Science.gov

Sample records for amplifolia bangiales rhodophyta

  1. Group I introns and associated homing endonuclease genes reveals a clinal structure for Porphyra spiralis var. amplifolia (Bangiales, Rhodophyta) along the Eastern coast of South America

    PubMed Central

    2008-01-01

    Background Group I introns are found in the nuclear small subunit ribosomal RNA gene (SSU rDNA) of some species of the genus Porphyra (Bangiales, Rhodophyta). Size polymorphisms in group I introns has been interpreted as the result of the degeneration of homing endonuclease genes (HEG) inserted in peripheral loops of intron paired elements. In this study, intron size polymorphisms were characterized for different Porphyra spiralis var. amplifolia (PSA) populations on the Southern Brazilian coast, and were used to infer genetic relationships and genetic structure of these PSA populations, in addition to cox2-3 and rbcL-S regions. Introns of different sizes were tested qualitatively for in vitro self-splicing. Results Five intron size polymorphisms within 17 haplotypes were obtained from 80 individuals representing eight localities along the distribution of PSA in the Eastern coast of South America. In order to infer genetic structure and genetic relationships of PSA, these polymorphisms and haplotypes were used as markers for pairwise Fst analyses, Mantel's test and median joining network. The five cox2-3 haplotypes and the unique rbcL-S haplotype were used as markers for summary statistics, neutrality tests Tajima's D and Fu's Fs and for median joining network analyses. An event of demographic expansion from a population with low effective number, followed by a pattern of isolation by distance was obtained for PSA populations with the three analyses. In vitro experiments have shown that introns of different lengths were able to self-splice from pre-RNA transcripts. Conclusion The findings indicated that degenerated HEGs are reminiscent of the presence of a full-length and functional HEG, once fixed for PSA populations. The cline of HEG degeneration determined the pattern of isolation by distance. Analyses with the other markers indicated an event of demographic expansion from a population with low effective number. The different degrees of degeneration of the HEG

  2. Pyropia plicata sp. nov. (Bangiales, Rhodophyta): naming a common intertidal alga from New Zealand

    PubMed Central

    Nelson, Wendy A.

    2013-01-01

    Abstract A commonly found red alga of the upper intertidal zone of New Zealand rocky coasts is described for the first time as Pyropia plicata sp. nov. This species has been incorrectly known as Porphyra columbina Mont. (now Pyropia columbina (Mont.) W.A.Nelson) for many years. Pyropia plicata is widespread and common, and it is readily distinguished from other species of bladed Bangiales in New Zealand by its distinctive morphology, with pleated blades attached by a central rhizoidal holdfast. PMID:23794933

  3. Complete mitochondrial genome of the holotype specimen of Wildemania schizophylla (Bangiales: Rhodophyta).

    PubMed

    Silva, Mayra Y; Hughey, Jeffery R

    2016-01-01

    Ion Proton data was used to assemble the complete mitochondrial genome from the holotype specimen of Wildemania schizophylla (29,156 bp). The mitogenome contains 50 genes, including 2 ribosomal RNA, 23 transfer RNA, 4 ribosomal proteins, 2 ymfs, 3 open reading frames (ORFs), and 19 genes involved in cellular respiration. Although gene synteny is conserved, the mitogenome of W. schizophylla is significantly smaller due to the lack of large intronic ORFs present in the cytochrome oxidase locus of other Bangiales. The results support the recognition of Wildemania as distinct from Porphyra, and demonstrate that small amounts of type material are suitable for genomic studies.

  4. The bladed Bangiales (Rhodophyta) of the South Eastern Pacific: Molecular species delimitation reveals extensive diversity.

    PubMed

    Guillemin, Marie-Laure; Contreras-Porcia, Loretto; Ramírez, María Eliana; Macaya, Erasmo C; Contador, Cristian Bulboa; Woods, Helen; Wyatt, Christopher; Brodie, Juliet

    2016-01-01

    A molecular taxonomic study of the bladed Bangiales of the South Eastern Pacific (coast of Chile) was undertaken based on sequence data of the mitochondrial COI and chloroplast rbcL for 193 specimens collected from Arica (18°S) in the north to South Patagonia (53°S) in the south. The results revealed for the first time that four genera, Porphyra, Pyropia, Fuscifolium and Wildemania were present in the region. Species delimitation was determined based on a combination of a General Mixed Yule Coalescence model (GMYC) and Automatic Barcode Gap Discovery (ABGD) coupled with detection of monophyly in tree reconstruction. The overall incongruence between the species delimitation methods within each gene was 29%. The GMYC method led to over-splitting groups, whereas the ABGD method had a tendency to lump groups. Taking a conservative approach to the number of putative species, at least 18 were recognized and, with the exception of the recently described Pyropia orbicularis, all were new to the Chilean flora. Porphyra and Pyropia were the most diverse genera with eight 'species' each, whereas only a 'single' species each was found for Fuscifolium and Wildemania. There was also evidence of recently diverging groups: Wildemania sp. was distinct but very closely related to W. amplissima from the Northern Hemisphere and raises questions in relation to such disjunct distributions. Pyropia orbicularis was very closely related to two other species, making species delimitation very difficult but provides evidence of an incipient speciation. The difference between the 'species' discovered and those previously reported for the region is discussed in relation to the difficulty of distinguishing species based on morphological identification. PMID:26484942

  5. Cloning and analysis of calmodulin gene from Porphyra yezoensis Ueda (Bangiales, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Wang, Mengqiang; Mao, Yunxiang; Zhuang, Yunyun; Kong, Fanna; Sui, Zhenghong

    2009-09-01

    In order to understand the mechanisms of signal transduction and anti-desiccation mechanisms of Porphyra yezoensis, cDNA and its genomic sequence of Calmodulin gene (CaM) was cloned by the technique of polymerase chain reaction (PCR) based on the analysis of P. yezoensis ESTs from dbEST database. The result shows that the full-length cDNA of CaM consists of 603 bps including an ORF encoding for 151 amino acids and a terminate codon UGA, while the length of genomic sequence is 1231 bps including 2 exons and 1 intron. The average GC content of the coding region is 58.77%, while the GC content of the third position of this gene is as high as 82.23%. Four Ca2+ binding sites (EF-hand) are found in this gene. The predicted molecular mass of the deduced peptide is 16688.72 Da and the pI is 4.222. By aligning with known CaM genes, the similarity of CaM gene sequence with homologous genes in Chlamydomonas incerta and Chlamydomonas reinhardtii is 72.7% and 72.2% respectively, and the similarity of the deduced amino acid sequence of CaM gene with homologous genes in C. incerta and C. reinhardtii are both 71.5%. This is the first report on CaM from a species of Rhodophyta.

  6. The Porphyra species of Helgoland (Bangiales, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Kornmann, P.; Sahling, P.-H.

    1991-03-01

    This revision of seven Porphyra species of Helgoland was based on a study of the structure of their fertile thalli and the behaviour of their spores. Regarding the reproductive organization the species may be arranged in two groups. P. leucosticta and P. purpureo-violacea are obligate monoecious species. Asexual thalli have never been observed in the field. The other five species are generally dioecious. Isomorphic sexual thalli and asexually propagating ones are mixed in uniform populations. Carpospores originating from sexual fusion develop into the diploid Conchocelis phase. Sporangia of asexual plants, though homologous in formation, produce spores of different kinds: aplanospores that give rise to the vegetative thallus directly (in P. umbilicalis, P. insolita n. sp. and P. ochotensis) and spores that develop into haploid Conchocelis (in P. laciniata and in P. linearis). P. laciniata — formerly considered synonymous with P. purpurea — is an independent species.

  7. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL.

    PubMed

    Freshwater, D W; Fredericq, S; Butler, B S; Hommersand, M H; Chase, M W

    1994-07-19

    A phylogeny for the Rhodophyta has been inferred by parsimony analysis of plastid rbcL sequences representing 81 species, 68 genera, 38 families, and 17 orders of red algae; rbcL encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Levels of sequence divergence among species, genera, and families are high in red algae, typically much greater than those reported for flowering plants. The Rhodophyta traditionally consists of one class, Rhodophyceae, and two subclasses, Bangiophycidae and Florideophycidae. The Bangiophycidae with three orders (Porphyridiales, Compsopogonales, and Bangiales) appears to be polyphyletic, and the Florideophycidae with 17 orders is monophyletic in this study. The current classification of the Florideophycidae based on ultrastructure of pit connections is supported. With the exception of the Rhodogorgonales, which appears to be misplaced, orders with one or two pit-plug cap layers (Hildenbrandiales, Corallinales, Acrochaetiales, Palmanales, Batrachospermales, and Nemaliales) terminate long branches of basal position within Florideophycidae in the most parsimonious rbcL tree. Orders that lack typical cap layers but possess a cap membrane are resolved as a monophyletic clade sister to the Ahnfeltiales. The large order Gigartinales, which is distributed among five rbcL clades, is polyphyletic. Families that possess typical carrageenan in their cell walls are resolved as a terminal clade containing two family complexes centered around the Solieriaceae and Gigartinaceae.

  8. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL.

    PubMed Central

    Freshwater, D W; Fredericq, S; Butler, B S; Hommersand, M H; Chase, M W

    1994-01-01

    A phylogeny for the Rhodophyta has been inferred by parsimony analysis of plastid rbcL sequences representing 81 species, 68 genera, 38 families, and 17 orders of red algae; rbcL encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Levels of sequence divergence among species, genera, and families are high in red algae, typically much greater than those reported for flowering plants. The Rhodophyta traditionally consists of one class, Rhodophyceae, and two subclasses, Bangiophycidae and Florideophycidae. The Bangiophycidae with three orders (Porphyridiales, Compsopogonales, and Bangiales) appears to be polyphyletic, and the Florideophycidae with 17 orders is monophyletic in this study. The current classification of the Florideophycidae based on ultrastructure of pit connections is supported. With the exception of the Rhodogorgonales, which appears to be misplaced, orders with one or two pit-plug cap layers (Hildenbrandiales, Corallinales, Acrochaetiales, Palmanales, Batrachospermales, and Nemaliales) terminate long branches of basal position within Florideophycidae in the most parsimonious rbcL tree. Orders that lack typical cap layers but possess a cap membrane are resolved as a monophyletic clade sister to the Ahnfeltiales. The large order Gigartinales, which is distributed among five rbcL clades, is polyphyletic. Families that possess typical carrageenan in their cell walls are resolved as a terminal clade containing two family complexes centered around the Solieriaceae and Gigartinaceae. PMID:8041781

  9. Tolerance to oxidative stress induced by desiccation in Porphyra columbina (Bangiales, Rhodophyta)

    PubMed Central

    Contreras-Porcia, Loretto; Thomas, Daniela; Flores, Verónica; Correa, Juan A.

    2011-01-01

    Unravelling the mechanisms underlying desiccation tolerance is crucial in order to understand the position of algal species in the intertidal zone. The alga Porphyra columbina lives in the uppermost part of the rocky intertidal zones around the world and was selected as a model for this study. Naturally desiccated plants were collected during low tide and studied for morphological changes, oxidative burst induction, biomolecule oxidation, antioxidant responses, and photosynthetic status. Naturally hydrated plants collected during high tides were used for comparative purposes. In addition, changes induced by desiccation were assessed in vitro and the capacity to recover from desiccation was determined by rehydrating the fronds in seawater. The global results show that desiccation induces morphological and cellular alterations accompanied by a loss of ∼96% of the water content. Overproduction of reactive oxygen species (ROS) was induced by desiccation and two peaks of H2O2 were detected at 1 and 3 h of desiccation. However, during in vitro rehydration post-desiccation, the ROS quickly returned to the basal levels. At the biomolecular level, only a low production of oxidized proteins was recorded during desiccation, whereas the activity of diverse antioxidant enzymes increased. However, this activity diminished to near basal levels during rehydration. The photosynthetic efficiency (Fv/Fm) during desiccation declined by 94–96% of the values recorded in hydrated plants. This reduction was generated by the low levels of trapped energy flux per cross-section (TRo/CS), electron transport flux per CS (ETo/CS), and density of reaction centres (RC/SCo) as well as the chlorophyll content. The inverse pattern was observed for the levels of phycocyanin and phycoerythrin content. Fv/Fm and the photosynthetic indicators were restored to normal levels after only 5 min of rehydration. The results indicate that desiccation in P. columbina causes overproduction of ROS that is efficiently attenuated. The morphological and photosynthetic changes could be operating as tolerance mechanisms due to the fact that these responses principally prevent biomolecular alteration and cellular collapse. Thus, the activation of different physiological mechanisms helps to explain the high tolerance to desiccation of P. columbina and, at least in part, the position of this species at the highest level in the intertidal zone. PMID:21196477

  10. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    PubMed

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones.

  11. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes

    PubMed Central

    Hughey, Jeffery R.; Gabrielson, Paul W.; Rohmer, Laurence; Tortolani, Jacquie; Silva, Mayra; Miller, Kathy Ann; Young, Joel D.; Martell, Craig; Ruediger, Erik

    2014-01-01

    Plant species, including algae and fungi, are based on type specimens to which the name of a taxon is permanently attached. Applying a scientific name to any specimen therefore requires demonstrating correspondence between the type and that specimen. Traditionally, identifications are based on morpho-anatomical characters, but recently systematists are using DNA sequence data. These studies are flawed if the DNA is isolated from misidentified modern specimens. We propose a genome-based solution. Using 4 × 4 mm2 of material from type specimens, we assembled 14 plastid and 15 mitochondrial genomes attributed to the red algae Pyropia perforata, Py. fucicola, and Py. kanakaensis. The chloroplast genomes were fairly conserved, but the mitochondrial genomes differed significantly among populations in content and length. Complete genomes are attainable from 19th and early 20th century type specimens; this validates the effort and cost of their curation as well as supports the practice of the type method. PMID:24894641

  12. Complete nuclear ribosomal DNA sequence amplification and molecular analyses of Bangia (Bangiales, Rhodophyta) from China

    NASA Astrophysics Data System (ADS)

    Xu, Jiajie; Jiang, Bo; Chai, Sanming; He, Yuan; Zhu, Jianyi; Shen, Zonggen; Shen, Songdong

    2016-09-01

    Filamentous Bangia, which are distributed extensively throughout the world, have simple and similar morphological characteristics. Scientists can classify these organisms using molecular markers in combination with morphology. We successfully sequenced the complete nuclear ribosomal DNA, approximately 13 kb in length, from a marine Bangia population. We further analyzed the small subunit ribosomal DNA gene (nrSSU) and the internal transcribed spacer (ITS) sequence regions along with nine other marine, and two freshwater Bangia samples from China. Pairwise distances of the nrSSU and 5.8S ribosomal DNA gene sequences show the marine samples grouping together with low divergences (00.003; 0-0.006, respectively) from each other, but high divergences (0.123-0.126; 0.198, respectively) from freshwater samples. An exception is the marine sample collected from Weihai, which shows high divergence from both other marine samples (0.063-0.065; 0.129, respectively) and the freshwater samples (0.097; 0.120, respectively). A maximum likelihood phylogenetic tree based on a combined SSU-ITS dataset with maximum likelihood method shows the samples divided into three clades, with the two marine sample clades containing Bangia spp. from North America, Europe, Asia, and Australia; and one freshwater clade, containing Bangia atropurpurea from North America and China.

  13. Different Responses to Heat Shock Stress Revealed Heteromorphic Adaptation Strategy of Pyropia haitanensis (Bangiales, Rhodophyta)

    PubMed Central

    Zhu, Zhujun; Yang, Rui; Qian, Feijian; Chen, Haimin; Yan, Xiaojun

    2014-01-01

    Pyropia has a unique heteromorphic life cycle with alternation stages between thallus and conchocelis, which lives at different water temperatures in different seasons. To better understand the different adaptation strategies for temperature stress, we tried to observe comparative biochemical changes of Pyropia haitanensis based on a short term heat shock model. The results showed that: (1) At normal temperature, free-living conchocelis contains significantly higher levels of H2O2, fatty acid-derived volatiles, the copy number of Phrboh and Phhsp70 genes,the activities of NADPH oxidase and floridoside than those in thallus. The released H2O2 and NADPH oxidase activity of conchocelis were more than 7 times higher than those of thallus. The copy number of Phrboh in conchocelis was 32 times that in thallus. (2) After experiencing heat shock at 35°C for 30 min, the H2O2 contents, the mRNA levels of Phrboh and Phhsp70, NADPH oxidase activity and the floridoside content in thallus were all significantly increased. The mRNA levels of Phrboh increased 5.78 times in 5 min, NADPH oxidase activity increased 8.45 times in 20 min. (3) Whereas, in conchocelis, the changes in fatty acids and their down-stream volatiles predominated, significantly increasing levels of saturated fatty acids and decreasing levels of polyunsaturated fatty acids occurred, and the 8-carbon volatiles were accumulated. However, the changes in H2O2 content and expression of oxidant-related genes and enzymatic activity were not obvious. Overall, these results indicate that conchocelis maintains a high level of active protective apparatus to endure its survival at high temperature, while thallus exhibit typical stress responses to heat shock. It is concluded that Pyropia haitanensis has evolved a delicate strategy for temperature adaptation for its heteromorphic life cycle. PMID:24709783

  14. Identification and characterization of a DnaJ gene from red alga Pyropia yezoensis (Bangiales, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Liu, Jiao; Li, Xianchao; Tang, Xuexi; Zhou, Bin

    2016-03-01

    Members of the DnaJ family are proteins that play a pivotal role in various cellular processes, such as protein folding, protein transport and cellular responses to stress. In the present study, we identified and characterized the full-length DnaJ cDNA sequence from expressed sequence tags of Pyropia yezoensis ( PyDnaJ) via rapid identification of cDNA ends. This cDNA encoded a protein of 429 amino acids, which shared high sequence similarity with other identified DnaJ proteins, such as a heat shock protein 40/DnaJ from Pyropia haitanensis. The relative mRNA expression level of PyDnaJ was investigated using real-time PCR to determine its specific expression during the algal life cycle and during desiccation. The relative mRNA expression level in sporophytes was higher than that in gametophytes and significantly increased during the whole desiccation process. These results indicate that PyDnaJ is an authentic member of the DnaJ family in plants and red algae and might play a pivotal role in mitigating damage to P. yezoensis during desiccation.

  15. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    PubMed

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones. PMID:26154304

  16. PHYCOBILIN CONTENT OF THE CONCHOCELIS PHASE OF ALASKAN PORPHYRA (BANGIALES, RHODOPHYTA) SPECIES: RESPONSES TO ENVIRONMENTAL VARIABLES(1).

    PubMed

    Lin, Rulong; Stekoll, Michael S

    2011-02-01

    Variations of pigment content in the microscopic conchocelis stage of four Alaskan Porphyra species were investigated in response to environmental variables. Conchocelis filaments were cultured under varying conditions of irradiance and nutrient concentrations for up to 60 d at 11°C and 30 psu salinity. Results indicate that conchocelis filaments contain relatively high concentrations of phycobilins under optimal culture conditions. Phycobilin pigment production was significantly affected by irradiance, nutrient concentration, and culture duration. For Porphyra abbottiae V. Krishnam., Porphyra sp., and Porphyra torta V. Krishnam., maximal phycoerythrin (63.2-95.1 mg · g dwt(-1) ) and phycocyanin (28.8-64.8 mg · g dwt(-1) ) content generally occurred at 10 μmol photons · m(-2)  · s(-1) , f/4-f/2 nutrient concentration after 10-20 d of culture. Whereas for Porphyra hiberna S. C. Lindstrom et K. M. Cole, the highest phycoerythrin (73.3 mg · g dwt(-1) ) and phycocyanin (70.2 mg · g dwt(-1) ) content occurred at 10 μmol photons · m(-2)  · s(-1) , f nutrient concentration after 60 d in culture. Under similar conditions, the different species showed significant differences in pigment content. P. abbottiae had higher phycoerythrin content than the other three species, and P. hiberna had the highest phycocyanin content. P. torta had the lowest phycobilin content.

  17. Four new species of Pyropia (Bangiales, Rhodophyta) from the west coast of North America: the Pyropialanceolata species complex updated.

    PubMed

    Lindstrom, Sandra C; Hughey, Jeffery R; Rosas, Luis E Aguilar

    2015-01-01

    Recent molecular studies indicate that the Pyropialanceolata species complex on the west coast of North America is more speciose than previously thought. Based on extensive rbcL gene sequencing of representative specimens we recognize seven species in the complex, three of which are newly described: Pyropiamontereyensis sp. nov., Pyropiacolumbiensis sp. nov., and Pyropiaprotolanceolata sp. nov. The new species are all lanceolate, at least when young, and occur in the upper mid to high intertidal zone primarily in winter and early spring. Pyropiamontereyensis and Pyropiacolumbiensis are sister taxa that are distributed south and north of Cape Mendocino, respectively, and both occur slightly lower on the shore than Pyropialanceolata or Pyropiapseudolanceolata. Pyropiaprotolanceolata is known thus far only from Morro Rock and the Monterey Peninsula, California; it occurs basally to the other species in the complex in the molecular phylogeny. A fourth newly described species, Pyropiabajacaliforniensis sp. nov., is more closely related to Pyropianereocystis than to species in this complex proper. It is a thin species with undulate margins known only from Moss Landing, Monterey Bay, California, and northern Baja California; it also occurs in the high intertidal in spring. Porphyramumfordii, a high intertidal winter species that has frequently been confused with species in the Pyropialanceolata complex, has now been confirmed to occur from Calvert Island, British Columbia, to Pescadero State Park, California.

  18. Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) during dehydration and re-hydration.

    PubMed

    Lin, A-Peng; Wang, Guang-Ce; Yang, Fang; Pan, Guang-Hua

    2009-03-01

    Physiological data from extreme habitat organisms during stresses are vital information for comprehending their survival. The intertidal seaweeds are exposed to a combination of environmental stresses, the most influential one being regular dehydration and re-hydration. Porphyra katadai var. hemiphylla is a unique intertidal macroalga species with two longitudinally separated, color distinct, sexually different parts. In this study, the photosynthetic performance of both PSI and PSII of the two sexually different parts of P. katadai thalli during dehydration and re-hydration was investigated. Under low-grade dehydration the variation of photosystems of male and female parts of P. katadai were similar. However, after the absolute water content reached 42%, the PSI of the female parts was nearly shut down while that of the male parts still coordinated well and worked properly with PSII. Furthermore, after re-hydration with a better conditioned PSI, the dehydrated male parts were able to restore photosynthesis within 1 h, while the female parts did not. It is concluded that in P. katadai the susceptibility of photosynthesis to dehydration depends on the accommodative ability of PSI. The relatively lower content of phycobiliprotein in male parts may be the cause for a stronger PSI after severe dehydration.

  19. Four new species of Pyropia (Bangiales, Rhodophyta) from the west coast of North America: the Pyropia lanceolata species complex updated

    PubMed Central

    Lindstrom, Sandra C.; Hughey, Jeffery R.; Rosas, Luis E. Aguilar

    2015-01-01

    Abstract Recent molecular studies indicate that the Pyropia lanceolata species complex on the west coast of North America is more speciose than previously thought. Based on extensive rbcL gene sequencing of representative specimens we recognize seven species in the complex, three of which are newly described: Pyropia montereyensis sp. nov., Pyropia columbiensis sp. nov., and Pyropia protolanceolata sp. nov. The new species are all lanceolate, at least when young, and occur in the upper mid to high intertidal zone primarily in winter and early spring. Pyropia montereyensis and Pyropia columbiensis are sister taxa that are distributed south and north of Cape Mendocino, respectively, and both occur slightly lower on the shore than Pyropia lanceolata or Pyropia pseudolanceolata. Pyropia protolanceolata is known thus far only from Morro Rock and the Monterey Peninsula, California; it occurs basally to the other species in the complex in the molecular phylogeny. A fourth newly described species, Pyropia bajacaliforniensis sp. nov., is more closely related to Pyropia nereocystis than to species in this complex proper. It is a thin species with undulate margins known only from Moss Landing, Monterey Bay, California, and northern Baja California; it also occurs in the high intertidal in spring. Porphyra mumfordii, a high intertidal winter species that has frequently been confused with species in the Pyropia lanceolata complex, has now been confirmed to occur from Calvert Island, British Columbia, to Pescadero State Park, California. PMID:26312033

  20. Carotenogenesis diversification in phylogenetic lineages of Rhodophyta.

    PubMed

    Takaichi, Shinichi; Yokoyama, Akiko; Mochimaru, Mari; Uchida, Hiroko; Murakami, Akio

    2016-06-01

    Carotenoid composition is very diverse in Rhodophyta. In this study, we investigated whether this variation is related to the phylogeny of this group. Rhodophyta consists of seven classes, and they can be divided into two groups on the basis of their morphology. The unicellular group (Cyanidiophyceae, Porphyridiophyceae, Rhodellophyceae, and Stylonematophyceae) contained only β-carotene and zeaxanthin, "ZEA-type carotenoids." In contrast, within the macrophytic group (Bangiophyceae, Compsopogonophyceae, and Florideophyceae), Compsopogonophyceae contained antheraxanthin in addition to ZEA-type carotenoids, "ANT-type carotenoids," whereas Bangiophyceae contained α-carotene and lutein along with ZEA-type carotenoids, "LUT-type carotenoids." Florideophyceae is divided into five subclasses. Ahnfeltiophycidae, Hildenbrandiophycidae, and Nemaliophycidae contained LUT-type carotenoids. In Corallinophycidae, Hapalidiales and Lithophylloideae in Corallinales contained LUT-type carotenoids, whereas Corallinoideae in Corallinales contained ANT-type carotenoids. In Rhodymeniophycidae, most orders contained LUT-type carotenoids; however, only Gracilariales contained ANT-type carotenoids. There is a clear relationship between carotenoid composition and phylogenetics in Rhodophyta. Furthermore, we searched open genome databases of several red algae for references to the synthetic enzymes of the carotenoid types detected in this study. β-Carotene and zeaxanthin might be synthesized from lycopene, as in land plants. Antheraxanthin might require zeaxanthin epoxydase, whereas α-carotene and lutein might require two additional enzymes, as in land plants. Furthermore, Glaucophyta contained ZEA-type carotenoids, and Cryptophyta contained β-carotene, α-carotene, and alloxanthin, whose acetylenic group might be synthesized from zeaxanthin by an unknown enzyme. Therefore, we conclude that the presence or absence of the four enzymes is related to diversification of carotenoid

  1. An improved method for estimating R-phycoerythrin and R-phycocyanin contents from crude aqueous extracts of Porphyra (Bangiales, Rhodophyta)

    PubMed Central

    Neefus, Christopher D.

    2006-01-01

    One frequently-cited method for determining phycoerythrin (PE) and phycocyanin (PC) contents from crude aqueous extracts of red seaweeds utilizes peaks and troughs of absorbance spectra. The trough absorbance values are used to establish a linear or logarithmic baseline attributable to background scatter of particulate cellular debris not removed by centrifugation. Pigment contents are calculated by subtracting baseline values from PE and PC absorbance peaks. The baseline correction is intended to make the method independent of centrifugation time and/or speed. However, when crude extracts of Porphyra were analyzed using this protocol, R-PE and R-PC estimates were significantly affected by centrifugation time, suggesting that the method was not reliable for the genus. The present study has shown that with sufficient centrifugation, background scatter in Porphyra extracts can be removed, the remaining spectrum representing the overlapping absorbance peaks of water-soluble pigments in the extract. Using fourth derivative analysis of Porphyra extract absorbance spectra, peaks corresponding to chlorophyll, R-PE, R-PC, and allophycocyanin (APC) were identified. Dilute solutions of purified R-PE, R-PC and chlorophyll were scanned separately to identify spectral overlaps and develop new equations for phycobilin quantification. The new equations were used to estimate R-PE and R-PC contents of Porphyra extracts and purified R-PE, R-PC and chlorophyll solutions were mixed according to concentrations corresponding to the sample estimates. Absorbances and fourth derivative spectra of the sample extract and purified pigment mixtures were compared and found to coincide. The newly derived equations are more accurate for determining R-PE and R-PC of Porphyra than previously published methods. PMID:19396349

  2. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta)

    PubMed Central

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation. PMID:27642603

  3. Effects of elevated CO2 on the photosynthesis and nitrate reductase activity of Pyropia haitanensis (Bangiales, Rhodophyta) grown at different nutrient levels

    NASA Astrophysics Data System (ADS)

    Liu, Chunxiang; Zou, Dinghui

    2015-03-01

    Pyropia haitanensis, a commercially important species, was cultured at two CO2 concentrations (390×10-6 and 700×10-6 (parts per million)) and at low and high nutrient levels, to explore the effect of elevated CO2 on the species under nutrient enrichment. Results show that in CO2-enriched thalli, relative growth rate (RGR) was enhanced under nutrient enrichment. Elevated CO2 decreased phycobiliprotein (PB) contents, but increased the contents of soluble carbohydrates. Nutrient enrichment increased the contents of chlorophyll a (Chl a) and PB, while soluble carbohydrate content decreased. CO2 enrichment enhanced the relative maximum electronic transport rate and light saturation point. In nutrient-enriched thalli the activity of nitrate reductase (NRA) increased under elevated CO2. An instantaneous pH change in seawater (from 8.1 to 9.6) resulted in reduction of NRA, and the thalli grown under both elevated CO2 and nutrient enrichment exhibited less pronounced reduction than in algae grown at the ambient CO2. The thermal optima of NRA under elevated CO2 and/or nutrient enrichment shifted to a lower temperature (10-15°C) compared to that in ambient conditions (20°C). We propose that accelerated photosynthesis could result in growth increment. N assimilation remained high in acidified seawater and reflected increased temperature sensitivity in response to elevated CO2 and eutrophication.

  4. Taxonomy, molecular phylogeny, and ultrastructural morphology of Olpidiopsis porphyrae sp. nov. (Oomycetes, straminipiles), a unicellular obligate endoparasite of Bangia and Porphyra spp. (Bangiales, Rhodophyta).

    PubMed

    Sekimoto, Satoshi; Yokoo, Kazunari; Kawamura, Yoshio; Honda, Daiske

    2008-03-01

    Olpidiopsis porphyrae sp. nov., a marine oomycete endoparasite that infects the commercially cultivated red alga Porphyra yezoensis, is described and its phylogenetic position based on molecular data and ultrastructural morphology is discussed. O. porphyrae infects the host Porphyra by means of encysted zoospores. Spherical-shaped holocarpic thalli develop within the cytoplasm of its algal host, which produce monoplanetic, subapically biflagellate zoospores. The characteristic features of this isolate are the ellipsoidal, unicellular thallus and simple holocarpic zoosporangial development, which show morphological similarity with the genus Olpidiopsis. Laboratory infection experiments with a wide range of green, brown, and red algae revealed that O. porphyrae infects several stages of the bangialean red algae (the genera Bangia and Porphyra). Molecular phylogenetic analyses inferred from both SSU rRNA and cox2 genes showed O. porphyrae branched before the main saprolegnian and peronosporalean lineages within the monophyletic oomycete clade, indicating its phylogenetic separation from them. A single or double K-body-like organelle, which contains tubular inclusions, is found located to one side of the zoospore nucleus and shows similarities to homologous organelles previously described in O. saprolegniae. The ultrastructural morphology of O. porphyrae with zoospore initials containing K-bodies and tubular mitochondrial cristae is characteristic of oomycetes. Group I intron-like multiple insertions were found in the SSU rRNA gene of O. porphyrae. This is the first report of SSU group I introns in the class Oomycetes.

  5. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta)

    PubMed Central

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation.

  6. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta).

    PubMed

    Wu, Huanyang

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation. PMID:27642603

  7. Evidence of ancient genome reduction in red algae (Rhodophyta).

    PubMed

    Qiu, Huan; Price, Dana C; Yang, Eun Chan; Yoon, Hwan Su; Bhattacharya, Debashish

    2015-08-01

    Red algae (Rhodophyta) comprise a monophyletic eukaryotic lineage of ~6,500 species with a fossil record that extends back 1.2 billion years. A surprising aspect of red algal evolution is that sequenced genomes encode a relatively limited gene inventory (~5-10 thousand genes) when compared with other free-living algae or to other eukaryotes. This suggests that the common ancestor of red algae may have undergone extensive genome reduction, which can result from lineage specialization to a symbiotic or parasitic lifestyle or adaptation to an extreme or oligotrophic environment. We gathered genome and transcriptome data from a total of 14 red algal genera that represent the major branches of this phylum to study genome evolution in Rhodophyta. Analysis of orthologous gene gains and losses identifies two putative major phases of genome reduction: (i) in the stem lineage leading to all red algae resulting in the loss of major functions such as flagellae and basal bodies, the glycosyl-phosphatidylinositol anchor biosynthesis pathway, and the autophagy regulation pathway; and (ii) in the common ancestor of the extremophilic Cyanidiophytina. Red algal genomes are also characterized by the recruitment of hundreds of bacterial genes through horizontal gene transfer that have taken on multiple functions in shared pathways and have replaced eukaryotic gene homologs. Our results suggest that Rhodophyta may trace their origin to a gene depauperate ancestor. Unlike plants, it appears that a limited gene inventory is sufficient to support the diversification of a major eukaryote lineage that possesses sophisticated multicellular reproductive structures and an elaborate triphasic sexual cycle. PMID:26986787

  8. Production of terpenes in the culture of Chlorophyceae and Rhodophyta

    NASA Astrophysics Data System (ADS)

    Abe, M.; Hashimoto, S.

    2014-12-01

    Terpenes show high reactivity in the troposphere, contributing to organic aerosol reactions with OH radicals. One of the main sources of terpenes in the atmosphere is terrestrial plants. It has been recently reported that marine phytoplankton also produce monoterpenes (Yassaa et al: 2008). Because aerosol production of natural origin affects the cloud cover over the open ocean, it is important to investigate the origin of aerosol generation in the open ocean. In this study, we investigated the production of terpenes and isoprene with a focus on Chlamydomonas (Chlorophyceae) and Rhodella maculata (Rhodophyta). Concentrations of terpenes and isoprene were measured using a dynamic headspace (GERSTEL DHS)—gas chromatograph (Agilent 6890N)—mass spectrometer (Agilent 5975C). In addition, chlorophyll a was measured using a fluorometer (Turner TD-700). The results showed that isoprene, α-pinene, and β-pinene were produced by Chlamydomonas sp. and that isoprene, limonene, and camphene were produced by Rhodella maculata. Chlamydomonas sp. produced α-pinene and β-pinene, similar to land plants. The ratio of the pinene/isoprene concentrations in the atmosphere over seawater where phytoplankton are blooming has been reported as approximately 0.7 (Yassaa et al: 2008). In this experiment, the pinene/isoprene concentration ratios in the cultures were approximately 0.1. This result indicates that marine phytoplankton may not be ignored in the marine atmosphere chemistry of terpenes.

  9. Dereplication and Chemotaxonomical Studies of Marine Algae of the Ochrophyta and Rhodophyta Phyla

    PubMed Central

    Brkljača, Robert; Gӧker, Emrehan Semih; Urban, Sylvia

    2015-01-01

    Dereplication and chemotaxonomic studies of six marine algae of the Ochrophyta and one of the Rhodophyta phyla resulted in the detection of 22 separate compounds. All 16 secondary metabolites, including four new compounds (16–19), could be rapidly dereplicated using HPLC-NMR and HPLC-MS methodologies in conjunction with the MarinLit database. This study highlights the advantages of using NMR data (acquired via HPLC-NMR) for database searching and for the overall dereplication of natural products. PMID:25942092

  10. The mitochondrial genome of Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) and comparative mitochondrial genomics of red algae.

    PubMed

    DePriest, Michael S; Bhattacharya, Debashish; López-Bautista, Juan M

    2014-10-01

    Although red algae are economically highly valuable for their gelatinous cell wall compounds as well as being integral parts of marine benthic habitats, very little genome data are currently available. We present mitochondrial genome sequence data from the red alga Grateloupia taiwanensis S.-M. Lin & H.-Y. Liang. Comprising 28,906 nucleotide positions, the mitochondrial genome contig contains 25 protein-coding genes and 24 transfer RNA genes. It is highly similar to other red algal genomes in gene content as well as overall structure. An intron in the cox1 gene was found to be shared by G. taiwanensis and Grateloupia angusta (Okamura) S. Kawaguchi & H. W. Wang. We also used whole-genome alignments to compare G. taiwanensis to different groups of red algae, and these results are consistent with the currently accepted phylogeny of Rhodophyta.

  11. Red Algae (Rhodophyta) from the Coast of Madagascar: Preliminary Bioactivity Studies and Isolation of Natural Products

    PubMed Central

    Rahelivao, Marie Pascaline; Gruner, Margit; Andriamanantoanina, Hanta; Andriamihaja, Bakolinirina; Bauer, Ingmar; Knölker, Hans-Joachim

    2015-01-01

    Several species of red algae (Rhodophyta) from the coastal regions of Madagascar have been investigated for their natural products. The most abundant compound was cholesterol (5) in combination with a series of oxidized congeners. The brominated indoles 1–3 along with the sesquiterpene debilone (4) have been isolated from Laurencia complanata. For the first time, debilone (4) has been obtained from a marine plant. From the methanol extract of Calloseris sp., we have achieved the second isolation of the unusual A-ring contracted steroids (−)-2-ethoxycarbonyl-2β-hydroxy-A-nor-cholest-5-en-4-one (9) and phorbasterone B (10). The crude extracts of Laurencia complanata exhibited antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Streptococcus pneumoniae, and Candida albicans. PMID:26198236

  12. The freshwater alga Chroothece richteriana (Rhodophyta) as a potential source of lipids.

    PubMed

    Aboal, Marina; González-Silvera, Daniel; Roldán, Mónica; Hernández-Mariné, Mariona; López-Jiménez, José Ángel; Whitton, Brian A

    2014-11-01

    During an ecological study of Chroothece (Rhodophyta) in a small river in a semi-arid region of south-east Spain it became clear that most of these cells had a high lipid content. This suggested potential uses in biotechnology, which has been investigated further. The colonies, which occur in full sunlight, are typically orange-brown. Most, perhaps all, the yellow-orange colour is associated with their high carotenoid content, with the carotenoid to chlorophyll ratio up to 2.7. The polyunsaturated fatty acyl composition of the glycerides was 35.3% of the dry weight. This consisted mainly of omega-3 (5.9%) and omega-6 (29.4%) fats. The relatively high proportion of docosahexaenoyl (1.78%), eicosapentaenoyl (14.15%), arachidonoyl (0.92%) and γ-linolenoyl (0.78%) suggests use for medical and dietary purposes. All cells have a high phycocyanin content whilst phycoerythrin is absent. The alga has a wide distribution globally and hence provides scope for selecting strains with optimum properties.

