1.4-2.0 times, while decreased that in the roots by 1.6-1.9 times. Moreover, temperature and CO2 concentration increase also led to increased Cd concentration, and decreased Zn concentration in subcellular compartments of wheat seedlings. The largest Cd concentration increase (174.4%) was observed in the cell wall and debris fractions of shoots after they were subjected to the highest CO2 and temperature treatment (TC3). The largest Zn concentration decrease (53.1%) was observed in the soluble (F3) fractions of shoots after they were subjected to the medium CO2 and temperature treatment (TC2). The temperature and CO2 increase had no significant effect on the proportional distribution of Cd and Zn in the subcellular fractions. The root-to-shoot translocation of Cd increased with the increasing temperature and CO2 concentration. However, the Zn distributions only fluctuated within a small range.

  3. Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Nicotiania benthamiana.

    PubMed

    Wang, Xiaoyu; Zhang, Linsheng; Zhang, Yane; Bai, Zhenqing; Liu, Hao; Zhang, Dapeng

    2017-01-01

    WRAB18, an ABA-inducible protein belongs to the third family of late embryogenesis abundant (LEA) proteins which can be induced by different biotic or abiotic stresses. In the present study, WRAB18 was cloned from the Zhengyin 1 cultivar of Triticum aestivum and overexpressed in Escherichia coli to explore its effects on the growth of E. coli under different abiotic stresses. Results suggested the enhanced exhibition of tolerance of E. coli to these stresses. Meanwhile, the WRAB18-transgenic tobacco plants were obtained to analyze the stress-related enzymatic activities of ascorbate peroxidase (APX), peroxidase (POD) and superoxide dismutase (SOD), and to quantify the content of malonaldehyde (MDA) under osmotic stress, high salinity, and low and high temperature stress. The activities of APX, POD and SOD in the transgenic tobacco lines were higher while the content of MDA was lower than those of WT lines. Moreover, plastid localization of WRAB18 in Nicotiana benthamiana plasma cells were found fusing with GFP. In addition, purified WRAB18 protein protected LDH (Lactate dehydrogenase) enzyme activity in vitro from various stress conditions. In brief, WRAB18 protein shows protective action behaving as a "molecular shield" in both prokaryotic and eukaryotic cells under various abiotic stresses, not only during ABA stress.

  4. Identification of In-Chain-Functionalized Compounds and Methyl-Branched Alkanes in Cuticular Waxes of Triticum aestivum cv. Bethlehem

    PubMed Central

    Racovita, Radu C.; Jetter, Reinhard

    2016-01-01

    In this work, cuticular waxes from flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem were investigated in search for novel wax compounds. Seven wax compound classes were detected that had previously not been reported, and their structures were elucidated using gas chromatography-mass spectrometry of various derivatives. Six of the classes were identified as series of homologs differing by two methylene units, while the seventh was a homologous series with homologs with single methylene unit differences. In the waxes of flag leaf blades, secondary alcohols (predominantly C27 and C33), primary/secondary diols (predominantly C28) and esters of primary/secondary diols (predominantly C50, combining C28 diol with C22 acid) were found, all sharing similar secondary hydroxyl group positions at and around C-12 or ω-12. 7- and 8-hydroxy-2-alkanol esters (predominantly C35), 7- and 8-oxo-2-alkanol esters (predominantly C35), and 4-alkylbutan-4-olides (predominantly C28) were found both in flag leaf and peduncle wax mixtures. Finally, a series of even- and odd-numbered alkane homologs was identified in both leaf and peduncle waxes, with an internal methyl branch preferentially on C-11 and C-13 of homologs with even total carbon number and on C-12 of odd-numbered homologs. Biosynthetic pathways are suggested for all compounds, based on common structural features and matching chain length profiles with other wheat wax compound classes. PMID:27820857

  5. Inhibition by wheat sprout (Triticum aestivum) juice of bisphenol A-induced oxidative stress in young women.

    PubMed

    Yi, Bitna; Kasai, Hiroshi; Lee, Ho-Sun; Kang, Yunkyeong; Park, Jong Y; Yang, Mihi

    2011-09-18

    For health of future generation, fertile young women should be monitored for exposure of endocrine disrupting chemicals (EDCs). Among EDCs, bisphenol A (BPA) is suggested to induce reactive oxygen species (ROS) which play an important role in pathologies of female diseases such as endometriosis. On the other hand, previous studies suggested that sprouts of wheat (Triticum aestivum) have antimutagenicity and antioxidant activity. We performed the 2 weeks intervention of wheat sprout juice (100ml/day) to investigate its effects on BPA-exposure and -oxidative toxicity in young women (N=14, age=24.4±4.0). Geometrical mean of urinary BPA levels was 1.81 (GSTD, 4.34)μg/g creatinine. We observed that irregular meals significantly increased levels of urinary BPA approximate 3 times (p=0.03). In addition, we found BPA-induced oxidative stress is correlated with levels of 8-hydroxydeoxyguanosine (8-OHdG) or malondialdehyde (MDA) levels (p=0.18 or 0.03, respectively). We also observed a continuous reduction of urinary BPA during the wheat sprout intervention (p=0.02). In summary, our data suggested potential detoxification of wheat sprouts on BPA-toxicity via antioxidative and interference of absorption, distribution, metabolism and excretion (ADME)-mediated mechanisms in young women.

  6. Anti-obesity effect of Triticum aestivum sprout extract in high-fat-diet-induced obese mice.

    PubMed

    Im, Ji-Young; Ki, Hyeon-Hui; Xin, Mingjie; Kwon, Se-Uk; Kim, Young Ho; Kim, Dae-Ki; Hong, Sun-Pyo; Jin, Jong-Sik; Lee, Young-Mi

    2015-01-01

    Obesity is a common disease worldwide that often results in serious conditions including hypertension, diabetes, and hyperlipidemia. Many herbal medicines have been examined with regard to ameliorating obesity. We investigated the anti-obesity effects of 50% EtOH extract of Triticum aestivum sprout (TAEE) in high-fat-diet (HFD)-induced obese mice. TAEE administration (10, 50, or 200 mg/kg) for 6 weeks significantly decreased the body weights, serum total cholesterol (TC), and low-density lipoprotein cholesterol levels in HFD-fed mice. TAEE treatment reduced lipid accumulation in epididymal white adipose tissue (EWAT) and liver. Moreover, TC and lipid levels were decreased by TAEE treatment in liver. Serum leptin and adiponectin concentrations were reduced by TAEE treatment. TAEE-treated mice showed decreases in peroxisome proliferator-activated receptor γ (PPARγ) and fatty acid synthase expression in EWAT. Furthermore, TAEE administration elevated levels of PPARα protein in the liver of HFD-induced obese mice. These results suggest that TAEE supplementation might be beneficial for the treatment and prevention of obesity and related diseases.

  7. Salt-Induced Tissue-Specific Cytosine Methylation Downregulates Expression of HKT Genes in Contrasting Wheat (Triticum aestivum L.) Genotypes.

    PubMed

    Kumar, Suresh; Beena, Ananda Sankara; Awana, Monika; Singh, Archana

    2017-04-01

    Plants have evolved several strategies, including regulation of genes through epigenetic modifications, to cope with environmental stresses. DNA methylation is dynamically regulated through the methylation and demethylation of cytosine in response to environmental perturbations. High-affinity potassium transporters (HKTs) have accounted for the homeostasis of sodium and potassium ions in plants under salt stress. Wheat (Triticum aestivum L.) is sensitive to soil salinity, which impedes its growth and development, resulting in decreased productivity. The differential expression of HKTs has been reported to confer tolerance to salt stress in plants. In this study, we investigated variations in cytosine methylation and their effects on the expression of HKT genes in contrasting wheat genotypes under salt stress. We observed a genotype- and tissue-specific increase in cytosine methylation induced by NaCl stress that downregulated the expression of TaHKT2;1 and TaHKT2;3 in the shoot and root tissues of Kharchia-65, thereby contributing to its improved salt-tolerance ability. Although TaHKT1;4 was expressed only in roots and was downregulated under the stress in salt-tolerant genotypes, it was not regulated through variations in cytosine methylation. Thus, understanding epigenetic regulation and the function of HKTs would enable an improvement in salt tolerance and the development of salt-tolerant crops.

  8. The Effects of N Nutrition on the Water Relations and Gas Exchange Characteristics of Wheat (Triticum aestivum L.) 1

    PubMed Central

    Morgan, Jack A.

    1986-01-01

    The purpose of this study was to characterize leaf photosynthetic and stomatal responses of wheat (Triticum aestivum L.) plants grown under two N-nutritional regimes. High- and low-N regimes were imposed on growth-chamber-grown plants by fertilizing with nutrient solutions containing 12 or 1 millimolar nitrogen, respectively. Gas-exchange measurements indicated not only greater photosynthetic capacity of high-N plants under well-watered conditions, but also a greater sensitivity of CO2 exchange rate and leaf conductance to CO2 and leaf water potential compared to low-N plants. Increased sensitivity of high-N plants was associated with greater tissue elasticity, lower values of leaf osmotic pressure and greater aboveground biomass. These N-nutritional-related changes resulted in greater desiccation (lowered relative water content) of high-N plants as leaf water potential fell, and were implicated as being important in causing greater sensitivity of high-N leaf gas exchange to reductions in water potential. Water use efficiency of leaves, calculated as CO2 exchange rate/transpiration, increased from 9.1 to 13 millimoles per mole and 7.9 to 9.1 millimoles per mole for high- and low-N plants as water became limiting. Stomatal oscillations were commonly observed in the low-N treatment at low leaf water potentials and ambient CO2 concentrations, but disappeared as CO2 was lowered and stomata opened. PMID:16664606

  9. Mapping a QTL conferring resistance to Fusarium head blight on chromosome 1B in winter wheat (Triticum aestivum L.)

    PubMed Central

    Nishio, Zenta; Onoe, Chihiro; Ito, Miwako; Tabiki, Tadashi; Nagasawa, Koichi; Miura, Hideho

    2016-01-01

    Fusarium head blight (FHB) is one of the most devastating diseases of wheat (Triticum aestivum L.), and the development of cultivars with FHB resistance is the most effective way to control the disease. Yumechikara is a Japanese hard red winter wheat cultivar that shows moderate resistance to FHB with superior bread-making quality. To identify quantitative trait loci (QTLs) for FHB resistance in Yumechikara, we evaluated doubled haploid lines derived from a cross between Yumechikara and a moderate susceptible cultivar, Kitahonami, for FHB resistance in a 5-year field trial, and we analyzed polymorphic molecular markers between the parents. Our analysis of these markers identified two FHB-resistance QTLs, one from Yumechikara and one from Kitahonami. The QTL from Yumechikara, which explained 36.4% of the phenotypic variation, was mapped on the distal region of chromosome 1BS, which is closely linked to the low-molecular-weight glutenin subunit gene Glu-B3 and the glume color gene Rg-B1. The other QTL (from Kitahonami) was mapped on chromosome 3BS, which explained 11.2% of the phenotypic variation. The close linkage between the FHB-resistance QTL on 1BS, Glu-B3 and Rg-B1 brings an additional value of simultaneous screening for both quality and FHB resistance using the glume color. PMID:28163582

  10. The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L.

    PubMed

    Golob, Aleksandra; Kavčič, Jan; Stibilj, Vekoslava; Gaberščik, Alenka; Vogel-Mikuš, Katarina; Germ, Mateja

    2017-02-01

    UV radiation as an evolutionarily important environmental factor, significantly affects plants traits and alters the effects of other environmental factors. Single and combined effects of ambient UV radiation, its exclusion, and Se foliar treatments on Si concentrations and production of Si phytoliths in wheat (Triticum aestivum L.) cv. 'Reska' were studied. The effects of these treatments on growth parameters of the plants, structural and biochemical traits of the leaves, and interactions of the leaves with light, as Si incrustation is the first barrier to light at the leaf surface were also examined. Under ambient UV radiation and foliar treatment with 10mgL(-1) sodium selenate solution, there was a trade-off between the plant investment in primary and secondary metabolism, as the production of UV-absorbing compounds was enhanced while photosynthetic pigment levels were reduced. Independent of Se treatment, ambient UV radiation lowered respiratory potential, Ca concentration, and leaf thickness, and increased Si concentration, Si phytoliths formation, and cuticle thickness. The Se treatment has little effect on plant traits and biomass production but it increased Se concentrations in the plants by >100-fold, independent of UV radiation. In combination with UV radiation Se strengthen the protection of plants against stress by increasing the amount of UV absorbing compounds, light reflectance and transmittance.

  11. Evaluation of assembly strategies using RNA-seq data associated with grain development of wheat (Triticum aestivum L.).

    PubMed

    Li, Huai-Zhu; Gao, Xiang; Li, Xiao-Yan; Chen, Qi-Jiao; Dong, Jian; Zhao, Wan-Chun

    2013-01-01

    Wheat (Triticum aestivum L.) is one of the most important crops cultivated worldwide. Identifying the complete transcriptome of wheat grain could serve as foundation for further study of wheat seed development. However, the relatively large size and the polyploid complexity of the genome have been substantial barriers to molecular genetics and transcriptome analysis of wheat. Alternatively, RNA sequencing has provided some useful information about wheat genes. However, because of the large number of short reads generated by RNA sequencing, factors that are crucial to transcriptome assembly, including software, candidate parameters and assembly strategies, need to be optimized and evaluated for wheat data. In the present study, four cDNA libraries associated with wheat grain development were constructed and sequenced. A total of 14.17 Gb of high-quality reads were obtained and used to assess different assembly strategies. The most successful approach was to filter the reads with Q30 prior to de novo assembly using Trinity, merge the assembled contigs with genes available in wheat cDNA reference data sets, and combine the resulting assembly with an assembly from a reference-based strategy. Using this approach, a relatively accurate and nearly complete transcriptome associated with wheat grain development was obtained, suggesting that this is an effective strategy for generation of a high-quality transcriptome from RNA sequencing data.

  12. DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum).

    PubMed

    Sun, Han; Guo, Zhiai; Gao, Lifeng; Zhao, Guangyao; Zhang, Wenping; Zhou, Ronghua; Wu, Yongzhen; Wang, Haiyang; An, Hailong; Jia, Jizeng

    2014-11-01

    As one of the three key components of the 'Green Revolution', photoperiod insensitivity is vital for improved adaptation of wheat (Triticum aestivum) cultivars to a wider geographical range. Photoperiod-B1a (Ppd-B1a) is one of the major genes that confers photoperiod insensitivity in 'Green Revolution' varieties, and has made a significant contribution to wheat yield improvement. In this study, we investigated the mechanisms underlying the photoperiod insensitivity of Ppd-B1a alleles from an epigenetic perspective using a combination of bisulfite genomic sequencing, orthologous comparative analysis, association analysis, linkage analysis and gene expression analysis. Based on the study of a large collection of wheat germplasm, we report two methylation haplotypes of Ppd-B1 and demonstrate that the higher methylation haplotype (haplotype a) was associated with increased copy numbers and higher expression levels of the Ppd-B1 gene, earlier heading and photoperiod insensitivity. Furthermore, assessment of the distribution frequency of the different methylation haplotypes suggested that the methylation patterns have undergone selection during the wheat breeding process. Our study suggests that DNA methylation in the regulatory region of the Ppd-B1 alleles, which is closely related to copy number variation, plays a significant role in wheat breeding, to confer photoperiod insensitivity and better adaptation to a wider geographical range.

  13. Comparative studies of mitochondrial proteomics reveal an intimate protein network of male sterility in wheat (Triticum aestivum L.).

    PubMed

    Wang, Shuping; Zhang, Gaisheng; Zhang, Yingxin; Song, Qilu; Chen, Zheng; Wang, Junsheng; Guo, Jialin; Niu, Na; Wang, Junwei; Ma, Shoucai

    2015-10-01

    Plant male sterility has often been associated with mitochondrial dysfunction; however, the mechanism in wheat (Triticum aestivum L.) has not been elucidated. This study set out to probe the mechanism of physiological male sterility (PHYMS) induced by the chemical hybridizing agent (CHA)-SQ-1, and cytoplasmic male sterility (CMS) of wheat at the proteomic level. A total of 71 differentially expressed mitochondrial proteins were found to be involved in pollen abortion and further identified by MALDI-TOF/TOF MS (matrix-assisted laser desorption/ionization-time of fight/time of flight mass spectrometry). These proteins were implicated in different cellular responses and metabolic processes, with obvious functional tendencies toward the tricarboxylic acid cycle, the mitochondrial electron transport chain, protein synthesis and degradation, oxidation stress, the cell division cycle, and epigenetics. Interactions between identified proteins were demonstrated by bioinformatics analysis, enabling a more complete insight into biological pathways involved in anther abortion and pollen defects. Accordingly, a mitochondria-mediated male sterility protein network in wheat is proposed; this network was further confirmed by physiological data, RT-PCR (real-time PCR), and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) assay. The results provide intriguing insights into the metabolic pathway of anther abortion induced by CHA-SQ-1 and also give useful clues to identify the crucial proteins of PHYMS and CMS in wheat.

  14. Effects of temperature - heavy metal interactions, antioxidant enzyme activity and gene expression in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Ergün, N; Özçubukçu, S; Kolukirik, M; Temizkan, Ö

    2014-12-01

    In this study, the effect of heat and chromium (Cr) heavy metal interactions on wheat seedlings (Triticum aestivum L. cv. Ç-1252 and Gun91) was investigated by measuring total chlorophyll and carotenoid levels, catalase (CAT) and ascorbate peroxidase (APX) antioxidant enzyme activities, and MYB73, ERF1 and TaSRG gene expression. Examination of pigment levels demonstrated a decrease in total chlorophyll in both species of wheat under combined heat and heavy metal stress, while the carotenoid levels showed a slight increase. APX activity increased in both species in response to heavy metal stress, but the increase in APX activity in the Gun91 seedlings was higher than that in the Ç-1252 seedlings. CAT activity increased in Gun91 seedlings but decreased in Ç-1252 seedlings. These results showed that Gun91 seedling had higher resistance to Cr and Cr + heat stresses than the Ç-1252 seedling. The quantitative molecular analyses implied that the higher resistance was related to the overexpression of TaMYB73, TaERF1 and TaSRG transcription factors. The increase in the expression levels of these transcription factors was profound under combined Cr and heat stress. This study suggests that TaMYB73, TaERF1 and TaSRG transcription factors regulate Cr and heat stress responsive genes in wheat.

  15. Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model.

    PubMed

    Bogard, Matthieu; Ravel, Catherine; Paux, Etienne; Bordes, Jacques; Balfourier, François; Chapman, Scott C; Le Gouis, Jacques; Allard, Vincent

    2014-11-01

    Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (V sat and P base , representing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting V sat and P base with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, respectively. QTL-based V sat and P base estimates were able to predict heading date of an independent validation data set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology.

  16. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    NASA Technical Reports Server (NTRS)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  17. Salicylic acid changes the properties of extracellular peroxidase activity secreted from wounded wheat (Triticum aestivum L.) roots.

    PubMed

    Minibayeva, F; Mika, A; Lüthje, S

    2003-05-01

    Wheat ( Triticum aestivum L.) roots released proteins showing peroxidase activity in the apoplastic solution in response to wound stress. Preincubation of excised roots with 1 mM salicylic acid at pH 7.0 enhanced the guaiacol peroxidase activity of the extracellular solution (so-called extracellular peroxidase). The soluble enzymes were partially purified by precipitation with ammonium sulfate followed by size exclusion and ion exchange chromatography. Despite an increase in the total activity of secreted peroxidase induced by pretreatment of excised roots with salicylic acid, the specific activity of the partially purified protein was significantly lower compared to that of the control. Purification of the corresponding proteins by ion exchange chromatography indicates that several isoforms of peroxidase occurred in both control and salicylic acid-treated samples. The activities of the extracellular peroxidases secreted by the salicylic acid-treated roots responded differently to calcium and lectins compared with those from untreated roots. Taken together, our data suggest that salicylic acid changes the isoforms of peroxidase secreted by wounded wheat roots.

  18. Microbial Diversity of Type I Sourdoughs Prepared and Back-Slopped with Wholemeal and Refined Soft (Triticum aestivum) Wheat Flours.

    PubMed

    Taccari, Manuela; Aquilanti, Lucia; Polverigiani, Serena; Osimani, Andrea; Garofalo, Cristiana; Milanović, Vesna; Clementi, Francesca

    2016-08-01

    The fermentation of type I sourdough was studied for 20 d with daily back-slopping under laboratory and artisan bakery conditions using 1 wholemeal and 2 refined soft wheat (Triticum aestivum) flours. The sourdough bacterial and yeast diversity and dynamics were investigated by plate counting and a combination of culture-dependent and culture-independent PCR-DGGE approach. The pH, total titrable acidity, and concentration of key organic acids (phytic, lactic, and acetic) were measured. Three flours differed for both chemical and rheological properties. A microbial succession was observed, with the atypical sourdough species detected at day 0 (i.e. Lactococcus lactis and Leuconostoc holzapfelii/citreum group for bacteria and Candida silvae and Wickerhamomyces anomalus for yeasts) being progressively replaced by taxa more adapted to the sourdough ecosystem (Lactobacillus brevis, Lactobacillus alimentarius/paralimentarius, Saccharomyces cerevisiae). In mature sourdoughs, a notably different species composition was observed. As sourdoughs propagated with the same flour at laboratory and artisan bakery level were compared, the influence of both the substrate and the propagation environment on microbial diversity was assumed.

  19. Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil.

    PubMed

    Delhaize, Emmanuel; James, Richard A; Ryan, Peter R

    2012-08-01

    We found significant genetic variation in the ability of wheat (Triticum aestivum) to form rhizosheaths on acid soil and assessed whether differences in aluminium (Al(3+) ) tolerance of root hairs between genotypes was the physiological basis for this genetic variation. A method was developed to rapidly screen rhizosheath size in a range of wheat genotypes. Backcrossed populations were generated from cv Fronteira (large rhizosheath) using cv EGA-Burke (small rhizosheath) as the recurrent parent. A positive correlation existed between rhizosheath size on acid soil and root hair length. In hydroponic experiments, root hairs of the backcrossed lines with large rhizosheaths were more tolerant of Al(3+) toxicity than the backcrossed lines with small rhizosheaths. We conclude that greater Al(3+) tolerance of root hairs underlies the larger rhizosheath of wheat grown on acid soil. Tolerance of the root hairs to Al(3+) was largely independent of the TaALMT1 gene which suggests that different genes encode the Al(3+) tolerance of root hairs. The maintenance of longer root hairs in acid soils is important for the efficient uptake of water and nutrients.

  20. Effect of CO/sub 2/ enrichment on growth and reproduction of wheat grown under low oxygen. [Triticum aestivum

    SciTech Connect

    Musgrave, M.E.; Scheld, H.W.; Strain, B.R.

    1987-04-01

    Two cultivars of wheat (Triticum aestivum L. cvs Sonoita and Yecoro Rojo) were grown to maturity in a Phytotron B chamber within four sub-chambers which imposed two CO/sub 2/ levels (350 or 1000 ppm) at either ambient (21%) or low oxygen (5%). Techniques of growth analysis were used to characterize changes in plant carbon budgets imposed by the gas regimes. Large increases in leaf area were seen in the low oxygen treatments, due primarily to a stimulation of tillering. No necrosis was observed in roots developing at 5% oxygen but rather root development increased dramatically. Flowering was much delayed in the low oxygen, 350 ppm carbon dioxide regime and the spikes which did develop did not mature. While one cultivar (Sonoita) did not respond to CO/sub 2/ enrichment (1000 ppm) at ambient oxygen in terms of increases in leaf area and head number, carbon dioxide enrichment overcame the low oxygen effect on flowering in both cultivars. The results demonstrate a previously unknown interaction between carbon dioxide enrichment and low oxygen as they affect reproduction and may help elucidate the nature of low-oxygen-induced infertility.

  1. Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: their responses to cantharidin.

    PubMed

    Yang, Xue-Qing; Zhang, Ya-Lin

    2015-02-01

    Glutathione S-transferases (GSTs) play a key role in detoxification of xenobiotics in organisms. However, their other functions, especially response to the natural toxin cantharidin produced by beetles in the Meloidae and Oedemeridae families, are less known. We obtained GST cDNAs from three sources: Cydia pomonella (CpGSTd1), Sus scrofa (SsGSTα1), and Triticum aestivum (TaGSTf3). The predicted molecular mass is 24.19, 25.28 and 24.49 kDa, respectively. These proteins contain typical N-terminal and C-terminal domains. Recombinant GSTs were heterologously expressed in Escherichia coli as soluble fusion proteins. Their optimal activities are exhibited at pH 7.0-7.5 at 30 °C. Activity of CpGSTd1 is strongly inhibited by cantharidin and cantharidic acid, but is only slightly suppressed by the demethylated analog of cantharidin and cantharidic acid. Enzymatic assays revealed that cantharidin has no effect on SsGSTα1 activity, while it significantly stimulates TaGSTf3 activity, with an EC50 value of 0.3852 mM. Activities of these proteins are potently inhibited by the known GST competitive inhibitor: S-hexylglutathione (GTX). Our results suggest that these GSTs from different sources share similar structural and biochemical characteristics. Our results also suggest that CpGSTd1 might act as a binding protein with cantharidin and its analogs.

  2. A recessive gene controlling male sterility sensitive to short daylength/low temperature in wheat (Triticum aestivum L.).

    PubMed

    Chen, Xiao-dong; Sun, Dong-fa; Rong, De-fu; Peng, Jun-hua; Li, Cheng-dao

    2011-11-01

    Utilization of a two-line breeding system via photoperiod-thermo sensitive male sterility has a great potential for hybrid production in wheat (Triticum aestivum L.). 337S is a novel wheat male sterile line sensitive to both short daylength/low temperature and long daylength/high temperature. Five F(2) populations derived from the crosses between 337S and five common wheat varieties were developed for genetic analysis. All F(1)'s were highly fertile while segregation occurred in the F(2) populations with a ratio of 3 fertile:1 sterile under short daylength/low temperature. It is shown that male sterility in 337S was controlled by a single recessive gene, temporarily designated as wptms3. Bulked segregant analysis (BSA) coupled with simple sequence repeat (SSR) markers was applied to map the sterile gene using one mapping population. The wptms3 gene was mapped to chromosome arm 1BS and flanked by Xgwm413 and Xgwm182 at a genetic distance of 3.2 and 23.5 cM, respectively. The accuracy and efficiency of marker-assisted selection were evaluated and proved essential for identifying homozygous recessive male sterile genotypes of the wptms3 gene in F(2) generation.

  3. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Ritchie, K.; Bloom, A. J.; Bugbee, B. B.

    1998-01-01

    We examined the hypothesis that elevated CO2 concentration would increase NO3- absorption and assimilation using intact wheat canopies (Triticum aestivum cv. Veery 10). Nitrate consumption, the sum of plant absorption and nitrogen loss, was continuously monitored for 23 d following germination under two CO2 concentrations (360 and 1000 micromol mol-1 CO2) and two root zone NO3- concentrations (100 and 1000 mmol m3 NO3-). The plants were grown at high density (1780 m-2) in a 28 m3 controlled environment chamber using solution culture techniques. Wheat responded to 1000 micromol mol-1 CO2 by increasing carbon allocation to root biomass production. Elevated CO2 also increased root zone NO3- consumption, but most of this increase did not result in higher biomass nitrogen. Rather, nitrogen loss accounted for the greatest part of the difference in NO3- consumption between the elevated and ambient [CO2] treatments. The total amount of NO3(-)-N absorbed by roots or the amount of NO3(-)-N assimilated per unit area did not significantly differ between elevated and ambient [CO2] treatments. Instead, specific leaf organic nitrogen content declined, and NO3- accumulated in canopies growing under 1000 micromol mol-1 CO2. Our results indicated that 1000 micromol mol-1 CO2 diminished NO3- assimilation. If NO3- assimilation were impaired by high [CO2], then this offers an explanation for why organic nitrogen contents are often observed to decline in elevated [CO2] environments.

  4. Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum) endosperm.

    PubMed

    Kang, Guo-Zhang; Xu, Wei; Liu, Guo-Qin; Peng, Xiao-Qi; Guo, Tian-Cai

    2013-02-01

    The cDNA sequences of 26 starch synthesis genes were identified in common wheat (Triticum aestivum L.), and their transcript levels were measured using quantitative real-time RT-PCR to assess the function of individual genes and the regulatory mechanism in wheat endosperm. The expression patterns of 26 genes in wheat endosperm were classified into three groups. The genes in group 1 were richly expressed in the early stage of grain development and may be involved in the construction of fundamental cell machinery, synthesis of glucan primers, and initiation of starch granules. The genes in group 2 were highly expressed during the middle and late stages of grain development, and their expression profiles were similar to the accumulation rate of endosperm starch; these genes are presumed to play a crucial role in starch production. The genes in group 3 were scantily expressed throughout the grain development period and might be associated with transitory starch synthesis. Transcripts of the negative transcription factor TaRSR1 were high at the early and late stages of grain development but low during the middle stage. The expression pattern of TaRSR1 was almost opposite to those of the group 2 starch synthesis genes, indicating that TaRSR1 might negatively regulate the expression of many endosperm starch synthesis genes during grain development.

  5. Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Nicotiania benthamiana

    PubMed Central

    Wang, Xiaoyu; Zhang, Linsheng; Zhang, Yane; Bai, Zhenqing; Liu, Hao; Zhang, Dapeng

    2017-01-01

    WRAB18, an ABA-inducible protein belongs to the third family of late embryogenesis abundant (LEA) proteins which can be induced by different biotic or abiotic stresses. In the present study, WRAB18 was cloned from the Zhengyin 1 cultivar of Triticum aestivum and overexpressed in Escherichia coli to explore its effects on the growth of E. coli under different abiotic stresses. Results suggested the enhanced exhibition of tolerance of E. coli to these stresses. Meanwhile, the WRAB18-transgenic tobacco plants were obtained to analyze the stress-related enzymatic activities of ascorbate peroxidase (APX), peroxidase (POD) and superoxide dismutase (SOD), and to quantify the content of malonaldehyde (MDA) under osmotic stress, high salinity, and low and high temperature stress. The activities of APX, POD and SOD in the transgenic tobacco lines were higher while the content of MDA was lower than those of WT lines. Moreover, plastid localization of WRAB18 in Nicotiana benthamiana plasma cells were found fusing with GFP. In addition, purified WRAB18 protein protected LDH (Lactate dehydrogenase) enzyme activity in vitro from various stress conditions. In brief, WRAB18 protein shows protective action behaving as a “molecular shield” in both prokaryotic and eukaryotic cells under various abiotic stresses, not only during ABA stress. PMID:28207772

  6. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum).

    PubMed

    Orhan, Furkan

    2016-01-01

    In the current study, 18 halotolerant and halophilic bacteria have been investigated for their plant growth promoting abilities in vitro and in a hydroponic culture. The bacterial strains have been investigated for ammonia, indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate-deaminase production, phosphate solubilisation and nitrogen fixation activities. Of the tested bacteria, eight were inoculated with Triticum aestivum in a hydroponic culture. The investigated bacterial strains were found to have different plant-growth promoting activities in vitro. Under salt stress (200mM NaCl), the investigated bacterial strains significantly increased the root and shoot length and total fresh weight of the plants. The growth rates of the plants inoculated with bacterial strains ranged from 62.2% to 78.1%. Identifying of novel halophilic and halotolerant bacteria that promote plant growth can be used as alternatives for salt sensitive plants. Extensive research has been conducted on several halophilic and halotolerant bacterial strains to investigate their plant growth promoting activities. However, to the best of my knowledge, this is the first study to inoculate these bacterial strains with wheat.

  7. Purification of antifreeze protein from wheat bran (Triticum aestivum L.) based on its hydrophilicity and ice-binding capacity.

    PubMed

    Zhang, Chao; Zhang, Hui; Wang, Li; Zhang, Junhui; Yao, Huiyuan

    2007-09-19

    Wheat-bran ( Triticum aestivum L.) antifreeze protein ( TaAFP) was purified 323-fold to electrophoretic homogeneity with an overall yield of 1.64% from wheat-bran protein by a specific three-step procedure. The three-step procedure was quicker, cheaper, and more effective than the five-step procedure we used earlier. First, TaAFP was concentrated by a phosphate buffer, on the basis of its strong hydrophilicity that was validated by thermal gravimetric analyses and a surface hydrophobicity analysis. Second, TaAFP was trapped in ice crystals for its specific ice-binding capacity, which was proved by ice-binding protocols. Remarkably, the ice-binding step was the most effective step, and the purification factor of this step was up to 270-fold. Finally, TaAFP was purified by HPLC purification, a complementary step for the specific ice-binding protocol, to electrophoretic homogeneity. Our protocols provide peers a novel and effective way for the search and purification of potential AFPs.

  8. Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum).

    PubMed

    Tomar, Rupal Singh; Jajoo, Anjana

    2014-11-01

    The toxic effect of fluoranthene (FLT) on seed germination, growth of seedling and photosynthesis processes of wheat (Triticum aestivum) was investigated. Wheat seeds were exposed to 5 µM and 25 µM FLT concentrations for 25 days and it was observed that FLT had inhibiting effect on rate of seed germination. The germination rate of wheat seeds decreased by 11% at 25 µM FLT concentration. Root/shoot growth and biomass production declined significantly even at low concentrations of FLT. Chlorophyll a fluorescence and gas exchange parameters were measured after 25 days to evaluate the effects of FLT on Photosystem II (PSII) activity and CO2 assimilation rate. The process of CO2 assimilation decreased more effectively by FLT as compared to the yield of PSII. A negative correlation was found between plant net photosynthesis, stomatal conductance, carboxylation capacity and biomass production with FLT. It is concluded that inhibiting effects of FLT on photosynthesis are contributed more by inhibition in the process of CO2 fixation rather than inhibition of photochemical events.

  9. Localization of BEN1-LIKE protein and nuclear degradation during development of metaphloem sieve elements in Triticum aestivum L.

    PubMed

    Cai, Jingtong; Zhang, Zhihui; Zhou, Zhuqing; Yang, Wenli; Liu, Yang; Mei, Fangzhu; Zhou, Guangsheng; Wang, Likai

    2015-03-01

    Metaphloem sieve elements (MSEs) in the developing caryopsis of Triticum aestivum L. undergo a unique type of programmed cell death (PCD); cell organelles gradually degrade with the MSE differentiation while mature sieve elements keep active. This study focuses on locating BEN1-LIKE protein and nuclear degradation in differentiating MSEs of wheat. Transmission electron microscopy (TEM) showed that nuclei degraded in MSE development. First, the degradation started at 2-3 days after flowering (DAF). The degraded fragments were then swallowed by phagocytic vacuoles at 4 DAF. Finally, nuclei almost completely degraded at 5 DAF. We measured the BEN1-LIKE protein expression in differentiating MSEs. In situ hybridization showed that BEN1-LIKE mRNA was a more obvious hybridization signal at 3-4 DAF at the microscopic level. Immuno-electron microscopy further revealed that BEN1-LIKE protein was mainly localized in MSE nuclei. Furthermore, MSE differentiation was tested using a TSQ Zn2+ fluorescence probe which showed that the dynamic change of Zn2+ accumulation was similar to BEN1-LIKE protein expression. These results suggest that nucleus degradation in wheat MSEs is associated with BEN1-LIKE protein and that the expression of this protein may be regulated by Zn2+ accumulation variation.

  10. Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum

    PubMed Central

    2014-01-01

    Background The use of auxin-producing rhizosphere bacteria as agricultural products promises increased root production and therefore greater phosphate (Pi) uptake. Whilst such bacteria promote root production in vitro, the nature of the bacteria-plant interaction in live soil, particularly concerning any effects on nutrient uptake, are not known. This study uses Bacillus amyloliquefaciens FZB42, an auxin-producing rhizobacterium, as a dressing on Triticum aestivum seeds. It then examines the effects on root production, Pi uptake, Pi-related gene expression and organic carbon (C) exudation. Results Seed treatment with B. amyloliquefaciens FZB42 increased root production at low environmental Pi concentrations, but significantly repressed root Pi uptake. This coincided with an auxin-mediated reduction in expression of the Pi transporters TaPHT1.8 and TaPHT1.10. Applied exogenous auxin also triggered an increase in root C exudation. At high external Pi concentrations, root production was promoted by B. amyloliquefaciens FZB42, but Pi uptake was unaffected. Conclusions We conclude that, alongside promoting root production, auxin biosynthesis by B. amyloliquefaciens FZB42 both re-models Pi transporter expression and elevates organic C exudation. This shows the potential importance of rhizobacterial-derived auxin following colonisation of root surfaces, and the nature of this bacteria-plant interaction in soil. PMID:24558978

  11. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    PubMed

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production.

  12. Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings.

    PubMed

    Lamhamdi, Mostafa; El Galiou, Ouiam; Bakrim, Ahmed; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Aarab, Ahmed; Lafont, René

    2013-01-01

    Lead (Pb) is the most common heavy metal contaminant in the environment. Pb is not an essential element for plants, but they absorb it when it is present in their environment, especially in rural areas when the soil is polluted by automotive exhaust and in fields contaminated with fertilizers containing heavy metal impurities. To investigate lead effects on nutrient uptake and metabolism, two plant species, spinach (Spinacia oleracea) and wheat (Triticum aestivum), were grown under hydroponic conditions and stressed with lead nitrate, Pb(NO3)2, at three concentrations (1.5, 3, and 15 mM). Lead is accumulated in a dose-dependent manner in both plant species, which results in reduced growth and lower uptake of all mineral ions tested. Total amounts and concentrations of most mineral ions (Na, K, Ca, P, Mg, Fe, Cu and Zn) are reduced, although Mn concentrations are increased, as its uptake is reduced less relative to the whole plant's growth. The deficiency of mineral nutrients correlates in a strong decrease in the contents of chlorophylls a and b and proline in both species, but these effects are less pronounced in spinach than in wheat. By contrast, the effects of lead on soluble proteins differ between species; they are reduced in wheat at all lead concentrations, whereas they are increased in spinach, where their value peaks at 3 mM Pb. The relative lead uptake by spinach and wheat, and the different susceptibility of these two species to lead treatment are discussed.

  13. [Hybrids of Aegilops cylindrica Host with Triticum durum Desf. and T. aestivum L].

    PubMed

    Avsenin, V I; Motsnyĭ, A I; Rybalka, A I; Faĭt, V I

    2003-01-01

    The hybrids of durum and bread wheat with Ae. cylindrica have been obtained without using an embryo rescue technique. The hybrid output (of pollinated flower number) in the field conditions scored 1.0, 15.3 and 10.0% in the crosses T. durum x Ae. cylindrica, Ae. cylindrica x T. durum and T. aestivum x Ae. cylindrica, respectively. A high level of meiotic chromosome pairing between homologous D genomes of bread wheat and Aegilops has been revealed (c = 80.0-83.7%). The possibility of homoeological pairing between wheat and Ae. cylindrica chromosomes has been shown. Herewith, the correlation between the levels of homological and homoeological pairing is absent. The possibilities of genetic material interchange, including between the tetraploid species, as well as the using of Ae. cylindrica cytoplasm for durum wheat breeding are discussed.

  14. Ca2+/Cation Antiporters (CaCA): Identification, Characterization and Expression Profiling in Bread Wheat (Triticum aestivum L.)

    PubMed Central

    Taneja, Mehak; Tyagi, Shivi; Sharma, Shailesh; Upadhyay, Santosh Kumar

    2016-01-01

    The Ca2+/cation antiporters (CaCA) superfamily proteins play vital function in Ca2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat). Herein, we identified 34 TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL, and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B, and D subgenome and homeologous chromosome (HC), except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs) due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about 10 transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections) and abiotic stresses (heat, drought, salt) suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However, the role of individual gene needs to be established. The present study unfolded the opportunity for detail functional

  15. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil.

    PubMed

    Abbas, Tahir; Rizwan, Muhammad; Ali, Shafaqat; Adrees, Muhammad; Zia-Ur-Rehman, Muhammad; Qayyum, Muhammad Farooq; Ok, Yong Sik; Murtaza, Ghulam

    2017-04-10

    Soil degradation by salinity and accumulation of trace elements such as cadmium (Cd) in the soils are expected to become one of the most critical issues hindering sustainable production and feeding the increasing population. Biochar (BC) has been known to protect the plants against soil salinity and heavy metal stress. A soil culture study was performed to evaluate the effect of BC on wheat (Triticum aestivum L.) growth, biomass, and reducing Cd and sodium (Na) uptake grown in Cd-contaminated saline soil under ambient conditions. Soil salinity decreased the plant growth, biomass, grain yield, chlorophyll contents, and gas exchange parameters and caused oxidative stress in plants compared with Cd stress alone. Salt stress increased Cd and Na uptake and reduced the potassium (K) and zinc (Zn) uptake by plants. AB-DTPA-extractable Cd and soil electrical conductivity (ECe) increased under salt stress compared to the soil without NaCl stress. Biochar application improved the plant growth and reduced the Cd and Na uptake except in plants treated with higher BC and salt stress (5.0% BC + 50 mM NaCl). Biochar application reduced the oxidative stress in plants and modified the antioxidant enzyme activities, and reduced the bioavailable Cd under salt stress. The positive effects of BC under lower salt stress while the negative effects of BC under higher BC and salt levels indicated that BC doses should be used with great care in higher soil salinity levels simultaneously contaminated with Cd to avoid the negative effects of BC on growth and metal uptake.

  16. Factors Affecting the Radiosensitivity of Hexaploid Wheat to γ-Irradiation: Radiosensitivity of Hexaploid Wheat (Triticum aestivum L.)

    PubMed Central

    Zhao, Linshu; Guo, Huijun; Xie, Yongdun; Zhao, Shirong; Song, Xiyun; Han, Longzhi; Liu, Luxiang

    2016-01-01

    Understanding the radiosensitivity of plants, an important factor in crop mutation breeding programs, requires a thorough investigation of the factors that contribute to this trait. In this study, we used the highly radiosensitive wheat (Triticum aestivum L.) variety HY1 and J411, a γ-irradiation-insensitive control, which were screened from a natural population, to examine the factors affecting radiosensitivity, including free radical content and total antioxidant capacity, as well as the expression of TaKu70 and TaKu80 (DNA repair-related genes) as measured by real-time PCR. We also investigated the alternative splicing of this gene in the wild-type wheat ecotype by sequence analysis. Free radical contents and total antioxidant capacity significantly increased upon exposure of HY1 wheat to γ-irradiation in a dose-dependent manner. By contrast, in J411, the free radical contents exhibited a similar trend, but the total antioxidant capacity exhibited a downward trend upon increasing γ-irradiation. Additionally, we detected dose-dependent increases in TaKu70 and TaKu80 expression levels in γ-irradiated HY1, while in J411, TaKu70 expression levels increased, followed by a decline. We also detected alternative splicing of TaKu70 mRNA, namely, intron retention, in HY1 but not in J411. Our findings indicate that γ-irradiation induces oxidative stress and DNA damage in hexaploid wheat, resulting in growth retardation of seedlings, and they suggest that TaKu70 may play a causal role in radiosensitivity in HY1. Further studies are required to exploit these factors to improve radiosensitivity in other wheat varieties. PMID:27551965

  17. Introgression of an imidazolinone-resistance gene from winter wheat (Triticum aestivum L.) into jointed goatgrass (Aegilops cylindrica Host).

    PubMed

    Perez-Jones, Alejandro; Mallory-Smith, Carol A; Hansen, Jennifer L; Zemetra, Robert S

    2006-12-01

    Imidazolinone-resistant winter wheat (Triticum aestivum L.) is being commercialized in the USA. This technology allows wheat growers to selectively control jointed goatgrass (Aegilops cylindrica Host), a weed that is especially problematic because of its close genetic relationship with wheat. However, the potential movement of the imidazolinone-resistance gene from winter wheat to jointed goatgrass is a concern. Winter wheat and jointed goatgrass have the D genome in common and can hybridize and backcross under natural field conditions. Since the imidazolinone-resistance gene (Imi1) is located on the D genome, it is possible for resistance to be transferred to jointed goatgrass via hybridization and backcrossing. To study the potential for gene movement, BC(2)S(2) plants were produced artificially using imidazolinone-resistant winter wheat (cv. FS-4) as the female parent and a native jointed goatgrass collection as the male recurrent parent. FS-4, the jointed goatgrass collection, and 18 randomly selected BC(2)S(2) populations were treated with imazamox. The percentage of survival was 100% for the FS-4, 0% for the jointed goatgrass collection and 6 BC(2)S(2) populations, 40% or less for 2 BC(2)S(2) populations, and 50% or greater for the remaining 10 BC(2)S(2) populations. Chromosome counts in BC(2)S(3) plants showed a restoration of the chromosome number of jointed goatgrass, with four out of four plants examined having 28 chromosomes. Sequencing of AHASL1D in BC(2)S(3) plants derived from BC(2)S(2)-6 revealed the sexual transmission of Imi1 from FS-4 to jointed goatgrass. Imi1 conferred resistance to the imidazolinone herbicide imazamox, as shown by the in vitro assay for acetohydroxyacid synthase (AHAS) activity.

  18. Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals.

    PubMed

    Koch, K; Barthlott, W; Koch, S; Hommes, A; Wandelt, K; Mamdouh, W; De-Feyter, S; Broekmann, P

    2006-01-01

    In order to elucidate the self assembly process of plant epicuticular waxes, and the molecular arrangement within the crystals, re-crystallisation of wax platelets was studied on biological and non-biological surfaces. Wax platelets were extracted from the leaf blades of wheat (Triticum aestivum L., c.v. 'Naturastar', Poaceae). Waxes were analysed by gas chromatography (GC) and mass spectrometry (MS). Octacosan-1-ol was found to be the most abundant chemical component of the wax mixture (66 m%) and also the determining compound for the shape of the wax platelets. The electron diffraction pattern showed that both the wax mixture and pure octacosan-1-ol are crystalline. The re-crystallisation of the natural wax mixture and the pure octacosan-1-ol were studied by scanning tunnelling microscopy (STM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystallisation of wheat waxes and pure octacosano-1-ol on the non polar highly ordered pyrolytic graphite (HOPG) led to the formation of platelet structures similar to those found on the plant surface. In contrast, irregular wax morphologies and flat lying plates were formed on glass, silicon, salt crystals (NaCl) and mica surfaces. Movement of wheat wax through isolated Convallaria majalis cuticles led to typical wax platelets of wheat, arranged in the complex patterns typical for C. majalis. STM of pure octacosan-1-ol monolayers on HOPG showed that the arrangement of the molecules strictly followed the hexagonal structure of the substrate crystal. Re-crystallisation of wheat waxes on non-polar crystalline HOPG substrate showed that technical surfaces could be used to generate microstructured, biomimetic surfaces. AFM and SEM studies proved that a template effect of the substrate determined the orientation of the re-grown crystals. These effects of the structure and polarity of the substrate on the morphology of the epicuticular waxes are relevant for

  19. Low-temperature tolerance and genetic potential in wheat (Triticum aestivum L.): response to photoperiod, vernalization, and plant development.

    PubMed

    Limin, Allen E; Fowler, D Brian

    2006-07-01

    It is frequently observed that winter habit types are more low-temperature (LT) tolerant than spring habit types. This raises the question of whether this is due to pleiotropic effects of the vernalization loci or to the linkage of LT-tolerance genes to these vernalization loci. Reciprocal near-isogenic lines (NILs) for alleles at the Vrn-A1 locus, Vrn-A1 and vrn-A1, determining spring and winter habit respectively, in two diverse genetic backgrounds of wheat (Triticum aestivum L.) were used to separate the effects of vernalization, photoperiod, and development on identical, or near identical, genetic backgrounds. The vrn-A1 allele in the winter lines allowed full expression of genotype dependent LT tolerance potential. The winter allele (vrn-A1) in a very cold tolerant genetic background resulted in 11 degrees C, or a 2.4-fold, greater LT tolerance compared to the spring allele. Similarly, the delay in development caused by short-day (SD) versus long-day (LD) photoperiod in the identical spring habit NIL resulted in an 8.5 degrees C or 2.1-fold, increase in LT tolerance. The duration of time in early developmental stages was shown to underlie full expression of genetic LT-tolerance potential. Therefore, pleiotropic effects of the vernalization loci can explain the association of LT tolerance and winter habit irrespective of either the proposed closely linked Fr-A1 or the more distant Fr-A2 LT-tolerance QTLs. Plant development progressively reduced LT-acclimation ability, particularly after the main shoot meristem had advanced to the double ridge reproductive growth stage. The Vrn-1 genes, or other members of the flowering induction pathway, are discussed as possible candidates for involvement in LT-tolerance repression.

  20. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.)

    SciTech Connect

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; Ma, Xinming; Theg, Steven M.

    2015-08-24

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Lastly, our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.

  1. Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L.

    PubMed

    Siddiqui, Manzer H; Al-Whaibi, Mohamed H; Basalah, Mohammed O

    2011-07-01

    Nickel toxicity affects many metabolic facets of plants and induces anatomical and morphological changes resulting in reduced growth and productivity. To overcome the damaging effects of nickel (Ni) stress, different strategies of the application of nutrients with plant hormones are being adopted. The present experiment was carried out to assess the growth and physiological response of wheat plant (Triticum aestivum L.) cv. Samma to pre-sowing seed treatment with GA(3) alone as well as in combination with Ca(2+) and/or Ni stress. The pre-sowing seed treatment of Ni decreased all the growth characteristics (plant height, root length, fresh, and dry weight) as well as chlorophyll (Chl) content and enzyme carbonic anhydrase (CA: E.C. 4.2.1.1) activity. However, an escalation was recorded in malondialdehyde content and electrolyte leakage in plants raised from seed soaked with Ni alone. Moreover, all the growth parameters and physiological attributes (Chl content, proline (Pro) content, CA, peroxidase (E.C.1.11.1.7), catalase (E.C. 1.11.1.6), superoxide dismutase (E.C. 1.15.1.1), ascorbate peroxidase (E.C. 1.11.1.11), and glutathione reductase (E.C. 1.6.4.2) were enhanced in the plants developed from the seeds soaked with the combination of GA(3) (10(-6) M), Ca(2+), and Ni. The present study showed that pre-sowing seed treatment of GA(3) with Ca(2+) was more capable in mitigation of adverse effect of Ni toxicity by improving the antioxidant system and Pro accumulation.

  2. Genomic Dissection and Expression Profiling Revealed Functional Divergence in Triticum aestivum Leucine Rich Repeat Receptor Like Kinases (TaLRRKs)

    PubMed Central

    Shumayla; Sharma, Shailesh; Kumar, Rohit; Mendu, Venugopal; Singh, Kashmir; Upadhyay, Santosh K.

    2016-01-01

    The leucine rich repeat receptor like kinases (LRRK) constitute the largest subfamily of receptor like kinases (RLK), which play critical roles in plant development and stress responses. Herein, we identified 531 TaLRRK genes in Triticum aestivum (bread wheat), which were distributed throughout the A, B, and D sub-genomes and chromosomes. These were clustered into 233 homologous groups, which were mostly located on either homeologous chromosomes from various sub-genomes or in proximity on the same chromosome. A total of 255 paralogous genes were predicted which depicted the role of duplication events in expansion of this gene family. Majority of TaLRRKs consisted of trans-membrane region and localized on plasma-membrane. The TaLRRKs were further categorized into eight phylogenetic groups with numerous subgroups on the basis of sequence homology. The gene and protein structure in terms of exon/intron ratio, domains, and motifs organization were found to be variably conserved across the different phylogenetic groups/subgroups, which indicated a potential divergence and neofunctionalization during evolution. High-throughput transcriptome data and quantitative real time PCR analyses in various developmental stages, and biotic and abiotic (heat, drought, and salt) stresses provided insight into modus operandi of TaLRRKs during these conditions. Distinct expression of majority of stress responsive TaLRRKs homologous genes suggested their specified role in a particular condition. These results provided a comprehensive analysis of various characteristic features including functional divergence, which may provide the way for future functional characterization of this important gene family in bread wheat. PMID:27713749

  3. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress.

    PubMed

    Wang, Feng; Gao, Jingwen; Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further

  4. Spectroscopic analysis of diversity of Arabinoxylan structures in endosperm cell walls of wheat cultivars (Triticum aestivum) in the HEALTHGRAIN diversity collection.

    PubMed

    Toole, Geraldine A; Le Gall, Gwenaelle; Colquhoun, Ian J; Johnson, Phil; Bedo, Zoltan; Saulnier, Luc; Shewry, Peter R; Mills, E N Clare

    2011-07-13

    Fifty bread wheat (Triticum aestivum L.) cultivars were selected from the HEALTHGRAIN germplasm collection based on variation in their contents of total and water-extractable arabinoxylan. FT-IR spectroscopic mapping of thin transverse sections of grain showed variation in cell wall arabinoxylan composition between the cultivars, from consisting almost entirely of low-substituted arabinoxylan (e.g., T.aestivum 'Claire') to almost entirely of highly substituted arabinoxylan (e.g., T.aestivum 'Manital') and a mixture of the two forms (e.g., T.aestivum 'Hereward'). Complementary data were obtained using endoxylanase digestion of flour followed by HP-AEC analysis of the arabinoxylan oligosaccharides. This allowed the selection of six cultivars for more detailed analysis using FT-IR and (1)H NMR spectroscopy to determine the proportions of mono-, di-, and unsubstituted xylose residues. The results of the two analyses were consistent, showing that variation in the composition and structure of the endosperm cell wall arabinoxylan is present between bread wheat cultivars. The heterogeneity and spatial distribution of the arabinoxylan in endosperm cell walls may be exploited in wheat processing as it may allow the production of mill streams enriched in various arabinoxylan fractions which have beneficial effects on health.

  5. Improving water use efficiency of wheat (triticum aestivum l. Giza 168) crop using 15N tracer technique under Egyptian environment

    NASA Astrophysics Data System (ADS)

    Refaie Emara, Eman Ibrahim; Hamed, Lamy Mamdoh Mohamed; Bocchi, Stefano; Galal, Yehia

    2015-04-01

    The Mediterranean environment is characterized by low and erratic rainfall amount which varies between (200-600 mm.year-1), and characterized also by high temperature which increase the rate of evapotranspiration from the cultivated soil. Under these conditions which have a great influence on crop production, there is a great needing to increase the crop water use efficiency. In this context, two field experiments were carried out in northern Cairo-Egypt, during November and December 2012 and April 2013, with two different textured soils. The soil in the first location (30° 16' N latitude, 30° 56' E longitude) is clay soil, while in the second one (30° 24' N latitude, 31° 35' E longitude) is sandy soil. The interaction effect of soil types, soil water regimes, nitrogen fertilizer application rates and timing on nitrogen balance of soil were studied, in terms of nitrogen gained by plant portions, remained in soil and losses through different ways for the wheat crop (Triticum aestivum L. Giza 168). The aim of this research is to increase the water use efficiency of wheat crop, in addition to identify the most proper and effective combinations of above-studied variables that provide a satisfactory grain wheat yield and finally to minimize the use of chemical nitrogen fertilizers. Three water regimes (100%, 75% and 50% of crop water requirements) using drip irrigation system and the application methods of Nitrogen rates, 100%, 80% and 60% of recommended rates, which are 178 Kg of Nitrogen for the clay soil and 238 Kg of Nitrogen for sandy soil, were applied to the two experimental fields. Ineed, two modes of agricultural management, mode A and B, were applied. Each mode is different than the other in terms of seedling and tillering practices, where mode A performed with 25% at seedling, 25% at tillering and 50% at jointing while mode B performed with 35% at seedling and 65% at tillering. The greatest limitation to growth and Nitrogen use efficiency was the amount

  6. Heading Date QTL in Winter Wheat (Triticum aestivum L.) Coincide with Major Developmental Genes VERNALIZATION1 and PHOTOPERIOD1.

    PubMed

    Guedira, Mohammed; Xiong, Mai; Hao, Yuan Feng; Johnson, Jerry; Harrison, Steve; Marshall, David; Brown-Guedira, Gina

    2016-01-01

    In wheat (Triticum aestivum L.), time from planting to spike emergence is influenced by genes controlling vernalization requirement and photoperiod response. Characterizing the available genetic diversity of known and novel alleles of VERNALIZATION1 (VRN1) and PHOTOPERIOD1 (PPD1) in winter wheat can inform approaches for breeding climate resilient cultivars. This study identified QTL for heading date (HD) associated with multiple VRN1 and PPD1 loci in a population developed from a cross between two early flowering winter wheat cultivars. When the population was grown in the greenhouse after partial vernalization treatment, major heading date QTLs co-located with the VRN-A1 and VRN-B1 loci. Copy number variation at the VRN-A1 locus influenced HD such that RIL having three copies required longer cold exposure to transition to flowering than RIL having two VRN-A1 copies. Sequencing vrn-B1 winter alleles of the parents revealed multiple polymorphisms in the first intron that were the basis of mapping a major HD QTL coinciding with VRN-B1. A 36 bp deletion in the first intron of VRN-B1 was associated with earlier HD after partial vernalization in lines having either two or three haploid copies of VRN-A1. The VRN1 loci interacted significantly and influenced time to heading in field experiments in Louisiana, Georgia and North Carolina. The PPD1 loci were significant determinants of heading date in the fully vernalized treatment in the greenhouse and in all field environments. Heading date QTL were associated with alleles having large deletions in the upstream regions of PPD-A1 and PPD-D1 and with copy number variants at the PPD-B1 locus. The PPD-D1 locus was determined to have the largest genetic effect, followed by PPD-A1 and PPD-B1. Our results demonstrate that VRN1 and PPD1 alleles of varying strength allow fine tuning of flowering time in diverse winter wheat growing environments.

  7. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.)

    PubMed Central

    2010-01-01

    Background Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico. Results Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (FST) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated FST were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM). Conclusions Genome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The

  8. Heading Date QTL in Winter Wheat (Triticum aestivum L.) Coincide with Major Developmental Genes VERNALIZATION1 and PHOTOPERIOD1

    PubMed Central

    Hao, Yuan Feng; Johnson, Jerry; Harrison, Steve; Marshall, David

    2016-01-01

    In wheat (Triticum aestivum L.), time from planting to spike emergence is influenced by genes controlling vernalization requirement and photoperiod response. Characterizing the available genetic diversity of known and novel alleles of VERNALIZATION1 (VRN1) and PHOTOPERIOD1 (PPD1) in winter wheat can inform approaches for breeding climate resilient cultivars. This study identified QTL for heading date (HD) associated with multiple VRN1 and PPD1 loci in a population developed from a cross between two early flowering winter wheat cultivars. When the population was grown in the greenhouse after partial vernalization treatment, major heading date QTLs co-located with the VRN-A1 and VRN-B1 loci. Copy number variation at the VRN-A1 locus influenced HD such that RIL having three copies required longer cold exposure to transition to flowering than RIL having two VRN-A1 copies. Sequencing vrn-B1 winter alleles of the parents revealed multiple polymorphisms in the first intron that were the basis of mapping a major HD QTL coinciding with VRN-B1. A 36 bp deletion in the first intron of VRN-B1 was associated with earlier HD after partial vernalization in lines having either two or three haploid copies of VRN-A1. The VRN1 loci interacted significantly and influenced time to heading in field experiments in Louisiana, Georgia and North Carolina. The PPD1 loci were significant determinants of heading date in the fully vernalized treatment in the greenhouse and in all field environments. Heading date QTL were associated with alleles having large deletions in the upstream regions of PPD-A1 and PPD-D1 and with copy number variants at the PPD-B1 locus. The PPD-D1 locus was determined to have the largest genetic effect, followed by PPD-A1 and PPD-B1. Our results demonstrate that VRN1 and PPD1 alleles of varying strength allow fine tuning of flowering time in diverse winter wheat growing environments. PMID:27163605

  9. Three-dimensional distribution of vessels, passage cells and lateral roots along the root axis of winter wheat (Triticum aestivum)

    PubMed Central

    Wu, Haiwen; Jaeger, Marc; Wang, Mao; Li, Baoguo; Zhang, Bao Gui

    2011-01-01

    Background and Aims The capacity of a plant to absorb and transport water and nutrients depends on anatomical structures within the roots and their co-ordination. However, most descriptions of root anatomical structure are limited to 2-D cross-sections, providing little information on 3-D spatial relationships and hardly anything on their temporal evolution. Three-dimensional reconstruction and visualization of root anatomical structures can illustrate spatial co-ordination among cells and tissues and provide new insights and understanding of the interrelation between structure and function. Methods Classical paraffin serial-section methods, image processing, computer-aided 3-D reconstruction and 3-D visualization techniques were combined to analyse spatial relationships among metaxylem vessels, passage cells and lateral roots in nodal roots of winter wheat (Triticum aestivum). Key Results 3-D reconstruction demonstrated that metaxylem vessels were neither parallel, nor did they run directly along the root axis from the root base to the root tip; rather they underwent substitution and transition. Most vessels were connected to pre-existent or newly formed vessels by pits on their lateral walls. The spatial distributions of both passage cells and lateral roots exhibited similar position-dependent patterns. In the transverse plane, the passage cells occurred opposite the poles of the protoxylem and the lateral roots opposite those of the protophloem. Along the axis of a young root segment, the passage cells were arranged in short and discontinuous longitudinal files, thus as the tissues mature, the sequence in which the passage cells lose their transport function is not basipetal. In older segments, passage cells decreased drastically in number and coexisted with lateral roots. The spatial distribution of lateral roots was similar to that of the passage cells, mirroring their similar functions as lateral pathways for water and nutrient transport to the stele

  10. Adaptation to rhizosphere acidification is a necessary prerequisite for wheat (Triticum aestivum L.) seedling resistance to ammonium stress.

    PubMed

    Wang, Feng; Gao, Jingwen; Tian, Zhongwei; Liu, Yang; Abid, Muhammad; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-11-01

    Because soil acidification accompanies ammonium (NH4(+)) stress, the tolerance of higher plants to ammonium is associated with their adaptation to root medium acidification. However, the underlying mechanisms of this adaptation have not been fully elucidated. The objective of this study was thus to elucidate the effect of rhizosphere pH on NH4(+) tolerance in different winter wheat cultivars (Triticum aestivum L.). Hydroponic experiments were carried out on two wheat cultivars: AK58 (an NH4(+)-sensitive cultivar) and XM25 (an NH4(+)-tolerant cultivar). Four pH levels resembling acidified (4.0, 5.0, 6.0 and 7.0) were tested and 5 mM NH4(+) nitrogen (AN) was used as a stress treatment, with 5 mM nitrate nitrogen used as a control. The addition of AN led to a severe reduction in biomass and an increase in free NH4(+), amino acids, and the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in the shoots and roots of the two wheat cultivars. Further decreases in growth medium pH led to further increases in free NH4(+), but decreases in total amino acids and the activities of GS and NADH-dependent glutamate synthase (NADH-GDH). However, there was less of an increase in free NH4(+) and less of a reduction in the activities of GS and NADH-GDH in the cultivar XM25 compared with AK58. In addition, total soluble sugar content and the root-to-shoot soluble sugar ratio were also decreased by AN treatment, except in the shoots of XM25. Decreasing pH resulted in lower root-to-shoot soluble sugar ratios with greater reductions in the AK58 cultivar. These results indicate that wheat growth was inhibited significantly by the addition of NH4(+) combined with low pH. Low medium pH reduced the capacity for nitrogen assimilation and interrupted carbohydrate transport between the shoot and root. The NH4(+)-tolerant cultivar XM25 was better adapted to low rhizosphere pH due to its increased capacity for assimilating NH4(+) efficiently and thereby avoiding toxic

  11. Higher Ammonium Transamination Capacity Can Alleviate Glutamate Inhibition on Winter Wheat (Triticum aestivum L.) Root Growth under High Ammonium Stress

    PubMed Central

    Liu, Yang; Tian, Zhongwei; Muhammad, Abid; Zhang, Yixuan; Jiang, Dong; Cao, Weixing; Dai, Tingbo

    2016-01-01

    Most of the studies about NH4+ stress mechanism simply address the effects of free NH4+, failing to recognize the changed nitrogen assimilation products. The objective of this study was to elucidate the effects of glutamate on root growth under high ammonium (NH4+) conditions in winter wheat (Triticum aestivum L.). Hydroponic experiments were conducted using two wheat cultivars, AK58 (NH4+-sensitive) and Xumai25 (NH4+-tolerant) with either 5 mM NH4+ nitrogen (AN) as stress treatment or 5 mM nitrate (NO3-) nitrogen as control. To evaluate the effects of NH4+-assimilation products on plant growth, 1 μM L-methionine sulfoximine (MSO) (an inhibitor of glutamine synthetase (GS)) and 1 mM glutamates (a primary N assimilation product) were added to the solutions, respectively. The AN significantly reduced plant biomass, total root length, surface area and root volume in both cultivars, but less effect was observed in Xumai25. The inhibition effects were alleviated by the application of MSO but strengthened by the application of glutamate. The AN increased the activities of GS, glutamate dehydrogenase (GDH) in both cultivars, resulting in higher glutamate contents. However, its contents were decreased by the application of MSO. Compared to AK58, Xumai25 showed lower glutamate contents due to its higher activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). With the indole-3-acetic acid (IAA) contents decreasing in roots, the ratio of shoot to root in IAA was increased, and further increased by the application of glutamate, and reduced by the application of MSO, but the ratio was lower in Xumai25. Meanwhile, the total soluble sugar contents and its root to shoot ratio also showed similar trends. These results indicate that the NH4+-tolerant cultivar has a greater transamination ability to prevent glutamate over-accumulation to maintain higher IAA transport ability, and consequently promoted soluble sugar transport to roots, further

  12. Morphological, anatomical, and ultrastructural changes (visualized through scanning electron microscopy) induced in Triticum aestivum by Pb²⁺ treatment.

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2014-11-01

    Lead (Pb) causes severe damage to crops, ecosystems, and humans, and alters the physiology and biochemistry of various plant species. It is hypothesized that Pb-induced metabolic alterations could manifest as structural variations in the roots of plants. In light of this, the morphological, anatomical, and ultrastructural variations (through scanning electron microscopy, SEM) were studied in 4-day-old seedlings of Triticum aestivum grown under Pb stress (0, 8, 16, 40, and 80 mg Pb(2+) l(-1); mild to highly toxic). The toxic effect was more pronounced in radicle growth than on the plumule growth. The SEM of the root of T. aestivum depicted morphological alterations and surface ultrastructural changes. Compared to intact and uniform surface cells in the control roots, cells were irregular and desiccated in Pb(2+)-treated roots. In Pb(2+)-treated roots, the number of root hairs increased manifold, showing dense growth, and these were apparently longer. Apart from the deformity in surface morphology and anatomy of the roots in response to Pb(2+) toxicity, considerable anatomical alterations were also observed. Pb(2+)-treated root exhibited signs of injury in the form of cell distortion, particularly in the cortical cells. The endodermis and pericycle region showed loss of uniformity post Pb(2+) exposure (at 80 mg l(-1) Pb(2+)). The cells appeared to be squeezed with greater depositions observed all over the tissue. The study concludes that Pb(2+) treatment caused structural anomalies and induced anatomical and surface ultrastructural changes in T. aestivum.

  13. The house mouse (Mus musculus L.) exerts strong differential grain consumption preferences among hard red and white spring wheat (Triticum aestivum L.) varieties in a single-elimination tournament design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum) plays a central role in the health and nutrition of humans. Yet, little is known about possible flavor differences among different varieties. We have developed a model system using the house mouse (Mus musculus) to determine feeding preferences as a prelude to extending res...

  14. Association of puroindoline b-2 variants with grain traits, yield components and flag leaf size in bread wheat (Triticum aestivum L.) varieties of Yellow and Huai Valley of China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 169 wheat (Triticum aestivum L.) varieties (landraces and cultivars) were used to asses the relationship between Puroindoline D1 alleles and Puroindoline b-B2 variants and grain hardness, other grain traits, grain yield components, and flag leaf size. Results indicated that the average SK...

  15. Nutrient variability in phloem: examining changes in K, Mg, Zn and Fe concentration during grain loading in common wheat (Triticum aestivum).

    PubMed

    Palmer, Lachlan J; Palmer, Lyndon T; Rutzke, Michael A; Graham, Robin D; Stangoulis, James C R

    2014-12-01

    In wheat, nutrients are transported to seeds via the phloem yet access to this vascular tissue for exudate collection and quantitative analysis of elemental composition is difficult. The purest phloem is collected through the use of aphid stylectomy with volumes of exudate collected normally in the range of 20-500 nl. In this work a new method using inductively coupled plasma mass spectroscopy (ICP-MS) was developed to measure the concentration of K, Mg, Zn and Fe in volumes of wheat (Triticum aestivum, genotype Samnyt 16) phloem as small as 15.5 nl. This improved method was used to observe changes in phloem nutrient concentration during the grain loading period. There were statistically significant increases in phloem Mg and Zn concentration and a significant decrease in K over the period from 1-2 days after anthesis (DAA) to 9-12 DAA. During this period, there was no statistically significant change in phloem Fe concentration.

  16. Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L.

    PubMed

    Wang, Haiou; Xu, Ran; You, Lumeng; Zhong, Guangrong

    2013-08-01

    The effects of Cu-tolerant bacteria strain USTB-O on Cu accumulation, plant growth and reduction of Cu toxicity in wheat seedlings Triticum aestivum L. were investigated. The strain was identified as belonging to Bacillus species and showed a specific tolerance to Cu through binding the Cu ions to the cell walls to reduce their entry into the cells. The bacteria not only increased Cu accumulation in wheat seedlings, but also secreted indole-3-acetic acid (IAA) and therefore promoted plant growth. Moreover, the bacteria effectively improved the antioxidant defence system to alleviate the oxidative damage induced by Cu. The bacteria promoted superoxide dismutase (SOD) in both shoots and roots to reduce superoxide radicals. The bacteria stimulated all enzymes activities under Cu exposure conditions, peroxidase (POD) and catalase (CAT) in shoots and ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) in roots were major enzymes to eliminate H2O2 in wheat seedlings.

  17. Over-Expression of a Tobacco Nitrate Reductase Gene in Wheat (Triticum aestivum L.) Increases Seed Protein Content and Weight without Augmenting Nitrogen Supplying

    PubMed Central

    Zhao, Xiao-Qiang; Nie, Xuan-Li; Xiao, Xing-Guo

    2013-01-01

    Heavy nitrogen (N) application to gain higher yield of wheat (Triticum aestivum L.) resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR) in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, “Nongda146” and “Jimai6358”, by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed), respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s) in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying. PMID:24040315

  18. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum).

    PubMed

    Zikhali, Meluleki; Wingen, Luzie U; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A (m) 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A (m) 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat.

  19. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum)

    PubMed Central

    Zikhali, Meluleki; Wingen, Luzie U.; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A m 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A m 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. PMID:26476691

  20. Spelt (Triticum aestivum ssp. spelta) as a source of breadmaking flours and bran naturally enriched in oleic acid and minerals but not phytic acid.

    PubMed

    Ruibal-Mendieta, Nike L; Delacroix, Dominique L; Mignolet, Eric; Pycke, Jean-Marie; Marques, Carole; Rozenberg, Raoul; Petitjean, Géraldine; Habib-Jiwan, Jean-Louis; Meurens, Marc; Quetin-Leclercq, Joëlle; Delzenne, Nathalie M; Larondelle, Yvan

    2005-04-06

    The nutritional value of breadmaking cereal spelt (Triticum aestivum ssp. spelta) is said to be higher than that of common wheat (Triticum aestivum ssp. vulgare), but this traditional view is not substantiated by scientific evidence. In an attempt to clarify this issue, wholemeal and milling fractions (sieved flour, fine bran, and coarse bran) from nine dehulled spelt and five soft winter wheat samples were compared with regard to their lipid, fatty acid, and mineral contents. In addition, tocopherol (a biochemical marker of germ) was measured in all wholemeals, whereas phytic acid and phosphorus levels were determined in fine bran and coarse bran samples after 1 month of storage. Results showed that, on average, spelt wholemeals and milling fractions were higher in lipids and unsaturated fatty acids as compared to wheat, whereas tocopherol content was lower in spelt, suggesting that the higher lipid content of spelt may not be related to a higher germ proportion. Although milling fractionation produced similar proportions of flour and brans in spelt and wheat, it was found that ash, copper, iron, zinc, magnesium, and phosphorus contents were higher in spelt samples, especially in aleurone-rich fine bran and in coarse bran. Even though phosphorus content was higher in spelt than in wheat brans, phytic acid content showed the opposite trend and was 40% lower in spelt versus wheat fine bran, which may suggest that spelt has either a higher endogenous phytase activity or a lower phytic acid content than wheat. The results of this study give important indications on the real nutritional value of spelt compared to wheat. Moreover, they show that the Ca/Fe ratio, combined with that of oleate/palmitate, provides a highly discriminating tool to authenticate spelt from wheat flours and to face the growing issue of spelt flour adulteration. Finally, they suggest that aleurone differences, the nature of which still needs to be investigated, may account for the differential

  1. [Detection of the introgression of genome elements of Aegilops cylindrica Host. into Triticum aestivum L. genome with ISSR-analysis].

    PubMed

    Galaev, A V; Babaiants, L T; Sivolap, Iu M

    2003-01-01

    Comparative analysis of introgressive and parental forms of wheat was carried out to reveal the sites of donor genome with new loci of resistance to fungal diseases. By ISSR-method 124 ISSR-loci were detected in the genomes of 18 individual plants of introgressive line 5/20-91; 17 of them have been related to introgressive fragments of Ae. cylindrica genome in T. aestivum. It was shown that ISSR-method is effective for detection of the variability caused by introgression of alien genetic material to T. aestivum genome.

  2. Cytoplasmic effects on DNA methylation between male sterile lines and the maintainer in wheat (Triticum aestivum L.).

    PubMed

    Ba, Qingsong; Zhang, Gaisheng; Niu, Na; Ma, Shoucai; Wang, Junwei

    2014-10-01

    Male sterile cytoplasm plays an important role in hybrid wheat, and three-line system including male sterile (A line), its maintainer (B line) and restoring (R line) has played a major role in wheat hybrid production. It is well known that DNA methylation plays an important role in gene expression regulation during biological development in wheat. However, no reports are available on DNA methylation affected by different male sterile cytoplasms in hybrid wheat. We employed a methylation-sensitive amplified polymorphism technique to characterize nuclear DNA methylation in three male sterile cytoplasms. A and B lines share the same nucleus, but have different cytoplasms which is male sterile for the A and fertile for the B. The results revealed a relationship of DNA methylation at these sites specifically with male sterile cytoplasms, as well as male sterility, since the only difference between the A lines and B line was the cytoplasm. The DNA methylation was markedly affected by male sterile cytoplasms. K-type cytoplasm affected the methylation to a much greater degree than T-type and S-type cytoplasms, as indicated by the ratio of methylated sites, ratio of fully methylated sites, and polymorphism between A lines and B line for these cytoplasms. The genetic distance between the cytoplasm and nucleus for the K-type is much greater than for the T- and S-types because the former is between Aegilops genus and Triticum genus and the latter is within Triticum genus between Triticum spelta and Triticum timopheevii species. Thus, this difference in genetic distance may be responsible for the variation in methylation that we observed.

  3. Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum).

    PubMed

    Waines, J G; Payne, P I

    1987-05-01

    The high molecular weight (HMW) subunit composition of glutenin was analysed by sodium dodecyl sulphate, polyacrylamide gel electrophoresis (SDS-PAGE) in the A genome of 497 diploid wheats and in 851 landraces of bread wheat. The material comprised 209 accessions of wild Triticum monococcum ssp. boeoticum from Greece, Turkey, Lebanon, Armenia, Iraq, and Iran; 132 accessions of the primitive domesticate T. monococcum ssp. monococcum from many different germplasm collections; one accession of free-threshing T. monococcum ssp. sinskajae; 155 accessions of wild T. urartu from Lebanon, Turkey, Armenia, Iraq, and Iran; and landraces of T. aestivum, mainly from the Mediterranean area and countries bordering on the Himalayan Mountains. Four novel HMW glutenin sub-units were discovered in the landraces of bread wheat, and the alleles that control them were designated Glu-Ald through Glu-Alg, respectively. The HMW subunits of T. monococcum ssp. boeoticum have a major, "x" subunit of slow mobility and several, less prominent, "y" subunits of greater mobility, all of which fall within the mobility range of HMW subunits reported for bread wheat. In T. monococcum ssp. monococcum the range of the banding patterns for HMW subunits was similar to that of ssp. boeoticum. However, two accessions, while containing "y" subunits were null for "x" subunits. The single accession of Triticum monococcum ssp. sinskajae had a banding pattern similar to that of most ssp. boeoticum and ssp. monococcum accessions. The HMW subunit banding patterns of T. urartu accessions were distinct from those of T. monococcum. All of them contained one major "x" and most contained one major "y" subunit. In the other accessions a "y" subunit was not expressed. The active genes for "y" subunits, if transferred to bread wheat, may be useful in improving bread-making quality.

  4. Genome-wide quantitative trait locus mapping identifies multiple major loci for brittle rachis and threshability in Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao).

    PubMed

    Jiang, Yun-Feng; Lan, Xiu-Jin; Luo, Wei; Kong, Xing-Chen; Qi, Peng-Fei; Wang, Ji-Rui; Wei, Yu-Ming; Jiang, Qian-Tao; Liu, Ya-Xi; Peng, Yuan-Ying; Chen, Guo-Yue; Dai, Shou-Fen; Zheng, You-Liang

    2014-01-01

    Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao) is a semi-wild hexaploid wheat resource that is only naturally distributed in the Qinghai-Tibet Plateau. Brittle rachis and hard threshing are two important characters of Tibetan semi-wild wheat. A whole-genome linkage map of T. aestivum ssp. tibetanum was constructed using a recombinant inbred line population (Q1028×ZM9023) with 186 lines, 564 diversity array technology markers, and 117 simple sequence repeat markers. Phenotypic data on brittle rachis and threshability, as two quantitative traits, were evaluated on the basis of the number of average spike rachis fragments per spike and percent threshability in 2012 and 2013, respectively. Quantitative trait locus (QTL) mapping performed using inclusive composite interval mapping analysis clearly identified four QTLs for brittle rachis and three QTLs for threshability. However, three loci on 2DS, 2DL, and 5AL showed pleiotropism for brittle rachis and threshability; they respectively explained 5.3%, 18.6%, and 18.6% of phenotypic variation for brittle rachis and 17.4%, 13.2%, and 35.2% of phenotypic variation for threshability. A locus on 3DS showed an independent effect on brittle rachis, which explained 38.7% of the phenotypic variation. The loci on 2DS and 3DS probably represented the effect of Tg and Br1, respectively. The locus on 5AL was in very close proximity to the Q gene, but was different from the predicted q in Tibetan semi-wild wheat. To our knowledge, the locus on 2DL has never been reported in common wheat but was prominent in T. aestivum ssp. tibetanum accession Q1028. It remarkably interacted with the locus on 5AL to affect brittle rachis. Several major loci for brittle rachis and threshability were identified in Tibetan semi-wild wheat, improving the understanding of these two characters and suggesting the occurrence of special evolution in Tibetan semi-wild wheat.

  5. Hormesis and Paradoxical Effects of Wheat Seedling (Triticum Aestivum L.) Parameters Upon Exposure to Different Pollutants in a Wide Range of Doses

    PubMed Central

    Erofeeva, Elena A.

    2014-01-01

    Chlorophyll and carotenoid content (ChCar), lipid peroxidation (LP) and growth parameters (GP) in plants are often used for environmental pollution estimation. However, the nonmonotonic dose–response dependences (hormesis and paradoxical effects) of these indices are insufficiently explored following exposure to different pollutants. In this experiment, we studied nonmonotonic changes in ChCar, LP, GP in wheat seedlings (Triticum aestivum L.) upon exposure to lead, cadmium, copper, manganese, formaldehyde, the herbicide glyphosate, and sodium chloride in a wide range from sublethal concentration to 102–105 times lower concentrations. 85.7% of dose–response dependences were nonmonotonic (of these, 5.5% were hormesis and paradoxical effects comprised 94.5%). Multiphasic dependences were the most widespread type of paradoxical effect. Hormesis was a part of some multiphasic responses (i.e. paradoxical effects), which indicates a relationship between these phenomena. Sublethal pollutant concentrations significantly increased LP (to 2.0–2.4 times, except for manganese and glyphosate) and decreased GP (to 2.1–36.6 times, except for glyphosate), while ChCar was reduced insignificantly, normalized or even increased. Lower pollutant concentrations caused a moderate deviation in all parameters from the control (not more than 62%) for hormesis and paradoxical effects. The seedling parameters could have different types of nonmonotonic responses upon exposure to the same pollutant. PMID:24659937

  6. Responses of spring wheat (Triticum aestivum L.) to ozone produced by either electric discharge and dry air or by UV-lamps and ambient air.

    PubMed

    Mortensen, L; Jørgensen, H E

    1996-01-01

    The aim of the present study was to examine if ozone produced similar effects on spring wheat growth with and without small amounts of nitrogen oxides. Two methods were used to produce ozone: the first method consisted of dry pressurized air fed to an electric discharge generator generating the byproducts, N2O5 and N2O, the second method consisted of ambient air fed to UV-lamps. Two spring wheat cultivars (Triticum aestivum L. cvs Minaret and Eridano) were exposed in small open-top chambers to charcoal-filtered air, non-filtered ambient air, and non-filtered ambient air with the addition of ozone for 8 h (0900 to 1700 h) daily, for five weeks. Plants were harvested every week. The growth of Minaret was shown to be more sensitive to O3 than that of Eridano. Leaf senescence increased with increasing ozone level in both cultivars. The total above-ground biomass dry weight decreased with increasing ozone concentration in Minaret, but not in Eridano. The Minaret plants reacted with more damaged leaf dry weight and inhibition of growth when O3 was produced by UV-lamps than when O3 was produced by air fed to an electric discharge generator. This could be explained by more nitrogen content per plant but not by increased nitrogen concentration in plant tissue in plants exposed to increased O3 and small amounts of incidental nitrogen oxides.

  7. Hybrid dwarfness in crosses between wheat (Triticum aestivum L.) and rye (Secale cereale L.): a new look at an old phenomenon.

    PubMed

    Tikhenko, N; Rutten, T; Tsvetkova, N; Voylokov, A; Börner, A

    2015-03-01

    The existence of hybrid dwarfs from intraspecific crosses in wheat (Triticum aestivum) was described 100 years ago, and the genetics underlying hybrid dwarfness are well understood. In this study, we report a dwarf phenotype in interspecific hybrids between wheat and rye (Secale cereale). We identified two rye lines that produce hybrid dwarfs with wheat and have none of the hitherto known hybrid dwarfing genes. Genetic analyses revealed that both rye lines carry a single allelic gene responsible for the dwarf phenotype. This gene was designated Hdw-R1 (Hybrid dwarf-R1). Application of gibberellic acid (GA3 ) to both intraspecific (wheat-wheat) and interspecific (wheat-rye) hybrids showed that hybrid dwarfness cannot be overcome by treatment with this phytohormone. Histological analysis of shoot apices showed that wheat-rye hybrids with the dwarf phenotype at 21 and 45 days after germination failed to develop further. Shoot apices of dwarf plants did not elongate, did not form new primordia and had a dome-shaped appearance in the seed. The possible relationship between hybrid dwarfness and the genes responsible for the transition from vegetative to generative growth stage is discussed.

  8. TaSCL14, a novel wheat (Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence.

    PubMed

    Chen, Kunmei; Li, Hongwei; Chen, Yaofeng; Zheng, Qi; Li, Bin; Li, Zhensheng

    2015-01-20

    Rates of photosynthesis, tolerance to photooxidative stress, and senescence are all important physiological factors that affect plant development and thus agricultural productivity. GRAS proteins play essential roles in plant growth and development as well as in plant responses to biotic and abiotic stresses. So far few GRAS genes in wheat (Triticum aestivum L.) have been characterized. A previous transcriptome analysis indicated that the expression of a GRAS gene (TaSCL14) was induced by high-light stress in Xiaoyan 54 (XY54), a common wheat cultivar with strong tolerance to high-light stress. In this study, TaSCL14 gene was isolated from XY54 and mapped on chromosome 4A. TaSCL14 was expressed in various wheat organs, with high levels in stems and roots. Our results confirmed that TaSCL14 expression was indeed responsive to high-light stress. Barley stripe mosaic virus (BSMV)-based virus-induced gene silencing (VIGS) of TaSCL14 in wheat was performed to help characterize its potential functions. Silencing of TaSCL14 resulted in inhibited plant growth, decreased photosynthetic capacity, and reduced tolerance to photooxidative stress. In addition, silencing of TaSCL14 in wheat promoted leaf senescence induced by darkness. These results suggest that TaSCL14 may act as a multifunctional regulator involved in plant growth, photosynthesis, tolerance to photooxidative stress, and senescence.

  9. Interaction effects on uptake and toxicity of perfluoroalkyl substances and cadmium in wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil.

    PubMed

    Zhao, Shuyan; Fan, Ziyan; Sun, Lihui; Zhou, Tao; Xing, Yuliang; Liu, Lifen

    2017-03-01

    A vegetation study was conducted to investigate the interactive effects of perfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and Cadmium (Cd) on soil enzyme activities, phytotoxicity and bioaccumulation of wheat (Triticum aestivum L.) and rapeseed (Brassica campestris L.) from co-contaminated soil. Soil urease activities were inhibited significantly but catalase activities were promoted significantly by interaction of PFASs and Cd which had few effects on sucrase activities. Joint stress with PFASs and Cd decreased the biomass of plants and chlorophyll (Chl) content in both wheat and rapeseed, and malondialdehyde (MDA) content, superoxide dismutase (SOD) and peroxidase (POD) activities were increased in wheat but inhibited in rapeseed compared with single treatments. The bioconcentration abilities of PFASs in wheat and rapeseed were decreased, and the translocation factor of PFASs was decreased in wheat but increased in rapeseed with Cd addition. The bioaccumulation and translocation abilities of Cd were increased significantly in both wheat and rapeseed with PFASs addition. These findings suggested important evidence that the co-existence of PFASs and Cd reduced the bioavailability of PFASs while enhanced the bioavailability of Cd in soil, which increased the associated environmental risk for Cd but decreased for PFASs.

  10. The dynamic process of interspecific interactions of competitive nitrogen capture between intercropped wheat (Triticum aestivum L.) and Faba Bean (Vicia faba L.).

    PubMed

    Li, Chunjie; Dong, Yan; Li, Haigang; Shen, Jianbo; Zhang, Fusuo

    2014-01-01

    Wheat (Triticum aestivum L.)/faba bean (Vicia faba L.) intercropping shows significant overyielding and high nitrogen (N)-use efficiency, but the dynamics of plant interactions have rarely been estimated. The objective of the present study was to investigate the temporal dynamics of competitive N acquisition between intercropped wheat and faba bean with the logistic model. Wheat and faba bean were grown together or alone with limited N supply in pots. Data of shoot and root biomass and N content measured from 14 samplings were fitted to logistic models to determine instantaneous rates of growth and N uptake. The superiority of instantaneous biomass production and N uptake shifted from faba bean to wheat with their growth. Moreover, the shift of superiority on N uptake occurred 7-12 days earlier than that of biomass production. Interspecific competition stimulated intercropped wheat to have a much earlier and stronger superiority on instantaneous N uptake compared with isolated wheat. The modeling methodology characterized the temporal dynamics of biomass production and N uptake of intercropped wheat and faba bean in different planting systems, which helps to understand the underlying process of plant interaction for intercropping plants.

  11. Variation of the phytotoxicity of municipal solid waste incinerator bottom ash on wheat (Triticum aestivum L.) seed germination with leaching conditions.

    PubMed

    Phoungthong, Khamphe; Zhang, Hua; Shao, Li-Ming; He, Pin-Jing

    2016-03-01

    Municipal solid waste incinerator bottom ash (MSWIBA) has long been regarded as an alternative building material in the construction industry. However, the pollutants contained in the bottom ash could potentially leach out and contaminate the local environment, which presents an obstacle to the reuse of the materials. To evaluate the environmental feasibility of using MSWIBA as a recycled material in construction, the leaching derived ecotoxicity was assessed. The leaching behavior of MSWIBA under various conditions, including the extractant type, leaching time, liquid-to-solid (L/S) ratio, and leachate pH were investigated, and the phytotoxicity of these leachates on wheat (Triticum aestivum L.) seed germination was determined. Moreover, the correlation between the germination index and the concentrations of various chemical constituents in the MSWIBA leachates was assessed using multivariate statistics with principal component analysis and Pearson's correlation analysis. It was found that, heavy metal concentrations in the leachate were pH and L/S ratio dependent, but were less affected by leaching time. Heavy metals were the main pollutants present in wheat seeds. Heavy metals (especially Ba, Cr, Cu and Pb) had a substantial inhibitory effect on wheat seed germination and root elongation. To safely use MSWIBA in construction, the potential risk and ecotoxicity of leached materials must be addressed.

  12. Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.).

    PubMed

    Ali, Shafaqat; Chaudhary, Aaifa; Rizwan, Muhammad; Anwar, Hafiza Tania; Adrees, Muhammad; Farid, Mujahid; Irshad, Muhammad Kashif; Hayat, Tahir; Anjum, Shakeel Ahmad

    2015-07-01

    Little information is available on the role of glycinebetaine (GB) in chromium (Cr) tolerance while Cr toxicity is widespread problem in crops grown on Cr-contaminated soils. In this study, we investigated the influence of GB on Cr tolerance in wheat (Triticum aestivum L.) grown in sand and soil mediums. Three concentrations of chromium (0, 0.25, and 0.5 mM) were tested with and without foliar application of GB (0.1 M). Chromium alone led to a significant growth inhibition and content of chlorophyll a, b, proteins and enhanced the activity of antioxidant enzymes. Glycinebetaine foliar application successfully alleviated the toxic effects of Cr on wheat plants and enhanced growth characteristics, biomass, proteins, and chlorophyll contents. Glycinebetaine also reduced Cr accumulation in wheat plants especially in grains and enhanced the activity of antioxidant enzymes in both shoots and roots. This study provides evidence that GB application contributes to decreased Cr concentrations in wheat plants and its importance in the detoxification of heavy metals.

  13. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum).

    PubMed

    Sun, Chengliang; Lu, Lingli; Liu, Lijuan; Liu, Wenjing; Yu, Yan; Liu, Xiaoxia; Hu, Yan; Jin, Chongwei; Lin, Xianyong

    2014-03-01

    • Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress.

  14. Dynamic changes of rhizosphere properties and antioxidant enzyme responses of wheat plants (Triticum aestivum L.) grown in mercury-contaminated soils.

    PubMed

    Li, Yonghua; Sun, Hongfei; Li, Hairong; Yang, Linsheng; Ye, Bixiong; Wang, Wuyi

    2013-10-01

    A pot experiment was conducted to investigate the dynamic changes in the rhizosphere properties and antioxidant enzyme responses of wheat plants (Triticum aestivum L.) grown in three levels of Hg-contaminated soils. The concentrations of soluble Hg and dissolved organic carbon (DOC) in the rhizosphere soil solutions of the wheat plants were characterised by the sequence before sowing>trefoil stage>stooling stage, whereas the soil solution pH was found to follow an opposite distribution pattern. The activities of antioxidant enzymes in wheat plants under Hg stress were substantially altered. Greater superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were observed in the wheat plants grown in a highly polluted soil than in a slightly polluted soil (with increases of 11-27% at the trefoil stage and 26-70% at the stooling stage); however, increasing concentrations of Hg up to seriously polluted level led to reduced enzyme activities. The present results suggest that wheat plants could positively adapt to environmental Hg stress, with rhizosphere acidification, the enhancement of DOC production and greater antioxidant enzyme activities perhaps being three important mechanisms involved in the metal uptake/tolerance in the rhizospheres of wheat plants grown in Hg-contaminated soils.

  15. Exogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen Species in Hydroponically Grown Wheat (Triticum aestivum) Roots.

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy R; Mahajan, Priyanka; Kohli, Ravinder Kumar; Rishi, Valbha

    2015-01-01

    Nitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 μM) alone and in combination with SNP (100 μM) was given to hydroponically grown wheat roots for a period of 0-8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure.

  16. Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems.

    PubMed

    Zhao, Shuyan; Zhu, Lingyan

    2017-01-01

    The behavior of 10:2 fluorotelomer alcohol (10:2 FTOH) in the systems of soil-earthworm (Eisenia fetida), soil-wheat (Triticum aestivum L.) and soil-earthworm-wheat, including degradation in soil, uptake and metabolism in wheat and earthworms were investigated. Several perfluorocarboxylic acids (PFCAs) as degradation products of 10:2 FTOH were identified in the soil, plant and earthworms. 10:2 FTOH could be biodegraded to perfluorooctanoate (PFOA), perfluorononanate (PFNA) and perfluorodecanoate (PFDA) in soil in the absence or presence of wheat/earthworms, and PFDA was the predominant metabolite. Accumulation of initial 10:2 FTOH and its metabolites were observed in the wheat and earthworms, suggesting that 10:2 FTOH could be bioaccumulated in wheat and earthworms and biotransformed to the highly stable PFCAs. Perfluoropentanoic acid (PFPeA), perfluorohexanoic (PFHxA) and PFDA were detected in wheat root, while PFDA and perfluoroundecanoic acid (PFUnDA) were detected in shoot. PFNA and PFDA were determined in earthworms and the concentration of PFDA was much higher. The presence of earthworms and/or plant stimulated the microbial degradation of 10:2 FTOH in soil. The results supplied important evidence that degradation of 10:2 FTOH was an important potential source of PFCAs in the environment and in biota.

  17. Relationship between male sterility and β-1,3-glucanase activity and callose deposition-related gene expression in wheat (Triticum aestivum L.).

    PubMed

    Liu, H Z; Zhang, G S; Zhu, W W; Ba, Q S; Niu, N; Wang, J W; Ma, S C; Wang, J S

    2015-01-26

    In previous studies, we first isolated one different protein β-1,3-glucanase using two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry from normal wheat (Triticum aestivum L.) and chemical hybridization agent-induced male sterility (CIMS) wheat. In this experiment, β-1,3-glucanase activity and the expression of a callose deposition-related gene, UDP-glucose phosphorylase (UGPase), were determinate in normal, CIMS, and genetic male sterility (GS) wheat. β-1,3-glucanase activity was significantly different between the fertile and sterile lines during callose synthesis and degradation, but there was no difference between CIMS and GS wheat. The UGPase gene of callose deposition was highly expressed in the meiophase and sharply decreased in the tetrad stage. However, the expression of the UGPase gene was significantly different between the fertile and sterile lines. These data indicated that β-1,3-glucanase activity and the expression of the UGPase gene play important roles in the male sterility of wheat. Consequently, pollen mother cells (PMCs) might degenerate at the early meiosis stage, and differences in UGPase gene expression and β-1,3-glucanase activity might eventually result in complete pollen collapse. In addition, the critical period of anther abortion might be the meiosis stage to the tetrad stage rather than what we previously thought, the mononuclear period.

  18. Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host x Triticum aestivum L. hybrids.

    PubMed

    Schoenenberger, N; Felber, F; Savova-Bianchi, D; Guadagnuolo, R

    2005-11-01

    Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discussed.

  19. [Detection of the introgression of genome elements of the Aegilops cylindrica host. into the Triticum aestivum L. genome by ISSR and SSR analysis].

    PubMed

    Galaev, A V; Babaiants, L T; Sivolap, Iu M

    2004-12-01

    To reveal sites of the donor genome in wheat crossed with Aegilops cylindrica, which acquired conferred resistance to fungal diseases, a comparative analysis of introgressive and parental forms was conducted. Two systems of PCR analysis, ISSR and SSR-PCR, were employed. Upon use of 7 ISSR primers in genotypes of 30 individual plants BC1 F9 belonging to lines 5/55-91 and 5/20-91, 19 ISSR loci were revealed and assigned to introgressive fragments of Aegilops cylindrica genome in Triticum aestivum. The 40 pairs of SSR primers allowed the detection of seven introgressive alleles; three of these alleles were located on common wheat chromosomes in the B genome, while four alleles, in the D genome. Based on data of microsatellite analysis, it was assumed that the telomeric region of the long arm of common wheat chromosome 6A also changed. ISSR and SSR methods were shown to be effective for detecting variability caused by introgression of foreign genetic material into the genome of common wheat.

  20. Visualization of A- and B-genome chromosomes in wheat (Triticum aestivum L.) x jointed goatgrass (Aegilops cylindrica Host) backcross progenies.

    PubMed

    Wang, Z N; Hang, A; Hansen, J; Burton, C; Mallory-Smith, C A; Zemetra, R S

    2000-12-01

    Wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica) can cross with each other, and their self-fertile backcross progenies frequently have extra chromosomes and chromosome segments, presumably retained from wheat, raising the possibility that a herbicide resistance gene might transfer from wheat to jointed goatgrass. Genomic in situ hybridization (GISH) was used to clarify the origin of these extra chromosomes. By using T. durum DNA (AABB genome) as a probe and jointed goatgrass DNA (CCDD genome) as blocking DNA, one, two, and three A- or B-genome chromosomes were identified in three BC2S2 individuals where 2n = 29, 30, and 31 chromosomes, respectively. A translocation between wheat and jointed goatgrass chromosomes was also detected in an individual with 30 chromosomes. In pollen mother cells with meiotic configuration of 14 II + 2 I, the two univalents were identified as being retained from the A or B genome of wheat. By using Ae. markgrafii DNA (CC genome) as a probe and wheat DNA (AABBDD genome) as blocking DNA. 14 C-genome chromosomes were visualized in all BC2S2 individuals. The GISH procedure provides a powerful tool to detect the A or B-genome chromatin in a jointed goatgrass background, making it possible to assess the risk of transfer of herbicide resistance genes located on the A or B genome of wheat to jointed goatgrass.

  1. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum

    PubMed Central

    Liu, Fangfang; Si, Hongqi; Wang, Chengcheng; Sun, Genlou; Zhou, Erting; Chen, Can; Ma, Chuanxi

    2016-01-01

    The allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecular evolution to reveal the origin of the A, B and D genome in Triticum aestivum. Comparative analyses of sequences in diploid, tetraploid and hexaploid wheats suggest that T. urartu, Ae. speltoides and Ae. tauschii subsp. strangulata are most likely the donors of the Wcor15-2A, Wcor15-2B and Wcor15-2D locus in common wheat, respectively. The Wcor15 genes from subgenomes A and D were very conservative without insertion and deletion of bases during evolution of diploid, tetraploid and hexaploid. Non-coding region of Wcor15-2B gene from B genome might mutate during the first polyploidization from Ae. speltoides to tetraploid wheat, however, no change has occurred for this gene during the second allopolyploidization from tetraploid to hexaploid. Comparison of the Wcor15 gene shed light on understanding of the origin of the A, B and D genome of common wheat. PMID:27526862

  2. Gluten of spelt wheat (Triticum aestivum subspecies spelta) as a source of peptides promoting viability and product yield of mouse hybridoma cell cultures.

    PubMed

    Franek, Frantisek

    2004-06-30

    The enzymic hydrolysate of gluten from spelt wheat (Triticum aestivum subsp. spelta), an ancient protein-rich wheat subspecies, was subjected to repeated chromatography runs on the small pore size exclusion chromatography matrix, Biogel P-2. Two small peptide fractions were purified by rechromatography. The amino acid analyses carried out upon total hydrolysis of these fractions have shown a very high proportion of glutamic acid/glutamine, leucine, and methionine. The biological activity of the peptide fractions was tested on a model hybridoma at a concentration range from 0.02 to 0.2%. The most striking effect of peptide fractions, apparent even at the lowest concentrations tested, was a significantly higher persistence of viable cells on day 6, i.e., at the decline phase of the cultures. Culture viability values in the presence of peptide fractions were 64-74%, in comparison with 56% in the control culture. The results of this work are consistent with the concept that peptide molecules may act as antiapoptotic agents, survival factors, rather than serving as metabolic substrates.

  3. Alternative splicing in the coding region of Ppo-A1 directly influences the polyphenol oxidase activity in common wheat (Triticum aestivum L.).

    PubMed

    Sun, Youwei; He, Zhonghu; Ma, Wujun; Xia, Xianchun

    2011-03-01

    Polyphenol oxidase (PPO) plays a crucial role in browning reactions in fresh and processed fruits and vegetables, as well as products made from cereal grains. Common wheat (Triticum aestivum L.) has a large genome, representing an interesting system to advance our understanding of plant PPO gene expression, regulation and function. In the present study, we characterized the expression of Ppo-A1, a major PPO gene located on wheat chromosome 2A, using DNA sequencing, semi-quantitative RT-PCR, PPO activity assays and whole-grain staining methods during grain development. The results indicated that the expression of the Ppo-A1b allele was regulated by alternative splicing of pre-mRNAs, resulting from a 191-bp insertion in intron 1 and one C/G SNP in exon 2. Eight mRNA isoforms were identified in developing grains based on alignments between cDNA and genomic DNA sequences. Only the constitutively spliced isoform b encodes a putative full-length PPO protein based on its coding sequence whereas the other seven spliced isoforms, a, c, d, e, f, g and h, have premature termination codons resulting in potential nonsense-mediated mRNA decay. The differences in expression of Ppo-A1a and Ppo-A1b were confirmed by PPO activity assays and whole grain staining, providing direct evidence for the influence of alternative splicing in the coding region of Ppo-A1 on polyphenol oxidase activity in common wheat grains.

  4. [Effect of vernalization and red light illumination of seedlings of bread wheat (Triticum aestivum L.) on the temperature profile of the cAMP phosphodiesterase activity].

    PubMed

    Fedenko, E P; Koksharova, T A; Agamalova, S R; Beliaeva, E V

    2004-01-01

    Phenotypic manifestations of Vrn (vernalization) and Ppd (photoperiodism) genes responsible for transition of bread wheat Triticum aestivum L. to generative growth (flowering) are mutually related. Since the mechanism of phytochrome-induced photoperiodism involves the enzymes of cyclic adenosine monophosphate metabolism and phosphodiesterase in particular, we tested involvement of phosphodiesterase in the process of winter wheat vernalization and formation of flowering competence in alternate wheat requiring a long day but no vernalization for the transition to flowering. We studied temperature dependence of phosphodiesterase activity in vernalized and unvernalized winter wheat on the one hand and in etiolated and red light illuminated seedlings of alternate wheat on the other hand. Short-term experiments demonstrated that vernalization and red light illumination are similar to long day by the effect on the long-day plants. Both influences induced a pronounced inversion of the temperature profile of phosphodiesterase activity in the 28-45 degrees C range. We propose that phosphodiesterase is involved in vernalization processes and can serve as a sensor of low temperature in winter wheat. Changed temperature profile is a radical control mechanism of phosphodiesterase activity in response to the influences (red light and vernalizing temperatures) responsible for competence of various bread wheat forms for generative growth.

  5. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum).

    PubMed

    Díaz, Aurora; Zikhali, Meluleki; Turner, Adrian S; Isaac, Peter; Laurie, David A

    2012-01-01

    The timing of flowering during the year is an important adaptive character affecting reproductive success in plants and is critical to crop yield. Flowering time has been extensively manipulated in crops such as wheat (Triticum aestivum L.) during domestication, and this enables them to grow productively in a wide range of environments. Several major genes controlling flowering time have been identified in wheat with mutant alleles having sequence changes such as insertions, deletions or point mutations. We investigated genetic variants in commercial varieties of wheat that regulate flowering by altering photoperiod response (Ppd-B1 alleles) or vernalization requirement (Vrn-A1 alleles) and for which no candidate mutation was found within the gene sequence. Genetic and genomic approaches showed that in both cases alleles conferring altered flowering time had an increased copy number of the gene and altered gene expression. Alleles with an increased copy number of Ppd-B1 confer an early flowering day neutral phenotype and have arisen independently at least twice. Plants with an increased copy number of Vrn-A1 have an increased requirement for vernalization so that longer periods of cold are required to potentiate flowering. The results suggest that copy number variation (CNV) plays a significant role in wheat adaptation.

  6. The sequence of change within the photosynthetic apparatus of wheat following short-term exposure to ozone. [Triticum aestivum L. cv Avalon

    SciTech Connect

    Farage, P.K.; Long, S.P.; Baker, N.R. ); Lechner, E.G. )

    1991-02-01

    The basis of inhibition of photosynthesis by single acute O{sub 3} exposures was investigated in vivo using analyses based on leaf gas exchange measurements. The fully expanded second leaves of wheat plants (Triticum aestivum L. cv Avalon) were fumigated with either 200 or 400 nanomoles per mole O{sub 3} for between 4 and 16 hours. This reduced significantly the light-saturated rate of Co{sub 2} uptake and was accompanied by a parallel decrease in stomatal conductance. However, the stomatal limitation only increased significantly during the first 8 hours of exposure to 400 nanomoles per mole O{sub 3}; no significant increase occurred for any of the other treatments. Analysis of the response of CO{sub 2} uptake to the internal Co{sub 2} concentration implied that the predominant factor responsible for the reduction in light-saturated CO{sub 2} uptake was a decrease in the efficiency of carboxylation. At saturating concentrations of Co{sub 2}, photosynthesis was inhibited by no more than 22% after 16 hours, indicating that the capacity for regeneration of ribulose bisphosphate was less susceptible to O{sub 3}. Ozone fumigations also had a less pronounced effect on light-limited photosynthesis. The photochemical efficiency of photosystem II estimated from the ratio of variable to maximum chlorophyll fluorescence and the atrazine-binding capacity of isolated thylakoids demonstrated that photochemical reactions were not responsible for the initial inhibition of CO{sub 2} uptake.

  7. Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using Zea mays and Triticum aestivum: performance and metal mobilization over a three year period.

    PubMed

    Neugschwandtner, Reinhard W; Tlustos, Pavel; Komárek, Michael; Száková, Jirina; Jakoubková, Lucie

    2012-09-01

    Enhanced phytoextraction using EDTA for the remediation of an agricultural soil contaminated with less mobile risk elements Cd and Pb originating from smelting activities in Príbram (Czech Republic) was assessed on the laboratory and the field scale. EDTA was applied to the first years crop Zea mays. Metal mobilization and metal uptake by the plants in the soil were monitored for two additional years when Triticum aestivum was planted. The application ofEDTA effectively increased water-soluble Cd and Pb concentrations in the soil. These concentrations decreased over time. Anyhow, increased concentrations could be still observed in the third experimental year indicating a low possibility of groundwater pollution after the addition of EDTA during and also after the enhanced phytoextraction process under prevailing climatic conditions. EDTA-applications caused phytotoxicity and thereby decreased biomass production and increased Cd and Pb uptake by the plants. Phytoextraction efficiency and phytoextraction potential were too low for Cd and Pb phytoextraction in the field in a reasonable time frame (as less than one-tenth of a percent of total Cd and Pb could be removed). This strongly indicates that EDTA-enhanced phytoextraction as implemented in this study is not a suitable remediation technique for risk metal contaminated soils.

  8. In Vivo Determination of Parameters of Nitrate Utilization in Wheat (Triticum aestivum L.) Seedlings Grown with Low Concentration of Nitrate in the Nutrient Solution 1

    PubMed Central

    Baer, Gianni R.; Collet, Gérald F.

    1981-01-01

    Six genotypes of winter wheat (Triticum aestivum L.) differing in grain protein concentration were grown on a nutrient solution containing low concentrations of NO3− (2 millimolar). Total NO3− uptake varied between genotypes but was not related to grain protein content. An in vivo nitrate reductase assay was used to determine the affinity of the enzyme for NO3−, and large phenotypic variations were observed. In vivo estimations of the concentration and size of the metabolic pool were variable. However, the three genotypes with the higher ratios of metabolic pool size to leaf total NO3− concentration were the high protein varieties. It is proposed that a high affinity of nitrate reductase for nitrate might be a biochemical marker for the capacity of the plant to continue assimilating NO3− for a longer period during the last stage of growth. The potential use of such physiological criteria as markers is discussed, in particular with respect to breeding programs for the development of plants with efficient nitrogen utilization. PMID:16662085

  9. When Isolated at Full Receptivity, in Vitro Fertilized Wheat (Triticum aestivum, L.) Egg Cells Reveal [Ca2+]cyt Oscillation of Intracellular Origin

    PubMed Central

    Pónya, Zsolt; Corsi, Ilaria; Hoffmann, Richárd; Kovács, Melinda; Dobosy, Anikó; Kovács, Attila Zoltán; Cresti, Mauro; Barnabás, Beáta

    2014-01-01

    During in vitro fertilization of wheat (Triticum aestivum, L.) in egg cells isolated at various developmental stages, changes in cytosolic free calcium ([Ca2+]cyt) were observed. The dynamics of [Ca2+]cyt elevation varied, reflecting the difference in the developmental stage of the eggs used. [Ca2+]cyt oscillation was exclusively observed in fertile, mature egg cells fused with the sperm cell. To determine how [Ca2+]cyt oscillation in mature egg cells is generated, egg cells were incubated in thapsigargin, which proved to be a specific inhibitor of the endoplasmic reticulum (ER) Ca2+-ATPase in wheat egg cells. In unfertilized egg cells, the addition of thapsigargin caused an abrupt transient increase in [Ca2+]cyt in the absence of extracellular Ca2+, suggesting that an influx pathway for Ca2+ is activated by thapsigargin. The [Ca2+]cyt oscillation seemed to require the filling of an intracellular calcium store for the onset of which, calcium influx through the plasma membrane appeared essential. This was demonstrated by omitting extracellular calcium from (or adding GdCl3 to) the fusion medium, which prevented [Ca2+]cyt oscillation in mature egg cells fused with the sperm. Combined, these data permit the hypothesis that the first sperm-induced transient increase in [Ca2+]cyt depletes an intracellular Ca2+ store, triggering an increase in plasma membrane Ca2+ permeability, and this enhanced Ca2+ influx results in [Ca2+]cyt oscillation. PMID:25535074

  10. Starch granule formation and protein deposition in wheat (Triticum aestivum L.) starchy endosperm cells is altered by high temperature during grain fill

    NASA Astrophysics Data System (ADS)

    Hurkman, William J.; Wood, Delilah F.

    2010-06-01

    High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. 'Butte 86') was produced under a 24/17°C or 37/28°C day/night regimen imposed from flowering to maturity and starch and protein deposition examined using scanning electron microscopy. The high temperature regimen shortened the duration of grain fill from 40 to 18 days. Under the 37/28°C regimen, A- and B-type starch granules decreased in size. A-type starch granules also exhibited pitting, suggesting enhanced action of starch degradative enzymes. Under both temperature regimens, protein bodies originated early in development and coalesced during mid to late development to form a continuous protein matrix surrounding the starch granules. Under the 37/28°C regimen, the proportion of protein matrix increased in endosperm cells of mature grain. Taken together, the changes in starch granule number and size and in protein matrix amount provide clues for understanding how high temperature during grain fill can affect end use properties of wheat flour.

  11. Analysis of betaine and choline contents of aleurone, bran, and flour fractions of wheat (Triticum aestivum L.) Using (1)H nuclear magnetic resonance (NMR) spectroscopy.

    PubMed

    Graham, Stewart F; Hollis, James H; Migaud, Marie; Browne, Roy A

    2009-03-11

    In conventional milling, the aleurone layer is combined with the bran fraction. Studies indicate that the bran fraction of wheat contains the majority of the phytonutrients betaine and choline, with relatively minor concentrations in the refined flour. This present study suggests that the wheat aleurone layer ( Triticum aestivum L. cv. Tiger) contains the greatest concentration of both betaine and choline (1553.44 and 209.80 mg/100 g of sample, respectively). The bran fraction contained 866.94 and 101.95 mg/100 g of sample of betaine and choline, respectively, while the flour fraction contained 23.30 mg/100 g of sample (betaine) and 28.0 mg/100 g of sample (choline). The betaine content for the bran was lower, and the choline content was higher compared to previous studies, although it is known that there is large variation in betaine and choline contents between wheat cultivars. The ratio of betaine/choline in the aleurone fraction was approximately 7:1; in the bran, the ratio was approximately 8:1; and in the flour fraction, the ratio was approximately 1:1. The study further emphasizes the superior phytonutrient composition of the aleurone layer.

  12. Accumulation and conversion of sugars by developing wheat grains. VII. Effect of changes in sieve tube and endosperm cavity sap concentrations on the grain filling rate. [Triticum aestivum

    SciTech Connect

    Fisher, D.B.; Gifford, R.M.

    1987-06-01

    The extent to which wheat grain growth is dependent on transport pool solute concentration was investigated by the use of illumination and partial grain removal to vary solute concentrations in the sieve tube and endosperm cavity saps of the wheat ear (Triticum aestivum L.). Short-term grain growth rates were estimated indirectly from the product of phloem area, sieve tube sap concentration, and /sup 32/P translocation velocity. On a per grain basis, calculated rates of mass transport through the peduncle were fairly constant over a substantial range in other transport parameters (i.e. velocity, concentration, phloem area, and grain number). The rates were about 40% higher than expected; this probably reflects some unavoidable bias on faster-moving tracer in the velocity estimates. Sieve tube sap concentration increased in all experiments (by 20 to 64%), with a concomitant decline in velocity (to as low as 8% of the initial value). Endosperm cavity sucrose concentration also increased in all experiments, but cavity sap osmolality and total amino acid concentration remained nearly constant. No evidence was found for an increase in the rate of mass transport per grain through the peduncle in response to the treatments. This apparent unresponsiveness of grain growth rate to increased cavity sap sucrose concentration conflicts with earlier in vitro endosperm studies showing that sucrose uptake increased with increasing external sucrose concentration up to 150 to 200 millimolar.

  13. Effects of elevated CO2 concentration on growth, photosynthetic characteristics and biomass of wheat (Triticum aestivum L.) in Lunar Palace 1

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Liu, Hui; Liu, Hong; Wang, Minjuan; Fu, Yuming; Shao, Lingzhi; Liu, Guanghui; Yu, Juan

    Short- and long-term effects of elevated CO2 concentration on growth, photosynthetic characteristics and biomass of wheat (Triticum aestivum L.) are examined during 90 days in Lunar Palace 1. While a short-term exposure to elevated CO2 induces a large increase in photosynthesis in wheat plants, long-term growth in elevated CO2 often results in a smaller increase due to reduced photosynthetic capacity. In this study, it was also shown that, net photosynthesis per unit leaf area was raised at an increased CO2 concentration partly due to a decrease in photorespiration, partly due to an increased substrate supply. Transpiration was reduced due to a lower stomatal conductance. The growth response of whole plants to a high CO2 concentration will be the main subject of this paper. Firstly, an estimation is made to what extent a doubling in CO2 concentration affects wheat plant growth in Lunar Palace 1. Secondly, the mechanisms behind this growth stimulation will be assessed. Finally, in those cases where wheat plants are grown over a range of environmental conditions, we select that condition where control plants are growing fastest. Thus, this study may be a matter of interest for researchers in both space and unban agriculture fields.

  14. Influence of Ozone on the Stable Carbon Isotope Composition, deltaC, of Leaves and Grain of Spring Wheat (Triticum aestivum L.).

    PubMed

    Saurer, M; Fuhrer, J; Siegenthaler, U

    1991-09-01

    The relative composition of stable carbon isotopes, delta(13)C, was determined in flag leaves and grain of spring wheat (Triticum aestivum L. cv Albis) grown in open-top field fumigation chambers and exposed to different O(3) levels during the growing season. The aim of the study was to establish exposure-response relationships for the radiation-weighted seasonal mean O(3) concentration and delta(13)C (relative deviation of the (13)C/(12)C ratio) values of the two plant parts. Samples were collected at harvest in 1986, 1987, and 1988. With increasing O(3) concentration, delta(13)C values increased (became less negative) proportionally. Year to year delta(13)C differences at equivalent O(3) concentrations were small. The shift in delta(13)C caused by O(3) was more pronounced in grain than in leaves. According to models of (13)C discrimination in C(3) plants, these results indicate increasing limitation of photosynthesis by CO(2) diffusion relative to limitation by carboxylation with increasing O(3) exposure. This conclusion is not in agreement with results from gas exchange analysis. Water use efficiency in green flag leaves tended to decrease with increasing O(3), indicating a dominating effect of O(3) on CO(2) carboxylation.

  15. [Effect of rye chromosomes on features of androgenesis in wheat-rye substituted lines of Triticum aestivum L. sort Saratovskaya 29/Secale cerale L. sort Onokhoiskaia and Triticale].

    PubMed

    Dobrovolskaia, O B; Pershina, L A; Kravtsova, L A; Silkova, O G; Shchapova, A I

    2001-05-01

    The characteristic features of androgenesis in six wheat-rye substitution lines Triticum aestivum L. (cv. Saratovskaya 29)/Secale cereale L. (cv. Onokhoiskaya) and triticale (2n = 56) using anther culture at different concentrations of 2,4-D in the growth medium were studied. Under variable cultivation conditions, the significant effect of genotypic diversity on the variability of such androgenesis parameters as the frequency of productive anthers, the frequency of embryoid formation, and the frequency of total regenerated plantlets, was shown. It was demonstrated that chromosomes 1R, 3R, and 7R stimulated the formation of androgenous embryoids, while chromosome 5R produced an opposite effect. In triticale and substitution lines, the regeneration ability of androgenous embryoids induced by elevated 2,4-D concentrations was inhibited. Chromosome 1R of the Onokhoiskaya cultivar was suggested to contain genes suppressing regeneration of green plantlets, while chromosome 3R, conversely, stimulated their formation. Chromosomes 1R, 2R, 3R, and 7R of the Onokhoiskaya cultivar did not inhibit the spontaneous formation of androgenous hexaploids in the substitution lines.

  16. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum).

    PubMed

    Loutfy, Naglaa; El-Tayeb, Mohamed A; Hassanen, Ahmed M; Moustafa, Mahmoud F M; Sakuma, Yoh; Inouhe, Masahiro

    2012-01-01

    Salicylic acid (SA) controls growth and stress responses in plants. It also induces drought tolerance in plants. In this paper, four wheat (Triticum aestivum L.) cultivars with different drought responses were treated with SA in three levels of drain (90, 60, 30% of maximum field capacity) to examine its interactive effects on drought responses and contents of osmotic solutes that may be involved in growth and osmotic adjustment. Under drought condition, the cultivars Geza 164 and Sakha 69 had the plant biomass and leaf relative water content (LRWC) greater than the cultivars Gemaza 1 and Gemaza 3. In all cultivars, drought stress decreased the biomass, LRWC, and the contents of inorganic solutes (Ca, K, Mg) and largely increased the contents of organic solutes (soluble sugars and proline). By contrast, SA increased the biomass, LRWC and the inorganic and organic solute contents, except proline. Correlation analysis revealed that the LRWC correlated positively with the inorganic solute contents but negatively with proline in all cultivars. SA caused maximum accumulations of soluble sugars in roots under drought. These results indicated that SA-enhanced tolerance might involve solute accumulations but independently of proline biosynthesis. Drought-sensitive cultivars had a trait lowering Ca and K levels especially in shoots. Possible functions of the ions and different traits of cultivars were discussed.

  17. The uptake of NO3-, NO2-, and NH4+ by intact wheat (Triticum aestivum) seedlings. I. Induction and kinetics of transport systems

    NASA Technical Reports Server (NTRS)

    Goyal, S. S.; Huffaker, R. C.

    1986-01-01

    The inducibility and kinetics of the NO3-, NO2-, and NH4+ transporters in roots of wheat seedlings (Triticum aestivum cv Yercora Rojo) were characterized using precise methods approaching constant analysis of the substrate solutions. A microcomputer-controlled automated high performance liquid chromatography system was used to determine the depletion of each N species (initially at 1 millimolar) from complete nutrient solutions. Uptake rate analyses were performed using computerized curve-fitting techniques. More precise estimates were obtained for the time required for the extent of the induction of each transporter. Up to 10 and 6 hours, respectively, were required to achieve apparent full induction of the NO3- and NO2- transporters. Evidence for substrate inducibility of the NH4+ transporters requiring 5 hours is presented. The transport of NO3- was mediated by a dual system (or dual phasic), whereas only single systems were found for transport of NO2- and NH4+. The Km values for NO3-, NO2-, and NH4+ were, respectively, 0.027, 0.054, and 0.05 millimolar. The Km for mechanism II of NO3- transport could not be defined in this study as it exhibited only apparent first order kinetics up to 1 millimolar.