  13. Insight into glucosidase II from the red marine microalga Porphyridium sp. (Rhodophyta).

    PubMed

    Levy-Ontman, Oshrat; Fisher, Merav; Shotland, Yoram; Tekoah, Yoram; Malis Arad, Shoshana

    2015-12-01

    N-glycosylation of proteins is one of the most important post-translational modifications that occur in various organisms, and is of utmost importance for protein function, stability, secretion, and loca-lization. Although the N-linked glycosylation pathway of proteins has been extensively characterized in mammals and plants, not much information is available regarding the N-glycosylation pathway in algae. We studied the α 1,3-glucosidase glucosidase II (GANAB) glycoenzyme in a red marine microalga Porphyridium sp. (Rhodophyta) using bioinformatic and biochemical approaches. The GANAB-gene was found to be highly conserved evolutionarily (compo-sed of all the common features of α and β subunits) and to exhibit similar motifs consistent with that of homolog eukaryotes GANAB genes. Phylogenetic analysis revealed its wide distribution across an evolutionarily vast range of organisms; while the α subunit is highly conserved and its phylogenic tree is similar to the taxon evolutionary tree, the β subunit is less conserved and its pattern somewhat differs from the taxon tree. In addition, the activity of the red microalgal GANAB enzyme was studied, including functional and biochemical characterization using a bioassay, indicating that the enzyme is similar to other eukaryotes ortholog GANAB enzymes. A correlation between polysaccharide production and GANAB activity, indicating its involvement in polysaccharide biosynthesis, is also demonstrated. This study represents a valuable contribution toward understanding the N-glycosylation and polysaccharide biosynthesis pathways in red microalgae.

  14. Mevalonosomes: specific vacuoles containing the mevalonate pathway in Plocamium brasiliense cortical cells (Rhodophyta).

    PubMed

    Paradas, Wladimir Costa; Crespo, Thalita Mendes; Salgado, Leonardo Tavares; de Andrade, Leonardo Rodrigues; Soares, Angélica Ribeiro; Hellio, Claire; Paranhos, Ricardo Rogers; Hill, Lilian Jorge; de Souza, Geysa Marinho; Kelecom, Alphonse Germaine Albert Charles; Da Gama, Bernardo Antônio Perez; Pereira, Renato Crespo; Amado-Filho, Gilberto Menezes

    2015-04-01

    This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway-an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F9,9 = 1.13). The HF (at 10 μg · mL(-1) ) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 μg · mL(-1) ), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling. PMID:26986518

  15. DNA barcode assessment of Ceramiales (Rhodophyta) in the intertidal zone of the northwestern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Du, Guoying; Wu, Feifei; Guo, Hao; Xue, Hongfan; Mao, Yunxiang

    2015-05-01

    A total of 142 specimens of Ceramiales (Rhodophyta) were collected each month from October 2011 to November 2012 in the intertidal zone of the northwestern Yellow Sea. These specimens covered 21 species, 14 genera, and four families. Cluster analyses show that the specimens had a high diversity for the three DNA markers, namely, partial large subunit rRNA gene (LSU), universal plastid amplicon (UPA), and partial mitochondrial cytochrome c oxidase subunit I gene (COI). No intraspecific divergence was found in our collection for these markers, except for a 1-3 bp divergence in the COI of Ceramium kondoi, Symphyocladia latiuscula, and Neosiphonia japonica. Because short DNA markers were used, the phylogenetic relationships of higher taxonomic levels were hard to evaluate with poor branch support. More than half species of our collection failed to find their matched sequences owing to shortage information of DNA barcodes for macroalgae in GenBank or BOLD (Barcode of Life Data) Systems. Three specimens were presumed as Heterosiphonia crispella by cluster analyses on DNA barcodes assisted by morphological identification, which was the first record in the investigated area, implying that it might be a cryptic or invasive species in the coastal area of northwestern Yellow Sea. In the neighbor-joining trees of all three DNA markers, Heterosiphonia japonica converged with Dasya spp. and was distant from the other Heterosiphonia spp., implying that H. japonica had affinities to the genus Dasya. The LSU and UPA markers amplified and sequenced easier than the COI marker across the Ceramiales species, but the COI had a higher ability to discriminate between species.

  16. psbD sequences of Bumilleriopsis filiformis (Heterokontophyta, Xanthophyceae) and Porphyridium purpureum (Rhodophyta, Bangiophycidae): evidence for polyphyletic origins of plastids.

    PubMed

    Scherer, S; Lechner, S; Böger, P

    1993-11-01

    The nucleotide sequences of the plastidal psbD genes of Bumilleriopsis filiformis and Porphyridium purpureum (encoding the D2 protein of photosystem II) are reported in this paper. The Bumilleriopsis sequence clusters together with Porphyridium when a most parsimonious protein tree of D2 sequences is constructed. A composite D1/D2 protein-similarity network reveals that neither the three red algal sequences nor the two heterokontophyte sequences (Bumilleriopsis, xanthophytes and Ectocarpus, phaeophytes) group together. Therefore, the Heterokontophyta and Rhodophyta may be heterogeneous groups. Instead, it emerges that the D1/D2 proteins of Porphyridium and Bumilleriopsis clearly form a tight cluster. D1 and D2 proteins apparently do not provide a reliable molecular clock. These results fit into hypotheses proposing a polyphyletic origin for complex plastids, even among the supposedly "natural" group of heterokontophytes.

  17. New records of rhodolith-forming species (Corallinales, Rhodophyta) from deep water in Espírito Santo State, Brazil

    NASA Astrophysics Data System (ADS)

    Henriques, Maria Carolina; Villas-Boas, Alexandre; Rodriguez, Rafael Riosmena; Figueiredo, Marcia A. O.

    2012-06-01

    Little is known about the diversity of non-geniculate coralline red algae (Rhodophyta, Corallinophycidae) from deep waters in Brazil. Most surveys undertaken in this country have been carried out in shallow waters. In 1994, however, the REVIZEE program surveyed the sustainable living resources potential of the Brazilian exclusive economic zone to depths of 500 m. In the present study, the rhodolith-forming coralline algae from the continental shelf of Espírito Santo State were identified. Samples were taken from 54 to 60 m depth by dredging during ship cruises in 1997. Three rhodolith-forming species were found: Spongites yendoi (Foslie) Chamberlain , Lithothamnion muelleri Lenormand ex Rosanoff and Lithothamnion glaciale Kjellman. These records extend the distribution ranges of these species into Brazilian waters and extend the depth distribution of non-geniculate coralline red algae into Brazilian water to 58 m.

  18. Thermal pollution and settlement of new tropical alien species: The case of Grateloupia yinggehaiensis (Rhodophyta) in the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Wolf, M. A.; Sfriso, A.; Moro, I.

    2014-06-01

    The Venice Lagoon has become increasingly affected by the introduction of allochthonous macroalgae mainly coming from the Indo-Pacific area. In consequence to the recent climate changes and temperature increase, such species could simply find numerous habitats suitable for their growth. One local process that contributes to water temperature changes is thermal pollution. In this study we used the DNA barcoding method to identify a new alien macroalgal species, Grateloupia yinggehaiensis Wang et Luan (Rhodophyta), found near the industrial area of Porto Marghera (Venice, Italy) hosting the Fusina thermoelectric power plant. The microclimate of this area has enabled the spread of this species native of the tropical area of the Hainan Province (China) and probably introduced in the Mediterranean Sea via shellfish transfers.

  19. Effect of nutrient supply on photosynthesis and pigmentation to short-term stress (UV radiation) in Gracilaria conferta (Rhodophyta).

    PubMed

    Figueroa, F L; Israel, A; Neori, A; Martínez, B; Malta, E J; Put, A; Inken, S; Marquardt, R; Abdala, R; Korbee, N

    2010-10-01

    The effects of increased photosynthetic active radiation (PAR), UV radiation (UVR), and nutrient supply on photosynthetic activity, pigment content, C:N ratio and biomass yield were studied in tank cultivated Gracilaria conferta (Rhodophyta). Electron transport rate (ETR) and biliprotein content were higher under high nutrient supply (HNS), obtained from fishpond effluents, compared to low nutrient supply (LNS), in contrast to mycosporine-like amino acids (MAAs) dynamic. The high MAA content in LNS-algae could be explained by higher UVR penetration in the thallus and by the competition for the use of nutrients with other processes. Effective quantum yield decreased after short-term exposure to high irradiance whereas full recovery in shade was produced only under slightly heat shock. UVA radiation provoked an additional decrease in photosynthesis under high water temperature. UVB radiation reversed UVA's negative effect mainly with HNS. Results support that nutrient-sufficiency help G. conferta to resist environmental changes as short-term temperature increase. PMID:20619863

  20. Prediction of mono-, bi-, and trivalent metal cation relative toxicity to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta) in synthetic seawater.

    PubMed

    Mendes, Luiz Fernando; Zambotti-Villela, Leonardo; Yokoya, Nair Sumie; Bastos, Erick Leite; Stevani, Cassius Vinicius; Colepicolo, Pio

    2013-11-01

    The present study reports a 48-h aquatic metal-toxicity assay based on daily growth rates of the red seaweed Gracilaria domingensis (Gracilariales, Rhodophyta) in synthetic seawater. The median inhibitory concentration (IC50) for each metal cation was experimentally determined, and the ratios of free ions (aqueous complex) were calculated by software minimization of the total equilibrium activity (MINTEQA2) to determine the free median inhibitory concentration (IC50F). A model for predicting the toxicity of 14 metal cations was developed using the generic function approximation algorithm (GFA) with log IC50F values as the dependent variables and the following properties as independent variables: ionic radius (r), atomic number (AN), electronegativity (Xm ), covalent index (Xm (2) r), first hydrolysis constant (|log KOH |), softness index (σp ), ion charge (Z), ionization potential (ΔIP), electrochemical potential (ΔEo ), atomic number divided by ionization potential (AN/ΔIP), and the cation polarizing power for Z(2) /r and Z/AR. The 3-term independent variables were predicted as the best-fit model (log IC50F: -23.64 + 5.59 Z/AR + 0.99 |log KOH | + 37.05 σp ; adjusted r(2) : 0.88; predicted r(2) : 0.68; Friedman lack-of-fit score: 1.6). This mathematical expression can be used to predict metal-biomolecule interactions, as well as the toxicity of mono-, bi-, and trivalent metal cations, which have not been experimentally tested in seaweed to date. Quantitative ion-character relationships allowed the authors to infer that the mechanism of toxicity might involve an interaction between metals and functional groups of biological species containing sulfur or oxygen.

  1. Spreading and autoecology of the invasive species Gracilaria vermiculophylla (Gracilariales, Rhodophyta) in the lagoons of the north-western Adriatic Sea (Mediterranean Sea, Italy)

    NASA Astrophysics Data System (ADS)

    Sfriso, A.; Wolf, M. A.; Maistro, S.; Sciuto, K.; Moro, I.

    2012-12-01

    Gracilaria vermiculophylla (Ohmi) Papenfuss, an invasive Rhodophyta recently recorded in the Po Delta lagoons (May 2008), was also found in the Venice lagoon in March 2009 and successively in Pialassa della Baiona (Emilia-Romagna Region) in May 2009. The species has colonized the eutrophic and confined areas of Venice by pleustophytic tangled populations (5-15 kg fwt m-2), replacing the allochthonous species whereas it is absent in the areas characterized by low nutrient availability and high water exchange. In contrast, in the Po Delta lagoons and in Pialassa della Baiona it is present everywhere, also with high water renewal, because of the eutrophication caused by the Po river and the industrial area of Ravenna. This study presents the autoecology and distribution of G. vermiculophylla in the above environments, according to their different eutrophication status, showing its relationship with physico-chemical parameters and nutrient concentrations in water column, pore-water, surface sediments and particulate matter collected by traps in a station of the Venice lagoon (Teneri) sampled monthly during one year. Furthermore, we give new information on its morphology and the high dimorphism between female and male gametophytes and tetrasporophytes.

  2. Crouania pumila sp. nov. (Callithamniaceae: Rhodophyta), a new species of marine red algae from the Seaflower International Biosphere Reserve, Caribbean Colombia.

    PubMed

    Gavio, Brigitte; Reyes-Gómez, Viviana P; Wynne, Michael J

    2013-09-01

    In the Colombian Caribbean, the marine macroalgal flora of the Seaflower International Biosphere Reserve has been little studied, despite its ecological importance. Historical records have reported only 201 macroalgae species within its area of almost 350,000 km2. However, recent surveys have shown a diversity of small algae previously overlooked. With the aim to determine the macroalgal diversity in the Reserve, we undertook field surveys in different ecosystems: coral reefs, seagrass beds, and rocky and sandy substrates, at different depths, from intertidal to 37 m. During these field surveys, we collected a small described species belonging to the genus Crouania (Callithamniaceae, Rhodophyta), Crouania pumila sp. nov. that is decribed in this paper. This new species was distinguished from other species of the genus by a distinctive suite of traits including its diminutive size (to only 3.5 mm in length), its decumbent, slightly calcified habit (epiphytic on other algae), its ramisympodial branching, the ecorticate main axes, and the elongate shape of the terminal cells of the cortical filaments. The observations were provided for both female (cystocarpic) and tetrasporangiate thalli; however, male thalli were not seen. Further studies have to be undertaken in this Reserve in order to carry out other macroalgal analysis and descriptions.

  3. Preliminary study on the responses of three marine algae, Ulva pertusa (Chlorophyta), Gelidium amansii (Rhodophyta) and Sargassum enerve (Phaeophyta), to nitrogen source and its availability

    NASA Astrophysics Data System (ADS)

    Liu, Dongyan; Amy, Pickering; Sun, Jun

    2004-04-01

    An experiment was designed to select economically valuable macroalga species with high nutrient uptake rates. Such species cultured on a large scale could be a potential solution to eutrophication. Three macroalgae species, Ulva pertusa (Chlorophyta), Gelidium amansii (Rhodophyta) and Sargassum enerve (Phaeophyta), were chosen for the experiment because of their economic values and availability. Control and four nitrogen concentrations were achieved by adding NH{4/+} and NO{3/-}. The results indicate that the fresh weights of all species increase faster than that of control after 5 d culture. The fresh weight of Ulva pertusa increases fastest among the 3 species. However, different species show different responses to nitrogen source and its availability. They also show the advantage of using NH{4/+} than using NO{3/-}. U. pertusa grows best and shows higher capability of removing nitrogen at 200µmolL-1, but it has lower economical value. G. amansii has higher economical value but lower capability of removing nitrogen at 200 µmolL-1. The capability of nitrogen assimilation of S. enerve is higher than that of G. amansii at 200µmolL -1, but the former’s increase of fresh weight is lower than those of other two species. Then present preliminary study demonstrates that it is possible to use macroalgae as biofilters and further development of this approach could provide biologically valuable information on the source, fate, and transport of N in marine ecosystems. Caution is needed should we extrapolate these findings to natural environments.

  4. Crouania pumila sp. nov. (Callithamniaceae: Rhodophyta), a new species of marine red algae from the Seaflower International Biosphere Reserve, Caribbean Colombia.

    PubMed

    Gavio, Brigitte; Reyes-Gómez, Viviana P; Wynne, Michael J

    2013-09-01

    In the Colombian Caribbean, the marine macroalgal flora of the Seaflower International Biosphere Reserve has been little studied, despite its ecological importance. Historical records have reported only 201 macroalgae species within its area of almost 350,000 km2. However, recent surveys have shown a diversity of small algae previously overlooked. With the aim to determine the macroalgal diversity in the Reserve, we undertook field surveys in different ecosystems: coral reefs, seagrass beds, and rocky and sandy substrates, at different depths, from intertidal to 37 m. During these field surveys, we collected a small described species belonging to the genus Crouania (Callithamniaceae, Rhodophyta), Crouania pumila sp. nov. that is decribed in this paper. This new species was distinguished from other species of the genus by a distinctive suite of traits including its diminutive size (to only 3.5 mm in length), its decumbent, slightly calcified habit (epiphytic on other algae), its ramisympodial branching, the ecorticate main axes, and the elongate shape of the terminal cells of the cortical filaments. The observations were provided for both female (cystocarpic) and tetrasporangiate thalli; however, male thalli were not seen. Further studies have to be undertaken in this Reserve in order to carry out other macroalgal analysis and descriptions. PMID:24027904

  5. Morphological study of the genus Herposiphonia (Rhodophyta, Rhodomelaceae) on the coast of eastern Guangdong, China, with a description of H. pinnata sp. nov.

    NASA Astrophysics Data System (ADS)

    Ding, Lanping; Tan, Huaqiang; Zhang, Quanliang; Zeng, Lingzhao; Huang, Bingxin

    2016-03-01

    We present a taxonomic study of taxa of the red algae genus Herposiphonia (Rhodophyta, Rhodomelaceae), collected from the coast of eastern Guangdong, China. We made detailed morphological studies and considered recent taxonomic criteria for species delimitation, and are making the first report of five different species on the coast of Guangdong, including a new species. The species identified were H. caespitosa Tseng, H. hollenbergii Dawson, H. pecten - veneris (Harvey) Falkenberg, H. subdisticha Okamura and H. pinnata Ding and Tan sp. nov. H. pinnata sp. nov. is characterized by bright green thalli; most parts of the feathery thalli are free of the substratum; determinate branches and indeterminate branches are arranged in a chaotic sequence; the primary axis has bare segments; the determinate branch has 9-11 periaxial cells per segment; vegetative trichoblasts are abundant; and tetrasporangia are formed on the middle of the determinate branch with 1-8 successive segments in a single rectilinear series. This paper is also the first record of sporophyte plants of H. pecten-veneris.

  6. Alterations in seawater pH and CO 2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Semesi, I. Sware; Kangwe, Juma; Björk, Mats

    2009-09-01

    Calcification in the marine environment is the basis for the accretion of carbonate in structures such as coral reefs, algal ridges and carbonate sands. Among the organisms responsible for such calcification are the Corallinaceae (Rhodophyta), recognised as major contributors to the process world-wide. Hydrolithon sp. is a coralline alga that often forms rhodoliths in the Western Indian Ocean. In Zanzibar, it is commonly found in shallow lagoons, where it often grows within seagrass beds and/or surrounded by green algae such as Ulva sp. Since seagrasses in Zanzibar have recently been shown to raise the pH of the surrounding seawater during the day, and since calcification rates are sensitive to pH, which changes the saturation state of calcium carbonate, we measured the effects of pH on photosynthetic and calcification rates of this alga. It was found that pH had significant effects on both calcification and photosynthesis. While increased pH enhanced calcification rates both in the light and in the dark at pH >8.6, photosynthetic rates decreased. On the other hand, an increase in dissolved CO 2 concentration to ˜26 μmol kg -1 (by bubbling with air containing 0.9 mbar CO 2) caused a decrease in seawater pH which resulted in 20% less calcification after 5 days of exposure, while enhancing photosynthetic rates by 13%. The ecological implications of these findings is that photosynthetically driven changes in water chemistry by surrounding plants can affect calcification rates of coralline algae, as may future ocean acidification resulting from elevated atmospheric CO 2.

  7. Erythropeltidaceen (Bangiophyceae, Rhodophyta) von Helgoland

    NASA Astrophysics Data System (ADS)

    Kornmann, P.; Sahling, P.-H.

    1985-06-01

    Ontogenesis and reproduction of the Helgolandian taxa of the Erythropeltidaceae have been studied. In all species monospores are only produced from differentiated sporangia. Filamentous Conchocelis-like stages have not been observed. Sexual reproduction was formerly demonstrated in the heteromorphous genus Erythrotrichopeltis (Kornmann, 1984). Based on these features a revised classification for the family is presented. Porphyropsis imperfecta, a new species, is a widespread epiphyte in sublittoral habitats.

  8. Agar polysaccharides from Gracilaria species (Rhodophyta, Gracilariaceae).

    PubMed

    Marinho-Soriano, E

    2001-07-26

    Yield, physical and chemical properties of agar from three agarophytes species (Gracilaria gracilis, G. dura and G. bursa-pastoris) were determined. The agar yield from the three species varied significantly (P<0.01). The highest yields of agar (34.8%) and the lowest (30%) were obtained from G. bursa-pastoris and G. gracilis, respectively. Highest gel strength (630+/-15 g cm(-2)) was obtained from agar extracted from G. gracilis and lowest from G. bursa-pastoris (26+/-3.6 g cm(-2)). The values of 3,6-anhydrogalactose were similar for G. gracilis and G. dura and there were no significant differences among the species. The sulfate contents varied significantly (P<0.01) and the higher value was obtained from G. bursa-pastoris. Among the three species, G. gracilis showed superior agar quality than the other two species, hence it can be considered a good potential source for industrial use.

  9. Der Lebenszyklus von Porphyrostromium obscurum (Bangiophyceae, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Kornmann, P.

    1987-06-01

    Studies on the sexuality and the heteromorphous life cycle of Erythrotrichia ciliaris provided decisive criteria for the establishment of the genus Erythrotrichopeltis (Kornmann, 1984). This genus was transferred by Wynne (1986) to Porphyrostromium Trevisan 1848. In the present study Erythrotrichia obscura, the original species of Berthold's (1882) classical observations on the sexuality of this genus, is incorporated to Porphyrostromium. Previously regarded as synonyms, Porphyrostromium ciliare (Carm. ex Harv.) Wynne and P. obscurum (Berth.) nov. comb. proved to be distinct species, differing both in the filamentous and in the peltoid phases of their life cycle. The relationship between P. ciliare and P. boryanum (Montagne) Trevisan, type species of the genus, may only be elucidated by future investigations on the basis of field collected material.

  10. Early development of grateloupia turuturu (Halymeniaceae, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Wang, Gaoge; Jiang, Chunmei; Wang, Shasha; Wei, Xiaojiao; Zhao, Fengjuan

    2012-03-01

    Grateloupia turuturu is a commercial red alga with potential value in nutraceuticals and pharmaceuticals. To supplement information on its life history and verify whether carpospores can be used for seedling culture, early development of G. turuturu was investigated under culture conditions (27°C, 10-13 μol/(m2·s) in irradiance, photoperiod 10:14 h L:D). Three physiological stages were recognized by continuous microscopic observation: division stage, discoid crust stage, and juvenile seedling stage. At the beginning of the division stage, the carpospores developed germ tubes into which the carpospore protoplasm was evacuated, and then the carpospore protoplasm in the germ tubes began to divide continuously until discoid crusts formed. Finally, upright thalli appeared on the discoid crusts and developed into juvenile seedlings. It took about 60 days for carpospores to develop into juvenile seedlings. The growth parameters, including germination rate for carpospores and discoid crust diameter, were recorded. These results contribute more information on the life cycle, and at the same time are of great significance in the scaling-up of artificial seedling cultures of G. turuturu.

  11. Chlorophyta and Rhodophyta macroalgae: a source of health promoting phytochemicals.

    PubMed

    Santos, Sonia A O; Vilela, Carla; Freire, Carmen S R; Abreu, Maria H; Rocha, Silvia M; Silvestre, Armando J D

    2015-09-15

    A detailed study of the lipophilic composition of Codium tomentosum, Ulva lactuca, Gracilaria vermiculophylla and Chondrus crispus macroalgae cultivated in the Portuguese coast was carried out by gas chromatography-mass spectrometry before and after alkaline hydrolysis. Their long-chain aliphatic alcohols and monoglycerides compositions are reported for the first time. Additionally, other new compounds were also identified: phytol and neophytadiene in C. tomentosum, U. lactuca and G. vermiculophylla and stigmasterol, α-tocopherol and 24-methylenecholesterol in C. tomentosum. The lipophilic fraction of the studied macroalgae are mainly constituted by fatty acids (110.1-1030.5mgkg(-1) of dry material) and sterols (14.8-1309.1mgkg(-1) of dry material). C. tomentosum showed to be a valuable source of stigmasterol (1229.0mgkg(-1) of dry material) and α-tocopherol (21.8mgkg(-1) of dry material). These results are a relevant contribution for the valorisation of these macroalgae species as sources of valuable phytochemicals.

  12. Light acclimation in Porphyridium purpureum (Rhodophyta): Growth, photosynthesis, and phycobilisomes

    SciTech Connect

    Levy, I.; Gantt, E. )

    1988-12-01

    Acclimation to three photon flux densities 10, 35, 180 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} was determined in laboratory cultures of Porphyridium purpureum Bory, Drew and Ross. Cultures grown at low, medium, and high PPFDs had compensation points of <3, 6, and 20 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1}, respectively, and saturating irradiances in the initial log phase of 90, 115, 175 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} and up to 240 {mu}E{center dot}m{sup {minus}2}{center dot}s{sup {minus}1} in late log phase. High light cells had the smallest photosynthetic unit size (phycobiliproteins plus chlorophyll), the highest photosynthetic capacity, and the highest growth rates. Photosystem I reaction centers (P700) per cell remained proportional to chlorophyll at ca. 110 chl/P700. However, phycobiliprotein content decreased as did the phycobilisome number (ca. 50%) in high light cells, whereas the phycobilisome size remained the same as in medium and low light cells. We concluded that acclimation of this red alga to varied PPFDs was manifested by the plasticity of the photosystem II antennae with little, if any, affect noted on photosystem I.

  13. Early development of Chondrus ocellatus holm (Gigartinaceae, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Wang, Aihua; Wang, Jicheng; Duan, Delin

    2006-06-01

    Chondrus is an economically important red algae widely used for food and biochemical purpose. It early development is crucial for the culture and seedling propagation. We chose tetraspores and carpospores of Chondrus ocellatus as examples for experiment of the culture, induction and release in laboratory condition, aiming to understand early development of C. ocellatus and to apply in seedling production. Mature C. ocellatus were collected in Qingdao, China, from Nov. to Dec. 2004. After the gametophyte and tetrasporophyte were brushed and washed with sterilized seawater, the algal materials were treated in 1.5% KI for 20 min, then were dried for 1h to stimulate the releasing of spores. After the spores released overnight, it were cultured in PES medium, incubated at 18 °C, 10±2 μmol/(m2·s1) in 12∶12h (light: dark). The observation and recording under microscope were carried out. Continuous observation of the early development showed that both tetraspore and carpospore are similar to each other. In general, three stages of the early development were shown being division, discoid crust and seedling stages. To the division stage, the most obvious feature was the increasing of cell number; during the discoid crust stage, the discoid crust had a three-dimensional axis, and it began to differentiate into two types of cells: the basal cells and the apical cells; and to the seedling stage, several protuberances-like appeared on the discoid crusts and formed juvenile seedlings. Carpospores and tetraspores exhibited a similar development process that included division stage, discoid crust stage and seedling stage.

  14. Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta).

    PubMed

    Marinho-Soriano, E; Bourret, E

    2005-02-01

    The yield and physical and chemical properties of agars from Gracilaria dura (C. Agardh) J. Agardh, harvested in Thau lagoon (Mediterranean sea, France), were investigated. The agar yield ranged from 32% to 35%. Gel strength of agar ranged from 263 to 600 g cm(-2), with the maximum observed in October. A positive correlation was found between agar yield and gel strength (r = 0.82; P < 0.01). The gelling temperature followed the same pattern of gel strength and also showed higher value in October (43 degrees C). The nitrogen content varied from 1.04+/-0.60% (June) to 4.70+/-0.01% (October). A positive correlation was noted between nitrogen content and gel strength (r = 0.77; P < 0.05). The 3,6-anhydrogalactose content ranged from 0.70 to 0.84 and showed monthly significant differences (P < 0.05). There was a positive correlation between 3,6-anhydrogalactose content and gel strength. The values of sulfate content were relatively constant during the studied period and no significant differences were observed. The relative high gel strength indicates that this species may be considered as source of agar for commercial use.

  15. Viscous polysaccharide and starch synthesis in Rhodella reticulata (Porphyridiales, Rhodophyta)

    SciTech Connect

    Kroen, W.K.; Ramus, J. )

    1990-06-01

    Rhodella reticulata Deason, Butler and Rhyne produces copious amounts of a viscous polysaccharide (VP) during growth in batch cultures. The VPs accumulated on the cell surface and in the culture medium once cells ceased growth; starch concurrently accumulated within the cells. Light-saturated {sup 14}C-uptake declined steadily as the cells aged. Net synthesis rates for starch and mucilage were two- and four-fold lower, respectively, in non-growing cells than in growing cells, while the relative partitioning of newly-fixed carbon into these materials was not different. These data suggest that total photosynthetic loading, rather than partitioning into one specific pool, controls cellular synthesis rates. No preferential synthesis of VPs occurred during the stationary phase. The findings have important implications for the commercial production of VPs.

  16. MOLECULAR PHYLOGENY OF THE GENUS KUMANOA (BATRACHOSPERMALES, RHODOPHYTA)(1).

    PubMed

    Vis, Morgan L; Necchi, Orlando; Chiasson, Wayne B; Entwisle, Timothy J

    2012-06-01

    Species belonging to the newly established genus Kumanoa were sampled from locations worldwide. DNA sequence data from the rbcL gene, cox1 barcode region, and universal plastid amplicon (UPA) were collected. The new sequence data for the rbcL were combined with the extensive batrachospermalean rbcL data available in GenBank. Single gene rbcL results showed the genus Kumanoa to be a well-supported clade, and there was high statistical support for many of the terminal nodes. However, with this gene alone, there was very little support for any of the internal nodes. Analysis of the concatenated data set (rbcL, cox1, and UPA) provided higher statistical support across the tree. The taxa K. vittata and K. amazonensis formed a basal grade, and both were on relatively long branches. Three new species are proposed, K. holtonii, K. gudjewga, and K. novaecaledonensis; K. procarpa var. americana is raised to species level. In addition, the synonymy of K. capensis and K. breviarticulata is proposed, with K. capensis having precedence. Five new combinations are made, bringing the total number of accepted species in Kumanoa to 31. The phylogenetic analyses did not reveal any interpretable biogeographic patterns within the genus (e.g., K. spermatiophora from the tropical oceanic island Maui, Hawaii, was sister to K. faroensis from temperate midcontinental Ohio in North America). Previously hypothesized relationships among groups of species were not substantiated in the phylogenetic analyses, and no intrageneric classification is recommended based on current knowledge.

  17. SYSTEMATICS OF THE BATRACHOSPERMALES (RHODOPHYTA)-A SYNTHESIS(1).

    PubMed

    Entwisle, Timothy J; Vis, Morgan L; Chiasson, Wayne B; Necchi, Orlando; Sherwood, Alison R

    2009-06-01

    Recent molecular and morphological data necessitate a major taxonomic revision of the Batrachospermales, an order of red algae, distributed in freshwater habitats throughout the world. This article is a synthesis of available information with some targeted additional sequence data, resulting in a few relatively conservative taxonomic changes to begin the process of creating a natural taxonomy for the Batrachospermales. To increase the information content of our taxonomic categories, and in particular to reduce paraphyly, we describe one new genus (Kumanoa) and a new section in Batrachospermum (section Macrospora), and we amend the circumscriptions of the family Batrachospermaceae (to include Lemaneaceae and Psilosiphonaceae), the genus Batrachospermum (to exclude the sections Contorta and Hybrida, raised to genus level as Kumanoa), and the sections Aristata, Helminthoidea, and Batrachospermum of Batrachospermum. We also provide a new name, B. montagnei, for the illegitimate B. guyanense, and recognize an informal paraphyletic grouping of taxa within Batrachospermum, the "Australasica Group." This taxonomic synthesis increases the level of monophyly within the Batrachospermales but minimizes taxonomic change where data are still inadequate.

  18. STRUCTURE AND REPRODUCTION OF NEOARDISSONEA KYLIN (RHODOPHYTA-NACCARIACEAE)(1).

    PubMed

    Womersley, H B; Abbott, I A

    1968-09-01

    Neoardissonea naccarioides (J. Ag.) Kylin, the type and only species of its genus, is shown to be referable to Naccaria Endlicher, to which genus it is transferred as Naccaria naccarioides (J. Ag.) comb. nov.

  19. Galactans of Gracilaria pudumadamensis (Gracilariales, Rhodophyta) of Indian waters.

    PubMed

    Kondaveeti, Stalin; Kumar, Sanjay; Ganesan, Meenakshi S; Siddhanta, Arup K

    2014-09-01

    Galactans from the Indian agarophyte Gracilaria pudumadamensis were extracted and characterized. The isolated native (GP(Native)) and alkali treated (GP(Alkali)) galactans were characterized by IR, 13C NMR, GC-MS and GPC. It was found that GP(Native) and GP(Alkali) were composed mainly of 3,6-anhydro L-galactose, 6-O-methylated D-galactose and galactose in various mole proportions (15.6:69.9:17.5 mole% for GP(Native) and 20.2:69.8:10.0 mole% for GP(Alkali)). The GP(Native) and GP(Alkali) exhibited low gel strengths (< 100 g/cm2) and high melting points (-76 degrees C), which may be due to the presence of high 6-O-Me-galactose contents. The latter, having low sulfate (2.1%), was by far the greatest 6-O-Me-galactose containing polysaccharide in a Gracilaria spp. reported in the literature. This methylated agar contained very low heavy metal ions estimated by inductively coupled plasma spectrophotometry (ICP). The results of this investigation would be useful in bioprospecting of agarophytes, especially those occurring in Indian waters and would be potentially useful in food, personal care and related domains.

  20. Reproductive morphology of Eucheumagelatinae (Esper) J. Agardh (Solieriaceae, Gigartinales, rhodophyta)

    NASA Astrophysics Data System (ADS)

    Kuang, Mei; Xia, Bang-Mei

    1996-03-01

    Eucheuma gelatinae (Esper) J. Agardh has vegetative and reproductive features distinguishing it from other species of Eucheuma. The occurrence of reproductive nemathecia containing carpogonial branches, auxiliary cells and post-fertilization stages including gonimoblast and pericarp initiation, fusion cell formation stages and carposporophyte development are described and ilustrated for the first time for this species.

  1. NADPH from the oxidative pentose phosphate pathway drives the operation of cyclic electron flow around photosystem I in high-intertidal macroalgae under severe salt stress.

    PubMed

    Lu, Xiaoping; Huan, Li; Gao, Shan; He, Linwen; Wang, Guangce

    2016-04-01

    Pyropia yezoensis (Bangiales, Rhodophyta) is a representative species of high-intertidal macroalgae, whose blades can tolerate extreme stresses, such as salt stress and desiccation. In this study, the photosystem (PS) responses of P. yezoensis blades under salt stress were studied. Our results showed that when the effective photochemical quantum yield of PS (Y) II decreased to almost zero under high salt stress, YI still had a relatively high activity rate. PSII was therefore more sensitive to salt stress than PSI. Furthermore, in the presence of 3-(3', 4'-dichlorophenyl)-1,1-dimethylurea (DCMU), YI rose as salinity increased. The YI values for DCMU-treated thalli decreased in the presence of glucose-6-phosphate dehydrogenase (EC 1.1.1.49, G6PDH) inhibitor (glucosamine, Glucm). The YI values were ∼0.09 in the presence of methyl viologen (MV) and almost zero in the presence of dibromothymoquinone (DBMIB). These results demonstrated that under severe salt stress (120‰ salinity) PSI activity was driven from a source other than PSII, and that stromal reductants probably supported the operation of PSI. Under salt stress, the starch content decreased and soluble sugar levels increased. The G6PDH and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) activities increased, but cytosolic glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) activity decreased. Furthermore, the NADPH content increased, but NADH decreased, which suggested that soluble sugar entered the oxidative pentose phosphate pathway (OPPP). All these results suggested that NADPH from OPPP increases the cyclic electron flow around PSI in high-intertidal macroalgae under severe salt stress.

  2. A lipoxygenase from red alga Pyropia haitanensis, a unique enzyme catalyzing the free radical reactions of polyunsaturated fatty acids with triple ethylenic bonds.

    PubMed

    Zhu, Zhujun; Qian, Feijian; Yang, Rui; Chen, Juanjuan; Luo, Qijun; Chen, Haimin; Yan, Xiaojun

    2015-01-01

    Lipoxygenases (LOXs) are key enzymes to regulate the production of hormones and defensive metabolites in plants, animals and algae. In this research, a full length LOX gene has been cloned and expressed from the red alga Pyropia haitanensis (Bangiales, Rhodophyta) gametophyte (PhLOX2). Subsequent phylogenetic analysis showed that such LOX enzymes are separated at the early stage of evolution, establishing an independent branch. The LOX activity was investigated at the optimal pH of 8.0. It appears that PhLOX2 is a multifunctional enzyme featuring both lipoxygenase and hydroperoxidase activities. Additionally, PhLOX2 exhibits remarkable substrate and position flexibility, and it can catalyze an array of chemical reactions involving various polyunsaturated fatty acids, ranging from C18 to C22. As a matter of fact, mono-hydroperoxy, di-hydroperoxy and hydroxyl products have been obtained from such transformations, and eicosapentaenoic acid seem to be the most preferred substrate. It was found that at least triple ethylenic bonds are required for PhLOX2 to function as a LOX, and the resulting hydroxy products should be originated from the PhLOX2 mediated reduction of mono-hydroperoxides, in which the hydrogen abstraction occurs on the carbon atom between the second and third double bond. Most of the di-hydroperoxides observed seem to be missing their mono-position precursors. The substrate and position flexibility, as well as the function versatility of PhLOXs represent the ancient enzymatic pathway for organisms to control intracellular oxylipins.

  3. A Lipoxygenase from Red Alga Pyropia haitanensis, a Unique Enzyme Catalyzing the Free Radical Reactions of Polyunsaturated Fatty Acids with Triple Ethylenic Bonds

    PubMed Central

    Zhu, Zhujun; Qian, Feijian; Yang, Rui; Chen, Juanjuan; Luo, Qijun; Chen, Haimin; Yan, Xiaojun

    2015-01-01

    Lipoxygenases (LOXs) are key enzymes to regulate the production of hormones and defensive metabolites in plants, animals and algae. In this research, a full length LOX gene has been cloned and expressed from the red alga Pyropia haitanensis (Bangiales, Rhodophyta) gametophyte (PhLOX2). Subsequent phylogenetic analysis showed that such LOX enzymes are separated at the early stage of evolution, establishing an independent branch. The LOX activity was investigated at the optimal pH of 8.0. It appears that PhLOX2 is a multifunctional enzyme featuring both lipoxygenase and hydroperoxidase activities. Additionally, PhLOX2 exhibits remarkable substrate and position flexibility, and it can catalyze an array of chemical reactions involving various polyunsaturated fatty acids, ranging from C18 to C22. As a matter of fact, mono-hydroperoxy, di-hydroperoxy and hydroxyl products have been obtained from such transformations, and eicosapentaenoic acid seem to be the most preferred substrate. It was found that at least triple ethylenic bonds are required for PhLOX2 to function as a LOX, and the resulting hydroxy products should be originated from the PhLOX2 mediated reduction of mono-hydroperoxides, in which the hydrogen abstraction occurs on the carbon atom between the second and third double bond. Most of the di-hydroperoxides observed seem to be missing their mono-position precursors. The substrate and position flexibility, as well as the function versatility of PhLOXs represent the ancient enzymatic pathway for organisms to control intracellular oxylipins. PMID:25658744

  4. Possible sister groups and phylogenetic relationships among selected North Pacific and North Atlantic Rhodophyta

    NASA Astrophysics Data System (ADS)

    Lindstrom, Sandra C.