  18. A sampling system for estimating the cultivation of wheat (Triticum aestivum L) from LANDSAT data. M.S. Thesis - 21 Jul. 1983

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Moreira, M. A.

    1983-01-01

    Using digitally processed MSS/LANDSAT data as auxiliary variable, a methodology to estimate wheat (Triticum aestivum L) area by means of sampling techniques was developed. To perform this research, aerial photographs covering 720 sq km in Cruz Alta test site at the NW of Rio Grande do Sul State, were visually analyzed. LANDSAT digital data were analyzed using non-supervised and supervised classification algorithms; as post-processing the classification was submitted to spatial filtering. To estimate wheat area, the regression estimation method was applied and different sample sizes and various sampling units (10, 20, 30, 40 and 60 sq km) were tested. Based on the four decision criteria established for this research, it was concluded that: (1) as the size of sampling units decreased the percentage of sampled area required to obtain similar estimation performance also decreased; (2) the lowest percentage of the area sampled for wheat estimation with relatively high precision and accuracy through regression estimation was 90% using 10 sq km s the sampling unit; and (3) wheat area estimation by direct expansion (using only aerial photographs) was less precise and accurate when compared to those obtained by means of regression estimation.

  19. Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.)

    NASA Astrophysics Data System (ADS)

    Neu, Silke; Schaller, Jörg; Dudel, E. Gert

    2017-01-01

    Silicon (Si) is known as beneficial element for graminaceous plants. The importance of Si for plant functioning of cereals was recently emphasized. However, about the effect of Si availability on biomass production, grain yield, nutrient status and nutrient use efficiency for wheat (Triticum aestivum L.), as one of the most important crop plants worldwide, less is known so far. Consequently, we assessed the effect of a broad range of supply levels of amorphous SiO2 on wheat plant performance. Our results revealed that Si is readily taken up and accumulated basically in aboveground vegetative organs. Carbon (C) and phosphorus (P) status of plants were altered in response to varying Si supply. In bulk straw biomass C concentration decreased with increasing Si supply, while P concentration increased from slight limitation towards optimal nutrition. Thereby, aboveground biomass production increased at low to medium supply levels of silica whereas grain yield increased at medium supply level only. Nutrient use efficiency was improved by Si insofar that biomass production was enhanced at constant nitrogen (N) status of substrate and plants. Consequently, our findings imply fundamental influences of Si on C turnover, P availability and nitrogen use efficiency for wheat as a major staple crop.

  20. Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.)

    PubMed Central

    Neu, Silke; Schaller, Jörg; Dudel, E. Gert

    2017-01-01

    Silicon (Si) is known as beneficial element for graminaceous plants. The importance of Si for plant functioning of cereals was recently emphasized. However, about the effect of Si availability on biomass production, grain yield, nutrient status and nutrient use efficiency for wheat (Triticum aestivum L.), as one of the most important crop plants worldwide, less is known so far. Consequently, we assessed the effect of a broad range of supply levels of amorphous SiO2 on wheat plant performance. Our results revealed that Si is readily taken up and accumulated basically in aboveground vegetative organs. Carbon (C) and phosphorus (P) status of plants were altered in response to varying Si supply. In bulk straw biomass C concentration decreased with increasing Si supply, while P concentration increased from slight limitation towards optimal nutrition. Thereby, aboveground biomass production increased at low to medium supply levels of silica whereas grain yield increased at medium supply level only. Nutrient use efficiency was improved by Si insofar that biomass production was enhanced at constant nitrogen (N) status of substrate and plants. Consequently, our findings imply fundamental influences of Si on C turnover, P availability and nitrogen use efficiency for wheat as a major staple crop. PMID:28094308

  1. Measurement of 2-carboxyarabinitol 1-phosphate in plant leaves by isotope dilution. [Spinacea oleracea; Triticum aestivum; Arabidopsis thaliana; Maize; Phaseolus vulgaris; Petunia hybrida

    SciTech Connect

    Moore, B.D.; Kobza, J.; Seemann, J.R. )

    1991-05-01

    The level of 2-carboxyarabinitol 1-phosphate (CA1P) in leaves of 12 species was determined by an isotope dilution assay. {sup 14}C-labeled standard was synthesized from (2-{sup 14}C)carboxyarabinitol 1,5-bisphosphate using acid phosphatase, and was added at the initial point of leaf extraction. Leaf CA1P was purified and its specific activity determined. CA1P was found in dark-treated leaves of all species examined, including spinach (Spinacea oleracea), wheat (Triticum aestivum), Arabidopsis thaliana, and maize (Zea mays). The highest amounts were found in bean (Phaseolus vulgaris) and petunia (Petunia hybrida), which had 1.5 to 1.8 moles CA1P per mole ribulose 1,5-bisphosphate carboxylase catalytic sites. Most species had intermediate amounts of CA1P (0.2 to 0.8 mole CA1P per mole catalytic sites). Such intermediate to high levels of CA1P support the hypothesis that CA1P functions in many species as a light-dependent regulator of ribulose 1,5-bisphosphate carboxylase activity and whole leaf photosynthetic CO{sub 2} assimilation. However, CA1P levels in spinach, wheat, and A. thaliana were particularly low (less than 0.09 mole CA1P per mole catalytic sites). In such species, CA1P does not likely have a significant role in regulating ribulose 1,5-bisphosphate carboxylase activity, but could have a different physiological role.

  2. Cytomolecular discrimination of the A(m) chromosomes of Triticum monococcum and the A chromosomes of Triticum aestivum using microsatellite DNA repeats.

    PubMed

    Megyeri, Mária; Mikó, Péter; Farkas, András; Molnár-Láng, Márta; Molnár, István

    2017-02-01

    The cytomolecular discrimination of the A(m)- and A-genome chromosomes facilitates the selection of wheat-Triticum monococcum introgression lines. Fluorescence in situ hybridisation (FISH) with the commonly used DNA probes Afa family, 18S rDNA and pSc119.2 showed that the more complex hybridisation pattern obtained in T. monococcum relative to bread wheat made it possible to differentiate the A(m) and A chromosomes within homoeologous groups 1, 4 and 5. In order to provide additional chromosomal landmarks to discriminate the A(m) and A chromosomes, the microsatellite repeats (GAA)n, (CAG)n, (CAC)n, (AAC)n, (AGG)n and (ACT)n were tested as FISH probes. These showed that T. monococcum chromosomes have fewer, generally weaker, simple sequence repeat (SSR) signals than the A-genome chromosomes of hexaploid wheat. A differential hybridisation pattern was observed on 6A(m) and 6A chromosomes with all the SSR probes tested except for the (ACT)n probe. The 2A(m) and 2A chromosomes were differentiated by the signals given by the (GAA)n, (CAG)n and (AAC)n repeats, while only (GAA)n discriminated the chromosomes 3A(m) and 3A. Chromosomes 7A(m) and 7A could be differentiated by the lack of (GAA)n and (AGG)n signals on 7A. As potential landmarks for identifying the A(m) chromosomes, SSR repeats will facilitate the introgression of T. monococcum chromatin into wheat.

  3. Wheat (Triticum aestivum) Is Susceptible to the Parasitic Angiosperm Striga hermonthica, a Major Cereal Pathogen in Africa.

    PubMed

    Vasey, R A; Scholes, J D; Press, M C

    2005-11-01

    ABSTRACT Striga hermonthica is a parasitic weed endemic to sub-Saharan Africa. It most commonly parasitizes sorghum, maize, pearl millet, and upland rice, lowering yields and affecting the welfare of over 100 million people, principally subsistence farmers. Cereal crops with complete resistance to this pathogen have not been reported. In southern and eastern Africa, where Striga spp. are endemic, 5.6 million ha of wheat are cultivated annually. Despite this, there are only isolated field reports of wheat infected with Striga spp. It is not clear whether this is due to resistance in this cereal or to environmental factors. In this article, we examined the ability of root exudates from five cultivars of wheat (Chablis, Cadenza, Hereward, Riband, and Brigadier) to trigger germination of S. hermonthica seed. A study of the development of S. hermonthica on two cultivars of wheat (Hereward and Chablis) and on a range of ancestral relatives of wheat (Triticum and Aegilops spp.) then was conducted. Last, the effect of Striga spp. on host growth and yield was examined using wheat cv. Chablis and compared with that of a highly susceptible sorghum cultivar (CSH-1). Wheat was able to support the germination, attachment, and subsequent development of Striga spp. All wheat cultivars and ancestral species of modern wheat (Triticum and Aegilops spp.) were susceptible to S. hermonthica. In addition, in wheat, infection severely lowered plant height (-24%) and biomass accumulation (-33%); a small parasite biomass elicited a large host response. In conclusion, wheat is highly susceptible to S. hermonthica and, in light of global climate change, this may have implications for wheat-producing areas of Africa.

  4. Identification of genomic regions determining the phenological development leading to floral transition in wheat (Triticum aestivum L.)

    PubMed Central

    Båga, Monica; Fowler, D. Brian; Chibbar, Ravindra N.

    2009-01-01

    Autumn-seeded winter cereals acquire tolerance to freezing temperatures and become vernalized by exposure to low temperature (LT). The level of accumulated LT tolerance depends on the cold acclimation rate and factors controlling timing of floral transition at the shoot apical meristem. In this study, genomic loci controlling the floral transition time were mapped in a winter wheat (T. aestivum L.) doubled haploid (DH) mapping population segregating for LT tolerance and rate of phenological development. The final leaf number (FLN), days to FLN, and days to anthesis were determined for 142 DH lines grown with and without vernalization in controlled environments. Analysis of trait data by composite interval mapping (CIM) identified 11 genomic regions that carried quantitative trait loci (QTLs) for the developmental traits studied. CIM analysis showed that the time for floral transition in both vernalized and non-vernalized plants was controlled by common QTL regions on chromosomes 1B, 2A, 2B, 6A and 7A. A QTL identified on chromosome 4A influenced floral transition time only in vernalized plants. Alleles of the LT-tolerant parent, Norstar, delayed floral transition at all QTLs except at the 2A locus. Some of the QTL alleles delaying floral transition also increased the length of vegetative growth and delayed flowering time. The genes underlying the QTLs identified in this study encode factors involved in regional adaptation of cold hardy winter wheat. PMID:19553371

  5. Gaseous pollutants from brick kiln industry decreased the growth, photosynthesis, and yield of wheat (Triticum aestivum L.).

    PubMed

    Adrees, Muhammad; Ibrahim, Muhammad; Shah, Aamir Mehmood; Abbas, Farhat; Saleem, Farhan; Rizwan, Muhammad; Hina, Saadia; Jabeen, Fariha; Ali, Shafaqat

    2016-05-01

    Gaseous pollutant emissions from brick kiln industries deteriorate the current state of ambient air quality in Pakistan and worldwide. These gaseous pollutants affect the health of plants and may decrease plant growth and yield. A field experiment that was conducted to monitor the concentration of gaseous pollutants emitted mainly from brick kilns in the ambient air and associated impacts on the growth and physiological attributes of the two wheat (Triticum spp.) cultivars. Plants were grown at three sites, including control (Ayub Agriculture Research Institute, AARI), low pollution (LP) site (Small Estate Industry), and high pollution (HP) site (Sidar Bypass), of Faisalabad, Pakistan. Monitoring of ambient air pollution at experimental sites was carried out using the state-of-art ambient air analyzers. Plants were harvested after 120 days of germination and were analyzed for different growth attributes. Results showed that the hourly average concentration of gaseous air pollutants CO, NO2, SO2, and PM10 at HP site were significantly higher than the LP and control sites. Similarly, gaseous pollutants decreased plant height, straw and grain yield, photosynthesis and increased physical injury, and metal concentrations in the grains. However, wheat response toward gaseous pollutants did not differ between cultivars (Galaxy and 8173) studied. Overall, the results indicated that brick kiln emissions could reduce the performance of wheat grown in the soils around kilns and confirm the adverse impacts of pollutants on the growth, yield, and quality of the wheat.

  6. Characterization of Triticum aestivum Abscisic Acid Receptors and a Possible Role for These in Mediating Fusairum Head Blight Susceptibility in Wheat

    PubMed Central

    Gordon, Cameron S.; Rajagopalan, Nandhakishore; Risseeuw, Eddy P.; Surpin, Marci; Ball, Fraser J.; Barber, Carla J.; Buhrow, Leann M.; Clark, Shawn M.; Page, Jonathan E.; Todd, Chris D.; Abrams, Suzanne R.; Loewen, Michele C.

    2016-01-01

    Abscisic acid (ABA) is a well-characterized plant hormone, known to mediate developmental aspects as well as both abiotic and biotic stress responses. Notably, the exogenous application of ABA has recently been shown to increase susceptibility to the fungal pathogen Fusarium graminearum, the causative agent of Fusarium head blight (FHB) in wheat and other cereals. However roles and mechanisms associated with ABA’s modulation of pathogen responses remain enigmatic. Here the identification of putative ABA receptors from available genomic databases for Triticum aestivum (bread wheat) and Brachypodium distachyon (a model cereal) are reported. A number of these were cloned for recombinant expression and their functionality as ABA receptors confirmed by in vitro assays against protein phosphatases Type 2Cs. Ligand selectivity profiling of one of the wheat receptors (Ta_PYL2DS_FL) highlighted unique activities compared to Arabidopsis AtPYL5. Mutagenic analysis showed Ta_PYL2DS_FL amino acid D180 as being a critical contributor to this selectivity. Subsequently, a virus induced gene silencing (VIGS) approach was used to knockdown wheat Ta_PYL4AS_A (and similar) in planta, yielding plants with increased early stage resistance to FHB progression and decreased mycotoxin accumulation. Together these results confirm the existence of a family of ABA receptors in wheat and Brachypodium and present insight into factors modulating receptor function at the molecular level. That knockdown of Ta_PYL4AS_A (and similar) leads to early stage FHB resistance highlights novel targets for investigation in the future development of disease resistant crops. PMID:27755583

  7. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality

    PubMed Central

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P.; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat (Triticum aestivum) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, “C 306” and a poor chapatti variety, “Sonalika.” About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2′-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be “variety or genotype” specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding

  8. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan province, China.

    PubMed

    Xing, Weiqin; Zhang, Hongyi; Scheckel, Kirk G; Li, Liping

    2016-01-01

    Soil contamination and human impacts have been reported in the vicinity of lead (Pb) smelters in Henan, China. However, no information is available on crop uptake of soil contaminants near these smelters. Grains, glume, rachis, and stem/leaf samples of 25 wheat (Triticum aestivum) varieties were collected from a small, smelter-impacted agricultural area of Beishe Village, Henan Province, and were analyzed for arsenic (As), cadmium (Cd), copper (Cu), Pb, and zinc (Zn) concentrations. The study aim was to evaluate the level of contaminant uptake in wheat and ostensibly observe if specific varieties of wheat were more susceptible to uptake. The mean concentrations of As, Cd, Cu, Pb, and Zn in whole grain flour were 0.0915, 0.192, 3.22, 0.280, and 32.5 mg kg(-1), respectively. Grain concentrations of all 25 varieties for Cd as well as 16 varieties for Pb exceeded the maximum permissible concentrations (MPC) for consumption. Mean pollution indexes (MPI) (element concentration of wheat grain/MPC for As, Cd or Pb) of the grains varied 0.562-2.15. As, Pb, and Cd contributed 5.22, 40.0, and 54.8 % to the MPI for all 25 varieties, respectively. This survey highlights Cd and Pb contamination of wheat grains in the vicinity of lead smelters in Henan Province, and likely other farm villages in the area. Further work is needed to examine uptake and contamination of other crops and vegetables impacted from the lead smelters in Henan Province and the absorption of toxic elements from food sources by local inhabitants.

  9. A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.).

    PubMed

    Qiao, Linyi; Zhang, Xiaojun; Han, Xiao; Zhang, Lei; Li, Xin; Zhan, Haixian; Ma, Jian; Luo, Peigao; Zhang, Wenping; Cui, Lei; Li, Xiaoyan; Chang, Zhijian

    2015-01-01

    The Auxin/indole-3-acetic acid (Aux/IAA) gene family plays key roles in the primary auxin-response process and controls a number of important traits in plants. However, the characteristics of the Aux/IAA gene family in hexaploid bread wheat (Triticum aestivum L.) have long been unknown. In this study, a comprehensive identification of the Aux/IAA gene family was performed using the latest draft genome sequence of the bread wheat "Chinese Spring." Thirty-four Aux/IAA genes were identified, 30 of which have duplicated genes on the A, B or D sub-genome, with a total of 84 Aux/IAA sequences. These predicted Aux/IAA genes were non-randomly distributed in all the wheat chromosomes except for chromosome 2D. The information of wheat Aux/IAA proteins is also described. Based on an analysis of phylogeny, expression and adaptive evolution, we prove that the Aux/IAA family in wheat has been replicated twice in the two allopolyploidization events of bread wheat, when the tandem duplication also occurred. The duplicated genes have undergone an evolutionary process of purifying selection, resulting in the high conservation of copy genes among sub-genomes and functional redundancy among several members of the TaIAA family. However, functional divergence probably existed in most TaIAA members due to the diversity of the functional domain and expression pattern. Our research provides useful information for further research into the function of Aux/IAA genes in wheat.

  10. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu: segregation pattern, expression and effects of the transgene.

    PubMed

    Fu, Jianming; Ristic, Zoran

    2010-06-01

    We previously reported that transgenic wheat (Triticum aestivum L.) carrying a maize (Zea mays L.) gene (Zmeftu1) for chloroplast protein synthesis elongation factor, EF-Tu, displays reduced thermal aggregation of leaf proteins, reduced injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation following exposure to heat stress (18 h at 45 degrees C) [Fu et al. in Plant Mol Biol 68:277-288, 2008]. In the current study, we investigated the segregation pattern and expression of the transgene Zmeftu1 and determined the grain yield of transgenic plants after exposure to a brief heat stress (18 h at 45 degrees C). We also assessed thermal aggregation of soluble leaf proteins in transgenic plants, testing the hypothesis that increased levels of EF-Tu will lead to a non-specific protection of leaf proteins against thermal aggregation. The transgenic wheat displayed a single-gene pattern of segregation of Zmeftu1. Zmeftu1 was expressed, and the transgenic plants synthesized and accumulated three anti-EF-Tu cross-reacting polypeptides of similar molecular mass but different pI, suggesting the possibility of posttranslational modification of this protein. The transgenic plants also showed better grain yield after exposure to heat stress compared with their non-transgenic counterparts. Soluble leaf proteins of various molecular masses displayed lower thermal aggregation in transgenic than in non-transgenic wheat. The results suggest that overexpression of chloroplast EF-Tu can be beneficial to wheat tolerance to heat stress. Moreover, the results also support the hypothesis that EF-Tu contributes to heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation in a non-specific manner.

  11. Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.).

    PubMed

    Fowler, D B; N'Diaye, A; Laudencia-Chingcuanco, D; Pozniak, C J

    2016-01-01

    Plants must respond to environmental cues and schedule their development in order to react to periods of abiotic stress and commit fully to growth and reproduction under favorable conditions. This study was initiated to identify SNP markers for characters expressed from the seedling stage to plant maturity in spring and winter wheat (Triticum aestivum L.) genotypes adapted to western Canada. Three doubled haploid populations with the winter cultivar 'Norstar' as a common parent were developed and genotyped with a 90K Illumina iSelect SNP assay and a 2,998.9 cM consensus map with 17,541 markers constructed. High heritability's reflected large differences among the parents and relatively low genotype by environment interactions for all characters considered. Significant QTL were detected for the 15 traits examined. However, different QTL for days to heading in controlled environments and the field provided a strong reminder that growth and development are being orchestrated by environmental cues and caution should be exercised when extrapolating conclusions from different experiments. A QTL on chromosome 6A for minimum final leaf number, which determines the rate of phenological development in the seedling stage, was closely linked to QTL for low-temperature tolerance, grain quality, and agronomic characters expressed up to the time of maturity. This suggests phenological development plays a critical role in programming subsequent outcomes for many traits. Transgressive segregation was observed for the lines in each population and QTL with additive effects were identified suggesting that genes for desirable traits could be stacked using Marker Assisted Selection. QTL were identified for characters that could be transferred between the largely isolated western Canadian spring and winter wheat gene pools demonstrating the opportunities offered by Marker Assisted Selection to act as bridges in the identification and transfer of useful genes among related genetic islands

  12. Molecular characterization and sequence diversity of genes encoding the large subunit of the ADP-glucose pyrophosphorylase in wheat (Triticum aestivum L.).

    PubMed

    Rose, Meghan K; Huang, Xiu-Qiang; Brûlé-Babel, Anita

    2016-02-01

    The large subunit of ADP glucose pyrophosphorylase (AGPase), the rate limiting enzyme in starch biosynthesis in Triticum aestivum L., is encoded by the ADP glucose pyrophosphorylase large subunit (AGP-L) gene. This was the first report on the development of three genome-specific primer sets for isolating the complete genomic sequence of all three homoeologous AGP-L genes on group 1 chromosomes. All three AGP-L genes consisted of 15 introns and 15 exons. The lengths of the structural genes from start to stop codon were 3334 bp for AGP-L-A1, 3351 bp for AGP-L-B1, and 3340 bp for AGP-L-D1. The coding region was 1569 bases long in all three genomes. All three AGP-L genes encoded 522 amino acid residues including the transit peptide sequences with 62 amino acid residues and the mature protein with 460 amino acid residues. The mature protein of three AGP-L genes was highly conserved. Three AGP-L genes were sequenced in 47 diverse spring and winter wheat genotypes. One and two haplotypes were found for AGP-L-D1 and AGP-L-A1, respectively. In total, 67 SNPs (single nucleotide polymorphisms) and 13 indels (insertions or deletions) forming five haplotypes were identified for AGP-L-B1. All 13 indels and 58 of the 67 SNPs among the 47 genotypes were located in the non-coding regions, while the remaining nine SNPs were synonymous substitutions in the coding region. Significant LD was found among the 45 SNPs and ten indels located from intron 2 to intron 3. Association analysis indicated that four SNPs were strongly associated with seed number per spike and thousand kernel weight.

  13. UPLC-QTOF analysis reveals metabolomic changes in the flag leaf of wheat (Triticum aestivum L.) under low-nitrogen stress.

    PubMed

    Zhang, Yang; Ma, Xin-Ming; Wang, Xiao-Chun; Liu, Ji-Hong; Huang, Bing-Yan; Guo, Xiao-Yang; Xiong, Shu-Ping; La, Gui-Xiao

    2017-02-01

    Wheat is one of the most important grain crop plants worldwide. Nitrogen (N) is an essential macronutrient for the growth and development of wheat and exerts a marked influence on its metabolites. To investigate the influence of low nitrogen stress on various metabolites of the flag leaf of wheat (Triticum aestivum L.), a metabolomic analysis of two wheat cultivars under different induced nitrogen levels was conducted during two important growth periods based on large-scale untargeted metabolomic analysis using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF). Multivariate analyses-such as principle components analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA)-were used for data analysis. PCA yielded distinctive clustering information among the samples, classifying the wheat flag samples into two categories: those under normal N treatment and low N treatment. By processing OPLS-DA, eleven secondary metabolites were shown to be responsible for classifying the two groups. The secondary metabolites may be considered potential biomarkers of low nitrogen stress. Chemical analyses showed that most of the identified secondary metabolites were flavonoids and their related derivatives, such as iso-vitexin, iso-orientin and methylisoorientin-2″-O-rhamnoside, etc. This study confirmed the effect of low nitrogen stress on the metabolism of wheat, and revealed that the accumulation of secondary metabolites is a response to abiotic stresses. Meanwhile, we aimed to identify markers which could be used to monitor the nitrogen status of wheat crops, presumably to guide appropriate fertilization regimens. Furthermore, the UPLC-QTOF metabolic platform technology can be used to study metabolomic variations of wheat under abiotic stresses.

  14. Developmental Changes in Composition and Morphology of Cuticular Waxes on Leaves and Spikes of Glossy and Glaucous Wheat (Triticum aestivum L.).

    PubMed

    Wang, Yong; Wang, Jiahuan; Chai, Guaiqiang; Li, Chunlian; Hu, Yingang; Chen, Xinhong; Wang, Zhonghua

    2015-01-01

    The glossy varieties (A14 and Jing 2001) and glaucous varieties (Fanmai 5 and Shanken 99) of wheat (Triticum aestivum L.) were selected for evaluation of developmental changes in the composition and morphology of cuticular waxes on leaves and spikes. The results provide us with two different wax development patterns between leaf and spike. The general accumulation trend of the total wax load on leaf and spike surfaces is first to increase and then decrease during the development growth period, but these changes were caused by different compound classes between leaf and spike. Developmental changes of leaf waxes were mainly the result of variations in composition of alcohols and alkanes. In addition, diketones were the third important contributor to the leaf wax changes in the glaucous varieties. Alkanes and diketones were the two major compound classes that caused the developmental changes of spike waxes. For leaf waxes, β- and OH-β-diketones were first detected in flag leaves from 200-day-old plants, and the amounts of β- and OH-β-diketones were significantly higher in glaucous varieties compared with glossy varieties. In spike waxes, β-diketone existed in all varieties, but OH-β-diketone was detectable only in the glaucous varieties. Unexpectedly, the glaucous variety Fanmai 5 yielded large amounts of OH-β-diketone. There was a significant shift in the chain length distribution of alkanes between early stage leaf and flag leaf. Unlike C28 alcohol being the dominant chain length in leaf waxes, the dominant alcohol chain length of spikes was C24 or C26 depending on varieties. Epicuticular wax crystals on wheat leaf and glume were comprised of platelets and tubules, and the crystal morphology changed constantly throughout plant growth, especially the abaxial leaf crystals. Moreover, our results suggested that platelets and tubules on glume surfaces could be formed rapidly within a few days.

  15. FAR5, a fatty acyl-coenzyme A reductase, is involved in primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum aestivum L.).

    PubMed

    Wang, Yong; Wang, Meiling; Sun, Yulin; Wang, Yanting; Li, Tingting; Chai, Guaiqiang; Jiang, Wenhui; Shan, Liwei; Li, Chunlian; Xiao, Enshi; Wang, Zhonghua

    2015-03-01

    A waxy cuticle that serves as a protective barrier against non-stomatal water loss and environmental damage coats the aerial surfaces of land plants. It comprises a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very long chain fatty acids (VLCFAs) and their derivatives. Results show that primary alcohols are the major components of bread wheat (Triticum aestivum L.) leaf blade cuticular waxes. Here, the characterization of TaFAR5 from wheat cv Xinong 2718, which is allelic to TAA1b, an anther-specific gene, is reported. Evidence is presented for a new function for TaFAR5 in the biosynthesis of primary alcohols of leaf blade cuticular wax in wheat. Expression of TaFAR5 cDNA in yeast (Saccharomyces cerevisiae) led to production of C22:0 primary alcohol. The transgenic expression of TaFAR5 in tomato (Solanum lycopersicum) cv MicroTom leaves resulted in the accumulation of C26:0, C28:0, and C30:0 primary alcohols. TaFAR5 encodes an alcohol-forming fatty acyl-coenzyme A reductase (FAR). Expression analysis revealed that TaFAR5 was expressed at high levels in the leaf blades, anthers, pistils, and seeds. Fully functional green fluorescent protein-tagged TaFAR5 protein was localized to the endoplasmic reticulum (ER), the site of primary alcohol biosynthesis. SDS-PAGE analysis indicated that the TaFAR5 protein possessed a molecular mass of 58.4kDa, and it was also shown that TaFAR5 transcript levels were regulated in response to drought, cold, and abscisic acid (ABA). Overall, these data suggest that TaFAR5 plays an important role in the synthesis of primary alcohols in wheat leaf blade.

  16. Increase in growth, productivity and nutritional status of wheat (Triticum aestivum L. cv. WH-711) and enrichment in soil fertility applied with organic matrix entrapped urea.

    PubMed

    Kumar, Manoj; Bauddh, Kuldeep; Kumar, Sanjeev; Sainger, Manish; Sainger, Poonam A; Singh, Rana P

    2013-01-01

    Field experiments were conducted during two consequent years in semi-arid, subtropical climate of Rohtak district situated in North-West Indian state Haryana to evaluate the effects of eco-friendly organic matrix entrapped urea (OMEU) on wheat (Triticum aestivum L. cv. WH-711). The OMEU prepared in granular form contained cow dung, rice bran (grain cover of Oryza sativa), neem (Azadirachta indica) leaves and clay soil (diameter of particles < 0.002 mm) in 1:1:1:1 ratios and saresh (plant gum of Acacia sp.) as binder entrapping half of the recommended dose of urea. A basal application of organic matrix entrapped urea showed increase in plant growth in terms of fresh and dry weights, root length, root number, leaf number, tillers, plant height earlet number, earlet length and productivity in terms of grain yield and straw yield over free form of urea (FU) and no fertilizer (NF) application. The OMEU increased total soluble proteins, organic N and free ammonium content in the leaves at 45 and 60 days. The nutritional status of wheat grains in OMEU applied plants was almost similar to that observed for FU applied plants. An increase in organic carbon and available phosphorus (P) was observed in OMEU applied plots on harvest whereas pH was slightly decreased over FU applied plots. The microbial population and activity in terms of fungal and bacterial colony count and activities soil dehydrogenase and alkaline phosphatase were significantly higher in OMEU applied plots as compared to the FU applied plots. Our data indicate that OMEU which are low cost, biodegradable and non-toxic can be used to replace the expensive chemical fertilizers for wheat cultivation in semi-arid, subtropical climate.

  17. Growth-suppressive effect of the α-amylase inhibitor of Triticum aestivum on stored-product mites varies by the species and type of diet.

    PubMed

    Hubert, Jan; Nesvorna, Marta; Erban, Tomas

    2014-01-01

    A naturally occurring α-amylase inhibitor (α-AI) of Triticum aestivum protects wheat grain from gramnivorous arthropod pests. The α-AI (Type-I) was incorporated into carbohydrate and protein diets to test its inhibitory activity on the stored-product mites Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae (Acari: Astigmata). Growth tests of mites fed the various diets were used to compare the suppressive effects. The final population size of mites attained from an initial population of 50 specimens maintained under controlled conditions (85 % relative humidity and 25 °C) was compared after 21 days of cultivation. The results showed that α-AI in the concentration in the range of 0.01-1 mg g(-1) did not suppress the growth of the tested stored-product mites. α-AI at a concentration of 10 mg g(-1) exerted a growth-suppressive effect that depended on the diet and species of the mites. The growth rate of A. siro was affected by the type of diet and was higher on carbohydrate diet than on the protein diet, the suppressive effect of α-AI was on the both diets. The growth-suppressive effect of α-AI on L. destructor and T. putrescentiae was significant when they were fed the protein diet but not when they were fed the carbohydrate diet. The higher resistance of tested mites to α-AI (proteinaceous) compared to non-proteinaceous acarbose corresponds to a powerful proteotolytic system in the mite gut. The results are discussed in terms of the adaptability of mites to utilize the starch from food sources.

  18. Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Fu, Yuming; Liu, Guanghui; Liu, Hong

    2014-06-01

    Minimizing energy consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. As a primary source of energy, light is one of the most important environmental factors for plant growth. The purpose of this study is to investigate the effects of low light intensity at different stages on growth, pigment composition, photosynthetic efficiency, biological production and antioxidant defence systems of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 3 intensity-controlled stages according to growth period (a total of 65 days): seedling stage (first 20 days), heading and flowering stage (middle 30 days) and grain filling stage (last 15 days). Initial light condition of the control was 420 μmol m-2 s-1 and the light intensity increased with the growth of wheat plants. The light intensities of group I and II at the first stage and the last stage were adjusted to the half level of the control respectively. For group III, the first and the last stage were both adjusted to half level of the control. During the middle 30 days, all treatments were kept the same intensity. The results indicated that low-light treatment at seedling stage, biomass, nutritional contents, components of inedible biomass and healthy index (including peroxidase (POD) activity, malondialdehyde (MDA) and proline content) of wheat plants have no significant difference to the control. Furthermore, unit kilojoule yield of group I reached 0.591 × 10-3 g/kJ and induced the highest energy efficiency. However, low-light treatment at grain filling stage affected the final production significantly.

  19. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.).

    PubMed

    Beales, James; Turner, Adrian; Griffiths, Simon; Snape, John W; Laurie, David A

    2007-09-01

    Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the "green revolution" converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a 'Chinese Spring' wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene.

  20. The Regulation of Photosynthesis in Leaves of Field-Grown Spring Wheat (Triticum aestivum L., cv Albis) at Different Levels of Ozone in Ambient Air.

    PubMed

    Lehnherr, B; Mächler, F; Grandjean, A; Fuhrer, J

    1988-12-01

    Wheat (Triticum aestivum L. cv Albis) was grown in open-top chambers in the field and fumigated daily with charcoal-filtered air (0.015 microliters per liter O(3)), nonfiltered air (0.03 microliters per liter O(3)), and air enriched with either 0.07 or 0.10 microliters per liter ozone (seasonal 8 hour/day [9 am-5 pm] mean ozone concentration from June 1 until July 10, 1987). Photosynthetic (14)CO(2) uptake was measured in situ. Net photosynthesis, dark respiration, and CO(2) compensation concentration at 2 and 21% O(2) were measured in the laboratory. Leaf segments were freeze-clamped in situ for the determination of the steady state levels of ribulose 1,5-bisphosphate, 3-phosphoglycerate, triose-phosphate, ATP, ADP, AMP, and activity of ribulose, 1,5-bisphosphate carboxylase/oxygenase. Photosynthesis of flag leaves was highest in filtered air and decreased in response to increasing mean ozone concentration. CO(2) compensation concentration and the ratio of dark respiration to net photosynthesis increased with ozone concentration. The decrease in photosynthesis was associated with a decrease in chlorophyll, soluble protein, ribulose bisphosphate carboxylase/oxygenase activity, ribulose bisphosphate, and adenylates. No decrease was found for triose-phosphate and 3-phosphoglycerate. The ratio of ATP to ADP and of triosephosphate to 3-phosphoglycerate were increased suggesting that photosynthesis was limited by pentose phosphate reductive cycle activity. No limitation occurred due to decreased access of CO(2) to photosynthetic cells since the decrease in stomatal conductance with increasing ozone concentration did not account for the decrease in photosynthesis. Ozonestressed leaves showed an increased degree of activation of ribulose bisphosphate carboxylase/oxygenase and a decreased ratio of ribulose bisphosphate to initial activity of ribulose bisphosphate carboxylase/oxygenase. Nevertheless, it is suggested that photosynthesis in ozone stressed leaves is limited by

  1. Quantitative Trait Loci Associated with Phenological Development, Low-Temperature Tolerance, Grain Quality, and Agronomic Characters in Wheat (Triticum aestivum L.)

    PubMed Central

    Fowler, D. B.; N'Diaye, A.; Laudencia-Chingcuanco, D.; Pozniak, C. J.

    2016-01-01

    Plants must respond to environmental cues and schedule their development in order to react to periods of abiotic stress and commit fully to growth and reproduction under favorable conditions. This study was initiated to identify SNP markers for characters expressed from the seedling stage to plant maturity in spring and winter wheat (Triticum aestivum L.) genotypes adapted to western Canada. Three doubled haploid populations with the winter cultivar ‘Norstar’ as a common parent were developed and genotyped with a 90K Illumina iSelect SNP assay and a 2,998.9 cM consensus map with 17,541 markers constructed. High heritability’s reflected large differences among the parents and relatively low genotype by environment interactions for all characters considered. Significant QTL were detected for the 15 traits examined. However, different QTL for days to heading in controlled environments and the field provided a strong reminder that growth and development are being orchestrated by environmental cues and caution should be exercised when extrapolating conclusions from different experiments. A QTL on chromosome 6A for minimum final leaf number, which determines the rate of phenological development in the seedling stage, was closely linked to QTL for low-temperature tolerance, grain quality, and agronomic characters expressed up to the time of maturity. This suggests phenological development plays a critical role in programming subsequent outcomes for many traits. Transgressive segregation was observed for the lines in each population and QTL with additive effects were identified suggesting that genes for desirable traits could be stacked using Marker Assisted Selection. QTL were identified for characters that could be transferred between the largely isolated western Canadian spring and winter wheat gene pools demonstrating the opportunities offered by Marker Assisted Selection to act as bridges in the identification and transfer of useful genes among related genetic

  2. Integrated analysis of seed proteome and mRNA oxidation reveals distinct post-transcriptional features regulating dormancy in wheat (Triticum aestivum L.).

    PubMed

    Gao, Feng; Rampitsch, Christof; Chitnis, Vijaya R; Humphreys, Gavin D; Jordan, Mark C; Ayele, Belay T

    2013-10-01

    Wheat seeds can be released from a dormant state by after-ripening; however, the underlying molecular mechanisms are still mostly unknown. We previously identified transcriptional programmes involved in the regulation of after-ripening-mediated seed dormancy decay in wheat (Triticum aestivum L.). Here, we show that seed dormancy maintenance and its release by dry after-ripening in wheat is associated with oxidative modification of distinct seed-stored mRNAs that mainly correspond to oxidative phosphorylation, ribosome biogenesis, nutrient reservoir and α-amylase inhibitor activities, suggesting the significance of post-transcriptional repression of these biological processes in regulating seed dormancy. We further show that after-ripening induced seed dormancy release in wheat is mediated by differential expression of specific proteins in both dry and hydrated states, including those involved in proteolysis, cellular signalling, translation and energy metabolism. Among the genes corresponding to these proteins, the expression of those encoding α-amylase/trypsin inhibitor and starch synthase appears to be regulated by mRNA oxidation. Co-expression analysis of the probesets differentially expressed and oxidized during dry after-ripening along with those corresponding to proteins differentially regulated between dormant and after-ripened seeds produced three co-expressed gene clusters containing more candidate genes potentially involved in the regulation of seed dormancy in wheat. Two of the three clusters are enriched with elements that are either abscisic acid (ABA) responsive or recognized by ABA-regulated transcription factors, indicating the association between wheat seed dormancy and ABA sensitivity.

  3. Identification and Comparative Analysis of microRNA in Wheat (Triticum aestivum L.) Callus Derived from Mature and Immature Embryos during In vitro Culture

    PubMed Central

    Chu, Zongli; Chen, Junying; Xu, Haixia; Dong, Zhongdong; Chen, Feng; Cui, Dangqun

    2016-01-01

    Feasible and efficient tissue culture plays an important role in plant genetic engineering. Wheat (Triticum aestivum L.) immature embryos (IMEs) are preferred for tissue culture to mature embryos (MEs) because IMEs easily generate embryogenic callus, producing large number of plants. The molecular mechanisms of regulation and the biological pathways involved in embryogenic callus formation in wheat remain unclear. Here, microRNAs (miRNAs) potentially involved in embryogenic callus formation and somatic embryogenesis were identified through deep sequencing of small RNAs (sRNAs) and analyzed with bioinformatics tools. Six sRNA libraries derived from calli of IMEs and MEs after 3, 6, or 15 d of culture (DC) were constructed and sequenced. A total of 85 known miRNAs were identified, of which 30, 33, and 18 were differentially expressed (P < 0.05) between the IME and ME libraries at 3, 6, and 15 DC, respectively. Additionally, 171 novel and 41 candidate miRNAs were also identified, of the novel miRNA, 69, 67, and 37 were differentially expressed (P < 0.05) between the two types of libraries at 3, 6, and 15 DC, respectively. The expression patterns of eight known and eight novel miRNAs were validated using quantitative real-time polymerase chain reaction. Gene ontology annotation of differentially expressed miRNA targets provided information regarding the underlying molecular functions, biological processes, and cellular components involved in embryogenic callus development. Functional miRNAs, such as miR156, miR164, miR1432, miR398, and miR397, differentially expressed in IMEs and MEs might be related to embryogenic callus formation and somatic embryogenesis. This study suggests that miRNA plays an important role in embryogenic callus formation and somatic embryogenesis in wheat, and our data provide a useful resource for further research. PMID:27625667

  4. [Features of alloplasmic wheat-barley substitution and addition lines (Hordeum marinum subsp. gussoneanum)-triticum aestivum].

    PubMed

    Pershina, L A; Deviatkina, E P; Belova, L I; Trubacheeva, N V; Arbuzova, V S; Kravtsova, L A

    2009-10-01

    Two alloplasmic wheat-barley substitution lines were studied: a line replaced at three pairs of chromosomes 1Hmr((IB), 5Hmar(5D), and 7Hmar(7D), and the disomic-substituted line 7Hma(7D). The lines were constructed on the basis of individual plants from BCIF8- and BC2F6 progeny of barley-wheat hybrids (H. marinum subsp. gussoneanum Hudson (=H. geniculatum All.) (2n = 28) x T. aestivum L.) (2n = 42) (Pyrotrix 28), respectively. Moreover, the alloplasmic wheat-barley ditelosomic addition line 7HLma' isolated among plants from the BC1F6 progeny of a barley-wheat amphiploid was studied, which in this work corresponds to BC2F10 and BC2F11 progeny. It was ascertained that when grown in the field, these alloplasmic lines manifest stable self-fertility. Plants of the given lines are characterized by low height, shortened ears, the fewer number of stems and ears, and of spikelets in the ear, by decreased grain productivity and weight of 1000 grains, in comparison with the common wheat cultivar Pyrotrix 28. The inhibition of trait expression in alloplasmic wheat-barley substitution and addition lines may be connected not only with the influence of wild barley chromosomes functioning in the genotypic environment of common wheat, but also with the effect of the barley cytoplasm. The alloplasmic line with substitution of chromosomes 1Hmar(1B), 5Hmar(5D), and 7Hmar(7D) or the alloplasmic line 7HLmar with ditelosomic addition have, in comparison with the common wheat cultivar Pyrotrix 28, an increased grain protein content, which is explained by the effect of wild barley H. marinum subsp. gussoneanum chromosomes.

  5. [Effect of rye Secale cereale L. chromosomes 1R and 3R on polyembryony expression in hybrid combinations between (Hordeum vulgare L.)-Triticum aestivum L. alloplasmic recombinant lines and wheat T. aestivum L.-rye S. cereale L. substitution lines].

    PubMed

    Pershina, L A; Rakovtseva, T S; Belova, L I; Deviatkina, E P; Silkova, O G; Kravtsova, L A; Shchapova, A I

    2007-07-01

    The effect of rye chromosomes on polyembryony was studied for reciprocal hybrid combinations between (Hordeum vulgare L.)-Triticum aestivum L. alloplasmic recombinant lines and five wheat T. aestivum L. (cultivar Saratovskaya 29)-rye Secale cereale L. (cultivar Onokhoiskaya) substitution lines: IR(1D), 2R(2D), 3R(3B), 5R(5A), and 6R(6A), and for direct hybrid combinations between the [H. marinum ssp. gussoneanum (H. geniculatum All.)]-T. aestivum alloplasmic recombinant line and the wheat-rye substitution lines 1R (1A), 1R (1D), and 3R(3B). Chromosomes 1R and 3R of rye cultivar Onokhoiskaya proved to affect the expression of polyembryony in the hybrid combinations that involved the alloplasmic recombinant lines of common wheat as maternal genotypes. Based on this finding, polyembryony was regarded as a phenotypic expression of nuclear-cytoplasmic interactions where an important role is played by rye chromosomes 1R and 3R and the H. vulgare cytoplasm. Consideration is given to the association between the effect of rye chromosomes 1R and 3R on polyembryony in the [(Hordeum)-T. aestivum x wheat-rye substitution lines] hybrid combinations and their stimulating effect on the development on angrogenic embryoids in isolated anther cultures of the wheat-rye substitution lines.

  6. Use of ethylene diurea (EDU) in assessing the impact of ozone on growth and productivity of five cultivars of Indian wheat (Triticum aestivum L.).

    PubMed

    Singh, Shalini; Agrawal, S B

    2009-12-01

    Increase in concentrations of tropospheric ozone (O(3)) is one of the main factors affecting world agriculture production. Tropical countries including India are at greater risk due to their meteorological conditions (high solar radiation and temperature) being conducive to the formation of O(3). The most effective anti-ozonant chemical is N-[2-(2-oxo-1-imidazolidinyl) ethyl]-N-phenylurea or ethylene diurea (EDU). Due to its specific characteristics, EDU has been used in the field as a phytomonitoring agent to assess crop losses due to O(3). Field experiments were conducted on five local cultivars of wheat (Triticum aestivum L. cv HUW234, HUW468, HUW510, PBW343, and Sonalika) grown under natural field conditions in a suburban area of Varanasi, Uttar Pradesh, India during December 2006 to March 2007 to determine the impact of O(3) on their growth and yield characteristics. Mean monthly O(3) concentrations varied between 35.3 ppb and 54.2 ppb at the experimental site. EDU treatment positively affected various growth and yield parameters with difference between cultivars. EDU-treated plants showed increase in shoot and root length, leaf area, absolute growth rate, relative growth rate, and net primary productivity, indicating O(3) induced suppression in growth. EDU treatment was highly significant in different cultivars for total biomass and test weight but not for harvest index. Yield per plant was higher by 25.6%, 24%, 20.4%, 8.6%, and 1.9% in EDU-treated cultivars HUW468, Sonalika, HUW510, HUW234, and PBW343, respectively, than non-EDU-treated ones. These results clearly indicate the sensitivity of all the wheat cultivars to ambient levels of O(3) with cv HUW468 appearing to be most sensitive. The present study also supports the view that EDU has great potential in alleviating the unfavorable effects of O(3) and can be effectively used as a monitoring tool to assess growth and yield losses in areas experiencing elevated concentrations of O(3).

  7. Regulation of invertase activity in different root zones of wheat (Triticum aestivum L.) seedlings in the course of osmotic adjustment under water deficit conditions.

    PubMed

    Königshofer, Helga; Löppert, Hans-Georg

    2015-07-01

    Osmotic adjustment of roots is an essential adaptive mechanism to sustain water uptake and root growth under water deficit. In this paper, the role of invertases (β-fructofuranosidase, EC 3.2.1.26) in osmotic adjustment was investigated in the root tips (cell division and elongation zone) and the root maturation zone of wheat (Triticum aestivum L. cv. Josef) in the course of osmotic stress imposed by 20% polyethylene glycol (PEG) 6000. The two root zones investigated differed distinctly in the response of invertases to water deprivation. In the root tips, the activity of the vacuolar and cell wall-bound invertases increased markedly under water stress resulting in the accumulation of hexoses (glucose and fructose) that contributed significantly to osmotic adjustment. A transient rise in hydrogen peroxide (H2O2) preceded the enhancement of invertases upon exposure to osmotic stress. Treatment with the NADPH oxidase inhibitor diphenylene iodonium (DPI) abolished the stress induced H2O2 production and suppressed the stimulation of the vacuolar invertase activity, whereas the activity of the cell wall-bound invertase was not influenced by DPI. As a consequence of the inhibitory effect of DPI on the vacuolar invertase, hexose levels and osmotic adjustment were also markedly decreased in the root tips under water deficit in the presence of DPI. These data suggest that H2O2 probably generated by a NADPH oxidase is required as a signalling molecule for the up-regulation of the vacuolar invertase activity in the root tips under osmotic stress, thereby enhancing the capacity for osmotic adjustment. In the root maturation zone, an early H2O2 signal could not be detected in response to PEG application. Only an increase in the glucose level that was not paralleled by fructose and a slight stimulation of the activity of the vacuolar invertase occurred in the maturation zone after water deprivation. The stress induced accumulation of glucose in the maturation zone was not

  8. Genome-wide exploration of metal tolerance protein (MTP) genes in common wheat (Triticum aestivum): insights into metal homeostasis and biofortification.

    PubMed

    Vatansever, Recep; Filiz, Ertugrul; Eroglu, Seckin

    2017-04-01

    Metal transport process in plants is a determinant of quality and quantity of the harvest. Although it is among the most important of staple crops, knowledge about genes that encode for membrane-bound metal transporters is scarce in wheat. Metal tolerance proteins (MTPs) are involved in trace metal homeostasis at the sub-cellular level, usually by providing metal efflux out of the cytosol. Here, by using various bioinformatics approaches, genes that encode for MTPs in the hexaploid wheat genome (Triticum aestivum, abbreviated as Ta) were identified and characterized. Based on the comparison with known rice MTPs, the wheat genome contained 20 MTP sequences; named as TaMTP1-8A, B and D. All TaMTPs contained a cation diffusion facilitator (CDF) family domain and most members harbored a zinc transporter dimerization domain. Based on motif, phylogeny and alignment analysis, A, B and D genomes of TaMTP3-7 sequences demonstrated higher homology compared to TaMTP1, 2 and 8. With reference to their rice orthologs, TaMTP1s and TaMTP8s belonged to Zn-CDFs, TaMTP2s to Fe/Zn-CDFs and TaMTP3-7s to Mn-CDFs. Upstream regions of TaMTP genes included diverse cis-regulatory motifs, indicating regulation by developmental stage, tissue type and stresses. A scan of the coding sequences of 20 TaMTPs against published miRNAs predicted a total of 14 potential miRNAs, mainly targeting the members of most diverged groups. Expression analysis showed that several TaMTPs were temporally and spatially regulated during the developmental time-course. In grains, MTPs were preferentially expressed in the aleurone layer, which is known as a reservoir for high concentrations of iron and zinc. The work identified and characterized metal tolerance proteins in common wheat and revealed a potential involvement of MTPs in providing a sink for trace element storage in wheat grains.

  9. Interaction between Aluminum Toxicity and Calcium Uptake at the Root Apex in Near-Isogenic Lines of Wheat (Triticum aestivum L.) Differing in Aluminum Tolerance.

    PubMed Central

    Ryan, P. R.; Kochian, L. V.

    1993-01-01

    Aluminum (Al) is toxic to plants at pH < 5.0 and can begin to inhibit root growth within 3 h in solution experiments. The mechanism by which this occurs is unclear. Disruption of calcium (Ca) uptake by Al has long been considered a possible cause of toxicity, and recent work with wheat (Triticum aestivum L. Thell) has demonstrated that Ca uptake at the root apex in an Al-sensitive cultivar (Scout 66) was inhibited more than in a tolerant cultivar (Atlas 66) (J.W. Huang, J.E. Shaff, D.L. Grunes, L.V. Kochian [1992] Plant Physiol 98: 230-237). We investigated this interaction further in wheat by measuring root growth and Ca uptake in three separate pairs of near-isogenic lines within which plants exhibit differential sensitivity to Al. The vibrating calcium-selective microelectrode technique was used to estimate net Ca uptake at the root apex of 6-d-old seedlings. Following the addition of 20 or 50 [mu]M AlCl3, exchange of Ca for Al in the root apoplasm caused a net Ca efflux from the root for up to 10 min. After 40 min of exposure to 50 [mu]M Al, cell wall exchange had ceased, and Ca uptake in the Al-sensitive plants of the near-isogenic lines was inhibited, whereas in the tolerant plants it was either unaffected or stimulated. This provides a general correlation between the inhibition of growth by Al and the reduction in Ca influx and adds some support to the hypothesis that a Ca/Al interaction may be involved in the primary mechanism of Al toxicity in roots. In some treatments, however, Al was able to inhibit root growth significantly without affecting net Ca influx. This suggests that the correlation between inhibition of Ca uptake and the reduction in root growth may not be a mechanistic association. The inhibition of Ca uptake by Al is discussed, and we speculate about possible mechanisms of tolerance. PMID:12231883

  10. An Efficient Approach for the Development of Locus Specific Primers in Bread Wheat (Triticum aestivum L.) and Its Application to Re-Sequencing of Genes Involved in Frost Tolerance.

    PubMed

    Babben, Steve; Perovic, Dragan; Koch, Michael; Ordon, Frank

    2015-01-01

    Recent declines in costs accelerated sequencing of many species with large genomes, including hexaploid wheat (Triticum aestivum L.). Although the draft sequence of bread wheat is known, it is still one of the major challenges to developlocus specific primers suitable to be used in marker assisted selection procedures, due to the high homology of the three genomes. In this study we describe an efficient approach for the development of locus specific primers comprising four steps, i.e. (i) identification of genomic and coding sequences (CDS) of candidate genes, (ii) intron- and exon-structure reconstruction, (iii) identification of wheat A, B and D sub-genome sequences and primer development based on sequence differences between the three sub-genomes, and (iv); testing of primers for functionality, correct size and localisation. This approach was applied to single, low and high copy genes involved in frost tolerance in wheat. In summary for 27 of these genes for which sequences were derived from Triticum aestivum, Triticum monococcum and Hordeum vulgare, a set of 119 primer pairs was developed and after testing on Nulli-tetrasomic (NT) lines, a set of 65 primer pairs (54.6%), corresponding to 19 candidate genes, turned out to be specific. Out of these a set of 35 fragments was selected for validation via Sanger's amplicon re-sequencing. All fragments, with the exception of one, could be assigned to the original reference sequence. The approach presented here showed a much higher specificity in primer development in comparison to techniques used so far in bread wheat and can be applied to other polyploid species with a known draft sequence.

  11. [Features of crossability, haploidy and polyembryony in hybrid combinations between common barley Hordeum vulgare L. (2n = 14) and wheat-rye substitution lines Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya].

    PubMed

    Pershina, L A; Belova, L I; Deviatkina, E P; Rakovtseva, T S; Kravtsova, L A; Shchapova, A I

    2005-06-01

    The role of individual chromosomes of rye in the manifestation of crossability and seedling development in hybrid combinations between common barley Hordeum vulgare L., cultivar Nepolegayushchii (2n = 14) and five wheat-rye substitution lines Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya (2n = 40 wheat + 2 rye chromosomes). Crossability, which was measured by two parameters--frequency of set grains and frequency of grains with embryos--was shown to be significantly affected by each of the five rye chromosomes examined: 1R, 2R, 3R, 5R, and 6R; the development of barley haploids was affected by rye chromosomes 1 R, 3R, and 5R. We were the first to demonstrate that polyembryony could be induced by mutual effects of barley cytoplasm and rye chromosome 1R. Possible mechanisms controlling the development of haploids and twins in hybrid combinations H. vulgare x T. aestivum/S. cereale are discussed. The conclusion is drawn that hybrid combinations between common barley and wheat-rye substitution lines can serve as new models for studying incompatibility mechanisms in distant crosses and genetic control of parthenogenesis.

  12. Cuticular uptake of xenobiotics into living plants. Part 2: influence of the xenobiotic dose on the uptake of bentazone, epoxiconazole and pyraclostrobin, applied in the presence of various surfactants, into Chenopodium album, Sinapis alba and Triticum aestivum leaves.

    PubMed

    Forster, W Alison; Zabkiewicz, Jerzy A; Liu, Zhiqian

    2006-07-01

    This study has determined the uptake of three pesticides, applied as commercial or model formulations in the presence of a wide range of surfactants, into the leaves of three plant species (bentazone into Chenopodium album L. and Sinapis alba L., epoxiconazole and pyraclostrobin into Triticum aestivum L.). The results have confirmed previous findings that the initial dose (nmol mm(-2)) of xenobiotic applied to plant foliage is a strong, positive determinant of uptake. This held true for all the pesticide formulations studied, although surfactant concentration was found to have an effect. The lower surfactant concentrations studied showed an inferior relationship between the amount of xenobiotic applied and uptake. High molecular mass surfactants also produced much lower uptake than expected from the dose uptake equations in specific situations.

  13. Phytotoxicity of three plant-based biodiesels, unmodified castor oil, and Diesel fuel to alfalfa (Medicago sativa L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus), and wheatgrass (Triticum aestivum).

    PubMed

    Bamgbose, Ifeoluwa; Anderson, Todd A

    2015-12-01

    The wide use of plant-based oils and their derivatives, in particular biodiesel, have increased extensively over the past decade to help alleviate demand for petroleum products and improve the greenhouse gas emissions profile of the transportation sector. Biodiesel is regarded as a clean burning alternative fuel produced from livestock feeds and various vegetable oils. Although in theory these animal and/or plant derived fuels should have less environmental impact in soil based on their simplified composition relative to Diesel, they pose an environmental risk like Diesel at high concentrations when disposed. The aim of the present study was to ascertain the phytotoxicity of three different plant-derived biodiesels relative to conventional Diesel. For phytotoxicological analysis, we used seeds of four crop plants, Medicago sativa, Lactuca sativa, Raphanus sativus, and Triticum aestivum to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with two different soil textures: sandy loam soil and silt loam soil. The studied plant-based biodiesels were safflower methyl-ester, castor methyl ester, and castor ethyl-ester. Biodiesel toxicity was more evident at high concentrations, affecting the germination and survival of small-seeded plants to a greater extent. Tolerance of plants to the biodiesels varied between plant species and soil textures. With the exception of R. sativus, all plant species were affected and exhibited some sensitivity to the fuels, such as delayed seedling emergence and slow germination (average=10 days) at high soil concentrations (0.85% for Diesel and 1.76% for the biodiesels). Tolerance of plants to soil contamination had a species-specific nature, and on average, decreased in the following order: Raphanus sativus (0-20%)>Triticum aestivum (10-40%) ≥ Medicago sativa> Lactuca sativa (80-100%). Thus, we conclude that there is some phytotoxicity associated with plant-based biodiesels. Further

  14. The house mouse (Mus musculus L.) exerts strong differential grain consumption preferences among hard red and white spring wheat (Triticum aestivum L.) varieties in a single-elimination tournament design.

    PubMed

    Morris, Craig F; Fuerst, E Patrick; McLean, Derek J; Momont, Kathleen; James, Caleb P

    2014-11-01

    Wheat (Triticum aestivum L.) plays a central role in the health and nutrition of humans. Yet, little is known about possible flavor differences among different varieties. We have developed a model system using the house mouse (Mus musculus L.) to determine feeding preferences as a prelude to extending results to human sensory analysis. Here, we examine the application of a single-elimination tournament design to the analysis of consumption preferences of a set of hard red and hard white spring wheat varieties. A single-elimination tournament design in this case pairs 2 wheat varieties and only 1 of the 2 is advanced to further tests. Preferred varieties were advanced until an overall "winner" was identified; conversely, less desirable varieties were advanced such that an overall "loser" was identified. Hollis and IDO702 were the winner and loser, respectively, for the hard red varieties, and Clear White 515 and WA8123 were the winner and loser, respectively, for the hard white varieties. When using the more powerful protocol of 14 mice and a 4-d trial, differences in mean daily consumption preferences of 2 varieties were separated at P-values as small as 2 × 10(-8) . The single-elimination tournament design is an efficient means of identifying the most and least desirable varieties among a larger set of samples. One application for identifying the 2 extremes in preference within a group of varieties would be to use them as parents of a population to identify quantitative trait loci for preference.

  15. Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defence system.

    PubMed

    Mishra, Amit Kumar; Rai, Richa; Agrawal, S B

    2013-04-01

    The effects of elevated CO2 and O3, singly and in combination were investigated on various physiological, biochemical and yield parameters of two locally grown wheat (Triticum aestivum L.) cultivars (HUW-37 and K-9107) in open top chambers (OTCs). Elevated CO2 stimulated photosynthetic rate (Ps) and Fv/Fm ratio and reduced the stomatal conductance (gs). Reactive oxygen species, lipid peroxidation, anti-oxidative enzymes, ascorbic acid and total phenolics were higher, whereas Ps, gs, Fv/Fm, protein and photosynthetic pigments were reduced in elevated O3 exposure, as compared to their controls. Under elevated CO2 + O3, elevated levels of CO2 modified the plant performance against O3 in both the cultivars. Elevated CO2 caused significant increase in economic yield. Exposure to elevated O3 caused significant reduction in yield and the effect was cultivar-specific. The study concluded that elevated CO2 ameliorated the negative impact of elevated O3 and cultivar HUW-37 was more sensitive to elevated O3 than K-9107.

  16. Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population.

    PubMed

    Buerstmayr, Maria; Lemmens, Marc; Steiner, Barbara; Buerstmayr, Hermann

    2011-07-01

    While many reports on genetic analysis of Fusarium head blight (FHB) resistance in bread wheat have been published during the past decade, only limited information is available on FHB resistance derived from wheat relatives. In this contribution, we report on the genetic analysis of FHB resistance derived from Triticum macha (Georgian spelt wheat). As the origin of T. macha is in the Caucasian region, it is supposed that its FHB resistance differs from other well-investigated resistance sources. To introduce valuable alleles from the landrace T. macha into a modern genetic background, we adopted an advanced backcross QTL mapping scheme. A backcross-derived recombinant-inbred line population of 321 BC(2)F(3) lines was developed from a cross of T. macha with the Austrian winter wheat cultivar Furore. The population was evaluated for Fusarium resistance in seven field experiments during four seasons using artificial inoculations. A total of 300 lines of the population were genetically fingerprinted using SSR and AFLP markers. The resulting linkage map covered 33 linkage groups with 560 markers. Five novel FHB-resistance QTL, all descending from T. macha, were found on four chromosomes (2A, 2B, 5A, 5B). Several QTL for morphological and developmental traits were mapped in the same population, which partly overlapped with FHB-resistance QTL. Only the 2BL FHB-resistance QTL co-located with a plant height QTL. The largest-effect FHB-resistance QTL in this population mapped at the spelt-type locus on chromosome 5A and was associated with the wild-type allele q, but it is unclear whether q has a pleiotropic effect on FHB resistance or is closely linked to a nearby resistance QTL.

  17. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets.

    PubMed

    Xue, Gang-Ping; Drenth, Janneke; McIntyre, C Lynne

    2015-02-01

    Heat stress is a significant environmental factor adversely affecting crop yield. Crop adaptation to high-temperature environments requires transcriptional reprogramming of a suite of genes involved in heat stress protection. This study investigated the role of TaHsfA6f, a member of the A6 subclass of heat shock transcription factors, in the regulation of heat stress protection genes in Triticum aestivum (bread wheat), a poorly understood phenomenon in this crop species. Expression analysis showed that TaHsfA6f was expressed constitutively in green organs but was markedly up-regulated during heat stress. Overexpression of TaHsfA6f in transgenic wheat using a drought-inducible promoter resulted in up-regulation of heat shock proteins (HSPs) and a number of other heat stress protection genes that included some previously unknown Hsf target genes such as Golgi anti-apoptotic protein (GAAP) and the large isoform of Rubisco activase. Transgenic wheat plants overexpressing TaHsfA6f showed improved thermotolerance. Transactivation assays showed that TaHsfA6f activated the expression of reporter genes driven by the promoters of several HSP genes (TaHSP16.8, TaHSP17, TaHSP17.3, and TaHSP90.1-A1) as well as TaGAAP and TaRof1 (a co-chaperone) under non-stress conditions. DNA binding analysis revealed the presence of high-affinity TaHsfA6f-binding heat shock element-like motifs in the promoters of these six genes. Promoter truncation and mutagenesis analyses identified TaHsfA6f-binding elements that were responsible for transactivation of TaHSP90.1-A1 and TaGAAP by TaHsfA6f. These data suggest that TaHsfA6f is a transcriptional activator that directly regulates TaHSP, TaGAAP, and TaRof1 genes in wheat and its gene regulatory network has a positive impact on thermotolerance.

  18. Systematic Investigation of FLOWERING LOCUS T-Like Poaceae Gene Families Identifies the Short-Day Expressed Flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.)

    PubMed Central

    Halliwell, Joanna; Borrill, Philippa; Gordon, Anna; Kowalczyk, Radoslaw; Pagano, Marina L.; Saccomanno, Benedetta; Bentley, Alison R.; Uauy, Cristobal; Cockram, James

    2016-01-01

    To date, a small number of major flowering time loci have been identified in the related Triticeae crops, bread wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare). Natural genetic variants at these loci result in major phenotypic changes which have adapted crops to the novel environments encountered during the spread of agriculture. The polyploid nature of bread and durum wheat means that major flowering time loci in which recessive alleles confer adaptive advantage in related diploid species have not been readily identified. One such example is the PPD-H2 flowering time locus encoded by FLOWERING LOCUS T 3 (HvFT3) in the diploid crop barley, for which recessive mutant alleles confer delayed flowering under short day (SD) photoperiods. In autumn-sown barley, such alleles aid the repression of flowering over the winter, which help prevent the development of cold-sensitive floral organs until the onset of inductive long day (LD) photoperiods the following spring. While the identification of orthologous loci in wheat could provide breeders with alternative mechanisms to fine tune flowering time, systematic identification of wheat orthologs of HvFT3 has not been reported. Here, we characterize the FT gene families in six Poaceae species, identifying novel members in all taxa investigated, as well as FT3 homoeologs from the A, B and D genomes of hexaploid (TaFT3) and tetraploid wheat. Sequence analysis shows TaFT3 homoeologs display high similarity to the HvFT3 coding region (95–96%) and predicted protein (96–97%), with conservation of intron/exon structure across the five cereal species investigated. Genetic mapping and comparative analyses in hexaploid and tetraploid wheat find TaFT3 homoeologs map to the long arms of the group 1 chromosomes, collinear to HvFT3 in barley and FT3 orthologs in rice, foxtail millet and brachypodium. Genome-specific expression analyses show FT3 homoeologs in tetraploid and hexaploid wheat are upregulated

  19. Development of T. aestivum L.-H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes.

    PubMed

    Fang, Yuhui; Yuan, Jingya; Wang, Zhangjun; Wang, Haiyan; Xiao, Jin; Yang, Zhixi; Zhang, Ruiqi; Qi, Zengjun; Xu, Weigang; Hu, Lin; Wang, Xiu-E

    2014-08-20

    Hordeum californicum (2n = 2x = 14, HH) is resistant to several wheat diseases and tolerant to lower nitrogen. In this study, a molecular karyotype of H. californicum chromosomes in the Triticum aestivum L. cv. Chinese Spring (CS)-H. californicum amphidiploid (2n = 6x = 56, AABBDDHH) was established. By genomic in situ hybridization (GISH) and multicolor fluorescent in situ hybridization (FISH) using repetitive DNA clones (pTa71, pTa794 and pSc119.2) as probes, the H. californicum chromosomes could be differentiated from each other and from the wheat chromosomes unequivocally. Based on molecular karyotype and marker analyses, 12 wheat-alien chromosome lines, including four disomic addition lines (DAH1, DAH3, DAH5 and DAH6), five telosomic addition lines (MtH7L, MtH1S, MtH1L, DtH6S and DtH6L), one multiple addition line involving H. californicum chromosome H2, one disomic substitution line (DSH4) and one translocation line (TH7S/1BL), were identified from the progenies derived from the crosses of CS-H. californicum amphidiploid with common wheat varieties. A total of 482 EST (expressed sequence tag) or SSR (simple sequence repeat) markers specific for individual H. californicum chromosomes were identified, and 47, 50, 45, 49, 21, 51 and 40 markers were assigned to chromosomes H1, H2, H3, H4, H5, H6 and H7, respectively. According to the chromosome allocation of these markers, chromosomes H2, H3, H4, H5, and H7 of H. californicum have relationship with wheat homoeologous groups 5, 2, 6, 3, and 1, and hence could be designated as 5H(c), 2H(c), 6H(c), 3H(c) and 1H(c), respectively. The chromosomes H1 and H6 were designated as 7H(c) and 4H(c), respectively, by referring to SSR markers located on rye chromosomes.

  20. Identification of the Wheat Curl Mite as the Vector of Triticum Mosaic Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum mosaic virus (TriMV) is a newly discovered virus found infecting wheat (Triticum aestivum L.) in Kansas. This study was conducted to determine if the wheat curl mite (WCM, Aceria tosichella Keifer) and the bird cherry oat aphid (Rhopalosiphum padi L. ) could transmit TriMV. Using diffe...

  1. Occurrence and yield effects of wheat infected with Triticum mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum mosaic virus (TriMV) infects wheat (Triticum aestivum L.) in the Great Plains region of the United States. This study determined the occurrence of TriMV at three locations over three years and yield effects of wheat mechanically infected with TriMV. Wheat infection with TriMV, Wheat streak...

  2. [Specific features of fertility restoration in alloplasmic lines obtained based on hybridization of self-fertilized offspring of barley-wheat (Hordeum vulgare L. x Triticum aestivum L.) amphiploid with common wheat varieties Saratovskaya 29 and Pyrotrix 28].

    PubMed

    Pershina, L A; Deviatkina, E P; Trubacheeva, N V; Kravtsova, L A; Dobrovol'skaia, O B

    2012-12-01

    The problems of fertility restoration in the progeny of barley-wheat hybrids (H. vulgare x T. aestivum) are explained by incompatibility between the cytoplasm of cultivated barley and the nuclear genome of common wheat. Suitable models for studying these problems are alloplasmic lines that combine the cytoplasm of barley and the nuclear genome of wheat. In this work, the specific features of fertility restoration in alloplasmic common wheat lines (H. vulgare)-T. aestivum were studied depending on the influence of wheat varieties Saratovskaya 29 (Sar29) and Pyrotrix 28 (Pyr28) used to produce these lines. The alloplasmic lines were created using hybrids between the 48-chromosome offspring (Amph1) of the barley-wheat amphiploid H. vulgare (ya-319) x T. aestivum (Sar29) and these wheat varieties. Backcrossing of the Amph1 (2n = 48) x Sar29 hybrid with the wheat variety Sar29 resulted in the complete sterility in the (H. vulgare)-Sar29 line, which suggests the incompatibility of the nuclear genome of the common wheat variety Sar29 with the cytoplasm of H. vulgare. Crossing of Amph1 (2n = 48) with Pyr28 resulted in the restoration of self-fertility in the hybrid with 2n = 44. In the alloplasmic lines (2n = 42) formed based on plants of the self-fertilized generations of this hybrid, the barley chromosomes were eliminated, and recombination between the nuclear genomes of the parental wheat varieties Sar29 and Pyr28 took place. Alloplasmic recombinant lines (H. vulgare)-T. aestivum with different levels of fertility were isolated. As was shown by the SSR analysis, differences in the fertility traits between these lines are determined by variations in the content of the genetic material from the wheat varieties Sar29 and Pyr28. The complete restoration of fertility in these alloplasmic recombinant lines is accompanied by the formation of a nuclear genome in which the genetic material of Pyr28 significantly prevails. The conclusion is made that the common wheat variety

  3. [Features of the formation of self-fertile euploid lines (2n = 42) by self-pollination of the 46-chromosome barley-wheat BC1 hybrid Hordeum marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) x Triticum aestivum L. (2n = 42)].

    PubMed

    Pershina, L A; Trubacheeva, N V; Rakovtseva, T S; Belova, L I; Deviatkina, E P; Kravtsova, L A

    2006-12-01

    We studied some features of the development of self-fertile 42-chromosome lines on the base of self-pollination progeny of 46-chromosome plants obtained by backcrossing of barley--wheat hybrids Hordeum marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) x Triticum aestivum L. (2n = 42). The stabilization of karyotypes, resulting in 42-chromosome plants of the wheat type was generally completed by generation BC1F10. The plants of all self-pollination progenies, including BC1F10, showed some phenotypic traits characteristic of wild barley. Plants of BC1F10 with the chromosome sets 2n = 42 and 2n = 42 + t were analyzed by RAPD with a set of 115 primers. Fragments of the wild barley genome were detected in RAPD patterns with 19 primers. Cross-hybridization confirmed that these fragments belonged to the wild barley genome. We raised four phenotypically different 42-chromosome lines from grains obtained from plants of generation BC1F10, and these lines proved to be cytogenetically stable and self-fertile when grown in the field.

  4. Resistance to wheat streak mosaic virus and Triticum mosaic virus in wheat lines carrying Wsm1 and Wsm3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are important viruses of wheat (Triticum aestivum L.) in the Great Plains of United States. In addition to agronomic practices to prevent damage from these viruses, temperature sensitive resistance genes Wsm1, Wsm2 and Wsm3, have bee...

  5. Liquid N and S fertilizer solutions effects on the mass, chemical, and shear strength properties of winter wheat (Triticum aestuvum) residue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To improve stand establishment in high crop residue situations, the utility of fertilizer to stimulate microbial decomposition of residue has been debated. Field experiments assessed winter wheat (Triticum aestivum) straw decomposition under different fertilizer rates and application timings at thre...

  6. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.).

    PubMed

    Zhang, Hongtao; Guan, Haiying; Li, Jingting; Zhu, Jie; Xie, Chaojie; Zhou, Yilin; Duan, Xiayu; Yang, Tsomin; Sun, Qixin; Liu, Zhiyong

    2010-11-01

    Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the most important wheat diseases worldwide and breeding for resistance using diversified disease resistance genes is the most promising approach to prevent outbreaks of powdery mildew. A powdery mildew resistance gene, originating from wild emmer wheat (Triticum turgidum var. dicoccoides) accessions collected from Israel, has been transferred into the hexaploid wheat line 3D232 through crossing and backcrossing. Inoculation results with 21 B. graminis f. sp. tritici races indicated that 3D232 is resistant to all of the powdery mildew isolates tested. Genetic analyses of 3D232 using an F(2) segregating population and F(3) families indicated that a single dominant gene, Ml3D232, confers resistance in the host seedling stage. By applying molecular markers and bulked segregant analysis (BSA), we have identified polymorphic simple sequence repeats (SSR), expressed sequence tags (EST) and derived sequence tagged site (STS) markers to determine that the Ml3D232 is located on chromosome 5BL bin 0.59-0.76. Comparative genetic analyses using mapped EST markers and genome sequences of rice and Brachypodium established co-linearity of the Ml3D232 genomic region with a 1.4 Mb genomic region on Brachypodium distachyon chromosome 4, and a 1.2 Mb contig located on the Oryza sativa chromosome 9. Our comparative approach enabled us to develop new EST-STS markers and to delimit the genomic region carrying Ml3D232 to a 0.8 cM segment that is collinear with a 558 kb region on B. distachyon. Eight EST markers, including an NBS-LRR analog, co-segregated with Ml3D232 to provide a target site for fine genetic mapping, chromosome landing and map-based cloning of the powdery mildew resistance gene. This newly developed common wheat germplasm provides broad-spectrum resistance to powdery mildew and a valuable resource for wheat breeding programs.

  7. Assessment of genomic and species relationships in Triticum and Aegilops by PAGE and by differential staining of seed albumins and globulins.

    PubMed

    Caldwell, K A; Kasarda, D D

    1978-11-01

    Endosperm protein components from common bread wheats (Triticum aestivum L.) and related species were extracted with aluminum lactate, pH 3.2, and examined by electrophoresis in the same buffer. Electrophoretic patterns of the albumins and globulins were compared to evaluate the possibility that a particular species might have contributed its genome to tetraploid or hexaploid wheat. Together with protein component mobilities, differential band staining with Coomassie Brilliant Blue R250 was employed to test the identity or non-identity of bands. Eight species and 63 accessions, representative of Triticum and Aegilops were tested. Considerable intraspecific variation was observed for patterns of diploid but not for tetraploid or hexaploid species. Patterns of some accessions of Triticum urartu agreed closely with major parts of the patterns of Triticum dicoccoides and T. aestivum. A fast-moving, green band was found in all accessions of T. urartu and of Triticum boeoticum, however, that was not found in those of T. dicoccoides or T. aestivum. This band was present in all accessions of Triticum araraticum and Triticum zhukovskyi. Patterns of Aegilops longissima, which has been suggested as the donor of the B genome, differed substantially from those of T. dicoccoides and T. aestivum. Finally, two marker proteins of intermediate mobility were also observed and may be used to discriminate between accessions of T. araraticum/T. zhukovskyi and those of T. dicoccoides/T. aestivum.

  8. Incidence of Wheat streak mosaic virus, Triticum mosaic virus, and Wheat mosaic virus in wheat curl mites recovered from maturing winter wheat spikes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat curl mites (WCM; Aceria tosichella) transmit Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus (WMoV) to wheat (Triticum aestivum L.) in the Great Plains region of the United States. These viruses can be detected in single, double, or triple combinations i...

  9. Effects of single and double infections of winter wheat by Triticum mosaic virus and Wheat streak mosaic virus on yield determinants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum mosaic virus (TriMV) is a recently discovered virus infecting wheat (Triticum aestivum L.) in the Great Plains region of the United States. It is transmitted by wheat curl mites (Aceria tosichella Keifer) which also transmit Wheat streak mosaic virus (WSMV) and Wheat mosaic virus. In a gree...

  10. New hybrids from peanut (Arachis hypogaea L.) and synthetic amphidiploid crosses show promise in increasing pest and disease tolerance.

    PubMed

    Fávero, A P; Pádua, J G; Costa, T S; Gimenes, M A; Godoy, I J; Moretzsohn, M C; Michelotto, M D

    2015-12-11

    The primary gene pool of the cultivated peanut (Arachis hypogaea L., allotetraploid AABB) is very narrow for some important characteristics, such as resistance to pests and diseases. However, the Arachis wild diploid species, particularly those from the section Arachis, still have these characteristics. To improve peanut crops, genes from the wild species can be introgressed by backcrossing the hybrids with A. hypogaea. When diploid species whose genomes are similar to those of the cultivated peanut are crossed, sterile hybrids result. Artificially doubling the number of chromosomes of these hybrids results in fertile synthetic polyploids. The objectives of this study were: 1) to obtain progenies by crossing amphidiploids with the cultivated peanut, and 2) to characterize these two groups of materials (amphidiploids and progenies) so that they may be efficiently conserved and used. Using morphological, molecular, and pollen viability descriptors we evaluated one cultivar of A. hypogaea (IAC 503), eight synthetic amphidiploids, and the progenies resulting from four distinct combinations of crossing between IAC 503 and four amphidiploids.

  11. DNA repair and crossing over favor similar chromosome regions as discovered in radiation hybrid of Triticum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over occurs in distal sub-telomeric regions representing 40% of the...

  12. First report of Fusarium hostae causing crown rot of wheat (Triticum spp.) in Turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crown rot disease of wheat is caused by a complex of Fusarium species. To identify species associated with crown rot in Turkey, crowns and stems of bread wheat (Triticum aestivum L.) and durum wheat (T. durum Desf.) were collected from the Central and Southeast Anatolia, Black Sea, Aegean, Mediterr...

  13. Differentiation among Israeli Blumeria graminis f. sp. tritici isolates originating from wild vs. domesticated Triticum species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Israel and its vicinity constitute a center of diversity of domesticated wheat species (Triticum aestivum and T. durum) and their sympatrically growing wild relatives, including wild emmer wheat (T. dicoccoides). The present study explored differentiation within the forma specialis of their obligat...

  14. Protective effects of ID331 Triticum monococcum gliadin on in vitro models of the intestinal epithelium.

    PubMed

    Iacomino, Giuseppe; Di Stasio, Luigia; Fierro, Olga; Picariello, Gianluca; Venezia, Antonella; Gazza, Laura; Ferranti, Pasquale; Mamone, Gianfranco

    2016-12-01

    A growing interest in developing new strategies for preventing coeliac disease has motivated efforts to identify cereals with null or reduced toxicity. In the current study, we investigate the biological effects of ID331 Triticum monococcum gliadin-derived peptides in human Caco-2 intestinal epithelial cells. Triticum aestivum gliadin derived peptides were employed as a positive control. The effects on epithelial permeability, zonulin release, viability, and cytoskeleton reorganization were investigated. Our findings confirmed that ID331 gliadin did not enhance permeability and did not induce zonulin release, cytotoxicity or cytoskeleton reorganization of Caco-2 cell monolayers. We also demonstrated that ID331 ω-gliadin and its derived peptide ω(105-123) exerted a protective action, mitigating the injury of Triticum aestivum gliadin on cell viability and cytoskeleton reorganization. These results may represent a new opportunity for the future development of innovative strategies to reduce gluten toxicity in the diet of patients with gluten intolerance.

  15. Antinutrients in amphidiploids (black gram x Mung bean): varietal differences and effect of domestic processing and cooking.

    PubMed

    Kataria, A; Chauhan, B M; Punia, D

    1989-09-01

    Phytic acid, saponin and polyphenol contents in grains of various varieties of black gram (Vigna mungo) Mung bean (Vigna radiata L.) amphidiploids ranged from 697 to 750, 2746 to 2972 and 702 to 783 mg/100 g, respectively. Domestic processing and cooking methods including soaking, ordinary and pressure cooking of soaked and unsoaked seeds, and sprouting significantly lowered phytic acid, saponin and polyphenol contents of the amphidiploid seeds. Soaking for 18 h removed 31 to 37% of the phytic acid; the extent of removal was higher with long periods of soaking. Saponins and polyphenols were relatively less affected. Loss of the antinutrients was greater when soaked instead of unsoaked seeds were cooked. Pressure cooking had a greater effect than ordinary cooking. Antinutrient concentrations declined following sprouting; the longer the period of germination the greater was the reduction.

  16. The Relationship between Chiasmata and Crossing over in TRITICUM AESTIVUM

    PubMed Central

    Fu, T. K.; Sears, E. R.

    1973-01-01

    Telocentrics for the β arm of chromosome 4A and the long arm of 6B were used as cytological markers for the determination of chiasma frequency. In concomitant studies of recombination, terminal segments of rye and T. umbellulatum chromatin carrying Hp (Hairy peduncle) and Lr9 (Leaf-rust resistance), respectively, marked 4A and 6B. Two temperatures, 21° and 32°, were used for both the 4A and 6B experiments.—Only one chiasma was observed in each heteromorphic bivalent. Because there was a substantial reduction in pairing between diakinesis and metaphase I, all determinations of chiasma frequency were made at diakinesis. In the 21° experiments, agreement was good between genetic recombination and cytological prediction on the basis of the partial chiasmatypy hypothesis that each chiasma represents a crossover. At 32° both chiasma frequency and crossing over, but particularly the latter, were strongly reduced. The fewer crossovers than expected are explained in part by stickiness of chromosomes at the high temperature, sometimes resulting in adjacent chromosomes being wrongly scored as having a chiasma, and in part by premetaphase disjunction of some recombined bivalents and subsequent independent behavior of the two resulting univalents.—Male transmission of the 4A telocentric from the heteromorphic bivalent was unusually high: 51% at 21° and 31% at 32°. PMID:17248642

  17. Paenibacillus hispanicus sp. nov. isolated from Triticum aestivum roots.

    PubMed

    Menéndez, Esther; Carro, Lorena; Tejedor, Carmen; Fernández-Pascual, Mercedes; Martínez-Molina, Eustoquio; Peix, Alvaro; Velázquez, Encarna

    2016-11-01

    A bacterial strain designated AMTAE16T was isolated from a root of wheat in Spain. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate in the genus Paenibacilluswith its closest relative being Paenibacillus daejeonensis AP-20T with 99.0 % 16S rRNA gene sequence similarity. DNA-DNA hybridization studies showed a mean of 30 % DNADNA relatedness between strain AMTAE16T and the type strain of P. daejeonensis. The isolate was a Gram-stainvariable, motile and sporulating rod. Catalase and oxidase activities were positive. Gelatin and starch were hydrolysed but not casein. Growth was supported by many carbohydrates and organic acids as carbon source. MK-7 was the only menaquinone detected and anteiso-C15 : 0, C16 : 0 and iso-C16 : 0 were the major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, four unidentified phospholipids and two unidentified lipids. meso-Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 55.4 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain AMTAE16T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus hispanicus sp. nov. is proposed. The type strain is AMTAE16T(=LMG 29501T=CECT 9124T).

  18. Novel rust resistance in wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Puccinia fungi that cause wheat rust diseases are among the most globally destructive agricultural pathogens. The most effective and utilized defense against rust is genetic resistance. The vast majority of rust resistance is racespecific conferred by single genes rapidly overcome by the pathoge...

  19. Characterization of plastidial starch phosphorylase in Triticum aestivum L. endosperm.

    PubMed

    Tickle, Paul; Burrell, Michael M; Coates, Stephen A; Emes, Michael J; Tetlow, Ian J; Bowsher, Caroline G

    2009-09-15

    Starch phosphorylase (Pho) catalyses the reversible transfer of glucosyl units from glucose1-phosphate to the non-reducing end of an alpha-1,4-linked glucan chain. Two major isoforms of Pho exist in the plastid (Pho1) and cytosol (Pho2). In this paper it is proposed that Pho1 may play an important role in recycling glucosyl units from malto-oligosaccharides back into starch synthesis in the developing wheat endosperm. Pho activity was observed in highly purified amyloplast extracts prepared from developing wheat endosperms, representing the first direct evidence of plastidial Pho activity in this tissue. A full-length cDNA clone encoding a plastidial Pho isoform, designated TaPho1, was also isolated from a wheat endosperm cDNA library. The TaPho1 protein and Pho1 enzyme activity levels were shown to increase throughout the period of starch synthesis. These observations add to the growing body of evidence which indicates that this enzyme class has a role in starch synthesis in wheat endosperm and indeed all starch storing tissues.

  20. An immunochemical approach to species relationship in Triticum and some related species.

    PubMed

    Bozzini, A; Cantagalli, P; Piazzi, S E; Sordi, S

    1970-01-01

    An immunological reaction, precipitation in gel, was produced using a rabbit antiserum directed to a specific protein constantly present in bread wheats (T. aestivum, genome AABBDD), but absent in durum wheat (T. durum Desf., genome AABB). This protein was isolated in the soluble-protein fraction of bread wheat caryopses by combined biochemical and immunological techniques.The availability of such a specific anti-bread wheat serum made possible the analysis of a series of varieties and species of wheat and of some closely related (Secale, Aegilops) and less closely related (Hordeum, Haynaldia) taxa to determine whether the protein was present or absent. Hordeum vulgare, Haynaldia villosa, Triticum monoccocum and Triticum turgidum gave a negative result, while positive results were obtained in T. aestivum, T. timopheevi, T. zhukovskyi, Secale cereale, Aegilops speltoides, Ae. mutica, Ae. comosa, Ae. caudata, Ae. umbellulata, Ae. squarrosa, and also in the artificial amphiploids (Ae. speltoides x T. monococcum) and (Ae. caudata x T. monococcum).It is concluded that these results agree closely with the classification of Triticum proposed by MacKey in 1966. The investigated protein not only permits the differentiation of T. aestivum from T. turgidum, but also T. turgidum from T. timopheevi at tetraploid level and T. monococcum from all the diploid species of Aegilops.

  1. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat

    PubMed Central

    Huang, Shaoxing; Sirikhachornkit, Anchalee; Su, Xiujuan; Faris, Justin; Gill, Bikram; Haselkorn, Robert; Gornicki, Piotr

    2002-01-01

    The classic wheat evolutionary history is one of adaptive radiation of the diploid Triticum/Aegilops species (A, S, D), genome convergence and divergence of the tetraploid (Triticum turgidum AABB, and Triticum timopheevii AAGG) and hexaploid (Triticum aestivum, AABBDD) species. We analyzed Acc-1 (plastid acetyl-CoA carboxylase) and Pgk-1 (plastid 3-phosphoglycerate kinase) genes to determine phylogenetic relationships among Triticum and Aegilops species of the wheat lineage and to establish the timeline of wheat evolution based on gene sequence comparisons. Triticum urartu was confirmed as the A genome donor of tetraploid and hexaploid wheat. The A genome of polyploid wheat diverged from T. urartu less than half a million years ago (MYA), indicating a relatively recent origin of polyploid wheat. The D genome sequences of T. aestivum and Aegilops tauschii are identical, confirming that T. aestivum arose from hybridization of T. turgidum and Ae. tauschii only 8,000 years ago. The diploid Triticum and Aegilops progenitors of the A, B, D, G, and S genomes all radiated 2.5–4.5 MYA. Our data suggest that the Acc-1 and Pgk-1 loci have different histories in different lineages, indicating genome mosaicity and significant intraspecific differentiation. Some loci of the S genome of Aegilops speltoides and the G genome of T. timophevii are closely related, suggesting the same origin of some parts of their genomes. None of the Aegilops genomes analyzed is a close relative of the B genome, so the diploid progenitor of the B genome remains unknown. PMID:12060759

  2. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes.

    PubMed

    Dalton-Morgan, Jessica; Hayward, Alice; Alamery, Salman; Tollenaere, Reece; Mason, Annaliese S; Campbell, Emma; Patel, Dhwani; Lorenc, Michał T; Yi, Bin; Long, Yan; Meng, Jinling; Raman, Rosy; Raman, Harsh; Lawley, Cindy; Edwards, David; Batley, Jacqueline

    2014-12-01

    Single-nucleotide polymorphisms (SNPs)are molecular markers based on nucleotide variation and can be used for genotyping assays across populations and to track genomic inheritance. SNPs offer a comprehensive genotyping alternative to whole-genome sequencing for both agricultural and research purposes including molecular breeding and diagnostics, genome evolution and genetic diversity analyses, genetic mapping, and trait association studies. Here genomic SNPs were discovered between four cultivars of the important amphidiploid oilseed species Brassica napus and used to develop a B. napus Infinium™ array containing 5,306 SNPs randomly dispersed across the genome. Assay success was high, with >94 % of these producing a reproducible, polymorphic genotype in the 1,070 samples screened. Although the assay was designed to B. napus, successful SNP amplification was achieved in the B. napus progenitor species, Brassica rapa and Brassica oleracea, and to a lesser extent in the related species Brassica nigra. Phylogenetic analysis was consistent with the expected relationships between B. napus individuals. This study presents an efficient custom SNP assay development pipeline in the complex polyploid Brassica genome and demonstrates the utility of the array for high-throughput genotyping in a number of related Brassica species. It also demonstrates the utility of this assay in genotyping resistance genes on chromosome A7, which segregate amongst the 1,070 samples.

  3. Cytogenetic investigation of Triticum timopheevii (Zhuk.) Zhuk. and related species using the C-banding technique.

    PubMed

    Badaeva, E D; Filatenko, A A; Badaev, N S

    1994-11-01

    Triticum timopheevii and related species T. militinae (2n=28, A(t)G) and T. zhukovskyi (2n=42, A(m)A(t)G), hybrids T. kiharae, T. miguschovae, the amphidiploid T. timopheevii x T. tauschii (all 2n=42, A(t)GD), T. fungicidum (ABA(t)G) and T. timonovum (2n=56, A(t)A(t)GG) were analyzed using the C-banding technique. Chromosomes of the A(m) and A(t) genomes in the karyotype of T. zhukovskyi differed in their C-banding pattern. Partial substitutions of A(t)-genome chromosomes and a complete substitution of the G-genome chromosomes by homoeologous chromosomes of an unidentified tetraploid wheat species with an AB genome composition were found in the T. timonovum karyotype. A(t)- and G-genome chromosomes in the karyotypes of all studied species had similar C-banding patterns and were characterized by a low level of polymorphism. The comparative stability of the A(t) and G genomes is determined by the origin and specifity of cultivation of studied species.

  4. Lutein and lutein esters in whole grain flours made from 75 genotypes of 5 triticum species grown at multiple sites.

    PubMed

    Ziegler, Jochen U; Wahl, Sabine; Würschum, Tobias; Longin, C Friedrich H; Carle, Reinhold; Schweiggert, Ralf M

    2015-05-27

    Concentrations of lutein and lutein esters were determined in an ample collection of 75 wheat genotypes comprising bread wheat (Triticum aestivum L.), durum (Triticum durum Desf.), spelt (Triticum spelta L.), emmer (Triticum dicoccum Schrank), and einkorn (Triticum monococcum L.) grown in five different environments. Einkorn genotypes showed the highest total amounts of lutein (4.5-7.8 μg/g dry matter), followed by durum (2.0-4.6 μg/g), spelt (0.9-2.0 μg/g), emmer (0.8-1.9 μg/g), and bread wheat (0.7-2.0 μg/g). Due to the observed highly significant genetic variance and high heritability, lutein contents of wheat genotypes may be increased by future plant breeding. Detailed HPLC-DAD-APCI(±)-MS(n) data allowing the identification of six lutein monoesters and nine diesters are presented. Linoleic, palmitic, and oleic acids were the most abundant fatty acids in both the lutein esters and total free lipid fractions. Lutein esters were virtually absent in the tetraploid durum and emmer species, whereas their concentrations considerably differed among the genotypes belonging to the other species.

  5. Chromosome substitutions in progeny of hybrids Triticum aestivum x Triticum timopheevii resistant to brown rust and powdery mildew

    SciTech Connect

    Badaeva, E.D.; Badaev, N.S.; Enno, T.M.; Peusha, H.O.; Zeller, F.J.

    1995-01-01

    By the C-banding technique, chromosome analysis of introgressive wheat lines derived from the tetraploid species T. timopheevii and T. militinae, with complex immunity to pathogens, was performed. It is shown that all hybrid lines possess genetic material of T. timopheevii and are stable in chromosome number (2n = 6x = 42) and composition. In the lines studied, the number of substitutions per genome varied from one to three; variation in the spectrum of chromosome substitutions was observed. Karyotypes of lines 146-155-T, SMT 30, SMT 34, SMT 37, and SMT 45, resistant to brown rust and powdery mildew, had one common chromosome substitution 6B(6G). It is suggested that the resistance to pathogens of these lines is determined by chromosome 6G of T. timopheevii.

  6. Intraspecific Polymorphisms of Cytogenetic Markers Mapped on Chromosomes of Triticum polonicum L.

    PubMed Central

    Majka, Maciej; Majka, Joanna; Belter, Jolanta; Suchowilska, Elżbieta; Wachowska, Urszula; Wiwart, Marian; Wiśniewska, Halina

    2016-01-01

    Triticum genus encloses several tetraploid species that are used as genetic stocks for expanding the genetic variability of wheat (Triticum aestivum L.). Although the T. aestivum (2n = 6x = 42, AABBDD) and T. durum (2n = 4x = 28, AABB) karyotypes were well examined by chromosome staining, Giemsa C-banding and FISH markers, other tetraploids are still poorly characterized. Here, we established and compared the fluorescence in situ hybridization (FISH) patterns on chromosomes of 20 accessions of T. polonicum species using different repetitive sequences from BAC library of wheat ‘Chinese Spring’. The chromosome patterns of Polish wheat were compared to tetraploid (2n = 4x = 28, AABB) Triticum species: T. durum, T. diccocon and T. turanicum, as well. A combination of pTa-86, pTa-535 and pTa-713 probes was the most informative among 6 DNA probes tested. Probe pTa-k374, which is similar to 28S rDNA sequence enabled to distinguish signal size and location differences, as well as rDNA loci elimination. Furthermore, pTa-465 and pTa-k566 probes are helpful for the detection of similar organized chromosomes. The polymorphisms of signals distribution were observed in 2A, 2B, 3B, 5B, 6A and 7B chromosomes. Telomeric region of the short arm of 6B chromosome was the most polymorphic. Our work is novel and contributes to the understanding of T. polonicum genome organization which is essential to develop successful advanced breeding strategies for wheat. Collection and characterization of this germplasm can contribute to the wheat biodiversity safeguard. PMID:27391447

  7. Development of Lipophilic Antioxidants and Chloroplasts during the Sprouting of Diverse Triticum spp.

    PubMed

    Ziegler, Jochen U; Flockerzie, Miriam; Longin, C Friedrich H; Würschum, Tobias; Carle, Reinhold; Schweiggert, Ralf M

    2016-02-03

    The influence of sprouting times and illumination conditions on lipophilic antioxidants (carotenoids, tocochromanols, alkylresorcinols, and steryl ferulates), chlorophylls, and α-amylase activity was investigated using four varieties each of bread wheat (Triticum aestivum ssp. aestivum), spelt (T. aestivum ssp. spelta), durum (T. durum), emmer (T. dicoccum), and einkorn (T. monococcum). Carotenoid levels significantly increased during sprouting, particularly, under light exposure. In contrast, concentrations of other lipophilic antioxidants were affected to a lesser extent. Moreover, the quantitative development of lipophilic antioxidants was evidently determined by genotype. On the basis of the levels of carotenoids newly synthesized during sprouting, a chloroplast development index indicated that chloroplast ontogenesis during sprouting occurred at different species-dependent rates. Thermal degradation of carotenoids, tocochromanols, chlorophylls, and α-amylase activity was observed during the drying of sprouts at 40 and 90 °C, while alkylresorcinol and steryl ferulate levels remained unaffected. Wheat sprouts were shown to be potential functional ingredients to increase the nutritional value of cereal products.

  8. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interspecific hybridization can be considered an accelerator of evolution, otherwise a slow process, solely dependent on mutation and recombination. Upon interspecific hybridization, several novel interactions between nuclear and cytoplasmic genomes emerge which provide additional sources of diversi...

  9. Effects of Short-term Hypergravity Exposure on Germination, Growth and Photosynthesis of Triticum aestivum L.

    NASA Astrophysics Data System (ADS)

    Vidyasagar, Pandit B.; Jagtap, Sagar S.; Dixit, Jyotsana P.; Kamble, Shailendra M.; Dhepe, Aarti P.

    2014-12-01

    Numerous studies have been carried out to investigate the hypergravity effect on plants, where seedlings (4-5 days old) were continuously exposed and grown under hypergravity condition. Here, we have used a novel `shortterm hypergravity exposure experimental method' where imbibed caryopses (instead of seedlings) were exposed to higher hypergravity values ranging from 500 g to 2500 g for a short interval time of 10 minutes and post short-term hypergravity treated caryopses were grown under 1 g conditions for five days. Changing patterns in caryopsis germination and growth, along with various photosynthetic and biochemical parameters were studied. Results revealed the significant inhibition of caryopsis germination and growth in short-term hypergravity treated seeds over control. Photosynthesis parameters such as chlorophyll content, rate of photosynthesis (PN), transpiration rate (Evap) and stomatal conductance (Gs), along with intracellular CO2 concentration (Cint) were found to be affected significantly in 5 days old seedlings exposed to short-term hypergravity treatment. In order to investigate the cause of observed inhibition, we examined the α-amylase activity and antioxidative enzyme activities. α-amylase activity was found to be inhibited, along with the reduction of sugars necessary for germination and earlier growth in short-term hypergravity treated caryopses. The activities of antioxidant enzymes such as catalase and guaiacol peroxidase were increased in short-term hypergravity treated caryopses, suggesting that caryopses might have experienced oxidative stress upon short-term hypergravity exposure.

  10. Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone.

    PubMed

    Saitanis, Costas J; Bari, Shafiqul M; Burkey, Kent O; Stamatelopoulos, Dimitris; Agathokleous, Evgenios

    2014-12-01

    The sensitivity to ozone of ten Bangladeshi wheat cultivars was tested by exposing plants to eight ozone exposure regimes (50, 60, 80, 100, 120, 135, 150, and 200 ppb for 14, 11, 8, 6, 5, 4, 3, and 1 days, respectively, for 8 h/day) in controlled environment chambers. Visible leaf injury, dry weight, chlorophyll, carotenoid content, leaf greenness (SPAD value), quantum yield of photosynthesis, and stomatal resistance were measured to evaluate response. Shoot biomass, total chlorophyll, leaf greenness, and carotenoid content were reduced in ozone-exposed plants. Based on the results of principal component analysis (PCA)-biplot analysis, the order of sensitivity to ozone was: Akbar > Sufi ≥ Bijoy ≥ Shatabdi > Bari-26 ≥ Gourab > Bari-25 ≥ Prodip ≥ Sourav > Kanchan. The most important parameters to discriminate cultivars with respect to ozone sensitivity were visible injury and chlorophyll b/a ratio, whereas quantum yield of photosynthesis was less important. Differences in stomatal resistance were not a significant factor in ozone response. Regression of cultivars' PCA scores against year of release revealed no trend, suggesting that ozone tolerance was not incorporated during cultivar breeding.

  11. Enzyme affinity to cell types in wheat straw (Triticum aestivum L.) before and after hydrothermal pretreatment

    PubMed Central

    2013-01-01

    Background Wheat straw used for bioethanol production varies in enzymatic digestibility according to chemical structure and composition of cell walls and tissues. In this work, the two biologically different wheat straw organs, leaves and stems, are described together with the effects of hydrothermal pretreatment on chemical composition, tissue structure, enzyme adhesion and digestion. To highlight the importance of inherent cell wall characteristics and the diverse effects of mechanical disruption and biochemical degradation, separate leaves and stems were pretreated on lab-scale and their tissue structures maintained mostly intact for image analysis. Finally, samples were enzymatically hydrolysed to correlate digestibility to chemical composition, removal of polymers, tissue composition and disruption, particle size and enzyme adhesion as a result of pretreatment and wax removal. For comparison, industrially pretreated wheat straw from Inbicon A/S was included in all the experiments. Results Within the same range of pretreatment severities, industrial pretreatment resulted in most hemicellulose and epicuticular wax/cutin removal compared to lab-scale pretreated leaves and stems but also in most re-deposition of lignin on the surface. Tissues were furthermore degraded from tissues into individual cells while lab-scale pretreated samples were structurally almost intact. In both raw leaves and stems, endoglucanase and exoglucanase adhered most to parenchyma cells; after pretreatment, to epidermal cells in all the samples. Despite heavy tissue disruption, industrially pretreated samples were not as susceptible to enzymatic digestion as lab-scale pretreated leaves while lab-scale pretreated stems were the least digestible. Conclusions Despite preferential enzyme adhesion to epidermal cells after hydrothermal pretreatment, our results suggest that the single most important factor determining wheat straw digestibility is the fraction of parenchyma cells rather than effective tissue disruption. PMID:23590820

  12. Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The low-molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins that play a critical role in the determination of wheat flour bread-making quality. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and Glu-D3), on t...

  13. Isolation and characterization of rubisco small subunit gene promoter from common wheat (Triticum aestivum L.).

    PubMed

    Mukherjee, Shalini; Stasolla, Claudio; Brûlé-Babel, Anita; Ayele, Belay T

    2015-01-01

    Choice of an appropriate promoter is critical to express target genes in intended tissues and developmental stages. However, promoters capable of directing gene expression in specific tissues and stages are not well characterized in monocot species. To identify such a promoter in wheat, this study isolated a partial sequence of the wheat small subunit of RuBisCO (TarbcS) promoter. In silico analysis revealed the presence of elements that are characteristic to rbcS promoters of other, mainly dicot, species. Transient expression of the TarbcS:GUS in immature wheat embryos and tobacco leaves but not in the wheat roots indicate the functionality of the TarbcS promoter fragment in directing the expression of target genes in green plant tissues.

  14. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well ...

  15. [Identification of catalytically active groups of wheat (Triticum aestivum L.) germ lipase].

    PubMed

    Korneeva, O S; Popova, T N; Kapranchikov, V S; Motina, E A

    2008-01-01

    The active site of wheat germ lipase was studied by the Dixon method and chemical modification. The profile of curve logV = f(pH), pK and ionization heat values, lipase photoinactivation, and lipase inactivation with diethylpyrocarbonate and dicyclohexylcarbodiimide led us to assume that the active site of the enzyme comprises the carboxylic group of aspartic or glutamic acid and the imidazole group of histidine. Apparently, the OH-group of serine plays a key role in catalysis: as a result of incubation for 1 h in the presence of phenylmethylsulfonyl fluoride, the enzyme activity decreased by more than 70%. It is shown that ethylenediamine tetraacetate is a noncompetitive inhibitor of lipase. Wheat germs are very healthful because they are rich in vitamins, essential amino acids, and proteins. For this reason, wheat germs are widely used in food, medical, and feed mill industries [1-3]. However, their use is limited by instability during storage, which is largely determined by the effect of hydrolytic and redox enzymes. Representative enzymes of this group are lipase (glycerol ester hydrolase, EC 3.1.1.3), which hydrolyzes triglycerides of higher fatty acids, and lipoxygenase (EC 1.13.11.13), which oxidizes polyunsaturated higher fatty acids.

  16. [Metabolic changes in wheat (Triticum aestivum L.) plants under action of bioregulator stifun].

    PubMed

    Iakhin, O I; Lubianov, A A; Iakhin, I A; Vakhitov, V A; Ibragimov, R I; Iumaguzhin, M S; Kalimullina, Z F

    2011-01-01

    Under action of growth-stimulating concentrations of bioregulator stifun on wheat plants, an increase of functional activity of nucleoli of meristematic cells; contents of lectin (wheat germ agglutinin); and activity of proteinases, tripsin inhibitors, and ATPase activity was established. The pool of free amino acids was increased under bioregulator use. Levels of methionine, phenylalanine, cysteine, lysine, and tyrosine were increased. It is likely that stifun could activate protein biosynthesis in wheat plants.

  17. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.).

    PubMed

    Zhang, Yumei; Liu, Zhenshan; Khan, Abul Awlad; Lin, Qi; Han, Yao; Mu, Ping; Liu, Yiguo; Zhang, Hongsheng; Li, Lingyan; Meng, Xianghao; Ni, Zhongfu; Xin, Mingming

    2016-02-19

    Salt stress dramatically reduces crop yield and quality, but the molecular mechanisms underlying salt tolerance remain largely unknown. To explore the wheat transcriptional response to salt stress, we performed high-throughput transcriptome sequencing of 10-day old wheat roots under normal condition and 6, 12, 24 and 48 h after salt stress (HASS) in both a salt-tolerant cultivar and salt-sensitive cultivar. The results demonstrated global gene expression reprogramming with 36,804 genes that were up- or down-regulated in wheat roots under at least one stress condition compared with the controls and revealed the specificity and complexity of the functional pathways between the two cultivars. Further analysis showed that substantial expression partitioning of homeologous wheat genes occurs when the plants are subjected to salt stress, accounting for approximately 63.9% (2,537) and 66.1% (2,624) of the homeologous genes in 'Chinese Spring' (CS) and 'Qing Mai 6' (QM). Interestingly, 143 salt-responsive genes have been duplicated and tandemly arrayed on chromosomes during wheat evolution and polyploidization events, and the expression patterns of 122 (122/143, 85.3%) tandem duplications diverged dynamically over the time-course of salinity exposure. In addition, constitutive expression or silencing of target genes in Arabidopsis and wheat further confirmed our high-confidence salt stress-responsive candidates.

  18. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum).

    PubMed

    Boldrin, Paulo F; de Figueiredo, Marislaine A; Yang, Yong; Luo, Hongmei; Giri, Shree; Hart, Jonathan J; Faquin, Valdemar; Guilherme, Luiz R G; Thannhauser, Theorodore W; Li, Li

    2016-09-01

    Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well as on S level in seven wheat lines were examined. Low dosages of both selenate and selenite supplements were found to enhance wheat shoot biomass and show no inhibitory effect on grain production. The stimulation on plant growth was correlated with increased APX antioxidant enzyme activity. Se forms were found to exert different effects on S metabolism in wheat plants. Selenate treatment promoted S accumulation, which was not observed with selenite supplement. An over threefold increase of S levels following selenate treatment at low dosages was observed in shoots of all wheat lines. Analysis of the sulfate transporter gene expression revealed an increased transcription of SULTR1;1, SULTR1;3 and SULTR4;1 in roots following 10 μM Na2 SeO4 treatment. Mass spectrometry-based targeted protein quantification confirmed the gene expression results and showed enhanced protein levels. The results suggest that Se treatment mimics S deficiency to activate specific sulfate transporter expression to stimulate S uptake, resulting in the selenate-induced S accumulation. This study supports that plant growth and nutrition benefit from low dosages of Se fertilization and provides information on the basis underlying Se-induced S accumulation in plants.

  19. Biological responses of wheat (Triticum aestivum) plants to the herbicide simetryne in soils.

    PubMed

    Jiang, Lei; Yang, Yi; Jia, Lin Xian; Lin, Jing Ling; Liu, Ying; Pan, Bo; Lin, Yong

    2016-05-01

    The rotation of rice and wheat is widely used and highly endorsed, and simetryne (s-triazine herbicide) is one of the principal herbicides widely used in this rotation for weed and grass control. However, little is known regarding the mechanism of the ecological and physiological effects of simetryne on wheat crops. In this study, we performed a comprehensive investigation of crop response to simetryne to elucidate the accumulation and phytotoxicity of the herbicide in wheat crops. Wheat plants exposed to 0.8 to 8.0mgkg(-1) simetryne for 7 d exhibited suppressed growth and decreased chlorophyll content. With simetryne concentration in the soil varied from 0.8mgkg(-1) to 8.0mgkg(-1), simetryne was progressively accumulated by the wheat plants. The accumulation of simetryne in the wheat plants not only induced the over production of ROS and injured the membrane lipids but also stimulated the production of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and glutathione S-transferase (GST). A test of enzymatic activity and gene expression illustrated that the wheat plants were wise enough to motivate the antioxidant enzymes through both molecular and physiological mechanisms to alleviate the simetryne-induced stress. This study offers an illuminating insight into the effective adaptive response of the wheat plants to the simetryne stress.

  20. Effect of Sulfated Chitooligosaccharides on Wheat Seedlings (Triticum aestivum L.) under Salt Stress.

    PubMed

    Zou, Ping; Li, Kecheng; Liu, Song; He, Xiaofei; Zhang, Xiaoqian; Xing, Ronge; Li, Pengcheng

    2016-04-13

    In this study, sulfated chitooligosaccharide (SCOS) was applied to wheat seedlings to investigate its effect on the plants' defense response under salt stress. The antioxidant enzyme activities, chlorophyll contents, and fluorescence characters of wheat seedlings were determined at a certain time. The results showed that treatment with exogenous SCOS could decrease the content of malondialdehyde, increase the chlorophyll contents, and modulate fluorescence characters in wheat seedlings under salt stress. In addition, SCOS was able to regulate the activities of antioxidant enzymes containing superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase. Similarly, the mRNA expression levels of several antioxidant enzymes were efficiently modulated by SCOS. The results indicated that SCOS could alleviate the damage of salt stress by adjusting the antioxidant enzyme activities of plant. The effect of SCOS on the photochemical efficiency of wheat seedlings was associated with its enhanced capacity for antioxidant enzymes, which prevented structure degradation of the photosynthetic apparatus under NaCl stress. Furthermore, the effective activities of alleviating salt stress indicated the activities of SCOS were closely related with the sulfate group.

  1. TaCYP78A5 regulates seed size in wheat (Triticum aestivum).

    PubMed

    Ma, Meng; Zhao, Huixian; Li, Zhaojie; Hu, Shengwu; Song, Weining; Liu, Xiangli

    2016-03-01

    Seed size is an important agronomic trait and a major component of seed yield in wheat. However, little is known about the genes and mechanisms that determine the final seed size in wheat. Here, we isolated TaCYP78A5, the orthologous gene of Arabidopsis CYP78A5/KLUH in wheat, from wheat cv. Shaan 512 and demonstrated that the expression of TaCYP78A5 affects seed size. TaCYP78A5 encodes the cytochrome P450 (CYP) 78A5 protein in wheat and rescued the phenotype of the Arabidopsis deletion mutant cyp78a5. By affecting the extent of integument cell proliferation in the developing ovule and seed, TaCYP78A5 influenced the growth of the seed coat, which appears to limit seed growth. TaCYP78A5 silencing caused a 10% reduction in cell numbers in the seed coat, resulting in a 10% reduction in seed size in wheat cv. Shaan 512. By contrast, the overexpression of TaCYP78A5 increased the number of cells in the seed coat, resulting in seed enlargement of ~11-35% in Arabidopsis. TaCYP78A5 activity was positively correlated with the final seed size. However, TaCYP78A5 overexpression significantly reduced seed set in Arabidopsis, possibly due to an ovule development defect. TaCYP78A5 also influenced embryo development by promoting embryo integument cell proliferation during seed development. Accordingly, a working model of the influence of TaCYP7A5 on seed size was proposed. This study provides direct evidence that TaCYP78A5 affects seed size and is a potential target for crop improvement.

  2. Shifts of microbial communities of wheat (Triticum aestivum L.) cultivation in a closed artificial ecosystem.

    PubMed

    Qin, Youcai; Fu, Yuming; Dong, Chen; Jia, Nannan; Liu, Hong

    2016-05-01

    The microbial communities of plant ecosystems are in relation to plant growing environment, but the alteration in biodiversity of rhizosphere and phyllosphere microbial communities in closed and controlled environments is unknown. The purpose of this study is to analyze the change regularity of microbial communities with wheat plants dependent-cultivated in a closed artificial ecosystem. The microbial community structures in closed-environment treatment plants were investigated by a culture-dependent approach, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and Illumina Miseq high-throughput sequencing. The results indicated that the number of microbes decreased along with time, and the magnitude of bacteria, fungi, and actinomycetes were 10(7)-10(8), 10(5), and 10(3)-10(4) CFU/g (dry weight), respectively. The analysis of PCR-DGGE and Illumina Miseq revealed that the wheat leaf surface and near-root substrate had different microbial communities at different periods of wheat ecosystem development and showed that the relative highest diversity of microbial communities appeared at late and middle periods of the plant ecosystem, respectively. The results also indicated that the wheat leaf and substrate had different microbial community compositions, and the wheat substrate had higher richness of microbial community than the leaf. Flavobacterium, Pseudomonas, Paenibacillus, Enterobacter, Penicillium, Rhodotorula, Acremonium, and Alternaria were dominant in the wheat leaf samples, and Pedobacter, Flavobacterium, Halomonas, Marinobacter, Salinimicrobium, Lysobacter, Pseudomonas, Halobacillus, Xanthomonas, Acremonium, Monographella, and Penicillium were dominant populations in the wheat near-root substrate samples.

  3. Phytotoxicity and uptake of roxarsone by wheat (Triticum aestivum L.) seedlings.

    PubMed

    Fu, Qing-Long; Blaney, Lee; Zhou, Dong-Mei

    2016-12-01

    Roxarsone (ROX), the primary aromatic arsenical additive (AAA) used in animal feeding operations, is of increasing concern to environmental and human health due to land application of ROX-laden animal manure. Few studies have investigated the phytotoxicity, uptake mechanisms, and speciation of AAA in crop plants. In this study, wheat seedlings were employed to address these issues under hydroponic conditions. Compared to inorganic arsenic, ROX was less toxic to wheat root elongation. Wheat roots were more sensitive to ROX stress than shoots. For the first time, metabolized inorganic arsenic was detected in plants, although ROX was the predominant detected arsenic species in wheat seedlings. ROX uptake and toxicity to roots were inhibited by humic acid at concentrations higher than 50 mg/L due to interaction with ROX. Phosphate enhanced ROX uptake, but no trends were observed for ROX uptake in the presence of glycerol at concentrations lower than 250 mM. In addition, ROX uptake was significantly decreased by silicate (Si(IV), 0.5-10 mM) and the metabolic inhibitor, 2,4-dinitrophenol (0.5-2 mM), indicating that ROX transport into wheat roots was actively mediated by Si(IV)-sensitive transporters. These findings provide important insights into the fate and speciation of AAA in soil-water-plant systems relevant to human health.

  4. Brevundimonas canariensis sp. nov. isolated from roots of Triticum aestivum in Lanzarote Island.

    PubMed

    Menéndez, Esther; Pérez-Yepes, Juan; Carro, Lorena; Fernández-Pascual, Mercedes; Ramírez-Bahena, Martha-Helena; Klenk, Hans-Peter; León Barrios, Milagros; Peix, Alvaro; Velázquez, Encarna

    2016-12-12

    A bacterial strain designated GTAE24T was isolated from a root of wheat growing in a soil from Canary Islands in Spain. Phylogenetic analyses based on 16S rRNA gene sequence placed the isolate into the genus Brevundimonas being its closest relative Brevundimonas abyssalis TAR.001T with 99.4 % similarity. DNA-DNA hybridization studies showed an average of 38% between the strain GTAE24T and the type strain of B. abyssalis. The isolate is Gram-stain negative and motile by polar flagella. Oxidase is positive and catalase is weakly produced. Gelatin, starch and casein are not hydrolysed. Growth is supported by many carbohydrates and organic acids as carbon source. Ubiquinone Q-10 is the predominant isoprenoid quinone and C18:1 w7c/C18:1 w6c (summed feature 8) and C16:0 are the major fatty acids. The major polar lipids are phosphatidylglycerol (PG), 1,2-di-O-acyl-3-O-[D-glucopyranosyl-(1,4)-α-D-glucopyranuronosyl] glycerol (DGL), 1,2-diacyl-3-O-[6'-phosphatidyl-α-D-glucopyranosyl] glycerol (PGL), 1,2-di-O-acyl-3-O-α-D-glucopyranosyl glycerol (MGD), 1,2-di-O-acyl-3-O-α-D-glucopyranuronosyl glycerol (MGDOx). The G+C content is 63.9 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain GTAE24T should be considered as a new species of genus Brevundimonas, for which the name Brevundimonas canariensis sp. nov. is proposed. The type strain is GTAE24T (= LMG 29500T = CECT 9126T).

  5. Mitochondrial morphology and dynamics in Triticum aestivum roots in response to rotenone and antimycin A.

    PubMed

    Rakhmatullina, Daniya; Ponomareva, Anastasiya; Gazizova, Natalia; Minibayeva, Farida

    2016-09-01

    Mitochondria are dynamic organelles, capable of fusion and fission as a part of cellular responses to various signals, such as the shifts in the redox status of a cell. The mitochondrial electron transport chain (ETC.) is involved in the generation of reactive oxygen species (ROS), with complexes I and III contributing the most to this process. Disruptions of ETC. can lead to increased ROS generation. Here, we demonstrate the appearance of giant mitochondria in wheat roots in response to simultaneous application of the respiratory inhibitors rotenone (complex I of mitochondrial ETC.) and antimycin A (complex III of mitochondrial ETC.). The existence of such megamitochondria was temporary, and following longer treatment with inhibitors mitochondria resumed their conventional size and oval shape. Changes in mitochondrial morphology were accompanied with a decrease in mitochondrial potential and an unexpected increase in oxygen consumption. Changes in mitochondrial morphology and activity may result from the fusion and fission of mitochondria induced by the disruption of mitochondrial ETC. Results from experiments with the inhibitor of mitochondrial fission Mdivi-1 suggest that the retarded fission may facilitate plant mitochondria to appear in a fused shape. The processes of mitochondrial fusion and fission are involved in the regulation of the efficacy of the functions of the respiratory chain complexes and ROS metabolism during stresses. The changes in morphology of mitochondria, along with the changes in their functional activity, can be a part of the strategy of the plant adaptation to stresses.

  6. Response of spring wheat (Triticum aestivum L.) quality traits and yield to sowing date.

    PubMed

    Ahmed, Mukhtar; Fayyaz-ul-Hassan

    2015-01-01

    The unpredictability and large fluctuation of the climatic conditions in rainfed regions do affect spring wheat yield and grain quality. These variations offer the opportunity for the production of better quality wheat. The effect of variable years, locations and sowing managements on wheat grain yield and quality was studied through field experiments using three genotypes, three locations for two years under rainfed conditions. The two studied years as contrasting years at three locations and sowing dates depicted variability in temperature and water stress during grain filling which resulted considerable change in grain yield and quality. Delayed sowing, years (2009-10) and location (Talagang) with high temperature and water stress resulted increased proline, and grain quality traits i.e. grain protein (GP) and grain ash (GA) than optimum conditions (during 2008-09, at Islamabad and early sowing). However, opposite trend was observed for dry gluten (DG), sodium dodecyl sulphate (SDS), SPAD content and grain yield irrespective of genotypes. The influence of variable climatic conditions was dominant in determining the quality traits and inverse relationship was observed among some quality traits and grain yield. It may be concluded that by selecting suitable locations and different sowing managements for subjecting the crop to desirable environmental conditions (temperature and water) quality traits of wheat crop could be modified.

  7. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.).

    PubMed

    Brackhage, Carsten; Huang, Jen-How; Schaller, Jörg; Elzinga, Evert J; Dudel, E Gert

    2014-05-13

    Elevated arsenic content in food crops pose a serious human health risk. Apart from rice wheat being another main food crop is possibly cultivated on contaminated sites. But for wheat uptake mechanisms are not entirely understood especially with regard to nutrient fertilization and different moisture regimes taking into account heavy rainfall events due to climate change. Here we show that especially higher P-fertilization under changing redox conditions may enhance arsenic uptake. This counteracts with higher N-fertilization reducing arsenic transfer and translocation into aboveground plant parts for both higher P-fertilization and reducing soil conditions. Arsenic speciation did not change in grain but for leaves P-fertilization together with reducing conditions increased the As(V) content compared to other arsenic species. Our results indicate important dependencies of nutrient fertilization, moisture conditions and substrate type on As accumulation of wheat as one of the most important crop plants worldwide with implications for agricultural practices.

  8. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    PubMed

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change.

  9. Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.).