    1987-09-01

    Although the cool temperate (boreal) waters of the N. Pacific and N. Atlantic share many similar if not identical species, there have been few studies to test the identity of these species pairs. Whereas such tests are important from a taxonomic perspective, they tell us little if anything about biogeographic relationships. A more useful approach is one employing phylogenetic systematics (cladistics). The interpretation of phylogenetic diagrams (cladograms) in terms of biogeographic area relationships is explained. It is argued that cladistic analyses of taxa occurring in the cool temperate waters of the northern oceans can provide biogeographic tracks, which in turn can suggest the origins and migrations of species and possibly even floras. A number of cool temperate taxa that appear particularly amenable to this approach are discussed, including genera in the Palmariaceae, Corallinaceae, Dumontiaceae, Solieriaceae, Petrocelidaceae, Ceramiaceae and Rhodomelaceae.

  5. Differential responses of tetrasporophytes and gametophytes of Mazzaella laminarioides (Gigartinales, Rhodophyta) under solar UV radiation.

    PubMed

    Navarro, Nelso P; Figueroa, Félix L; Korbee, Nathalie; Mansilla, Andrés; Plastino, Estela M

    2016-06-01

    The effects of solar UV radiation on mycosporine-like amino acids (MAAs), growth, photosynthetic pigments (Chl a, phycobiliproteins), soluble proteins (SP), and C and N content of Mazzaella laminarioides tetrasporophytes and gametophytes were investigated. Apical segments of tetrasporophytes and gametophytes were exposed to solar radiation under three treatments (PAR [P], PAR+UVA [PA], and PAR+UVA+UVB [PAB]) during 18 d in spring 2009, Punta Arenas, Chile. Samples were taken after 2, 6, 12, and 18 d of solar radiation exposure. Most of the parameters assessed on M. laminarioides were significantly influenced by the radiation treatment, and both gametophytes and tetrasporophytes seemed to respond differently when exposed to high UV radiation. The two main effects promoted by UV radiation were: (i) higher synthesis of MAAs in gametophytes than tetrasporophytes at 2 d, and (ii) a decrease in phycoerythrin, phycocyanin, and SPs, but an increase in MAA content in tetrasporophytes at 6 and 12 d of culture. Despite some changes that were observed in biochemical parameters in both tetrasporophytes and gametophytes of M. laminarioides when exposed to UVB radiation, these changes did not promote deleterious effects that might interfere with the growth in the long term (18 d). The tolerance and resistance of M. laminarioides to higher UV irradiance were expected, as this intertidal species is exposed to variation in solar radiation, especially during low tide.

  6. Species diversity of the genus Osmundea (Ceramiales, Rhodophyta) in the Macaronesian region.

    PubMed

    Machín-Sánchez, María; Rousseau, Florence; Le Gall, Line; Cassano, Valéria; Neto, Ana I; Sentíes, Abel; T Fujii, Mutue; Gil-Rodríguez, María Candelaria

    2016-08-01

    Species diversity within the genus Osmundea in the Macaronesian region was explored by conducting a comprehensive sampling in the Azores, the Canary, and the Madeira archipelagos. Toward identification, all specimens were first observed alive to verify the absence of corps en cerise, a diagnostic character for the genus and morphometric data were measured (thallus length and width, first-order branches length and width, branchlets length and width, cortical cell length and width in surface view, cortical cell length and width in transverse section). Specimens were sequenced for COI-5P (39 specimens) and three species delimitation methods (Generalized Mixed Yule Coalescent, Automatic Barcode Gap Discovery method, and Poisson Tree Processes) were used to assess the threshold between infra- and interspecific relationships. Subsequently, one or several sequences of plastid-encoded large subunit of RuBisCO (21 specimens) per delimited species were generated to assess the phylogenetic relationships among Macaronesian Osmundea. Moreover, for each delineated species, vegetative and reproductive anatomy was thoroughly documented and, when possible, specimens were either assigned to existing taxa or described as novel species. This integrative approach has provided data for (i) the presence of O. oederi, O. pinnatifida, and O. truncata in Macaronesia; (ii) the proposal of two novel species, O. prudhommevanreinei sp. nov. and O. silvae sp. nov.; and (iii) evidence of an additional species referred as "Osmundea sp.1," which is a sister taxon of O. hybrida.

  7. The impact of wave exposure on the meiofauna of Gelidium pristoides (Turner) Kuetzing (Gelidiales: Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Gibbons, M. J.

    1988-12-01

    The impact of wave exposure on the meiofaunal communities colonising Gelidium pristoides, was examined on five shores around False Bay, South Africa. Under conditions of constant algal structure and mass, and in tufts with similar epiphyte and sediment loads, exposure had a profound impact on meiofaunal communities. Algae on sheltered shores supported significantly greater numbers of animals in the size range 63-280 μm (predominantly copepods, copepod nauplii and ostracods), while those on exposed shores supported a greater number of amphipods and bivalves. Total meiofaunal biomass per tuft remained constant irrespective of shore type. Differences between shores are discussed in terms of algal structure and animal size and morphology. Gelidium tufts are open-plan and offer little resistance to water movement; as the frond diameter is wider than the meiofauna are long, small animals are likely to be flushed more easily from exposed than sheltered shores. Differences in the abundance of permanent meiofauna between shores may, however, reflect ifferences in the organic content of sediments, although this was not examined. It is also suggested that meiofaunal communities on plants from different shores are influenced by the total algal and macrofaunal standing stocks, which act as banks of meiofauna and influence the regularity and magnitude of immigration. Extrapolating these data to the whole shore indicates that while the biomass of meiofauna may be greater on exposed than sheltered shores, the proportional contribution of meiofauna to total secondary production is greater under more sheltered conditions.

  8. Population Studies and Carrageenan Properties in Eight Gigartinales (Rhodophyta) from Western Coast of Portugal

    PubMed Central

    Pereira, Leonel

    2013-01-01

    Eight carrageenophytes, representing seven genera and three families of Gigartinales (Florideophyceae), were studied for 15 months. The reproductive status, dry weight, and carrageenan content have been followed by a monthly random sampling. The highest carrageenan yields were found in Chondracanthus acicularis (61.1%), Gigartina pistillata (59.7%), and Chondracanthus teedei var. lusitanicus (58.0%). Species of Cystocloniaceae family produces predominantly iota-carrageenans; Gigartinaceae family produces hybrid kappa-iota carrageenans (gametophytic plants) and lambda-family carrageenans (sporophytic plants); Phyllophoraceae family produces kappa-iota-hybrid carrageenans. Quadrate destructive sampling method was used to determine the biomass and line transect. Quadrate nondestructive sampling method, applied along a perpendicular transect to the shoreline, was used to calculate the carrageenophytes cover in two periods: autumn/winter and spring/summer. The highest cover and biomass were found in Chondrus crispus (3.75%–570 g/m2), Chondracanthus acicularis (3.45%–99 g/m2), Chondracanthus teedei var. lusitanicus (2.45%–207.5 g/m2), and Mastocarpus stellatus (2.02%–520 g/m2). PMID:24288514

  9. New Insights on the Terpenome of the Red Seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta)

    PubMed Central

    de Oliveira, Louisi Souza; Tschoeke, Diogo Antonio; de Oliveira, Aline Santos; Hill, Lilian Jorge; Paradas, Wladimir Costa; Salgado, Leonardo Tavares; Thompson, Cristiane Carneiro; Pereira, Renato Crespo; Thompson, Fabiano L.

    2015-01-01

    The red seaweeds belonging to the genus Laurencia are well known as halogenated secondary metabolites producers, mainly terpenoids and acetogennins. Several of these chemicals exhibit important ecological roles and biotechnological applications. However, knowledge regarding the genes involved in the biosynthesis of these compounds is still very limited. We detected 20 different genes involved in the biosynthesis of terpenoid precursors, and 21 different genes coding for terpene synthases that are responsible for the chemical modifications of the terpenoid precursors, resulting in a high diversity of carbon chemical skeletons. In addition, we demonstrate through molecular and cytochemical approaches the occurrence of the mevalonate pathway involved in the biosynthesis of terpenes in L. dendroidea. This is the first report on terpene synthase genes in seaweeds, enabling further studies on possible heterologous biosynthesis of terpenes from L. dendroidea exhibiting ecological or biotechnological interest. PMID:25675000

  10. Phylogeny of Gracilariaceae (Rhodophyta): evidence from plastid and mitochondrial nucleotide sequences.

    PubMed

    Lyra, Goia de M; Costa, Emmanuelle da S; de Jesus, Priscila B; de Matos, João Carlos G; Caires, Taiara A; Oliveira, Mariana C; Oliveira, Eurico C; Xi, Zhenxiang; Nunes, José Marcos de C; Davis, Charles C

    2015-04-01

    Gracilariaceae are mostly pantropical red algae and include ~230 species in seven genera. Infrafamilial classification of the group has long been based on reproductive characters, but previous phylogenies have shown that traditionally circumscribed groups are not monophyletic. We performed phylogenetic analyses using two plastid (universal plastid amplicon and rbcL) and one mitochondrial (cox1) loci from a greatly expanded number of taxa to better assess generic relationships and understand patterns of character distributions. Our analyses produce the most well-supported phylogeny of the family to date, and indicate that key characteristics of spermatangia and cystocarp type do not delineate genera as commonly suggested. Our results further indicate that Hydropuntia is not monophyletic. Given their morphological overlap with closely related members of Gracilaria, we propose that Hydropuntia be synonymized with the former. Our results additionally expand the known ranges of several Gracilariaceae species to include Brazil. Lastly, we demonstrate that the recently described Gracilaria yoneshigueana should be synonymized as G. domingensis based on morphological and molecular characters. These results demonstrate the utility of DNA barcoding for understanding poorly known and fragmentary materials of cryptic red algae.

  11. Development of photosynthetic activity in Porphyridium purpureum (Rhodophyta) following nitrogen starvation

    SciTech Connect

    Levy, I.; Gantt, E. )

    1990-03-01

    The effects of nitrogen limitation on laboratory cultures of Porphyridium purpureum Bory, Drew and Ross were studied under continuous white light illumination (35 {mu}E {times} m{sup {minus}2} {times} s{sup {minus}1}). Growth ceased, respiration exceeded photosynthesis, chlorophyll content was reduced by 80%, and phycoerythrin content was reduced by 99% over a period of 14 days under nitrogen limitation. Recovery upon addition of nitrogen resulted in increased phycobiliprotein content, appearance of phycobilisomes attached to the thylakoids, increased oxygen evolution, and increased fluorescence emission from photosystem 1 (720 nm) and photosystem 2 (685 nm) upon excitation by green light. Growth resumes after 72 h and was concomitant with an increase of chlorophyll, phycoerythrin and phycobilisomes per thylakoid area. The results suggest that photosystem 1 was less affected by nitrogen starvation than photosystem 2 and that the recovery was largely dependent on the restoration of phycobilisomes and other photosystem components.

  12. Discovery of the mineral brucite (magnesium hydroxide) in the tropical calcifying alga Polystrata dura (Peyssonneliales, Rhodophyta).

    PubMed

    Nash, Merinda C; Russell, Bayden D; Dixon, Kyatt R; Liu, Minglu; Xu, Huifang

    2015-06-01

    Red algae of the family Peyssonneliaceae typically form thin crusts impregnated with aragonite. Here, we report the first discovery of brucite in a thick red algal crust (~1 cm) formed by the peyssonnelioid species Polystrata dura from Papua New Guinea. Cells of P. dura were found to be infilled by the magnesium-rich mineral brucite [Mg(OH)2 ]; minor amounts of magnesite and calcite were also detected. We propose that cell infill may be associated with the development of thick (> ~5 mm) calcified red algal crusts, integral components of tropical biotic reefs. If brucite infill within the P. dura crust enhances resistance to dissolution similarly to crustose coralline algae that infill with dolomite, then these crusts would be more resilient to future ocean acidification than crusts without infill. PMID:26986657

  13. Production of volatiles by the red seaweed Gelidium arbuscula (Rhodophyta): emission of ethylene and dimethyl sulfide.

    PubMed

    Garcia-Jimenez, Pilar; Brito-Romano, Olegario; Robaina, Rafael R

    2013-08-01

    The effects of different light conditions and exogenous ethylene on the emission of volatile compounds from the alga Gelidium arbuscula Bory de Saint-Vincent were studied. Special emphasis was placed on the possibility that the emission of ethylene and dimethyl sulfide (DMS) are related through the action of dimethylsulfoniopropionate (DMSP) lyase. The conversion of DMSP to DMS and acrylate, which is catalyzed by DMSP lyase, can indirectly support the synthesis of ethylene through the transformation of acrylate to ethylene. After mimicking the desiccation of G. arbuscula thalli experienced during low tides, the volatile compounds emitted were trapped in the headspace of 2 mL glass vials for 1 h. Two methods based on gas chromatography/mass spectrometry revealed that the range of organic volatile compounds released was affected by abiotic factors, such as the availability and spectral quality of light, salinity, and exogenous ethylene. Amines and methyl alkyl compounds were produced after exposure to white light and darkness but not after exposure to exogenous ethylene or red light. Volatiles potentially associated with the oxidation of fatty acids, such as alkenes and low-molecular-weight oxygenated compounds, accumu-lated after exposure to exogenous ethylene and red light. Ethylene was produced in all treatments, especially after exposure to exogenous ethylene. Levels of DMS, the most abundant sulfur-compound that was emitted in all of the conditions tested, did not increase after incubation with ethylene. Thus, although DMSP lyase is active in G. arbuscula, it is unlikely to contribute to ethylene synthesis. The generation of ethylene and DMS do not appear to be coordinated in G. arbuscula.

  14. Reproductive effort of Mastocarpus papillatus (Rhodophyta) along the California coast1

    PubMed Central

    Krueger-Hadfield, Stacy A.; Kübler, Janet E.; Dudgeon, Steven R.

    2013-01-01

    Species with sexual and asexual life cycles may exhibit intraspecific differences in reproductive effort. The spatial separation of sexual and asexual lineages, called geographic parthenogenesis, is common in plants, animals and algae. Mastocarpus papillatus is a well-documented case of geographic parthenogenesis in which sexuals dominate southern populations, asexuals dominate northern populations, while mixed populations occur throughout central California. We quantified abundances and reproductive effort of sexual and asexual fronds and tetrasporophytes at eight sites in California to test the hypotheses that (1) reduced sexual reproduction at higher latitudes and tidal heights explains the observed geographic parthenogenesis and (2) reproductive effort (spore production per blade area) declines with increasing latitude. Abundances of all phases varied site-specifically. However, there was no geographic pattern of reproductive effort of fronds. Reproductive effort of fronds was greater in 2006 than in 2007 and correlated with sea surface temperatures. Sexual fronds exhibited greater reproductive effort than did asexual fronds and sexual reproductive effort was also inversely correlated with local upwelling index. Tetrasporophytes showed greater reproductive effort in northern sites, but total supply of tetraspores per m2 was greatest in the middle of the sampling range where crusts were more abundant. There was no decline of reproductive effort at higher latitudes. Geographic patterns of fecundity of life stages do not explain geographic parthenogenesis in M. papillatus. Site-specific differences in viability among spores or established thalli of different life cycles may explain their respective geographic distributions, as the sexual and asexual life cycles responded differently to environmental variations. PMID:23772094

  15. Nuclear DNA Content Variation in Life History Phases of the Bonnemasoniaceae (Rhodophyta)

    PubMed Central

    Salvador Soler, Noemi; Gómez Garreta, Amelia; Ribera Siguan, Mª Antonia; Kapraun, Donald F.

    2014-01-01

    Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15–1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome. PMID:24465835

  16. UVR defense mechanisms in eurytopic and invasive Gracilaria vermiculophylla (Gracilariales, Rhodophyta).

    PubMed

    Roleda, Michael Y; Nyberg, Cecilia D; Wulff, Angela

    2012-10-01

    The invasive success of Gracilaria vermiculophylla has been attributed to its wide tolerance range to different abiotic factors, but its response to ultraviolet radiation (UVR) is yet to be investigated. In the laboratory, carpospores and vegetative thalli of an Atlantic population were exposed to different radiation treatments consisting of high PAR (photosynthetically active radiation) only (P), PAR+UV-A (PA) and PAR+UV-A+UV-B (PAB). Photosynthesis of carpospores was photoinhibited under different radiation treatments but photosystem II (PSII) function was restored after 12 h under dim white light. Growth of vegetative thalli was significantly higher under radiation supplemented with UVR. Decrease in chlorophyll a (Chl a) under daily continuous 16-h exposure to 300 µmol photons m(-2) s(-1) of PAR suggests preventive accumulation of excited chlorophyll molecules within the antennae to minimize the generation of dangerous reactive oxygen species. Moreover, an increase in total carotenoids and xanthophyll cycle pigments (i.e. violaxanthin, antheraxanthin and zeaxanthin) further suggests effective photoprotection under UVR. The presence of the ketocarotenoid β-cryptoxanthin also indicates protection against UVR and oxidative stress. The initial concentration of total mycosporine-like amino acids (MAAs) in freshly-released spores increased approximately four times after 8-h laboratory radiation treatments. On the other hand, initial specific MAAs in vegetative thalli changed in composition after 7-day exposure to laboratory radiation conditions without affecting the total concentration. The above responses suggest that G. vermiculophylla have multiple UVR defense mechanisms to cope with the dynamic variation in light quantity and quality encountered in its habitat. Beside being eurytopic, the UVR photoprotective mechanisms likely contribute to the current invasive success of the species in shallow lagoons and estuaries exposed to high solar radiation. PMID:22420775

  17. Nuclear DNA content variation in life history phases of the Bonnemasoniaceae (Rhodophyta).

    PubMed

    Salvador Soler, Noemi; Gómez Garreta, Amelia; Ribera Siguan, Ma Antonia; Kapraun, Donald F

    2014-01-01

    Nuclear DNA content in gametophytes and sporophytes or the prostrate phases of the following species of Bonnemaisoniaceae (Asparagopsis armata, Asparagopsis taxiformis, Bonnemaisonia asparagoides, Bonnemaisonia clavata and Bonnemaisonia hamifera) were estimated by image analysis and static microspectrophotometry using the DNA-localizing fluorochrome DAPI (4', 6-diamidino-2-phenylindole, dilactate) and the chicken erythrocytes standard. These estimates expand on the Kew database of DNA nuclear content. DNA content values for 1C nuclei in the gametophytes (spermatia and vegetative cells) range from 0.5 pg to 0.8 pg, and for 2C nuclei in the sporophytes or the prostrate phases range from 1.15-1.7 pg. Although only the 2C and 4C values were observed in the sporophyte or the prostrate phase, in the vegetative cells of the gametophyte the values oscillated from 1C to 4C, showing the possible start of endopolyploidy. The results confirm the alternation of nuclear phases in these Bonnemaisoniaceae species, in those that have tetrasporogenesis, as well as those that have somatic meiosis. The availability of a consensus phylogenetic tree for Bonnemaisoniaceae has opened the way to determine evolutionary trends in DNA contents. Both the estimated genome sizes and the published chromosome numbers for Bonnemaisoniaceae suggest a narrow range of values consistent with the conservation of an ancestral genome.

  18. Influences of cadmium on fine structure and metabolism of Hypnea musciformis (Rhodophyta, Gigartinales) cultivated in vitro.

    PubMed

    Bouzon, Zenilda L; Ferreira, Eduardo C; dos Santos, Rodrigo; Scherner, Fernando; Horta, Paulo A; Maraschin, Marcelo; Schmidt, Eder C

    2012-07-01

    The in vitro effect of cadmium on apical segments of Hypnea musciformis was examined. Over a period of 7 days, the segments were cultivated with different concentrations of cadmium, ranging from 50 to 300 μM. The samples were processed for microscopic and histochemical analysis of growth rates, content of photosynthetic pigments, and photosynthetic performance. Cadmium treatments increased cell wall thickness and the accumulation of plastoglobuli. Destruction of chloroplast internal organization was observed. Compared to controls, algae exposed to cadmium showed growth rate reduction, depigmentation, and blending in the lateral branches. The content of photosynthetic pigments, including chlorophyll a and phycobiliproteins, decreased after exposure to different concentrations of cadmium. These results agree with the decreased photosynthetic performance and relative electron transport rate observed after exposure of algae to cadmium. Taken together, these findings strongly indicate that cadmium negatively affects the architecture and metabolism of the carragenophyte H. musciformis, thus posing a threat to the economic vitality of this red macroalgae.

  19. Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta).

    PubMed

    Marinho-Soriano, E; Bourret, E

    2003-12-01

    The effect of season on yield and physical properties of agars extracted from Gracia gracilis and G. bursa-pastoris were determined. The agar yield from G. gracilis was maximum during spring (30%) and minimum during autumn (19%). In G. bursa-pastoris, the agar yield was greatest in summer (36%) and lowest in winter (23%). Agar yield from G. bursa-pastoris was positively correlated with temperature (r=0.94; P<0.01) and salinity (r=0.97; P<0.01) and negatively with nitrogen content (r=-0.93; P<0.01). Agar gel strengths fluctuated from 229 to 828 gcm(-2) and 23 to 168 gcm(-2) for G. gracilis and G. bursa-pastoris, respectively. The gelling temperature showed significant seasonal variation for both species. Chemical analysis of agar from the two seaweeds indicated variation in 3,6-anhydrogalactose and sulfate content (P<0.01). Furthermore, there was an inverse correlation between the two chemical variables. In general, agar extracted from G. gracilis possessed better qualities than agar extracted from G. bursa-pastoris and can be considered a candidate for industrial use.

  20. The effects of NO3(-) supply on Mazzaella laminarioides (Rhodophyta, Gigartinales) from southern Chile.

    PubMed

    Navarro, Nelso P; Figueroa, Félix L; Korbee, Nathalie; Mansilla, Andrés; Matsuhiro, Betty; Barahona, Tamara; Plastino, Estela M

    2014-01-01

    The effects of nitrate supply on growth, pigments, mycosporine-like amino acids (MAAs), C:N ratios and carrageenan yield were investigated in Mazzaella laminarioides cultivated under solar radiation. This species is economically important in southern Chile where an increase of nitrogen in coastal waters is expected as a consequence of salmon aquaculture activity. Apical segments were cultivated in enriched seawater with five different NO3(-) concentrations (0, 0.09, 0.18, 0.38 and 0.75 mm) during 18 days. Although phycoerythrin and phycocyanin content, as well as C:N ratios, were reduced in the control treatment (without NO3(-) supply), when compared to NO3(-) treatments, total MAA concentration, carrageenan yield and growth rates were similar in all tested conditions. Nevertheless, during the experiment, an important synthesis of mycosporine-glycine took place in a nitrate concentration-dependent manner, with accumulation being saturated around 0.18 mm of nitrate. These results indicate that exposure to high NO3(-) concentration of more than 100 times the values observed in the nature did not impair the photoprotection system, as determined by MAAs, nor did it have a deleterious effect on growth or carrageenan yield of M. laminarioides, a late successional species from Chile.

  1. Methyl Jasmonate-Induced Lipidomic and Biochemical Alterations in the Intertidal Macroalga Gracilaria dura (Gracilariaceae, Rhodophyta)

    PubMed Central

    Kumari, Puja; Reddy, C.R.K.; Jha, Bhavanath

    2015-01-01

    The role of exogenously added methyl jasmonate (MeJA), a lipid-derived signaling compound, in inducing oxidative stress in the marine red macroalga Gracilaria dura was investigated. MeJA at a concentration of 1–100 µM was a strong stimulant of reactive oxygen species (H2O2, HO· and O2·−) (P < 0.05) causing considerable oxidative stress in G. dura. This further led to lipid peroxidation and degradation of the pigments Chl a and phycocyanin, with a concomitant increase in phycoerythrin. The MeJA-induced oxidative burst also led to the induction of a fatty acid oxidation cascade, resulting in the synthesis of hydroxy-oxylipins and the up-regulation of the 13-lipoxygenase pathway. Electrospray ionization-mass spectrometry-based shotgun lipidomic analysis revealed that monogalactosyldiacylglycerol (a chloroplastic glycerolipid) and phosphatidylcholine (extrachloroplastidic phopholipid) were the most affected lipid classes. The degradation of 18:3-fatty acid-containing monogalactosyldiacylglycerol inferred that it provided fatty acyl chains for the biosynthesis of 13-hydroperoxylinolenic acid, which was further directed towards either the jasmonate pathway or other alternative pathways of the fatty acid oxidation cascade, analogous to higher plants. Also, G. dura modulated the lipid acyl chains in such a way that no significant change was observed in the fatty acid profile of the treated thalli as compared with those of the control, except for C16:0, C16:1 (n-9), C20:3 (n-6) and C20:4 (n-6) (P < 0.05). Furthermore, MeJA caused the accumulation of phenolic compounds and the up-regulation of enzymes involved in secondary metabolism such as polyphenol oxidase, shikimate dehydrogenase and phenylalanine ammonia-lyase, indicating a shift towards secondary metabolism as a defense strategy to combat the induced oxidative stress. PMID:26276825

  2. Compsopogon cf. coeruleus, a benthic red alga (Rhodophyta) new to the Laurentian Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.; Edsall, Thomas A.; Wujek, Daniel E.

    1991-01-01

    We found Compsopogon cf. coeruleus for the first time in the Laurentian Great Lakes, growing on limestone rocks at a depth of 21 m on Six Fathom Bank in central Lake Huron. It is the first freshwater red alga to be found in the Great Lakes and the only red alga ever found on an offshore reef in the Great Lakes. However, because this alga usually inhabits water 10–28 °C and has not survived freezing winter temperatures elsewhere, it may not be a permanent member of the flora.

  3. Antiviral Activities of Sulfated Polysaccharides Isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales)

    PubMed Central

    Bouhlal, Rhimou; Haslin, Camille; Chermann, Jean-Claude; Colliec-Jouault, Sylvia; Sinquin, Corinne; Simon, Gaelle; Cerantola, Stephane; Riadi, Hassane; Bourgougnon, Nathalie

    2011-01-01

    Water-soluble sulfated polysaccharides isolated from two red algae Sphaerococcus coronopifolius (Gigartinales, Sphaerococcaceae) and Boergeseniella thuyoides (Ceramiales, Rhodomelaceae) collected on the coast of Morocco inhibited in vitro replication of the Human Immunodeficiency Virus (HIV) at 12.5 μg/mL. In addition, polysaccharides were capable of inhibiting the in vitro replication of Herpes simplex virus type 1 (HSV-1) on Vero cells values of EC50 of 4.1 and 17.2 μg/mL, respectively. The adsorption step of HSV-1 to the host cell seems to be the specific target for polysaccharide action. While for HIV-1, these results suggest a direct inhibitory effect on HIV-1 replication by controlling the appearance of the new generations of virus and potential virucidal effect. The polysaccharides from S. coronopifolius (PSC) and B. thuyoides (PBT) were composed of galactose, 3,6-anhydrogalactose, uronics acids, sulfate in ratios of 33.1, 11.0, 7.7 and 24.0% (w/w) and 25.4, 16.0, 3.2, 7.6% (w/w), respectively. PMID:21822410

  4. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change.

    PubMed

    McCoy, Sophie J; Kamenos, Nicholas A

    2015-02-01

    Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response. PMID:26986255

  5. New record and phylogenetic affinities of the oomycete Olpidiopsis feldmanni infecting Asparagopsis sp. (Rhodophyta).

    PubMed

    Fletcher, Kyle; Uljević, Ante; Tsirigoti, Amerssa; Antolić, Boris; Katsaros, Christos; Nikolić, Vedran; van West, Pieter; Küpper, Frithjof C

    2015-11-17

    A new geographic record of the oomycete Olpidiopsis feldmanni infecting the tetrasporophytic stage of the red alga Asparagopsis sp. from the Adriatic Sea, confirmed through morphological identification, allowed us to expand previous observations of this organism. Ultrastructural investigations of environmental material showed a large central vacuole and a cell wall thicker than previously reported from other basal oomycete pathogens of algae. Phylogenetic analysis closely associates O. feldmanni to O. bostrychiae concurrent with structural observations. This constitutes the first genetic characterisation of an Olpidiopsis species that was initially described before 1960, adding to the genetic data of 3 other marine Olpidiopsis species established and genetically characterised in the last 2 decades. The paper discusses concurrences of the ultrastructural observations made here and in previous studies of the marine Olpidiopsis species with those made on the freshwater species.

  6. Interactions between marine facultative epiphyte Chlamydomonas sp. (Chlamydomonadales, Chlorophyta) and ceramiaceaen algae (Rhodophyta).

    PubMed

    Klochkova, Tatyana A; Cho, Ga Youn; Boo, Sung Min; Chung, Ki Wha; Kim, Song Ja; Kim, Gwang Hoon

    2008-07-01

    Previously unrecorded marine Chlamydomonas that grew epiphytic on ceramiaceaen algae was collected from the western coast of Korea and isolated into a unialgal culture. The isolate was subjected to 18S rDNA phylogenetic analysis as well as ultrastructure and life cycle studies. It had an affinity with the marine Chlamydomonas species and was less related to freshwater/terrestrial representatives of this genus. It had flagella shorter than the cell body two-layered cell wall with striated outer surface and abundant mucilaginous material beneath the innermost layer and no contractile vacuoles. This alga grew faster in mixed cultures with ceramiaceaen algae rather than in any tested unialgal culture condition; the cells looked healthier and zoosporangia and motile flagellated vegetative cells appeared more often. These results suggested that this Chlamydomonas might be a facultative epiphyte benefiting from its hosts. Several ceramiaceaen algae were tested as host plants. Meanwhile, cell deformation or collapse of the whole thallus was caused to Aglaothamnion byssoides, and preliminary study suggested that a substance released from Chlamydomonas caused the response. This is first report on harmful epiphytic interactions between Chlamydomonas species and red ceramiaceaen algae.

  7. A comparison of different Gracilariopsis lemaneiformis (Rhodophyta) parts in biochemical characteristics, protoplast formation and regeneration

    NASA Astrophysics Data System (ADS)

    Wang, Zhongxia; Sui, Zhenghong; Hu, Yiyi; Zhang, Si; Pan, Yulong; Ju, Hongri

    2014-08-01

    Gracilariopsis lemaneiformis is a commercially exploited alga. Its filaceous thallus can be divided into three parts, holdfast, middle segment and tip. The growth and branch forming trend and agar content of these three parts were analyzed, respectively, in this study. The results showed that the tip had the highest growth rate and branched most, although it was the last part with branch forming ability. The holdfast formed branches earliest but slowly. Holdfast had the highest agar content. We also assessed the difference in protoplast formation and regeneration among three parts. The middle segment displayed the shortest enzymolysis time and the highest protoplast yield; whereas the tip had the strongest vitality of protoplasts formation. Juvenile plants were only obtained from the protoplasts generated from the tip. These results suggested that the differentiation and function of G. lemaneiformis was different.

  8. PHYLOGENETIC RELATIONSHIPS WITHIN THE STYLONEMATALES (STYLONEMATOPHYCEAE, RHODOPHYTA): BIOGEOGRAPHIC PATTERNS DO NOT APPLY TO STYLONEMA ALSIDII(1).

    PubMed

    Zuccarello, Giuseppe C; West, John A; Kikuchi, Norio

    2008-04-01

    The Stylonematales is the sole order of the Stylonematophyceae. The order consists of a mixture of filamentous or unicellular taxa that are small, grow on various surfaces, and are described from many floras, indicating that they may be cosmopolitan. Such ubiquity has been proposed to be due to properties of microorganisms, such as large population sizes, rather than human-derived phenomena. While their small nature makes most records fortuitous, we targeted these red algae to get a better understanding of their global distribution, genetic variation, and phylogeographic relationships. Our results indicated that the genera are mostly well supported, except for the position of Stylonema cornu-cervi with Goniotrichopsis reniformis, while intergeneric relationships are mostly unsupported. The most commonly isolated species was Stylonema alsidii. Within this species, several well-supported clades were present. The phylogeographic relationships in S. alsidii showed no obvious biogeographic pattern, with supported clades containing samples from disparate locations, and multiple samples from the same area not grouping together. Some clades showed little genetic variation and wide distributions, possibly indicating human-derived dispersal. Other clades, also with wide distribution, showed more genetic structure and could be candidates for groups formed by natural long-distance dispersal. While all issues on ubiquity cannot be answered with this data set, it would appear that at least S. alsidii is a true ubiquitous taxon. The sister relationship of Rufusia pilicola to the remaining Stylonematophyceae, the presence of the carbohydrate floridoside, and this species' unusual habitat indicate that it belongs to a new order, Rufusiales.

  9. Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta.

    PubMed

    Moenne, Alejandra; González, Alberto; Sáez, Claudio A

    2016-07-01

    Green and red macroalgae are closely related organisms, and with terrestrial plants, and constitute the base of marine food webs in coastal ecosystems. Green and red seaweeds, as all living organisms, require essential metals, such as copper, iron, zinc, which can act as co-factors for several proteins and enzymes; however, these metals in excess can induce stress and impair cell viability. Most important negative effects of metal excess are related to the induction of an oxidative stress condition, characterized by the over-accumulation of Reactive Oxygen Species (ROS). In this respect, copper, abundant in wastewaters disposed to coastal environments from domestic and industrial activities, has been one of the most studied metals. Different investigations have provided evidence that green and red macroalgae display several defenses against copper excess to prevent, or at least reduce, stress and damage, among which are cellular exclusion mechanisms, synthesis of metal-chelating compounds, and the activation of the antioxidant system. Most important defense mechanisms identified in green and red seaweed involve: metal-binding to cell wall and epibionts; syntheses of metallothioneins and phytochelatins that accumulate in the cytoplasm; and the increase in the activity of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione peroxidase and catalase, and greater production of antioxidant metabolites as glutathione and ascorbate in organelles and the cytoplasm. In this review, we go through historical records, latest advances, and pending tasks aiming to expand our current knowledge on defense mechanisms to copper excess in green and red macroalgae, with emphasis on biochemical and molecular aspects. PMID:27107242

  10. Rhodenigma contortum, an obscure new genus and species of Rhodogorgonales (Rhodophyta) from Western Australia.

    PubMed

    West, John A; Zuccarello, Giuseppe C; de Goër, Susan Loiseaux; Stavrias, Lambros A; Verbruggen, Heroen

    2016-06-01

    An unknown microscopic, branched filamentous red alga was isolated into culture from coral fragments collected in Coral Bay, Western Australia. It grew well unattached or attached to glass with no reproduction other than fragmentation of filaments. Cells of some branch tips became slightly contorted and digitated, possibly as a substrate-contact-response seen at filament tips of various algae. Attached multicellular compact disks on glass had a very different cellular configuration and size than the free filaments. In culture the filaments did not grow on or in coral fragments. Molecular phylogenies based on four markers (rbcL, cox1, 18S, 28S) clearly showed it belongs to the order Rhodogorgonales, as a sister clade of Renouxia. Based on these results, the alga is described as the new genus and species Rhodenigma contortum in the Rhodogorgonaceae. It had no morphological similarity to either of the other genera in Rhodogorgonaceae and illustrates the unknown diversity in cryptic habitats such as tropical coral rubble. PMID:27273532

  11. Methyl Jasmonate-Induced Lipidomic and Biochemical Alterations in the Intertidal Macroalga Gracilaria dura (Gracilariaceae, Rhodophyta).

    PubMed

    Kumari, Puja; Reddy, C R K; Jha, Bhavanath

    2015-10-01

    The role of exogenously added methyl jasmonate (MeJA), a lipid-derived signaling compound, in inducing oxidative stress in the marine red macroalga Gracilaria dura was investigated. MeJA at a concentration of 1-100 µM was a strong stimulant of reactive oxygen species (H(2)O(2), HO· and O(2) (·-)) (P < 0.05) causing considerable oxidative stress in G. dura. This further led to lipid peroxidation and degradation of the pigments Chl a and phycocyanin, with a concomitant increase in phycoerythrin. The MeJA-induced oxidative burst also led to the induction of a fatty acid oxidation cascade, resulting in the synthesis of hydroxy-oxylipins and the up-regulation of the 13-lipoxygenase pathway. Electrospray ionization-mass spectrometry-based shotgun lipidomic analysis revealed that monogalactosyldiacylglycerol (a chloroplastic glycerolipid) and phosphatidylcholine (extrachloroplastidic phopholipid) were the most affected lipid classes. The degradation of 18:3-fatty acid-containing monogalactosyldiacylglycerol inferred that it provided fatty acyl chains for the biosynthesis of 13-hydroperoxylinolenic acid, which was further directed towards either the jasmonate pathway or other alternative pathways of the fatty acid oxidation cascade, analogous to higher plants. Also, G. dura modulated the lipid acyl chains in such a way that no significant change was observed in the fatty acid profile of the treated thalli as compared with those of the control, except for C16:0, C16:1 (n-9), C20:3 (n-6) and C20:4 (n-6) (P < 0.05). Furthermore, MeJA caused the accumulation of phenolic compounds and the up-regulation of enzymes involved in secondary metabolism such as polyphenol oxidase, shikimate dehydrogenase and phenylalanine ammonia-lyase, indicating a shift towards secondary metabolism as a defense strategy to combat the induced oxidative stress.

  12. Investigation of the Gracilaria gracilis (Gracilariales, Rhodophyta) proteome response to nitrogen limitation.

    PubMed

    Naidoo, Rene K; Rafudeen, Muhammad S; Coyne, Vernon E

    2016-06-01

    Inorganic nitrogen has been identified as the major growth-limiting nutritional factor affecting Gracilaria gracilis populations in South Africa. Although the physiological mechanisms implemented by G. gracilis for adaption to low nitrogen environments have been investigated, little is known about the molecular mechanisms of these adaptions. This study provides the first investigation of G. gracilis proteome changes in response to nitrogen limitation and subsequent recovery. A differential proteomics approach employing two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry was used to investigate G. gracilis proteome changes in response to nitrogen limitation and recovery. The putative identity of 22 proteins that changed significantly (P < 0.05) in abundance in response to nitrogen limitation and recovery was determined. The identified proteins function in a range of biological processes including glycolysis, photosynthesis, ATP synthesis, galactose metabolism, protein-refolding and biosynthesis, nitrogen metabolism and cytoskeleton remodeling. The identity of fructose 1,6 biphosphate (FBP) aldolase was confirmed by western blot analysis and the decreased abundance of FBP aldolase observed with two-dimensional gel electrophoresis was validated by enzyme assays and western blots. The identification of key proteins and pathways involved in the G. gracilis nitrogen stress response provide a better understanding of G. gracilis proteome responses to varying degrees of nitrogen limitation and is the first step in the identification of biomarkers for monitoring the nitrogen status of cultivated G. gracilis populations.

  13. Structure of reproductive apparatus of Gracilaria/Gracilariopsis lemaneiformis (Gracilariaceae, Rhodophyta).

    PubMed

    Xu, Di; Zhu, JianYi; He, Yang; Cheng, XiaoJie; Zhang, WenYan; Zhang, XueCheng

    2008-12-01

    Reproductive apparatus of Gracilaria/Gracilariopsis lemaneiformis collected from Qingdao city were studied with a light and a transmission electron microscope. The special superficial arrangement of spermatangium for this species was clearly observed, and the ultrastructure of spermatangial development revealed the similar cytodynamic pattern followed by all the Gracilariaceae members developed from spermatangial mother cells to spermatangium. The female reproductive apparatus before fertilization was also observed and trichogyne was found protruding above the cortex, contrary to the earlier reports. Tetrasporangium was formed by an outer cortical cell and the tetraspores became spherical and expended after being released.