    PubMed

    Arif, Mian Abdur Rehman; Nagel, Manuela; Lohwasser, Ulrike; Borner, Andreas

    2017-03-01

    The deterioration in the quality of ex situ conserved seed over time reflects a combination of both physical and chemical changes. Intraspecific variation for longevity is, at least in part, under genetic control. Here, the grain of 183 bread wheat accessions maintained under low-temperature storage at the IPK-Gatersleben genebank over some decades have been tested for their viability, along with that of fresh grain subjected to two standard artificial ageing procedures. A phenotype-genotype association analysis, conducted to reveal the genetic basis of the observed variation between accessions, implicated many regions of the genome, underling the genetic complexity of the trait. Some, but not all, of these regions were associated with variation for both natural and experimental ageing, implying some non-congruency obtains between these two forms of testing for longevity. The genes underlying longevity appear to be independent of known genes determining dormancy and pre-harvest sprouting.

  10. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits.

    PubMed

    Hongbo, Shao; Zongsuo, Liang; Mingan, Shao

    2006-02-01

    Drought is a worldwide problem, seriously influencing plant (crop) productivity. Wheat is a stable food for 35% of the world population, moreover about 60% of land area on the globe belongs to arid and semi-arid zone. Wheat drought resistance is a multi-gene-controlling quantitative character and wheat final production in field is realized mainly by physiological regulation under the condition of multi-environmental factor interaction. Exploring drought resistance physiological mechanisms for different wheat genotypes is of importance to finding new drought resistance gene resources and conventional breeding and the basis for wheat drought resistance biotechnological breeding and platform. Osmotic adjustment regulation is the main component for physiological machinery of wheat drought resistance. By pot-cultivating experiments, investigation of osmotic adjustment comparison for 10 wheat genotypes at soil water deficits (75% FC, 55% FC, 45% FC, respectively), was conducted. The main results were as followed: (1) K(+) content in 10 wheat genotypes at three levels of soil water stress and at the same soil water deficit was very different. Five of these 10 wheat genotypes had higher K K(+) content under the condition of 75% FC. (2) Five of these 10 wheat genotypes possessed greater soluble sugar content at 55% FC soil water level. (3) Proline (Pro) content in five wheat genotypes was higher at 75% FC. (4) Five of these 10 wheat genotypes had lower malondialdehyde (MDA) content at 45% FC at seedling stage. Osmotic adjustment of wheat different genotypes was discussed in terms of different content of osmotic solutes.

  11. An Assessment of Heavy Ion Irradiation Mutagenesis for Reverse Genetics in Wheat (Triticum aestivum L.)

    PubMed Central

    Fitzgerald, Timothy L.; Powell, Jonathan J.; Stiller, Jiri; Weese, Terri L.; Abe, Tomoko; Zhao, Guangyao; Jia, Jizeng; McIntyre, C. Lynne; Li, Zhongyi; Manners, John M.; Kazan, Kemal

    2015-01-01

    Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed. PMID:25719507

  12. Physiological traits associated with heat tolerance in bread wheat (Triticum aestivum L.).

    PubMed

    Pandey, Girish Chandra; Mamrutha, H M; Tiwari, Ratan; Sareen, Sindhu; Bhatia, Shrutkirti; Siwach, Priyanka; Tiwari, Vinod; Sharma, Indu

    2015-01-01

    Field experiments for evaluating heat tolerance-related physiological traits were conducted for two consecutive years using a mapping population of recombinant inbred lines (RILs) from the cross RAJ4014/WH730. Chlorophyll content (Chl) and chlorophyll fluorescence (CFL) were recorded under timely sown (TS) and late sown (LS) conditions. Late sowing exposes the terminal stage of plants to high temperature stress. Pooled analysis showed that CFL and Chl differed significantly under TS and LS conditions. The mean value of CFL (Fv/Fm) and Chl under both timely and late sown conditions were used as physiological traits for association with markers. Regression analysis revealed significant association of microsatellite markers viz., Xpsp3094 and Xgwm131 with coefficients of determination (R (2)) values for CFL (Fv/Fm) and Chl as 12 and 8 %, respectively. The correlation between thousand grain weight (TGW) with Chl and CFL were 14 and 7 % and correlation between grain wt./spike with Chl and CFL were 15 and 8 %, respectively. The genotypes showing tolerance to terminal heat stress as manifested by low heat susceptibility index (HSI = 0.43) for thousand grain weight, were also found having very low Chl, HSI (-0.52). These results suggest that these physiological traits may be used as a secondary character for screening heat-tolerant genotypes.

  13. Mapping QTL for the traits associated with heat tolerance in Wheat (Triticum Aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperature (heat) stress during grain filling is a major problem in most of the wheat growing areas. Developing heat-tolerant cultivars is becoming a principal breeding goal in the Southern and Central Great Plain areas of USA. Traits associated with high temperature tolerance can be used to d...

  14. Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots.

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2013-02-01

    The focus of the present study was to explore lead (Pb)-induced metabolic alterations vis-à-vis ultrastructural changes in wheat roots to establish Pb toxicity syndrome at a structural level. Pb (50-500 μM) enhanced malondialdehyde (an indicator of lipid peroxidation) and hydrogen peroxide content, and electrolyte leakage, thereby suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in wheat roots. The activities of superoxide dismutases and catalases enhanced upon Pb exposure, whereas those of ascorbate and guaiacol peroxidases declined. Pb-induced metabolic disruption was manifested in significant alterations in wheat root ultrastructure as analyzed by transmission electron microscopy. Pb caused thinning of cell wall (at 50 μM), formation of amoeboid protrusions and folds and intercellular spaces, and appearance of lesions and nicks/breaks (at ≥ 250 μM Pb). Pb was deposited along the cell walls as dark precipitates. At ≤ 250 μM Pb, the number of mitochondria increased significantly, whereas structural damage in terms of change of shape and disintegration was observed at ≥ 250 μM Pb. Pb reduced the size of nucleoli and induced puff formation (at 250 μM), resulting in complete disintegration/disappearance of nucleolus at 500 μM. The study concludes that Pb inhibited wheat root growth involving an ROS-mediated oxidative damage vis-à-vis the ultrastructural alterations in cell membrane and disruption of mitochondrial and nuclear integrity.

  15. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.)

    PubMed Central

    2012-01-01

    Background The analyses of protein synthesis, accumulation and regulation during grain development in wheat are more complex because of its larger genome size compared to model plants such as Arabidopsis and rice. In this study, grains from two wheat cultivars Jimai 20 and Zhoumai 16 with different gluten quality properties were harvested at five development stages, and were used to displayed variable expression patterns of grain proteins. Results Proteome characterization during grain development in Chinese bread wheat cultivars Jimai 20 and Zhoumai 16 with different quality properties was investigated by 2-DE and tandem MALDI-TOF/TOF-MS. Identification of 117 differentially accumulated protein spots representing 82 unique proteins and five main expression patterns enabled a chronological description of wheat grain formation. Significant proteome expression differences between the two cultivars were found; these included 14 protein spots that accumulated in both cultivars but with different patterns and 27 cultivar-different spots. Among the cultivar-different protein spots, 14 accumulated in higher abundance in Jimai 20 than in Zhoumai 16, and included NAD-dependent isocitrate dehydrogenase, triticin precursor, LMW-s glutenin subunit and replication factor C-like protein. These proteins are likely to be associated with superior gluten quality. In addition, some proteins such as class II chitinase and peroxidase 1 with isoforms in developing grains were shown to be phosphorylated by Pro-Q Diamond staining and phosphorprotein site prediction. Phosphorylation could have important roles in wheat grain development. qRT-PCR analysis demonstrated that transcriptional and translational expression patterns of many genes were significantly different. Conclusions Wheat grain proteins displayed variable expression patterns at different developmental stages and a considerable number of protein spots showed differential accumulation between two cultivars. Differences in seed storage proteins were considered to be related to different quality performance of the flour from these wheat cultivars. Some proteins with isoforms were phosphorylated, and this may reflect their importance in grain development. Our results provide new insights into proteome characterization during grain development in different wheat genotypes. PMID:22900893

  16. Starch waxiness in hexaploid wheat (Triticum aestivum L.) by NIR reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch, the primary energy storage component of plants, consists of two large macromolecules, amylose and amylopectin. Each molecule is composed of long chains of alpha-D-glucopyranosyl units, with branching present in amylopectin and absent in amylose. The relative abundance of these two molecules ...

  17. [Genetic diversity of reaction of common wheat (Triticum aestivum L.) cultivars to light intensity].

    PubMed

    Evtushenko, E V; Chekurov, V M

    2000-05-01

    The effect of low light intensity (LI) on the period from sprouting to earing was studied in 12 cultivars of the spring common wheat under controlled conditions. Differences between cultivars with respect to their responses to LI (RLIs) were found both for those that were photoperiod-sensitive and those that were almost photoperiod-neutral. Specifically, a prolonged photoperiod and a low LI differently increased the period from sprouting to earling in different cultivars. Genetic analysis of the RLI demonstrated, for the first time, that the weak response was incompletely dominant in F1. The results of genetic analysis agree with the hypothesis that the cultivars Pitic 62 and Novosibirskaya 22 differ in alleles of two loci controlling the RLI in wheat.

  18. Validation of a 1DL earliness per se (eps) flowering QTL in bread wheat (Triticum aestivum).

    PubMed

    Zikhali, Meluleki; Leverington-Waite, Michelle; Fish, Lesley; Simmonds, James; Orford, Simon; Wingen, Luzie U; Goram, Richard; Gosman, Nick; Bentley, Alison; Griffiths, Simon

    2014-01-01

    Vernalization, photoperiod and the relatively poorly defined earliness per se (eps) genes regulate flowering in plants. We report here the validation of a major eps quantitative trait locus (QTL) located on wheat 1DL using near isogenic lines (NILs). We used four independent pairs of NILs derived from a cross between Spark and Rialto winter wheat varieties, grown in both the field and controlled environments. NILs carrying the Spark allele, defined by QTL flanking markers Xgdm111 and Xbarc62, consistently flowered 3-5 days earlier when fully vernalized relative to those with the Rialto. The effect was independent of photoperiod under field conditions, short days (10-h light), long days (16-h light) and very long days (20-h light). These results validate our original QTL identified using doubled haploid (DH) populations. This QTL represents variation maintained in elite north-western European winter wheat germplasm. The two DH lines used to develop the NILs, SR9 and SR23 enabled us to define the location of the 1DL QTL downstream of marker Xgdm111. SR9 has the Spark 1DL arm while SR23 has a recombinant 1DL arm with the Spark allele from Xgdm111 to the distal end. Our work suggests that marker assisted selection of eps effects is feasible and useful even before the genes are cloned. This means eps genes can be defined and positionally cloned in the same way as the photoperiod and vernalization genes have been. This validation study is a first step towards fine mapping and eventually cloning the gene directly in hexaploid wheat.

  19. Genetic markers of wheat (Triticum aestivum) associated with flavor preference using a mouse (Mus musculus) model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole wheat products provide critical nutrients for human health, differences in wheat flavor are not well understood. Using the house mouse as a model system, flavor preference and discrimination were examined using a two-choice feeding system and 24-h trials and the Student’s t statistic. To elimi...

  20. Differential expression of molybdenum transport and assimilation genes between two winter wheat cultivars (Triticum aestivum).

    PubMed

    Nie, Zhaojun; Hu, Chengxiao; Liu, Hongen; Tan, Qiling; Sun, Xuecheng

    2014-09-01

    Molybdenum (Mo) is an essential trace element for higher plants. Winter wheat cultivar 97003 has a higher Mo efficiency than 97014 under Mo-deficiency stress. Mo efficiency is related to Mo uptake, transfer and assimilation in plants. Several genes are involved in regulating Mo uptake, transfer and assimilation in plants. To obtain a better understanding of the aforementioned difference in Mo uptake, we have conducted a hydroponic trail to investigate the expression of genes related to Mo uptake, transfer and assimilation in the above two cultivars. The results indicate a closed relationship between Mo uptake and TaSultr5.1, TaSultr5.2 and TaCnx1 expression, according to a stepwise regression analysis of the time course of Mo uptake in the two cultivars. Meanwhile, expression of TaSultr5.2 in roots also showed a positive relationship with Mo uptake rates. 97003 had stronger Mo uptake than 97014 at low Mo-application rates (less than 1 μmol Mo L(-1)) due to the higher expression of TaSultr5.2, TaSultr5.1 and TaCnx1 in roots. On the contrary, Mo uptake of 97003 was weaker than 97014 at high Mo application rates (ranging from 5 to 20 μmol Mo L(-1)), which was related to significant down-regulation of TaSultr5.2 and TaCnx1 genes in roots of 97003 compared to 97014. Therefore, we speculated that the differential-expression intensities of TaSultr5.2, TaSultr5.1 and TaCnx1 could be the cause of the difference in Mo uptake between the two winter wheat cultivars at low and high Mo application levels.

  1. Multi-walled carbon nanotubes can enhance root elongation of wheat ( Triticum aestivum) plants

    NASA Astrophysics Data System (ADS)

    Wang, Xiuping; Han, Heyou; Liu, Xueqin; Gu, Xiaoxu; Chen, Kun; Lu, Donglian

    2012-06-01

    The potential effects of oxidized multi-walled carbon nanotubes (o-MWCNTs) with a length ranging from 50 to 630 nm on the development and physiology of wheat plants were evaluated by examining their effects on seed germination, root elongation, stem length, and vegetative biomass at a concentration ranging from 10 to 160 μg/mL in the plant. Results indicated that after 7 days of exposure to the o-MWCNTs medium, faster root growth and higher vegetative biomass were observed, but seed germination and stem length did not show any difference as compared with controls. Moreover, a physiological study was conducted at cellular level using a traditional physiological approach to evidence the possible alterations in morphology, the cell length of root zone, and the dehydrogenase activity of seedlings. Transmission electron microscopy images revealed that o-MWCNTs could penetrate the cell wall and enter the cytoplasm after being taken up by roots. The cell length of root zone for the seedlings germinated and grown in the o-MWCNTs (80 μg/mL) medium increased by 1.4-fold and a significant concentration-dependent increase in the dehydrogenase activity for the o-MWCNT-treated wheat seedlings was detected. These findings suggest that o-MWCNTs can significantly promote cell elongation in the root system and increase the dehydrogenase activity, resulting in faster root growth and higher biomass production.

  2. Changes in the nuclear proteome of developing wheat (Triticum aestivum L.) grain

    PubMed Central

    Bonnot, Titouan; Bancel, Emmanuelle; Chambon, Christophe; Boudet, Julie; Branlard, Gérard; Martre, Pierre

    2015-01-01

    Wheat grain end-use value is determined by complex molecular interactions that occur during grain development, including those in the cell nucleus. However, our knowledge of how the nuclear proteome changes during grain development is limited. Here, we analyzed nuclear proteins of developing wheat grains collected during the cellularization, effective grain-filling, and maturation phases of development, respectively. Nuclear proteins were extracted and separated by two-dimensional gel electrophoresis. Image analysis revealed 371 and 299 reproducible spots in gels with first dimension separation along pH 4–7 and pH 6–11 isoelectric gradients, respectively. The relative abundance of 464 (67%) protein spots changed during grain development. Abundance profiles of these proteins clustered in six groups associated with the major phases and phase transitions of grain development. Using nano liquid chromatography-tandem mass spectrometry to analyse 387 variant and non-variant protein spots, 114 different proteins were identified that were classified into 16 functional classes. We noted that some proteins involved in the regulation of transcription, like HMG1/2-like protein and histone deacetylase HDAC2, were most abundant before the phase transition from cellularization to grain-filling, suggesting that major transcriptional changes occur during this key developmental phase. The maturation period was characterized by high relative abundance of proteins involved in ribosome biogenesis. Data are available via ProteomeXchange with identifier PXD002999. PMID:26579155

  3. Extractability and chromatographic characterization of wheat (triticum aestivum l.) bran protein.

    PubMed

    De Brier, N; Gomand, S V; Celus, I; Courtin, C M; Brijs, K; Delcour, J A

    2015-05-01

    About 70% of the protein for human consumption is derived from plants, with cereals as the most important source. Wheat bran protein has a more balanced amino acid profile than that of flour. We here for the first time report the amino acid, size exclusion, and SDS-PAGE profiles of bran Osborne protein fractions (OPFs). Moreover, we also investigated how OPFs are affected when physical barriers which entrap proteins in bran tissues are removed. Albumin/globulin is the most abundant OPF. It is richer in lysine and asparagine/aspartic acid than other OPF. Most bran albumin/globulin proteins have a molecular weight (MW) lower than 30 k and their chromatographic profiles differ from those of flour. The prolamin has high levels of proline and glutamine/glutamic acid. It is rich in proteins with a MW of 30 to 45 k and about 66 k reflecting contamination with gliadin from endosperm. The glutelin has high levels of glycine, proline, and glutamine/glutamic acid. Its protein is of intermediate and high MW with little protein with MW lower than 30 k. The high (MWs from 80 to 120 k) and low (MW around 45 k) MW glutenin subunits of flour are also present in bran. The glutelin of wheat endosperm is named glutenin. Ball milling releases albumin/globulin and glutelin but not prolamin. Not all glutelin was endosperm glutenin as a substantial part was entrapped in the aleurone cells.

  4. Response of Spring Wheat (Triticum aestivum L.) Quality Traits and Yield to Sowing Date

    PubMed Central

    Ahmed, Mukhtar; Fayyaz-ul-Hassan

    2015-01-01

    The unpredictability and large fluctuation of the climatic conditions in rainfed regions do affect spring wheat yield and grain quality. These variations offer the opportunity for the production of better quality wheat. The effect of variable years, locations and sowing managements on wheat grain yield and quality was studied through field experiments using three genotypes, three locations for two years under rainfed conditions. The two studied years as contrasting years at three locations and sowing dates depicted variability in temperature and water stress during grain filling which resulted considerable change in grain yield and quality. Delayed sowing, years (2009–10) and location (Talagang) with high temperature and water stress resulted increased proline, and grain quality traits i.e. grain protein (GP) and grain ash (GA) than optimum conditions (during 2008–09, at Islamabad and early sowing). However, opposite trend was observed for dry gluten (DG), sodium dodecyl sulphate (SDS), SPAD content and grain yield irrespective of genotypes. The influence of variable climatic conditions was dominant in determining the quality traits and inverse relationship was observed among some quality traits and grain yield. It may be concluded that by selecting suitable locations and different sowing managements for subjecting the crop to desirable environmental conditions (temperature and water) quality traits of wheat crop could be modified. PMID:25927839

  5. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection.

    PubMed

    Hu, T; Metz, S; Chay, C; Zhou, H P; Biest, N; Chen, G; Cheng, M; Feng, X; Radionenko, M; Lu, F; Fry, J

    2003-06-01

    An Agrobacterium-mediated transformation system with glyphosate selection has been developed for the large-scale production of transgenic plants. The system uses 4-day precultured immature embryos as explants. A total of 30 vectors containing the 5-enol-pyruvylshikimate-3-phosphate synthase gene from Agrobacterium strain CP4 (aroA:CP4), which confers resistance to glyphosate, were introduced into wheat using this system. The aroA:CP4 gene served two roles in this study-selectable marker and gene of interest. More than 3,000 transgenic events were produced with an average transformation efficiency of 4.4%. The entire process from isolation of immature embryos to production of transgenic plantlets was 50-80 days. Transgenic events were evaluated over several generations based on genetic, agronomic and molecular criteria. Forty-six percent of the transgenic events fit a 3:1 segregation ratio. Molecular analysis confirmed that four of six lead transgenic events selected from Agrobacterium transformation contained a single insert and a single copy of the transgene. Stable expression of theAROA:CP4 gene was confirmed by ELISA through nine generations. A comparison of Agrobacterium-mediated transformation to a particle bombardment system demonstrated that the Agrobacterium system is reproducible, has a higher transformation efficiency with glyphosate selection and produces higher quality transgenic events in wheat. One of the lead events from this study, no. 33391, has been identified as a Roundup Ready wheat commercial candidate.

  6. Phenotypic and ionome profiling of Triticum aestivum x Aegiolps tauschii introgression lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighty-four single homozygous introgressions of the Aegilops tauschii D-genome in the ‘Chinese Spring’ genetic background were used to study phenotypic and ionome profiles during two years of field experiments. An augmented design was used with a repeated check of a local bread wheat cultivar was im...

  7. Identifying genetic markers of wheat (Triticum aestivum) associated with flavor preference using a mouse model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole wheat products provide critical nutrients for human health, though differences in wheat flavor are not well understood. Using the house mouse as a model system, flavor was examined using a two-choice feeding system and the Student’s t statistic. To eliminate the confounding effect of processin...

  8. Reduction of fluoranthene of copper and lead accumulation in Triticum aestivum L

    SciTech Connect

    Wetzel, A.; Alexander, T.; Brandt, S.; Haas, R.; Werner, D. )

    1994-12-01

    Fluoranthene is one of the most important representatives of the polycyclic aromatic hydrocarbons. Coaltar production alone yields about 30000 t of fluoranthene per year. In spite of its abundance, however, very little is known about its effects on the environment. Groenewegen and Stolp investigated the half-life of this substance in soil and found values between 44 and 182 days, depending on the soil matrix. PAHs may migrate into soil organic matter, representing less accessible sites within the soil matrix. Such sorbed PAHs are suggested to be non-bioavailable and thus non-biodegradable. Fluoranthene has long been classified as non-carcinogenic and largely non-hazardous. The oral toxicity rating is indeed low, being only 2000 mg [center dot] kg[sup [minus]1] for rats and mice (LD[sub 50]), but there are also reports of mutagenic and toxic effects of fluoranthene on animals and plants. Fluoranthene has been reported to be synthesized by spermatophytes. However, accumulation of fluoranthene and other PAHs in plants is generally attributed to contamination by airborne particulate matter. Lettuce, soya, rye and tobacco plants grown in air-filtered chambers failed to synthesize PAHs, but accumulation of such substances was observed in a normal greenhouse. Transfer of fluoranthene from polluted soil via roots to shoots is probably limited due to the high n-octanol/water partition coefficient log P[sub OW] of fluoranthene: 5.33. However, there seems to be a stimulation of PAH uptake by mosses and spermatophytes in heavy metal-stressed soils. The aim of the present study was to determine toxic effects of fluoranthene on wheat and whether there were any interactions between toxicity and uptake of fluoranthene, lead and copper in hydroponic culture systems. 21 refs., 4 tabs.

  9. Molecular cloning and expression analysis of multiple polyphenol oxidase genes in developing wheat (Triticum aestivum) kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO, EC 1.10.31) is a major cause of discoloring in raw dough containing wheat flour. Minimization of PPO activity has proven difficult because bread wheat is genetically complex, composed of the genomes of three grass species. The PPO-A1 and PPO-D1 genes, on chromosomes 2A and...

  10. Molecular cloning and expression analysis of multiple polyphenol oxidase genes in developing wheat (Triticum aestivum) kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polypheol oxidase (PPO, Ec 1.10.31) is a major cause of discoloring in raw dough containing wheat flour. PPO is a ubiquitous enzyme that occurs in the outer layers of wheat kernels. High levels of flour PPO have been associated with dimished end-product color and brightness in a variety of products,...

  11. Identification of Circular RNAs and Their Targets in Leaves of Triticum aestivum L. under Dehydration Stress

    PubMed Central

    Wang, Yuexia; Yang, Ming; Wei, Shimei; Qin, Fujun; Zhao, Huijie; Suo, Biao

    2017-01-01

    Circular RNAs (circRNAs) are a type of newly identified non-coding RNAs through high-throughput deep sequencing, which play important roles in miRNA function and transcriptional controlling in human, animals, and plants. To date, there is no report in wheat seedlings regarding the circRNAs identification and roles in the dehydration stress response. In present study, the total RNA was extracted from leaves of wheat seedlings under dehydration-stressed and well-watered conditions, respectively. Then, the circRNAs enriched library based deep sequencing was performed and the circRNAs were identified using bioinformatics tools. Around 88 circRNAs candidates were isolated in wheat seedlings leaves while 62 were differentially expressed in dehydration-stressed seedlings compared to well-watered control. Among the dehydration responsive circRNAs, six were found to act as 26 corresponding miRNAs sponges in wheat. Sixteen circRNAs including the 6 miRNAs sponges and other 10 randomly selected ones were further validated to be circular by real-time PCR assay, and 14 displayed consistent regulation patterns with the transcriptome sequencing results. After Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the targeted mRNAs functions, the circRNAs were predicted to be involved in dehydration responsive process, such as photosynthesis, porphyrin, and chlorophyll metabolism, oxidative phosphorylation, amino acid biosynthesis, and metabolism, as well as plant hormone signal transduction, involving auxin, brassinosteroid, and salicylic acid. Herein, we revealed a possible connection between the regulations of circRNAs with the expressions of functional genes in wheat leaves associated with dehydration resistance. PMID:28105043

  12. Transcriptome profiling of the salt-stress response in Triticum aestivum cv. Kharchia Local

    PubMed Central

    Goyal, Etika; Amit, Singh K.; Singh, Ravi S.; Mahato, Ajay K.; Chand, Suresh; Kanika, Kumar

    2016-01-01

    Kharchia Local wheat variety is an Indian salt tolerant land race known for its tolerance to salinity. However, there is a lack of detailed information regarding molecular mechanism imparting tolerance to high salinity in this bread wheat. In the present study, differential root transcriptome analysis identifying salt stress responsive gene networks and functional annotation under salt stress in Kharchia Local was performed. A total of 453,882 reads were obtained after quality filtering, using Roche 454-GS FLX Titanium sequencing technology. From these reads 22,241 ESTs were generated out of which, 17,911 unigenes were obtained. A total of 14,898 unigenes were annotated against nr protein database. Seventy seven transcription factors families in 826 unigenes and 11,002 SSRs in 6,939 unigenes were identified. Kyoto Encyclopedia of Genes and Genomes database identified 310 metabolic pathways. The expression pattern of few selected genes was compared during the time course of salt stress treatment between salt-tolerant (Kharchia Local) and susceptible (HD2687). The transcriptome data is the first report, which offers an insight into the mechanisms and genes involved in salt tolerance. This information can be used to improve salt tolerance in elite wheat cultivars and to develop tolerant germplasm for other cereal crops. PMID:27293111

  13. Application of Glycerol for Induced Powdery Mildew Resistance in Triticum aestivum L.

    PubMed Central

    Li, Yinghui; Song, Na; Zhao, Chuanzhi; Li, Feng; Geng, Miaomiao; Wang, Yuhui; Liu, Wanhui; Xie, Chaojie; Sun, Qixin

    2016-01-01

    Previous work has demonstrated that glycerol-3-phosphate (G3P) and oleic acid (18:1) are two important signal molecules associated with plant resistance to fungi. In this article, we provide evidence that a 3% glycerol spray application 1–2 days before powdery mildew infection and subsequent applications once every 4 days was sufficient to stimulate the plant defense responses without causing any significant damage to wheat leaves. We found that G3P and oleic acid levels were markedly induced by powdery mildew infection. In addition, TaGLI1 (encoding a glycerol kinase) and TaSSI2 (encoding a stearoylacyl carrier protein fatty acid desaturase), two genes associated with the glycerol and fatty acid (FA) pathways, respectively, were induced by powdery mildew infection, and their promoter regions contain some fungal response elements. Moreover, exogenous application of glycerol increased the G3P level and decreased the level of oleic acid (18:1). Glycerol application induced the expression of pathogenesis-related (PR) genes (TaPR-1, TaPR-2, TaPR-3, TaPR-4, and TaPR-5), induced the generation of reactive oxygen species (ROS) before powdery mildew infection, and induced salicylic acid (SA) accumulation in wheat leaves. Further, we sprayed glycerol in a wheat field and found that it significantly (p < 0.05) reduced the severity of powdery mildew disease and lessened disease-associated kernel weight loss, all without causing any noticeable degradation in wheat seed quality. PMID:27708588

  14. Ozone gas affects the physical and chemical properties of wheat (Triticum aestivum L.) starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ozone can oxidize hydroxyl groups present at C2, C3, and C6 positions on the starch molecule and affect its physicochemical properties. In this experiment, bread wheat flour and isolated wheat starch were treated with ozone gas (1,500 ppm, gas flow rate 2.5 L/minutes) for 45 minutes and 30 minutes, ...

  15. Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sensitivity to ozone of ten Bangladeshi wheat cultivars was tested by exposing plants to eight ozone exposure regimes in controlled environment chambers. Visible leaf injury, dry weight, chlorophyll, carotenoid content, leaf greenness (SPAD value), quantum yield of photochemistry and stomatal re...

  16. Genes critical for the induction of cold acclimation in wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotypic studies have shown that cold acclimation in wheat and its relatives start at different temperatures. To gain insight into the underlying mechanisms that regulate the induction of cold-acclimation process in cereals we compared the expression of genes in winter-habit (winter Norstar and w...

  17. Mycoflora and deoxynivalenol in whole wheat grains (Triticum aestivum L.) from Southern Brazil.

    PubMed

    Savi, Geovana D; Piacentini, Karim C; Tibola, Casiane S; Scussel, Vildes M

    2014-01-01

    The fungal species Fusarium graminearum is related to deoxynivalenol (DON) formation. The aim of this study was to evaluate mycoflora and DON occurrence in 53 whole wheat grain samples collected in Southern Brazil during the 2012 crop. Wheat grains showed adequate values of water activity ranging from 0.48 to 0.72, within the required limits of moisture content, ranging from 9.1% to 13.9%. In addition, low counts of fungal colonies, ranging from 10 to 8.2 × 10(2), were found. For Fusarium genera, there was predominance of Fusarium verticillioides (34%) and F graminearum (30.2%). For Aspergillus species, 37.7% of Aspergillus flavus was determined. Regarding the Penicillium species, Penicillium digitatum (49%) was the most found species. DON was detected in 47.2% (25 out of 53) of the samples analysed, with levels ranging from 243.7 to 2281.3 µg kg(-1) (mean: 641.9 µg kg(-1)).

  18. Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis.

    PubMed

    Brinch-Pedersen, Henrik; Hatzack, Frank; Stöger, Eva; Arcalis, Elsa; Pontopidan, Katrine; Holm, Preben B

    2006-06-28

    The present paper addresses the question of thermotolerance of in planta synthesized heterologous enzymes using phytase as a model. Two individual transgenic wheat materials expressing an Aspergillus fumigatus phytase with a low denaturation temperature (62.5 degrees C) but a high refolding capacity, and a rationally designed consensus phytase engineered to a high denaturation temperature (89.3 degrees C), were evaluated. High levels of endosperm specific expression were ensured by the wheat high molecular weight glutenin 1DX5 promoter. Immunodetection at the light and electron microscopical level shows unequivocally that the heterologous phytase is deposited in the vacuole, albeit that the transformation constructs were designed for secretion to the apoplast. Evaluation of heat stability properties and kinetic properties unraveled that, under these deposition conditions, heat stability based on high unfolding temperature is superior to high refolding capacity and represents a realistic strategy for improving phosphate and mineral bioavailability in cereal-based feed and food.

  19. [Effect of malonate on the structural and functional changes of wheat Triticum aestivum L. root cells].

    PubMed

    Bufetov, E N; Polygalova, O O; Ponomareva, A A

    2004-01-01

    A study was made of respiration, output of K+ and ultrastructure of wheat root cells treated for 6 h with malonic acid (MA) (15 mM), an inhibitor of succinate dehydrogenase. After a 1 h treatment, on the background of a decrease in respiration, and output of K+ an increased number of lumens of smooth endoplasmic reticulum was observed. These changes may be the result of lipid biosynthesis. Within first hours of treatment with MA, the mitochondrial matrix was becoming more brightened, and after 3 h all organelles became transparent. Moreover, mitochondria increased in size and almost lacked cristae. After 4 h mitochondria assumed their normal sizes due, presumably, to a competitive action of malonate. After 5 h the matrix was brightened again, mitochondria augmented in size, several organelles acquired torus shapes, and their outer area was eventually increased. We found contacts of endoplasmic reticulum lumens with mitochondria, which may suggest the synthesis of an enzyme, able to transform to malonate. After a 6 h exposure of MA, we observed the increase of respiration, re-entry of K+ and normal ultrastructure of mitochondria. Based on our experiments, we conclude that adaptation of root cells may be a result of external NADPH-dehydrogenase activity and MA detoxification.

  20. Molecular analyses of a repetitive DNA sequence in wheat (Triticum aestivum L.).

    PubMed

    Ueng, P P; Hang, A; Tsang, H; Vega, J M; Wang, L; Burton, C S; He, F T; Liu, B

    2000-06-01

    A repetitive sequence designated WE35 was isolated from wheat genomic DNA. This sequence consists of a 320-bp repeat unit and represents approximately 0.002% of the total wheat DNA. It is unidirectionally distributed either continuously or discretely in the genome. Ladder-like banding patterns were observed in Southern blots when the wheat genomic DNA was restricted with endonuclease enzymes EcoRI, HincII, NciI, and NdeI, which is characteristic for tandemly organized sequences. Two DNA fragments in p451 were frequently associated with the WE35 repetitive unit in a majority of lambda wheat genomic clones. A 475-bp fragment homologous to the 5'-end long terminal repeat (LTR) of cereal retroelements was also found in some lambda wheat genomic clones containing the repetitive unit. Physical mapping by fluorescence in situ hybridization (FISH) indicated that one pair of wheat chromosomes could be specifically detected with the WE35 positive probe p551. WE35 can be considered a chromosome-specific repetitive sequence. This repetitive unit could be used as a molecular marker for genetic, phylogenetic, and evolutionary studies in the tribe Triticeae.

  1. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    NASA Astrophysics Data System (ADS)

    Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

    2007-04-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  2. Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.).

    PubMed

    Rikiishi, Kazuhide; Maekawa, Masahiko

    2014-01-01

    In Arabidopsis, the regulation network of the seed maturation program controls the induction of seed dormancy. Wheat EST sequences showing homology with the master regulators of seed maturation, leafy cotyledon1 (LEC1), LEC2 and FUSCA3 (FUS3), were searched from databases and designated respectively as TaL1L (LEC1-LIKE), TaL2L (LEC2-LIKE), and TaFUS3. TaL1LA, TaL2LA and TaFUS3 mainly expressed in seeds or embryos, with the expression limited to the early stages of seed development. Results show that tissue-specific and developmental-stage-dependent expressions are similar to those of seed maturation regulators in Arabidopsis. In wheat cultivars, the expression level of TaL1LA is correlated significantly with the germination index (GI) of whole seeds at 40 days after pollination (DAP) (r =  -0.83**). Expression levels of TaFUS3 and TaL2LA are significantly correlated respectively with GIs at 40 DAP and 50 DAP, except for dormant cultivars. No correlation was found between the expression level of TaVP1, orthologue of ABA insensitive3 (ABI3), and seed dormancy. Delay of germination1 (DOG1) was identified as a quantitative trait locus (QTL) for the regulation of seed dormancy in Arabidopsis. Its promoter has RY motif, which is a target sequence of LEC2. Significant correlation was found between the expression of TaDOG1 and seed dormancy except for dormant cultivars. These results indicate that TaL1LA, TaL2LA, and TaFUS3 are wheat orthologues of seed maturation regulators. The expressions of these genes affect the level of seed dormancy. Furthermore, the pathways, which involve seed maturation regulators and TaDOG1, are important for regulating seed dormancy in wheat.

  3. Signaling events leading to red-light-induced suppression of photomorphogenesis in wheat (Triticum aestivum).

    PubMed

    Gupta, Varsha; Roy, Ansuman; Tripathy, Baishnab C

    2010-10-01

    Perception of red light (400 μmol photon m²/s) by the shoot bottom turned off the greening process in wheat. To understand the signaling cascade leading to this photomorphogenic response, certain signaling components were probed in seedlings grown in different light regimes. Upon analysis the gene expression of heterotrimeric Gα and Gβ were severely down-regulated in seedlings grown without vermiculite and having their shoot bottom exposed to red light (R/V-) and was similar to that of dark-grown seedlings. Supplementing the red-light-grown V- seedlings with blue light resulted in up-regulation of both Gα and Gβ expression, suggesting that blue light is able to modulate G protein expression. Treatment of cytokinin analog benzyladenine to cytokinin-deficient red-light-grown R/V- seedlings resulted in up-regulation of gene expression of both Gα and Gβ. To probe further, modulators of signal transduction pathway--AlF₃ (G protein activator), LaCl₃ (Ca(2+) channel blocker), NaF (nonspecific phosphatase inhibitor), or calmodulin (CaM) antagonists trifluoperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-nafthalene-sulfonamide (W-7)--were added along with Hoagland solution to the roots of 4-day-old etiolated seedlings, grown on germination paper and transferred to red light. AlF₃, LaCl₃, NaF failed to elicit any photomorphogenic response. However, CaM antagonists TFP and W-7 significantly reversed the red-light-induced suppression of photomorphogenesis. Phosphorylation of proteins assayed in the absence or presence of CaM antagonist TFP revealed respective up-regulation or down-regulation of phosphorylation of several plastidic proteins in R/V- seedlings. These suggest that signal transduction of red light perceived by the shoot bottom to suppress photomorphogenesis is mediated by CaM-dependent protein kinases.

  4. Enhanced root and shoot growth of wheat (Triticum aestivum L.) by Trichoderma harzianum from Turkey.

    PubMed

    Kucuk, Cigdem

    2014-01-01

    It is well known that Trichoderma species can be used as biocontrol and plant growth promote agent. In this study, Trichoderma harzianum isolates were evaluated for their growth promotion effects on wheat in greenhouse experiments. Two isolates of T. harzianum were used. The experimental design was a randomized complete block with three replications. Seeds were inoculated with conidial suspensions of each isolate. Wheat plants grown in steriled soil in pots. T. harzianum T8 and T15 isolates increased wheat length, root dry weight and shoot dry weight according to untreated control. Turkish isolates T8 and T15 did not produce damage in seeds nor in plants.

  5. Ecological toxicity of reactive X-3B red dye and cadmium acting on wheat (Triticum aestivum).

    PubMed

    Cheng, Yun; Zhou, Qi-xing

    2002-01-01

    Ecological toxicity of reactive X-3B red dye and cadmium in both their single form and their combined form on wheat was studied using the experimental method of seed and root exposure. The single-factor exposure indicated that the inhibitory rate of wheat root elongation was significantly increased with the increase in the concentration of the dye in the cultural solution, although seed germination of wheat was not sensitive to the dye. The toxicity of cadmium was greatly higher than that of the dye, but low concentration cadmium (< 40 mg/L) could promote the germination of wheat seed. Interactive effects of the dye and cadmium on wheat were complicated. There was no significant correlation between the inhibitory rate of seed germination and the concentrations of the dye and cadmium. Low concentration cadmium could strengthen the toxicity of the dye acting on root elongation. On the contrary, high concentration cadmium could weaken the toxicity of the dye acting on root elongation.

  6. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.)

    PubMed Central

    Brackhage, Carsten; Huang, Jen-How; Schaller, Jörg; Elzinga, Evert J.; Dudel, E. Gert

    2014-01-01

    Elevated arsenic content in food crops pose a serious human health risk. Apart from rice wheat being another main food crop is possibly cultivated on contaminated sites. But for wheat uptake mechanisms are not entirely understood especially with regard to nutrient fertilization and different moisture regimes taking into account heavy rainfall events due to climate change. Here we show that especially higher P-fertilization under changing redox conditions may enhance arsenic uptake. This counteracts with higher N-fertilization reducing arsenic transfer and translocation into aboveground plant parts for both higher P-fertilization and reducing soil conditions. Arsenic speciation did not change in grain but for leaves P-fertilization together with reducing conditions increased the As(V) content compared to other arsenic species. Our results indicate important dependencies of nutrient fertilization, moisture conditions and substrate type on As accumulation of wheat as one of the most important crop plants worldwide with implications for agricultural practices. PMID:24821134

  7. Readily available phosphorous and nitrogen counteract for arsenic uptake and distribution in wheat (Triticum aestivum L.)

    NASA Astrophysics Data System (ADS)

    Brackhage, Carsten; Huang, Jen-How; Schaller, Jörg; Elzinga, Evert J.; Dudel, E. Gert

    2014-05-01

    Elevated arsenic content in food crops pose a serious human health risk. Apart from rice wheat being another main food crop is possibly cultivated on contaminated sites. But for wheat uptake mechanisms are not entirely understood especially with regard to nutrient fertilization and different moisture regimes taking into account heavy rainfall events due to climate change. Here we show that especially higher P-fertilization under changing redox conditions may enhance arsenic uptake. This counteracts with higher N-fertilization reducing arsenic transfer and translocation into aboveground plant parts for both higher P-fertilization and reducing soil conditions. Arsenic speciation did not change in grain but for leaves P-fertilization together with reducing conditions increased the As(V) content compared to other arsenic species. Our results indicate important dependencies of nutrient fertilization, moisture conditions and substrate type on As accumulation of wheat as one of the most important crop plants worldwide with implications for agricultural practices.

  8. Ractopamine uptake from soil by alfalfa (Medicago sativa) and wheat (Triticum aestivum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ractopamine, a beta adrenergic agonist, is approved to use as feed additive in swine (Paylean®), cattle (Optaflexx®), and turkey (Topmax®) to improve daily weight gain, increase feed efficiency, and produce leaner meat. Because of this economic advantage, ractopamine is widely used. The transfer o...

  9. Analysis of the allohexaploid bread wheat genome (Triticum aestivum) using comparative whole genome shotgun sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The large 17 Gb allopolyploid genome of bread wheat is a major challenge for genome analysis because it is composed of three closely- related and independently maintained genomes, with genes dispersed as small “islands” separated by vast tracts of repetitive DNA. We used a novel comparative genomi...

  10. Evaluation of some drought resistance criteria at seedling stage in wheat (Triticum aestivum L.) cultivars.

    PubMed

    Tavakol, E; Pakniyat, H

    2007-04-01

    This research was conducted to evaluate some of the drought resistance criteria at seedling stage in wheat. A factorial experiment in a Completely Randomized Design (CRD) was used with two factors consisted of stress levels (0, -5 and -8 bar) using PEG 6000 and genotypes (10 genotypes of bread wheat; Azar 2, Gahar, Koohdasht, Bow, Zagros, Cham, Niknejad, E1 Neilairi, Bohoih and Giza 164) in three replications in a hydroponic condition. Stress Tolerance Index (STI), Water Use Efficiency (WUE), Biological Yield (BY), Shoot Dry Weight (SDW), Root Dry Weight (RDW), Root/Shoot weight ratio (R/S), Root Length (RL), Relative Water Content (RWC), Wilting Percentage (WP) and first and 2nd Leaves Extention Rate (LER1 and LER2) were measured at seedling stage. Increasing stress levels caused reduction in BY, SDW, RDW, RL, RWC, LER1 and LER2, but an increase in WUE, DWR, R/S and WP. Azar2, Gahar, Koohdasht, Zagros and Bow were in favorite condition in regard to STI, WUE and other criteria. Therefore, they are drought tolerant and might be suitable genotypes at water deficit conditions. Niknejad, E1 Neilairi and Cham were moderate and Giza 164 and Bohoih were sensitive genotypes to drought conditions. This research revealed that at -5 bar, WUE, BY, SDW, R/S and LER2 and at -8 bar, WUE, BY and WP were suitable criteria for selection of drought resistant genotypes at seedling stage.

  11. Application of Glycerol for Induced Powdery Mildew Resistance in Triticum aestivum L.

    PubMed

    Li, Yinghui; Song, Na; Zhao, Chuanzhi; Li, Feng; Geng, Miaomiao; Wang, Yuhui; Liu, Wanhui; Xie, Chaojie; Sun, Qixin

    2016-01-01

    Previous work has demonstrated that glycerol-3-phosphate (G3P) and oleic acid (18:1) are two important signal molecules associated with plant resistance to fungi. In this article, we provide evidence that a 3% glycerol spray application 1-2 days before powdery mildew infection and subsequent applications once every 4 days was sufficient to stimulate the plant defense responses without causing any significant damage to wheat leaves. We found that G3P and oleic acid levels were markedly induced by powdery mildew infection. In addition, TaGLI1 (encoding a glycerol kinase) and TaSSI2 (encoding a stearoylacyl carrier protein fatty acid desaturase), two genes associated with the glycerol and fatty acid (FA) pathways, respectively, were induced by powdery mildew infection, and their promoter regions contain some fungal response elements. Moreover, exogenous application of glycerol increased the G3P level and decreased the level of oleic acid (18:1). Glycerol application induced the expression of pathogenesis-related (PR) genes (TaPR-1, TaPR-2, TaPR-3, TaPR-4, and TaPR-5), induced the generation of reactive oxygen species (ROS) before powdery mildew infection, and induced salicylic acid (SA) accumulation in wheat leaves. Further, we sprayed glycerol in a wheat field and found that it significantly (p < 0.05) reduced the severity of powdery mildew disease and lessened disease-associated kernel weight loss, all without causing any noticeable degradation in wheat seed quality.

  12. HMW and LMW glutenin alleles among putative tetraploid and hexaploid European spelt wheat (Triticum spelta L.) progenitors.

    PubMed

    Yan, Y; Hsam, S L K; Yu, J Z; Jiang, Y; Ohtsuka, I; Zeller, F J

    2003-11-01

    The allelic compositions of high- and low-molecular-weight subunits of glutenins (HMW-GS and LMW-GS) among European spelt ( Triticum spelta L.) and related hexaploid and tetraploid Triticum species were investigated by one- and two-dimensional polyacrylamide-gel electrophoresis (PAGE) and capillary electrophoresis (CE). A total of seven novel glutenin alleles (designated A1a*, B1d*, B1g*, B1f*, B1j*, D1a* at Glu-1 and A3h at the Glu-3 loci, respectively) in European spelt wheat were detected by SDS-PAGE, which were confirmed further by employing A-PAGE and CE methods. Particularly, two HMW-GS alleles, Glu-B1d* coding the subunits 6.1 and 22.1, and Glu-B1f* coding the subunits 13 and 22*, were found to occur in European spelt with frequencies of 32.34% and 5.11%, respectively. These two alleles were present in cultivated emmer (Triticum dicoccum), but they were not observed in bread wheat (Triticum aestivum L.). The allele Glu-B1g* coding for 13* and 19* subunits found in spelt wheat was also detected in club wheat (Triticum compactum L.). Additionally, two alleles coding for LMW-GS, Glu-A3h and Glu-B3d, occurred with high frequencies in spelt, club and cultivated emmer wheat, whereas these were not found or present with very low frequencies in bread wheat. Our results strongly support the secondary origin hypothesis, namely European spelt wheat originated from hybridization between cultivated emmer and club wheat. This is also confirmed experimentally by the artificial synthesis of spelt through crossing between old European emmer wheat, T. dicoccum and club wheat, T. compactum.

  13. Vacuole/extravacuole distribution of soluble protease in Hippeastrum petal and Triticum leaf protoplasts

    SciTech Connect

    Wagner, G.J.; Mulready, P.; Cutt, J.

    1981-11-01

    The subcellular distribution of soluble protease in anthesis-stage, anthocyanin-containing Hippeastrum cv. Dutch Red Hybrid petal protoplasts has been reevaluated and that of Triticum aestivum L. var. Red Coat leaf protoplasts determined using /sup 125/I-fibrin as a protease substrate and improved methods for protoplast and vacuole volume estimation. Results indicate that about 20% of the Hippeastrum petal-soluble protease and about 90% of the wheat leaf-soluble protease can be assigned to the vacuole. Protoplast isolation enzyme labeled with /sup 125/I has been used to assess the efficiency of removing isolation enzyme from protoplasts by repeated washing and by separation of protoplasts from debris using density centrifugation. Results of these studies suggest that protoplasts prepared by both methods retain low levels of isolation enzyme. However, when protoplasts prepared by either method were lysed with washing medium lacking osmoticum, little isolation enzyme contaminated the lysates.

  14. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    PubMed

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns.

  15. Characterization of waxy proteins and waxy genes of Triticum timopheevii and T. zhukovskyi and implications for evolution of wheat.

    PubMed

    Yan, L; Bhave, M

    2001-08-01

    The granule-bound starch (GBSS I, waxy protein) in Triticum timopheevii (AtAtGG) and T. zhukovskyi (AtAtAzAzGG) and a diagnostic section of the genes encoding GBSS-I from the Wx-TtA and Wx-G loci of T. timopheevii and the Wx-TtA, Wx-G, and Wx-TzA loci of T. zhukovskyi were investigated in this study. The waxy proteins in these two polyploid wheats could not be separated into distinct bands, in contrast to those in the T. turgidum (AABB)-T. aestivum (AABBDD) lineage. Alignment of sequences of the section covering exon4-intron4-exon5 of the various waxy genes led to the identification of gene-specific sequences in intron 4. The sequences specific to the Wx-TtA and Wx-G genes of T. timopheevii were different from those of the Wx-A1 gene and Wx-B1 genes of T. turgidum and T. aestivum. A surprising observation was that the Wx-TzA of T. zhukovskyi did not match with the Wx-TmA of T. monococcum, a putative donor of the Az genome, but matched unexpectedly and perfectly with the Wx-B1 gene on chromosome 4A, which is proposed to have translocated from the chromosome 7B of T. aestivum. The possible genetic mechanism explaining these observations is discussed.

  16. The 2NS Translocation from Aegilops ventricosa Confers Resistance to the Triticum Pathotype of Magnaporthe oryzae

    PubMed Central

    Cruz, C.D.; Peterson, G.L.; Bockus, W.W.; Kankanala, P.; Dubcovsky, J.; Jordan, K.W.; Akhunov, E.; Chumley, F.; Baldelomar, F.D.; Valent, B.

    2016-01-01

    Wheat blast is a serious disease caused by the fungus Magnaporthe oryzae (Triticum pathotype) (MoT). The objective of this study was to determine the effect of the 2NS translocation from Aegilops ventricosa (Zhuk.) Chennav on wheat head and leaf blast resistance. Disease phenotyping experiments were conducted in growth chamber, greenhouse, and field environments. Among 418 cultivars of wheat (Triticum aestivum L.), those with 2NS had 50.4 to 72.3% less head blast than those without 2NS when inoculated with an older MoT isolate under growth chamber conditions. When inoculated with recently collected isolates, cultivars with 2NS had 64.0 to 80.5% less head blast. Under greenhouse conditions when lines were inoculated with an older MoT isolate, those with 2NS had a significant head blast reduction. With newer isolates, not all lines with 2NS showed a significant reduction in head blast, suggesting that the genetic background and/or environment may influence the expression of any resistance conferred by 2NS. However, when near-isogenic lines (NILs) with and without 2NS were planted in the field, there was strong evidence that 2NS conferred resistance to head blast. Results from foliar inoculations suggest that the resistance to head infection that is imparted by the 2NS translocation does not confer resistance to foliar disease. In conclusion, the 2NS translocation was associated with significant reductions in head blast in both spring and winter wheat. PMID:27814405

  17. [Molecular-genetic analysis of wheat (T. aestivum L.) genome with introgression of Ae. cylindrica Host genetic elements].

    PubMed

    Galaev, A V; Sivolap, Iu M

    2005-01-01

    Wheat-aegilops hybrid plants Triticum aestivum L. (2n = 42) x Aegilops cylindrica Host (2n = 28) were investigated with using microsatellite markers. In two BC1F9 lines some genome modifications connected with losing DNA fragments of initial variety or appearing of Aegilops genome elements were detected. In some investigated hybrids new amplicons lacking in parental plants were found. Substitution of wheat chromosomes for aegilops chromosomes was not revealed. Analysis of microsatellite loci in BC2F5 plants showed stable introgression of aegilops genetic elements into wheat; elimination of some transferred aegilops DNA fragments in the course of backcrossing; decreasing size of introgressive elements after backcrossing. Introgressive lines were classified according to genome changes.

  18. Spelt-specific alleles in HMW glutenin genes from modern and historical European spelt ( Triticum spelta L.).

    PubMed

    Blatter, Robert H. E.; Jacomet, Stefanie; Schlumbaum, Angela

    2002-02-01

    A partial promoter region of the high-molecular weight (HMW) glutenin genes was studied in two wheat specimens, a 300 year-old spelt ( Triticum spelta L.) and an approximately 250 year-old bread wheat ( Triticum aestivum L.) from Switzerland. Sequences were compared to a recent Swiss landrace T. spelta'Oberkulmer.' The alleles from the historical bread wheat were most similar to those of modern T. aestivumcultivars, whereas in the historical and the recent spelt specific alleles were detected. Pairwise genetic distances up to 0.03 within 200 bp from the HMW Glu-A1-2, Glu-B1-1 and Glu-B1-2 alleles in spelt to the most-similar alleles from bread wheat suggest a polyphyletic origin. The spelt Glu-B1-1 allele, which was unlike the corresponding alleles in bread wheat, was closer related to an allele found in tetraploid wheat cultivars. The results are discussed in context of the origin of European spelt.

  19. Tissue-specific expression and localization of safener-induced glutathione S-transferase proteins in Triticum tauschii.

    PubMed

    Riechers, Dean E; Zhang, Qin; Xu, Fangxiu; Vaughn, Kevin C

    2003-09-01

    Glutathione S-transferase (GST; EC 2.5.1.18) gene expression was examined in the coleoptile and new leaf tissue of etiolated shoots of the diploid wheat species Triticum tauschii (Coss.) Schmal., which is considered to be a progenitor and the D-genome donor to cultivated, hexaploid bread wheat Triticum aestivum L. GST expression (mRNA, protein, and enzyme activity with a herbicide substrate) in these shoot tissues was examined in response to herbicide safener treatment. Two different antibody probes, raised against the same safener-inducible GST protein (TtGSTU1) but differing in their specificity, were utilized to determine tissue distribution and subcellular localization of GST proteins in etiolated shoots. GST transcripts, immunoreactive GST proteins, and herbicide-metabolizing activity were all highest in the coleoptile of etiolated, safener-treated T. tauschii shoots. Anti-GST immunolabeling was strongest in the outer epidermal and adjoining sub-epidermal cells in both coleoptiles and new leaves following safener treatment. Our data indicate that safeners protect grass crops from herbicide injury by dramatically inducing the expression of GST proteins in the outer cell layers of the coleoptile, which prevents the herbicide from reaching the sensitive new leaves of etiolated shoots as they emerge from the soil.

  20. Microscopic and Molecular Characterization of the Prehaustorial Resistance against Wheat Leaf Rust (Puccinia triticina) in Einkorn (Triticum monococcum)

    PubMed Central

    Serfling, Albrecht; Templer, Sven E.; Winter, Peter; Ordon, Frank

    2016-01-01

    Puccinia triticina f. sp. tritici (Eriks.), the causal agent of leaf rust, causes substantial yield losses in wheat production. In wheat many major leaf rust resistance genes have been overcome by virulent races. In contrast, the prehaustorial resistance (phr) against wheat leaf rust detected in the diploid wheat Einkorn (Triticum monoccocum var. monococcum) accession PI272560 confers race-independent resistance against isolates virulent on accessions harboring resistance genes located on the A-genome of Triticum aestivum. Phr in PI272560 leads to abortion of fungal development during the formation of haustorial mother cells and to increased hydrogen peroxide concentration in comparison to the susceptible accession 36554 (Triticum boeoticum ssp. thaoudar var. reuteri). Increased peroxidase and endochitinase activity was detected in PI272560 within 6 h after inoculation (hai). Comparative transcriptome profiling using Massive Analysis of cDNA Ends (MACE) in infected and non-infected leaves detected 14220 differentially expressed tags in PI272560 and 15472 in accession 36554. Of these 2908 and 3004, respectively, could be assigned to Gene Ontology (GO) categories of which 463 were detected in both accessions and 311 were differentially expressed between the accessions. In accordance with the concept of non-host resistance in PI272560, genes with similarity to peroxidases, chitinases, β-1,3-glucanases and other pathogenesis-related genes were up-regulated within the first 8 hai, whereas up-regulation of such genes was delayed in 36554. Moreover, a Phosphoribulokinase gene contributing to non-host resistance in rice against stripe rust was exclusively expressed in the resistant accession PI272560. Gene expression underpinned physiological and phenotypic observations at the site of infection and are in accordance with the concept of non-host resistance. PMID:27881987

  1. Microscopic and Molecular Characterization of the Prehaustorial Resistance against Wheat Leaf Rust (Puccinia triticina) in Einkorn (Triticum monococcum).

    PubMed

    Serfling, Albrecht; Templer, Sven E; Winter, Peter; Ordon, Frank

    2016-01-01

    Puccinia triticina f. sp. tritici (Eriks.), the causal agent of leaf rust, causes substantial yield losses in wheat production. In wheat many major leaf rust resistance genes have been overcome by virulent races. In contrast, the prehaustorial resistance (phr) against wheat leaf rust detected in the diploid wheat Einkorn (Triticum monoccocum var. monococcum) accession PI272560 confers race-independent resistance against isolates virulent on accessions harboring resistance genes located on the A-genome of Triticum aestivum. Phr in PI272560 leads to abortion of fungal development during the formation of haustorial mother cells and to increased hydrogen peroxide concentration in comparison to the susceptible accession 36554 (Triticum boeoticum ssp. thaoudar var. reuteri). Increased peroxidase and endochitinase activity was detected in PI272560 within 6 h after inoculation (hai). Comparative transcriptome profiling using Massive Analysis of cDNA Ends (MACE) in infected and non-infected leaves detected 14220 differentially expressed tags in PI272560 and 15472 in accession 36554. Of these 2908 and 3004, respectively, could be assigned to Gene Ontology (GO) categories of which 463 were detected in both accessions and 311 were differentially expressed between the accessions. In accordance with the concept of non-host resistance in PI272560, genes with similarity to peroxidases, chitinases, β-1,3-glucanases and other pathogenesis-related genes were up-regulated within the first 8 hai, whereas up-regulation of such genes was delayed in 36554. Moreover, a Phosphoribulokinase gene contributing to non-host resistance in rice against stripe rust was exclusively expressed in the resistant accession PI272560. Gene expression underpinned physiological and phenotypic observations at the site of infection and are in accordance with the concept of non-host resistance.

  2. The in silico identification and characterization of a bread wheat/Triticum militinae introgression line.

    PubMed

    Abrouk, Michael; Balcárková, Barbora; Šimková, Hana; Komínkova, Eva; Martis, Mihaela M; Jakobson, Irena; Timofejeva, Ljudmilla; Rey, Elodie; Vrána, Jan; Kilian, Andrzej; Järve, Kadri; Doležel, Jaroslav; Valárik, Miroslav

    2017-02-01

    The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross-bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies.

  3. Draft genome of the wheat A-genome progenitor Triticum urartu.

    PubMed

    Ling, Hong-Qing; Zhao, Shancen; Liu, Dongcheng; Wang, Junyi; Sun, Hua; Zhang, Chi; Fan, Huajie; Li, Dong; Dong, Lingli; Tao, Yong; Gao, Chuan; Wu, Huilan; Li, Yiwen; Cui, Yan; Guo, Xiaosen; Zheng, Shusong; Wang, Biao; Yu, Kang; Liang, Qinsi; Yang, Wenlong; Lou, Xueyuan; Chen, Jie; Feng, Mingji; Jian, Jianbo; Zhang, Xiaofei; Luo, Guangbin; Jiang, Ying; Liu, Junjie; Wang, Zhaobao; Sha, Yuhui; Zhang, Bairu; Wu, Huajun; Tang, Dingzhong; Shen, Qianhua; Xue, Pengya; Zou, Shenhao; Wang, Xiujie; Liu, Xin; Wang, Famin; Yang, Yanping; An, Xueli; Dong, Zhenying; Zhang, Kunpu; Zhang, Xiangqi; Luo, Ming-Cheng; Dvorak, Jan; Tong, Yiping; Wang, Jian; Yang, Huanming; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Wang, Jun

    2013-04-04

    Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.

  4. In-situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum.

    PubMed

    Cabrera, A; Martin, A; Barro, F

    2002-01-01

    The ability to detect small low- or single-copy DNA sequences by fluorescence in-situ hybridization (FISH) is an important step towards physical mapping of plant genomes. In this study, the FISH technique was used to physically map the Glu-1 loci controlling high-molecular weight (HMW) glutenin in common wheat (Triticum aestivum cv. 'Chinese Spring') and tritordeum (an amphiploid between T. turgidum cv. durum and Hordeum chilense). The probe used was the single-copy Glu-D1-1d gene coding the 1Dx5 HMW glutenin subunit. Three loci were mapped on chromosomes of wheat homoeologous group 1 (arm 1AL, 1BL and 1DL). The Glu-1 loci were mapped (fraction of the distance from the centromere) at positions 0.76 +/- 0.01, 0.69 +/- 0.01 and 0.76 +/- 0.01, on arms 1AL, 1BL and 1DL, respectively. The Glu-1 loci were also mapped on chromosomes of homoeologous group 1 of tritordeum at positions 0.75 +/- 0.01, 0.70 +/- 0.01 and 0.60 +/- 0.01, on arms 1AL, 1BL and 1HchL, respectively. Chromosomes with positive signals were identified by reprobing chromosome preparations using both the GAA-satellite and pAs1 sequences simultaneously. The application of the FISH technique to study homoeology among different genomes is discussed.