  14. Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta).

    PubMed

    Mendes, Luiz Fernando; Stevani, Cassius Vinicius; Zambotti-Villela, Leonardo; Yokoya, Nair Sumie; Colepicolo, Pio

    2014-01-01

    The macroalga Gracilaria domingensis is an important resource for the food, pharmaceutical, cosmetic, and biotechnology industries. G. domingensis is at a part of the food web foundation, providing nutrients and microelements to upper levels. As seaweed storage metals in the vacuoles, they are considered the main vectors to magnify these toxic elements. This work describes the evaluation of the toxicity of binary mixtures of available metal cations based on the growth rates of G. domingensis over a 48-h exposure. The interactive effects of each binary mixture were determined using a toxic unit (TU) concept that was the sum of the relative contribution of each toxicant and calculated using the ratio between the toxicant concentration and its endpoint. Mixtures of Cd(II)/Cu(II) and Zn(II)/Ca(II) demonstrated to be additive; Cu(II)/Zn(II), Cu(II)/Mg(II), Cu(II)/Ca(II), Zn(II)/Mg(II), and Ca(II)/Mg(II) mixtures were synergistic, and all interactions studied with Cd(II) were antagonistic. Hypotheses that explain the toxicity of binary mixtures at the molecular level are also suggested. These results represent the first effort to characterize the combined effect of available metal cations, based on the TU concept on seaweed in a total controlled medium. The results presented here are invaluable to the understanding of seaweed metal cation toxicity in the marine environment, the mechanism of toxicity action and how the tolerance of the organism.

  15. Global Transcriptome Analysis of Gracilaria changii (Rhodophyta) in Response to Agarolytic Enzyme and Bacterium.

    PubMed

    Lim, Ee-Leen; Siow, Rouh-San; Abdul Rahim, Raha; Ho, Chai-Ling

    2016-04-01

    Many bacterial epiphytes of agar-producing seaweeds secrete agarase that degrade algal cell wall matrix into oligoagars which elicit defense-related responses in the hosts. The molecular defense responses of red seaweeds are largely unknown. In this study, we surveyed the defense-related transcripts of an agarophyte, Gracilaria changii, treated with β-agarase through next generation sequencing (NGS). We also compared the defense responses of seaweed elicited by agarase with those elicited by an agarolytic bacterium isolated from seaweed, by profiling the expression of defense-related genes using quantitative reverse transcription real-time PCR (qRT-PCR). NGS detected a total of 391 differentially expressed genes (DEGs) with a higher abundance (>2-fold change with a p value <0.001) in the agarase-treated transcriptome compared to that of the non-treated G. changii. Among these DEGs were genes related to signaling, bromoperoxidation, heme peroxidation, production of aromatic amino acids, chorismate, and jasmonic acid. On the other hand, the genes encoding a superoxide-generating NADPH oxidase and related to photosynthesis were downregulated. The expression of these DEGs was further corroborated by qRT-PCR results which showed more than 90 % accuracy. A comprehensive analysis of their gene expression profiles between 1 and 24 h post treatments (hpt) revealed that most of the genes analyzed were consistently upregulated or downregulated by both agarase and agarolytic bacterial treatments, indicating that the defense responses induced by both treatments are highly similar except for genes encoding vanadium bromoperoxidase and animal heme peroxidase. Our study has provided the first glimpse of the molecular defense responses of G. changii to agarase and agarolytic bacterial treatments.

  16. UVR defense mechanisms in eurytopic and invasive Gracilaria vermiculophylla (Gracilariales, Rhodophyta).

    PubMed

    Roleda, Michael Y; Nyberg, Cecilia D; Wulff, Angela

    2012-10-01

    The invasive success of Gracilaria vermiculophylla has been attributed to its wide tolerance range to different abiotic factors, but its response to ultraviolet radiation (UVR) is yet to be investigated. In the laboratory, carpospores and vegetative thalli of an Atlantic population were exposed to different radiation treatments consisting of high PAR (photosynthetically active radiation) only (P), PAR+UV-A (PA) and PAR+UV-A+UV-B (PAB). Photosynthesis of carpospores was photoinhibited under different radiation treatments but photosystem II (PSII) function was restored after 12 h under dim white light. Growth of vegetative thalli was significantly higher under radiation supplemented with UVR. Decrease in chlorophyll a (Chl a) under daily continuous 16-h exposure to 300 µmol photons m(-2) s(-1) of PAR suggests preventive accumulation of excited chlorophyll molecules within the antennae to minimize the generation of dangerous reactive oxygen species. Moreover, an increase in total carotenoids and xanthophyll cycle pigments (i.e. violaxanthin, antheraxanthin and zeaxanthin) further suggests effective photoprotection under UVR. The presence of the ketocarotenoid β-cryptoxanthin also indicates protection against UVR and oxidative stress. The initial concentration of total mycosporine-like amino acids (MAAs) in freshly-released spores increased approximately four times after 8-h laboratory radiation treatments. On the other hand, initial specific MAAs in vegetative thalli changed in composition after 7-day exposure to laboratory radiation conditions without affecting the total concentration. The above responses suggest that G. vermiculophylla have multiple UVR defense mechanisms to cope with the dynamic variation in light quantity and quality encountered in its habitat. Beside being eurytopic, the UVR photoprotective mechanisms likely contribute to the current invasive success of the species in shallow lagoons and estuaries exposed to high solar radiation.

  17. Changes in ultrastructure and cytochemistry of the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales) treated with cadmium.

    PubMed

    dos Santos, Rodrigo W; Schmidt, Éder C; Bouzon, Zenilda L

    2013-02-01

    The agarophyte macroalgae Gracilaria domingensis (Kützing) Sonder ex Dickie is widely distributed along the Brazilian coast. While this species produces agarana, it is more important in the human diet. Therefore, the present study aimed to evaluate the biological effects of cadmium on its morphology and cellular organization. To accomplish this, the effects of cadmium in apical segments of G. domingensis were examined in vitro. Over a period of 16 days, the segments were cultivated and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1), with cadmium treatments in doses of 100, 200 and 300 μM. The samples were processed for light, transmission and scanning electron microscopy. Histochemical analyses included Toluidine Blue for acidic polysaccharides, Coomassie Brilliant Blue for total protein, and Periodic Acidic Schiff for neutral polysaccharides. In all cadmium treatments, cytochemical analysis showed 1) metachromatic granulation in vacuole and lenticular thickness of the cell wall, 2) a higher concentration of cytoplasmic organelles, and 3) an increase in the number of floridean starch grains. Cadmium also caused changes in the ultrastructure of cortical and subcortical cells, including increased cell wall thickness and vacuole volume, as well as the destruction of chloroplast internal organization and increased number of plastoglobuli. In addition, treated plants showed a gradual increase in surface roughness, apparently the result of cadmium absorption. Taken together, these findings strongly suggested that cadmium negatively affects the agarophyte G. domingensis, posing a threat to the vitality of this plant species as a supplement in the human diet.

  18. Physiological responses of macroalga Gracilaria lemaneiformis (Rhodophyta) to UV-B radiation exposure

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Xiao, Hui; Wang, Ying; Jian, Xiaoyang; Zhang, Zhipeng; Zhang, Huanxin; Tang, Xuexi

    2015-03-01

    This paper aims to evaluate the effects of ultraviolet-B radiation (UVBR) on Gracilaria lemaneiformis, a commercial red macroalga and an important source of agar. To study the in-vitro effect of UVBR on G. lemaneiformis, this plant was cultivated and exposed to photosynthetically active radiation (PAR) at 40 μmol photons/(m2 ·s) and enhanced UVBR (0, 0.36, 0.72, 1.08, 1.44, and 1.80 kJ/(m2 ·d)) for 13 days. The samples were processed for histochemical analysis, and the growth rate, photosynthetic pigment contents, photosynthetic performance, reactive oxygen species levels, membrane permeability, malonyl dialdehyde contents and antioxidant capacity of G. lemaneiformis were investigated. After 13 days of exposure to PAR+UVBR, G. lemaneiformis showed photodamage and photoinhibition of photosynthetic pigments (chlorophyll a and phycoerythrin), leading to a decreased photosynthetic efficiency. Further, there was a corresponding decrease in the relative growth rates and depigmentation and partial necrosis of the apical segments were noted after exposure to PAR+UVBR. Additionally, UVBR induced excess production of superoxide radicals and hydrogen peroxide, eliciting a marked cellular membrane damage and antioxidative response.

  19. Trichocytes in Lithophyllum kotschyanum and Lithophyllum spp. (Corallinales, Rhodophyta) from the NW Indian Ocean.

    PubMed

    Basso, Daniela; Caragnano, Annalisa; Rodondi, Graziella

    2014-08-01

    The current diagnosis of the genus Lithophyllum includes absent or rare trichocyte occurrence. After examining holotype material, single trichocytes have been revealed to occur abundantly in Lithophyllum kotschyanum Unger, and in freshly collected specimens of Lithophyllum spp. from the Red Sea, Gulf of Aden and Socotra Island (Yemen). Trichocyte occurrence is not considered a diagnostic character at specific or supraspecific levels in the Lithophylloideae, and the ecological significance of trichocyte formation is discussed. The generitype species, L. incrustans Philippi, does not show trichocytes nor do many other Lithophyllum species from diverse geographic localities, but the presence of abundant trichocytes in other congeneric taxa requires emendation of the genus diagnosis. Therefore, the diagnosis of Lithophyllum is here emended by eliminating the adjective "rare" in the sentence concerning trichocyte occurrence, as follows: "Trichocytes present or absent, if present occurring singly." PMID:26988454

  20. Spatial distribution and reproductive phenology of sexual and asexual Mastocarpus papillatus (Rhodophyta)

    PubMed Central

    Fierst, Janna L.; Kübler, Janet E.; Dudgeon, Steven R.

    2010-01-01

    Species of the genus Mastocarpus exhibit two distinct life cycles, a sexual alternation of generations and an obligate, asexual direct life cycle that produces only female upright fronds. In the intertidal red alga, M. papillatus (Kützing) sexual fronds dominate southern populations and asexual fronds dominate northern populations along the northeast Pacific coast, a pattern of spatial separation called geographic parthenogenesis. Along the central coast of California, sexual and asexual variants occur in mixed populations, but it is not known whether they are spatially separated within the intertidal zone at a given site. We investigated reproductive phenologies and analyzed patterns of spatial distributions of sexual and asexual M. papillatus at three sites in this region. Sexual M. papillatus were aggregated lower on the shore at two sites and only reproduced during part of a year, while asexual M. papillatus occurred throughout the intertidal range at all sites and reproduced throughout the year. The distribution patterns of sexual and asexual M. papillatus are consistent with a hypothesis of shoreline topography influencing their dynamics of dispersal and colonization. Spatial and temporal partitioning may contribute to the long-term coexistence of sexual and asexual life histories in this, and other, species of Mastocarpus. The occurrence of geographic parthenogenesis at multiple spatial scales in M. papillatus provides an opportunity to gain insight into the phenomenon. PMID:20802792

  1. The Hawaiian Rhodophyta Biodiversity Survey (2006-2010): a summary of principal findings

    PubMed Central

    2010-01-01

    Background The Hawaiian red algal flora is diverse, isolated, and well studied from a morphological and anatomical perspective, making it an excellent candidate for assessment using a combination of traditional taxonomic and molecular approaches. Acquiring and making these biodiversity data freely available in a timely manner ensures that other researchers can incorporate these baseline findings into phylogeographic studies of Hawaiian red algae or red algae found in other locations. Results A total of 1,946 accessions are represented in the collections from 305 different geographical locations in the Hawaiian archipelago. These accessions represent 24 orders, 49 families, 152 genera and 252 species/subspecific taxa of red algae. One order of red algae (the Rhodachlyales) was recognized in Hawaii for the first time and 196 new island distributional records were determined from the survey collections. One family and four genera are reported for the first time from Hawaii, and multiple species descriptions are in progress for newly discovered taxa. A total of 2,418 sequences were generated for Hawaiian red algae in the course of this study - 915 for the nuclear LSU marker, 864 for the plastidial UPA marker, and 639 for the mitochondrial COI marker. These baseline molecular data are presented as neighbor-joining trees to illustrate degrees of divergence within and among taxa. The LSU marker was typically most conserved, followed by UPA and COI. Phylogenetic analysis of a set of concatenated LSU, UPA and COI sequences recovered a tree that broadly resembled the current understanding of florideophyte red algal relationships, but bootstrap support was largely absent above the ordinal level. Phylogeographic trends are reported here for some common taxa within the Hawaiian Islands and include examples of those with, as well as without, intraspecific variation. Conclusions The UPA and COI markers were determined to be the most useful of the three and are recommended for inclusion in future algal biodiversity surveys. Molecular data for the survey provide the most extensive assessment of Hawaiian red algal diversity and, in combination with the morphological/anatomical and distributional data collected as part of the project, provide a solid baseline data set for future studies of the flora. The data are freely available via the Hawaiian Algal Database (HADB), which was designed and constructed to accommodate the results of the project. We present the first DNA sequence reference collection for a tropical Pacific seaweed flora, whose value extends beyond Hawaii since many Hawaiian taxa are shared with other tropical areas. PMID:21092229

  2. Effects of temperature and irradiance on early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Zhao, Peng; Wang, Gaoge; Li, Dapeng; Wang, Jicheng; Duan, Delin

    2010-05-01

    Chondrus is a type of commercially produced red seaweed that widely used for food and carrageen extraction. Although the natural life history of the alga had been well understood, the factors influencing development of the tetraspore and carpospore remain poorly understood. In the perspective of seedling resources, the regulation of early development is crucial for the seedling nursing; therefore, it is necessary to understand the physiological influences during its early development. In this study, we studied the effects of temperature and irradiance on the early development of Chondrus ocellatus Holm under laboratory conditions. The released tetraspores and carpospores were cultivated at different temperatures (10-28°C) and irradiances (10, 60 μmol photons m-2s-1) with a photoperiod of 12L:12D. The results indicate that both tetraspores and carpospores are tolerant to temperatures of 10-25°C, and have the highest relative growth rate at 20°C. Irradiance variances influenced the growth of the discoid crusts, and the influence was more significant with increasing temperature; 60 μmol photons m-2s-1 was more suitable than 10 μmol photons m-2s-1. The optimum temperature and irradiance for the development of seedlings was 20°C and 60 μmol photons m-2s-1, respectively.

  3. Differential responses of tetrasporophytes and gametophytes of Mazzaella laminarioides (Gigartinales, Rhodophyta) under solar UV radiation.

    PubMed

    Navarro, Nelso P; Figueroa, Félix L; Korbee, Nathalie; Mansilla, Andrés; Plastino, Estela M

    2016-06-01

    The effects of solar UV radiation on mycosporine-like amino acids (MAAs), growth, photosynthetic pigments (Chl a, phycobiliproteins), soluble proteins (SP), and C and N content of Mazzaella laminarioides tetrasporophytes and gametophytes were investigated. Apical segments of tetrasporophytes and gametophytes were exposed to solar radiation under three treatments (PAR [P], PAR+UVA [PA], and PAR+UVA+UVB [PAB]) during 18 d in spring 2009, Punta Arenas, Chile. Samples were taken after 2, 6, 12, and 18 d of solar radiation exposure. Most of the parameters assessed on M. laminarioides were significantly influenced by the radiation treatment, and both gametophytes and tetrasporophytes seemed to respond differently when exposed to high UV radiation. The two main effects promoted by UV radiation were: (i) higher synthesis of MAAs in gametophytes than tetrasporophytes at 2 d, and (ii) a decrease in phycoerythrin, phycocyanin, and SPs, but an increase in MAA content in tetrasporophytes at 6 and 12 d of culture. Despite some changes that were observed in biochemical parameters in both tetrasporophytes and gametophytes of M. laminarioides when exposed to UVB radiation, these changes did not promote deleterious effects that might interfere with the growth in the long term (18 d). The tolerance and resistance of M. laminarioides to higher UV irradiance were expected, as this intertidal species is exposed to variation in solar radiation, especially during low tide. PMID:26990026

  4. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome

    PubMed Central

    2012-01-01

    Background Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. Results A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. Conclusions This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L. dendroidea in the primary production of the holobiont and the role of Bacteria as consumers of organic matter and possibly also as nitrogen source. Furthermore, this seaweed expressed sequences related to terpene biosynthesis, including the complete mevalonate-independent pathway, which offers new possibilities for biotechnological applications using secondary metabolites from L. dendroidea. PMID:22985125

  5. Phylogenetic relationships of corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef-building corallines.

    PubMed

    Rösler, Anja; Perfectti, Francisco; Peña, Viviana; Braga, Juan Carlos

    2016-06-01

    A new, more complete, five-marker (SSU, LSU, psbA, COI, 23S) molecular phylogeny of the family Corallinaceae, order Corallinales, shows a paraphyletic grouping of seven well-supported monophyletic clades. The taxonomic implications included the amendment of two subfamilies, Neogoniolithoideae and Metagoniolithoideae, and the rejection of Porolithoideae as an independent subfamily. Metagoniolithoideae contained Harveylithon gen. nov., with H. rupestre comb. nov. as the generitype, and H. canariense stat. nov., H. munitum comb. nov., and H. samoënse comb. nov. Spongites and Pneophyllum belonged to separate clades. The subfamily Neogoniolithoideae included the generitype of Spongites, S. fruticulosus, for which an epitype was designated. Pneophyllum requires reassesment. The generitype of Hydrolithon, H. reinboldii, was a younger heterotypic synonym of H. boergesenii. The evolutionary novelty of the subfamilies Hydrolithoideae, Metagoniolithoideae, and Lithophylloideae was the development of tetra/bisporangial conceptacle roofs by filaments surrounding and interspersed among the sporangial initials.

  6. Thermal Acclimation of Respiration and Photosynthesis in the Marine Macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta).

    PubMed

    Zou, Dinghui; Gao, Kunshan

    2013-02-01

    The responses of respiration and photosynthesis to temperature fluctuations in marine macroalgae have the potential to significantly affect coastal carbon fluxes and sequestration. In this study, the marine red macroalga Gracilaria lemaneiformis was cultured at three different temperatures (12, 19, and 26°C) and at high- and low-nitrogen (N) availability, to investigate the acclimation potential of respiration and photosynthesis to temperature change. Measurements of respiratory and photosynthetic rates were made at five temperatures (7°C-33°C). An instantaneous change in temperature resulted in a change in the rates of respiration and photosynthesis, and the temperature sensitivities (i.e., the Q10 value) for both the metabolic processes were lower in 26°C-grown algae than 12°C- or 19°C-grown algae. Both respiration and photosynthesis acclimated to long-term changes in temperature, irrespective of the N availability under which the algae were grown; respiration displayed strong acclimation, whereas photosynthesis only exhibited a partial acclimation response to changing growth temperatures. The ratio of respiration to gross photosynthesis was higher in 12°C-grown algae, but displayed little difference between the algae grown at 19°C and 26°C. We propose that it is unlikely that respiration in G. lemaneiformis would increase significantly with global warming, although photosynthesis would increase at moderately elevated temperatures.

  7. Species diversity of the genus Osmundea (Ceramiales, Rhodophyta) in the Macaronesian region.

    PubMed

    Machín-Sánchez, María; Rousseau, Florence; Le Gall, Line; Cassano, Valéria; Neto, Ana I; Sentíes, Abel; T Fujii, Mutue; Gil-Rodríguez, María Candelaria

    2016-08-01

    Species diversity within the genus Osmundea in the Macaronesian region was explored by conducting a comprehensive sampling in the Azores, the Canary, and the Madeira archipelagos. Toward identification, all specimens were first observed alive to verify the absence of corps en cerise, a diagnostic character for the genus and morphometric data were measured (thallus length and width, first-order branches length and width, branchlets length and width, cortical cell length and width in surface view, cortical cell length and width in transverse section). Specimens were sequenced for COI-5P (39 specimens) and three species delimitation methods (Generalized Mixed Yule Coalescent, Automatic Barcode Gap Discovery method, and Poisson Tree Processes) were used to assess the threshold between infra- and interspecific relationships. Subsequently, one or several sequences of plastid-encoded large subunit of RuBisCO (21 specimens) per delimited species were generated to assess the phylogenetic relationships among Macaronesian Osmundea. Moreover, for each delineated species, vegetative and reproductive anatomy was thoroughly documented and, when possible, specimens were either assigned to existing taxa or described as novel species. This integrative approach has provided data for (i) the presence of O. oederi, O. pinnatifida, and O. truncata in Macaronesia; (ii) the proposal of two novel species, O. prudhommevanreinei sp. nov. and O. silvae sp. nov.; and (iii) evidence of an additional species referred as "Osmundea sp.1," which is a sister taxon of O. hybrida. PMID:27221970

  8. Host specificity and growth of kelp gametophytes symbiotic with filamentous red algae (Ceramiales, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Hubbard, Charlene B.; Garbary, David J.; Kim, Kwang Young; Chiasson, David M.

    2004-02-01

    Kelp gametophytes were previously observed in nature living endophytically in red algal cell walls. Here we examine the interactions of two kelp species and six red algae in culture. Gametophytes of Nereocystis luetkeana (Mertens) Postels et Ruprecht became endophytic in the cell walls of Griffithsia pacifica Kylin and Antithamnion defectum Kylin, and grew epiphytically in high abundance on G. japonica Okamura and Aglaothamnion oosumiense Itono. Alaria esculenta (Linnaeus) Greville from the Atlantic coast of Nova Scotia became endophytic in Aglaothamnion oosumiense, Antithamnion defectum, Callithamnion sp., G. japonica, G. pacifica, and Pleonosporium abysicola Gardner, all from the Pacific Ocean. Some cultures were treated with phloroglucinol before infection to thicken the cell walls. The endophytic gametophytes were smaller and grew more slowly than gametophytes epiphytic on the same host. N. luetkeana failed to become endophytic in some of the potential hosts, and this may reflect host specificity, or culture artifacts. This work improves our understanding of the process of infection of red algae by kelp gametophytes, and broadens our knowledge of host specificity in endophytic symbioses.

  9. New record and phylogenetic affinities of the oomycete Olpidiopsis feldmanni infecting Asparagopsis sp. (Rhodophyta).

    PubMed

    Fletcher, Kyle; Uljević, Ante; Tsirigoti, Amerssa; Antolić, Boris; Katsaros, Christos; Nikolić, Vedran; van West, Pieter; Küpper, Frithjof C

    2015-11-17

    A new geographic record of the oomycete Olpidiopsis feldmanni infecting the tetrasporophytic stage of the red alga Asparagopsis sp. from the Adriatic Sea, confirmed through morphological identification, allowed us to expand previous observations of this organism. Ultrastructural investigations of environmental material showed a large central vacuole and a cell wall thicker than previously reported from other basal oomycete pathogens of algae. Phylogenetic analysis closely associates O. feldmanni to O. bostrychiae concurrent with structural observations. This constitutes the first genetic characterisation of an Olpidiopsis species that was initially described before 1960, adding to the genetic data of 3 other marine Olpidiopsis species established and genetically characterised in the last 2 decades. The paper discusses concurrences of the ultrastructural observations made here and in previous studies of the marine Olpidiopsis species with those made on the freshwater species. PMID:26575155

  10. Thylakoid formation from coiled lamellar bodies during carposporogenesis in Faucheocolax attenuata Setch. (Rhodophyta, Rhodymeniales).

    PubMed

    Delivopoulos, S G; Kugrens, P

    1985-04-01

    Chloroplast development during carposporogenesis in the parasitic red alga Faucheocolax attenuata Setch. was studied by electron microscopy. Proplastids are usually found in the peripheral cytoplasm of young carpospores and are characterized by the presence of portions of a peripheral thylakoid and coiled lamellar bodies that range in size up to 0.5 micron. One type of coiled lamellar body occurs in the peripheral region of the proplastid and is continuous with the peripheral thylakoid, while the other type is found in the central portion of the stroma. These coiled lamellae separate and expand, adding membranes to both thylakoid systems, thereby functioning as thylakoid-forming bodies. As each coiled lamella unravels, it forms an undulated double-membraned structure having the same width as a thylakoid. After substantial expansion, the developing thylakoids begin to straighten and assume a parallel orientation to each other, thus becoming mature thylakoids. Small coiled lamellae often persist in mature carpospore chloroplasts, and are utilized in additional thylakoid formation during carpospore germination.

  11. Patterns of genetic diversity of the cryptogenic red alga Polysiphonia morrowii (Ceramiales, Rhodophyta) suggest multiple origins of the Atlantic populations.

    PubMed

    Geoffroy, Alexandre; Destombe, Christophe; Kim, Byeongseok; Mauger, Stéphane; Raffo, María Paula; Kim, Myung Sook; Le Gall, Line

    2016-08-01

    The red alga Polysiphonia morrowii, native to the North Pacific (Northeast Asia), has recently been reported worldwide. To determine the origin of the French and Argentine populations of this introduced species, we compared samples from these two areas with samples collected in Korea and at Hakodate, Japan, the type locality of the species. Combined analyses of chloroplastic (rbcL) and mitochondrial (cox1) DNA revealed that the French and Argentine populations are closely related and differ substantially from the Korean and Japanese populations. The genetic structure of P. morrowii populations from South Atlantic and North Atlantic, which showed high haplotype diversity compared with populations from the North Pacific, suggested the occurrence of multiple introduction events from areas outside of the so-called native regions. Although similar, the French and Argentine populations are not genetically identical. Thus, the genetic structure of these two introduced areas may have been modified by cryptic and recurrent introduction events directly from Asia or from other introduced areas that act as introduction relays. In addition, the large number of private cytoplasmic types identified in the two introduced regions strongly suggests that local populations of P. morrowii existed before the recent detection of these invasions. Our results suggest that the most likely scenario is that the source population(s) of the French and Argentine populations was not located only in the North Pacific and/or that P. morrowii is a cryptogenic species. PMID:27547343

  12. In vivo therapeutic potentiality of red seaweed, Asparagopsis (Bonnemaisoniales, Rhodophyta) in the treatment of Vibriosis in Penaeus monodon Fabricius

    PubMed Central

    Manilal, Aseer; Selvin, Joseph; George, Shiney

    2011-01-01

    The crude extract of the red seaweed, Asparagopsis sp. was evaluated for in vivo antibacterial activity against the shrimp vibrio pathogens. The algal extract was rationalized with commercial shrimp feed and orally administered for different duration of time followed by the artificial bacterial challenge experiment. In dose titration experiments, the oral administration of Asparagopsis sp. at a dosage of 850 mg kg–1 of biomass was highly efficacious in the treatment of natural infestations of Vibriosis in Penaeus monodon. The results of the confirmatory dose experiment revealed that the prophylactic treatment with moderate dose of 850 mg kg–1 of biomass day–1 for four weeks followed by 14 days of post infection therapy was highly effective in controlling Vibrio infection in shrimps. Moreover, results of the percent survival index and microbiological analysis clearly show that Asparagopsis extract incorporated medicated feed had broad therapeutic potential for managing shrimp Vibriosis. In addition, in vivo trials and results obtained in this work are based on the crude organic extract sourced from an unidentified Asparagopsis cryptic lineage, therefore further molecular analysis to identify the species will be required. PMID:23961176

  13. Effects of UV-B irradiation on isoforms of antioxidant enzymes and their activities in red alga Grateloupia filicina (Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Zhao, Jiqiang; Li, Lixia

    2014-11-01

    Macroalgae in a littoral zone are inevitably exposed to UV-B irradiance. We analyzed the effects of UV-B on isoenzyme patterns and activities of superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) of red algae Grateloupia filicina (Lamour.) C. Agardh. The activities of SOD, CAT, and APX changed in response to UV-B in a time- and dose-dependent manner. POX activity increased significantly under all three UV-B treatments. The enzymatic assay showed three distinct bands of SODI (Mn-SOD), SODII (Fe-SOD), and SODIII (CuZn-SOD) under a low (Luv) and medium (Muv) dose of UV-B irradiation, while SODI and SODIII activities decreased significantly when exposed to a high dose of UV-B irradiation (Huv). The activity of POX isoenzymes increased significantly after exposure to UV-B, which is consistent with the total activity. In addition, a clear decrease in activity of CATIV was detected in response to all the three doses of UV treatments. Some bands of APX isoenzyme were also clearly influenced by UV-B irradiation. Correspondingly, the daily growth rate declined under all the three exposure doses, and was especially significant under Muv and Huv treatments. These data suggest that, although the protection mechanisms of antioxidant defense system are partly inducible by UV-B to prevent the damage, G. filicina has incomplete tolerance to higher UV-B irradiation stress.

  14. Succession of crustose coralline red algae (Rhodophyta) on coralgal reefs exposed to physical disturbance in the southwest Atlantic

    NASA Astrophysics Data System (ADS)

    Mariath, Rodrigo; Rodriguez, Rafael Riosmena; Figueiredo, Marcia A. O.

    2013-12-01

    Biological and physical disturbances create the conditions for species succession in any biological ecosystem. In particular, coral reefs are susceptible to this process because of the complexity of their ecological relationships. In the southwest Atlantic, nearshore reefs are mostly coated by a thin layer of coralline crusts rather than stony corals. However, little is known about the succession of crustose coralline algae. We studied this process by means of a series of experimental and control discs exposed to physical disturbance. Our results showed that the dominant species in natural conditions, Pneophyllum conicum, had early recruits and later became dominant on the discs, replicating the community structure of the actual reef. This species had mature reproductive structures and available spores from the beginning of the colonization experiments. Thicker crusts of Porolithon pachydermum and Peyssonnelia sp. were found on the discs after 112 days, and significantly increased their cover over the succeeding months; and after 1 year, P. conicum was less abundant. Physical disturbance increased crust recruitment and the low-light environment created by sediments. The data demonstrated coexistence among crustose coralline species and a tolerance to physical disturbance, which seemed to favor the thinner crusts of P. conicum over thick-crust species during succession. The succession pattern observed in this subtropical Brazilian coral reef differs from that described for shallow tropical reef communities.

  15. MESOPHYLLUM SPHAERICUM SP. NOV. (CORALLINALES, RHODOPHYTA): A NEW MAËRL-FORMING SPECIES FROM THE NORTHEAST ATLANTIC(1).

    PubMed

    Peña, Viviana; Adey, Walter H; Riosmena-Rodríguez, Rafael; Jung, Moon-Yung; Afonso-Carrillo, Julio; Choi, Han-Gu; Bárbara, Ignacio

    2011-08-01

    Mesophyllum sphaericum sp. nov. is described based on spherical maërl individuals (up to 10 cm) collected in a shallow subtidal maërl bed in Galicia (NW Spain). The thalli of these specimens are radially organized, composed of arching tiers of compact medullary filaments. Epithallial cells have flattened to rounded outermost walls, and they occur in a single layer. Subepithallial initials are as long as, or longer than the daughter cells that subtend them. Cell fusions are abundant. Multiporate asexual conceptacles are protruding, mound-like with a flattened pore plate, lacking a peripheral raised rim. Filaments lining the pore canal and the conceptacle roof are composed of five to six cells with straight elongate and narrow cells at their base. Carposporangial conceptacles are uniporate, protruding, and conical. Spermatangial conceptacles were not observed. Molecular results placed M. sphaericum near to M. erubescens, but M. sphaericum is anatomically close to M. canariense. The examination of the holotype and herbarium specimens of M. canariense indicated that both species have pore canal filaments with elongate basal cells, but they differ in number of cells (five to six in M. sphaericum vs. four in M. canariense). Based on the character of pore canal filaments, M. canariense shows similarities with M. erubescens (three to five celled). The outermost walls of epithallial cells of M. canariense are flared compared to the round to flattened ones of M. erubescens, the latter being widely accepted for the genus Mesophyllum. The addition of M. sphaericum as new maërl-forming species suggests that European maërl beds are more biodiverse than previously understood. PMID:27020026

  16. MESOPHYLLUM SPHAERICUM SP. NOV. (CORALLINALES, RHODOPHYTA): A NEW MAËRL-FORMING SPECIES FROM THE NORTHEAST ATLANTIC(1).

    PubMed

    Peña, Viviana; Adey, Walter H; Riosmena-Rodríguez, Rafael; Jung, Moon-Yung; Afonso-Carrillo, Julio; Choi, Han-Gu; Bárbara, Ignacio

    2011-08-01

    Mesophyllum sphaericum sp. nov. is described based on spherical maërl individuals (up to 10 cm) collected in a shallow subtidal maërl bed in Galicia (NW Spain). The thalli of these specimens are radially organized, composed of arching tiers of compact medullary filaments. Epithallial cells have flattened to rounded outermost walls, and they occur in a single layer. Subepithallial initials are as long as, or longer than the daughter cells that subtend them. Cell fusions are abundant. Multiporate asexual conceptacles are protruding, mound-like with a flattened pore plate, lacking a peripheral raised rim. Filaments lining the pore canal and the conceptacle roof are composed of five to six cells with straight elongate and narrow cells at their base. Carposporangial conceptacles are uniporate, protruding, and conical. Spermatangial conceptacles were not observed. Molecular results placed M. sphaericum near to M. erubescens, but M. sphaericum is anatomically close to M. canariense. The examination of the holotype and herbarium specimens of M. canariense indicated that both species have pore canal filaments with elongate basal cells, but they differ in number of cells (five to six in M. sphaericum vs. four in M. canariense). Based on the character of pore canal filaments, M. canariense shows similarities with M. erubescens (three to five celled). The outermost walls of epithallial cells of M. canariense are flared compared to the round to flattened ones of M. erubescens, the latter being widely accepted for the genus Mesophyllum. The addition of M. sphaericum as new maërl-forming species suggests that European maërl beds are more biodiverse than previously understood.

  17. Patterns of genetic diversity of the cryptogenic red alga Polysiphonia morrowii (Ceramiales, Rhodophyta) suggest multiple origins of the Atlantic populations.

    PubMed

    Geoffroy, Alexandre; Destombe, Christophe; Kim, Byeongseok; Mauger, Stéphane; Raffo, María Paula; Kim, Myung Sook; Le Gall, Line

    2016-08-01

    The red alga Polysiphonia morrowii, native to the North Pacific (Northeast Asia), has recently been reported worldwide. To determine the origin of the French and Argentine populations of this introduced species, we compared samples from these two areas with samples collected in Korea and at Hakodate, Japan, the type locality of the species. Combined analyses of chloroplastic (rbcL) and mitochondrial (cox1) DNA revealed that the French and Argentine populations are closely related and differ substantially from the Korean and Japanese populations. The genetic structure of P. morrowii populations from South Atlantic and North Atlantic, which showed high haplotype diversity compared with populations from the North Pacific, suggested the occurrence of multiple introduction events from areas outside of the so-called native regions. Although similar, the French and Argentine populations are not genetically identical. Thus, the genetic structure of these two introduced areas may have been modified by cryptic and recurrent introduction events directly from Asia or from other introduced areas that act as introduction relays. In addition, the large number of private cytoplasmic types identified in the two introduced regions strongly suggests that local populations of P. morrowii existed before the recent detection of these invasions. Our results suggest that the most likely scenario is that the source population(s) of the French and Argentine populations was not located only in the North Pacific and/or that P. morrowii is a cryptogenic species.

  18. In vitro antioxidant and antimicrobial activities of two Hawaiian marine Limu: Ulva fasciata (Chlorophyta) and Gracilaria salicornia (Rhodophyta).

    PubMed

    Vijayavel, Kannappan; Martinez, Jonathan A

    2010-12-01

    The antioxidant and antimicrobial properties of two Hawaiian marine algae (Ulva fasciata and Gracilaria salicornia) were evaluated. Ethanolic extracts of these two algae exhibited intracellular reactive 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic radical, nitric oxide, superoxide radical, and hydroxyl radical scavenging activities. In addition to the antioxidant activity these algae possessed appreciable antimicrobial activity and total phenolic contents. The overall results have established that these two marine algae could be used to derive bioactive compounds for a possible role as nutraceutical agents.

  19. Temperature response of photosynthetic light- and carbon-use characteristics in the red seaweed Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta).

    PubMed

    Zou, Dinghui; Gao, Kunshan

    2014-04-01

    The red seaweed Gracilariopsis is an important crop extensively cultivated in China for high-quality raw agar. In the cultivation site at Nanao Island, Shantou, China, G. lemaneiformis experiences high variability in environmental conditions like seawater temperature. In this study, G. lemaneiformis was cultured at 12, 19, or 26°C for 3 weeks, to examine its photosynthetic acclimation to changing temperature. Growth rates were highest in G. lemaneiformis thalli grown at 19°C, and were reduced with either decreased or increased temperature. The irradiance-saturated rate of photosynthesis (Pmax ) decreased with decreasing temperature, but increased significantly with prolonged cultivation at lower temperatures, indicating the potential for photosynthesis acclimation to lower temperature. Moreover, Pmax increased with increasing temperature (~30 μmol O2  · g(-1) FW · h(-1) at 12°C to 70 μmol O2  · g(-1) FW · h(-1) at 26°C). The irradiance compensation point for photosynthesis (Ic ) decreased significantly with increasing temperature (28 μmol photons · m(-2)  · s(-1) at high temperature vs. 38 μmol photons · m(-2)  · s(-1) at low temperature). Both the photosynthetic light- and carbon-use efficiencies increased with increasing growth or temperatures (from 12°C to 26°C). The results suggested that the thermal acclimation of photosynthetic performance of G. lemaneiformis would have important ecophysiological implications in sea cultivation for improving photosynthesis at low temperature and maintaining high standing biomass during summer. Ongoing climate change (increasing atmospheric CO2 and global warming) may enhance biomass production in G. lemaneiformis mariculture through the improved photosynthetic performances in response to increasing temperature.

  20. Dietary supplementation with the microalga Galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues.

    PubMed

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  1. Aragonite infill in overgrown conceptacles of coralline Lithothamnion spp. (Hapalidiaceae, Hapalidiales, Rhodophyta): new insights in biomineralization and phylomineralogy.

    PubMed

    Krayesky-Self, Sherry; Richards, Joseph L; Rahmatian, Mansour; Fredericq, Suzanne

    2016-04-01

    New empirical and quantitative data in the study of calcium carbonate biomineralization and an expanded coralline psbA framework for phylomineralogy are provided for crustose coralline red algae. Scanning electron microscopy (SEM) and energy dispersive spectrometry (SEM-EDS) pinpointed the exact location of calcium carbonate crystals within overgrown reproductive conceptacles in rhodolith-forming Lithothamnion species from the Gulf of Mexico and Pacific Panama. SEM-EDS and X-ray diffraction (XRD) analysis confirmed the elemental composition of these calcium carbonate crystals to be aragonite. After spore release, reproductive conceptacles apparently became overgrown by new vegetative growth, a strategy that may aid in sealing the empty conceptacle chamber, hence influencing the chemistry of the microenvironment and in turn promoting aragonite crystal growth. The possible relevance of various types of calcium carbonate polymorphs present in the complex internal structure and skeleton of crustose corallines is discussed. This is the first study to link SEM, SEM-EDS, XRD, Microtomography and X-ray microscopy data of aragonite infill in coralline algae with phylomineralogy. The study contributes to the growing body of literature characterizing and speculating about how the relative abundances of carbonate biominerals in corallines may vary in response to changes in atmospheric pCO2 , ocean acidification, and global warming. PMID:27037582

  2. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    PubMed Central

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  3. Alterations in architecture and metabolism induced by ultraviolet radiation-B in the carragenophyte Chondracanthus teedei (Rhodophyta, Gigartinales).