  5. Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat (Triticum aestivum L.) genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different cultivars differ inherently in their response to drought and those cultivars best adapted to growth in arid and semiarid conditions form the most uniform and vigorous stands when grown under water deficits. The seeds of five wheat cultivars (GA-2002, Chakwal-97, Uqab-2000, Chakwal-50 and W...

  6. Wheat (Triticum aestivum L.) response to a zinc fertilizer applied as zinc lignosulfonate adhered to a NPK fertilizer.

    PubMed

    Martín-Ortiz, Diego; Hernández-Apaolaza, Lourdes; Gárate, Agustín

    2010-07-14

    The efficacy as Zn fertilizers for wheat of zinc lignosulfonate (ZnLS) products adhered to NPK was evaluated by three plant experimental designs. In the first and second assays, wheat plants were grown under controlled conditions with perlite and a calcareous soil as substrate, respectively. Shoot dry matter and Zn concentration showed that NPK + ZnLS was a better Zn source for wheat than NPK + ZnSO(4) under our experimental conditions. A third experiment was conducted under field conditions on a calcareous soil with a low Zn level. Wheat samples were taken at five growth stages of the crop. Although at early stages NPK + ZnLS was the most efficient source of Zn, at harvest no significant differences among treatments were found. Despite that, NPK + ZnLS showed evidence of being a useful Zn source for wheat crop under calcareous conditions.

  7. Intracellular motility and the evolution of the actin cytoskeleton during development of the male gametophyte of wheat (Triticum aestivum L.)

    PubMed Central

    Heslop-Harrison, J.; Heslop-Harrison, Y.

    1997-01-01

    The uniaperturate pollen of wheat is dispersed in a partially hydrated condition. Amyloplasts are concentrated in the apertural hemisphere where they surround the two sperms, while vigorously moving polysaccharide-containing wall precursor bodies (P-particles) together with the vegetative nucleus occupy the other. This disposition is the product of a post-meiotic developmental sequence apparently peculiar to the grasses. During vacuolation of the spore after release from the tetrad, the nucleus is displaced to the pole of the cell opposite the site of the germination aperture, already defined in the tetrad. Following pollen mitosis, the vegetative nucleus migrates along the wall of the vegetative cell towards the aperture, leaving the generative cell at the opposite pole isolated by a callose wall. As the vacuole is resorbed, the generative cell rounds up, loses its wall and follows the vegetative nucleus, passing along the wall of the vegetative cell towards the aperture where it eventually divides to produce the two sperms. Throughout this period of nucleus and cell manoeuvrings, minor inclusions of the vegetative cell cytoplasm, including mitochondria, lipid globuli and developing amyloplasts, move randomly. Coordinated vectorial movement begins after the main period of starch accumulation, when the amyloplasts migrate individually into the apertural hemisphere of the grain, a final redistribution betokening the attainment of germinability. In the present paper we correlate aspects of the evolution of the actin cytoskeleton with these events in the developing grain, and relate the observations to published evidence from another monocotyledonous species concerning the timing of the expression of actin genes during male gametophyte development, as revealed in the synthesis of actin mRNA.

  8. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    PubMed Central

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (p<0.05) increase in soil respiration (81.1%), soil microbial biomass carbon (SMBC) (104%) and soil dehydrogenase (DH) (59.2%) compared to the conventional tillage soil. Optimum water supply (3-irrigations) enhanced soil respiration over sub-optimum and supra-optimum irrigations by 13.32% and 79% respectively. Soil dehydrogenase (DH) activity in optimum water regime has also increased by 23.33% and 8.18% respectively over the other two irrigation regimes. Similarly, SMBC has also increased by 12.14% and 27.17% respectively in soil with optimum water supply compared to that of sub-optimum and supra-optimum water regime fields. The maximum increase in soil microbial activities is found when sole organic source (50% Farm Yard Manure+25% biofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  9. Detection of QTLs for traits associated with pre-harvest sprouting resistance in bread wheat (Triticum aestivum L.)

    PubMed Central

    Cao, Liangzi; Hayashi, Kazuki; Tokui, Mayumi; Mori, Masahiko; Miura, Hideho; Onishi, Kazumitsu

    2016-01-01

    Pre-harvest sprouting (PHS) is one of the serious problems for wheat production, especially in rainy regions. Although seed dormancy is the most critical trait for PHS resistance, the control of heading time should also be considered to prevent seed maturation during unfavorable conditions. In addition, awning is known to enhance water absorption by the spike, causing PHS. In this study, we conducted QTL analysis for three PHS resistant related traits, seed dormancy, heading time and awn length, by using recombinant inbred lines from ‘Zenkouji-komugi’ (high PHS resistance) × ‘Chinese Spring’ (weak PHS resistance). QTLs for seed dormancy were detected on chromosomes 1B (QDor-1B) and 4A (QDor-4A), in addition to a QTL on chromosome 3A, which was recently cloned as TaMFT-3A. In addition, the accumulation of the QTLs and their epistatic interactions contributed significantly to a higher level of dormancy. QDor-4A is co-located with the Hooded locus for awn development. Furthermore, an effective QTL, which confers early heading by the Zenkouji-komugi allele, was detected on the short arm of chromosome 7B, where the Vrn-B3 locus is located. Understanding the genetic architecture of traits associated with PHS resistance will facilitate the marker assisted selection to breed new varieties with higher PHS resistance. PMID:27162497

  10. Native and enzymatically modified wheat (Triticum aestivum L.) endogenous lipids in bread making: a focus on gas cell stabilization mechanisms.

    PubMed

    Gerits, Lien R; Pareyt, Bram; Masure, Hanne G; Delcour, Jan A

    2015-04-01

    Lipopan F and Lecitase Ultra lipases were used in straight dough bread making to study how wheat lipids affect bread loaf volume (LV) and crumb structure setting. Lipase effects on LV were dose and dough piece weight dependent. The bread quality improving mechanisms exerted by endogenous lipids were studied in terms of gluten network strengthening, which indirectly stabilizes gas cells, and in terms of direct interfacial gas cell stabilization. Unlike diacetyl tartaric esters of mono- and diacylglycerols (DATEM, used as control), lipase use did not impact dough extensibility. The effect on dough extensibility was therefore related to its lipid composition at the start of mixing. Both lipases and DATEM strongly increase the levels of polar lipids in dough liquor and their availability for and potential accumulation at gas cell interfaces. Lipases form lysolipids that emulsify other lipids. We speculate that DATEM competes with (endogenous) polar lipids for interacting with gluten proteins.

  11. Cereal cyst nematode screening in locally adapted spring wheat (Triticum aestivum L.) germplasm of the Pacific Northwest, 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field screenings were performed to determine if there is resistance to Heterodera filipjevi in locally adapted wheat germplasm which could be introgressed into new WA wheat varieties. A field naturally infested with Heterodera filipjevi located in Colton, WA, was selected for this experiment. Cultiv...

  12. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett

    PubMed Central

    Wang, Xiao; Vignjevic, Marija; Jiang, Dong; Jacobsen, Susanne; Wollenweber, Bernd

    2014-01-01

    Drought stress occurring during the reproductive growth stage leads to considerable reductions in crop production and has become an important limiting factor for food security globally. In order to explore the possible role of drought priming (pre-exposure of the plants to mild drought stress) on the alleviation of a severe drought stress event later in development, wheat plants were subjected to single or double mild drought episodes (soil relative water content around 35–40%) before anthesis and/or to a severe drought stress event (soil relative water content around 20–25%) 15 d after anthesis. Here, single or double drought priming before anthesis resulted in higher grain yield than in non-primed plants under drought stress during grain filling. The photosynthesis rate and ascorbate peroxidase activity were higher while malondialdehyde content was lower in primed plants than in the non-primed plants under drought stress during grain filling. Proteins in flag leaves differently expressed by the priming and drought stress were mainly related to photosynthesis, stress defence, metabolism, molecular chaperone, and cell structure. Furthermore, the protein abundance of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit, Rubisco activase and ascorbate peroxidase were upregulated in primed plants compared with non-primed plants under drought stress during grain filling. In conclusion, the altered protein expression and upregulated activities of photosynthesis and ascorbate peroxidase in primed plants may indicate their potential roles in alleviating a later-occurring drought stress episode, thereby contributing to higher wheat grain yield under drought stress during grain filling. PMID:25205581

  13. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.).

    PubMed

    Millet, E; Manisterski, J; Ben-Yehuda, P; Distelfeld, A; Deek, J; Wan, A; Chen, X; Steffenson, B J

    2014-06-01

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an "anti-gametocidal" wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes.

  14. Identification and characterization of genes on a single subgenome in the hexaploid wheat (Triticum aestivum L.) genotype 'Chinese Spring'.

    PubMed

    Ma, Jian; Zheng, Zhi; Stiller, Jiri; Lan, Xiu-Jin; Liu, Yaxi; Deng, Mei; Wang, Penghao; Pu, Zhien; Chen, Guangdeng; Jiang, Qian-Tao; Wei, Yuming; Zheng, You-Liang

    2017-03-01

    Gene loss during the formation of hexaploid bread wheat has been repeatedly reported. However, our knowledge on genome-wide analysis of the genes present on a single subgenome (SSG) in bread wheat is still limited. In this study, by analysing the 'Chinese Spring' chromosome arm shotgun sequences together with high-confidence gene models, we detected 433 genes on a SSG. Greater gene loss was observed in A and D subgenomes compared with B subgenome. More than 79% of the orthologs for these SSG genes were detected in diploid and tetraploid relatives of hexaploid wheat. Unexpectedly, no bias in expression breadth or in the distribution patterns of GO (gene ontology) terms for these genes was detected among the high-confidence genes. Further, network and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses indicated that most of these genes were not functionally related to each other. Interestingly, 30.7% of these SSG genes were most highly expressed in root, showing biased distribution given the distribution of the whole high-confidence genes. Collectively, these results facilitate our understanding of the loss of the genes that were retained in a SSG during the formation of hexaploid wheat.

  15. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum).

    PubMed

    Akpinar, Bala A; Lucas, Stuart J; Vrána, Jan; Doležel, Jaroslav; Budak, Hikmet

    2015-08-01

    Flow cytometric sorting of individual chromosomes and chromosome-based sequencing reduces the complexity of large, repetitive Triticeae genomes. We flow-sorted chromosome 5D of Aegilops tauschii, the D genome donor of bread wheat and sequenced it by Roche 454 GS FLX platform to approximately 2.2x coverage. Repetitive sequences represent 81.09% of the survey sequences of this chromosome, and Class I retroelements are the prominent type, with a particular abundance of LTR/Gypsy superfamily. Nonrepetitive sequences were assembled to cover 17.76% of the total chromosome regions. Up to 6188 nonrepetitive gene loci were predicted to be encoded by the 5D chromosome. The numbers and chromosomal distribution patterns of tRNA genes suggest abundance in tRNA(L) (ys) and tRNA(M) (et) species, while the nonrepetitive assembly reveals tRNA(A) (la) species as the most abundant type. A comparative analysis of the genomic sequences of bread wheat and Aegilops chromosome 5D indicates conservation of gene content. Orthologous unique genes, matching Aegilops 5D sequences, numbered 3730 in barley, 5063 in Brachypodium, 4872 in sorghum and 4209 in rice. In this study, we provide a chromosome-specific view into the structure and organization of the 5D chromosome of Ae. tauschii, the D genome ancestor of bread wheat. This study contributes to our understanding of the chromosome-level evolution of the wheat genome and presents a valuable resource in wheat genomics due to the recent hybridization of Ae. tauschii genome with its tetraploid ancestor.

  16. Recurrent selection for wider seedling leaves increases early biomass and leaf area in wheat (Triticum aestivum L.).

    PubMed

    Zhang, L; Richards, R A; Condon, A G; Liu, D C; Rebetzke, G J

    2015-03-01

    The breeding of wheat with greater early vigour has potential to increase water- and nutrient-use efficiency, as well as to improve weed competitiveness to raise crop yields profitably. Given that wheat is inherently conservative in its early growth, a sustained breeding effort was initiated to increase genetically seedling leaf area in developing novel high vigour germplasm. A recurrent selection programme was initiated by intercrossing a genetically diverse set of 28 vigorous wheat lines identified globally. These were intercrossed at random and S1:2 progeny with the largest leaf 1 and 2 widths were intermated to develop new populations for assessment of early growth. This procedure was repeated for up to 60 segregating families per cycle across six cycles over 15 years. Thirty random S1:2 progeny were retained from each cycle and seed-increased together to produce seed for early vigour assessment in multiple sowings. The most vigorous wheat seedlings were identified in later cycles, with some lines producing more than double the leaf area and biomass of elite commercial wheat varieties. Phenotypic selection for greater leaf width was associated with a realized significant (P<0.01) linear increase per seedling of 0.41 mm per cycle (+7.1%) for mean leaf width, and correlated linear increases in total leaf area and biomass of 4.48 cm(2) per cycle (+10.3%) and 10.8 mg per cycle (+5.3%), respectively. Genetic gains in widths of leaves 2 (+8.4%) and 3 (+11.5%) were significantly (P<0.01) greater than for leaf 1 (+5.3%). Selection for greater leaf width was associated with linear increases in coleoptile tiller leaf area, small curvilinear increases in leaf 1 length, and reductions in numbers of leaves and mainstem tillers. Genetic variances were large and heritabilities high for leaf width and total leaf area in each cycle, but reduced linearly in size with selection across cycles. Coupling diverse germplasm with a simple, inexpensive, and repeatable selection process has confirmed the value of recurrent selection in developing uniquely vigorous wheat germplasm for use as parents in commercial breeding.

  17. Elucidation of defense-related signaling responses to spot blotch infection in bread wheat (Triticum aestivum L.).

    PubMed

    Sahu, Ranabir; Sharaff, Murali; Pradhan, Maitree; Sethi, Avinash; Bandyopadhyay, Tirthankar; Mishra, Vinod K; Chand, Ramesh; Chowdhury, Apurba K; Joshi, Arun K; Pandey, Shree P

    2016-04-01

    Spot blotch disease, caused by Bipolaris sorokiniana, is an important threat to wheat, causing an annual loss of ~17%. Under epidemic conditions, these losses may be 100%, yet the molecular responses of wheat to spot blotch remain almost uncharacterized. Moreover, defense-related phytohormone signaling genes have been poorly characterized in wheat. Here, we have identified 18 central components of salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and enhanced disease susceptibility 1 (EDS1) signaling pathways as well as the genes of the phenylpropanoid pathway in wheat. In time-course experiments, we characterized the reprogramming of expression of these pathways in two contrasting genotypes: Yangmai #6 (resistant to spot blotch) and Sonalika (susceptible to spot blotch). We further evaluated the performance of a population of recombinant inbred lines (RILs) by crossing Yangmai#6 and Sonalika (parents) and subsequent selfing to F10 under field conditions in trials at multiple locations. We characterized the reprogramming of defense-related signaling in these RILs as a consequence of spot blotch attack. During resistance to spot blotch attack, wheat strongly elicits SA signaling (SA biogenesis as well as the NPR1-dependent signaling pathway), along with WRKY33 transcription factor, followed by an enhanced expression of phenylpropanoid pathway genes. These may lead to accumulation of phenolics-based defense metabolites that may render resistance against spot blotch. JA signaling may synergistically contribute to the resistance. Failure to elicit SA (and possibly JA) signaling may lead to susceptibility against spot blotch infection in wheat.

  18. Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging.

    PubMed

    Cheng, Xiang-Xu; Yu, Min; Zhang, Nan; Zhou, Zhu-Qing; Xu, Qiu-Tao; Mei, Fang-Zhu; Qu, Liang-Huan

    2016-03-01

    Previous studies have proved that waterlogging stress accelerates the programmed cell death (PCD) progress of wheat endosperm cells. A highly waterlogging-tolerant wheat cultivar Hua 8 and a waterlogging susceptible wheat cultivar Hua 9 were treated with different waterlogging durations, and then, dynamic changes of reactive oxygen species (ROS), gene expressions, and activities of antioxidant enzymes in endosperm cells were detected. The accumulation of ROS increased considerably after 7 days of waterlogging treatment (7 DWT) and 12 DWT in both cultivars compared with control group (under non-waterlogged conditions), culminated at 12 DAF (days after flowering) and reduced hereafter. Waterlogging resulted in a great increase of H2O2 and O2 (-) in plasma membranes, cell walls, mitochondrias, and intercellular spaces with ultracytochemical localization. Moreover, the deformation and rupture of cytomembranes as well as the swelling and distortion of mitochondria were obvious. Under waterlogging treatment conditions, catalase (CAT) gene expression increased in endosperm of Hua 8 but activity decreased. In addition, Mn superoxide dismutase (MnSOD) gene expression and superoxide dismutase (SOD) activity increased. Compared with Hua 8, both CAT, MnSOD gene expressions and CAT, SOD activities decreased in Hua 9. Moreover, ascorbic acid and mannitol relieve the intensifying of PCD processes in Hua 8 endosperm cells induced by waterlogging. These results indicate that ROS have important roles in the PCD of endosperm cells, the changes both CAT, MnSOD gene expressions and CAT, SOD activities directly affected the accumulation of ROS in two different wheat cultivars under waterlogging, ultimately led to the PCD acceleration of endosperm.

  19. Characterization of a Putative New Semi-Dominant Reduced Height Gene, Rht_NM9, in Wheat (Triticum aestivum L.).

    PubMed

    Lu, Yuan; Xing, Liping; Xing, Shujuan; Hu, Ping; Cui, Chaofan; Zhang, Mingyi; Xiao, Jin; Wang, Haiyan; Zhang, Ruiqi; Wang, Xiue; Chen, Peidu; Cao, Aizhong

    2015-12-20

    Plant height is an important agronomic trait in cereal crops, and can affect both plant architecture and grain yield. New dwarfing genes are required for improving the genetic diversity of wheat. In this study, a novel dwarf mutant, NM9, was created by treating seeds of the wheat variety NAU9918 with ethyl methanesulfonate (EMS). NM9 showed obvious phenotypic changes, which were distinct from those caused by other dwarfing genes, especially the reduced plant height, increased effective tiller number, and elongated spike and grain length. The reduced plant height in NM9 was attributable to a semi-dominant dwarfing gene Rht_NM9, which was flanked by two closely linked SNP markers, SNP34 and SNP41, covering an 8.86-Mb region on the chromosome arm 2AS. The results of gibberellic acid (GA) sensitivity evaluation, comparative genomics analysis and allelism test indicated that Rht_NM9 was neither allelic to Rht7 and Rht21 nor homoeoallelic to Rht8, so Rht_NM9 was proposed to be a new dwarfing locus on the homoeologous group 2 chromosomes of wheat. Rht_NM9 has a negative effect on plant height and positive effects on effective tiller number and grain size, thus, Rht_NM9 could be used for elucidating the mechanisms underlying plant architecture and grain development.

  20. Comparative toxicity of nonylphenol, nonylphenol-4-ethoxylate and nonylphenol-10-ethoxylate to wheat seedlings (Triticum aestivum L.).

    PubMed

    Zhang, Qingming; Wang, Feifei; Xue, Changhui; Wang, Caixia; Chi, Shengqi; Zhang, Jianfeng

    2016-09-01

    Nonylphenol polyethoxylates (NPEOs) are a group of surfactants that are widely used in industrial and household products and often detected in the environment. The metabolite of NPEOs, named nonylphenol (NP), has proven to be an endocrine disruptor, and its environmental behavior and eco-toxicity have been widely investigated in previous studies. However, to the best of our knowledge, insight into the toxicity differences of NP and NPEOs on important crops remains limited. Therefore, this study investigated the comparative toxicity of NP, nonylphenol-4-ethoxylate (NP4EO), and nonylphenol-10-ethoxylate (NP10EO) on wheat seedlings using hydroponic experiments. The results indicated that NP is most toxic to wheat followed by NP4EO, and NP10EO is the least toxic to wheat. The adverse effects of NP on wheat were observed for all the tested parameters including germination, shoot length, root length, chlorophyll, lipid peroxidation, and enzymatic activities. To gain insight into the molecular response, we analyzed the transcript abundance of SOD-Cu/Zn and CAT with NP, NP4EO, and NP10EO exposure using quantitative real-time PCR. The data revealed that both genes exhibited up- or down-regulated expression patterns that were consistent with the activities of the two enzymes. This result further conformed that NP is most toxic to wheat plants.

  1. Recurrent selection for wider seedling leaves increases early biomass and leaf area in wheat (Triticum aestivum L.)

    PubMed Central

    Zhang, L.; Richards, R. A.; Condon, A. G.; Liu, D. C.; Rebetzke, G. J.

    2015-01-01

    The breeding of wheat with greater early vigour has potential to increase water- and nutrient-use efficiency, as well as to improve weed competitiveness to raise crop yields profitably. Given that wheat is inherently conservative in its early growth, a sustained breeding effort was initiated to increase genetically seedling leaf area in developing novel high vigour germplasm. A recurrent selection programme was initiated by intercrossing a genetically diverse set of 28 vigorous wheat lines identified globally. These were intercrossed at random and S1:2 progeny with the largest leaf 1 and 2 widths were intermated to develop new populations for assessment of early growth. This procedure was repeated for up to 60 segregating families per cycle across six cycles over 15 years. Thirty random S1:2 progeny were retained from each cycle and seed-increased together to produce seed for early vigour assessment in multiple sowings. The most vigorous wheat seedlings were identified in later cycles, with some lines producing more than double the leaf area and biomass of elite commercial wheat varieties. Phenotypic selection for greater leaf width was associated with a realized significant (P<0.01) linear increase per seedling of 0.41mm per cycle (+7.1%) for mean leaf width, and correlated linear increases in total leaf area and biomass of 4.48cm2 per cycle (+10.3%) and 10.8mg per cycle (+5.3%), respectively. Genetic gains in widths of leaves 2 (+8.4%) and 3 (+11.5%) were significantly (P<0.01) greater than for leaf 1 (+5.3%). Selection for greater leaf width was associated with linear increases in coleoptile tiller leaf area, small curvilinear increases in leaf 1 length, and reductions in numbers of leaves and mainstem tillers. Genetic variances were large and heritabilities high for leaf width and total leaf area in each cycle, but reduced linearly in size with selection across cycles. Coupling diverse germplasm with a simple, inexpensive, and repeatable selection process has confirmed the value of recurrent selection in developing uniquely vigorous wheat germplasm for use as parents in commercial breeding. PMID:25504641

  2. Evidence of intralocus recombination between the low-molecular weight glutenin subunit in bread wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The low-molecular weight glutenin subunits (LMW-GSs) are one of the major components of wheat seed storage proteins and play a critical role in the determination of wheat flour bread-making quality. The genes encoding for this class of proteins are mainly located at the orthologous Glu-3 loci (Glu-A...

  3. Expression and in silico characterization of Phenylalanine ammonium lyase against karnal bunt (Tilletia indica) in wheat (Triticum aestivum).

    PubMed

    Purwar, Shalini; Sundaram, Shanthy; Sinha, Sukrat; Gupta, Ankit; Dobriyall, Neha; Kumar, Anil

    2013-01-01

    To investigate the lignifications process and its physiological significance under Karnal Bunt (KB), the changes in enzymes responsible for lignifications likes, phenylalanine ammonia lyase (PAL), were determined in resistant (HD-29) and susceptible genotype (WH-542) of wheat during different developmental stages. The PAL gene was cloned and sequenced. The expression of PAL gene was measured by means of semi-quantitative RT-PCR. The enzyme was expressed constitutively in both the susceptible and resistant genotype. However, the activity was higher in all the developmental stages of resistant genotype, indicating that this genotype has a significant higher basal level of these enzymes as compared to the susceptible line and could be used as marker(s) to define KB resistance. The activity of PAL was significantly higher in WSv stage (Z=16). Structural comparisons based on alignments of all the protein sequences using the clustal W program and searches for conserved motifs using the MEME program have revealed broad conservation of main motifs characteristic of the plant PAL. MSA and phylogenetic analyses of different plants PAL demonstrate that all PAL cluster divided in to two main cluster. The PAL also possesses a specific consensus sequences [GS]- [STG]-[LIVM]-[STG]-[SAC]-S-G-[DH]-L-x-[PN]-L-[SA]-x(2,3)-[SAGVTL]. The pathway might be associated with the enhancement of structural defense barrier due to lignifications of cell wall as evident from the enhanced synthesis of lignin in all the stages of resistant genotype. Our results clearly indicate the possible role of enzymes of Phenyl propanoid pathway metabolism provides genotype and stage dependant structural barrier resistance in wheat against KB.

  4. Contrasting responses of salinity-stressed salt-tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution.

    PubMed

    Zheng, Y H; Li, X; Li, Y G; Miao, B H; Xu, H; Simmons, M; Yang, X H

    2012-03-01

    Contrasting winter wheat cultivars, salt-tolerant DK961 and intolerant JN17, which sown in no salinity (-S) and salinity (+S) boxes were exposed to charcoal filtered air (CF) and elevated O(3) (+O(3)) in open top chambers (OTCs) for 30 days. In -S DK961 and JN17 plants, +O(3) DK961 and JN17 plants had significantly lower light-saturated net photosynthetic rates (A(sat), 26% and 24%), stomatal conductance (g(s), 20% and 32%) and chlorophyll contents (10% and 21%), while O(3) considerably increased foliar electrolyte leakage (13% and 39%), malondialdehyde content (9% and 23%), POD activity and ABA content. However, responses of these parameters to O(3) were significant in DK961 but not in JN17 in +S treatment. Correlation coefficient of DK961 reached significance level of 0.01, but it was not significant in JN17 under interaction of O(3) and salinity. O(3)-induced reductions were larger in shoot than in root in both cultivars. Results indicate that the salt-tolerant cultivar sustained less damage from salinity than did the intolerant cultivar but was severely injured by O(3) under +S condition. Therefore, selecting for greater salt tolerance may not lead to the expected gains in yield in areas of moderate (100 mM) salinity when O(3) is present in high concentrations. In contrast, salinity-induced stomatal closure effectively reduced sensitivity to O(3) in the salt-intolerant cultivar. Hence we suggest salt-tolerant winter wheat cultivars might be well adapted to areas of high (>100 mM) salinity and O(3) stress, while intolerant cultivars might be adaptable to areas of mild/moderate salinity but high O(3) pollution.

  5. Supplemental exogenous NPK application alters biochemical processes to improve yield and drought tolerance in wheat (Triticum aestivum L.).

    PubMed

    Shabbir, Rana Nauman; Waraich, E A; Ali, H; Nawaz, F; Ashraf, M Y; Ahmad, R; Awan, M I; Ahmad, S; Irfan, M; Hussain, S; Ahmad, Z

    2016-02-01

    The recent food security issues, combined with the threats from climate change, demand future farming systems to be more precise and accurate to fulfill the ever increasing global food requirements. The role of nutrients such as nitrogen (N), phosphorous (P), and potassium (K) in stimulating plant growth and development is well established; however, little is known about their function, if applied in combination, in improving crop yields under environmental stresses like drought. The aim of this study was to evaluate the effects of combined foliar spray of supplemental NPK (NPKc) on physiological and biochemical mechanisms that enhance the drought tolerance potential of wheat for improved yield. Foliar NPKc markedly influenced the accumulation of osmoprotectants and activity of both nitrogen assimilation and antioxidant enzymes. It significantly improved the concentration of proline (66 %), total soluble sugars (37 %), and total soluble proteins (10 %) and enhanced the activity of nitrate reductase, nitrite reductase, catalase, and peroxidase by 47, 45, 19, and 8 %, respectively, with respect to no spray under water-deficit conditions which, in turn, improve the yield and yield components. The accumulation of osmolytes and activity of antioxidant machinery were more pronounced in drought tolerant (Bhakkar-02) than sensitive genotype (Shafaq-06).

  6. Impact of Preharvest Sprouting of Wheat (Triticum aestivum) in the Field on Starch, Protein, and Arabinoxylan Properties.

    PubMed

    Olaerts, Heleen; Roye, Chiara; Derde, Liesbeth J; Sinnaeve, Georges; Meza, Walter R; Bodson, Bernard; Courtin, Christophe M

    2016-11-09

    To obtain detailed knowledge on possible changes in the properties of starch, proteins, and arabinoxylan as a result of field preharvest sprouting (PHS), three wheat varieties were harvested at maturity and several weeks later when severe PHS had occurred. Falling number values of flour dropped from 306 to 147 s (Sahara), 382 to 155 s (Forum), and 371 to 230 s (Tobak). Blocking of α-amylase activity demonstrated that the decline in falling number and changes in RVA pasting and gelation properties were not caused by changes in intrinsic starch properties as a result of PHS. PHS had no influence on the SDS-extractability and molecular weight distribution of the proteins. For arabinoxylan, incipient breakdown was noticed, leading to a higher amount and average degree of polymerization of water extractable arabinoxylan. Results show that strategies to cope with severely PHS in wheat should focus on blocking enzyme activities.

  7. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm.

    PubMed

    Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J; Madrid, Susan M; Brinch-Pedersen, Henrik; Holm, Preben B; Scheller, Henrik V

    2010-04-01

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm-specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal (Lys-Asp-Glu-Leu) KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and threefold relative to wild type. The grains were shrivelled and had a 25%-33% decrease in mass. Extensive analysis of the cell walls showed a 10%-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water-extractable arabinoxylan, and a shift in the MW of the water-extractable arabinoxylan from being mainly larger than 85 kD to being between 2 and 85 kD. Ferulic acid esterase-expressing grains were also shrivelled, and the seed weight was decreased by 20%-50%. No ferulic acid esterase activity could be detected in wild-type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15%-40% increase in water-unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13% and 34%. In all the plants, the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

  8. H(+)/phenanthrene symporter and aquaglyceroporin are implicated in phenanthrene uptake by wheat (Triticum aestivum L.) roots.

    PubMed

    Zhan, Xinhua; Zhang, Xiaobin; Yin, Xiaoming; Ma, Hengliang; Liang, Jianru; Zhou, Lixiang; Jiang, Tinghui; Xu, Guohua

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that are toxic to human and nonhuman organisms. Dietary intake of PAHs is a dominant route of exposure for the general population because food crops are a major source of dietary PAHs. The mechanism for crop root uptake of PAHs remains unclear. Here we reveal that wheat root uptake of PAHs involves active and passive processes. The passive uptake is mercury and glycerol dependent. Mercury and glycerol inhibit uptake, indicating that aquaglyceroporins sensitive to mercury contribute to passive uptake. Active uptake is mediated by a phenanthrene/H symporter. The electrical response of wheat roots triggered by phenanthrene consists of two sequential phases: depolarization followed by repolarization. The depolarization is phenanthrene concentration dependent, with saturation kinetics that have an apparent of K(m) 10.8 μmol L(-1). As uptake proceeds, external solution pH increase is noticed. Lower pH favors the uptake. Vanadate and 2,4-dinitrophenol suppress the electrical response to phenanthrene and phenanthrene uptake, suggesting that plasma membrane H(+)-ATPase is involved in the establishment of an electrochemical proton gradient acting as a driving force for active uptake. Therefore, it is suggested that aquaglyceroporin and phenanthrene/H symporter are implicated in phenanthrene uptake. Our results provide insight into PAH uptake mechanism in wheat roots that is relevant to strategies for reducing PAH accumulation in wheat for food safety, improving phytoremediation of PAH-contaminated soils or water by agronomic practices and genetic modification to target remedial plants for higher PAH uptake capacity.

  9. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm

    SciTech Connect

    Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben B.; Scheller, Henrik V.

    2009-12-08

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and three fold relative to wild type. The grains were shriveled and had a 25-33% decrease in mass. Extensive analysis of the cell walls showed a 10-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water extractable arabinoxylan, and a shift in the MW of the water extractable arabinoxylan from being mainly larger than 85 kD to being between 2 kD and 85 kD. Ferulic acid esterase expressing grains were also shriveled and the seed weight was decreased by 20-50%. No ferulic acid esterase activity could be detected in wild type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15-40% increase in water unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13 and 34%. In all the plants the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

  10. Association Analysis of Grain-setting Rates in Apical and Basal Spikelets in Bread Wheat (Triticum aestivum L.)

    PubMed Central

    Guo, Jie; Zhang, Yong; Shi, Weiping; Zhang, Boqiao; Zhang, Jingjuan; Xu, Yanhao; Cheng, Xiaoming; Cheng, Kai; Zhang, Xueyong; Hao, Chenyang; Cheng, Shunhe

    2015-01-01

    The rates of grain-setting in apical and basal spikelets in wheat directly affect the kernel number per spike (KNPS). In this study, 220 wheat lines from 18 Chinese provinces and five foreign countries were used as a natural population. Phenotypic analysis showed differences in grain-setting rates between apical and basal spikelets. The broad-sense heritability of grain-setting rate in apical spikelets (18.7–21.0%) was higher than that for basal spikelets (9.4–16.4%). Significant correlations were found between KNPS and grain numbers in apical (R2 = 0.40–0.45, P < 0.01) and basal (R2 = 0.41–0.56, P < 0.01) spikelets. Seventy two of 106 SSR markers were associated with grain setting, 32 for apical spikelets, and 34 for basal spikelets. The SSR loci were located on 17 chromosomes, except 3A, 3D, 4A, and 7D, and explained 3.7–22.9% of the phenotypic variance. Four markers, Xcfa2153-1A202, Xgwm186-5A118, Xgwm156-3B319, and Xgwm537-7B210, showed the largest effects on grain numbers in apical and basal spikelets. High grain numbers in apical and basal spikelets were associated with elite alleles. Ningmai 9, Ning 0569, and Yangmai 18 with high grain-setting rates carried larger numbers of favorable alleles. Comparison of grain numbers in basal and apical spikelets of 35 Yangmai and Ningmai lines indicated that the Ningmai lines had better grain-setting rates (mean 21.4) than the Yangmai lines (16.5). PMID:26635852

  11. Role of Bacterial Communities in the Natural Suppression of Rhizoctonia solani Bare Patch Disease of Wheat (Triticum aestivum L.)

    PubMed Central

    Yin, Chuntao; Hulbert, Scot H.; Schroeder, Kurtis L.; Mavrodi, Olga; Mavrodi, Dmitri; Dhingra, Amit; Schillinger, William F.

    2013-01-01

    Rhizoctonia bare patch and root rot disease of wheat, caused by Rhizoctonia solani AG-8, develops as distinct patches of stunted plants and limits the yield of direct-seeded (no-till) wheat in the Pacific Northwest of the United States. At the site of a long-term cropping systems study near Ritzville, WA, a decline in Rhizoctonia patch disease was observed over an 11-year period. Bacterial communities from bulk and rhizosphere soil of plants from inside the patches, outside the patches, and recovered patches were analyzed by using pyrosequencing with primers designed for 16S rRNA. Taxa in the class Acidobacteria and the genus Gemmatimonas were found at higher frequencies in the rhizosphere of healthy plants outside the patches than in that of diseased plants from inside the patches. Dyella and Acidobacteria subgroup Gp7 were found at higher frequencies in recovered patches. Chitinophaga, Pedobacter, Oxalobacteriaceae (Duganella and Massilia), and Chyseobacterium were found at higher frequencies in the rhizosphere of diseased plants from inside the patches. For selected taxa, trends were validated by quantitative PCR (qPCR), and observed shifts of frequencies in the rhizosphere over time were duplicated in cycling experiments in the greenhouse that involved successive plantings of wheat in Rhizoctonia-inoculated soil. Chryseobacterium soldanellicola was isolated from the rhizosphere inside the patches and exhibited significant antagonism against R. solani AG-8 in vitro and in greenhouse tests. In conclusion, we identified novel bacterial taxa that respond to conditions affecting bare patch disease symptoms and that may be involved in suppression of Rhizoctonia root rot and bare batch disease. PMID:24056471

  12. The distal portion of wheat (Triticum aestivum L.) chromosome 5D short arm controls endosperm vitreosity and grain hardness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kernel vitreosity is an important trait of wheat grain, but its complete developmental control is not known. We developed back-cross seven (BC7) near isogenic lines in the soft white spring wheat cultivar Alpowa that possess or lack the distal portion of chromosome 5D short arm. This deletion was de...

  13. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett.

    PubMed

    Wang, Xiao; Vignjevic, Marija; Jiang, Dong; Jacobsen, Susanne; Wollenweber, Bernd

    2014-12-01

    Drought stress occurring during the reproductive growth stage leads to considerable reductions in crop production and has become an important limiting factor for food security globally. In order to explore the possible role of drought priming (pre-exposure of the plants to mild drought stress) on the alleviation of a severe drought stress event later in development, wheat plants were subjected to single or double mild drought episodes (soil relative water content around 35-40%) before anthesis and/or to a severe drought stress event (soil relative water content around 20-25%) 15 d after anthesis. Here, single or double drought priming before anthesis resulted in higher grain yield than in non-primed plants under drought stress during grain filling. The photosynthesis rate and ascorbate peroxidase activity were higher while malondialdehyde content was lower in primed plants than in the non-primed plants under drought stress during grain filling. Proteins in flag leaves differently expressed by the priming and drought stress were mainly related to photosynthesis, stress defence, metabolism, molecular chaperone, and cell structure. Furthermore, the protein abundance of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit, Rubisco activase and ascorbate peroxidase were upregulated in primed plants compared with non-primed plants under drought stress during grain filling. In conclusion, the altered protein expression and upregulated activities of photosynthesis and ascorbate peroxidase in primed plants may indicate their potential roles in alleviating a later-occurring drought stress episode, thereby contributing to higher wheat grain yield under drought stress during grain filling.

  14. A Halotolerant Bacterium Bacillus licheniformis HSW-16 Augments Induced Systemic Tolerance to Salt Stress in Wheat Plant (Triticum aestivum)

    PubMed Central

    Singh, Rajnish P.; Jha, Prabhat N.

    2016-01-01

    Certain plant growth promoting bacteria can protect associated plants from harmful effects of salinity. We report the isolation and characterization of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase bacterium Bacillus licheniformis HSW-16 capable of ameliorating salt (NaCl) stress in wheat plants. The bacterium was isolated from the water of Sambhar salt lake, Rajasthan, India. The presence of ACC deaminase activity was confirmed by enzyme assay and analysis of AcdS gene, a structural gene for ACC deaminase. Inoculation of B. licheniformis HSW-16 protected wheat plants from growth inhibition caused by NaCl and increased plant growth (6-38%) in terms of root length, shoot length, fresh weight, and dry weight. Ionic analysis of plant samples showed that the bacterial inoculation decreased the accumulation of Na+ content (51%), and increased K+ (68%), and Ca2+ content (32%) in plants at different concentration of NaCl. It suggested that bacterial inoculation protected plants from the effect of NaCl by decreasing the level of Na+ in plants. Production of exopolysaccharide by the B. licheniformis HSW-16 can also protect from Na+ by binding this ion. Moreover, application of test isolate resulted in an increase in certain osmolytes such as total soluble sugar, total protein content, and a decrease in malondialdehyde content, illustrating their role in the protection of plants. The ability of B. licheniformis HSW-16 to colonize plant root surface was examined by staining the bacterium with acridine orange followed by fluorescence microscopy and polymerase chain reaction-based DNA finger printing analysis. These results suggested that B. licheniformis HSW-16 could be used as a bioinoculant to improve the productivity of plants growing under salt stress. PMID:28018415

  15. [Preliminary gene-mapping of photoperiod-temperature sensitive genic male sterility in wheat (Triticum aestivum L.)].

    PubMed

    Cao, Shuang-He; Guo, Xiao-Li; Liu, Dong-Cheng; Zhang, Xiang-Qi; Zhang, Ai-Min

    2004-03-01

    The photoperiod-temperature sensitive genic male sterile (PTSGMS) line in wheat is important for the utilization of heterosis. The wheat line, BAU3338, is an excellent PTSGMS material identified in the recent years. In this study, its PTSGMS genes were mapped using molecular markers, SSR and ISSR. The result of molecular analysis showed that the two PTSGMS loci were identified and designated as ptms1 and ptms2, respectively. In addition, the genetic effect analysis indicated that the locus effect of ptms1 was 2-3 times larger than that of ptms2.

  16. Mutant alleles of Photoperiod-1 in wheat (Triticum aestivum L.) that confer a late flowering phenotype in long days.

    PubMed

    Shaw, Lindsay M; Turner, Adrian S; Herry, Laurence; Griffiths, Simon; Laurie, David A

    2013-01-01

    Flowering time in wheat and barley is known to be modified by mutations in the Photoperiod-1 (Ppd-1) gene. Semi-dominant Ppd-1a mutations conferring an early flowering phenotype are well documented in wheat but gene sequencing has also identified candidate loss of function mutations for Ppd-A1 and Ppd-D1. By analogy to the recessive ppd-H1 mutation in barley, loss of function mutations in wheat are predicted to delay flowering under long day conditions. To test this experimentally, introgression lines were developed in the spring wheat variety 'Paragon'. Plants lacking a Ppd-B1 gene were identified from a gamma irradiated 'Paragon' population. These were crossed with the other introgression lines to generate plants with candidate loss of function mutations on one, two or three genomes. Lines lacking Ppd-B1 flowered 10 to 15 days later than controls under long days. Candidate loss of function Ppd-A1 alleles delayed flowering by 1 to 5 days while candidate loss of function Ppd-D1 alleles did not affect flowering time. Loss of Ppd-A1 gave an enhanced effect, and loss of Ppd-D1 became detectable in lines where Ppd-B1 was absent, indicating effects may be buffered by functional Ppd-1 alleles on other genomes. Expression analysis revealed that delayed flowering was associated with reduced expression of the TaFT1 gene and increased expression of TaCO1. A survey of the GEDIFLUX wheat collection grown in the UK and North Western Europe between the 1940s and 1980s and the A.E. Watkins global collection of landraces from the 1920s and 1930s showed that the identified candidate loss of function mutations for Ppd-D1 were common and widespread, while the identified candidate Ppd-A1 loss of function mutation was rare in countries around the Mediterranean and in the Far East but was common in North Western Europe. This may reflect a possible benefit of the latter in northern locations.

  17. Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments.

    PubMed

    Bennett, Dion; Izanloo, Ali; Reynolds, Matthew; Kuchel, Haydn; Langridge, Peter; Schnurbusch, Thorsten

    2012-07-01

    In the water-limited bread wheat production environment of southern Australia, large advances in grain yield have previously been achieved through the introduction and improved understanding of agronomic traits controlled by major genes, such as the semi-dwarf plant stature and photoperiod insensitivity. However, more recent yield increases have been achieved through incremental genetic advances, of which, breeders and researchers do not fully understand the underlying mechanism(s). A doubled haploid population was utilised, derived from a cross between RAC875, a relatively drought-tolerant breeders' line and Kukri, a locally adapted variety more intolerant of drought. Experiments were performed in 16 environments over four seasons in southern Australia, to physiologically dissect grain yield and to detect quantitative trait loci (QTL) for these traits. Two stage multi-environment trial analysis identified three main clusters of experiments (forming distinctive environments, ENVs), each with a distinctive growing season rainfall patterns. Kernels per square metre were positively correlated with grain yield and influenced by kernels per spikelet, a measure of fertility. QTL analysis detected nine loci for grain yield across these ENVs, individually accounting for between 3 and 18% of genetic variance within their respective ENVs, with the RAC875 allele conferring increased grain yield at seven of these loci. These loci were partially dissected by the detection of co-located QTL for other traits, namely kernels per square metre. While most loci for grain yield have previously been reported, their deployment and effect within local germplasm are now better understood. A number of novel loci can be further exploited to aid breeders' efforts in improving grain yield in the southern Australian environment.

  18. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.).

    PubMed

    Zhang, Xiangfen; Gao, Manxia; Wang, Shasha; Chen, Feng; Cui, Dangqun

    2015-01-01

    A total of 205 wheat cultivars from the Yellow and Huai valley of China were used to identify allelic variations of vernalization and photoperiod response genes, as well as the copy number variations (CNVs) of Ppd-B1 and Vrn-A1 genes. A novel Vrn-D1 allele with 174-bp insertion in the promoter region of the recessive allele vrn-D1 was discovered in three Chinese wheat cultivars and designated as Vrn-D1c. Quantitative real-time polymerase chain reaction showed that cultivars with the Vrn-D1c allele exhibited significantly higher expression of the Vrn-D1 gene than that in cultivars with the recessive allele vrn-D1, indicating that the 174-bp insertion of Vrn-D1c contributed to the increase in Vrn-D1 gene expression and caused early heading and flowering. The five new cis-elements (Box II-like, 3-AF1 binding site, TC-rich repeats, Box-W1 and CAT-box) in the 174-bp insertion possibly promoted the basal activity level of Vrn-D1 gene. Two new polymorphism combinations of photoperiod genes were identified and designated as Ppd-D1_Hapl-IX and Ppd-D1_Hapl-X. Association of the CNV of Ppd-B1 gene with the heading and flowering days showed that the cultivars with Ppd-B1_Hapl-VI demonstrated the earliest heading and flowering times, and those with Ppd-B1_Hapl-IV presented the latest heading and flowering times in three cropping seasons. Distribution of the vernalization and photoperiod response genes indicated that all recessive alleles at the four vernalization response loci, Ppd-B1_Hapl-I at Ppd-B1 locus, and Ppd-D1_Hapl-I at the Ppd-D1 locus were predominant in Chinese winter wheat cultivars. This study can provide useful information for wheat breeding programs to screen wheat cultivars with relatively superior adaptability and maturity.

  19. Overuse of Phosphorus Fertilizer Reduces the Grain and Flour Protein Contents and Zinc Bioavailability of Winter Wheat (Triticum aestivum L.).

    PubMed

    Zhang, Wei; Liu, Dunyi; Liu, Yumin; Chen, Xinping; Zou, Chunqin

    2017-03-01

    To supplement human dietary nutrition, it is necessary to evaluate the effects of phosphorus (P) fertilizer application on grain and flour protein contents and especially on the bioavailability of zinc (Zn). A field experiment of winter wheat with six P application rates (0, 25, 50, 100, 200, 400 kg/ha) was conducted from 2013 to 2015. The grain yield increased with P application but was not further enhanced when P rates exceeded 50 kg/ha. As P application increased, the protein concentration in grain and standard flour and the viscosity of standard flour decreased. Phosphorus and phytic acid (PA) concentrations in grain and flours increased and then plateaued, whereas Zn concentration decreased and then plateaued as P application increased from 0 to 100 kg/ha. Estimated Zn bioavailability in grain and flours decreased as P application increased from 0 to 100 kg/ha and then plateaued. Estimated Zn bioavailability was greater in standard flour, bread flour, and refined flour than in grain or coarse flour. Phosphorus supply in the intensive cropping of wheat can be optimized to simultaneously obtain high grain yields, high grain and flour protein contents, and high Zn bioavailability.

  20. Transformation of common wheat (Triticum aestivum L.) with avenin-like b gene improves flour mixing properties.

    PubMed

    Ma, Fengyun; Li, Miao; Yu, Lingling; Li, Yin; Liu, Yunyi; Li, Tingting; Liu, Wei; Wang, Hongwen; Zheng, Qian; Li, Kexiu; Chang, Junli; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins may contribute to the viscoelastic properties of wheat dough via inter-chain disulphide bonds, due to their rich cysteine residues. In order to clarify the effect of the avenin-like b proteins on the functional properties of wheat flour, the functional and biochemical properties of wheat flour were analyzed in three transgenic wheat lines overexpressing the avenin-like b gene using the sodium dodecyl sulfate sedimentation (SDSS) test, Mixograph and size exclusion-high performance liquid chromatography (SE-HPLC) analysis. The results of the SDSS test and Mixograph analysis demonstrated that the overexpression of avenin-like b proteins in transgenic lines led to significantly increased SDSS volume and improved flour mixing properties. The results of SE-HPLC analysis of the gluten proteins in wheat flour demonstrated that the improvement in transgenic line flour properties was associated with the increased proportion of large polymeric proteins due to the incorporation of overexpressed avenin-like b proteins into the glutenin polymers. These results could help to understand the influence and mechanism of avenin-like b proteins on the functional properties of wheat flour.

  1. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.)

    PubMed Central

    Zhang, Xiangfen; Gao, Manxia; Wang, Shasha; Chen, Feng; Cui, Dangqun

    2015-01-01

    A total of 205 wheat cultivars from the Yellow and Huai valley of China were used to identify allelic variations of vernalization and photoperiod response genes, as well as the copy number variations (CNVs) of Ppd-B1 and Vrn-A1 genes. A novel Vrn-D1 allele with 174-bp insertion in the promoter region of the recessive allele vrn-D1 was discovered in three Chinese wheat cultivars and designated as Vrn-D1c. Quantitative real-time polymerase chain reaction showed that cultivars with the Vrn-D1c allele exhibited significantly higher expression of the Vrn-D1 gene than that in cultivars with the recessive allele vrn-D1, indicating that the 174-bp insertion of Vrn-D1c contributed to the increase in Vrn-D1 gene expression and caused early heading and flowering. The five new cis-elements (Box II-like, 3-AF1 binding site, TC-rich repeats, Box-W1 and CAT-box) in the 174-bp insertion possibly promoted the basal activity level of Vrn-D1 gene. Two new polymorphism combinations of photoperiod genes were identified and designated as Ppd-D1_Hapl-IX and Ppd-D1_Hapl-X. Association of the CNV of Ppd-B1 gene with the heading and flowering days showed that the cultivars with Ppd-B1_Hapl-VI demonstrated the earliest heading and flowering times, and those with Ppd-B1_Hapl-IV presented the latest heading and flowering times in three cropping seasons. Distribution of the vernalization and photoperiod response genes indicated that all recessive alleles at the four vernalization response loci, Ppd-B1_Hapl-I at Ppd-B1 locus, and Ppd-D1_Hapl-I at the Ppd-D1 locus were predominant in Chinese winter wheat cultivars. This study can provide useful information for wheat breeding programs to screen wheat cultivars with relatively superior adaptability and maturity. PMID:26191066

  2. Genetic and in silico comparative mapping of the polyphenol oxidase gene in bread wheat (Triticum aestivum L.).

    PubMed

    Raman, Rosy; Raman, Harsh; Johnstone, Katie; Lisle, Chris; Smith, Alison; Martin, Peter; Matin, Peter; Allen, Helen

    2005-10-01

    Polyphenol oxidases (PPOs) are involved in the time-dependent darkening and discolouration of Asian noodles and other wheat end products. In this study, a doubled haploid (DH) population derived from Chara (moderately high PPO activity)/WW2449 (low PPO activity) was screened for PPO activity based on L-DOPA and L-tyrosine assays using whole seeds. Both these assays were significantly genetically correlated (r = 0.91) in measuring the PPO activity in this DH population. Quantitative trait loci (QTLs) analysis utilising a skeleton map enabled us to identify a major QTL controlling PPO activity based on L-DOPA and L-tyrosine on the long arm of chromosome 2A. The simple sequence repeat (SSR) marker GWM294b explained over 82% of the line mean phenotypic variation from samples collected in both 2000 and 2003. Four SSR markers were validated for PPO linkage in genetically diverse backgrounds and proven to correctly predict the PPO activity in more than 92% of wheat lines. Physical mapping using deletion lines of Chinese Spring has confirmed the location of the GWM294b, GWM312 and WMC170 on chromosome 2AL, between deletion breakpoints 2AL-C to 0.85. In order to identify functional gene markers, data searches for alignments between rice BAC/PAC clones assembled on chromosome 1 and 4, chromosome 7, and (1) the wheat expressed sequence tags mapped in deletion bin (2AL-C to 0.85) and (2) the coding sequence of a previously cloned wheat PPO gene were made and found significant sequence similarities with the PPO gene or common central domain of tyrosinase. Available PPO gene sequences in the National Centre for Biotechnology Information (NCBI) database have revealed that there is a significant molecular diversity at the nucleotide and amino acid level in the wheat PPO genes.

  3. [Screening hv-S/TPK from TAC library of a Triticum aestivum-Haynaldia villosa translocation line].

    PubMed

    Sun, Yulei; Cao, Aizhong; Yang, Xueming; Wang, Xiaoyun; Chen, Peidu

    2008-08-01

    Hv-S/TPK gene, a resistance related gene to powdery mildew, was cloned by using genechip, and its expression was upregulated after the inoculation of Blumeria graminis to Haynaldia villosa. Using the specific primers of Hv-S/TPK to screen a genomic TAC (Transformation-competent artificial chromosome) library of translocation line 6VS/6AL, a positive TAC was screened. A 5-kb fragment containing Hv-S/TPK was subcloned and identified. This 5160-bp fragment (GenBank Accession No. EU153366) was determined by specific primer walking. The analysis of Hv-S/TPK genomic sequence showed three introns and four extrons between start code and stop code. In the promoter region of Hv-S/TPK, there were W-box and OCS-like elements which were the elements related to disease resistance. In this study, the positive TAC clone was used to as probe in situ hybridized to mitotic metaphase chromosomes of translocation line. The result of fluorescence in situ hybridization (FISH) indicated that the TAC clone containing Hv-S/TPK was from Haynaldia villosa chromosome.

  4. Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.).

    PubMed

    Alfares, Walid; Bouguennec, Annaig; Balfourier, François; Gay, Georges; Bergès, Hélène; Vautrin, Sonia; Sourdille, Pierre; Bernard, Michel; Feuillet, Catherine

    2009-10-01

    Most elite wheat varieties cannot be crossed with related species thereby restricting greatly the germplasm that can be used for alien introgression in breeding programs. Inhibition to crossability is controlled genetically and a number of QTL have been identified to date, including the major gene Kr1 on 5BL and SKr, a strong QTL affecting crossability between wheat and rye on chromosome 5BS. In this study, we used a recombinant SSD population originating from a cross between the poorly crossable cultivar Courtot (Ct) and the crossable line MP98 to characterize the major dominant effect of SKr and map the gene at the distal end of the chromosome near the 5B homeologous GSP locus. Colinearity with barley and rice was used to saturate the SKr region with new markers and establish orthologous relationships with a 54-kb region on rice chromosome 12. In total, five markers were mapped within a genetic interval of 0.3 cM and 400 kb of BAC contigs were established on both sides of the gene to lay the foundation for map-based cloning of SKr. Two SSR markers completely linked to SKr were used to evaluate a collection of crossable wheat progenies originating from primary triticale breeding programs. The results confirm the major effect of SKr on crossability and the usefulness of the two markers for the efficient introgression of crossability in elite wheat varieties.

  5. Potential New Genes for Resistance to Mycosphaerella Graminicola Identified in Triticum Aestivum x Lophopyrum Elongatum Disomic Substitution Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lophopyrum species carry many desirable agronomic traits, including disease resistance, which can be transferred to wheat by interspecific hybridizations. To identify potentially new genes for disease and insect resistance carried by individual Lophopyrum chromosomes, 19 of 21 possible wheat cultiv...

  6. Cloning and characterization of TaVIP2 gene from Triticum aestivum and functional analysis in Nicotiana tabacum

    PubMed Central

    Zhao, Pei; Wang, Ke; Lin, Zhishan; Zhang, Wei; Du, Lipu; Zhang, Yunlong; Ye, Xingguo

    2016-01-01

    Wheat is recalcitrant to genetic transformation. A potential solution is to manipulate the expression of some host proteins involved in T-DNA integration process. VirE2 interacting protein 2 (VIP2) plays an important role in T-DNA transport and integration. In this study, a TaVIP2 gene was cloned from common wheat. Southern blot and allele-specific polymerase chain reaction (AS-PCR) combined with an online chromosomal location software tool revealed that three TaVIP2 genes were located on wheat chromosomes 1AL, 1BL, and 1DL. These three homoeoallelic TaVIP2 genes all contained 13 exons and 12 introns, and their coding sequences were the same; there were a few single nucleotide polymorphisms (SNPs) among the three genes. The heterologous expression of the TaVIP2 gene in tobacco led to enhancement of the Agrobacterium-mediated transformation efficiency up to 2.5-fold. Transgenic tobacco plants expressing TaVIP2 showed enhanced resistance to powdery mildew. Further quantitative real-time PCR (qRT-PCR) revealed that overexpression of TaVIP2 in transgenic tobacco up-regulated the expression of an endogenous gene, NtPR-1, which likely contributed to powdery mildew resistance in transgenic tobacco. Our study indicates that the TaVIP2 gene may be highly useful in efforts to improve Agrobacterium-mediated transformation efficiency and to enhance powdery mildew resistance in wheat. PMID:27857194

  7. Microbial-enhanced Selenium and Iron Biofortification of Wheat (Triticum aestivum L.)--Applications in Phytoremediation and Biofortification.

    PubMed

    Yasin, Muhammad; El-Mehdawi, Ali Farag; Anwar, Aneela; Pilon-Smits, Elizabeth A H; Faisal, Muhammad

    2015-01-01

    Selenium (Se) is an essential trace element for humans and other mammals. Most dietary Se is derived from crops. To develop a Se biofortification strategy for wheat, the effect of selenate fertilization and bacterial inoculation on Se uptake and plant growth was investigated. YAM2, a bacterium with 99% similarity to Bacillus pichinotyi, showed many plant growth promoting characteristics. Inoculation with YAM2 enhanced wheat growth, both in the presence and absence of selenate: YAM2-inoculated plants showed significantly higher dry weight, shoot length and spike length compared to un-inoculated plants. Selenate also stimulated wheat growth; Un-inoculated Se-treated plants showed a significantly higher dry weight and shoot length compared to control plants without Se. Bacterial inoculation significantly enhanced Se concentration in wheat kernels (167%) and stems (252%), as well as iron (Fe) levels in kernels (70%) and stems (147%), compared to un-inoculated plants. Inoculated Se-treated plants showed a significant increase in acid phosphatase activity, which may have contributed to the enhanced growth. In conclusion; Inoculation with Bacillus sp. YAM2 is a promising Se biofortification strategy for wheat and potentially other crops.

  8. The role of bacterial communities in the natural suppression of Rhizoctonia bare patch of wheat Triticum aestivum L

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia bare patch and root rot of wheat, caused by Rhizoctonia solani AG-8, develops as distinct patches of stunted plants, and limits the yield of direct-seeded wheat in the Pacific Northwest (PNW) of the United States. At a long-term wheat cropping systems study site near Ritzville, WA, conve...

  9. Insights of interaction between small and large subunits of ADP-glucose pyrophosphorylase from bread wheat (Triticum aestivum L.).

    PubMed

    Danishuddin, Mohd; Chatrath, Ravish; Singh, Rajender

    2011-05-07

    Lack of knowledge of three dimensional structures of small and large subunits of ADP- glucose pyrophosphorylase (AGPase) in wheat has hindered efforts to understand the binding specifities of substrate and catalytic mechanism. Thus, to understand the structure activity relationship, 3D structures were built by homology modelling based on crystal structure of potato tuber ADP-glucose pyrophosphorylase. Selected models were refined by energy minimization and further validated by Procheck and Prosa-web analysis. Ramachandran plot showed that overall main chain and side chain parameters are favourable. Moreover, Z-score of the models from Prosa-web analysis gave the conformation that they are in the range of the template. Interaction analysis depicts the involvement of six amino acids in hydrogen bonding (AGP-SThr422-AGP-LMet138, AGP- SArg420-AGP-LGly47, AGP-SSer259-AGP-LSer306, AGP-SGlu241-AGP-LIle311, AGPSGln113- AGP-LGlu286 and AGP-SGln70-AGP-LLys291). Fifteen amino acids of small subunit were able to make hydrophobic contacts with seventeen amino acids of large subunit. Furthermore, decrease in the solvent accessible surface area in the amino acids involved in interaction were also reported. All the distances were formed in between 2.27 to 3.78Å. The present study focussed on heterodimeric structure of (AGPase). This predicted complex not only enhance our understanding of the interaction mechanism between these subunits (AGP-L and AGP-S) but also enable to further study to obtain better variants of this enzyme for the improvement of the plant yield.