    PubMed

    Schmidt, Eder C; Pereira, Beatriz; Pontes, Carime L Mansur; dos Santos, Rodrigo; Scherner, Fernando; Horta, Paulo A; de Paula Martins, Roberta; Latini, Alexandra; Maraschin, Marcelo; Bouzon, Zenilda L

    2012-04-01

    The in vivo effect of ultraviolet radiation-B (UVBR) in apical segments of Chondracanthus teedei was examined. Over a period of 7 days, the segments were cultivated and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR + UVBR at 1.6 W m(-2) for 3 h per day. The samples were processed for electron microscopy and histochemistry; also was analyzed growth rates, mitochondrial activity, protein levels, content of photosynthetic pigments and photosynthetic performance. UVBR elicited increased cell wall thickness and accumulation of plastoglobuli, changes in mitochondrial organization and destruction of chloroplast internal organization. Compared to controls, algae exposed to PAR + UVBR showed a growth rate reduction of 55%. The content of photosynthetic pigments, including chlorophyll a and phycobiliproteins, decreased after exposure to PAR + UVBR. This result agrees with the decreased photosynthetic performance observed after exposing algae to PAR + UVBR. Irradiation also elicited increased activity of the antioxidant enzyme glutathione peroxidase and decreased mitochondrial NADH dehydrogenase activity, which correlated with the decreased protein content in plants exposed to PAR + UVBR. Taken together, these findings strongly indicate that UVBR negatively affects the architecture and metabolism of the carragenophyte C. teedei.

  4. Assessment of Four Molecular Markers as Potential DNA Barcodes for Red Algae Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta)

    PubMed Central

    Tan, Ji; Lim, Phaik-Eem; Phang, Siew-Moi; Hong, Dang Diem; Sunarpi, H.; Hurtado, Anicia Q.

    2012-01-01

    DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment. PMID:23285223

  5. Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta) based on next-generation sequencing.

    PubMed

    Zhou, Wei; Hu, Yiyi; Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon.

  6. Assessment of four molecular markers as potential DNA barcodes for red algae Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta).

    PubMed

    Tan, Ji; Lim, Phaik-Eem; Phang, Siew-Moi; Hong, Dang Diem; Sunarpi, H; Hurtado, Anicia Q

    2012-01-01

    DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment.

  7. Misleading morphologies and the importance of sequencing type specimens for resolving coralline taxonomy (Corallinales, Rhodophyta): Pachyarthron cretaceum is Corallina officinalis.

    PubMed

    Hind, Katharine R; Gabrielson, Paul W; Lindstrom, Sandra C; Martone, Patrick T

    2014-08-01

    Coralline red algae play a key role in the ecology of near shore marine ecosystems and are increasingly being used to study the effects of climate change in the marine environment. Corallines are very difficult to identify to species, and even to genus, using morpho-anatomy, likely complicating studies of their ecology, physiology, and biodiversity. We sequenced a 296 base pair fragment of chloroplast DNA from a 187-year-old isolectotype specimen of Pachyarthron cretaceum, a morphologically distinct geniculate species, to demonstrate that coralline morphology is often misleading and that species names can only be applied unequivocally by comparing DNA sequences from type material with sequences from field-collected specimens. Our results indicate that Pachyarthron cretaceum is synonymous with Corallina officinalis.

  8. A NEW AGAROPHYTE SPECIES, GELIDIUM EUCORNEUM SP. NOV. (GELIDIALES, RHODOPHYTA), BASED ON MOLECULAR AND MORPHOLOGICAL DATA(1).

    PubMed

    Kim, Kyeong Mi; Hwang, Il Ki; Park, Jeong Kwang; Boo, Sung Min

    2011-08-01

    Gelidium is an economically and ecologically important agar-producing genus. Although the taxonomy of Gelidium has been the focus of many published studies, there is still a need to reevaluate species-level diversity. Herein, we describe Gelidium eucorneum sp. nov. based on specimens collected off Geojedo on the southern coast of Korea. G. eucorneum is distinguished by cartilaginous thalli with brush-like haptera, rhizoidal filaments concentrated in the medulla, and globose cytocarps that are horned with multiple determinate branchlets. The species occurs in wave-exposed intertidal sites, sometimes in association with other mat-forming algae. Phylogenetic analyses (rbcL, psaA, and cox1) reveal that G. eucorneum is unique and clearly distinct from other species of the genus. The clade containing Gelidium vagum and Acanthopeltis longiramulosa was resolved as a sister group to G. eucorneum. We suggest that the diverse morphologies of G. eucorneum, G. vagum, and Acanthopeltis developed from a common ancestor in East Asian waters. This study shows that even in well-studied areas, more agarophyte species are to be added to the world inventory of red algae.

  9. Expression of the phycoerythrin gene of Gracilaria lemaneiformis (Rhodophyta) in E. coli and evaluation of the bioactivity of recombinant PE

    NASA Astrophysics Data System (ADS)

    Wen, Ruobing; Sui, Zhenghong; Zhang, Xuecheng; Zhang, Shuang; Qin, Song

    2007-10-01

    Phycoerythrin (PE) is one of the most important proteins involved in light capturing during photosynthesis in red algae. Its potential biological activities had gained wide concerns. In the present study, tumor cytotoxic and hydroxyl radical assay were preformed to detect the bioactivity of recombinant PE. Recombinant plasmids pGEX-PE and pBGL were transformed into E. coli BL21 to make two recombinant strains BEX (pGEX-PE) and BGL (pBGL). PE expressing in BEX (pGEX-PE) was validated by SDS-PAGE and Western blotting analysis. SDS-PAGE analysis indicated that the PE-GST fusion protein was mostly inclusion bodies. Specific expression of PE was confirmed by Western blotting analysis. The recombinant E. coli BEX (pGEX-PE) cells were collected and sonicated. The supernatants were reserved for the tumor cytotoxic experiments. The result of tumor cytotoxic assay indicated that the supernatants containing PE had the activity of inhibiting the growth of Hela cells and with the increase of protein concentration, the inhibiting rate increased from 37.31% to 63.26%, which showed significant difference from the control. Hydroxyl radical scavenging effect was tested with supernatants of BEX (pGEX-PE) and BGL (pBGL) cell lysates treated with sonication and heating. For the sonication samples, the scavenging rates of the supernatants of BEX (pGEX-PE) and BGL (pBGL) cell lysates were significantly higher than the negative control BL21(pGEX-4T) ( P<0.02), and the scavenging rates increased slowly following the increase of the protein content. For the heating samples, except for the 0.2 mg mL-1 BGL (pBGL) products, the scavenging effects of the supernatants of BEX (pGEX-PE) and BGL (pBGL) cell lysates were stronger than that of negative control BL21(pGEX-4T). However, the effect intensity was not positively correlated with the increase of the protein concentration. Though a partially decreased hydroxyl radical scavenging activity was led by heating, the biological activity was still retained and conspicuous. This research showed that phycoerythrin protein expressing in E. coli has the potential medical and sanitarian value.

  10. NH4+ enrichment and UV radiation interact to affect the photosynthesis and nitrogen uptake of Gracilaria lemaneiformis (Rhodophyta).

    PubMed

    Xu, Zhiguang; Gao, Kunshan

    2012-01-01

    Solar ultraviolet radiation (UVR, 280-400 nm) is known to inhibit the photosynthesis of macroalgae, whereas nitrogen availability may alter the sensitivity of the algae to UVR. Here, we show that UV-B (280-315 nm) significantly reduced the net photosynthetic rate of Gracilaria lemaneiformis. This inhibition was alleviated by enrichment with ammonia, which also caused a decrease in dark respiration. The presence of both UV-A (315-400 nm) and UV-B stimulated the accumulation of UV-absorbing compounds. However, this stimulation was not affected by enrichment with ammonia. The content of phycoerythrin (PE) was increased by the enrichment of ammonia only in the absence of UVR. Ammonia uptake and the activity of nitrate reductase were repressed by UVR. However, exposure to UVR had an insignificant effect on the rate of nitrate uptake. In conclusion, increased PE content associated with ammonia enrichment played a protective role against UVR in this alga, and UVR differentially affected the uptake of nitrate and ammonia.

  11. Radiation of the Red Algal Parasite Congracilaria babae onto a Secondary Host Species, Hydropuntia sp. (Gracilariaceae, Rhodophyta)

    PubMed Central

    Ng, Poh-Kheng; Lim, Phaik-Eem; Phang, Siew-Moi

    2014-01-01

    Congracilaria babae was first reported as a red alga parasitic on the thallus of Gracilaria salicornia based on Japanese materials. It was circumscribed to have deep spermatangial cavities, coloration similar to its host and the absence of rhizoids. We observed a parasitic red alga with morphological and anatomical features suggestive of C. babae on a Hydropuntia species collected from Sabah, East Malaysia. We addressed the taxonomic affinities of the parasite growing on Hydropuntia sp. based on the DNA sequence of molecular markers from the nuclear, mitochondrial and plastid genomes (nuclear ITS region, mitochondrial cox1 gene and plastid rbcL gene). Phylogenetic analyses based on all genetic markers also implied the monophyly of the parasite from Hydropuntia sp. and C. babae, suggesting their conspecificity. The parasite from Hydropuntia sp. has a DNA signature characteristic to C. babae in having plastid rbcL gene sequence identical to G. salicornia. C. babae is likely to have evolved directly from G. salicornia and subsequently radiated onto a secondary host Hydropuntia sp. We also recommend the transfer of C. babae to the genus Gracilaria and propose a new combination, G. babae, based on the anatomical observations and molecular data. PMID:24820330

  12. Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta) Based on Next-Generation Sequencing

    PubMed Central

    Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon. PMID:23875008

  13. Effects of brefeldin A on the endomembrane system and germ tube formation of the tetraspore of Gelidium floridanum (Rhodophyta, Florideophyceae).

    PubMed

    Simioni, Carmen; Rover, Ticiane; Schmidt, Éder C; de L Felix, Marthiellen R; Polo, Luz Karime; Santos, Rodrigo Dos; Costa, Giulia Burle; Kreusch, Marianne; Pereira, Debora T; Ouriques, Luciane C; Bouzon, Zenilda L

    2014-06-01

    Gelidium floridanum W.R. Taylor tetraspores are units of dispersal and are responsible for substrate attachment. This study aimed to examine evidence of direct interaction between germ tube formation and Golgi activity during tetraspore germination of G. floridanum. After release, the tetraspores were incubated with brefeldin A (BFA) in concentrations of 4 and 8 μM over a 6 h period. The controls and treatments were analyzed with light, fluorescence (FM4-64 dye) and transmission electron microscopy. In the control samples, the Golgi bodies were responsible for germ tube formation. In contrast, BFA-treated samples were observed to inhibit spore adhesion and germ tube formation. These tetraspores also showed an increase in volume (≥30 μm width). BFA treatment also resulted in the disassembly of Golgi cisternae and the formation of vesiculated areas of the cytoplasm, blocking the secretion of protein and amorphous matrix polysaccharides. When stained with FM4-64, the control samples showed fluorescence in the apical region of the germ tube, but the treated samples showed an intense fluorescence throughout the cytoplasm. From these results, we can conclude that the germ tube is formed by the incorporation of vesicles derived from Golgi. Thus, vesicle secretion and Golgi organization are basic processes and essential in adhesion and tube formation. By blocking the secretion of protein and amorphous matrix polysaccharides, BFA treatment precluded tetraspore germination. PMID:26988329

  14. Complete Sequences of the Mitochondrial DNA of the Wild Gracilariopsis lemaneiformis and Two Mutagenic Cultivated Breeds (Gracilariaceae, Rhodophyta)

    PubMed Central

    Zhang, Lei; Wang, Xumin; Qian, Hao; Chi, Shan; Liu, Cui; Liu, Tao

    2012-01-01

    The complete mitochondrial DNA (mtDNA) of Gracilariopsis lemaneiformis was sequenced (25883 bp) and mapped to a circular model. The A+T composition was 72.5%. Forty six genes and two potentially functional open reading frames were identified. They include 24 protein-coding genes, 2 rRNA genes, 20 tRNA genes and 2 ORFs (orf60, orf142). There is considerable sequence synteny across the five red algal mtDNAs falling into Florideophyceae including Gr. lemaneiformis in this study and previously sequenced species. A long stem-loop and a hairpin structure were identified in intergenic regions of mt genome of Gr. lemaneiformis, which are believed to be involved with transcription and replication. In addition, the mtDNAs of two mutagenic cultivated breeds (“981” and “07-2”) were also sequenced. Compared with the mtDNA of wild Gr. lemaneiformis, the genome size and gene length and order of three strains were completely identical except nine base mutations including eight in the protein-coding genes and one in the tRNA gene. None of the base mutations caused frameshift or a premature stop codon in the mtDNA genes. Phylogenetic analyses based on mitochondrial protein-coding genes and rRNA genes demonstrated Gracilariopsis andersonii had closer phylogenetic relationship with its parasite Gracilariophila oryzoides than Gracilariopsis lemaneiformis which was from the same genus of Gracilariopsis. PMID:22768261

  15. Assessment of four molecular markers as potential DNA barcodes for red algae Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta).

    PubMed

    Tan, Ji; Lim, Phaik-Eem; Phang, Siew-Moi; Hong, Dang Diem; Sunarpi, H; Hurtado, Anicia Q

    2012-01-01

    DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment. PMID:23285223

  16. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).

    PubMed

    Olischläger, Mark; Wiencke, Christian

    2013-12-01

    This study aimed to examine interactive effects between ocean acidification and temperature on the photosynthetic and growth performance of Neosiphonia harveyi. N. harveyi was cultivated at 10 and 17.5 °C at present (~380 µatm), expected future (~800 µatm), and high (~1500 µatm) pCO2. Chlorophyll a fluorescence, net photosynthesis, and growth were measured. The state of the carbon-concentrating mechanism (CCM) was examined by pH-drift experiments (with algae cultivated at 10 °C only) using ethoxyzolamide, an inhibitor of external and internal carbonic anhydrases (exCA and intCA, respectively). Furthermore, the inhibitory effect of acetazolamide (an inhibitor of exCA) and Tris (an inhibitor of the acidification of the diffusive boundary layer) on net photosynthesis was measured at both temperatures. Temperature affected photosynthesis (in terms of photosynthetic efficiency, light saturation point, and net photosynthesis) and growth at present pCO2, but these effects decreased with increasing pCO2. The relevance of the CCM decreased at 10 °C. A pCO2 effect on the CCM could only be shown if intCA and exCA were inhibited. The experiments demonstrate for the first time interactions between ocean acidification and temperature on the performance of a non-calcifying macroalga and show that the effects of low temperature on photosynthesis can be alleviated by increasing pCO2. The findings indicate that the carbon acquisition mediated by exCA and acidification of the diffusive boundary layer decrease at low temperatures but are not affected by the cultivation level of pCO2, whereas the activity of intCA is affected by pCO2. Ecologically, the findings suggest that ocean acidification might affect the biogeographical distribution of N. harveyi.

  17. Anti-inflammatory, gastroprotective and anti-ulcerogenic effects of red algae Gracilaria changii (Gracilariales, Rhodophyta) extract

    PubMed Central

    2013-01-01

    Background Gracilaria changii (Xia et Abbott) Abbott, Zhang et Xia, a red algae commonly found in the coastal areas of Malaysia is traditionally used for foods and for the treatment of various ailments including inflammation and gastric ailments. The aim of the study was to investigate anti-inflammatory, gastroprotective and anti-ulcerogenic activities of a mass spectrometry standardized methanolic extract of Gracilaria changii. Methods Methanolic extract of Gracilaria changii (MeOHGCM6 extract) was prepared and standardized using mass spectrometry (MS). Anti-inflammatory activities of MeOHGCM6 extract were examined by treating U937 cells during its differentiation with 10 μg/ml MeOHGCM6 extract. Tumour necrosis factors-α (TNF-α) response level and TNF-α and interleukin-6 (IL-6) gene expression were monitored and compared to that treated by 10 nM betamethasone, an anti-inflammatory drug. Gastroprotective and anti-ulcerogenic activities of MeOHGCM6 extract were examined by feeding rats with MeOHGCM6 extract ranging from 2.5 to 500 mg/kg body weight (b.w.) following induction of gastric lesions. Production of mucus and gastric juice, pH of the gastric juice and non-protein sulfhydryls (NP-SH) levels were determined and compared to that fed by 20 mg/kg b.w. omeprazole (OMP), a known anti-ulcer drug. Results MS/MS analysis of the MeOHGCM6 extracts revealed the presence of methyl 10-hydroxyphaeophorbide a and 10-hydroxypheophytin a, known chlorophyll proteins and several unidentified molecules. Treatment with 10 μg/ml MeOHGCM6 extract during differentiation of U937 cells significantly inhibited TNF-α response level and TNF-α and IL-6 gene expression. The inhibitory effect was comparable to that of betamethasone. No cytotoxic effects were recorded for cells treated with the 10 μg/ml MeOHGCM6 extract. Rats fed with MeOHGCM6 extract at 500 mg/kg b.w. showed reduced absolute ethanol-induced gastric lesion sizes by > 99% (p < 0.05). This protective effect was comparable to that conferred by OMP. The pH of the gastric mucus decreased in dose-dependent manner from 5.51 to 3.82 and there was a significant increase in NP-SH concentrations. Conclusions Results from the study, suggest that the mass spectrometry standardized methanolic extract of Gracillaria changii possesses anti-inflammatory, gastroprotective and anti-ulcerogenic properties. Further examination of the active constituent of the extract and its mechanism of action is warranted in the future. PMID:23497105

  18. Range extension and morphological characterization of rhodolith-forming species (Corallinales, Rhodophyta) from shallow water in the Mexican South Pacific

    NASA Astrophysics Data System (ADS)

    Peralta-García, Edith Concepción; Rosas-Alquicira, Edgar Francisco

    2014-12-01

    Living rhodolith beds are widely distributed along the Eastern Pacific ocean. Despite their widespread distribution, little is known about the rhodolith-forming species from shallow water in the Mexican South Pacific. Many taxonomic and morphological studies about rhodoliths have been carried out in the Gulf of California, where the forming species belong to the Hapalidiaceae and Corallinaceae families. This paper is the first report on the occurrence of the rhodolith-forming Hapalidiaceae species Lithothamnion muelleri and Phymatolithon repandum at three sites in the Mexican South Pacific. The branch density, maximum length and sphericity were measured for each determined species. Rhodoliths were distributed between 4 and 6 m depth, but differences in the branch density between species and sites were not found. Finally, the present record of L. muelleri fills the gap in the species distribution along the Eastern Pacific ocean, while the record of P. repandum is the first of the species in the region.

  19. Removal of eutrophication factors and heavy metal from a closed cultivation system using the macroalgae, Gracilaria sp. (Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Kang, Kyoung Ho; Sui, Zhenghong

    2010-11-01

    In this study, the ability of macroalgae Gracilaria sp. of removing eutrophication factors and toxic heavy metals Al, Cr, and Zn in a closed cultivation system is reported. The results show that the concentration of the three heavy metals decreased significantly during the experimental period in an algal biomass dependent manner. The biofiltration capacity of the alga for Al, Cr, and Zn is 10.1%-72.6%, 52.5%-83.4% and 36.5%-91.7%, respectively. Using more materials resulted in stronger heavy metal removal. Additionally, the concentration of chl- a, TN, TP and DIN of water samples from aquariums involving large, medium, and small algal biomass cultivation increased first and then decreased during the experiment. COD value of all three groups decreased with time and displayed algal biomass dependency: more algae resulting in a greater COD value than those of less biomass. Furthermore, changes in COD reflect an obvious organic particles deprivation process of algae. This is the first report on heavy metal removal effect by Gracilaria species. The results suggest that macroalgae can be used as a biofilter for the treatment of nutrient-enriched or heavy-metal polluted water, to which an appropriate time range should be carefully determined.

  20. Evaluation of food grade solvents for lipid extraction and impact of storage temperature on fatty acid composition of edible seaweeds Laminaria digitata (Phaeophyceae) and Palmaria palmata (Rhodophyta).

    PubMed

    Schmid, Matthias; Guihéneuf, Freddy; Stengel, Dagmar B

    2016-10-01

    This study evaluated the impact of different food- and non-food grade extraction solvents on yield and fatty acid composition of the lipid extracts of two seaweed species (Palmaria palmata and Laminaria digitata). The application of chloroform/methanol and three different food grade solvents (ethanol, hexane, ethanol/hexane) revealed significant differences in both, extraction yield and fatty acid composition. The extraction efficiency, in terms of yields of total fatty acids (TFA), was in the order: chloroform/methanol>ethanol>hexane>ethanol/hexane for both species. Highest levels of polyunsaturated fatty acids (PUFA) were achieved by the extraction with ethanol. Additionally the effect of storage temperature on the stability of PUFA in ground and freeze-dried seaweed biomass was investigated. Seaweed samples were stored for a total duration of 22months at three different temperatures (-20°C, 4°C and 20°C). Levels of TFA and PUFA were only stable after storage at -20°C for the two seaweed species. PMID:27132836

  1. A phylogenetic re-appraisal of the family Liagoraceae sensu lato (Nemaliales, Rhodophyta) based on sequence analyses of two plastid genes and postfertilization development.

    PubMed

    Lin, Showe-Mei; Rodríguez-Prieto, Conxi; Huisman, John M; Guiry, Michael D; Payri, Claude; Nelson, Wendy A; Liu, Shao-Lun

    2015-06-01

    The marine red algal family Liagoraceae sensu lato is shown to be polyphyletic based on analyses of a combined rbcL and psaA data set and the pattern of carposporophyte development. Fifteen of eighteen genera analyzed formed a monophyletic lineage that included the genus Liagora. Nemalion did not cluster with Liagoraceae sensu stricto, and Nemaliaceae is reinstated, characterized morphologically by the formation of the primary gonimolobes by longitudinal divisions of the gonimoblast initial. Yamadaella and Liagoropsis, previously placed in the Dermonemataceae, are shown to be independent lineages and are recognized as two new families Yamadaellaceae and Liagoropsidaceae. Yamadaellaceae is characterized by two gonimoblast initials cut off bilaterally from the fertilized carpogonium and diffusely spreading gonimoblast filaments. Liagoropsidaceae is characterized by at least three gonimoblast initials cut off by longitudinal septa from the fertilized carpogonium. In contrast, Liagoraceae sensu stricto is characterized by a single gonimoblast initial cut off transversely or diagonally from the fertilized carpogonium. Reproductive features, such as diffuse gonimoblasts and unfused carpogonial branches following postfertilization, appear to have evolved on more than one occasion in the Nemaliales and are therefore not taxonomically diagnostic at the family level, although they may be useful in recognizing genera. PMID:26986669

  2. A phylogenetic re-appraisal of the family Liagoraceae sensu lato (Nemaliales, Rhodophyta) based on sequence analyses of two plastid genes and postfertilization development.

    PubMed

    Lin, Showe-Mei; Rodríguez-Prieto, Conxi; Huisman, John M; Guiry, Michael D; Payri, Claude; Nelson, Wendy A; Liu, Shao-Lun

    2015-06-01

    The marine red algal family Liagoraceae sensu lato is shown to be polyphyletic based on analyses of a combined rbcL and psaA data set and the pattern of carposporophyte development. Fifteen of eighteen genera analyzed formed a monophyletic lineage that included the genus Liagora. Nemalion did not cluster with Liagoraceae sensu stricto, and Nemaliaceae is reinstated, characterized morphologically by the formation of the primary gonimolobes by longitudinal divisions of the gonimoblast initial. Yamadaella and Liagoropsis, previously placed in the Dermonemataceae, are shown to be independent lineages and are recognized as two new families Yamadaellaceae and Liagoropsidaceae. Yamadaellaceae is characterized by two gonimoblast initials cut off bilaterally from the fertilized carpogonium and diffusely spreading gonimoblast filaments. Liagoropsidaceae is characterized by at least three gonimoblast initials cut off by longitudinal septa from the fertilized carpogonium. In contrast, Liagoraceae sensu stricto is characterized by a single gonimoblast initial cut off transversely or diagonally from the fertilized carpogonium. Reproductive features, such as diffuse gonimoblasts and unfused carpogonial branches following postfertilization, appear to have evolved on more than one occasion in the Nemaliales and are therefore not taxonomically diagnostic at the family level, although they may be useful in recognizing genera.

  3. Molluscs associated with the macroalgae of the genus Gracilaria (Rhodophyta): importance of algal fronds as microhabitat in a hypersaline mangrove in Northeastern Brazil.

    PubMed

    Queiroz, R N M; Dias, T L P

    2014-08-01

    The fronds of marine macroalgae play an important role in coastal ecosystems because the algae banks are utilized as a microhabitat by different taxa, including molluscs, one of the most abundant and diverse animals of marine ecosystems. In this study, we characterized the malacofauna associated with the macroalgae Gracilaria domingensis (Kützing) Sonder ex Dickie 1874 and Gracilaria cuneata Areschoug 1854 of a hypersaline mangrove on the northern coast of the state of Rio Grande do Norte, Northeastern Brazil. The first alga dominates in the rainy season and it is substituted by second one in the dry period. A total of 1,490 molluscs were surveyed, representing 56 species in 29 families: 1,081 were associated with G. domingensis and 409 with G. cuneata, the latter showing the greater diversity (H'=1.25). Columbellidae, Neritidae, Pyramidellidae and Cerithiidae were among the most representative families in the number of species and individuals. The micromolluscs were dominant in the algal microhabitat, constituting 74.63% of the malacofauna recorded. The columbellid Parvanachis obesa (C. B. Adams, 1845) was the dominant species followed by the neritid Neritina virginea (Linnaeus, 1758) in both algae. In spite of the annual alternated succession of the algae species, at least 15 mollusc species are common for these algae. Furthermore, juveniles of P. obesa were recorded in both seasons, indicating a continuous reproduction. Possible reasons for difference in abundance, diversity and dominance of molluscs living on these algae are discussed. Both species of substrate-algae represent an important microhabitat for refuge, feeding and the reproduction of small-sized mollusc species during rainy and dry seasons.

  4. The Japanese alga Polysiphonia morrowii (Rhodomelaceae, Rhodophyta) on the South Atlantic Ocean: first report of an invasive macroalga inhabiting oyster reefs

    NASA Astrophysics Data System (ADS)

    Croce, M. Emilia; Parodi, Elisa R.

    2014-06-01

    Conspicuous tufts of the filamentous algae Polysiphonia Greville inhabit the reefs of Crassostrea gigas on the Atlantic Patagonian coast. The population was recorded for the first time in 1994 and identified as P. argentinica. This study exhaustively investigated the morphology and reproduction of specimens and the seasonality of the population. The results revealed the identity of the specimens as the invasive Japanese macroalga Polysiphonia morrowii Harvey, on the basis of several striking features: the setaceous and tufted thalli, the corymbose growing apices, the endogenous axillary branches, the urceolate cystocarps and the sharply pointed branches. Sexual reproduction was evidenced; however, fertile male gametophytes were absent in the samples. The population was found almost all year round, but its abundance became higher in autumn and winter. The present study constitutes the first record of this invasive macroalga on the South Atlantic Ocean; the fourth record of an exotic macroalgal species on the Atlantic Patagonian coast; and the first record of an invasive species related to the establishment of C. gigas in Atlantic Patagonia.

  5. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata var. liui (rhodophyta) and Ulva pertusa (chlorophyta). II. Feedback controls of intracellular nitrogen pools on nitrogen uptake.

    PubMed

    Liu, J W; Dong, S L

    2001-07-01

    The potential feedback by intracellular nitrogen pools on maximum N uptake (NH4+) rate were determined for Gracilaria tenuistipitata var. liui and Ulva pertusa. The results of correlation matrix analyzing showed that the surge uptake of ammonium seemed related to rapid changes in small intracellular pools of inorganic nitrogen or small peptide and amino acids rather than to changes in TN content of the macroalgae. The assimilation rates of nitrogen of U. pertusa and G. tenuistipitata increased slowly during N starvation and were mainly regulated by amino acids and some incorporation of amino acids into macromolecules. From ecological point of view, the fast-growing and uptaking nutrient U. pertusa is more suitable to improve water quality in integrated shrimp culture ponds in which external nutrient supplies are usually high and constant during the culture period, while G. tenuistipitata var. liui is more suitable to be polycultured in a waters with intermittence supply of nutrients.

  6. Next-Generation Sequencing of an 88-Year-Old Specimen of the Poorly Known Species Liagora japonica (Nemaliales, Rhodophyta) Supports the Recognition of Otohimella gen. nov.

    PubMed Central

    Suzuki, Masahiro; Segawa, Takahiro; Mori, Hiroshi; Akiyoshi, Ayumi; Ootsuki, Ryo; Kurihara, Akira; Sakayama, Hidetoshi; Kitayama, Taiju; Abe, Tsuyoshi; Kogame, Kazuhiro; Kawai, Hiroshi; Nozaki, Hisayoshi

    2016-01-01

    Liagora japonica is a red algal species distributed in temperate regions of Japan. This species has not been collected from its type locality on the Pacific coast of Japan since 1927 and seems to have become extinct in this area. For molecular characterization of L. japonica, we extracted DNA from the topotype material of L. japonica collected in 1927, analyzed seven genes using Illumina next-generation sequencing, and compared these data with sequences from modern samples of similar red algae collected from the Japan Sea coast of Japan. Both morphological and molecular data from modern samples and historical specimens (including the lectotype and topotype) suggest that the specimens from the Pacific and Japan Sea coasts of Japan should be treated as a single species, and that L. japonica is phylogenetically separated from the genus Liagora. Based on the phylogenetic results and examination of reproductive structures, we propose Otohimella japonica gen. et comb. nov., characterized morphologically by diffuse carposporophytes, undivided carposporangia, and involucral filaments initiated only from the cortical cell on the supporting cell. PMID:27388436

  7. Allelopathic inhibition of photosynthesis in the red tide-causing marine alga, Scrippsiella trochoidea (Pyrrophyta), by the dried macroalga, Gracilaria lemaneiformis (Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Ye, Changpeng; Liao, Heping; Yang, Yufeng

    2014-07-01

    The red tide-causing microalga, Scrippsiella trochoidea was co-cultured with different quantities of dried macroalga Gracilaria lemaneiformis under laboratory conditions, to characterize the allelopathic inhibition effect of the seaweed on photosynthesis of the microalga. Photosynthetic oxygen evolution was measured, and chlorophyll a (Chl a) fluorescence transient O-J-I-P (O, J, I and P point in primary photochemistry reaction curve in photosystem II) curves associated with its specific parameters were determined. A concentration-dependent inhibition of S. trochoidea was observed when the dried seaweed was added. The rate of light-saturated maximum photosynthetic oxygen evolution (Pmax) was markedly decreased, and the O-J-I-P curve coupled with its specific parameters was reduced. The inhibitory effects of the macroalga on the microalga, according to the JIP-test (the relative fluorescence analysis based on O-J-I-P curve) and the activity of oxygen evolution, include a decrease in the number of active reaction centers, the blocking-up of the electron transport chain, and the damage to the oxygen-evolving complex. This study suggests that dried G. lemaneiformis is effective in inhibiting photosynthesis of S. trochoidea, and could thus be a potential candidate for mitigating S. trochoidea blooms.

  8. Solar radiation (PAR and UVA) and water temperature in relation to biochemical performance of Gelidium corneum (Gelidiales, Rhodophyta) in subtidal bottoms off the Basque coast

    NASA Astrophysics Data System (ADS)

    Quintano, Endika; Ganzedo, Unai; Díez, Isabel; Figueroa, Félix L.; Gorostiaga, José M.

    2013-10-01

    Gelidium corneum (Hudson) J.V. Lamouroux is a very important primary producer in the Cantabrian coastal ecosystem. Some local declines in their populations have been recently detected in the Basque coast. Occurrences of yellowing and an unusual branch breakdown pattern have also been reported for some G. corneum populations. In order to gain further insight into those environmental stressors operating at a local scale, here we investigate if shallow subtidal populations of G. corneum living under potentially different conditions of irradiance (PAR and UVA) and water temperature exhibit differences in some biochemical indicators of stress, namely C:N, antioxidant activity (radical cation of 2,2‧-azino-bis (3-ethylbenzothiazoline-6-sulfonate); ABTS+ assay) and mycosporine-like amino acids (MAAs) (Asterine 330 and Palythine). We hypothesised that G. corneum subjected to higher ambient levels of irradiance and water temperature would show higher C:N ratios, lower antioxidant activity and higher MAA concentrations. Our results partially support this hypothesis. We found that G. corneum exposed to increased levels of irradiance (PAR, UVA) exhibited greater C:N ratios and lower antioxidant activity (higher IC50), whereas no relationship was found regarding MAAs. No differences in biochemical performance in relation to temperature were detected among G. corneum exposed to comparable high light. Similarly, G. corneum growing under lower UVA radiation levels showed no differences in any of the measured biochemical variables with regard to PAR and water temperature. These findings suggest that, among the environmental factors examined, UVA radiation may be an important driver in regulating the along-shore variation in G. corneum biochemical performance. Therefore, the role of irradiance, especially UV radiation, in potential future alterations in Cantabrian G. corneum populations cannot be ruled out as a potential underlying factor.

  9. UV-A enhanced growth and UV-B induced positive effects in the recovery of photochemical yield in Gracilaria lemaneiformis (Rhodophyta).

    PubMed

    Xu, Juntian; Gao, Kunshan

    2010-09-01

    The effects of solar UV radiation (280-400 nm) on growth, quantum yield and pigmentation in Gracilaria lemaneiformis were investigated when the thalli were cultured under solar radiation with or without UV for a period of 15 days. Presence of UV-A (315-400 nm) enhanced the relative growth rate, while UV-B (218-315 nm) inhibited it. The positive effect of UV-A and negative effect of UV-B counteracted to result in an insignificant impact of UVR on growth. During the noon period, both UV-A and UV-B resulted in the decrease of maximum quantum yield (Fv/Fm), but UV-B aided in the recovery of the yield in the late afternoon, reflecting that UV-B might be used as a signal in photorepair processes. UV induced the accumulation of UV-absorbing compounds (UVAC) to defend against the harmful UVR. However, the accumulation of UVAC took a much longer time compared to that previously reported, which was probably due to the lower levels of solar radiation and water temperature in the early spring period. Unknown UV-absorbing compounds (UVAC), which peaked at 265 nm, probably the precursor of MAAs (UVAC(325)), accumulated under moderate levels of solar radiation and were transformed to MAAs under higher solar radiation.

  10. Development of chloroplast simple sequence repeats (cpSSRs) for the intraspecific study of Gracilaria tenuistipitata (Gracilariales, Rhodophyta) from different populations

    PubMed Central

    2014-01-01

    Background Gracilaria tenuistipitata is an agarophyte with substantial economic potential because of its high growth rate and tolerance to a wide range of environment factors. This red seaweed is intensively cultured in China for the production of agar and fodder for abalone. Microsatellite markers were developed from the chloroplast genome of G. tenuistipitata var. liui to differentiate G. tenuistipitata obtained from six different localities: four from Peninsular Malaysia, one from Thailand and one from Vietnam. Eighty G. tenuistipitata specimens were analyzed using eight simple sequence repeat (SSR) primer-pairs that we developed for polymerase chain reaction (PCR) amplification. Findings Five mononucleotide primer-pairs and one trinucleotide primer-pair exhibited monomorphic alleles, whereas the other two primer-pairs separated the G. tenuistipitata specimens into two main clades. G. tenuistipitata from Thailand and Vietnam were grouped into one clade, and the populations from Batu Laut, Middle Banks and Kuah (Malaysia) were grouped into another clade. The combined dataset of these two primer-pairs separated G. tenuistipitata obtained from Kelantan, Malaysia from that obtained from other localities. Conclusions Based on the variations in repeated nucleotides of microsatellite markers, our results suggested that the populations of G. tenuistipitata were distributed into two main geographical regions: (i) populations in the west coast of Peninsular Malaysia and (ii) populations facing the South China Sea. The correct identification of G. tenuistipitata strains with traits of high economic potential will be advantageous for the mass cultivation of seaweeds. PMID:24490797

  11. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).

    PubMed

    Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoung Ho; Hong, Hye Ran; Niaz, Zeeshan; Wei, Huihui; Du, Qingwei; Peng, Chong; Mi, Ping; Que, Zhou

    2016-06-01

    There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L(-1)) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P < 0.05) and followed the same pattern in the three species. The parameter values were promoted in lower NaHCO3 concentrations (up to 252 or 336 mg L(-1)) and inhibited in higher NaHCO3 concentrations (>336 mg L(-1) for Gp. lemaneiformis and >420 mg L(-1) for the other two species). Moreover, species-specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L(-1) for Gp. lemaneiformis and 336 mg L(-1) for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae. PMID:26960545

  12. Biofiltration of fishpond effluents and accumulation of N-compounds (phycobiliproteins and mycosporine-like amino acids) versus C-compounds (polysaccharides) in Hydropuntia cornea (Rhodophyta).

    PubMed

    Figueroa, Félix L; Korbee, Nathalie; Abdala, Roberto; Jerez, Celia G; López-de la Torre, Mayra; Güenaga, Leire; Larrubia, María A; Gómez-Pinchetti, Juan L

    2012-02-01

    The biofiltration capacity, biomass-yield and accumulation of N- and C-compounds of Hydropuntia cornea were analyzed. Algae were grown in different conditions for 28 d: outdoor and indoor, with or without fishpond effluents. N-uptake efficiency of these effluents was higher than 95% after 7 d both outdoors and indoors. N-enriched conditions reduced the extent of photoinhibition and increased the maximal quantum yield in H. cornea. The biomass-yield was higher in outdoor grown-algae after 7 d and decreased independently of the treatment after 28 d. N, acid polysaccharide (AP) and mycosporine-like amino acid (MAA)-yields decreased throughout the experiment in all conditions. The highest MAA-yield was observed in fishpond effluent outdoor-grown algae, indicating a positive effect of increased radiation on MAA accumulation. However, APs were higher under N-depleted conditions. The use of MAAs as UV-screening and antioxidants, and the use of AP as immunostimulants are discussed.

  13. Etheliaceae fam. nov. (Gigartinales, Rhodophyta), with a clarification of the generitype of Ethelia and the addition of six novel species from warm waters.

    PubMed

    Dixon, Kyatt R; Saunders, Gary W; Schneider, Craig W; Lane, Christopher E

    2015-12-01

    Based upon COI-5P, LSU rDNA, and rbcL sequence data and morphological characteristics, six new members of the noncalcified crustose genus of red algae Ethelia are described in a new family, Etheliaceae (Gigartinales), sister to the recently described Ptilocladiopsidaceae. The novel species are described from subtropical to tropical Atlantic and Indo-Pacific Ocean basins; E. mucronata sp. nov. and E. denizotii sp. nov. from southern and northern Western Australia respectively, E. wilcei sp. nov. from the Cocos (Keeling) Islands of Australia, E. suluensis sp. nov. from the Philippines, E. umbricola sp. nov. from Bermuda and E. kraftii sp. nov. from Lord Howe Island, Australia. The generitype, Ethelia biradiata, originally reported from the Seychelles, Indian Ocean, is added to the Western Australian flora. PMID:26987010

  14. Chemotaxonomy of New Zealand red algae in the family Gigartinaceae (Rhodophyta) based on galactan structures from the tetrasporophyte life-stage.

    PubMed

    Falshaw, Ruth; Furneaux, Richard H

    2009-01-26

    The identification of the polysaccharides from tetrasporophytic plants of nine endemic New Zealand species belonging to the Gigartinaceae, 'Gigartina' ancistroclada, 'G.' grandifida, Gigartina dilatata, G. divaricata, G. macrocarpa, G. marginifera, G. pachymenioides, G. sp. 'Lindauer 164' and Sarcothalia livida using infra-red spectroscopy in conjunction with constituent sugar and glycosyl linkage/substitution analysis is reported. All nine species contain galactans with structures consistent with lambda-type carrageenans. Differences in the structures of the galactans in these and a further six previously studied species indicate chemotaxonomically distinct groupings that correspond to Sarcothalia, 'Sarcothalia' and Gigartina genera plus some outliers. These distinct, chemotaxonomic groupings are aligned to those determined by rbcL sequence analysis reported in the literature.

  15. Evidence for two independent lineages of Griffithsia (Ceramiaceae, Rhodophyta) based on plastid protein-coding psaA, psbA, and rbcL gene sequences.

    PubMed

    Yang, Eun Chan; Boo, Sung Min

    2004-05-01

    The ceramiaceous red algal genus Griffithsia has characteristic large vegetative cells visible to the unaided eye and thousands of nuclei in a single cell at maturity. Its members often occur intertidally along temperate to tropical coasts. Although previous morphological studies indicated that Griffithsia is subdivided into four groups, there is no molecular phylogeny for the genus. We present the multigene phylogeny of the genus based on plastid protein-coding psaA, psbA, and rbcL genes from ten samples of eight Griffithsia species, eight samples of five putative relatives, such as Anotrichium and Halurus, and three outgroup taxa. Saturation plots for each of the three datasets showed no evidence of saturation at any codon position. The partition homogeneity test indicated that none of the individual datasets resulted in significantly incongruent trees. All the analyses of individual and concatenated datasets separated Griffithsia into two well-defined lineages: Lineage 1 was composed of Griffithsia corallinoides, Griffithsia pacifica, and Griffithsia tomo-yamadae, while lineage 2 encompassed Griffithsia antarctica, Griffithsia japonica, Griffithsia teges, Griffithsia traversii, and Griffithsia sp. Our results support the monophyly of the four Anotrichium species and cast a question on the autonomy of Halurus. The monophyly of the tribe Griffithsieae is well resolved, although interrelationships among Griffithsia, Anotrichium, and Halurus were unclear. Our study indicates that the psaA and psbA genes are powerful new tools for the genus-level phylogeny of red algal groups, such as Griffithsia. This is the first report on the multigene phylogeny of the Ceramiales algae based on three protein-coding plastid genes.

  16. Evidence for the introduction of the Asian red alga Neosiphonia japonica and its introgression with Neosiphonia harveyi (Ceramiales, Rhodophyta) in the Northwest Atlantic.

    PubMed

    Savoie, Amanda M; Saunders, Gary W

    2015-12-01

    There is currently conflict in the literature on the taxonomic status of the reportedly cosmopolitan species Neosiphonia harveyi, a common red alga along the coast of Atlantic Canada and New England, USA. Neosiphonia harveyi sensu lato was assessed using three molecular markers: COI-5P, ITS and rbcL. All three markers clearly delimited three genetic species groups within N. harveyi sensu lato in this region, which we identified as N. harveyi, N. japonica and Polysiphonia akkeshiensis (here resurrected from synonymy with N. japonica). Although Neosiphonia harveyi is considered by some authors to be introduced to the Atlantic from the western Pacific, it was only confirmed from the North Atlantic suggesting it is native to this area. In contrast, Neosiphonia japonica was collected from only two sites in Rhode Island, USA, as well as from its reported native range in Asia (South Korea), which when combined with data in GenBank indicates that this species was introduced to the Northwest Atlantic. The GenBank data further indicate that N. japonica was also introduced to North Carolina, Spain, Australia and New Zealand. Despite the fact that all three markers clearly delimited N. harveyi and N. japonica as distinct genetic species groups, the ITS sequences for some N. harveyi individuals displayed mixed patterns and additivity indicating introgression of nuclear DNA from N. japonica into N. harveyi in the Northwest Atlantic. Introgression of DNA from an introduced species to a native species (i.e. 'genetic pollution') is one of the possible consequences of species introductions, and we believe this is the first documented evidence for this phenomenon in red algae.

  17. INDUCTION OF APOMIXIS BY OUTCROSSING BETWEEN GENETICALLY DIVERGENT ENTITIES OF CALOGLOSSA LEPRIEURII (CERAMIALES, RHODOPHYTA) AND EVIDENCE OF HYBRID APOMICTS IN NATURE(1).

    PubMed

    Kamiya, Mitsunobu; West, John A; Hara, Yoshiaki

    2011-08-01

    Our previous study revealed that apomixis, recycling of tetrasporophytes, can be generated through outcrossing between genetically divergent entities of Caloglossa monosticha M. Kamiya, though such apomicts have never been found in nature. In the case of C. leprieurii (Mont.) G. Martens, the most widespread species in this genus, many apomictic strains have been isolated worldwide, but it is unknown whether these apomicts evolved through an outcrossing process similar to that in C. monosticha. In this study, heterogeneity of the apomicts and their sexual relatives as well as their evolutionary relationships was examined using the nuclear-encoded actin gene and plastid-encoded RUBISCO spacer region. Thirteen out of 18 apomictic strains were heterogeneous and contained divergent actin alleles, whereas only two out of 23 sexual strains were heterogeneous. The five homogeneous apomicts were genetically identical, or quite similar, to the sexual strains isolated from adjacent sites. Furthermore, three of the five homogeneous apomicts frequently produced tetraspores that grew into gametophytes, while all the heterogeneous apomicts never generated gametophytes. Apomictic strains from Florida were allotriploid, and each of the three actin sequences was closely related to those of sexual strains from Florida, Peru, and Mexico/Guatemala. In crossing tests, obligate apomixis was generated through the outcrossing between the male from Madagascar and the female from the northwestern Atlantic. These results suggest that outcrossing between genetically divergent sexual entities is one factor that induces apomixis in C. leprieurii.

  18. A novel phylogeny of the Gelidiales (Rhodophyta) based on five genes including the nuclear CesA, with descriptions of Orthogonacladia gen. nov. and Orthogonacladiaceae fam. nov.

    PubMed

    Boo, Ga Hun; Le Gall, Line; Miller, Kathy Ann; Freshwater, D Wilson; Wernberg, Thomas; Terada, Ryuta; Yoon, Kyung Ju; Boo, Sung Min

    2016-08-01

    Although the Gelidiales are economically important marine red algae producing agar and agarose, the phylogeny of this order remains poorly resolved. The present study provides a molecular phylogeny based on a novel marker, nuclear-encoded CesA, plus plastid-encoded psaA, psbA, rbcL, and mitochondria-encoded cox1 from subsets of 107 species from all ten genera within the Gelidiales. Analyses of individual and combined datasets support the monophyly of three currently recognized families, and reveal a new clade. On the basis of these results, the new family Orthogonacladiaceae is described to accommodate Aphanta and a new genus Orthogonacladia that includes species previously classified as Gelidium madagascariense and Pterocladia rectangularis. Acanthopeltis is merged with Gelidium, which has nomenclatural priority. Nuclear-encoded CesA was found to be useful for improving the resolution of phylogenetic relationships within the Gelidiales and is likely to be valuable for the inference of phylogenetic relationship among other red algal taxa. PMID:27223999

  19. Evidence for the introduction of the Asian red alga Neosiphonia japonica and its introgression with Neosiphonia harveyi (Ceramiales, Rhodophyta) in the Northwest Atlantic.

    PubMed

    Savoie, Amanda M; Saunders, Gary W

    2015-12-01

    There is currently conflict in the literature on the taxonomic status of the reportedly cosmopolitan species Neosiphonia harveyi, a common red alga along the coast of Atlantic Canada and New England, USA. Neosiphonia harveyi sensu lato was assessed using three molecular markers: COI-5P, ITS and rbcL. All three markers clearly delimited three genetic species groups within N. harveyi sensu lato in this region, which we identified as N. harveyi, N. japonica and Polysiphonia akkeshiensis (here resurrected from synonymy with N. japonica). Although Neosiphonia harveyi is considered by some authors to be introduced to the Atlantic from the western Pacific, it was only confirmed from the North Atlantic suggesting it is native to this area. In contrast, Neosiphonia japonica was collected from only two sites in Rhode Island, USA, as well as from its reported native range in Asia (South Korea), which when combined with data in GenBank indicates that this species was introduced to the Northwest Atlantic. The GenBank data further indicate that N. japonica was also introduced to North Carolina, Spain, Australia and New Zealand. Despite the fact that all three markers clearly delimited N. harveyi and N. japonica as distinct genetic species groups, the ITS sequences for some N. harveyi individuals displayed mixed patterns and additivity indicating introgression of nuclear DNA from N. japonica into N. harveyi in the Northwest Atlantic. Introgression of DNA from an introduced species to a native species (i.e. 'genetic pollution') is one of the possible consequences of species introductions, and we believe this is the first documented evidence for this phenomenon in red algae. PMID:26477438

  20. Gene cloning, expression and activity analysis of manganese superoxide dismutase from two strains of Gracilaria lemaneiformis (Gracilariaceae, Rhodophyta) under heat stress.

    PubMed

    Lu, Ning; Zang, Xiaonan; Zhang, Xuecheng; Chen, Hao; Feng, Xiaoting; Zhang, Lu

    2012-04-16

    Manganese superoxide dismutase (Mn-SOD) plays a crucial role in antioxidant responses to environmental stress. To determine whether Mn-SOD affects heat resistance of Gracilaria lemaneiformis, we cloned Mn-SOD cDNA sequences of two strains of this red alga, wild type and cultivar 981. Both cDNA sequences contained an ORF of 675 bp encoding 224 amino acid residues. The cDNA sequences and the deduced amino acid sequences of the two strains shared relatively high identity (more than 99%). No intron existed in genomic DNA of Mn-SOD in G. lemaneiformis. Southern blotting indicated that there were multiple copies, possibly four, of Mn-SOD in both strains. Both in the wild type and cultivar 981, SOD mRNA transcription and SOD activity increased under high temperature stress, while cultivar 981 was more heat resistant based on its SOD activity. This research suggests that there may be a direct relationship between SOD activity and the heat resistance of G. lemaneiformis.

  1. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).

    PubMed

    Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoung Ho; Hong, Hye Ran; Niaz, Zeeshan; Wei, Huihui; Du, Qingwei; Peng, Chong; Mi, Ping; Que, Zhou

    2016-06-01

    There is potential for bicarbonate to improve crop yields and economic efficiency of marine algae. However, few studies have focused on the effect of bicarbonate on the growth, photosynthesis, and enzyme activity associated with carbon utilization, especially in commercial macroalgae. Here, the addition of bicarbonate (up to 420 mg L(-1)) to macroalgal cultures has been evaluated for Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae with respect to growth rate, photosynthetic activity, carbonic anhydrase activity, and biochemical composition. The results showed that the effects of NaHCO3 on growth, chlorophyll a, phycoerythrin, photosynthetic oxygen evolution, photochemical parameters of PSI and PSII, carbonic anhydrase activity, and nitrogen content were significant (P < 0.05) and followed the same pattern in the three species. The parameter values were promoted in lower NaHCO3 concentrations (up to 252 or 336 mg L(-1)) and inhibited in higher NaHCO3 concentrations (>336 mg L(-1) for Gp. lemaneiformis and >420 mg L(-1) for the other two species). Moreover, species-specific differences induced by supplementation with bicarbonate were discovered during culture. Optimal concentrations of NaHCO3 used in this study were 252 mg L(-1) for Gp. lemaneiformis and 336 mg L(-1) for G. vermiculophylla and G. chouae. These results suggest that an adequate supplementation of sodium bicarbonate is a viable strategy for promoting growth and photosynthetic activity in some macroalgae as well as for improving biochemical composition. The study will help to accelerate the growth rate of algae and improve the quality of thalli, and will also be useful for enhancing the understanding of carbon utilization in macroalgae.

  2. Effects of UV-B radiation on tetraspores of Chondrus ocellatus Holm (Rhodophyta), and effects of red and blue light on repair of UV-B-induced damage

    NASA Astrophysics Data System (ADS)

    Ju, Qing; Xiao, Hui; Wang, You; Tang, Xuexi

    2015-05-01

    We evaluated the effects of red and blue light on the repair of UV-B radiation-induced damage in tetraspores of Chondrus ocellatus Holm. Tetraspores of C. ocellatus were treated with different UV-B radiation levels (0, 36, 72, 108, 144 and 180 J/m2), and thereafter subjected to PAR, darkness, or red or blue light during a 2-h repair stage, each day for 48 days. The diameters and cellular contents of cyclobutane pyrimidine dimmers (CPDs), chlorophyll a (Chl a), phycoerythrin, and UV-B-absorbing mycosporinelike amino acids (MAAs) contents of the tetraspores were determined. Our results show that low doses of UV-B radiation (36 and 72 J/m2) promoted the growth of C. ocellatus; however, increased UV-B radiation gradually reduced the C. ocellatus growth (greater than 72 J/m2). The MAAs (palythine and asterina-330) in C. ocellatus were detected and analyzed by LC/MS. Our results suggest that moderate red light could induce the growth of this alga in aquaculture. In addition, photorepair was inhibited by red light, so there may be some other DNA repair mechanism activated by red light. Blue light promoted the activity of DNA photolyase, greatly improving remediation efficiency. Red and blue lights were found to reduce the capacity of C. ocellatus to form MAAs. Therefore, PAR, red light, and blue light play different roles during the repair processes for damage induced by UV-B radiation.

  3. Nocturama gen. nov., Nothocladus s. lat. and other taxonomic novelties resulting from the further resolution of paraphyly in Australasian members of Batrachospermum (Batrachospermales, Rhodophyta).

    PubMed

    Entwisle, Timothy J; Johnston, Emily T; Lam, Daryl W; Stewart, Sarah A; Vis, Morgan L

    2016-06-01

    The informal "Australasica Group" was established in 2009 to include several Australasian endemic Batrachospermum species, a few species of the cosmopolitan Batrachospermum section Setacea, and the South American endemic Petrohua bernabei. Although useful for communication purposes, no formal taxonomic designation was proposed due to weakly supported basal nodes. The present research took a two-pronged approach of adding more taxa (29 additional specimens) as well as more sequence data (LSU, cox1, psaA, and psbA markers added to rbcL data) to provide better resolution. The resulting tree showed improved statistical support values (Bayesian posterior probability and maximum likelihood bootstrap) for most nodes providing a framework for taxonomic revision. Based on our well-resolved phylogeny, a new genus, Nocturama, is proposed for a clade of Batrachospermum antipodites specimens. The circumscription of Nothocladus is expanded to include Batrachospermum section Setacea and four additional sections composed of at least 10 species, mostly from Australia and New Zealand. One new species added to the data set, N. diatyches, did not form a clade with the other species of section Setaceus, where it was classified previously, rendering that section paraphyletic. To resolve this, N. diatyches and the morphologically similar species N. latericius are included with N. theaquus, in the new section Theaquus within Nothocladus s. lat. A specimen from Australia unaligned to these clades was sister to the Australia-New Zealand genus Psilosiphon and the cosmopolitan B. cayennense, but lacked statistical support. This specimen has the gross morphology of Batrachospermum s. lat. and is here provisionally assigned to that genus, as B. serendipidum sp. nov.

  4. Sequencing type material resolves the identity and distribution of the generitype Lithophyllum incrustans, and related European species L. hibernicum and L. bathyporum (Corallinales, Rhodophyta).

    PubMed

    Hernandez-Kantun, Jazmin J; Rindi, Fabio; Adey, Walter H; Heesch, Svenja; Peña, Viviana; Le Gall, Line; Gabrielson, Paul W

    2015-08-01

    DNA sequences from type material in the nongeniculate coralline genus Lithophyllum were used to unambiguously link some European species names to field-collected specimens, thus providing a great advance over morpho-anatomical identifi-cation. In particular, sequence comparisons of rbcL, COI and psbA genes from field-collected specimens allowed the following conclusion: the generitype species, L. incrustans, occurs mostly as subtidal rhodoliths and crusts on both Atlantic and Mediterranean coasts, and not as the common, NE Atlantic, epilithic, intertidal crust reported in the literature. The heterotypic type material of L. hibernicum was narrowed to one rhodolith belonging in Lithophyllum. As well as occurring as a subtidal rhodolith, L. hibernicum is a common, epilithic and epizoic crust in the intertidal zone from Ireland south to Mediterranean France. A set of four features distinguished L. incrustans from L. hibernicum, including epithallial cell diameter, pore canal shape of sporangial conceptacles and sporangium height and diameter. An rbcL sequence of the lectotype of Lithophyllum bathyporum, which was recently proposed to accommodate Atlantic intertidal collections of L. incrustans, corresponded to a distinct taxon hitherto known only from Brittany as the subtidal, bisporangial, lectotype, but also occurs intertidally in Atlantic Spain. Specimens from Ireland and France morpho-anatomically identified as L. fasciculatum and a specimen from Cornwall likewise identified as L. duckerae were resolved as L. incrustans and L. hibernicum, respectively. PMID:26986797

  5. Characterization of the putatively introduced red alga Acrochaetium secundatum (Acrochaetiales, Rhodophyta) growing epizoically on the pelage of southern sea otters (Enhydra lutris nereis)

    USGS Publications Warehouse

    Bentall, Gena B.; Rosen, Barry H.; Kunz, Jessica M.; Miller, Melissa A.; Saunders, Gary W.; LaRoche, Nicole L.

    2016-01-01

    Ecological associations between epibionts (organisms that live on the surface of another living organism) and vertebrates have been documented in both marine and terrestrial environments, and may be opportunistic, commensal, or symbiotic (Lewin et al. 1981, Holmes 1985, Allen et al. 1993, Bledsoe et al. 2006, Pfaller et al. 2008, Suutari et al. 2010). Although epibiont proliferation is frequently reported on slow-moving, sparsely haired organisms such as manatees and sloths, reports from densely furred, highly mobile mammals are much less common. There are reports of epizoic algae for several species of pinnipeds (Kenyon and Rice 1959, Scheffer 1962, Baldridge 1977, Allen et al. 1993), which rely to varying degrees on both pelage and blubber for thermoregulation, but the phenomenon has not been widely described. Scheffer (1962) noted that red algae was fairly common on the pelage of northern fur seals (Callorhinus ursinus), pinnipeds for which fur likely makes a comparatively high contribution to thermoregulation (Donohue et al. 2000). For species with pelage that plays a critical role of thermal insulation, it seems implausible that an epibiont would persist on healthy individuals that devote significant energy resources toward grooming and actively maintaining their coat. Biological characteristics of epibiont settlement and attachment, and physiological requirements of epizoic species play key roles in their successful colonization and potential host impacts. To investigate this relationship, we explore a novel discovery of an epizoic alga from southern sea otters, including describing algal development on sea otter hair and molecular identification of the algae.

  6. Evaluation of food grade solvents for lipid extraction and impact of storage temperature on fatty acid composition of edible seaweeds Laminaria digitata (Phaeophyceae) and Palmaria palmata (Rhodophyta).

    PubMed

    Schmid, Matthias; Guihéneuf, Freddy; Stengel, Dagmar B

    2016-10-01

    This study evaluated the impact of different food- and non-food grade extraction solvents on yield and fatty acid composition of the lipid extracts of two seaweed species (Palmaria palmata and Laminaria digitata). The application of chloroform/methanol and three different food grade solvents (ethanol, hexane, ethanol/hexane) revealed significant differences in both, extraction yield and fatty acid composition. The extraction efficiency, in terms of yields of total fatty acids (TFA), was in the order: chloroform/methanol>ethanol>hexane>ethanol/hexane for both species. Highest levels of polyunsaturated fatty acids (PUFA) were achieved by the extraction with ethanol. Additionally the effect of storage temperature on the stability of PUFA in ground and freeze-dried seaweed biomass was investigated. Seaweed samples were stored for a total duration of 22months at three different temperatures (-20°C, 4°C and 20°C). Levels of TFA and PUFA were only stable after storage at -20°C for the two seaweed species.

  7. Nocturama gen. nov., Nothocladus s. lat. and other taxonomic novelties resulting from the further resolution of paraphyly in Australasian members of Batrachospermum (Batrachospermales, Rhodophyta).

    PubMed

    Entwisle, Timothy J; Johnston, Emily T; Lam, Daryl W; Stewart, Sarah A; Vis, Morgan L

    2016-06-01

    The informal "Australasica Group" was established in 2009 to include several Australasian endemic Batrachospermum species, a few species of the cosmopolitan Batrachospermum section Setacea, and the South American endemic Petrohua bernabei. Although useful for communication purposes, no formal taxonomic designation was proposed due to weakly supported basal nodes. The present research took a two-pronged approach of adding more taxa (29 additional specimens) as well as more sequence data (LSU, cox1, psaA, and psbA markers added to rbcL data) to provide better resolution. The resulting tree showed improved statistical support values (Bayesian posterior probability and maximum likelihood bootstrap) for most nodes providing a framework for taxonomic revision. Based on our well-resolved phylogeny, a new genus, Nocturama, is proposed for a clade of Batrachospermum antipodites specimens. The circumscription of Nothocladus is expanded to include Batrachospermum section Setacea and four additional sections composed of at least 10 species, mostly from Australia and New Zealand. One new species added to the data set, N. diatyches, did not form a clade with the other species of section Setaceus, where it was classified previously, rendering that section paraphyletic. To resolve this, N. diatyches and the morphologically similar species N. latericius are included with N. theaquus, in the new section Theaquus within Nothocladus s. lat. A specimen from Australia unaligned to these clades was sister to the Australia-New Zealand genus Psilosiphon and the cosmopolitan B. cayennense, but lacked statistical support. This specimen has the gross morphology of Batrachospermum s. lat. and is here provisionally assigned to that genus, as B. serendipidum sp. nov. PMID:27273531

  8. Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on the growth of the red tide microalga Prorocentrum donghaiense under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Wang, Renjun; Xiao, Hui; Wang, You; Zhou, Wenli; Tang, Xuexi

    2007-10-01

    Allelopathic effects of several concentrations of fresh tissue and dry powder of three macroalgae, Ulva linza, Corallina pilulifera and Sargassum thunbergii, on the red tide microalga Prorocentrum donghaiense were evaluated in microcosms. Preliminary studies on the algicidal effects of one aqueous and four organic solvent extracts from the macroalgae on the microalga were carried out to confirm the existence of allelochemicals in the tissues of the macroalgae. The effects of macroalgal culture medium filtrate on P. donghaiense were investigated using initial or semi-continuous filtrate addition. Furthermore, the potential effects of the microalga on these three macroalgae were also tested. The results of the microcosm assay showed that the growth of P. donghaiense was strongly inhibited by using fresh tissues and dry powder of the three macroalgae. Both aqueous and methanol extracts of the macroalgae had strong growth inhibitory effects on P. donghaiense, while the other three organic solvent extracts (acetone, ether and chloroform) had no apparent effect on its growth; this suggested that the allelochemicals from these three macroalga had relatively high polarities. The three macroalgal culture medium filtrates exhibited apparent growth inhibitory effect on the microalgae under initial or semi-continuous addition, which suggested that the cells of P. donghaiense are sensitive to the allelochemicals. In contrast, P. donghaiense had no apparent effect on the growth of the macroalgae in coexistence experiment.

  9. Sequencing type material resolves the identity and distribution of the generitype Lithophyllum incrustans, and related European species L. hibernicum and L. bathyporum (Corallinales, Rhodophyta).

    PubMed

    Hernandez-Kantun, Jazmin J; Rindi, Fabio; Adey, Walter H; Heesch, Svenja; Peña, Viviana; Le Gall, Line; Gabrielson, Paul W

    2015-08-01

    DNA sequences from type material in the nongeniculate coralline genus Lithophyllum were used to unambiguously link some European species names to field-collected specimens, thus providing a great advance over morpho-anatomical identifi-cation. In particular, sequence comparisons of rbcL, COI and psbA genes from field-collected specimens allowed the following conclusion: the generitype species, L. incrustans, occurs mostly as subtidal rhodoliths and crusts on both Atlantic and Mediterranean coasts, and not as the common, NE Atlantic, epilithic, intertidal crust reported in the literature. The heterotypic type material of L. hibernicum was narrowed to one rhodolith belonging in Lithophyllum. As well as occurring as a subtidal rhodolith, L. hibernicum is a common, epilithic and epizoic crust in the intertidal zone from Ireland south to Mediterranean France. A set of four features distinguished L. incrustans from L. hibernicum, including epithallial cell diameter, pore canal shape of sporangial conceptacles and sporangium height and diameter. An rbcL sequence of the lectotype of Lithophyllum bathyporum, which was recently proposed to accommodate Atlantic intertidal collections of L. incrustans, corresponded to a distinct taxon hitherto known only from Brittany as the subtidal, bisporangial, lectotype, but also occurs intertidally in Atlantic Spain. Specimens from Ireland and France morpho-anatomically identified as L. fasciculatum and a specimen from Cornwall likewise identified as L. duckerae were resolved as L. incrustans and L. hibernicum, respectively.

  10. Grateloupia tenuis Wang et Luan sp. nov. (Halymeniaceae, Rhodophyta): a new species from South China Sea based on morphological observation and rbcL gene sequences analysis.

    PubMed

    Yu, Ling; Wang, Hongwei; Luan, Rixiao

    2013-01-01

    Grateloupia tenuis Wang et Luan sp. nov. is a new species described from Lingshui, Hainan Province, South China Sea. Based on the external form and internal structure, combined with rbcL gene sequence analysis, Grateloupia tenuis is distinct from other Grateloupia species as follows: (1) thalli is slippery and cartilaginous in texture; possess fewer branches, relatively slight main axes, and two or three dichotomous branches; (2) cortex is 5-6 layers; medulla is solid when young, but hollow in old branches; reproductive structures are dispersed in main axes of thalli and lower portions of branchlets; exhibits Grateloupia-type auxiliary cell ampullae; (3) the four studied G. tenuis sequences were positioned in a large Grateloupia clade of Halymeniaceae, which included sister group generitype G. filicina with 68 bp differences; G. tenuis was determined to be a sister taxon to the G. catenata, G. ramosissima, G. orientalis, and G. filiformis subclade. The pairwise distances between G. tenuis and these species were 39 to 50 bp. The sequences of G. tenuis differed by 81-108 bp from the sequences of other samples in Grateloupia; there are 114-133 bp changes between G. tenuis and other genera of Halymeniaceae. In final analysis, we considered Grateloupia tenuis Wang et Luan sp. nov. to be a new species of genus Grateloupia.

  11. How does molecular-assisted identification affect our estimation of α, β and γ biodiversity? An example from understory red seaweeds (Rhodophyta) of Laminaria kelp forests in Brittany, France.

    PubMed

    Robuchon, Marine; Valero, Myriam; Gey, Delphine; Le Gall, Line

    2015-04-01

    Using two distinct identification methods, one based on morphological characters only and the other combining morphological and molecular characters (integrative identification method), we investigated the differences in the biodiversity patterns of red seaweed communities associated with kelp forests at various spatial scales: the regional diversity of Brittany, France (γ-diversity), the local diversity at different Breton sites (α-diversity) and the differentiation in species diversity and abundances among those sites (β-diversity). To characterise α and β diversities, we conducted an initial survey in winter 2011 at 20 sites belonging to four different sub-regions, with specimens collected from six quadrats of 0.10 m(2) at each site, three in the tidal zone dominated by Laminaria digitata and three in the zone dominated by Laminaria hyperborea. To further characterise the regional diversity, we carried out another survey combining several sampling methods (quadrats and visual census) in different seasons (winter, spring and summer) and different years (2011 and 2012). In all, we collected 1990 specimens that were assigned to 76 taxa with the identification method based on morphological characters and 139 taxa using the integrative method. For γ and α diversity, the use of molecular characters revealed several cases of cryptic diversity and both increased the number of identified taxa and improved their taxonomic resolution. However, the addition of molecular characters for specimen identification only slightly affected estimates of β-diversity.

  12. Woody species for biomass production in Florida: Final report, 1983-1988

    SciTech Connect

    Rockwood, D.L.; Dippon, D.R.; Lesney, M.S.

    1988-02-01

    From 1983 to 1988, this project's short rotation woody crop research enhanced the potential of Eucalyptus species in Florida. A fourth-generation E. grandis seed orchard could produce over 100 million seedlings annually for use in southern Florida. Seed from the 50 best trees in the orchard may double the average productivity in the preceding genetic base population. Three frost-resilient and rapid-growing E. grandis clones are being commercially propagated by tissue culture, and over 250 additional clonal candidates are under test. While rooted cuttings of selected clones could be mass produced in less than seven months, micropropagation may reduce the cost of vegetative propagation. Eucalyptus tereticornis and E. camaldulensis demonstrated vigor and frost-hardiness and may be suitable for sandhills sites in central Florida and wetter sites further south. For northern Florida, E. amplifolia had good frost-resilience and remained vigorous through four coppice rotations. Coppicing of other eucalypts, notably E. grandis, is very dependent on climatic factors. Biomass properties of the eucalypts vary due to genetics and age but appear suitable for certain fermentation and pulping processes. Economic analyses suggest that E. grandis and E. amplifolia may be profitably grown and that short rotation culture appears feasible for slash pine, but cannot yet be advised for sand pine. 126 refs., 24 figs., 67 tabs.

  13. Woody biomass production in waste recycling systems

    SciTech Connect

    Rockwood, D.L.; Snyder, G.H.; Sprinkle, R.R.

    1994-12-31

    Combining woody biomass production with waste recycling offers many mutual advantages, including increased tree growth and nutrient and water reclamation. Three biomass/recycling studies collectively involving Eucalyptus amplifolia, E. camaldulensis, and E. grandis, rapidly growing species potentially tolerant of high water and nutrient levels, are (1) evaluating general potential for water/nutrient recycling systems to enhance woody biomass production and to recycle water and nutrients, (2) documenting Eucalyptus growth, water use, and nutrient uptake patterns, and (3) identifying Eucalyptus superior for water and nutrient uptake in central and southern Florida. In a 1992-93 study assessing the three Eucalyptus species planted on the outside berms of sewage effluent holding ponds, position on the berms (top to bottom) and genotypes influenced tree size. The potential of the trees to reduce effluent levels in the ponds was assessed. In a stormwater holding pond planted in 1993, these Eucalyptus genotypes varied significantly for tree size but not for survival. E. camaldulensis appears generally superior when flooded with industrial stormwater. Potential sizes of ponds needed for different stormwater applications were estimated. Prolonged flooding of 4- and 5-year-old E. camaldulensis with agricultural irrigation runoff has had no observable effects on tree growth or survival. Younger E. camaldulensis, E. amplifolia, and E. grandis were assessed for water use and nutrient uptake during a Summer 1994 flooding.

  14. Removal of nitrogen and phosphorus by Eucalyptus and Populus at a tertiary treated municipal wastewater sprayfield.

    PubMed

    Minogue, Patrick J; Miwa, Masato; Rockwood, Donald L; Mackowiak, Cheryl L

    2012-12-01

    Various progenies of Eucalyptus grandis and E. amplifolia, and clones of Populus deltoides, were evaluated for plant removal of nitrogen (N) and phosphorus (P) for 26 months at a municipal waste spray field in north Florida. Tertiary treated wastewater containing 2.73 mg L(-1) nitrate N and 0.30 mg L(-1) total P was applied using sprinkler irrigation (93.8 m3 ha(-1) d(-1)) to fast growing trees utilized for bioenergy. Eucalyptus amplifolia and E. grandis survived and grew very poorly as the result of severe winter injury in two successive years and were not evaluated for nutrient removal. Survival and growth of P. deltoides demonstrated suitability for phytoremediation, and selected clones were evaluated for biomass and nutrient content. Removals of total N (TN) and total P (TP) were greatest for main stem (36% and 44%, respectively) and foliage (44% and 36%, respectively). Low biomass producing clones generally had higher nutrient concentrations, but high biomass producing clones removed more TN and TP. Approximately 789 kg ha(-1) TN and 103 kg ha(-1) TP were removed by the highest biomass producing P. deltoides clone, representing 215% of N and 615% of P inputs. PMID:22908661

  15. Screening for antibacterial and antifungal activities in some marine algae from the Fujian coast of China with three different solvents

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Chen, Yin-Shan; Lu, Hai-Sheng

    2001-12-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta ( Laurencia okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  16. Quantifying root-reinforcement of river bank soils by four Australian tree species

    NASA Astrophysics Data System (ADS)

    Docker, B. B.; Hubble, T. C. T.

    2008-08-01

    The increased shear resistance of soil due to root-reinforcement by four common Australian riparian trees, Casuarina glauca, Eucalyptus amplifolia, Eucalyptus elata and Acacia floribunda, was determined in-situ with a field shear-box. Root pull-out strengths and root tensile-strengths were also measured and used to evaluate the utility of the root-reinforcement estimation models that assume simultaneous failure of all roots at the shear plane. Field shear-box results indicate that tree roots fail progressively rather than simultaneously. Shear-strengths calculated for root-reinforced soil assuming simultaneous root failure, yielded values between 50% and 215% higher than directly measured shear-strengths. The magnitude of the overestimate varies among species and probably results from differences in both the geometry of the root-system and tensile strengths of the root material. Soil blocks under A. floribunda which presents many, well-spread, highly-branched fine roots with relatively higher tensile strength, conformed most closely with root model estimates; whereas E. amplifolia, which presents a few, large, unbranched vertical roots, concentrated directly beneath the tree stem and of relatively low tensile strength, deviated furthest from model-estimated shear-strengths. These results suggest that considerable caution be exercised when applying estimates of increased shear-strength due to root-reinforcement in riverbank stability modelling. Nevertheless, increased soil shear strength provided by tree roots can be calculated by knowledge of the Root Area Ratio ( RAR) at the shear plane. At equivalent RAR values, A. floribunda demonstrated the greatest earth reinforcement potential of the four species studied.

  17. Epiphytic dinoflagellates associated with ciguatera in the northwestern coast of Cuba.

    PubMed

    Delgado, Gilma; Lechuga-Devéze, Carlos H; Popowski, Genoveva; Troccoli, Luis; Salinas, Cesar A

    2006-06-01

    The spatial and temporal abundance of epiphytic dinoflagellates associated with ciguatera was studied over two annual cycles (March 1999 to March 2000 and March 2001 to March 2002) in the northwestern coast of Cuba. From 14 species of macroalgae (Phaeophyta, Chlorophyta, and Rhodophyta), 1340 samples were obtained identifying seven species as potentially noxious; five of them are new reports for Cuba's phytobenthos: Prorocentrum belizeanum Faust, P. concavum Fukuyo, P. mexicanum Tafall, Coolia monotis Meunier, and Ostreopsis lenticularis Fukuyo. ANOVA/MANOVA analysis showed significant spatial differences: lower cell abundance near the shoreline adjacent to a river inlet and higher cell abundance in the deepest area. Prorocentrum lima (Ehrenberg) Dodge 1975 was found mainly on Phaeophyta followed by Chlorophyta and Rhodophyta. Gambierdiscus toxicus was found mainly on Phaeophyta followed by Rhodophyta and Chlorophyta. All the species reported in the study area were mainly on Padina spp. (Phaeophyta). Acanthophora spicifera (Rhodophyta) did not host dinoflagellate species. Environmental conditions in summer (higher temperature, more nutrients, greater water transparency, and low wind intensity) are suitable for macroalgae development, which serves as a substrate for potentially harmful dinoflagellates, and possibly the main vector for spreading ciguatera along the coast of Cuba.

  18. Porphyra Species: A Mini-Review of Its Pharmacological and Nutritional Properties.

    PubMed

    Cao, Jin; Wang, Jianping; Wang, Shicheng; Xu, Ximing

    2016-02-01

    Porphyra sensu lato belongs to Bangiales, the most genetically diverse order of red algae. Porphyra or Pyropia is widely cultivated in East Asian countries, such as China, Japan, and Korea. Dried Porphyra contains numerous nutritional and biofunctional compounds, including proteins, minerals, dietary fiber, polyunsaturated fatty acids, carotenoids, saccharides, and mycosporine-like amino acids. In addition, the compound is most abundant in Porphyra, such as polysaccharides and phycobiliproteins, and demonstrates various immunomodulating, anticancer, antihyperlipidemic, and antioxidative activities. This review summarizes our current knowledge concerning the pharmacologically active substances found in Porphyra species. The biological activities and potential applications of certain carbohydrates, proteins, peptides, and other small molecules purified from Porphyra are also described, and possible areas for future studies are discussed.

  19. Porphyra Species: A Mini-Review of Its Pharmacological and Nutritional Properties.

    PubMed

    Cao, Jin; Wang, Jianping; Wang, Shicheng; Xu, Ximing

    2016-02-01

    Porphyra sensu lato belongs to Bangiales, the most genetically diverse order of red algae. Porphyra or Pyropia is widely cultivated in East Asian countries, such as China, Japan, and Korea. Dried Porphyra contains numerous nutritional and biofunctional compounds, including proteins, minerals, dietary fiber, polyunsaturated fatty acids, carotenoids, saccharides, and mycosporine-like amino acids. In addition, the compound is most abundant in Porphyra, such as polysaccharides and phycobiliproteins, and demonstrates various immunomodulating, anticancer, antihyperlipidemic, and antioxidative activities. This review summarizes our current knowledge concerning the pharmacologically active substances found in Porphyra species. The biological activities and potential applications of certain carbohydrates, proteins, peptides, and other small molecules purified from Porphyra are also described, and possible areas for future studies are discussed. PMID:26653974

  20. Classification, Naming and Evolutionary History of Glycosyltransferases from Sequenced Green and Red Algal Genomes

    PubMed Central

    Ulvskov, Peter; Paiva, Dionisio Soares; Domozych, David; Harholt, Jesper

    2013-01-01

    The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins. PMID:24146880

  1. Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes.