  10. Genetic Mapping of a new family of Seed-Expressed Polyphenol Oxidase genes in Wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) enzymatic activity is a major cause in time-dependent discoloration in wheat dough products. The PPO-A1 and PPO-D1 genes have been shown to contribute to wheat kernel PPO activity. However it has been shown that wheat contains multiple PPO genes. Recently a novel PPO gene...

  11. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination.

    PubMed

    Abbas, Tahir; Rizwan, Muhammad; Ali, Shafaqat; Zia-Ur-Rehman, Muhammad; Farooq Qayyum, Muhammad; Abbas, Farhat; Hannan, Fakhir; Rinklebe, Jörg; Sik Ok, Yong

    2017-06-01

    Cadmium (Cd) is a well-known and widespread toxic heavy metal while the effects of biochar (BC) on Cd bioavailability and toxicity in wheat, especially in soils with aged contamination are largely unknown. In the present study, the effect of rice straw BC on Cd immobilization in soil and uptake by wheat in an agricultural contaminated-soil was investigated. Different levels of rice straw BC (0%, 1.5%, 3.0% and 5% w/w) were incorporated into the soil and incubated for two weeks. After this, wheat plants were grown in the amended soil until maturity. The results show that the BC treatments increased the soil and soil solution pH and silicon contents in the plant tissues and in the soil solution while decreased the bioavailable Cd in soil. The BC application increased the plant-height, spike-length, shoot and root dry mass and grain yield in a dose additive manner when compared with control treatment. As compared to control, BC application increased the photosynthetic pigments and gas exchange parameters in leaves. Biochar treatments decreased the oxidative stress while increased the activities of antioxidant enzymes in shoots compared to the control. The BC treatments decreased the Cd and Ni while increased Zn and Mn concentrations in shoots, roots, and grains of wheat compared to the control. As compared to the control, Cd concentration in wheat grains decreased by 26%, 42%, and 57% after the application of 1.5%, 3.0%, and 5.0% BC respectively. Overall, the application of rice straw BC might be effective in immobilization of metal in the soil and reducing its uptake and translocation to grains.

  12. Standardization of protocols to test wheat (Triticum aestivum L.) for reaction to blast in a biocontainment laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth medium, spore age, and inoculum density are essential factors for determining host responses to a plant pathogen. The standardization of these factors is important to obtain adequate and reproducible disease assessments. We are testing US wheat cultivars for reaction to the exotic disease bla...

  13. Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.)

    PubMed Central

    Kaur, Simerjeet; Dhugga, Kanwarpal S.; Gill, Kulvinder; Singh, Jaswinder

    2016-01-01

    Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production. PMID:26771740

  14. Extraction of Sensitive Bands for Monitoring the Winter Wheat (Triticum aestivum) Growth Status and Yields Based on the Spectral Reflectance

    PubMed Central

    Wang, Chao; Feng, Meichen; Yang, Wude; Ding, Guangwei; Xiao, Lujie; Li, Guangxin; Liu, Tingting

    2017-01-01

    To extract the sensitive bands for estimating the winter wheat growth status and yields, field experiments were conducted. The crop variables including aboveground biomass (AGB), soil and plant analyzer development (SPAD) value, yield, and canopy spectra were determined. Statistical methods of correlation analysis, partial least squares (PLS), and stepwise multiple linear regression (SMLR) were used to extract sensitive bands and estimate the crop variables with calibration set. The predictive model based on the selected bands was tested with validation set. The results showed that the crop variables were significantly correlated with spectral reflectance. The major spectral regions were selected with the B-coefficient and variable importance on projection (VIP) parameter derived from the PLS analysis. The calibrated SMLR model based on the selected wavelengths demonstrated an excellent performance as the R2, TC, and RMSE were 0.634, 0.055, and 843.392 for yield; 0.671, 0.017, and 1.798 for SPAD; and 0.760, 0.081, and 1.164 for AGB. These models also performed accurately and robustly by using the field validation data set. It indicated that these wavelengths retained in models were important. The determined wavelengths for yield, SPAD, and AGB were 350, 410, 730, 1015, 1185 and 1245 nm; 355, 400, 515, 705, 935, 1090, and 1365 nm; and 470, 570, 895, 1170, 1285, and 1355 nm, respectively. This study illustrated that it was feasible to predict the crop variables by using the multivariate method. The step-by-step procedure to select the significant bands and optimize the prediction model of crop variables may serve as a valuable approach. The findings of this study may provide a theoretical and practical reference for rapidly and accurately monitoring the crop growth status and predicting the yield of winter wheat. PMID:28060827

  15. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relati...

  16. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.).

    PubMed

    Shaharoona, Baby; Naveed, Muhammad; Arshad, Muhammad; Zahir, Zahir A

    2008-05-01

    Acquisition of nutrients by plants is primarily dependent on root growth and bioavailability of nutrients in the rooting medium. Most of the beneficial bacteria enhance root growth, but their effectiveness could be influenced by the nutrient status around the roots. In this study, two 1-aminocyclopropane-1-carboxylate (ACC)-deaminase containing plant-growth-promoting rhizobacteria (PGPR), Pseudomonas fluorescens and P. fluorescens biotype F were tested for their effect on growth, yield, and nutrient use efficiency of wheat under simultaneously varying levels of all the three major nutrients N, P, and K (at 0%, 25%, 50%, 75%, and 100% of recommended doses). Results of pot and field trials revealed that the efficacy of these strains for improving growth and yield of wheat reduced with the increasing rates of NPK added to the soil. In most of the cases, significant negative linear correlations were recorded between percentage increases in growth and yield parameters of wheat caused by inoculation and increasing levels of applied NPK fertilizers. It is highly likely that under low fertilizer application, the ACC-deaminase activity of PGPR might have caused reduction in the synthesis of stress (nutrient)-induced inhibitory levels of ethylene in the roots through ACC hydrolysis into NH(3) and alpha-ketobutyrate. The results of this study imply that these Pseudomonads could be employed in combination with appropriate doses of fertilizers for better plant growth and savings of fertilizers.

  17. Genotype dependent burst of transposable element expression in crowns of hexaploid wheat (Triticum aestivum L.) during cold acclimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The expression of 1,613 transposable elements (TEs) represented in the Affymetix Wheat Genome Chip was examined during cold treatment in crowns of 4 hexaploid wheat genotypes that vary in tolerance to cold and in flowering time. The TE expression profiles showed a constant level of expression throug...

  18. Novel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.).

    PubMed

    Kaur, Simerjeet; Dhugga, Kanwarpal S; Gill, Kulvinder; Singh, Jaswinder

    2016-01-01

    Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and named them as TaCesAXA, TaCesAXB or TaCesAXD, where X denotes the gene number and the last suffix stands for the respective genome. Sequence analyses of the CESA proteins from wheat and their orthologs from barley, maize, rice, and several dicot species (Arabidopsis, beet, cotton, poplar, potato, rose gum and soybean) revealed motifs unique to monocots (Poales) or dicots. Novel structural motifs CQIC and SVICEXWFA were identified, which distinguished the CESAs involved in the formation of primary and secondary cell wall (PCW and SCW) in all the species. We also identified several new motifs specific to monocots or dicots. The conserved motifs identified in this study possibly play functional roles specific to PCW or SCW formation. The new insights from this study advance our knowledge about the structure, function and evolution of the CesA family in plants in general and wheat in particular. This information will be useful in improving culm strength to reduce lodging or alter wall composition to improve biofuel production.

  19. Genome organisation and retrotransposon driven molecular evolution of the endosperm Hardness (Ha) locus in Triticum aestivum cv Glenlea.

    PubMed

    Ragupathy, Raja; Cloutier, Sylvie

    2008-12-01

    Wheat endosperm texture is controlled primarily by a locus (Ha), which comprises Gsp-1, Pina and Pinb genes encoding the so-called grain softness protein, puroindoline-a and puroindoline-b, respectively. Pina and Pinb were detected only on the D-genome of hexaploid wheat and its diploid progenitors while Gsp-1 was on all three homoeologous loci. Hexaploid cultivar Glenlea has a hard phenotype due to a null Pina genotype (D-genome) but the sequence organization is not reported. This study aimed at understanding the evolution of homoeologous Ha loci. Sequencing of three BAC clones from cv Glenlea was performed and sequence analyses delimited the Ha loci which spanned 3,925, 5,330 and 31,607 bp in the A-, B- and D-genomes, respectively. A solo LTR of Angela retroelement, downstream to Gsp-A1 and a fragment of Sabrina retroelement, downstream of Gsp-B1, were discovered. We propose that the insertion of these elements into the intergenic regions have driven the deletions of genomic segments harbouring Pina and Pinb genes in the A- and B-genomes of hexaploid wheat. Similarly, fragments of Romani and Vagabond retroelements were identified between truncated Pina and Pinb genes, indicating their role in the deletion of Pina in Glenlea, leading to its hard texture. Structural differences of the Ha locus region of the A-genome between two hexaploid wheat varieties namely Glenlea and Renan (CR626929), suggested the presence of more than one tetraploid ancestor in the origin of hexaploid wheat.

  20. Mutual impacts of wheat (Triticum aestivum L.) and earthworms (Eisenia fetida) on the bioavailability of perfluoroalkyl substances (PFASs) in soil.

    PubMed

    Zhao, Shuyan; Fang, Shuhong; Zhu, Lingyan; Liu, Li; Liu, Zhengtao; Zhang, Yahui

    2014-01-01

    Wheat and earthworms were exposed individually and together to soils contaminated with 11 perfluoroalkyl substances (PFASs). Wheat accumulated PFASs from soil with root concentration factors and bioconcentration factors that decreased as the number of perfluorinated carbons in the molecule increased. Earthworms accumulated PFASs from soil with biota-to-soil accumulation factors that increased with the number of carbons. Translocation factors (TF) of perfluorinated carboxylates (PFCAs) in wheat peaked at perfluorohexanoic acid and decreased significantly as the number of carbons increased or decreased. Perfluorohexane sulfonate produced the greatest TF of the three perfluorinated sulfonates (PFSAs) examined. Wheat increased the bioaccumulation of all 11 PFASs in earthworms and earthworms increased the bioaccumulation in wheat of PFCAs containing seven or less perfluorinated carbons, decreased bioaccumulation of PFCAs with more than seven carbons, and decreased bioaccumulation of PFSAs. In general, the co-presence of wheat and earthworms enhanced the bioavailability of PFASs in soil.

  1. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.)

    PubMed Central

    Singh, Rajnish Prakash; Jha, Prabhat Nath

    2016-01-01

    The present study demonstrates the plant growth promoting (PGP) potential of a bacterial isolate CDP-13 isolated from ‘Capparis decidua’ plant, and its ability to protect plants from the deleterious effect of biotic and abiotic stressors. Based on 16S rRNA gene sequence analysis, the isolate was identified as Serratia marcescens. Among the PGP traits, the isolate was found to be positive for ACC deaminase activity, phosphate solubilization, production of siderophore, indole acetic acid production, nitrogen fixation, and ammonia production. CDP-13 showed growth at an increased salt (NaCl) concentration of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. The inoculation of S. marcescens enhanced the growth of wheat plant under salinity stress (150–200 mM). It significantly reduced inhibition of plant growth (15 to 85%) caused by salt stressors. Application of CDP-13 also modulated concentration (20 to 75%) of different osmoprotectants (proline, malondialdehyde, total soluble sugar, total protein content, and indole acetic acid) in plants suggesting its role in enabling plants to tolerate salt stressors. In addition, bacterial inoculation also reduced the disease severity caused by fungal infection, which illustrated its ability to confer induced systemic resistance (ISR) in host plants. Treatment of wheat plants with the test organism caused alteration in anti-oxidative enzymes activities (Superoxide dismutase, Catalase, and Peroxidase) under various salinity levels, and therefore minimizes the salinity-induced oxidative damages to the plants. Colonization efficiency of strain CDP-13 was confirmed by CFU count, epi-fluorescence microscopy, and ERIC-PCR-based DNA fingerprinting approach. Hence, the study indicates that bacterium CDP-13 enhances plant growth, and has potential for the amelioration of salinity stress in wheat plants. Likewise, the results also provide insights into biotechnological approaches to using PGPR as an alternative to chemicals and pesticides. PMID:27322827

  2. Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.).

    PubMed

    Brinch-Pedersen, Henrik; Hatzack, Frank; Sørensen, Lisbeth D; Holm, Preben B

    2003-12-01

    Expression of heterologous phytases in crops offers a great potential for improving phosphate and mineral bioavailability in food and feed. In this context it is of relevance to describe the concerted action of endogenous and hetrologous phytases on the transgenic seed inositol phosphate profile. Here we report metal-dye detection HPLC analysis of inositol phosphate degradation in flour from transgenic wheat materials possessing wheat endogenous 6-phytase [EC 3.1.3.26] and Aspergillus 3-phytase [EC 3.1.3.8] activities under the control of the maize ubiquitin-1 promoter and the wheat high molecular weight glutenin subunit 1DX5 promoter respectively. During 50 min incubation there is an accumulation of InsP5 to InsP2 breakdown products in non-transgenic material. Aspergillus niger phytase specific breakdown products are transiently detected in transgenic material but after 50 min incubation virtually all InsP5, InsP4 and InsP3 isomers are hydrolysed.

  3. Comparative analysis of potassium deficiency-responsive transcriptomes in low potassium susceptible and tolerant wheat (Triticum aestivum L.)

    PubMed Central

    Ruan, Li; Zhang, Jiabao; Xin, Xiuli; Zhang, Congzhi; Ma, Donghao; Chen, Lin; Zhao, Bingzi

    2015-01-01

    Potassium (K+) deficiency as a common abiotic stress can inhibit the growth of plants and thus reduce the agricultural yields. Nevertheless, scarcely any development has been promoted in wheat transcriptional changes under K+ deficiency. Here we investigated root transcriptional changes in two wheat genotypes, namely, low-K+ tolerant “Tongzhou916” and low-K+ susceptible “Shiluan02-1”. There were totally 2713 and 2485 probe sets displayed expression changes more than 1.5-fold in Tongzhou916 and Shiluan02-1, respectively. Low-K+ responsive genes mainly belonged to the categories as follows: metabolic process, cation binding, transferase activity, ion transporters and so forth. We made a comparison of gene expression differences between the two wheat genotypes. There were 1321 and 1177 up-regulated genes in Tongzhou916 and Shiluan02-1, respectively. This result indicated that more genes took part in acclimating to low-K+ stress in Tongzhou916. In addition, there were more genes associated with jasmonic acid, defense response and potassium transporter up-regulated in Tongzhou916. Moreover, totally 19 genes encoding vacuolar H+-pyrophosphatase, ethylene-related, auxin response, anatomical structure development and nutrient reservoir were uniquely up-regulated in Tongzhou916. For their important role in root architecture, K+ uptake and nutrient storage, unique genes above may make a great contribution to the strong low-K+ tolerance in Tongzhou916. PMID:25985414

  4. Quantitative trait loci associated with phenological development, low temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants must respond to environmental cues and schedule their development in order to react to periods of abiotic stress and commit fully to growth and reproduction under favorable conditions. This study was initiated to identify SNP markers for characters expressed from the seedling stage to plant m...

  5. LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Tripathi, Durgesh Kumar; Singh, Vijay Pratap; Prasad, Sheo Mohan; Dubey, Nawal Kishore; Chauhan, Devendra Kumar; Rai, Awadesh Kumar

    2016-01-01

    The responses of wheat seedling treated with silicon (Si; 10 μM) and lead (Pb; 100 μM) for 7 days have been investigated by analyzing growth, Pb uptake, chlorophyll fluorescence, oxidative stress, antioxidants and nutrients regulation. Results indicated that, Pb significantly (P<0.05) declined growth of seedlings which was accompanied by uptake of Pb. Under Pb stress, fluorescence parameters: Fv/Fm ratio and qP were significantly (P<0.05) decreased while NPQ was increased. Si addition alleviated Pb-induced decrease in growth and alterations in photosynthesis, and also significantly (P<0.05) lowered Pb uptake. Under Pb treatment, oxidative stress markers: hydrogen peroxide and lipid peroxidation were enhanced while DPPH(•) scavenging capacity and total phenolic compounds (TPCs) were decreased significantly, however, Si addition improved the status of antioxidants. The non-protein thiols (NP-SH) showed enhanced level under Pb stress. Pb stress considerably disturbed status of the nutrients as decrease in Ca, P, Mg, Zn and Ni contents while an increase in K, S, B, Cu, Fe, Mn and Na contents were noticed. Si addition maintained status of all the nutrients remarkably. The quickest method of element analysis: LIBS spectra revealed significantly lower uptake of Pb in seedlings grown under Si and Pb combination and same was correlated with the data of AAS. Overall results pointed out that excess Pb uptake disturbed status of nutrients, photosynthetic performance, antioxidant capacity, hence severe oxidative damage to lipids occurred. Further, Si supplementation successfully regulated these parameters by inhibiting Pb uptake hence maintained growth of wheat seedlings. Similar pattern of data recorded by the LIBS, AAS and ICAP-AES confirmed that LIBS may be one of the promising and authentic tools to monitor the mineral and metal distribution in the plants without hampering or disturbing the environment due to its eco-friendly and non-invasive nature.

  6. Extraction and proteome analysis of starch granule-associated proteins in mature wheat kernel (Triticum aestivum L.).

    PubMed

    Bancel, Emmanuelle; Rogniaux, Hélène; Debiton, Clément; Chambon, Christophe; Branlard, Gérard

    2010-06-04

    Starch consists of the two glucose polymers, amylose and amylopectin, and is deposited as semicrystalline granules inside plastids. The starch granule proteome is particularly challenging to study due to the amount of interfering compounds (sugars, storage proteins), the very low starch granule-associated protein content and also the dynamic range of abundant proteins. Here we present the protocol for extraction and 2-DE of wheat starch granule-associated proteins whose most important steps are: (i) washing and sonication to remove interfering compounds (storage proteins) from the surface of the granules, (ii) scanning electron microscopy (SEM) observations to monitor purification and granules swelling, (iii) appropriate protein extraction and solubilization to obtain enough proteins for Coomassie blue staining and proteomic analysis. Our objective was to minimize the amount of contamination by storage proteins and to preserve the structure of the starch and of starch-associated proteins and to maximize the number of polypeptides that can be resolved. For quantitative proteomic analysis of proteins associated with wheat starch granules, we developed a two-step protein extraction protocol including TCA/acetone precipitation and phenol extraction. With this protocol, proteins were extracted from wheat starch granules and solubilized and satisfactory blue-stained 2-DE protein maps were obtained. The majority of the spots associated with starch granules were identified by peptide mass fingerprinting and MS/MS and functionally classified into carbohydrate metabolism and stress defense.

  7. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  8. Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.).

    PubMed

    Shafi, Mohammad; Bakht, Jehan; Hassan, Mohammad Jaffar; Raziuddin, Mohammad; Zhang, Guoping

    2009-06-01

    A hydroponics experiment was conducted to investigate the effect of salinity (NaCl) and cadmium (Cd) stresses on growth, lipid peroxidation, and antioxidant enzyme activities of three wheat cultivars differing in salt tolerance. Cd and NaCl stresses inhibited plant growth, reduced chlorophyll content, and increased melondialdehyde content and the activities of superoxide dismutase, catalase and peroxidase. The combined effect of NaCl and Cd on these parameters was larger than both NaCl and Cd alone. There was an obvious difference in the response to the both stresses among the three genotypes, with Pir Sabak-85 being less affected.

  9. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L).

    PubMed

    Fei, Ying; Xue, Yuanxia; Du, Peixiu; Yang, Shushen; Deng, Xiping

    2017-03-01

    Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) catalyzes a key reaction in glycolysis and encoded by a multi-gene family which showed instability expression under abiotic stress. DNA methylation is an epigenetic modification that plays an important role in gene regulation in response to abiotic stress. The comprehension of DNA methylation at promoter region of TaGAPC1 can provide insights into the transcription regulation mechanisms of plant genes under abiotic stress. In this study, we cloned TaGAPC1 genes and its promoters from two wheat genomes, then investigated the expression patterns of TaGAPC1 under osmotic and salinity stress, and analyzed the promoter sequences. Moreover, the methylation patterns of promoters under stress were confirmed. Expression analysis indicated that TaGAPC1 was induced inordinately by stresses in two wheat genotypes with contrasting drought tolerance. Several stress-related cis-acting elements (MBS, DRE, GT1 and LTR et al.) were located in its promoters. Furthermore, the osmotic and salinity stress induced the demethylation of CG and CHG nucleotide in the promoter region of Changwu134. The methylation level of CHG and CHH in promoter of Zhengyin1 was always increased under stresses, and the CG contexts remained unchanged. The cytosine loci of stress-related cis-acting elements also showed different methylation changes in this process. These results provide insights into the relationship between promoter methylation and gene expression, promoting the function investigation of GAPC.

  10. [Transgenic wheat (Triticum aestivum L.) with increased resistance to the storage pest obtained by Agrobacterium tumefaciens--mediated].

    PubMed

    Bi, Rui-Ming; Jia, Hai-Yan; Feng, De-Shun; Wang, Hong-Gang

    2006-05-01

    The transgenic wheat of improved resistance to the storage pest was production. We have introduced the cowpea trypsin inhibitor gene (CpTI) into cultured embryonic callus cells of immature embryos of wheat elite line by Agrobacterium-mediated method. Independent plantlets were obtained from the kanamycin-resistant calli after screening. PCR and real time PCR analysis, PCR-Southern and Southern blot hybridization indicated that there were 3 transgenic plants viz. transformed- I, II and III (T- I, T-II and T-III). The transformation frequencies were obviously affected by Agrobacterium concentration, the infection duration and transformation treatment. The segregations of CpTI in the transgenic wheat progenies were not easily to be elucidated, and some transgenic wheat lines (T- I and T-III) showed Mendelian segregations. The determinations of insect resistance to the stored grain insect of wheat viz. the grain moth (Sitotroga cerealella Olivier) indicated that the 3 transgenic wheat progeny seeds moth-resistance was improved significantly. The seed moth-eaten ratio of T- I, T-II, T-III and nontransformed control was 19.8%, 21.9%, 32.9% and 58.3% respectively. 3 transgenic wheat T1 PCR-positive plants revealed that the 3 transgenic lines had excellent agronomic traits. They supplied good germplasm resource of insect-resistance for wheat genetic improvement.

  11. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.).

    PubMed

    Singh, Rajnish Prakash; Jha, Prabhat Nath

    2016-01-01

    The present study demonstrates the plant growth promoting (PGP) potential of a bacterial isolate CDP-13 isolated from 'Capparis decidua' plant, and its ability to protect plants from the deleterious effect of biotic and abiotic stressors. Based on 16S rRNA gene sequence analysis, the isolate was identified as Serratia marcescens. Among the PGP traits, the isolate was found to be positive for ACC deaminase activity, phosphate solubilization, production of siderophore, indole acetic acid production, nitrogen fixation, and ammonia production. CDP-13 showed growth at an increased salt (NaCl) concentration of up to 6%, indicating its potential to survive and associate with plants growing in saline soil. The inoculation of S. marcescens enhanced the growth of wheat plant under salinity stress (150-200 mM). It significantly reduced inhibition of plant growth (15 to 85%) caused by salt stressors. Application of CDP-13 also modulated concentration (20 to 75%) of different osmoprotectants (proline, malondialdehyde, total soluble sugar, total protein content, and indole acetic acid) in plants suggesting its role in enabling plants to tolerate salt stressors. In addition, bacterial inoculation also reduced the disease severity caused by fungal infection, which illustrated its ability to confer induced systemic resistance (ISR) in host plants. Treatment of wheat plants with the test organism caused alteration in anti-oxidative enzymes activities (Superoxide dismutase, Catalase, and Peroxidase) under various salinity levels, and therefore minimizes the salinity-induced oxidative damages to the plants. Colonization efficiency of strain CDP-13 was confirmed by CFU count, epi-fluorescence microscopy, and ERIC-PCR-based DNA fingerprinting approach. Hence, the study indicates that bacterium CDP-13 enhances plant growth, and has potential for the amelioration of salinity stress in wheat plants. Likewise, the results also provide insights into biotechnological approaches to using PGPR as an alternative to chemicals and pesticides.

  12. Non-gridded library: a new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum).

    PubMed

    Ma, Z; Weining, S; Sharp, P J; Liu, C

    2000-12-15

    The feasibility of exploiting non-gridded bacterial artificial chromosome (BAC) libraries and some major factors affecting the efficiency of handling such libraries were studied in hexaploid wheat. Even for a bacterial culture containing only 55% recombinants, some 2000 BAC clones with inserts ranging from 45 to 245 kb could be pooled. The pooled BAC clones could be amplified by culturing for up to 6 h without losing any target clones. These results imply that even for hexaploid wheat, which has an extremely large genome, some 250 pools are sufficient for a BAC library that should satisfy many research objectives. This non-gridded strategy would dramatically reduce the cost and make robotic equipment non-essential in exploiting BAC technology. To construct a representative library and to minimise clone competition, thawing and re-freezing ligation mixtures and bacterial cultures should be avoided in BAC library construction and application.

  13. Migration of endophytic diazotroph Azorhizobium caulinodans ORS571 inside wheat (Triticum aestivum L) and its effect on microRNAs.

    PubMed

    Qiu, Li; Li, Qiang; Zhang, Junbiao; Chen, Yongchao; Lin, Xiaojun; Sun, Chao; Wang, Weiling; Liu, Huawei; Zhang, Baohong

    2016-11-18

    Azorhizobium caulinodans ORS571, a novel rhizobium, forms endosymbionts with its nature host Sesbania rostrata, a semi-aquatic leguminous tree. Recent studies showed that A. caulinodans ORS571, as endophytic rhizobium, disseminated and colonized inside of cereal plants. However, how this rhizobium infects monocot plants and the regulatory mechanism remains unknown. MicroRNAs (miRNAs) are small, endogenous RNAs that regulate gene expression at the post-transcriptional levels. In this study, we employed laser scanning confocal microscope to monitor the pathway that rhizobium invade wheat; we also investigated the potential role of miRNAs during A. caulinodans ORS571 infecting wheat. Our results showed that gfp-labeled A. caulinodans ORS571 infected wheat root hairs and emerged lateral roots, then disseminated and colonized within roots and migrated to other plant tissues, such as stems and leaves. Endophytic rhizobium induced the aberrant expression of miRNAs in wheat with a tissue- and time-dependent manner with a peak at 12-24 h after rhizobium infection. Some miRNAs, such as miR167 and miR393 responded more in roots than that in shoots. In contrast, miR171 responded higher in shoots than that in roots. These results suggested that miRNAs could be responsive to A. caulinodans ORS571 infection and played important role in plant growth, nutrient metabolisms, and wheat-rhizobium interactions.

  14. Growth and yield of winter wheat (Triticum aestivum L.) and corn (Zea mays L.) near a high voltage transmission line.

    PubMed

    Soja, G; Kunsch, B; Gerzabek, M; Reichenauer, T; Soja, A-M; Rippar, G; Bolhàr-Nordenkampf, H R

    2003-02-01

    The objective of this study was to determine the effects of an electromagnetic field from a high voltage transmission line on the yield of agricultural crops cultivated underneath and near the transmission line. For 5 years, experiments with winter wheat and corn were carried out near the 380 kV transmission line Dürnrohr (Austria)-Slavetice (Czech Republic). Different field strengths were tested by planting the crops at different distances from the transmission line. The plants were grown in experimental plots (1.77 m2), aligned to equal electric field strengths, and were cultivated according to standard agricultural practice. The soil for all plots was homogenized layer-specifically to a depth of 0.5 m to guarantee uniform soil conditions in the plant root environment. The soil was sampled annually for determinations of carbon content and the behavior of microbial biomass. During development of the vegetation, samples were collected at regular intervals for growth rate analyses. At physiological maturity, the plots (n = 8) were harvested for grain and straw yield determinations. The average electric and magnetic field strengths at four distances from the transmission line (nominal distances: 40, 14, 8, and 2 m) were between 0.2 and 4.0 kV/m and between 0.4 and 4.5 micro T, respectively. No effect of the field exposures on soil microbial biomass could be detected. The wheat grain yields were 7% higher (average of 5 years) in the plots with the lowest field exposure than in the plots nearer to the transmission line (P <.10). The responses of the plants were more pronounced in years with drought episodes during grain filling than in humid years. No significant yield differences were found for corn yields. The extent of the yield variations attributed to the distance from the transmission line was small compared to the observed annual variations in climatic or soil specific site characteristics.

  15. Community Structure, Species Variation, and Potential Functions of Rhizosphere-Associated Bacteria of Different Winter Wheat (Triticum aestivum) Cultivars

    PubMed Central

    Mahoney, Aaron K.; Yin, Chuntao; Hulbert, Scot H.

    2017-01-01

    Minimal tillage management of extensive crops like wheat can provide significant environmental services but can also lead to adverse interactions between soil borne microbes and the host. Little is known about the ability of the wheat cultivar to alter the microbial community from a long-term recruitment standpoint, and whether this recruitment is consistent across field sites. To address this, nine winter wheat cultivars were grown for two consecutive seasons on the same plots on two different farm sites and assessed for their ability to alter the rhizosphere bacterial communities in a minimal tillage system. Using deep amplicon sequencing of the V1–V3 region of the 16S rDNA, a total of 26,604 operational taxonomic units (OTUs) were found across these two sites. A core bacteriome consisting of 962 OTUs were found to exist in 95% of the wheat rhizosphere samples. Differences in the relative abundances for these wheat cultivars were observed. Of these differences, 24 of the OTUs were found to be significantly different by wheat cultivar and these differences occurred at both locations. Several of the cultivar-associated OTUs were found to correspond with strains that may provide beneficial services to the host plant. Network correlations demonstrated significant co-occurrences for different taxa and their respective OTUs, and in some cases, these interactions were determined by the wheat cultivar. Microbial abundances did not play a role in the number of correlations, and the majority of the co-occurrences were shown to be positively associated. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used to determine potential functions associated with OTUs by association with rhizosphere members which have sequenced metagenomics data. Potentially beneficial pathways for nitrogen, sulfur, phosphorus, and malate metabolism, as well as antimicrobial compounds, were inferred from this analysis. Differences in these pathways and their associated functions were found to differ by wheat cultivar. In conclusion, our study suggests wheat cultivars are involved in shaping the rhizosphere by differentially altering the bacterial OTUs consistently across different sites, and these altered bacterial communities may provide beneficial services to the host. PMID:28243246

  16. Effect of organic and conventional crop rotation, fertilization, and crop protection practices on metal contents in wheat (Triticum aestivum).

    PubMed

    Cooper, Julia; Sanderson, Roy; Cakmak, Ismail; Ozturk, Levent; Shotton, Peter; Carmichael, Andrew; Haghighi, Reza Sadrabadi; Tetard-Jones, Catherine; Volakakis, Nikos; Eyre, Mick; Leifert, Carlo

    2011-05-11

    The effects of organic versus conventional crop management practices (crop rotation, crop protection, and fertility management strategies) on wheat yields and grain metal (Al, Cd, Cu, Ni, Pb, and Zn) concentrations were investigated in a long-term field trial. The interactions between crop management practices and the season that the crop was grown were investigated using univariate and redundancy analysis approaches. Grain yields were highest where conventional fertility management and crop protection practices were used, but growing wheat after a previous crop of grass/clover was shown to partially compensate for yield reductions due to the use of organic fertility management. All metals except for Pb were significantly affected by crop management practices and the year that the wheat was grown. Grain Cd and Cu levels were higher on average when conventional fertility management practices were used. Al and Cu were higher on average when conventional crop protection practices were used. The results demonstrate that there is potential to manage metal concentrations in the diet by adopting specific crop management practices shown to affect crop uptake of metals.

  17. Genome-wide association mapping of fusarium head blight resistance in wheat (Triticum aestivum L.) using genotyping by sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is one of the most important wheat diseases worldwide and host resistance displays complex genetic control. A genome-wide association study (GWAS) was performed on 273 winter wheat breeding lines from the mid-western and eastern regions of the US to identify chromosomal re...

  18. Antioxidants, free radicals, storage proteins, puroindolines, and proteolytic activities in bread wheat (Triticum aestivum) seeds during accelerated aging.

    PubMed

    Calucci, Lucia; Capocchi, Antonella; Galleschi, Luciano; Ghiringhelli, Silvia; Pinzino, Calogero; Saviozzi, Franco; Zandomeneghi, Maurizio

    2004-06-30

    Seeds of bread wheat were incubated at 40 degrees C and 100% relative humidity for 0, 3, 4, 6, and 10 days. The effects of accelerated aging on seed germinability and some biochemical properties of flour (carotenoid, free radical, and protein contents and proteolytic activity) and gluten (free radical content and flexibility) were investigated. Seed germinability decreased during aging, resulting in seed death after 10 days. A progressive decrease of carotenoid content, in particular, lutein, was observed, prolonging the incubation, whereas the free radical content increased in both flour and gluten. A degradation of soluble and storage proteins was found, associated with a marked increase of proteolytic activity and a loss of viscoelastic properties of gluten. On the contrary, puroindolines were quite resistant to the treatment. The results are discussed in comparison with those previously obtained during accelerated aging of durum wheat seeds.

  19. Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defense pathways.

    PubMed

    Mishra, Divya; Shekhar, Shubhendu; Agrawal, Lalit; Chakraborty, Subhra; Chakraborty, Niranjan

    2017-04-15

    The increasing global temperature by 1°C is estimated to reduce the harvest index in a crop by 6%, and this would certainly have negative impact on overall plant metabolism. Wheat is one of the most important crops with global annual production of over 600million tonnes. We investigated an array of physicochemical and molecular indexes to unravel differential response of nine commercial wheat cultivars to high temperature stress (HTS). The reduced rate in relative water content, higher membrane stability, slow chlorophyll degradation and increased accumulation of proline and secondary metabolites ingrained higher thermotolerance in cv. Unnat Halna, among others. The altered expression of several stress-responsive genes, particularly the genes associated with photosynthesis, heat shock proteins and antioxidants impinge on the complexity of HTS-induced responses over different genetic backgrounds and connectivity of adaptive mechanisms. This may facilitate the targeted manipulation of metabolic routes in crops for agricultural and industrial exploitation.

  20. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.).

    PubMed

    Tahmasebi, Sirous; Heidari, Bahram; Pakniyat, Hassan; McIntyre, C Lynne

    2017-01-01

    Wheat crops frequently experience a combination of abiotic stresses in the field, but most quantitative trait loci (QTL) studies have focused on the identification of QTLs for traits under single stress field conditions. A recombinant inbred line (RIL) population derived from SeriM82 × Babax was used to map QTLs under well-irrigated, heat, drought, and a combination of heat and drought stress conditions in two years. A total of 477 DNA markers were used to construct linkage groups that covered 1619.6 cM of the genome, with an average distance of 3.39 cM between adjacent markers. Moderate to relatively high heritability estimates (0.60-0.70) were observed for plant height (PHE), grain yield (YLD), and grain per square meter (GM2). The most important QTLs for days to heading (DHE), thousand grain weight (TGW), and YLD were detected on chromosomes 1B, 1D-a, and 7D-b. The prominent QTLs related to canopy temperature were on 3B. Results showed that common QTLs for DHE, YLD, and TGW on 7D-b were validated in heat and drought trials. Three QTLs for chlorophyll content in SPAD unit (on 1A/6B), leaf rolling (ROL) (on 3B/4A), and GM2 (on 1B/7D-b) showed significant epistasis × environment interaction. Six heat- or drought-specific QTLs (linked to 7D-acc/cat-10, 1B-agc/cta-9, 1A-aag/cta-8, 4A-acg/cta-3, 1B-aca/caa-3, and 1B-agc/cta-9 for day to maturity (DMA), SPAD, spikelet compactness (SCOM), TGW, GM2, and GM2, respectively) were stable and validated over two years. The major DHE QTL linked to 7D-acc/cat-10, with no QTL × environment (QE) interaction increased TGW and YLD. This QTL (5.68 ≤ LOD ≤ 10.5) explained up to 19.6% variation in YLD in drought, heat, and combined stress trials. This marker as a candidate could be used for verification in other populations and identifying superior allelic variations in wheat cultivars or its wild progenitors to increase the efficiency of selection of high yielding lines adapted to end-season heat and drought stress conditions.

  1. About the origin of European spelt ( Triticum spelta L.): allelic differentiation of the HMW Glutenin B1-1 and A1-2 subunit genes.

    PubMed

    Blatter, R H E; Jacomet, S; Schlumbaum, A

    2004-01-01

    To investigate the origin of European spelt ( Triticum spelta L., genome AABBDD) and its relation to bread wheat ( Triticum aestivum L., AABBDD), we analysed an approximately 1-kb sequence, including a part of the promoter and the coding region, of the high-molecular-weight (HMW) glutenin B1-1 and A1-2 subunit genes in 58 accessions of hexa- and tetraploid wheat from different geographical regions. Six Glu-B1-1 and five Glu-A1-2 alleles were identified based on 21 and 19 informative sites, respectively, which suggests a polyphyletic origin of the A- and B-genomes of hexaploid wheat. In both genes, a group of alleles clustered in a distinct, so-called beta subclade. High frequencies of alleles from the Glu-B1-1 and Glu-A1-2 beta subclades differentiated European spelt from Asian spelt and bread wheat. This indicates different origins of European and Asian spelt, and that European spelt does not derive from the hulled progenitors of bread wheat. The conjoint differentiation of alleles of the A- and B-genome in European spelt suggests the introgression of a tetraploid wheat into free-threshing hexaploid wheat as the origin of European spelt.

  2. [Chromosomal localization of the speltoidy gene, introgressed into bread wheat from Aegilops speltoides Tausch., and its interaction with the Q gene of Triticum spelta L].

    PubMed

    Simonov, A V; Pshenichnikova, T A

    2012-11-01

    The differences between bread wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) in the shape of the spike and threshing character are determined by the allelic status of one major Q gene, mapped to the long arm of chromosome 5A. This gene is a member of the APETALA2 family of transcription factors and plays an important role in domestication of wheat. In the present study, using monosomic analysis, we determined the chromosomal localization of the Q(S)gene, introgressed into bread wheat from Aegilops speltoides Tausch. and homoallelic to the Q gene. It was demonstrated that the Q(S) gene was located in chromosome 5A of the bread wheat line from the Arsenal collection. This gene conferred spike speltoidy in the line itself, as well as in its hybrids with bread wheat cultivars. The Q(S) gene dominated over the bread wheat Q gene and was equally effective in the homo-, hemi-, and heterozygous states. In hybrids between the introgression line and a number of spring spelt accessions, interaction between the Q and Q(S) genes was observed, manifested as the formation of superspeltoid spike.

  3. The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops : 7. Restriction endonuclease analysis of mitochondrial DNAs from polyploid wheats and their ancestral species.

    PubMed

    Terachi, T; Ogihara, Y; Tsunewaki, K

    1990-09-01

    Many related species and strains of common wheat were compared by matching differences among their mitochondrial genomes with their "parent" nuclear genomes. We examined three species of Aegilops, section Sitopsis (Ae. bicornis, Ae. sharonensis, and Ae. speltoides), emmer wheat (Triticum dicoccoides, T. dicoccum, and T. durum), common wheat (T. spelta, T. aestivum, and T. compaction), and timopheevi wheat (T. araraticum, T. timopheevi, and T. zhukovskyi). A single source of the cytoplasm was used in all the species, except Ae. speltoides (two sources), T. araraticum (two), and T. aestivum (three). Following restriction endonuclease analyses, the mitochondrial genomes were found to comprise seven types, and a dendrogram showing their genetic relatedness was constructed, based upon the percentage of common restriction fragments. MtDNAs from T. dicoccum, T. durum, T. aestivum, and T. compactum yielded identical restriction fragment patterns; these differed from T. dicoccoides and T. spelta mtDNAs in only 2.3% of their fragments. The fragment patterns of T. timopheevi and T. zhukovskyi were identical, and these differed from T. araraticum mtDNA by only one fragment. In both the emmer-dinkel and timopheevi groups, mitochondrial genome differentiation is evident, suggesting a diphyletic origin of each group. MtDNAs from four accessions of the Sitopsis species of Aegilops differ greatly from one another, but those of Ae. bicornis, Ae. sharonensis, and Ae. searsii, belonging to the same subsection Emarginata, are relatively similar. MtDNAs of timopheevi species are identical, or nearly so, to those of Ae. speltoides accession (09), suggesting that the latter was the cytoplasm donor to the former, polyploid group. The origin of this polyploid group seems to be rather recent in that the diploid and polyploid species possess nearly identical mitochondrial genomes. We cannot determine, with precision, the cytoplasm donor to the emmer-dinkel group. However, our results do

  4. Tandemly Duplicated Safener-Induced Glutathione S-Transferase Genes from Triticum tauschii Contribute to Genome- and Organ-Specific Expression in Hexaploid Wheat1

    PubMed Central

    Xu, Fangxiu; Lagudah, Evans S.; Moose, Stephen P.; Riechers, Dean E.

    2002-01-01

    Glutathione S-transferase (GST) gene expression was examined in several Triticum species, differing in genome constitution and ploidy level, to determine genome contribution to GST expression in cultivated, hexaploid bread wheat (Triticum aestivum). Two tandemly duplicated tau class GST genes (TtGSTU1 and TtGSTU2) were isolated from a single bacterial artificial chromosome clone in a library constructed from the diploid wheat and D genome progenitor to cultivated wheat, Triticum tauschii. The genes are very similar in genomic structure and their encoded proteins are 95% identical. Gene-specific reverse transcriptase-polymerase chain reaction analysis revealed differential transcript accumulation of TtGSTU1 and TtGSTU2 in roots and shoots. Expression of both genes was induced by herbicide safeners, 2,4-dichlorophenoxyacetic acid and abscisic acid, in the shoots of T. tauschii; however, expression of TtGSTU1 was always higher than TtGSTU2. In untreated seedlings, TtGSTU1 was expressed in both shoots and roots, whereas TtGSTU2 expression was only detected in roots. RNA gel-blot analysis of ditelosomic, aneuploid lines that are deficient for 6AS, 6BS, or 6DS chromosome arms of cultivated, hexaploid bread wheat showed differential genome contribution to safener-induced GST expression in shoots compared with roots. The GST genes from the D genome of hexaploid wheat contribute most to safener-induced expression in the shoots, whereas GSTs from the B and D genomes contribute to safener-induced expression in the roots. PMID:12226515

  5. Tandemly duplicated Safener-induced glutathione S-transferase genes from Triticum tauschii contribute to genome- and organ-specific expression in hexaploid wheat.

    PubMed

    Xu, Fangxiu; Lagudah, Evans S; Moose, Stephen P; Riechers, Dean E

    2002-09-01

    Glutathione S-transferase (GST) gene expression was examined in several Triticum species, differing in genome constitution and ploidy level, to determine genome contribution to GST expression in cultivated, hexaploid bread wheat (Triticum aestivum). Two tandemly duplicated tau class GST genes (TtGSTU1 and TtGSTU2) were isolated from a single bacterial artificial chromosome clone in a library constructed from the diploid wheat and D genome progenitor to cultivated wheat, Triticum tauschii. The genes are very similar in genomic structure and their encoded proteins are 95% identical. Gene-specific reverse transcriptase-polymerase chain reaction analysis revealed differential transcript accumulation of TtGSTU1 and TtGSTU2 in roots and shoots. Expression of both genes was induced by herbicide safeners, 2,4-dichlorophenoxyacetic acid and abscisic acid, in the shoots of T. tauschii; however, expression of TtGSTU1 was always higher than TtGSTU2. In untreated seedlings, TtGSTU1 was expressed in both shoots and roots, whereas TtGSTU2 expression was only detected in roots. RNA gel-blot analysis of ditelosomic, aneuploid lines that are deficient for 6AS, 6BS, or 6DS chromosome arms of cultivated, hexaploid bread wheat showed differential genome contribution to safener-induced GST expression in shoots compared with roots. The GST genes from the D genome of hexaploid wheat contribute most to safener-induced expression in the shoots, whereas GSTs from the B and D genomes contribute to safener-induced expression in the roots.

  6. Differentiation Among Blumeria graminis f. sp. tritici Isolates Originating from Wild Versus Domesticated Triticum Species in Israel.

    PubMed

    Ben-David, Roi; Parks, Ryan; Dinoor, Amos; Kosman, Evsey; Wicker, Thomas; Keller, Beat; Cowger, Christina

    2016-08-01

    Israel and its vicinity constitute a center of diversity of domesticated wheat species (Triticum aestivum and T. durum) and their sympatrically growing wild relatives, including wild emmer wheat (T. dicoccoides). We investigated differentiation within the forma specialis of their obligate powdery mildew pathogen, Blumeria graminis f. sp. tritici. A total of 61 B. graminis f. sp. tritici isolates were collected from the three host species in four geographic regions of Israel. Genetic relatedness of the isolates was characterized using both virulence patterns on 38 wheat lines (including 21 resistance gene differentials) and presumptively neutral molecular markers (simple-sequence repeats and single-nucleotide polymorphisms). All isolates were virulent on at least some genotypes of all three wheat species tested. All assays divided the B. graminis f. sp. tritici collection into two distinct groups, those from domesticated hosts and those from wild emmer wheat. One-way migration was detected from the domestic wheat B. graminis f. sp. tritici population to the wild emmer B. graminis f. sp. tritici population at a rate of five to six migrants per generation. This gene flow may help explain the overlap between the distinct domestic and wild B. graminis f. sp. tritici groups. Overall, B. graminis f. sp. tritici is significantly differentiated into wild-emmer and domesticated-wheat populations, although the results do not support the existence of a separate f. sp. dicocci.

  7. Morpho-anatomical traits of two lowest internodes related to lodging resistance in selected genotypes of Triticum

    NASA Astrophysics Data System (ADS)

    Packa, Danuta; Wiwart, Marian; Suchowilska, Elżbieta; Bieńkowska, Teresa

    2015-10-01

    The cross-sections of first and second internodes were analyzed under a light and fluorescence microscopes in six varieties of Triticum spelta, two varieties of T. polonicum, and one variety of T. aestivum. The morphometric parameters of stem cross-sections were measured. The analyzed wheats were characterized by significant differences in traits associated with lodging resistance ie: internode diameter, lumen diameter, stem wall thickness, mechanical layer thickness, area of transverse section, and area of lumen for the first and second internode and between the internodes. In all varieties, the values of internode diameter, lumen diameter, area of transverse section and area of lumen were higher for the second internode than for the first internode, whereas the reverse was reported for stem wall thickness and mechanical layer thickness The results of the principal component analysis and section modulus values revealed similarities between spring spelt Wirtas and Rubinas and between common wheat Kontesa and winter spelt Poeme and Epanis. The number of large vascular bundles varied across the studied varieties. The average number of vascular bundles in common wheat Kontesa was significantly higher than in spring spelt Rubinas and Wirtas and significantly lower than in Polish wheat Pol-3 and winter spelt Epanis and Poeme.

  8. Identification of variation in adaptively important traits and genome-wide analysis of trait-marker associations in Triticum monococcum.

    PubMed

    Jing, Hai-Chun; Kornyukhin, Dmitry; Kanyuka, Kostya; Orford, Simon; Zlatska, Anastasiya; Mitrofanova, Olga P; Koebner, Robert; Hammond-Kosack, Kim

    2007-01-01

    Einkorn wheat Triticum monococcum (2n=2x=14, A(m)A(m)) is one of the earliest domesticated crops. However, it was abandoned for cultivation before the Bronze Age and has infrequently been used in wheat breeding. Little is known about the genetic variation in adaptively important biological traits in T. monococcum. A collection of 30 accessions of diverse geographic origins were characterized for phenotypic variation in various agro-morphological traits including grain storage proteins and endosperm texture, nucleotide-binding site (NBS) domain profiles of resistance (R) genes and resistance gene analogues (RGAs), and germination under salt and drought stresses. Forty-six SSR (single sequence repeat) markers from bread wheat (T. aestivum, 2n=6x=42, AABBDD) A genome were used to establish trait-marker associations using linear mixed models. Multiple significant associations were identified, some of which were on chromosomal regions containing previously known genetic loci. It is concluded that T. monococcum possesses large genetic diversity in multiple traits. The findings also indicate that the efficiency of association mapping is much higher in T. monococcum than in other plant species. The use of T. monococcum as a reference species for wheat functional genomics is discussed.

  9. Genetic Map of Diploid Wheat, Triticum Monococcum L., and Its Comparison with Maps of Hordeum Vulgare L

    PubMed Central

    Dubcovsky, J.; Luo, M. C.; Zhong, G. Y.; Bransteitter, R.; Desai, A.; Kilian, A.; Kleinhofs, A.; Dvorak, J.

    1996-01-01

    A genetic map of diploid wheat, Triticum monococcum L., involving 335 markers, including RFLP DNA markers, isozymes, seed storage proteins, rRNA, and morphological loci, is reported. T. monococcum and barley linkage groups are remarkably conserved. They differ by a reciprocal translocation involving the long arms of chromosomes 4 and 5, and paracentric inversions in the long arm of chromosomes 1 and 4; the latter is in a segment of chromosome arm 4L translocated to 5L in T. monococcum. The order of the markers in the inverted segments in the T. monococcum genome is the same as in the B and D genomes of T. aestivum L. The T. monococcum map differs from the barley maps in the distribution of recombination within chromosomes. The major 5S rRNA loci were mapped on the short arms of T. monococcum chromosomes 1 and 5 and the long arms of barley chromosomes 2 and 3. Since these chromosome arms are colinear, the major 5S rRNA loci must be subjected to positional changes in the evolving Triticeae genome that do not perturb chromosome colinearity. The positional changes of the major 5S rRNA loci in Triticeae genomes are analogous to those of the 18S-5.8S-26S rRNA loci. PMID:8725244

  10. RNAi mediated, stable resistance to Triticum mosaic virus in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum mosaic virus (TriMV), discovered in 2006, affects wheat production systems in the Great Plains of the United States. There are no available TriMV resistant commercial varieties. RNA interference (RNAi) was evaluated as an alternative strategy to generate resistance to TriMV. An RNAi pANDA...

  11. Triticum mosaic virus isolates in the southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, a Wheat streak mosaic virus (WSMV)-resistant wheat variety RonL was found to have mosaic symptoms similar to WSMV. The virus inducing the symptoms was determined to be previously unknown and given the name Triticum mosaic virus (TriMV). Since, TriMV has been found in plant samples isolate...

  12. An Experimental Host Range of Triticum Mosaic Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum mosaic virus (TriMV) is a newly discovered virus isolated from wheat. This study was conducted to determine an experimental host range for TriMV and identify species that could serve as differential hosts for isolating TriMV from Wheat streak mosaic virus (WSMV). Plants tested were mechan...

  13. Nature's Anti-Alzheimer's Drug: Isolation and Structure Elucidation of Galantamine from "Leucojum Aestivum"

    ERIC Educational Resources Information Center

    Halpin, Catherine M.; Reilly, Ciara; Walsh, John J.

    2010-01-01

    The discovery that galantamine penetrates the blood-brain barrier has led to its clinical use in the treatment of choline-deficiency conditions in the brain, such as Alzheimer's disease. This experiment involves the isolation and structure elucidation of galantamine from "Leucojum aestivum". Isolation of the alkaloid constituents in "L. aestivum"…

  14. Study on the Immunoreactivity of Triticum monococcum (Einkorn) Wheat in Patients with Wheat-Dependent Exercise-Induced Anaphylaxis for the Production of Hypoallergenic Foods.

    PubMed

    Lombardo, Carla; Bolla, Michela; Chignola, Roberto; Senna, Gianenrico; Rossin, Giacomo; Caruso, Beatrice; Tomelleri, Carlo; Cecconi, Daniela; Brandolini, Andrea; Zoccatelli, Gianni

    2015-09-23

    Wheat [Triticum aestivum (T.a.)] ingestion can cause a specific allergic reaction, which is called wheat-dependent exercise-induced anaphylaxis (WDEIA). The major allergen involved is ω-5 gliadin, a gluten protein coded by genes located on the B genome. Our aim was to study the immunoreactivity of proteins in Triticum monococcum (einkorn, T.m.), a diploid ancestral wheat lacking B chromosomes, for possible use in the production of hypoallergenic foods. A total of 14 patients with a clear history of WDEIA and specific immunoglobulin E (IgE) to ω-5 gliadin were enrolled. Skin prick test (SPT) with a commercial wheat extract and an in-house T.a. gluten diagnostic solution tested positive for 43 and 100% of the cases, respectively. No reactivity in patients tested with solutions prepared from four T.m. accessions was observed. The immunoblotting of T.m. gluten proteins performed with the sera of patients showed different IgE-binding profiles with respect to T.a., confirming the absence of ω-5 gliadin. A general lower immunoreactivity of T.m. gluten proteins with scarce cross-reactivity to ω-5 gliadin epitopes was assessed by an enzyme-linked immunosorbent assay (ELISA). Given the absence of reactivity by SPT and the limited cross-reactivity with ω-5 gliadin, T.m. might represent a potential candidate in the production of hypoallergenic bakery products for patients sensitized to ω-5 gliadin. Further analyses need to be carried out regarding its safety.

  15. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses.

    PubMed

    Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Marande, William; Mila, Isabelle; Hanana, Mohsen; Bergès, Hélène; Mzid, Rim; Bouzayen, Mondher

    2014-12-01

    As food crop, wheat is of prime importance for human society. Nevertheless, our understanding of the genetic and molecular mechanisms controlling wheat productivity conditions has been, so far, hampered by the lack of sufficient genomic resources. The present work describes the isolation and characterization of TdERF1, an ERF gene from durum wheat (Triticum turgidum L. subsp. durum). The structural features of TdERF1 supported the hypothesis that it is a novel member of the ERF family in durum wheat and, considering its close similarity to TaERF1 of Triticum aestivum, it probably plays a similar role in mediating responses to environmental stresses. TdERF1 displayed an expression pattern that discriminated between two durum wheat genotypes contrasted with regard to salt-stress tolerance. The high number of cis-regulatory elements related to stress responses present in the TdERF1 promoter and the ability of TdERF1 to regulate the transcription of ethylene and drought-responsive promoters clearly indicated its potential role in mediating plant responses to a wide variety of environmental constrains. TdERF1 was also regulated by abscisic acid, ethylene, auxin, and salicylic acid, suggesting that it may be at the crossroads of multiple hormone signalling pathways. Four TdERF1 allelic variants have been identified in durum wheat genome, all shown to be transcriptionally active. Interestingly, the expression of one allelic form is specific to the tolerant genotype, further supporting the hypothesis that this gene is probably associated with the susceptibility/tolerance mechanism to salt stress. In this regard, the TdERF1 gene may provide a discriminating marker between tolerant and sensitive wheat varieties.

  16. De Novo Transcriptome Assembly and Analyses of Gene Expression during Photomorphogenesis in Diploid Wheat Triticum monococcum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum monococcum (2n), a close ancestor of the A-genome progenitor of cultivated hexaploid wheat, was used as a model to study components regulating photomorphogenesis in diploid wheat. Constructed were genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. mo...

  17. Detection of summer truffle (Tuber aestivum Vittad.) in ectomycorrhizae and in soil using specific primers.

    PubMed

    Gryndler, Milan; Hršelová, Hana; Soukupová, Lucie; Streiblová, Eva; Valda, Slavomír; Borovička, Jan; Gryndlerová, Hana; Gažo, Ján; Miko, Marián

    2011-05-01

    Tuber aestivum is becoming an important commodity of great economical value in some European countries. At the same time, it is a highly protected organism in other countries, where it needs careful treatment. A reliable method of detection in roots and soil is thus needed for assessment of geographic distribution, ecological studies and inoculation efficiency testing in man-made experiments. A PCR-based method of detection of T. aestivum using specific primers was therefore developed. A pair of PCR primers Tu1sekvF/Tu2sekvR selective for T. aestivum and some genotypes of Tuber mesentericum was designed on the basis of the known internal transcribed spacer T. aestivum sequences. TaiI restriction cleavage was then used to distinguish the two species. The selectivity of the designed primer pair was evaluated using DNA extracted from specimens of a further 13 Tuber spp. Subsequently, the selectivity and robustness to false-positive results with nontarget DNA of the designed primers was compared with two other primer pairs (UncI/UncII and BTAE-F/BTAEMB-R). The occurrence of T. aestivum in soil and ectomycorrhizae collected in its native habitat has been successfully detected using the designed primers and nested PCR. The method is reliable and thus suitable for detection of T. aestivum in the field.

  18. Similarities of omega gliadins from Triticum urartu to those encoded on chromosome 1A of hexaploid wheat and evidence for their post-translational processing.

    PubMed

    DuPont, F M; Vensel, W; Encarnacao, T; Chan, R; Kasarda, D D

    2004-05-01

    The omega-gliadins encoded on chromosome 1 of the A genome were purified from Triticum aestivum L. (2n=6 x=42, AABBDD) cv. Butte86, nullisomic 1D-tetrasomic 1A of cv. Chinese Spring (CS N1DT1A), and the diploid T. urartu (2n=2 x=14, AA ). Reverse-phase high-performance liquid chromatography combined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis of gliadin extracts from CS nullisomic-tetrasomic (NT) lines confirmed the assignment to chromosome 1A. The purified omega-gliadins were characterized by mass spectrometry and N-terminal sequencing. The 1A-encoded omega-gliadins were smaller than 1B- or 1D-encoded omega-gliadins. The N-terminal amino acid sequences for 1A omega-gliadin mature peptides were nearly identical to those for the T. urartu omega-gliadins and were more similar to 1D omega-gliadin sequences than to sequences for T. monococum omega-gliadins, barley C-hordeins, or rye omega-secalins. They diverged greatly from the N-terminal sequences for the 1B omega-gliadins. The data suggest that T. urartu is the A-genome donor, and that post-translational cleavage by an asparaginyl endoprotease produces those omega-gliadins with N-terminal sequences beginning with KEL.

  19. Molecular characterization of LMW-GS genes in Brachypodium distachyon L. reveals highly conserved Glu-3 loci in Triticum and related species

    PubMed Central

    2012-01-01

    Background Brachypodium distachyon L. is a newly emerging model plant system for temperate cereal crop species. However, its grain protein compositions are still not clear. In the current study, we carried out a detailed proteomics and molecular genetics study on grain glutenin proteins in B. distachyon. Results SDS-PAGE and RP-HPLC analysis of grain proteins showed that Brachypodium has few gliadins and high molecular weight glutenin subunits. In contrast the electrophoretic patterns for the albumin, globulin and low molecular weight glutenin subunit (LMW-GS) fractions of the grain protein were similar to those in wheat. In particular, the LMW-C type subunits in Brachypodium were more abundant than the equivalent proteins in common wheat. Southern blotting analysis confirmed that Brachypodium has 4–5 copies of LMW-GS genes. A total of 18 LMW-GS genes were cloned from Brachypodium by allele specific PCR. LMW-GS and 4 deduced amino acid sequences were further confirmed by using Western-blotting and MALDI-TOF-MS. Phylogenetic analysis indicated that Brachypodium was closer to Ae. markgrafii and Ae. umbellulata than to T. aestivum. Conclusions Brachypodium possessed a highly conserved Glu-3 locus that is closely related to Triticum and related species. The presence of LMW-GS in B. distachyon grains indicates that B. distachyon may be used as a model system for studying wheat quality attributes. PMID:23171363

  20. The Response of Selected Triticum spp. Genotypes with Different Ploidy Levels to Head Blight Caused by Fusarium culmorum (W.G.Smith) Sacc.

    PubMed

    Wiwart, Marian; Suchowilska, Elżbieta; Kandler, Wolfang; Sulyok, Michael; Wachowska, Urszula; Krska, Rudolf

    2016-04-15

    Several cultivars and pure lines of Triticum monococcum, T. dicoccon, T. polonicum, T. spelta and T. aestivum were inoculated with Fusarium culmorum, the causal agent of Fusarium head blight in wheat. During the three-year study, the infection decreased the values of the analyzed yield components: spike weight (by 5.6% to 15.8%), number of kernels per spike (by 2.8% to 11.8%) and one kernel weight (by 8.4% to 10.7%). T. spelta was characterized by the weakest average response to infection. The grain from inoculated spikes contained significantly higher concentrations of deoxynivalenol (DON) and its 3-β-D-glucoside (D3G) than control grain. The D3G/DON ratio ranged from 11.4% to 21.4% in control grain and from 8.1% to 11.6% in inoculated grain. The lowest levels of mycotoxins were found in spelt, and the highest in T. polonicum lines and Kamut. PCA revealed that the grain of T. polonicum was characterized by an entirely different mycotoxin profile. The weakest response to F. culmorum infections was noted in T. spelta, and the strongest response in T. polonicum breeding lines and Kamut.