    PubMed

    Ulvskov, Peter; Paiva, Dionisio Soares; Domozych, David; Harholt, Jesper

    2013-01-01

    The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins.

  2. Seaweed composition from Bintulu coast of Sarawak, Malaysia.

    PubMed

    Zawawi, Mohd Hafizbillah; Idris, Mohd Hanafi; Kamal, Abu Hena Mustafa; King, Wong Sing

    2014-08-01

    Species composition of seaweed and distribution were investigated in the coastal waters of Bintulu, Sarawak. The seaweed samples were collected during low tide between May 2011 and May 2012 from the six different stations. In total 54 species of seaweeds were identified from study areas of Bintulu coastal waters. Among them, 23 species were from Rhodophyta with 11 families, 15 species were from Phaeophyta with 2 families and 16 species were from Chlorophyta with 10 families: Seventeen species of seaweeds were recorded from the Tanjung Batu, while 23 species from Pantai Telekom, 14 species from Golden Beach, 26 species from Kuala Similajau, 12 species from Kuala Nyalau and 21 species from Batu Mandi. Seaweeds abundance was high in rocky substrate and Rhodophyta (11 families and 23 species) was the common and highest group of seaweeds in this coastal areas. Present study recorded high diversified seaweed species at the rocky shore area compare to reef area.

  3. Immunochemistry of Biliproteins 1

    PubMed Central

    Berns, Donald S.

    1967-01-01

    Biliproteins were extracted from representatives of the Cyanophyta, Rhodophyta, and Cryptophyta and purified. Both purified and crude biliproteins were used to stimulate rabbit antibody directed specifically against the biliproteins. The antigenic and immunogenic inter-relationships of these proteins were investigated by the Ouchterlony double diffusion technique. C-phycocyanins from all sources were found to be antigenically and immunogenically related and apparently also related to allophycocyanin but not to any of the phycoerythrins. Larger antigenic differences among phycoerythrins from different groups of algae were discovered. The role of aggregation of the individual biliproteins in their immunochemistry was characterized. Attempts were made to determine the phylogenetic significance of these results. The immunochemical aspects of the biliproteins were striking in that protein antigens from vastly different cell types were found to be closely related. This relationship may be interpreted as supporting the suggestion that Rhodophyta evolved from Cyanophyta or from some common ancestral stock. Images PMID:6080871

  4. The Plastid Genome of the Red Macroalga Grateloupia taiwanensis (Halymeniaceae)

    PubMed Central

    DePriest, Michael S.; Bhattacharya, Debashish; López-Bautista, Juan M.

    2013-01-01

    The complete plastid genome sequence of the red macroalga Grateloupia taiwanensis S.-M.Lin & H.-Y.Liang (Halymeniaceae, Rhodophyta) is presented here. Comprising 191,270 bp, the circular DNA contains 233 protein-coding genes and 29 tRNA sequences. In addition, several genes previously unknown to red algal plastids are present in the genome of G. taiwanensis. The plastid genomes from G. taiwanensis and another florideophyte, Gracilaria tenuistipitata var. liui, are very similar in sequence and share significant synteny. In contrast, less synteny is shared between G. taiwanensis and the plastid genome representatives of Bangiophyceae and Cyanidiophyceae. Nevertheless, the gene content of all six red algal plastid genomes here studied is highly conserved, and a large core repertoire of plastid genes can be discerned in Rhodophyta. PMID:23894297

  5. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes

    PubMed Central

    Lee, JunMo; Kim, Kyeong Mi; Yang, Eun Chan; Miller, Kathy Ann; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su

    2016-01-01

    The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta. PMID:27030297

  6. Phylogeny of the Centrohelida inferred from SSU rRNA, tubulins, and actin genes.

    PubMed

    Sakaguchi, Miako; Nakayama, Takeshi; Hashimoto, Tetsuo; Inouye, Isao

    2005-12-01

    Amoeboid protists are major targets of recent molecular phylogeny in connection with reconstruction of global phylogeny of eukaryotes as well as the search for the root of eukaryotes. The Centrohelida are one of the major groups of Heliozoa, classified in the Actinopodida, whose evolutionary position is not well understood. To clarify the relationships between the Centrohelida and other eukaryotes, we sequenced SSU rRNA, alpha-tubulin, and beta-tubulin genes from a centroheliozoan protist, Raphidiophrys contractilis. The SSU rRNA phylogeny showed that the Centrohelida are not closely related to other heliozoan groups, Actinophryida, Desmothoracida, or Taxopodida. Maximum likelihood analyses of the combined phylogeny using a concatenate model for an alpha- + beta-tubulin + actin data set, and a separate model for SSU rRNA, alpha- and beta-tubulin, and actin gene data sets revealed the best tree, in which the Centrohelida have a closer relationship to Rhodophyta than to other major eukaryotic groups. However, both weighted Shimodaira-Hasegawa and approximately unbiased tests for the concatenate protein phylogeny did not reject alternative trees in which Centrohelida were constrained to be sisters to the Amoebozoa. Moreover, alternative trees in which Centrohelida were placed at the node branching before and after Amoebozoa or Viridiplantae were not rejected by the WSH tests. These results narrowed the possibilities for the position of Centrohelida to a sister to the Rhodophyta, to the Amoebozoa, or to an independent branch between the branchings of Amoebozoa and Rhodophyta (or possibly Plantae) at the basal position within the bikonts clade in the eukaryotic tree.

  7. Studies on marine algae for haemagglutinic activity.

    PubMed

    Alam, M T; Usmanghani, K

    1994-07-01

    Lectins (agglutinins) are important in medical and immunological applications. Phytohaemagglutinins have been found useful in blood banking. Keeping in view of these facts, the marine algae found at Karachi coastal region have been screened for agglutinic activity by using human erythrocytes of A, B, AB and 0 group. Altogether 53 algal samples were collected and subjected to extraction, fractionation serial dilution and titre determinations. The total marine algae screened for haemagglutinic activity were 44 out of these 14, 13 and 17 belonged to Chlorophyta, Phaeophyta, and Rhodophyta respectively. Among these three groups the Rhodophyta showed the highest number of lytic activity. The green marine alga Valoniopsis pachynema showed a titre value between 2(2) and 2(3), which is statistically significant. In case of brown marine algae Colpomenia sinuosa was found to be active (titre 2(3)), while Dictyota dichotoma, D. indica and Iyengaria stellata, furnished week titre value as 2(2). The red marine algae screened were 17, out of these 4 spp. showed significant activity (titre 2(3)), and these are Gelidium usmanghani, Gracilaria foliifera Hypnea pannosa and Hynea valentiae. While Scinaia fascicularis, Scinaia indica and Champia parvula were found to be weak in their onset on human erythrocytes. The results obtained were quite in agreement with those reported in the literature. PMID:16414751

  8. Analysis of the complete plastid genome of the unicellular red alga Porphyridium purpureum.

    PubMed

    Tajima, Naoyuki; Sato, Shusei; Maruyama, Fumito; Kurokawa, Ken; Ohta, Hiroyuki; Tabata, Satoshi; Sekine, Kohsuke; Moriyama, Takashi; Sato, Naoki

    2014-05-01

    We determined the complete nucleotide sequence of the plastid genome of the unicellular marine red alga Porphyridium purpureum strain NIES 2140, belonging to the unsequenced class Porphyridiophyceae. The genome is a circular DNA composed of 217,694 bp with the GC content of 30.3%. Twenty-nine of the 224 protein-coding genes contain one or multiple intron(s). A group I intron was found in the rpl28 gene, whereas the other introns were group II introns. The P. purpureum plastid genome has one non-coding RNA (ncRNA) gene, 29 tRNA genes and two nonidentical ribosomal RNA operons. One rRNA operon has a tRNA(Ala)(UGC) gene between the rrs and the rrl genes, whereas another has a tRNA(Ile)(GAU) gene. Phylogenetic analyses suggest that the plastids of Heterokontophyta, Cryptophyta and Haptophyta originated from the subphylum Rhodophytina. The order of the genes in the ribosomal protein cluster of the P. purpureum plastid genome differs from that of other Rhodophyta and Chromalveolata. These results suggest that a large-scale rearrangement occurred in the plastid genome of P. purpureum after its separation from other Rhodophyta.

  9. Nuclear DNA Content Estimates in Multicellular Green, Red and Brown Algae: Phylogenetic Considerations

    PubMed Central

    KAPRAUN, DONALD F.

    2005-01-01

    • Background and Aims Multicellular eukaryotic algae are phylogenetically disparate. Nuclear DNA content estimates have been published for fewer than 1 % of the described species of Chlorophyta, Phaeophyta and Rhodophyta. The present investigation aims to summarize the state of our knowledge and to add substantially to our database of C-values for theses algae. • Methods The DNA-localizing fluorochrome DAPI (4′, 6-diamidino-2-phenylindole) and RBC (chicken erythrocyte) standard were used to estimate 2C values with static microspectrophotometry. • Key Results 2C DNA contents for 85 species of Chlorophyta range from 0·2–6·1 pg, excluding the highly polyploidy Charales and Desmidiales with DNA contents of up to 39·2 and 20·7 pg, respectively. 2C DNA contents for 111 species of Rhodophyta range from 0·1–2·8 pg, and for 44 species of Phaeophyta range from 0·2–1·8 pg. • Conclusions New availability of consensus higher-level molecular phylogenies provides a framework for viewing C-value data in a phylogenetic context. Both DNA content ranges and mean values are greater in taxa considered to be basal. It is proposed that the basal, ancestral genome in each algal group was quite small. Both mechanistic and ecological processes are discussed that could have produced the observed C-value ranges. PMID:15596456

  10. Codon Adaptation of Plastid Genes

    PubMed Central

    Suzuki, Haruo; Morton, Brian R.

    2016-01-01

    Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes. PMID:27196606

  11. The origin of red algae: implications for plastid evolution.

    PubMed

    Stiller, J W; Hall, B D

    1997-04-29

    The origin of the red algae has remained an enigma. Historically the Rhodophyta were classified first as plants and later as the most ancient eukaryotic organisms. Recent molecular studies have indicated similarities between red and green plastids, which suggest that there was a single endosymbiotic origin for these organelles in a common ancestor of the rhodophytes and green plants. Previous efforts to confirm or reject this effort by analyses of nuclear DNA have been inconclusive; thus, additional molecular markers are needed to establish the relationship between the host cell lineages, independent of the evolutionary history of their plastids. To furnish such a data set we have sequenced the largest subunit of RNA polymerase II from two red algae, a green alga and a relatively derived amoeboid protist. Phylogenetic analyses provide strong statistical support for an early evolutionary emergence of the Rhodophyta that preceded the origin of the line that led to plants, animals, and fungi. These data, which are congruent with results from extensive analyses of nuclear rDNA, argue for a reexamination of current models of plastid evolution.

  12. Codon Adaptation of Plastid Genes.

    PubMed

    Suzuki, Haruo; Morton, Brian R

    2016-01-01

    Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes. PMID:27196606

  13. Trophic ecology in a Northern Brittany (Batz Island, France) kelp ( Laminaria digitata) forest, as investigated through stable isotopes and chemical assays

    NASA Astrophysics Data System (ADS)

    Schaal, Gauthier; Riera, Pascal; Leroux, Cédric

    2010-01-01

    This study aimed at characterizing the relationships between the food web's structure and the nutritive value of basal food sources in a Northern Brittany (France) Laminaria digitata bed. Stable isotopes were used to identify the food sources consumed by benthic invertebrates, and the nutritive value of primary producers was assessed according to four descriptors (total organic matter, C/N ratio, proteins content, lipids content). Although the food web appeared to be based on a wide diversity of food sources, only Rhodophyta (red algae) and biofilms (epilithic and epiphytic) were heavily consumed by grazers. In contrast, Phaeophyta (brown algae), which are dominant in this habitat, have no specialized grazer (with the exception of Helcion pellucidum, specialized grazer of Laminaria digitata). This selective consumption may be related to the higher protein content and lower C/N ratio of Rhodophyta and biofilms, in comparison with Phaeophyta. Fresh brown algae are thus of poor nutritive value, but processes associated with their degradation are likely to improve this nutritive value, leading in the assimilation of detritus by filter-feeders, revealed by high δ13C in these consumers. Our results thus suggest that the nutritive value of basal food sources may be an important factor involved in the structuration of kelp-associated food webs.

  14. Bathymetric variation of epiphytic assemblages on Posidonia oceanica (L.) Delile leaves in relation to anthropogenic disturbance in the southeastern Mediterranean.

    PubMed

    Ben Brahim, Mounir; Mabrouk, Lotfi; Hamza, Asma; Mahfoudi, Mabrouka; Bouain, Abderrahmane; Aleya, Lotfi

    2014-12-01

    A survey of the epiphytic leaves of Posidonia oceanica was conducted along a depth transect at both the control station Attaya in the Kerkennah Islands and the disturbed Mahres station on the Sfax coast (Tunisia). Samples were collected by scuba divers at depths of 5, 10, 15, and 20 m in July 2008. We evaluated whether the pattern of spatial variability of the macroepiphyte assemblages of leaves of Posidonia oceanica differed in relation to anthropogenic interference. The results indicate that the decrease in shoot density and leaf length according to depth was low at Mahres. The biomass of epiphytic leaves and the percentage cover of epiphytic assemblages decreased with depth for both stations and heavily at Mahres, this decline being related to anthropogenic disturbance. This study shows that the highest values of epifauna and epiflora were detected at the disturbed station Mahres. Macroalgae assemblages decreased with depth at both stations and were dominated by Rhodophyta, whereas the percentage cover of the epifauna leaf that decreases according to depth was dominated by Hydrozoa and Bryozoa. Changes in epiphyte assemblages, epiphytic biomass, percentage cover, and species richness in proportion to Heterokontophyta, Rhodophyta, Cyanobacteria, Hydrozoa, Porifera, and Tunicata between the two stations constitute promising tools for detecting environmental disturbance. PMID:25023658

  15. Genome Analysis of Planctomycetes Inhabiting Blades of the Red Alga Porphyra umbilicalis

    PubMed Central

    Kim, Jay W.; Brawley, Susan H.; Prochnik, Simon; Chovatia, Mansi; Grimwood, Jane; Jenkins, Jerry; LaButti, Kurt; Mavromatis, Konstantinos; Nolan, Matt; Zane, Matthew; Schmutz, Jeremy; Stiller, John W.; Grossman, Arthur R.

    2016-01-01

    Porphyra is a macrophytic red alga of the Bangiales that is important ecologically and economically. We describe the genomes of three bacteria in the phylum Planctomycetes (designated P1, P2 and P3) that were isolated from blades of Porphyra umbilicalis (P.um.1). These three Operational Taxonomic Units (OTUs) belong to distinct genera; P2 belongs to the genus Rhodopirellula, while P1 and P3 represent undescribed genera within the Planctomycetes. Comparative analyses of the P1, P2 and P3 genomes show large expansions of distinct gene families, which can be widespread throughout the Planctomycetes (e.g., protein kinases, sensors/response regulators) and may relate to specific habitat (e.g., sulfatase gene expansions in marine Planctomycetes) or phylogenetic position. Notably, there are major differences among the Planctomycetes in the numbers and sub-functional diversity of enzymes (e.g., sulfatases, glycoside hydrolases, polysaccharide lyases) that allow these bacteria to access a range of sulfated polysaccharides in macroalgal cell walls. These differences suggest that the microbes have varied capacities for feeding on fixed carbon in the cell walls of P.um.1 and other macrophytic algae, although the activities among the various bacteria might be functionally complementary in situ. Additionally, phylogenetic analyses indicate augmentation of gene functions through expansions arising from gene duplications and horizontal gene transfers; examples include genes involved in cell wall degradation (e.g., κ-carrageenase, alginate lyase, fucosidase) and stress responses (e.g., efflux pump, amino acid transporter). Finally P1 and P2 contain various genes encoding selenoproteins, many of which are enzymes that ameliorate the impact of environmental stresses that occur in the intertidal habitat. PMID:27015628

  16. Genome Analysis of Planctomycetes Inhabiting Blades of the Red Alga Porphyra umbilicalis.

    PubMed

    Kim, Jay W; Brawley, Susan H; Prochnik, Simon; Chovatia, Mansi; Grimwood, Jane; Jenkins, Jerry; LaButti, Kurt; Mavromatis, Konstantinos; Nolan, Matt; Zane, Matthew; Schmutz, Jeremy; Stiller, John W; Grossman, Arthur R

    2016-01-01

    Porphyra is a macrophytic red alga of the Bangiales that is important ecologically and economically. We describe the genomes of three bacteria in the phylum Planctomycetes (designated P1, P2 and P3) that were isolated from blades of Porphyra umbilicalis (P.um.1). These three Operational Taxonomic Units (OTUs) belong to distinct genera; P2 belongs to the genus Rhodopirellula, while P1 and P3 represent undescribed genera within the Planctomycetes. Comparative analyses of the P1, P2 and P3 genomes show large expansions of distinct gene families, which can be widespread throughout the Planctomycetes (e.g., protein kinases, sensors/response regulators) and may relate to specific habitat (e.g., sulfatase gene expansions in marine Planctomycetes) or phylogenetic position. Notably, there are major differences among the Planctomycetes in the numbers and sub-functional diversity of enzymes (e.g., sulfatases, glycoside hydrolases, polysaccharide lyases) that allow these bacteria to access a range of sulfated polysaccharides in macroalgal cell walls. These differences suggest that the microbes have varied capacities for feeding on fixed carbon in the cell walls of P.um.1 and other macrophytic algae, although the activities among the various bacteria might be functionally complementary in situ. Additionally, phylogenetic analyses indicate augmentation of gene functions through expansions arising from gene duplications and horizontal gene transfers; examples include genes involved in cell wall degradation (e.g., κ-carrageenase, alginate lyase, fucosidase) and stress responses (e.g., efflux pump, amino acid transporter). Finally P1 and P2 contain various genes encoding selenoproteins, many of which are enzymes that ameliorate the impact of environmental stresses that occur in the intertidal habitat. PMID:27015628

  17. The leaves of green plants as well as a cyanobacterium, a red alga, and fungi contain insulin-like antigens.

    PubMed

    Silva, L B; Santos, S S S; Azevedo, C R; Cruz, M A L; Venâncio, T M; Cavalcante, C P; Uchôa, A F; Astolfi Filho, S; Oliveira, A E A; Fernandes, K V S; Xavier-Filho, J

    2002-03-01

    We report the detection of insulin-like antigens in a large range of species utilizing a modified ELISA plate assay and Western blotting. We tested the leaves or aerial parts of species of Rhodophyta (red alga), Bryophyta (mosses), Psilophyta (whisk ferns), Lycopodophyta (club mosses), Sphenopsida (horsetails), gymnosperms, and angiosperms, including monocots and dicots. We also studied species of fungi and a cyanobacterium, Spirulina maxima. The wide distribution of insulin-like antigens, which in some cases present the same electrophoretic mobility as bovine insulin, together with results recently published by us on the amino acid sequence of an insulin isolated from the seed coat of jack bean (Canavalia ensiformis) and from the developing fruits of cowpea (Vigna unguiculata), suggests that pathways depending on this hormone have been conserved through evolution.

  18. The leaves of green plants as well as a cyanobacterium, a red alga, and fungi contain insulin-like antigens.

    PubMed

    Silva, L B; Santos, S S S; Azevedo, C R; Cruz, M A L; Venâncio, T M; Cavalcante, C P; Uchôa, A F; Astolfi Filho, S; Oliveira, A E A; Fernandes, K V S; Xavier-Filho, J

    2002-03-01

    We report the detection of insulin-like antigens in a large range of species utilizing a modified ELISA plate assay and Western blotting. We tested the leaves or aerial parts of species of Rhodophyta (red alga), Bryophyta (mosses), Psilophyta (whisk ferns), Lycopodophyta (club mosses), Sphenopsida (horsetails), gymnosperms, and angiosperms, including monocots and dicots. We also studied species of fungi and a cyanobacterium, Spirulina maxima. The wide distribution of insulin-like antigens, which in some cases present the same electrophoretic mobility as bovine insulin, together with results recently published by us on the amino acid sequence of an insulin isolated from the seed coat of jack bean (Canavalia ensiformis) and from the developing fruits of cowpea (Vigna unguiculata), suggests that pathways depending on this hormone have been conserved through evolution. PMID:11887207

  19. Association of macro- and microfossils in the Vendian (Ediacaran) postglacial successions in Western Mongolia

    NASA Astrophysics Data System (ADS)

    Ragozina, A. L.; Dorjnamjaa, D.; Serezhnikova, E. A.; Zaitseva, L. V.; Enkhbaatar, B.

    2016-05-01

    The Vendian (Ediacaran) beds of the Zavkhan Basin, in the upper part of the Tsagaanolom Formation (<632 ± 14 Ma), yielded a new "Zavkhan" association of algae, microfossils, and problematic organisms, which is established in the series of alternating chert-carbonate shale with phosphorite interbeds. This association is distinct in the predomination of large (250 μm and over) sphaeromorphic microfossils of the genera Tasmanites, Archaeooides, and Leiosphaeridia, whereas acanthomorph acritarchs are represented by rarely found Cavaspina sp. and Tanarium sp. Multicellular algae included fragments of encrusting or foliate thalli with pseudoparenchymatous structure of polygonal cells characteristic of Rhodophyta algae ( Thallophycoides sp.), and cordlike thalli of Vendotaenid algae Tyrasotaenia podolica. These layers of siltstone contain imprints of the problematic Vendian macrofossil Beltanelliformis brunsae. In their stratigraphic position, chemostratigraphic data, and fossil assemblage, the "Zavkhan" association can be assigned to the Upper Vendian.

  20. Screening for antimalarial and acetylcholinesterase inhibitory activities of some Iranian seaweeds.

    PubMed

    Ghannadi, A; Plubrukarn, A; Zandi, K; Sartavi, K; Yegdaneh, A

    2013-04-01

    Alcoholic extracts of 8 different types of seaweeds from Iran's Persian Gulf were tested for their antimalarial and acetylcholinesterase enzyme (AChE) inhibitory activities for the first time. A modified Ellman and Ingkaninan method was used for measuring AChE inhibitory activity in which galanthamine was used as the reference. The antimalarial assay was performed using microculture radioisotope technique. Mefloquine and dihydroartemisinin were uased as the standards. The extract of Sargassum boveanum (Sargasseae family) showed the highest AChE inhibitory activity (IC50 equals to 1 mg ml(-1)) while Cystoseira indica (Cystoseiraceae family) exhibited the least activity (IC50 of 11 mg ml(-1)). The species from Rhodophyta (Gracilaria corticata and Gracilaria salicornia) also showed moderate activities (IC509.5, 8.7 mg ml(-1), respectively). All extracts were inactive in antimalarial assay. PMID:24019820

  1. The impact of coastal urbanization on the structure of phytobenthic communities in southern Brazil.

    PubMed

    Martins, Cintia D L; Arantes, Noele; Faveri, Caroline; Batista, Manuela B; Oliveira, Eurico C; Pagliosa, Paulo R; Fonseca, Alessandra L; Nunes, José Marcos C; Chow, Fungyi; Pereira, Sonia B; Horta, Paulo A

    2012-04-01

    The anthropogenic pressures on coastal areas represent important factors affecting local, regional, and even global patterns of distribution and abundance of benthic organisms. This report undertakes a comparative analysis of the community structure of rocky shore intertidal phytobenthos in both pristine like environments (PLE) and urbanized environments (UBE) in southern Brazil, characterizing variations on different spatial scales. Multivariate analysis of variance indicated that the PLE is characterized by a larger number of taxa and an increased occurrence of Rhodophyta species in relation to UBE. In contrast, UBE were dominated by opportunistic algae, such as Cladophora and Ulva spp. Significance tests further indicated higher species richness and Shannon-Wiener diversity on the PLE in relation to UBE. Here we provide data showing the magnitude of seaweed biodiversity loss and discuss direct and indirect consequences of unplanned urbanization on these communities.

  2. Widespread occurrence of norspermidine and norspermine in eukaryotic algae.

    PubMed

    Hamana, K; Matsuzaki, S

    1982-04-01

    Seven phyla of eukaryotic algae were analyzed to determine their contents of diamines and polyamines. The algae examined included Rhodophyta, Pyrrophyta, Chrysophyta, Phaeophyta, Euglenophyta, Chlorophyta, and Charophyta. Both putrescine and spermidine were detected in all the algae studied, while appreciable amounts of spermine were detected only in a few species of algae. 1,3-Diaminopropane, norspermidine, and norspermine, which are chemical analogs of putrescine, spermidine, and spermine, respectively, were widely distributed in various species of algae. There was no parallelism between the distribution patterns of putrescine derivatives and those of 1,3-diaminopropane derivatives. Cadaverine and agmatine were detected in multicellular marine algae. Homospermidine was detected sporadically in some algae. The biological and phylogenetical significance of polyamines in these lower eukaryotes is discussed.

  3. Concentration of Inorganic Elements Content in Benthic Seaweeds of Fernando de Noronha Archipelago by Synchrotron Radiation Total Reflection X-Ray Fluorescence Analysis (SRTXRF)

    PubMed Central

    Ferreira, Leandro De Santis; Lopes, Rosana Peporine; Ulbrich, Mabel Norma Costas; Guaratini, Thais; Colepicolo, Pio; Lopes, Norberto Peporine; Garla, Ricardo Clapis; Oliveira Filho, Eurico Cabral; Pohlit, Adrian Martin; Zucchi, Orghêda Luiza Araújo Domingues

    2012-01-01

    SRTXRF was used to determine As, Ba, Br, Ca, Co, Cr, Cs, Cu, Dy, Fe, K, Mn, Mo, Ni, Pb, Rb, Sr, Ti, V, and Zn in eleven seaweed species commonly found in Fernando de Noronha: Caulerpa verticillata (J. Agardh) (Chlorophyta), Asparagopsis taxiformis (Delile), Dictyurus occidentalis (J. Agardh), Galaxaura rugosa (J. Ellis & Solander) J. V. Lamouroux, G. obtusata (J. Ellis & Solander) J. V. Lamouroux, G. marginata (J. Ellis & Solander) J. V. Lamouroux (Rhodophyta), Dictyota cervicornis (Kützing), Dictyopteris justii (J. V. Lamouroux), Dictyopteris plagiogramma (Montagne) Vickers, Padina gymnospora (Kützing) Sonder, and a Sargassum sp. (Phaeophyta). Data obtained were compared to those from the analysis of other parts of the world seaweeds using different analytical techniques and were found to be in general agreement in terms of major and minor elemental components. Results provide baseline information about the absorption and accumulation of these elements by macroalgae in the area. PMID:22505917

  4. The fouling of fish farm cage nets as bioindicator of aquaculture pollution in the Adriatic Sea (Croatia).

    PubMed

    Sliskovic, Merica; Jelic-Mrcelic, Gorana; Antolic, Boris; Anicic, Ivica

    2011-02-01

    A fouling assemblage (including density, species richness and diversity, and biomass) growing on netting of fish farm cages was investigated in Stracinska Bay--Location 1 and Peles Bay--Location 2 (Croatia) in order to test the efficiency of fouling as a bioindicator of organic pollution. A total number of 40 algal taxa in Location 1 and total number of 22 algal taxa in Location 2 were identified, with a dominance of opportunistic species (ESG II). We found domination of algal species over animal species and absolute dominance of Rhodophyta which are typical fouler in the Adriatic Sea. Low diversity and species richness with increase in value of the R/P index (occasionally higher than 6) were recorded in Location 2, indicating a certain impact of nutrient enrichment from fish culture facilities on a fouling community structure.

  5. Invertebrate communities associated with Bangia atropurpurea and Cladophora glomerata in western Lake Erie

    USGS Publications Warehouse

    Chilton, E.W.; Lowe, R.L.; Schurr, K.M.

    1986-01-01

    The appearance of the marine alga Bangia atropurpurea (Rhodophyta) in Lake Erie has been followed by its rapid dispersal throughout the eulittoral zone of the lake. Bangia was extensively sampled to determine its suitability as a habitat for littoral organisms. Present data indicate that the only organisms capable of maintaining populations on Bangia filaments are larval Chironomidae. Cladophora supports a larger and more diverse community. It is concluded that the mucilaginous cell wall of Bangia provides a less stable substrate for attached or clinging organisms than does the cellulose cell wall of Cladophora. The presence of Bangia in the littoral zone of Lake Erie results in a reduction of the quantity and diversity of algal epiphytes and may negatively impact the littoral food web.

  6. Polysaccharides of the red algae.

    PubMed

    Usov, Anatolii I

    2011-01-01

    Red algae (Rhodophyta) are known as the source of unique sulfated galactans, such as agar, agarose, and carrageenans. The wide practical uses of these polysaccharides are based on their ability to form strong gels in aqueous solutions. Gelling polysaccharides usually have molecules built up of repeating disaccharide units with a regular distribution of sulfate groups, but most of the red algal species contain more complex galactans devoid of gelling ability because of various deviations from the regular structure. Moreover, several red algae may contain sulfated mannans or neutral xylans instead of sulfated galactans as the main structural polysaccharides. This chapter is devoted to a description of the structural diversity of polysaccharides found in the red algae, with special emphasis on the methods of structural analysis of sulfated galactans. In addition to the structural information, some data on the possible use of red algal polysaccharides as biologically active polymers or as taxonomic markers are briefly discussed.

  7. Preliminary observations on the benthic marine algae of the Gorringe seabank (northeast Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Tittley, Ian; da Silva Vaz Álvaro, Nuno Miguel; de Melo Azevedo Neto, Ana Isabel

    2014-06-01

    Examination of marine samples collected in 2006 from the Gettysburg and Ormonde seamounts on the Gorringe seabank southwest of Portugal has revealed 29 benthic Chlorophyta, Phaeophyceae (Ochrophyta), and Rhodophyta that were identified provisionally to genus and to species. Combining lists for the present and a previous expedition brings the total of algae thus far recorded to 48. The brown alga Zonaria tournefourtii and the red alga Cryptopleura ramosa were the most abundant species in the present collections. The kelp Laminaria ochroleuca was present only in the Gettysburg samples while Saccorhiza polyschides was observed only on the Ormonde seamount. Comparisons with the benthic marine algae recorded on seamounts in the mid-Atlantic Azores archipelago show features in common, notably kelp forests of L. ochroleuca at depths below 30 m and Z. tournefortii dominance in shallower waters.

  8. Seaweed survival after consumption by the greenbeak parrotfish, Scarus trispinosus

    NASA Astrophysics Data System (ADS)

    Tâmega, F. T. S.; Figueiredo, M. A. O.; Ferreira, C. E. L.; Bonaldo, R. M.

    2016-03-01

    We assessed the survival of seaweed (macroalgae and cyanobacteria) after consumption by the greenbeak parrotfish, Scarus trispinosus, in northeastern Brazil. Samples of S. trispinosus feces were collected, inoculated on filter paper, and kept in the laboratory and field for 60 and 30 d, respectively. Comparisons of samples inoculated with feces to those without (controls) revealed a marked increase in the abundance and diversity of seaweed in samples inoculated with feces in both laboratory and field experiments. These results were consistent between summer and winter, although the seaweed species differed. A total of one cyanobacterium and 16 macroalgal taxa (nine rhodophytes, five heterokontophytes, and two chlorophytes) were recorded in the inoculated samples. Rhodophyta also presented the highest abundance across treatments, possibly because of their higher resistance to parrotfish digestion, greater ingestion, or both. The survival of cyanobacteria and macroalgae after consumption by S. trispinosus suggests that parrotfishes may contribute to seaweed dispersion on tropical reefs.

  9. A vanadium-dependent bromoperoxidase in the marine red alga Kappaphycus alvarezii (Doty) Doty displays clear substrate specificity.

    PubMed

    Kamenarska, Zornitsa; Taniguchi, Tomokazu; Ohsawa, Noboru; Hiraoka, Masanori; Itoh, Nobuya

    2007-05-01

    Bromoperoxidase activity was initially detected in marine macroalgae belonging to the Solieriaceae family (Gigartinales, Rhodophyta), including Solieria robusta (Greville) Kylin, Eucheuma serra J. Agardh and Kappaphycus alvarezii (Doty) Doty, which are important industrial sources of the polysaccharide carrageenan. Notably, the purification of bromoperoxidase was difficult because due to the coexistence of viscoid polysaccharides. The activity of the partially purified enzyme was dependent on the vanadate ion, and displayed a distinct substrate spectrum from that of previously reported vanadium-dependent bromoperoxidases of marine macroalgae. The enzyme was specific for Br- and I- ions and inactive toward F- and Cl-. The K(m) values for Br- and H2O2 were 2.5x10(-3) M and 8.5x10(-5) M, respectively. The halogenated product, dibromoacetaldehyde, that accumulated in K. alvarezii was additionally determined. PMID:17434548

  10. Evaluation of anticoagulant activity of two algal polysaccharides.

    PubMed

    Faggio, C; Pagano, M; Dottore, A; Genovese, G; Morabito, M

    2016-09-01

    Marine algae are important sources of phycocolloids like agar, carrageenans and alginates used in industrial applications. Algal polysaccharides have emerged as an important class of bioactive products showing interesting properties. The aim of our study was to evaluate the potential uses as anticoagulant drugs of algal sulphate polysaccharides extracted from Ulva fasciata (Chlorophyta) and Agardhiella subulata (Rhodophyta) collected in Ganzirri Lake (Cape Peloro Lagoon, north-eastern Sicily, Italy). Toxicity of algal extracts through trypan blue test and anticoagulant action measured by activated partial thromboplastin time (APTT), prothrombin time (PT) test has been evaluated. Algal extracts showed to prolong the PT and APTT during the coagulation cascade and to avoid the blood coagulation of samples. Furthermore, the algal extracts lack toxic effects towards cellular metabolism and their productions are relatively at low cost. This permits to consider the algae as the biological source of the future.

  11. The effect of organic ligands exuded by intertidal seaweeds on copper complexation.

    PubMed

    Andrade, Santiago; Pulido, Maria Jesus; Correa, Juan A

    2010-01-01

    Copper complexation in marine systems is mainly controlled by organic matter, partially produced by micro- and macroalgae that release exudates with the capacity to bind metals. This feature is important as it influences bioavailability, bioaccumulation, toxicity, and transport of copper through biological membranes. The release of Cu-complexing ligands by seaweeds cultured under copper excess was studied in the laboratory. Five macroalgae belonging to different functional groups were used, including the filamentous Chaetomorphafirma (Chlorophyta), the foliose Ulvalactuca (Chlorophyta) and Porphyra columbina (Rhodophyta), the corticated Gelidium lingulatum (Rhodophyta), and the leathery Lessonia nigrescens (Phaeophyceae). The concentration of ligands and their copper-binding strength (logK') of exudates released by each species was determined by anodic stripping voltammetry (ASV). The selected algae released exudates in a wide range of concentration (42-117 nM) after 48h of culture, and addition of 157nM copper increased the production of ligands up to 8 times. A relationship between structural complexity or thallus thickness and the amount of ligands released was not observed. The binding strength (logK') varied among species from 7.6 to 8.9, a response that was not modified by exposure to sub-lethal copper excess. The kelp L. nigrescens showed a fast response to copper excess, releasing ligands that reduced toxicity of the metal in hours. Results suggest that intertidal and shallow subtidal macroalgae might have been overlooked regarding their role as producers of organic ligands and, therefore, as modulators of metal complexing capacity in coastal waters.

  12. Functional Traits for Carbon Access in Macrophytes

    PubMed Central

    Pfister, Catherine A.; Wootton, J. Timothy

    2016-01-01

    Understanding functional trait distributions among organisms can inform impacts on and responses to environmental change. In marine systems, only 1% of dissolved inorganic carbon in seawater exists as CO2. Thus the majority of marine macrophytes not only passively access CO2 for photosynthesis, but also actively transport CO2 and the more common bicarbonate (HCO3-, 92% of seawater dissolved inorganic carbon) into their cells. Because species with these carbon concentrating mechanisms (CCMs) are non-randomly distributed in ecosystems, we ask whether there is a phylogenetic pattern to the distribution of CCMs among algal species. To determine macrophyte traits that influence carbon uptake, we assessed 40 common macrophyte species from the rocky intertidal community of the Northeast Pacific Ocean to a) query whether macrophytes have a CCM and b) determine the evolutionary history of CCMs, using ancestral state reconstructions and stochastic character mapping based on previously published data. Thirty-two species not only depleted CO2, but also concentrated and depleted HCO3-, indicative of a CCM. While analysis of CCMs as a continuous trait in 30 families within Phylum Rhodophyta showed a significant phylogenetic signal under a Brownian motion model, analysis of CCMs as a discrete trait (presence or absence) indicated that red algal families are more divergent than expected in their CCM presence or absence; CCMs are a labile trait within the Rhodophyta. In contrast, CCMs were present in each of 18 Ochrophyta families surveyed, indicating that CCMs are highly conserved in the brown algae. The trait of CCM presence or absence was largely conserved within Families. Fifteen of 23 species tested also changed the seawater buffering capacity, or Total Alkalinity (TA), shifting DIC composition towards increasing concentrations of HCO3- and CO2 for photosynthesis. Manipulating the external TA of the local environment may influence carbon availability in boundary layers and

  13. Functional Traits for Carbon Access in Macrophytes.

    PubMed

    Stepien, Courtney C; Pfister, Catherine A; Wootton, J Timothy

    2016-01-01

    Understanding functional trait distributions among organisms can inform impacts on and responses to environmental change. In marine systems, only 1% of dissolved inorganic carbon in seawater exists as CO2. Thus the majority of marine macrophytes not only passively access CO2 for photosynthesis, but also actively transport CO2 and the more common bicarbonate (HCO3-, 92% of seawater dissolved inorganic carbon) into their cells. Because species with these carbon concentrating mechanisms (CCMs) are non-randomly distributed in ecosystems, we ask whether there is a phylogenetic pattern to the distribution of CCMs among algal species. To determine macrophyte traits that influence carbon uptake, we assessed 40 common macrophyte species from the rocky intertidal community of the Northeast Pacific Ocean to a) query whether macrophytes have a CCM and b) determine the evolutionary history of CCMs, using ancestral state reconstructions and stochastic character mapping based on previously published data. Thirty-two species not only depleted CO2, but also concentrated and depleted HCO3-, indicative of a CCM. While analysis of CCMs as a continuous trait in 30 families within Phylum Rhodophyta showed a significant phylogenetic signal under a Brownian motion model, analysis of CCMs as a discrete trait (presence or absence) indicated that red algal families are more divergent than expected in their CCM presence or absence; CCMs are a labile trait within the Rhodophyta. In contrast, CCMs were present in each of 18 Ochrophyta families surveyed, indicating that CCMs are highly conserved in the brown algae. The trait of CCM presence or absence was largely conserved within Families. Fifteen of 23 species tested also changed the seawater buffering capacity, or Total Alkalinity (TA), shifting DIC composition towards increasing concentrations of HCO3- and CO2 for photosynthesis. Manipulating the external TA of the local environment may influence carbon availability in boundary layers and

  14. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages

    PubMed Central

    Nelson, Craig E; Goldberg, Stuart J; Wegley Kelly, Linda; Haas, Andreas F; Smith, Jennifer E; Rohwer, Forest; Carlson, Craig A

    2013-01-01

    Increasing algal cover on tropical reefs worldwide may be maintained through feedbacks whereby algae outcompete coral by altering microbial activity. We hypothesized that algae and coral release compositionally distinct exudates that differentially alter bacterioplankton growth and community structure. We collected exudates from the dominant hermatypic coral holobiont Porites spp. and three dominant macroalgae (one each Ochrophyta, Rhodophyta and Chlorophyta) from reefs of Mo'orea, French Polynesia. We characterized exudates by measuring dissolved organic carbon (DOC) and fractional dissolved combined neutral sugars (DCNSs) and subsequently tracked bacterioplankton responses to each exudate over 48 h, assessing cellular growth, DOC/DCNS utilization and changes in taxonomic composition (via 16S rRNA amplicon pyrosequencing). Fleshy macroalgal exudates were enriched in the DCNS components fucose (Ochrophyta) and galactose (Rhodophyta); coral and calcareous algal exudates were enriched in total DCNS but in the same component proportions as ambient seawater. Rates of bacterioplankton growth and DOC utilization were significantly higher in algal exudate treatments than in coral exudate and control incubations with each community selectively removing different DCNS components. Coral exudates engendered the smallest shift in overall bacterioplankton community structure, maintained high diversity and enriched taxa from Alphaproteobacteria lineages containing cultured representatives with relatively few virulence factors (VFs) (Hyphomonadaceae and Erythrobacteraceae). In contrast, macroalgal exudates selected for less diverse communities heavily enriched in copiotrophic Gammaproteobacteria lineages containing cultured pathogens with increased VFs (Vibrionaceae and Pseudoalteromonadaceae). Our results demonstrate that algal exudates are enriched in DCNS components, foster rapid growth of bacterioplankton and select for bacterial populations with more potential VFs than

  15. A revised circumscription for the Blakeeae (Melastomataceae) with associated nomenclatural adjustments

    PubMed Central

    Penneys, Darin S.; Judd, Walter S.

    2013-01-01

    Abstract Systematic investigations and phylogenetic analyses of the Blakeeae (Melastomataceae) have indicated that Topobea should be synonymized under Blakea, and Huilaea under Chalybea. Presented here is a detailed description of the Blakeeae, a key to its two accepted genera, and a listing of 62 new combinations, including 3 new names, necessitated by the transfer of Topobea as follows: Blakea acuminata (Wurdack) Penneys & Judd, comb. nov., Blakea adscendens (E.Cotton & Matezki) Penneys & Judd, comb. nov., Blakea albertiae (Wurdack) Penneys & Almeda, comb. nov., Blakea amplifolia (Almeda) Penneys & Almeda, comb. nov., Blakea arboricola (Almeda) Penneys & Almeda, comb. nov., Blakea asplundii (Wurdack) Penneys & Judd, comb. nov., Blakea barbata (Gleason) Penneys & Judd, comb. nov., Blakea brenesii (Standl.) Penneys & Almeda, comb. nov., Blakea brevibractea (Gleason) Penneys & Judd, comb. nov., Blakea bullata (E.Cotton & Matezki) Penneys & Judd, comb. nov., Blakea calcarata (L.Uribe) Penneys & Judd, comb. nov., Blakea calophylla (Almeda) Penneys & Almeda, comb. nov., Blakea calycularis (Naudin) Penneys & Almeda, comb. nov., Blakea castanedae (Wurdack) Penneys & Judd, comb. nov., Blakea clavata (Triana) Penneys & Judd, nom. nov., Blakea cordata (Gleason) Penneys & Almeda, comb. nov., Blakea cuprina Penneys & Judd, nom. nov., Blakea cutucuensis (Wurdack) Penneys & Judd, comb. nov., Blakea dimorphophylla (Almeda) Penneys & Almeda, comb. nov., Blakea discolor (Hochr.) Penneys & Judd, comb. nov., Blakea dodsonorum (Wurdack) Penneys & Almeda, comb. nov., Blakea eplingii (Wurdack) Penneys & Judd, comb. nov., Blakea ferruginea (Gleason) Penneys & Judd, comb. nov., Blakea fragrantissima (Almeda) Penneys & Almeda, comb. nov., Blakea gerardoana (Almeda) Penneys & Almeda, comb. nov., Blakea glaberrima (Triana) Penneys & Judd, comb. nov., Blakea henripittieri (Cogn.) Penneys & Almeda, comb. et nom. nov., Blakea hexandra (Almeda) Penneys & Almeda, comb. nov., Blakea horologica

  16. Biodiversity patterns of macrophyte and macroinvertebrate communities in two lagoons of Western Greece.

    NASA Astrophysics Data System (ADS)

    Fyttis, G.; Reizopoulou, S.; Papastergiadou, E.

    2012-04-01

    Aquatic macrophytes and benthic macroinvertebrates were studied seasonally (Spring, Autumn, Summer) between the years 2009 - 2011 in two coastal lagoons (Kotychi and Prokopos) located in Peloponnese, Greece, in order to investigate spatial and temporal biodiversity trends related to hydrological processes (degree of confinement, nitrates, phosphates, chl-a, total suspended materials, light irradiance, pH, salinity, temperature and dissolved oxygen). Kotychi lagoon presents a better communication with the sea, while Prokopos has a high degree of confinement. Both ecosystems seasonally receive freshwater input from streams. The submerged aquatic macrophytes constituted a major component of the ecosystems studied. In total, 22 taxa of aquatic macrophytes (angiosperms and macroalgae), 16 taxa for Kotychi (2 Rhodophyta, 8 Chlorophyta, 5 Magnoliophyta, 1 Streptophyta) and 14 taxa for Prokopos (1 Rhodophyta, 5 Chlorophyta, 5 Magnoliophyta, 3 Streptophyta) were found. Ruppia cirrhosa, and Potamogeton pectinatus were dominant in both lagoons. Kotychi lagoon was also dominated by Zostera noltii and Prokopos by Zannichellia pallustris ssp. pedicellata, while the biomass of aquatic species peaked during the summer periods, in both lagoons. The total number of macroinvertebrates found in the lagoons was 28 taxa for Kotychi and 19 for Prokopos. Chironomidae were dominant in both lagoons, while Kotychi was also dominated by Lekanesphaera monodi and Monocorophium insidiosum, and Prokopos by Ostracoda and Lekanesphaera monodi. Benthic diversity ranged from 1.33 to 2.57 in Kotychi and from 0.67 to 2.48 in Prokopos. Species richness, diversity, and abundance of benthic macroinvertebrates were strongly related to aquatic vegetation and to the degree of communication with the marine environment. Moreover, species richness and abundance of both macrophytes and macroinvertebrates were mainly dependent on depth, temperature, pH and concentration of total suspended materials (TSM). Results

  17. Please mind the gap - Visual census and cryptic biodiversity assessment at central Red Sea coral reefs.

    PubMed

    Pearman, John K; Anlauf, Holger; Irigoien, Xabier; Carvalho, Susana

    2016-07-01

    Coral reefs harbor the most diverse assemblages in the ocean, however, a large proportion of the diversity is cryptic and, therefore, undetected by standard visual census techniques. Cryptic and exposed communities differ considerably in species composition and ecological function. This study compares three different coral reef assessment protocols: i) visual benthic reef surveys: ii) visual census of Autonomous Reef Monitoring Structures (ARMS) plates; and iii) metabarcoding techniques of the ARMS (including sessile, 106-500 μm and 500-2000 μm size fractions), that target the cryptic and exposed communities of three reefs in the central Red Sea. Visual census showed a dominance of Cnidaria (Anthozoa) and Rhodophyta on the reef substrate, while Porifera, Bryozoa and Rhodophyta were the most abundant groups on the ARMS plates. Metabarcoding, targeting the 18S rRNA gene, significantly increased estimates of the species diversity (p < 0.001); revealing that Annelida were generally the dominant phyla (in terms of reads) of all fractions and reefs. Furthermore, metabarcoding detected microbial eukaryotic groups such as Syndiniophyceae, Mamiellophyceae and Bacillariophyceae as relevant components of the sessile fraction. ANOSIM analysis showed that the three reef sites showed no differences based on the visual census data. Metabarcoding showed a higher sensitivity for identifying differences between reef communities at smaller geographic scales than standard visual census techniques as significant differences in the assemblages were observed amongst the reefs. Comparison of the techniques showed no similar patterns for the visual techniques while the metabarcoding of the ARMS showed similar patterns amongst fractions. Establishing ARMS as a standard tool in reef monitoring will not only advance our understanding of local processes and ecological community response to environmental changes, as different faunal components will provide complementary information but

  18. Ecophysiology of photosynthesis in macroalgae.

    PubMed

    Raven, John A; Hurd, Catriona L

    2012-09-01

    Macroalgae occur in the marine benthos from the upper intertidal to depths of more than 200 m, contributing up to 1 Pg C per year to global primary productivity. Freshwater macroalgae are mainly green (Chlorophyta) with some red (Rhodophyta) and a small contribution of brown (Phaeophyceae) algae, while in the ocean all three higher taxa are important. Attempts to relate the depth distribution of three higher taxa of marine macroalgae to their photosynthetic light use through their pigmentation in relation to variations in spectral quality of photosynthetically active radiation (PAR) with depth (complementary chromatic adaptation) and optical thickness (package effect) have been relatively unsuccessful. The presence (Chlorophyta, Phaeophyceae) or absence (Rhodophyta) of a xanthophyll cycle is also not well correlated with depth distribution of marine algae. The relative absence of freshwater brown algae does not seem to be related to their photosynthetic light use. Photosynthetic inorganic carbon acquisition in some red and a few green macroalgae involves entry of CO(2) by diffusion. Other red and green macroalgae, and brown macroalgae, have CO(2) concentrating mechanisms; these frequently involve acid and alkaline zones on the surface of the alga with CO(2) (produced from HCO(3) (-)) entering in the acid zones, while some macroalgae have CCMs based on active influx of HCO(3) (-). These various mechanisms of carbon acquisition have different responses to the thickness of the diffusion boundary layer, which is determined by macroalgal morphology and water velocity. Energetic predictions that macroalgae growing at or near the lower limit of PAR for growth should rely on diffusive CO(2) entry without acid and alkaline zones, and on NH(4) (+) rather than NO(3) (-) as nitrogen source, are only partially borne out by observation. The impact of global environmental change on marine macroalgae mainly relates to ocean acidification and warming with shoaling of the

  19. Please mind the gap - Visual census and cryptic biodiversity assessment at central Red Sea coral reefs.

    PubMed

    Pearman, John K; Anlauf, Holger; Irigoien, Xabier; Carvalho, Susana

    2016-07-01

    Coral reefs harbor the most diverse assemblages in the ocean, however, a large proportion of the diversity is cryptic and, therefore, undetected by standard visual census techniques. Cryptic and exposed communities differ considerably in species composition and ecological function. This study compares three different coral reef assessment protocols: i) visual benthic reef surveys: ii) visual census of Autonomous Reef Monitoring Structures (ARMS) plates; and iii) metabarcoding techniques of the ARMS (including sessile, 106-500 μm and 500-2000 μm size fractions), that target the cryptic and exposed communities of three reefs in the central Red Sea. Visual census showed a dominance of Cnidaria (Anthozoa) and Rhodophyta on the reef substrate, while Porifera, Bryozoa and Rhodophyta were the most abundant groups on the ARMS plates. Metabarcoding, targeting the 18S rRNA gene, significantly increased estimates of the species diversity (p < 0.001); revealing that Annelida were generally the dominant phyla (in terms of reads) of all fractions and reefs. Furthermore, metabarcoding detected microbial eukaryotic groups such as Syndiniophyceae, Mamiellophyceae and Bacillariophyceae as relevant components of the sessile fraction. ANOSIM analysis showed that the three reef sites showed no differences based on the visual census data. Metabarcoding showed a higher sensitivity for identifying differences between reef communities at smaller geographic scales than standard visual census techniques as significant differences in the assemblages were observed amongst the reefs. Comparison of the techniques showed no similar patterns for the visual techniques while the metabarcoding of the ARMS showed similar patterns amongst fractions. Establishing ARMS as a standard tool in reef monitoring will not only advance our understanding of local processes and ecological community response to environmental changes, as different faunal components will provide complementary information but

  20. Genetic Affinities between Trans-Oceanic Populations of Non-Buoyant Macroalgae in the High Latitudes of the Southern Hemisphere

    PubMed Central

    Fraser, Ceridwen I.; Zuccarello, Giuseppe C.; Spencer, Hamish G.; Salvatore, Laura C.; Garcia, Gabriella R.; Waters, Jonathan M.

    2013-01-01

    Marine biologists and biogeographers have long been puzzled by apparently non-dispersive coastal taxa that nonetheless have extensive transoceanic distributions. We here carried out a broad-scale phylogeographic study to test whether two widespread Southern Hemisphere species of non-buoyant littoral macroalgae are capable of long-distance dispersal. Samples were collected from along the coasts of southern Chile, New Zealand and several subAntarctic islands, with the focus on high latitude populations in the path of the Antarctic Circumpolar Current or West Wind Drift. We targeted two widespread littoral macroalgal species: the brown alga Adenocystisutricularis (Ectocarpales, Heterokontophyta) and the red alga Bostrychiaintricata (Ceramiales, Rhodophyta). Phylogenetic analyses were performed using partial mitochondrial (COI), chloroplast (rbcL) and ribosomal nuclear (LSU / 28S) DNA sequence data. Numerous deeply-divergent clades were resolved across all markers in each of the target species, but close phylogenetic relationships – even shared haplotypes – were observed among some populations separated by large oceanic distances. Despite not being particularly buoyant, both Adenocystisutricularis and Bostrychiaintricata thus show genetic signatures of recent dispersal across vast oceanic distances, presumably by attachment to floating substrata such as wood or buoyant macroalgae. PMID:23894421

  1. Suppressive effects of the extracts of Japanese edible seaweeds on mutagen-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) and tumor promotor-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells.

    PubMed

    Okai, Y; Higashi-Okai, K; Nakamura, S; Yano, Y; Otani, S

    1994-11-25

    Some of epidemiological data indicated that ubiquitous consumption of seaweeds in Japan may be a possible protective factor against some types of tumor. To analyse this problem, the authors studied the antimutagenic and antitumor promotion activities in methanol-soluble extracts of typical edible seaweeds which showed suppressive effects on 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indol (Trp-P-1)-induced umu C gene expression in SOS response of Salmonella typhimurium (TA 1535/pSK 1002) and 12-O-tetradecanoylphorbol-13-acetate (TPA)-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells. Although eight varieties of edible seaweeds including chlorophyta, Phaenophyta and Rhodophyta showed significant antimutagenic and antipromotion activities, they expressed the activities different from each other. Among these seaweeds, Enteromorpha prolifera ('Sujiaonori' in Japanese) and Porphyra tenera ('Asakusanori') showed relatively strong suppressive activities in both antimutagenic and antipromotion assays compared with other seaweeds. These seaweeds contained considerable amounts of beta-carotene as a possible active principle with anticarcinogenic activity. This compound was partially associated with the antimutagenic activity in the seaweed extract, but did not contribute to the antipromotion activity of seaweed extract under our experimental conditions. These results strongly suggest that Japanese edible seaweeds have possible antimutagenic and antipromotion activities probably associated with antitumor activity. PMID:7954366

  2. Isolation, expression and characterization of rbcL gene from Ulva prolifera J. Agardh (Ulvophyceae, Chlorophyta)

    NASA Astrophysics Data System (ADS)

    Shao, Zhanru; Li, Wei; Guo, Hui; Duan, Delin

    2015-12-01

    Ulva prolifera is a typical green alga in subtidal areas and can grow tremendously fast. A highly efficient Rubisco enzyme which is encoded by UpRbcL gene may contribute to the rapid growth. In this study, the full-length UpRbcL open reading frame (ORF) was identified, which encoded a protein of 474 amino acids. Phylogenetic analysis of UpRbcL sequences revealed that Chlorophyta had a closer genetic relationship with higher plants than with Rhodophyta and Phaeophyta. The two distinct residues (aa11 and aa91) were presumed to be unique for Rubisco catalytic activity. The predicted three-dimensional structure showed that one α/β-barrel existed in the C-terminal region, and the sites for Mg2+ coordination and CO2 fixation were also located in this region. Gene expression profile indicated that UpRbcL was expressed at a higher level under light exposure than in darkness. When the culture temperature reached 35°C, the expression level of UpRbcL was 2.5-fold lower than at 15°C, and the carboxylase activity exhibited 13.8-fold decrease. UpRbcL was heterologously expressed in E. coli and was purified by Ni2+ affinity chromatography. The physiological and biochemical characterization of recombinant Rubisco will be explored in the future.

  3. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf. PMID:26727469

  4. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides.

    PubMed

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2015-12-29

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV.

  5. DGDG and Glycolipids in Plants and Algae.

    PubMed

    Kalisch, Barbara; Dörmann, Peter; Hölzl, Georg

    2016-01-01

    Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA). PMID:27023231

  6. The effect of nutrient enrichment on the growth, nucleic acid concentrations, and elemental stoichiometry of coral reef macroalgae.

    PubMed

    Reef, Ruth; Pandolfi, John M; Lovelock, Catherine E

    2012-08-01

    The growth rate hypothesis (GRH) links growth rates with organism elemental stoichiometry. Support for the GRH was found for many animal species, but less so for plants. This is the first study to test the GRH in macroalgae. Tropical coral reef macroalgae from three lineages, Caulerpa serrulata (Chlorophyta), Laurencia intricata (Rhodophyta), and Sargassum polyphyllum (Phaeophyceae) were grown enriched with nitrogen or phosphorous and under control conditions at Heron Island on the Great Barrier Reef, Australia. Growth rate, photosynthesis, nucleic acid composition, and elemental stoichiometry were measured. Nutrient enrichment had positive effects on photosynthetic rates and on investment in RNA. However, growth rate was not correlated with either photosynthetic rates or RNA content; thus, we did not find support for the GRH in tropical macroalgae. Macroalgae, especially L. intricata, accumulated P to very high levels (>0.6% of dry weight). The growth rate response to tissue P concentrations was unimodal. Above 0.21%, P accumulation had negative effects on growth. Nitrogen was not stored, but evidence of futile cycling was observed. The capacity to store large amounts of P is probably an adaptation to the low and patchy nutrient environment of the tropical oceans.

  7. Seaweed attachment to bedrock: biophysical evidence for a new geophycology paradigm.

    PubMed

    Morrison, L; Feely, M; Stengel, D B; Blamey, Nigel; Dockery, P; Sherlock, A; Timmins, E

    2009-09-01

    Seaweeds are amongst the most obvious and ecologically important components of rocky shore communities worldwide but until now little has been known about the processes involved in their attachment. This multidisciplinary study investigated for the first time the interactions between marine macroalgal holdfasts and their underlying substrata, requiring the development of specialized sample preparation techniques to maintain the structural integrity of the holdfast-bedrock interface. Transmitted plane polarized light microscopy, scanning electron microscopy with energy dispersive spectroscopy and structured light illumination microscopy were used in the examination of the interface between Ascophyllum nodosum (Fucales, Heterokontophyta) and crustose red algae Lithothamnion sp. (Corallinales, Rhodophyta) on granite and limestone substrates. The new evidence presented here represents a paradigm shift in the way we view seaweed attachment because results show that the holdfasts exploit the physical characteristics of the rock-forming minerals in order to penetrate the bedrock and thus facilitate the attachment process. Mineral cleavage planes together with intercrystalline and intracrystalline boundaries and fractures provide penetration pathways for the holdfast tissue. This process causes disaggregation of rock-forming minerals to depths <10 mm and therefore assists in the bioerosion of coastal bedrock. It is concluded that seaweeds are able to cause weathering of natural rock and the term 'geophycology' is introduced to describe seaweed-bedrock interactions, including seaweed-induced weathering.

  8. Selection of effective macroalgal species and tracing nitrogen sources on the different part of Yantai coast, China indicated by macroalgal δ(15)N values.

    PubMed

    Wang, Yujue; Liu, Dongyan; Richard, Pierre; Di, Baoping

    2016-01-15

    To determine the dominant nitrogen sources and select effective macroalgal species for monitoring eutrophication along the Yantai coast, the total carbon (TOC), total nitrogen (TN) and nitrogen stable isotope ratio (δ(15)N) in macroalgal tissue were analyzed in conjunction with environmental variables in seawater along the Yantai coastline. The ranges of macroalgal tissue δ(15)N values together with dissolved inorganic nitrogen (DIN) composition indicated that except for the atmospheric deposition, there were three dominant types of nitrogen sources along the Yantai coast, with the agricultural fertilizer usage and factorial wastewater input at the S1 (Zhifu Island coast), the sewage discharge at S2 (the Moon Bay coast), the sewage discharge together with aquaculture impacts at S3 (Fisherman Wharf coast) and S4 (the Horse Island coast). Macroalgal growth were not limited by DIN but limited by P at S2, S3 and S4. Macroalgal species suitable or not for DIN source tracing along the Yantai coast were discussed. For sites with low DIN concentration, many species of three phyla could be used for DIN sources tracing with Laurencia okamurai, Gloiopeltis furcata and Ulva pertusa being ideal species. For site with high DIN concentration, however, species of Rhodophyta were not suitable and only Scytosiphon lomentaria and Monostroma nitidium were chosen.

  9. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications

    PubMed Central

    Pereira, Hugo; Barreira, Luísa; Figueiredo, Filipe; Custódio, Luísa; Vizetto-Duarte, Catarina; Polo, Cristina; Rešek, Eva; Engelen, Aschwin; Varela, João

    2012-01-01

    As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C18 and C20, namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented “healthier” ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries. PMID:23118712

  10. [Effects of macroalgae on growth of 2 species of bloom microalgae and interactions between these microalgae in laboratory culture].

    PubMed

    Wang, You; Yu, Zhi-ming; Song, Xiu-xian; Zhang, Shan-dong

    2006-02-01

    We studied the effects of fresh tissue and culture medium filtrate of Ulva pertusa (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta) on growth of 2 causative bloom species: Prorocentrum donghaiense and Alexandum tamarense, in laboratory conditions. Both U. pertusa and G. lemaneiformis, especially their fresh tissues, significantly interfered with the growth of the co-cultured microalgae. P. donghaiense could be completely killed in the bialgal culture, but growth of A. tamarense in it was little affected. Simultaneous assay on the effects of culture medium filtrates showed that the culture filtrate of A. tamarense had algicidal effect on P. donghaiense, while that of P. donghaiense had little effect on growth of A. tamarense. We simulated the interactions between P. donghaiense and A. tamarense in the bialgal culture by using a mathematical model. Results show that the effect of P. donghaiense inhibited by A. tamarense is about 17 times larger than the inhibitory effect of P. donghaiense exerted on A. tamarense. The joint effects of multialgal cultures on microalga were analyzed. Results present that the multialgal cultures of either U. pertusa or G. lemaneiformis on P. donghaiense are synergism, and the joint effect of U. pertusa and P. donghaiense on A. tamarense is additional. However, it was difficult to determine the joint effects of G. lemaneiformis and P. donghaiense on A. tamarense. Results suggest that allelopathy is the most likely reason responsible for the results obtained in this paper.

  11. Selection of effective macroalgal species and tracing nitrogen sources on the different part of Yantai coast, China indicated by macroalgal δ(15)N values.

    PubMed

    Wang, Yujue; Liu, Dongyan; Richard, Pierre; Di, Baoping

    2016-01-15

    To determine the dominant nitrogen sources and select effective macroalgal species for monitoring eutrophication along the Yantai coast, the total carbon (TOC), total nitrogen (TN) and nitrogen stable isotope ratio (δ(15)N) in macroalgal tissue were analyzed in conjunction with environmental variables in seawater along the Yantai coastline. The ranges of macroalgal tissue δ(15)N values together with dissolved inorganic nitrogen (DIN) composition indicated that except for the atmospheric deposition, there were three dominant types of nitrogen sources along the Yantai coast, with the agricultural fertilizer usage and factorial wastewater input at the S1 (Zhifu Island coast), the sewage discharge at S2 (the Moon Bay coast), the sewage discharge together with aquaculture impacts at S3 (Fisherman Wharf coast) and S4 (the Horse Island coast). Macroalgal growth were not limited by DIN but limited by P at S2, S3 and S4. Macroalgal species suitable or not for DIN source tracing along the Yantai coast were discussed. For sites with low DIN concentration, many species of three phyla could be used for DIN sources tracing with Laurencia okamurai, Gloiopeltis furcata and Ulva pertusa being ideal species. For site with high DIN concentration, however, species of Rhodophyta were not suitable and only Scytosiphon lomentaria and Monostroma nitidium were chosen. PMID:26519590

  12. Recent mobility of plastid encoded group II introns and twintrons in five strains of the unicellular red alga Porphyridium

    PubMed Central

    Perrineau, Marie-Mathilde; Price, Dana C.; Mohr, Georg

    2015-01-01

    Group II introns are closely linked to eukaryote evolution because nuclear spliceosomal introns and the small RNAs associated with the spliceosome are thought to trace their ancient origins to these mobile elements. Therefore, elucidating how group II introns move, and how they lose mobility can potentially shed light on fundamental aspects of eukaryote biology. To this end, we studied five strains of the unicellular red alga Porphyridium purpureum that surprisingly contain 42 group II introns in their plastid genomes. We focused on a subset of these introns that encode mobility-conferring intron-encoded proteins (IEPs) and found them to be distributed among the strains in a lineage-specific manner. The reverse transcriptase and maturase domains were present in all lineages but the DNA endonuclease domain was deleted in vertically inherited introns, demonstrating a key step in the loss of mobility. P. purpureum plastid intron RNAs had a classic group IIB secondary structure despite variability in the DIII and DVI domains. We report for the first time the presence of twintrons (introns-within-introns, derived from the same mobile element) in Rhodophyta. The P. purpureum IEPs and their mobile introns provide a valuable model for the study of mobile retroelements in eukaryotes and offer promise for biotechnological applications. PMID:26157604

  13. Recent mobility of plastid encoded group II introns and twintrons in five strains of the unicellular red alga Porphyridium.

    PubMed

    Perrineau, Marie-Mathilde; Price, Dana C; Mohr, Georg; Bhattacharya, Debashish

    2015-01-01

    Group II introns are closely linked to eukaryote evolution because nuclear spliceosomal introns and the small RNAs associated with the spliceosome are thought to trace their ancient origins to these mobile elements. Therefore, elucidating how group II introns move, and how they lose mobility can potentially shed light on fundamental aspects of eukaryote biology. To this end, we studied five strains of the unicellular red alga Porphyridium purpureum that surprisingly contain 42 group II introns in their plastid genomes. We focused on a subset of these introns that encode mobility-conferring intron-encoded proteins (IEPs) and found them to be distributed among the strains in a lineage-specific manner. The reverse transcriptase and maturase domains were present in all lineages but the DNA endonuclease domain was deleted in vertically inherited introns, demonstrating a key step in the loss of mobility. P. purpureum plastid intron RNAs had a classic group IIB secondary structure despite variability in the DIII and DVI domains. We report for the first time the presence of twintrons (introns-within-introns, derived from the same mobile element) in Rhodophyta. The P. purpureum IEPs and their mobile introns provide a valuable model for the study of mobile retroelements in eukaryotes and offer promise for biotechnological applications.

  14. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf.

  15. Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing.

    PubMed

    He, Liming; Liu, Fang; Karuppiah, Valliappan; Ren, Yi; Li, Zhiyong

    2014-05-01

    To date, the knowledge of eukaryotic communities associated with sponges remains limited compared with prokaryotic communities. In a manner similar to prokaryotes, it could be hypothesized that sponge holobionts have phylogenetically diverse eukaryotic symbionts, and the eukaryotic community structures in different sponge holobionts were probably different. In order to test this hypothesis, the communities of eukaryota associated with 11 species of South China Sea sponges were compared with the V4 region of 18S ribosomal ribonucleic acid gene using 454 pyrosequencing. Consequently, 135 and 721 unique operational taxonomic units (OTUs) of fungi and protists were obtained at 97 % sequence similarity, respectively. These sequences were assigned to 2 phyla of fungi (Ascomycota and Basidiomycota) and 9 phyla of protists including 5 algal phyla (Chlorophyta, Haptophyta, Streptophyta, Rhodophyta, and Stramenopiles) and 4 protozoal phyla (Alveolata, Cercozoa, Haplosporidia, and Radiolaria) including 47 orders (12 fungi, 35 protists). Entorrhizales of fungi and 18 orders of protists were detected in marine sponges for the first time. Particularly, Tilletiales of fungi and Chlorocystidales of protists were detected for the first time in marine habitats. Though Ascomycota, Alveolata, and Radiolaria were detected in all the 11 sponge species, sponge holobionts have different fungi and protistan communities according to OTU comparison and principal component analysis at the order level. This study provided the first insights into the fungal and protistan communities associated with different marine sponge holobionts using pyrosequencing, thus further extending the knowledge on sponge-associated eukaryotic diversity.

  16. Impact of seaweed beachings on dynamics of δ(15)N isotopic signatures in marine macroalgae.

    PubMed

    Lemesle, Stéphanie; Mussio, Isabelle; Rusig, Anne-Marie; Menet-Nédélec, Florence; Claquin, Pascal

    2015-08-15

    A fine-scale survey of δ(15)N, δ(13)C, tissue-N in seaweeds was conducted using samples from 17 sampling points at two sites (Grandcamp-Maisy (GM), Courseulles/Mer (COU)) along the French coast of the English Channel in 2012 and 2013. Partial triadic analysis was performed on the parameter data sets and revealed the functioning of three areas: one estuary (EstA) and two rocky areas (GM(∗), COU(∗)). In contrast to oceanic and anthropogenic reference points similar temporal dynamics characterized δ(15)N signatures and N contents at GM(∗) and COU(∗). Nutrient dynamics were similar: the N-concentrations in seawater originated from the River Seine and local coastal rivers while P-concentrations mainly from these local rivers. δ(15)N at GM(∗) were linked to turbidity suggesting inputs of autochthonous organic matter from large-scale summer seaweed beachings made up of a mixture of Rhodophyta, Phaeophyta and Chlorophyta species. This study highlights the coupling between seaweed beachings and nitrogen sources of intertidal macroalgae.

  17. Divergence time estimates and the evolution of major lineages in the florideophyte red algae

    PubMed Central

    Yang, Eun Chan; Boo, Sung Min; Bhattacharya, Debashish; Saunders, Gary W.; Knoll, Andrew H.; Fredericq, Suzanne; Graf, Louis; Yoon, Hwan Su

    2016-01-01

    The Florideophyceae is the most abundant and taxonomically diverse class of red algae (Rhodophyta). However, many aspects of the systematics and divergence times of the group remain unresolved. Using a seven-gene concatenated dataset (nuclear EF2, LSU and SSU rRNAs, mitochondrial cox1, and plastid rbcL, psaA and psbA genes), we generated a robust phylogeny of red algae to provide an evolutionary timeline for florideophyte diversification. Our relaxed molecular clock analysis suggests that the Florideophyceae diverged approximately 943 (817–1,049) million years ago (Ma). The major divergences in this class involved the emergence of Hildenbrandiophycidae [ca. 781 (681–879) Ma], Nemaliophycidae [ca. 661 (597–736) Ma], Corallinophycidae [ca. 579 (543–617) Ma], and the split of Ahnfeltiophycidae and Rhodymeniophycidae [ca. 508 (442–580) Ma]. Within these clades, extant diversity reflects largely Phanerozoic diversification. Divergences within Florideophyceae were accompanied by evolutionary changes in the carposporophyte stage, leading to a successful strategy for maximizing spore production from each fertilization event. Our research provides robust estimates for the divergence times of major lineages within the Florideophyceae. This timeline was used to interpret the emergence of key morphological innovations that characterize these multicellular red algae. PMID:26892537

  18. Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes.

    PubMed

    Boudouresque, Charles François; Verlaque, Marc

    2002-01-01

    The authors have listed 85 species of macrophytes that have probably been introduced to the Mediterranean. Among them, nine species can be considered as invasive, i.e., playing a conspicuous role in the recipient ecosystems, taking the place of keystone species and/or being economically harmful: Acrothamnion preissii, Asparagopsis armata, Lophocladia lallemandii, Womersleyella setacea (Rhodophyta), Sargassum muticum, Stypopodium schimperi (Fucophyceae), Caulerpa racemosa, Caulerpa taxifolia and Halophila stipulacea (Plantae). These data fit well the Williamson and Fitter's "tens rule", which states that, on average, 1 out of 10 introduced species becomes invasive. Though some features (e.g. life traits, geographical origin) can increase the likelihood of a successful invasion, the success of invaders is far from being predictable. Since the beginning of the 20th century, the number of introduced species to the Mediterranean has nearly doubled every 20 years. Should these kinetics continue, and according to the tens rule, it can be expected that 5-10 newly introduced macrophytes shall become invasive in the next 20 years. PMID:11883681

  19. The effect of nutrient enrichment on the growth, nucleic acid concentrations, and elemental stoichiometry of coral reef macroalgae

    PubMed Central

    Reef, Ruth; Pandolfi, John M; Lovelock, Catherine E

    2012-01-01

    The growth rate hypothesis (GRH) links growth rates with organism elemental stoichiometry. Support for the GRH was found for many animal species, but less so for plants. This is the first study to test the GRH in macroalgae. Tropical coral reef macroalgae from three lineages, Caulerpa serrulata (Chlorophyta), Laurencia intricata (Rhodophyta), and Sargassum polyphyllum (Phaeophyceae) were grown enriched with nitrogen or phosphorous and under control conditions at Heron Island on the Great Barrier Reef, Australia. Growth rate, photosynthesis, nucleic acid composition, and elemental stoichiometry were measured. Nutrient enrichment had positive effects on photosynthetic rates and on investment in RNA. However, growth rate was not correlated with either photosynthetic rates or RNA content; thus, we did not find support for the GRH in tropical macroalgae. Macroalgae, especially L. intricata, accumulated P to very high levels (>0.6% of dry weight). The growth rate response to tissue P concentrations was unimodal. Above 0.21%, P accumulation had negative effects on growth. Nitrogen was not stored, but evidence of futile cycling was observed. The capacity to store large amounts of P is probably an adaptation to the low and patchy nutrient environment of the tropical oceans. PMID:22957199

  20. Eukaryotic microbial diversity of phototrophic microbial mats in two Icelandic geothermalhot springs.

    PubMed

    Aguilera, Angeles; Souza-Egipsy, Virginia; González-Toril, Elena; Rendueles, Olaya; Amils, Ricardo

    2010-03-01

    The composition of the eukaryotic community and the three-dimensional structure of diverse phototrophic microbial mats from two hot springs in Iceland (Seltun and Hveradalir geothermal areas) were explored by comparing eukaryotic assemblages from microbial mats. Samples were collected in July 2007 from 15 sampling stations along thermal and pH gradients following both hot springs. Physicochemical data revealed high variability in terms of pH (ranging from 2.8 to 7), with high concentrations of heavy metals, including up to 20 g Fe/l, 80 mg Zn/l, 117 mg Cu/l, and 39 mg Ni/l at the most acidic sampling points. Phylogenetic analysis of 18S rDNA genes revealed a diversity of sequences related to several taxa, including members of the Bacillariophyta, Chlorophyta, Rhodophyta, and Euglenophyta phyla as well as ciliates, amoebae, and stramenopiles. The closest relatives to some of the sequences detected came from acidophilic organisms, even when the samples were collected at circumneutral water locations. Electron microscopy showed that most of the microecosystems analyzed were organized as phototrophic microbial mats in which filamentous cyanobacteria usually appeared as a major component. Deposits of amorphous minerals rich in silica, iron, and aluminium around the filaments were frequently detected.

  1. On reproduction in red algae: further research needed at the molecular level

    PubMed Central

    García-Jiménez, Pilar; Robaina, Rafael R.

    2015-01-01

    Multicellular red algae (Rhodophyta) have some of the most complex life cycles known in living organisms. Economically valuable seaweeds, such as phycocolloid producers, have a triphasic (gametophyte, carposporophyte, and tetrasporophyte) life cycle, not to mention the intricate alternation of generations in the edible “sushi-alga” nori. It is a well-known fact that reproductive processes are controlled by one or more abiotic factor(s), including day length, light quality, temperature, and nutrients. Likewise, endogenous chemical factors such as plant growth regulators have been reported to affect reproductive events in some red seaweeds. Still, in the genomic era and given the high throughput techniques at our disposal, our knowledge about the endogenous molecular machinery lags far behind that of higher plants. Any potential effective control of the reproductive process will entail revisiting most of these results and facts to answer basic biological questions as yet unresolved. Recent results have shed light on the involvement of several genes in red alga reproductive events. In addition, a working species characterized by a simple filamentous architecture, easy cultivation, and accessible genomes may also facilitate our task. PMID:25755663

  2. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology.

    PubMed

    Jehlička, Jan; Edwards, Howell G M; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-12-13

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings.

  3. Atmospheric Dispersal of Bioactive Streptomyces albidoflavus Strains Among Terrestrial and Marine Environments.

    PubMed

    Sarmiento-Vizcaíno, Aida; Braña, Alfredo F; González, Verónica; Nava, Herminio; Molina, Axayacatl; Llera, Eva; Fiedler, Hans-Peter; Rico, José M; García-Flórez, Lucía; Acuña, José L; García, Luis A; Blanco, Gloria

    2016-02-01

    Members of the Streptomyces albidoflavus clade, identified by 16S rRNA sequencing and phylogenetic analyses, are widespread among predominant terrestrial lichens (Flavoparmelia caperata and Xanthoria parietina) and diverse intertidal and subtidal marine macroalgae, brown red and green (Phylum Heterokontophyta, Rhodophyta, and Chlorophyta) from the Cantabrian Cornice. In addition to these terrestrial and coastal temperate habitats, similar strains were also found to colonize deep-sea ecosystems and were isolated mainly from gorgonian and solitary corals and other invertebrates (Phylum Cnidaria, Annelida, Echinodermata, Arthropoda, and Porifera) living up to 4700-m depth and at a temperature of 2-4 °C in the submarine Avilés Canyon. Similar strains have been also repeatedly isolated from atmospheric precipitations (rain drops, snow, and hailstone) collected in the same area throughout a year observation time. These ubiquitous strains were found to be halotolerant, psychrotolerant, and barotolerant. Bioactive compounds with diverse antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. These include antibacterials (paulomycins A and B), antifungals (maltophilins), antifungals displaying also cytotoxic activities (antimycins and 6-epialteramides), and the antitumor compound fredericamycin. A hypothetical dispersion model is here proposed to explain the biogeographical distribution of S. albidoflavus strains in terrestrial, marine, and atmospheric environments.

  4. Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae

    PubMed Central

    Guedes, Elíca Amara Cecília; de Carvalho, Cenira M.; Ribeiro Junior, Karlos Antonio Lisboa; Lisboa Ribeiro, Thyago Fernando; de Barros, Lurdiana Dayse; de Lima, Maria Raquel