  1. The Response of Selected Triticum spp. Genotypes with Different Ploidy Levels to Head Blight Caused by Fusarium culmorum (W.G.Smith) Sacc.

    PubMed Central

    Wiwart, Marian; Suchowilska, Elżbieta; Kandler, Wolfang; Sulyok, Michael; Wachowska, Urszula; Krska, Rudolf

    2016-01-01

    Several cultivars and pure lines of Triticum monococcum, T. dicoccon, T. polonicum, T. spelta and T. aestivum were inoculated with Fusarium culmorum, the causal agent of Fusarium head blight in wheat. During the three-year study, the infection decreased the values of the analyzed yield components: spike weight (by 5.6% to 15.8%), number of kernels per spike (by 2.8% to 11.8%) and one kernel weight (by 8.4% to 10.7%). T. spelta was characterized by the weakest average response to infection. The grain from inoculated spikes contained significantly higher concentrations of deoxynivalenol (DON) and its 3-β-d-glucoside (D3G) than control grain. The D3G/DON ratio ranged from 11.4% to 21.4% in control grain and from 8.1% to 11.6% in inoculated grain. The lowest levels of mycotoxins were found in spelt, and the highest in T. polonicum lines and Kamut. PCA revealed that the grain of T. polonicum was characterized by an entirely different mycotoxin profile. The weakest response to F. culmorum infections was noted in T. spelta, and the strongest response in T. polonicum breeding lines and Kamut. PMID:27092526

  2. Differential gene expression profile in Pseudomonas putida NBRIC19-treated wheat (Triticum aestivum) plants subjected to biotic stress of Parthenium hysterophorus.

    PubMed

    Mishra, Sandhya; Srivastava, Suchi; Nautiyal, Chandra Shekhar

    2014-03-01

    The inoculation of Pseudomonas putida NBRIC19 protected wheat plant from phytotoxic effect of Parthenium hysterophorus (Parthenium) and enhanced root length, shoot length, dry weight, spike length and chlorophyll content. With the aim to screen for genes differentially expressed in P. putida NBRIC19-inoculated wheat grown along with Parthenium (WPT), the suppression subtractive hybridization (SSH) methodology was employed. The SSH analysis was performed with WPC (uninoculated wheat grown along with Parthenium) as driver and WPT as tester. The cDNA library, enriched with differentially expressed ESTs (expressed sequence tags), were constructed from WPT. Following an initial screen of 165 ESTs in our library, 32 ESTs were identified, annotated and further validated by semiquantitative RT-PCR. The differentially expressed ESTs were associated with general stress response, defense response, growth and development, metabolic process, photosynthesis, signal transduction, and some other with unknown function. Five ESTs showing downregulation in expression level in response to Parthenium got upregulated due to P. putida NBRIC19 inoculation and further validated by quantitative real time PCR analysis at different time intervals viz. 15, 30, 45 and 90 days. SSH has been implemented for the first time to gain insights into molecular events underlying successful role of P. putida NBRIC19 in providing protection to wheat against Parthenium. The information generated in this study provides new clues to aid the understanding of genes corresponding to differentially expressed ESTs putatively involved in allelopathic interactions. Further characterization and functional analysis of these genes may provide valuable information for future studies of the molecular mechanism by which plants adapt to allelopathic effect of Parthenium.

  3. Grain dormancy loss is associated with changes in ABA and GA sensitivity and hormone accumulation in bread wheat, Triticum aestivum (L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge about the hormonal control of seed dormancy and dormancy loss is essential in wheat, because low seed dormancy at maturity is associated with the problem of preharvest sprouting (PHS) when rain occurs before harvest. Low GA (gibberellin) hormone sensitivity and high ABA (abscisic acid) sen...

  4. Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.)

    PubMed Central

    Li, Bing; Wang, Jia-Jia; Zhao, Yan; Kong, Fan-Mei; Guo, Ying

    2017-01-01

    Sucrose non-fermenting 1-related protein kinases (SnRKs) comprise a major family of signaling genes in plants and are associated with metabolic regulation, nutrient utilization and stress responses. This gene family has been proposed to be involved in sucrose signaling. In the present study, we cloned three copies of the TaSnRK2.10 gene from bread wheat on chromosomes 4A, 4B and 4D. The coding sequence (CDS) is 1086 bp in length and encodes a protein of 361 amino acids that exhibits functional domains shared with SnRK2s. Based on the haplotypes of TaSnRK2.10-4A (Hap-4A-H and Hap-4A-L), a cleaved amplified polymorphic sequence (CAPS) marker designated TaSnRK2.10-4A-CAPS was developed and mapped between the markers D-1092101 and D-100014232 using a set of recombinant inbred lines (RILs). The TaSnRK2.10-4B alleles (Hap-4B-G and Hap-4B-A) were transformed into allele-specific PCR (AS-PCR) markers TaSnRK2.10-4B-AS1 and TaSnRK2.10-4B-AS2, which were located between the markers D-1281577 and S-1862758. No diversity was found for TaSnRK2.10-4D. An association analysis using a natural population consisting of 128 winter wheat varieties in multiple environments showed that the thousand grain weight (TGW) and spike length (SL) of Hap-4A-H were significantly higher than those of Hap-4A-L, but pant height (PH) was significantly lower. PMID:28355304

  5. A Genome-Wide Association Study of Resistance to Stripe Rust (Puccinia striiformis f. sp. tritici) in a Worldwide Collection of Hexaploid Spring Wheat (Triticum aestivum L.)

    PubMed Central

    Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge

    2015-01-01

    New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease. PMID:25609748

  6. Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments.

    PubMed

    Bennett, Dion; Reynolds, Matthew; Mullan, Daniel; Izanloo, Ali; Kuchel, Haydn; Langridge, Peter; Schnurbusch, Thorsten

    2012-11-01

    A large proportion of the worlds' wheat growing regions suffers water and/or heat stress at some stage during the crop growth cycle. With few exceptions, there has been no utilisation of managed environments to screen mapping populations under repeatable abiotic stress conditions, such as the facilities developed by the International Wheat and Maize Improvement Centre (CIMMYT). Through careful management of irrigation and sowing date over three consecutive seasons, repeatable heat, drought and high yield potential conditions were imposed on the RAC875/Kukri doubled haploid population to identify genetic loci for grain yield, yield components and key morpho-physiological traits under these conditions. Two of the detected quantitative trait loci (QTL) were located on chromosome 3B and had a large effect on canopy temperature and grain yield, accounting for up to 22 % of the variance for these traits. The locus on chromosome arm 3BL was detected under all three treatments but had its largest effect under the heat stress conditions, with the RAC875 allele increasing grain yield by 131 kg ha(-1) (or phenotypically, 7 % of treatment average). Only two of the eight yield QTL detected in the current study (including linkage groups 3A, 3D, 4D 5B and 7A) were previously detected in the RAC875/Kukri doubled haploid population; and there were also different yield components driving grain yield. A number of discussion points are raised to understand differences between the Mexican and southern Australian production environments and explain the lack of correlation between the datasets. The two key QTL detected on chromosome 3B in the present study are candidates for further genetic dissection and development of molecular markers.

  7. Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.).

    PubMed

    Zhang, Zhao-Gui; Lv, Guang-de; Li, Bing; Wang, Jia-Jia; Zhao, Yan; Kong, Fan-Mei; Guo, Ying; Li, Si-Shen

    2017-01-01

    Sucrose non-fermenting 1-related protein kinases (SnRKs) comprise a major family of signaling genes in plants and are associated with metabolic regulation, nutrient utilization and stress responses. This gene family has been proposed to be involved in sucrose signaling. In the present study, we cloned three copies of the TaSnRK2.10 gene from bread wheat on chromosomes 4A, 4B and 4D. The coding sequence (CDS) is 1086 bp in length and encodes a protein of 361 amino acids that exhibits functional domains shared with SnRK2s. Based on the haplotypes of TaSnRK2.10-4A (Hap-4A-H and Hap-4A-L), a cleaved amplified polymorphic sequence (CAPS) marker designated TaSnRK2.10-4A-CAPS was developed and mapped between the markers D-1092101 and D-100014232 using a set of recombinant inbred lines (RILs). The TaSnRK2.10-4B alleles (Hap-4B-G and Hap-4B-A) were transformed into allele-specific PCR (AS-PCR) markers TaSnRK2.10-4B-AS1 and TaSnRK2.10-4B-AS2, which were located between the markers D-1281577 and S-1862758. No diversity was found for TaSnRK2.10-4D. An association analysis using a natural population consisting of 128 winter wheat varieties in multiple environments showed that the thousand grain weight (TGW) and spike length (SL) of Hap-4A-H were significantly higher than those of Hap-4A-L, but pant height (PH) was significantly lower.

  8. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.).

    PubMed

    Su, Zhenqi; Hao, Chenyang; Wang, Lanfen; Dong, Yuchen; Zhang, Xueyong

    2011-01-01

    The OsGW2 gene is involved in rice grain development, influencing grain width and weight. Its ortholog in wheat, TaGW2, was considered as a candidate gene related to grain development. We found that TaGW2 is constitutively expressed, with three orthologs expressing simultaneously. The coding sequence (CDS) of TaGW2 is 1,275 bp encoding a protein with 424 amino acids, and has a functional domain shared with OsGW2. No divergence was detected within the CDS sequences in the same locus in ten varieties. Genome-specific primers were designed based on the sequence divergence of the promoter regions in the three orthologous genes, and TaGW2 was located in homologous group 6 chromosomes through CS nulli-tetrasomic (NT). Two SNPs were detected in the promoter region of TaGW2-6A, forming two haplotypes: Hap-6A-A (-593A and -739G) and Hap-6A-G (-593G and -769A). A cleaved amplified polymorphic sequence (CAPS) marker was developed based on the -593 A-G polymorphism to distinguish the two haplotypes in TaGW2-6A. This gene was fine mapped 0.6 cM from marker cfd80.2 near the centromere in a recombinant inbred line (RIL) population. Two hundred sixty-five Chinese wheat varieties were genotyped and association analysis revealed that Hap-6A-A was significantly associated with wider grains and higher one-thousand grain weight (TGW) in two crop seasons. qRT-PCR revealed a negative relationship between TaGW2 expression level and grain width. The Hap-6A-A frequencies in Chinese varieties released at different periods showed that it had been strongly positively selected in breeding. In landraces, Hap-6A-A is mainly distributed in southern Chinese wheat regions. Association analysis also indicated that Hap-6A-A not only increased TGW by more than 3 g, but also had earlier heading and maturity. In contrast to Chinese varieties, Hap-6A-G was the predominant haplotype in European varieties; Hap-6A-A was mainly present in varieties released in the former Yugoslavia, Italy, Bulgaria, Hungary and Portugal.

  9. Mapping of a major QTL associated with protein content on chromosome 2B in hard red winter wheat (Triticum aestivum L.).

    PubMed

    Terasawa, Yohei; Ito, Miwako; Tabiki, Tadashi; Nagasawa, Koichi; Hatta, Koichi; Nishio, Zenta

    2016-09-01

    A quantitative trait locus (QTL) controlling wheat grain protein content (GPC) and flour protein content (FPC) was identified using doubled haploid (DH) lines developed from a cross between the hard red winter wheat variety 'Yumechikara' with a high protein content used for bread making, and the soft red winter wheat 'Kitahonami' with a low protein content used for Japanese white salted noodles. A single major QTL, QGpc.2B-yume, was identified on the short arm of wheat chromosome 2B for both the GPC and FPC over 3 years of testing. QGpc.2B-yume was mapped on the flanking region of microsatellite marker Xgpw4382. The DH lines grouped by the haplotype of the closest flanking microsatellite marker Xgpw4382 showed differences of 1.0% and 1.1% in mean GPC and FPC, respectively. Yield-component-related traits were not affected by the haplotype of QGpc.2B-yume, and major North American hard red winter wheat varieties showed the high-protein haplotype. Unlike Gpc-B1 derived from tetraploid wheat, QGpc.2B-yume has no negative effects on yield-component-related traits and should be useful for wheat breeding to increase GPC and FPC.

  10. Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L.) improves dough mixing properties by their incorporation into glutenin polymers.

    PubMed

    Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.

  11. Comprehensive characterization of C-glycosyl flavones in wheat (Triticum aestivum L.) germ using UPLC-PDA-ESI/HRMS(n) and mass defect filtering.

    PubMed

    Geng, Ping; Sun, Jianghao; Zhang, Mengliang; Li, Xingnuo; Harnly, James M; Chen, Pei

    2016-10-01

    A comprehensive characterization of C-glycosyl flavones in wheat germ has been conducted using multi-stage high resolution mass spectrometry (HRMS(n) ) in combination with a mass defect filtering (MDF) technique. MDF performed the initial search of raw data with defined C-glycosyl flavone mass windows and mass defect windows to generate the noise-reduced data focusing on targeted flavonoids. The high specificity of the exact mass measurement permits the unambiguous discrimination of acyl groups (nominal masses of 146, 162 and 176.) from sugar moieties (rhamnose, glucose or galactose and glucuronic acid). A total of 72 flavone C-glycosyl derivatives, including 2 mono-C-glycosides, 34 di-C-glycosides, 15 tri-glycosides, 14 acyl di-C-glycosides and 7 acyl tri-glycosides, were characterized in wheat germ, some of which were considered to be important marker compounds for differentiation of whole grain and refined wheat products. The 7 acylated mono-O-glycosyl-di-C-glycosyl flavones and some acylated di-C-glycosyl flavones are reported in wheat for the first time. The frequent occurrence of numerous isomers is a remarkable feature of wheat germ flavones. Both UV and mass spectra are needed to maximize the structure information obtained for data interpretation. Copyright © 2016 John Wiley & Sons, Ltd.

  12. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.).

    PubMed

    Maccaferri, Marco; Zhang, Junli; Bulli, Peter; Abate, Zewdie; Chao, Shiaoman; Cantu, Dario; Bossolini, Eligio; Chen, Xianming; Pumphrey, Michael; Dubcovsky, Jorge

    2015-01-20

    New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease.

  13. QTL Analysis of Spike Morphological Traits and Plant Height in Winter Wheat (Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map

    PubMed Central

    Zhai, Huijie; Feng, Zhiyu; Li, Jiang; Liu, Xinye; Xiao, Shihe; Ni, Zhongfu; Sun, Qixin

    2016-01-01

    Wheat yield can be enhanced by modifying the spike morphology and the plant height. In this study, a population of 191 F9 recombinant inbred lines (RILs) was developed from a cross between two winter cultivars Yumai 8679 and Jing 411. A dense genetic linkage map with 10,816 markers was constructed by incorporating single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker information. Five spike morphological traits and plant height were evaluated under nine environments for the RILs and parental lines, and the number of detected environmentally stable QTLs were 18 and three, respectively. The 1RS/1BL (rye) translocation increased both spike length and spikelet number with constant spikelet compactness. The QPht.cau-2D.1 was identical to gene Rht8, which decreased spike length without modifying spikelet number. Notably, four novel QTLs locating on chromosomes 1AS (QSc.cau-1A.1), 2DS (QSc.cau-2D.1), and 7BS (QSl.cau-7B.1 and QSl.cau-7B.2) were firstly identified in this study, which provide further insights into the genetic factors that shaped the spike morphology in wheat. Moreover, SNP markers tightly linked to previously reported QTLs will eventually facilitate future studies including their positional cloning or marker-assisted selection. PMID:27872629

  14. Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (Triticum aestivum L.).

    PubMed

    Bhati, Kaushal Kumar; Aggarwal, Sipla; Sharma, Shivani; Mantri, Shrikant; Singh, Sudhir P; Bhalla, Sherry; Kaur, Jagdeep; Tiwari, Siddharth; Roy, Joy K; Tuli, Rakesh; Pandey, Ajay K

    2014-07-01

    In cereals, phytic acid (PA) or inositol hexakisphosphate (IP6) is a well-known phosphate storage compound as well as major chelator of important micronutrients (iron, zinc, calcium, etc.). Genes involved in the late phases of PA biosynthesis pathway are known in crops like maize, soybeans and barley but none have been reported from wheat. Our in silico analysis identified six wheat genes that might be involved in the biosynthesis of inositol phosphates. Four of the genes were inositol tetraphosphate kinases (TaITPK1, TaITPK2, TaITPK3, and TaITPK4), and the other two genes encode for inositol triphosphate kinase (TaIPK2) and inositol pentakisphosphate kinase (TaIPK1). Additionally, we identified a homolog of Zmlpa-1, an ABCC subclass multidrug resistance-associated transporter protein (TaMRP3) that is putatively involved in PA transport. Analyses of the mRNA expression levels of these seven genes showed that they are differentially expressed during seed development, and that some are preferentially expressed in aleurone tissue. These results suggest selective roles during PA biosynthesis, and that both lipid-independent and -dependent pathways are active in developing wheat grains. TaIPK1 and TaMRP3 were able to complement the yeast ScΔipk1 and ScΔycf1 mutants, respectively, providing evidence that the wheat genes have the expected biochemical functions. This is the first comprehensive study of the wheat genes involved in the late phase of PA biosynthesis. Knowledge generated from these studies could be utilized to develop strategies for generating low phyate wheat.

  15. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size.

    PubMed

    Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian

    2015-07-01

    Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development.

  16. Influence of high-molecular-weight glutenin subunit composition at Glu-B1 locus on secondary and micro structures of gluten in wheat (Triticum aestivum L.).

    PubMed

    Gao, Xin; Liu, Tianhong; Yu, Jing; Li, Liqun; Feng, Yi; Li, Xuejun

    2016-04-15

    Glutenin is one of the critical gluten proteins that affect the processing quality of wheat dough. High-molecular-weight glutenin subunits (HMW-GS) affect rheological behavior of wheat dough. This research demonstrated the effects of four variations of HMW-GS composition at the Glu-B1 locus on secondary and micro structures of gluten and rheological properties of wheat dough, using the bread wheat Xinong 1330 and its three near-isogenic lines (NILs). Results indicated that the Amide I bands of the four wheat lines shifted slightly, but the secondary structure, such as content of α-helices, β-sheets, disulfide bands, tryptophan bands and tyrosine bands, differed significantly among the four NILs. The micro structure of gluten in NIL 2 (Bx14+By15) and NIL 3 (Bx17+By18) showed more cross linkage, with two contrasting patterns. Correlation analysis demonstrated that the content of β-sheets and disulfide bonds has a significant relationship with dough stability, which suggests that the secondary structures could be used as predictors of wheat quality.

  17. The grain Hardness locus characterized in a diverse wheat panel (Triticum aestivum L.) adapted to the central part of the Fertile Crescent: genetic diversity, haplotype structure, and phylogeny.

    PubMed

    Shaaf, Salar; Sharma, Rajiv; Baloch, Faheem Shehzad; Badaeva, Ekaterina D; Knüpffer, Helmut; Kilian, Benjamin; Özkan, Hakan

    2016-06-01

    Wheat belongs to the most important crops domesticated in the Fertile Crescent. In this region, fortunately, locally adapted wheat landraces are still present in farmers' fields. This material might be of immense value for future breeding programs. However, especially wheat germplasm adapted to the central part of the Fertile Crescent has been poorly characterized for allelic variation at key loci of agricultural importance. Grain hardness is an important trait influencing milling and baking quality of wheat. This trait is mainly determined by three tightly linked genes, namely, Puroindoline a (Pina), Puroindoline b (Pinb), and Grain softness protein-1 (Gsp-1), at the Hardness (Ha-D) locus on chromosome 5DS. To investigate genetic diversity and haplotype structure, we resequenced 96 diverse wheat lines at Pina-D1, Pinb-D1, Gsp-A1, Gsp-B1, and Gsp-D1. Three types of null alleles were identified using diagnostic primers: the first type was a multiple deletion of Pina-D1, Pinb-D1, and Gsp-D1 (Pina-D1k), the second was a Pina-D1 deletion (Pina-D1b); and the third type was a deletion of Gsp-D1, representing a novel null allele designated here as Gsp-D1k. Sequence analysis resulted in four allelic variants at Pinb-D1 and five at Gsp-A1, among them Gsp-A1-V was novel. Pina-D1, Gsp-B1 and Gsp-D1 sequences were monomorphic. Haplotype and phylogenetic analysis suggested that (1) bread wheat inherited its 5DS telomeric region probably from wild diploid Ae. tauschii subsp. tauschii found within an area from Transcaucasia to Caspian Iran; and that (2) the Ha-A and Ha-B homoeoloci were most closely related to sequences of wild tetraploid T. dicocco ides. This study provides a good overview of available genetic diversity at Pina-D1, Pinb-D1, and Gsp-1, which can be exploited to extend the range of grain texture traits in wheat.

  18. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.

    PubMed

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2014-06-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm.

  19. E3 ubiquitin ligase gene CMPG1-V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat (Triticum aestivum L.).

    PubMed

    Zhu, Yanfei; Li, Yingbo; Fei, Fei; Wang, Zongkuan; Wang, Wei; Cao, Aizhong; Liu, Yuan; Han, Shuang; Xing, Liping; Wang, Haiyan; Chen, Wei; Tang, Sanyuan; Huang, Xiahe; Shen, Qianhua; Xie, Qi; Wang, Xiue

    2015-10-01

    Powdery mildew is one of the most devastating wheat fungal diseases. A diploid wheat relative, Haynaldia villosa L., is highly resistant to powdery mildew, and its genetic resource of resistances, such as the Pm21 locus, is now widely used in wheat breeding. Here we report the cloning of a resistance gene from H. villosa, designated CMPG1-V, that encodes a U-box E3 ubiquitin ligase. Expression of the CMPG1-V gene was induced in the leaf and stem of H. villosa upon inoculation with Blumeria graminis f. sp. tritici (Bgt) fungus, and the presence of Pm21 is essential for its rapid induction of expression. CMPG1-V has conserved key residues for E3 ligase, and possesses E3 ligase activity in vitro and in vivo. CMPG1-V is localized in the nucleus, endoplasmic reticulum, plasma membrane and partially in trans-Golgi network/early endosome vesicles. Transgenic wheat over-expressing CMPG1-V showed improved broad-spectrum powdery mildew resistance at seedling and adult stages, associated with an increase in expression of salicylic acid-responsive genes, H2 O2 accumulation, and cell-wall protein cross-linking at the Bgt infection sites, and the expression of CMPG1-V in H. villosa was increased when treated with salicylic acid, abscisic acid and H2 O2 . These results indicate the involvement of E3 ligase in defense responses to Bgt fungus in wheat, particularly in broad-spectrum disease resistance, and suggest association of reactive oxidative species and the phytohormone pathway with CMPG1-V-mediated powdery mildew resistance.

  20. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture.

    PubMed

    Ashraf, Muhammad Arslan; Ashraf, Muhammad

    2016-04-01

    Hydroponic experiment was conducted to appraise variation in the salt tolerance potential of two wheat cultivars (salt tolerant, S-24, and moderately salt sensitive, MH-97) at different growth stages. These two wheat cultivars are not genetically related as evident from randomized polymorphic DNA analysis (random amplified polymorphic DNA (RAPD)) which revealed 28% genetic diversity. Salinity stress caused a marked reduction in grain yield of both wheat cultivars. However, cv. S-24 was superior to cv. MH-97 in maintaining grain yield under saline stress. Furthermore, salinity caused a significant variation in different physiological attributes measured at different growth stages. Salt stress caused considerable reduction in different water relation attributes of wheat plants. A significant reduction in leaf water, osmotic, and turgor potentials was recorded in both wheat cultivars at different growth stages. Maximal reduction in leaf water potential was recorded at the reproductive stage in both wheat cultivars. In contrast, maximal turgor potential was observed at the boot stage. Salt-induced adverse effects of salinity on different water relation attributes were more prominent in cv. MH-97 as compared to those in cv. S-24. Salt stress caused a substantial decrease in glycine betaine and alpha tocopherols. These biochemical attributes exhibited significant salt-induced variation at different growth stages in both wheat cultivars. For example, maximal accumulation of glycine betaine was evident at the early growth stages (vegetative and boot). However, cv. S-24 showed higher accumulation of this organic osmolyte, and this could be the reason for maintenance of higher turgor than that of cv. MH-97 under stress conditions. Salt stress significantly increased the endogenous levels of toxic ions (Na(+) and Cl(-)) and decreased essential cations (K(+) and Ca(2+)) in both wheat cultivars at different growth stages. Furthermore, K(+)/Na(+) and Ca(2+)/Na(+) ratios decreased markedly due to salt stress in both wheat cultivars at different growth stages, and this salt-induced reduction was more prominent in cv. MH-97. Moreover, higher K(+)/Na(+) and Ca(2+)/Na(+) ratios were recorded at early growth stages in both wheat cultivars. It can be inferred from the results that wheat plants are more prone to adverse effects of salinity stress at early growth stages than that at the reproductive stage.

  1. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress.

    PubMed

    Wu, Songwei; Hu, Chengxiao; Tan, Qiling; Nie, Zhaojun; Sun, Xuecheng

    2014-10-01

    Molybdenum (Mo), as an essential trace element in plants, plays an essential role in abiotic stress tolerance of plants. To obtain a better understanding of drought tolerance enhanced by Mo, a hydroponic trial was conducted to investigate the effects of Mo on water utilization, antioxidant enzymes, non-enzymatic antioxidants, and osmotic-adjustment products in the Mo-efficient '97003' and Mo-inefficient '97014' under PEG simulated drought stress. Our results indicate that Mo application significantly enhanced Pn, chlorophyll, dry matter, grain yield, biomass, RWC and WUE and decreased Tr, Gs and water loss of wheat under drought stress, suggesting that Mo application improved the water utilization capacity in wheat. The activities of antioxidant enzymes such as superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and the contents of non-enzymatic antioxidants content such as ascorbic acid, reduced glutathione, carotenoid were significantly increased and malonaldehyde contents were decreased by Mo application under PEG simulated drought stress, suggesting that Mo application enhanced the ability of scavenging active oxygen species. The osmotic-adjustment products such as soluble protein, proline and soluble sugar were also increased by Mo application under PEG simulated drought stress, indicating that Mo improved the osmotic adjustment ability in wheat. It is hypothesized that Mo application might improve the drought tolerance of wheat by enhancing water utilization capability and the abilities of antioxidative defense and osmotic adjustment. Similarities and differences between the Mo-efficient and Mo-inefficient cultivars wheat in response to Mo under drought stress are discussed.

  2. Influence of Zn-contaminated soils in the antioxidative defence system of wheat (Triticum aestivum) and maize (Zea mays) at different exposure times: potential use as biomarkers.

    PubMed

    Alonso-Blázquez, Nieves; García-Gómez, Concepción; Fernández, María Dolores

    2015-03-01

    In this study, we evaluated the antioxidant responses of wheat and maize growing in Zn-treated soils (200, 450 and 900 mg kg(-1)) at different exposure times (7, 14, 21 and 35 days). The Zn concentration in the plants increased with an increase in the Zn concentration in the soil, thereby causing an increase in the accumulation of Mg and Mn. The emergence of wheat and the growth of maize were inhibited by Zn. The chlorophyll levels increased in wheat, whereas the opposite effect was observed in maize. Regarding enzymatic activities, Zn only provoked pronounced increases in the ascorbate peroxidase activity in maize at the early exposure times and occasionally in the superoxide dismutase (14 days) and catalase (7 and 35 days) activities in wheat. The most notable effect of the exposure of plants to Zn was an inhibition of antioxidative activities after 35 days in both plant species. The reduced glutathione levels increased in wheat and maize after 35 days and the protein levels in wheat after 7 and 35 days. The only significant alteration of lipid peroxidation was a decrease in the malondialdehyde level in wheat after 35 days. Results of this work suggest that Zn may generate oxidative stress by interfering with the plant antioxidant defence system (peroxidases, catalases and superoxide dismutase) responsible for free radical detoxification. The enzymatic activities, particularly ascorbate peroxidase, and the content of reduced glutathione could be considered good biomarkers of serious stress by Zn in soils.

  3. Characterisation of the wheat (triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pi-stressed wheat

    PubMed Central

    2013-01-01

    Background Phosphorus (P) is an essential macronutrient for plant growth and development. To modulate their P homeostasis, plants must balance P uptake, mobilisation, and partitioning to various organs. Despite the worldwide importance of wheat as a cultivated food crop, molecular mechanisms associated with phosphate (Pi) starvation in wheat remain unclear. To elucidate these mechanisms, we used RNA-Seq methods to generate transcriptome profiles of the wheat variety ‘Chinese Spring’ responding to 10 days of Pi starvation. Results We carried out de novo assembly on 73.8 million high-quality reads generated from RNA-Seq libraries. We then constructed a transcript dataset containing 29,617 non-redundant wheat transcripts, comprising 15,047 contigs and 14,570 non-redundant full-length cDNAs from the TriFLDB database. When compared with barley full-length cDNAs, 10,656 of the 15,047 contigs were unalignable, suggesting that many might be distinct from barley transcripts. The average expression level of the contigs was lower than that of the known cDNAs, implying that these contigs included transcripts that were rarely represented in the full-length cDNA library. Within the non-redundant transcript set, we identified 892–2,833 responsive transcripts in roots and shoots, corresponding on average to 23.4% of the contigs not covered by cDNAs in TriFLDB under Pi starvation. The relative expression level of the wheat IPS1 (Induced by Phosphate Starvation 1) homologue, TaIPS1, was 341-fold higher in roots and 13-fold higher in shoots; this finding was further confirmed by qRT-PCR analysis. A comparative analysis of the wheat- and rice-responsive transcripts for orthologous genes under Pi-starvation revealed commonly upregulated transcripts, most of which appeared to be involved in a general response to Pi starvation, namely, an IPS1-mediated signalling cascade and its downstream functions such as Pi remobilisation, Pi uptake, and changes in Pi metabolism. Conclusions Our transcriptome profiles demonstrated the impact of Pi starvation on global gene expression in wheat. This study revealed that enhancement of the Pi-mediated signalling cascade using IPS1 is a potent adaptation mechanism to Pi starvation that is conserved in both wheat and rice and validated the effectiveness of using short-read next-generation sequencing data for wheat transcriptome analysis in the absence of reference genome information. PMID:23379779

  4. Effect of Allelic Variation at the Glu-3/Gli-1 Loci on Breadmaking Quality Parameters in Hexaploid Wheat (Triticum aestivum L.)

    PubMed Central

    Bonafede, Marcos D.; Tranquilli, Gabriela; Pflüger, Laura A.; Peña, Roberto J.; Dubcovsky, Jorge

    2016-01-01

    Low molecular weight glutenin subunits (LMW-GS) encoded by the Glu-3 loci are known to contribute to wheat breadmaking quality. However, the specific effect of individual Glu-3 alleles is not well understood due to their complex protein banding patterns in SDS-PAGE and tight linkage with gliadins at the Gli-1 locus. Using DNA markers and a backcross program we developed a set of nine near isogenic lines (NILs) including different Glu-A3/GliA-1 or Glu-B3/Gli-B1 alleles in the genetic background of the Argentine variety ProINTA Imperial. The nine NILs and the control were evaluated in three different field trials in Argentina. Significant genotype-by-environment interactions were detected for most quality parameters indicating that the effects of the Glu-3/Gli-1 alleles are modulated by environmental differences. None of the NILs showed differences in total flour protein content, but relative changes in the abundance of particular classes of proteins cannot be ruled out. On average, the Glu-A3f, Glu-B3b, Glu-B3g and Glu-B3iMan alleles were associated with the highest values in gluten strength-related parameters, while Glu-A3e, Glu-B3a and Glu-B3iChu were consistently associated with weak gluten and low quality values. The value of different Glu3/Gli-1 allele combinations to improve breadmaking quality is discussed. PMID:27818572

  5. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India.

    PubMed

    Verma, Priyanka; Yadav, Ajar Nath; Khannam, Kazy Sufia; Kumar, Sanjay; Saxena, Anil Kumar; Suman, Archna

    2016-01-01

    The diversity of culturable Bacilli was investigated in six wheat cultivating agro-ecological zones of India viz: northern hills, north western plains, north eastern plains, central, peninsular, and southern hills. These agro-ecological regions are based on the climatic conditions such as pH, salinity, drought, and temperature. A total of 395 Bacilli were isolated by heat enrichment and different growth media. Amplified ribosomal DNA restriction analysis using three restriction enzymes AluI, MspI, and HaeIII led to the clustering of these isolates into 19-27 clusters in the different zones at >70% similarity index, adding up to 137 groups. Phylogenetic analysis based on 16S rRNA gene sequencing led to the identification of 55 distinct Bacilli that could be grouped in five families, Bacillaceae (68%), Paenibacillaceae (15%), Planococcaceae (8%), Staphylococcaceae (7%), and Bacillales incertae sedis (2%), which included eight genera namely Bacillus, Exiguobacterium, Lysinibacillus, Paenibacillus, Planococcus, Planomicrobium, Sporosarcina, and Staphylococcus. All 395 isolated Bacilli were screened for their plant growth promoting attributes, which included direct-plant growth promoting (solubilization of phosphorus, potassium, and zinc; production of phytohormones; 1-aminocyclopropane-1-carboxylate deaminase activity and nitrogen fixation), and indirect-plant growth promotion (antagonistic, production of lytic enzymes, siderophore, hydrogen cyanide, and ammonia). To our knowledge, this is the first report for the presence of Bacillus endophyticus, Paenibacillus xylanexedens, Planococcus citreus, Planomicrobium okeanokoites, Sporosarcina sp., and Staphylococcus succinus in wheat rhizosphere and exhibit multifunctional PGP attributes. These niche-specific and multifarious PGP Bacilli may serve as inoculants for crops growing in respective climatic conditions.

  6. Harnessing Next Generation Sequencing in Climate Change: RNA-Seq Analysis of Heat Stress-Responsive Genes in Wheat (Triticum aestivum L.).

    PubMed

    Kumar, Ranjeet R; Goswami, Suneha; Sharma, Sushil K; Kala, Yugal K; Rai, Gyanendra K; Mishra, Dwijesh C; Grover, Monendra; Singh, Gyanendra P; Pathak, Himanshu; Rai, Anil; Chinnusamy, Viswanathan; Rai, Raj D

    2015-10-01

    Wheat is a staple food worldwide and provides 40% of the calories in the diet. Climate change and global warming pose a threat to wheat production, however, and demand a deeper understanding of how heat stress might impact wheat production and wheat biology. However, it is difficult to identify novel heat stress associated genes when the genomic information is not available. Wheat has a very large and complex genome that is about 37 times the size of the rice genome. The present study sequenced the whole transcriptome of the wheat cv. HD2329 at the flowering stage, under control (22°±3°C) and heat stress (42°C, 2 h) conditions using Illumina HiSeq and Roche GS-FLX 454 platforms. We assembled more than 26.3 and 25.6 million high-quality reads from the control and HS-treated tissues transcriptome sequences respectively. About 76,556 (control) and 54,033 (HS-treated) contigs were assembled and annotated de novo using different assemblers and a total of 21,529 unigenes were obtained. Gene expression profile showed significant differential expression of 1525 transcripts under heat stress, of which 27 transcripts showed very high (>10) fold upregulation. Cellular processes such as metabolic processes, protein phosphorylation, oxidations-reductions, among others were highly influenced by heat stress. In summary, these observations significantly enrich the transcript dataset of wheat available on public domain and show a de novo approach to discover the heat-responsive transcripts of wheat, which can accelerate the progress of wheat stress-genomics as well as the course of wheat breeding programs in the era of climate change.

  7. Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage.

    PubMed

    HongBo, Shao; ZongSuo, Liang; MingAn, Shao

    2005-09-25

    Drought is a world-spread problem seriously influencing grain production and quality, the loss of which is the total for other natural disasters, with increasing global climate change making the situation more serious. Wheat is the staple food for more than 35% of world population, so wheat anti-drought physiology study is of importance to wheat production and biological breeding for the sake of coping with abiotic and biotic conditions. Much research is involved in this hot topic, but the pace of progress is not so large because of drought resistance being a multiple-gene-control quantitative character and wheat genome being larger (16,000Mb). On the other hand, stress adaptive mechanisms are quite different, with stress degree, time course, materials, soil quality status and experimental plots, thus increasing the complexity of the issue in question. Additionally, a little study is related to the whole life circle of wheat, which cannot provide a comprehensive understanding of its anti-drought machinery. We selected 10 kinds of wheat genotypes as materials, which have potential to be applied in practice, and measured change of relative physiological indices through wheat whole growing-developmental circle (i.e. seedling, tillering and maturing). Here, we reported the anti-oxidative results of maturation stage (the results of seedling and tillering stage have been published) in terms of activities of POD, SOD, CAT and MDA content as follows: (1) 10 wheat genotypes can be grouped into three kinds (A-C, respectively) according to their changing trend of the measured indices; (2) A group performed better resistance drought under the condition of treatment level 1 (appropriate level), whose activities of anti-oxidative enzymes (POD, SOD, CAT) were higher and MDA lower; (3) B group exhibited stronger anti-drought under treatment level 2 (light-stress level), whose activities of anti-oxidative enzymes were higher and MDA lower; (4) C group expressed anti-drought to some extent under treatment level 3 (serious-stress level), whose activities of anti-oxidative enzymes were stronger, MDA lower; (5) these results demonstrated that different wheat genotypes have different physiological mechanisms to adapt themselves to changing drought stress, whose molecular basis is discrete gene expression profiling (transcriptom); (6) our results also showed that the concept and method accepted and adopted by most researchers [T.C. Hsiao, Plant response to water stress, Ann. Rev. Plant Physiol. 24 (1973) 519-570], that 75% FC is a proper supply for higher plants, was doubted, because this level could not reflect the true suitable level of different wheat genotypes. The study in this respect is the key to wheat anti-drought and biological-saving water agriculture; (7) our research can provide insights into physiological mechanisms of crop anti-drought and direct practical materials for wheat anti-drought breeding; (8) the physiological study of wheat is more urgent up-to-date and molecular aspects are needed, but cannot substitute this important part. The combination of both is an important strategy and a key and (9) POD, SOD and CAT activities and MDA content of different wheat genotypes had quite different changing trend at different stages and under different soil water stress conditions, which was linked with their origin of cultivation and individual soil water threshold.

  8. Impact assessment of climate change on wheat (Triticum aestivum L.) and mustard (Brassica spp.) production and its adaptation strategies in different districts of Gujarat, India

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Patel, H. R.; Yadav, S. B.; Patil, D. D.

    2015-12-01

    Gujarat is the western-most state of India with a long (1600 km) sea coast on the Arabian Sea. Average annual rainfall ranges from as high as 1900 mm in the sub-humid southeast to as low as 250 mm in the arid north. There are three distinct crop seasons- rainy (June to September), winter (Oct.-Nov. through Feb.-March) and summer (Feb-March through May-June). Wheat and mustard are grown during winter seasons. The past climatic records suggested increasing trends in rainfall( 2 to 5 mm per year), maximum (0.03 to 0.05 0C per year) and minimum temperatures (0.02 to 0.05 0C per year) at most of places in Gujarat. But the minimum temperature is fould to be increasing significantly at all the locations. This affects the winter season crops viz. wheat and mustard adversely. Simulation results with DSSAT CERES-wheat model revealed that with increase in temperature by 2 0C in different months (November to February) the decrease in wheat yield is observed between 7 to 29 per cent. The impact of increase in maximum temperature during early (November) and late (February) is less (<12.5 %) than that during active vegetative and reproductive period (December and January; >24.8 %). The climate change projections during 2071-2100 using PRECIS output suggested that there would be increase in maximum temperature by 3.2 to 5.2 0C in different districts of Gujarat over baseline period of 1961-1990 while minimum temperature is project to increase by 2.8 to 5.8 0C. Rainfall is also projected to increase by 28 to 70 per cent in different districts. The impact of climate change on wheat would be reduction in its duration by 14-20 days and the grain yield would be reduced by 20-55 per cent in different districts. In case of mustard crops the duration of crop would be reduced by 11 to 16 days and seed yield would be reduced by 32-50 per cent. In order to mitigate the ill effect of climate change, various adaptation strategies vis change in dates of sowing, change in variety, additional irrigation and fertilizer applications were simulated. Shifting of sowing dates of wheat by 15 days from its normal sowing (Nov 15), 5 to 10 per cent higher yield could be obtained. Similarly commonly grown cv. GW 496 is to be replaced by GW 322 to obtain 4-11 per cent higher yield. Two additional irrigation would increase the wheat yield by 5-15 per cent in different districts of Gujarat.

  9. Potential Implications of Climate Change on Aegilops Species Distribution: Sympatry of These Crop Wild Relatives with the Major European Crop Triticum aestivum and Conservation Issues.

    PubMed

    Ostrowski, Marie-France; Prosperi, Jean-Marie; David, Jacques

    2016-01-01

    Gene flow from crop to wild relatives is a common phenomenon which can lead to reduced adaptation of the wild relatives to natural ecosystems and/or increased adaptation to agrosystems (weediness). With global warming, wild relative distributions will likely change, thus modifying the width and/or location of co-occurrence zones where crop-wild hybridization events could occur (sympatry). This study investigates current and 2050 projected changes in sympatry levels between cultivated wheat and six of the most common Aegilops species in Europe. Projections were generated using MaxEnt on presence-only data, bioclimatic variables, and considering two migration hypotheses and two 2050 climate scenarios (RCP4.5 and RCP8.5). Overall, a general decline in suitable climatic conditions for Aegilops species outside the European zone and a parallel increase in Europe were predicted. If no migration could occur, the decline was predicted to be more acute outside than within the European zone. The potential sympatry level in Europe by 2050 was predicted to increase at a higher rate than species richness, and most expansions were predicted to occur in three countries, which are currently among the top four wheat producers in Europe: Russia, France and Ukraine. The results are also discussed with regard to conservation issues of these crop wild relatives.

  10. Histological and microarray analysis of the direct effect of water shortage alone or combined with heat on early grain development in wheat (Triticum aestivum).

    PubMed

    Szucs, Attila; Jäger, Katalin; Jurca, Manuela E; Fábián, Attila; Bottka, Sándor; Zvara, Agnes; Barnabás, Beáta; Fehér, Attila

    2010-10-01

    Based on the in silico analysis of the representation of expressed sequence tags (ESTs) in wheat grain-related cDNA libraries, a specific 15k oligonucleotide microarray has been developed in order to monitor environmental stress-dependent gene expression changes in the wheat caryopses. Using this array, the effect of water withdrawal, with and without additional heat stress, has been investigated during the first five days of kernel development on two wheat cultivars differing in their drought sensitivity. Water shortage affected (more than twofold change) the expression of only 0.5% of the investigated genes. A parallel heat treatment increased the ratio of responding genes to 5-7% because of the temperature stress and/or the increased water deficit because of enhanced evaporation. It could be established that the two cultivars, differing in their long-term adaptation capabilities to drought, responded to the short and direct stress treatments on the same way. In response to the combined drought and heat treatment, the coordinately altered expression of genes coding for storage proteins, enzymes involved in sugar/starch metabolism, histone proteins, heat shock proteins, proteases, tonoplast aquaporins as well as several transcription factors has been observed. These gene expression changes were in agreement with histological data that demonstrated the accelerated development of the embryo as well as the endosperm.

  11. Gliadain, a gibberellin-inducible cysteine proteinase occurring in germinating seeds of wheat, Triticum aestivum L., specifically digests gliadin and is regulated by intrinsic cystatins.

    PubMed

    Kiyosaki, Toshihiro; Matsumoto, Ichiro; Asakura, Tomiko; Funaki, Junko; Kuroda, Masaharu; Misaka, Takumi; Arai, Soichi; Abe, Keiko

    2007-04-01

    We cloned a new cysteine proteinase of wheat seed origin, which hydrolyzed the storage protein gliadin almost specifically, and was named gliadain. Gliadain mRNA was expressed 1 day after the start of seed imbibition, and showed a gradual increase thereafter. Gliadain expression was suppressed when uniconazol, a gibberellin synthesis inhibitor, was added to germinating seeds. Histochemical detection with anti-gliadain serum indicated that gliadain was present in the aleurone layer and also that its expression intensity increased in sites nearer the embryo. The enzymological characteristics of gliadain were investigated using recombinant glutathione S-transferase (GST)-progliadain fusion protein produced in Escherichia coli. The GST-progliadain almost specifically digested gliadin into low molecular mass peptides. These results indicate that gliadain is produced via gibberellin-mediated gene activation in aleurone cells and secreted into the endosperm to digest its storage proteins. Enzymologically, the GST-progliadain hydrolyzed benzyloxycarbonyl-Phe-Arg-7-amino-4-methylcoumarin (Z-Phe-Arg-NH(2)-Mec) at K(m) = 9.5 microm, which is equivalent to the K(m) value for hydrolysis of this substrate by cathepsin L. Hydrolysis was inhibited by two wheat cystatins, WC1 and WC4, with IC(50) values of 1.7 x 10(-8) and 5.0 x 10(-8) m, respectively. These values are comparable with those found for GST-progliadain inhibition by E-64 and egg-white cystatin, and are consistent with the possibility that, in germinating wheat seeds, gliadain is under the control of intrinsic cystatins.

  12. [The detection of nonallelic to known genes of resistance to Tilletia caries (DC) Tul. in wheat strains from interspecific hybridization (Triticum aestivum x Aegilops cylindrica)].

    PubMed

    Babaiants, L T; Dubinina, L A; Iushchenko, G M

    2000-01-01

    It was established by hybridological analysis that winter bread wheat lines 1/74-91, 3/36-91, 5/55-91 possess single dominant gene of resistance to bunt (Tilletia caries (DC) Tul.), but lines 8/2-91, 5/43-91, 4/11-91 and 8/16-91 have two independent dominant genes for this character. These genes originated from Aegilops cylindrica are not identical to Bt1-Bt17 genes and are unknown to date. The lines were obtained from crosses between winter bread wheat variety Odeskaya polukarlikovaya and Aegilops cylindrica.

  13. [Animal nutrition for veterinarians--case study: colic in ponies in a "petting zoo" caused by ingestion of higher amounts of wheat (Triticum aestivum L.)].

    PubMed

    Wolf, P; Kamphues, J

    2006-10-01

    Nutritional disorders in domestic or pet animals depend not seldom on special situations, for example when different influences coincide concerning keeping, housing and offering of feed or water. These lead suddenly to high-risk situations, that can cause sometimes the death of the animal. The following case report deals with two ponies, that were kept on a so-called "petting zoo" and showed repeatedly colic symptoms (always after a weekend). During surgery in the stomach light yellow balls were found, that can be explained by ingestion of 1.0 to 1.5 kg wheat. This cereals consist--depending on variety--gluten, that can cause the observed conglobates. Due to the forming of such balls that can lead to health disorders in form of colics, gastritis or ruptures of the stomach the feeding of high amounts of wheat should be avoided. Snacks rich in fiber or high amounts of roughage (straw, hay) that are fed before opening of the zoo could be a practical alternative.

  14. Efficacy of silicon priming and fertigation to modulate seedling's vigor and ion homeostasis of wheat (Triticum aestivum L.) under saline environment.

    PubMed

    Azeem, Muhammad; Iqbal, Naeem; Kausar, Shakila; Javed, M Tariq; Akram, M Sohail; Sajid, M Asim

    2015-09-01

    Seed preconditioning, a short gun approach to modulate the effects of abiotic stresses on crop plants, has recently gained considerable attention of the researchers to induce salinity tolerance in agronomically important crops. The present study was conducted to explore the comparative efficacy of presowing seed priming with silicon (Si) and Si fertigation to modulate the wheat growth and ion dynamics. Seeds of wheat variety, PUNJAB-11, were sown in Petri plates having nutrient solutions with (120 mM) and without NaCl. Six levels of Si (0, 10, 20, 30, 40, or 50 mM), applied as sodium silicate (Na2SiO3), were tested either as a seed priming agent or as a supplement in the nutrient solution. Priming of seeds with Si mitigated the adverse effects of salinity stress on germination percentage, root as well as shoot length, dry and fresh weight. Application of Si either as preconditioning of seeds or addition in the growth medium resulted in reduced accumulation of sodium (Na(+)) in wheat seedlings under saline environment. Seedling's potassium (K(+)) contents either remained unaffected or decreased whereas calcium (Ca(2+)) contents decreased at all Si concentrations except at 30 mM when Si primed seeds were grown under salt stress. Addition of Si, under salt stress, in cultivation medium exerted a positive effect on seedling's K(+) and Ca(2+) contents. Silicon contribution to decontamination strategies was evaluated.

  15. Effects of two different organic amendments addition to soil on sorption-desorption, leaching, bioavailability of penconazole and the growth of wheat (Triticum aestivum L.).

    PubMed

    Jiang, Lei; Lin, Jing Ling; Jia, Lin Xian; Liu, Ying; Pan, Bo; Yang, Yi; Lin, Yong

    2016-02-01

    This study investigated the effects of sugarcane bagasse compost (SBC) and chicken manure compost (CMC) on the sorption-desorption, leaching and bioavailability of the fungicide penconazole in soil in a laboratory setting. The autoclave-treated SBC or CMC was applied at 2.5% and 5.0% (w/w). Results of batch equilibrium experiments exhibited that the sorption capacity of soils for penconazole was significantly promoted by the addition of SBC or CMC, whereas desorption of penconazole was drastically reduced; the influence was enhanced as the amount of organic amendments increased. Results of column leaching experiment indicated that the addition of SBC or CMC significantly limited the vertical movement of penconazole through the soil columns, considerably decreasing the content of penconazole in the soil leachate. Furthermore, results of bioavailability experiments demonstrated that the addition of organic amendments (SBC or CMC) remarkably influenced the uptake and translocation of penconazole, decreased penconazole accumulation in the plant tissues and increased the plant elongation and biomass. These data revealed important changes in pesticide behavior under SBC or CMC application, which should be useful for developing strategies to protect groundwater and crops from contamination from the residual pesticides in soil.

  16. Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought.

    PubMed

    Li, Xiaojuan; Guo, Chengjin; Gu, Juntao; Duan, Weiwei; Zhao, Miao; Ma, Chunying; Du, Xiaoming; Lu, Wenjing; Xiao, Kai

    2014-02-01

    Establishing crop cultivars with strong tolerance to P and N deprivation, high salinity, and drought is an effective way to improve crop yield and promote sustainable agriculture worldwide. A vacuolar H+-pyrophosphatase (V-H+-PPase) gene in wheat (TaVP) was functionally characterized in this study. TaVP cDNA is 2586-bp long and encodes a 775-amino-acid polypeptide that contains 10 conserved membrane-spanning domains. Transcription of TaVP was upregulated by inorganic phosphate (Pi) and N deprivation, high salinity, and drought. Transgene analysis revealed that TaVP overexpression improved plant growth under normal conditions and specifically under Pi and N deprivation stresses, high salinity, and drought. The improvement of growth of the transgenic plants was found to be closely related to elevated V-H+-PPase activities in their tonoplasts and enlarged root systems, which possibly resulted from elevated expression of auxin transport-associated genes. TaVP-overexpressing plants showed high dry mass, photosynthetic efficiencies, antioxidant enzyme activities, and P, N, and soluble carbohydrate concentrations under various growth conditions, particularly under the stress conditions. The transcription of phosphate and nitrate transporter genes was not altered in TaVP-overexpressing plants compared with the wild type, suggesting that high P and N concentrations regulated by TaVP were caused by increased root absorption area instead of alteration of Pi and NO3- acquisition kinetics. TaVP is important in the tolerance of multiple stresses and can serve as a useful genetic resource to improve plant P- and N-use efficiencies and to increase tolerance to high salinity and drought.

  17. Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.).

    PubMed

    Xie, Zhenze; Wang, Congyan; Wang, Ke; Wang, Shunli; Li, Xiaohui; Zhang, Zhao; Ma, Wujun; Yan, Yueming

    2010-11-01

    Nineteen novel full-ORF α-gliadin genes and 32 pseudogenes containing at least one stop codon were cloned and sequenced from three Aegilops tauschii accessions (T15, T43 and T26) and two bread wheat cultivars (Gaocheng 8901 and Zhongyou 9507). Analysis of three typical α-gliadin genes (Gli-At4, Gli-G1 and Gli-Z4) revealed some InDels and a considerable number of SNPs among them. Most of the pseudogenes were resulted from C to T change, leading to the generation of TAG or TAA in-frame stop codon. The putative proteins of both Gli-At3 and Gli-Z7 genes contained an extra cysteine residue in the unique domain II. Analysis of toxic epitodes among 19 deduced α-gliadins demonstrated that 14 of these contained 1-5 T cell stimulatory toxic epitopes while the other 5 did not contain any toxic epitopes. The glutamine residues in two specific ployglutamine domains ranged from 7 to 27, indicating a high variation in length. According to the numbers of 4 T cell stimulatory toxic epitopes and glutamine residues in the two ployglutamine domains among the 19 α-gliadin genes, 2 were assigned to chromosome 6A, 5 to chromosome 6B and 12 to chromosome 6D. These results were consistent with those from wheat cv. Chinese Spring nulli-tetrasomic and phylogenetic analysis. Secondary structure prediction showed that all α-gliadins had high content of β-strands and most of the α-helixes and β-strands were present in two unique domains. Phylogenetic analysis demonstrated that α-gliadin genes had a high homology with γ-gliadin, B-hordein, and LMW-GS genes and they diverged at approximate 39 MYA. Finally, the five α-gliadin genes were successfully expressed in E. coli, and their expression amount reached to the maximum after 4 h induced by IPTG, indicating that the α-gliadin genes can express in a high level under the control of T(7) promoter.

  18. The distal portion of the short arm of wheat (Triticum aestivum L.) chromosome 5D controls endosperm vitreosity and grain hardness.

    PubMed

    Morris, Craig F; Beecher, Brian S

    2012-07-01

    Kernel vitreosity is an important trait of wheat grain, but its developmental control is not completely known. We developed back-cross seven (BC(7)) near-isogenic lines in the soft white spring wheat cultivar Alpowa that lack the distal portion of chromosome 5D short arm. From the final back-cross, 46 BC(7)F(2) plants were isolated. These plants exhibited a complete and perfect association between kernel vitreosity (i.e. vitreous, non-vitreous or mixed) and Single Kernel Characterization System (SKCS) hardness. Observed segregation of 10:28:7 fit a 1:2:1 Chi-square. BC(7)F(2) plants classified as heterozygous for both SKCS hardness and kernel vitreosity (n = 29) were selected and a single vitreous and non-vitreous kernel were selected, and grown to maturity and subjected to SKCS analysis. The resultant phenotypic ratios were, from non-vitreous kernels, 23:6:0, and from vitreous kernels, 0:1:28, soft:heterozygous:hard, respectively. Three of these BC(7)F(2) heterozygous plants were selected and 40 kernels each drawn at random, grown to maturity and subjected to SKCS analysis. Phenotypic segregation ratios were 7:27:6, 11:20:9, and 3:28:9, soft:heterozygous:hard. Chi-square analysis supported a 1:2:1 segregation for one plant but not the other two, in which cases the two homozygous classes were under-represented. Twenty-two paired BC(7)F(2):F(3) full sibs were compared for kernel hardness, weight, size, density and protein content. SKCS hardness index differed markedly, 29.4 for the lines with a complete 5DS, and 88.6 for the lines possessing the deletion. The soft non-vitreous kernels were on average significantly heavier, by nearly 20%, and were slightly larger. Density and protein contents were similar, however. The results provide strong genetic evidence that gene(s) on distal 5DS control not only kernel hardness but also the manner in which the endosperm develops, viz. whether it is vitreous or non-vitreous.

  19. Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments.

    PubMed

    Zheng, Bangyou; Biddulph, Ben; Li, Dora; Kuchel, Haydn; Chapman, Scott

    2013-09-01

    Heading time is a major determinant of the adaptation of wheat to different environments, and is critical in minimizing risks of frost, heat, and drought on reproductive development. Given that major developmental genes are known in wheat, a process-based model, APSIM, was modified to incorporate gene effects into estimation of heading time, while minimizing degradation in the predictive capability of the model. Model parameters describing environment responses were replaced with functions of the number of winter and photoperiod (PPD)-sensitive alleles at the three VRN1 loci and the Ppd-D1 locus, respectively. Two years of vernalization and PPD trials of 210 lines (spring wheats) at a single location were used to estimate the effects of the VRN1 and Ppd-D1 alleles, with validation against 190 trials (~4400 observations) across the Australian wheatbelt. Compared with spring genotypes, winter genotypes for Vrn-A1 (i.e. with two winter alleles) had a delay of 76.8 degree days (°Cd) in time to heading, which was double the effect of the Vrn-B1 or Vrn-D1 winter genotypes. Of the three VRN1 loci, winter alleles at Vrn-B1 had the strongest interaction with PPD, delaying heading time by 99.0 °Cd under long days. The gene-based model had root mean square error of 3.2 and 4.3 d for calibration and validation datasets, respectively. Virtual genotypes were created to examine heading time in comparison with frost and heat events and showed that new longer-season varieties could be heading later (with potential increased yield) when sown early in season. This gene-based model allows breeders to consider how to target gene combinations to current and future production environments using parameters determined from a small set of phenotyping treatments.

  20. Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions.

    PubMed

    Bennett, Dion; Izanloo, Ali; Edwards, James; Kuchel, Haydn; Chalmers, Ken; Tester, Mark; Reynolds, Matthew; Schnurbusch, Thorsten; Langridge, Peter

    2012-03-01

    In southern Australia, where the climate is predominantly Mediterranean, achieving the correct flowering time in bread wheat minimizes the impact of in-season cyclical and terminal drought. Flag leaf glaucousness has been hypothesized as an important component of drought tolerance but its value and genetic basis in locally adapted germplasm is unknown. From a cross between Kukri and RAC875, a doubled-haploid (DH) population was developed. A genetic linkage map consisting of 456 DArT and SSR markers was used to detect QTL affecting time to ear emergence and Zadoks growth score in seven field experiments. While ear emergence time was similar between the parents, there was significant transgressive segregation in the population. This was the result of segregation for the previously characterized Ppd-D1a and Ppd-B1 photoperiod responsive alleles. QTL of smaller effect were also detected on chromosomes 1A, 4A, 4B, 5A, 5B, 7A and 7B. A novel QTL for flag leaf glaucousness of large, repeatable effect was detected in six field experiments, on chromosome 3A (QW.aww-3A) and accounted for up to 52 percent of genetic variance for this trait. QW.aww-3A was validated under glasshouse conditions in a recombinant inbred line population from the same cross. The genetic basis of time to ear emergence in this population will aid breeders' understanding of phenological adaptation to the local environment. Novel loci identified for flag leaf glaucousness and the wide phenotypic variation within the DH population offers considerable scope to investigate the impact and value of this trait for bread wheat production in southern Australia.

  1. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum).

    PubMed

    Shaw, Lindsay M; Turner, Adrian S; Laurie, David A

    2012-07-01

    Flowering time is a trait that has been extensively altered during wheat domestication, enabling it to be highly productive in diverse environments and providing a rich source of variation for studying adaptation mechanisms. Hexaploid wheat is ancestrally a long-day plant, but many environments require varieties with photoperiod insensitivity (PI) that can flower in short days. PI results from mutations in the Ppd-1 gene on the A, B or D genomes, with individual mutations conferring different degrees of earliness. The basis of this is poorly understood. Using a common genetic background, the effects of A, B and D genome PI mutations on genes of the circadian clock and photoperiod pathway were studied using genome-specific expression assays. Ppd-1 PI mutations did not affect the clock or immediate clock outputs, but affected TaCO1 and TaFT1, with a reduction in TaCO1 expression as TaFT1 expression increased. Therefore, although Ppd-1 is related to PRR genes of the Arabidopsis circadian clock, Ppd-1 affects flowering by an alternative route, most likely by upregulating TaFT1 with a feedback effect that reduces TaCO1 expression. Individual genes in the circadian clock and photoperiod pathway were predominantly expressed from one genome, and there was no genome specificity in Ppd-1 action. Lines combining PI mutations on two or three genomes had enhanced earliness with higher levels, but not earlier induction, of TaFT1, showing that there is a direct quantitative relationship between Ppd-1 mutations, TaFT1 expression and flowering.

  2. Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat.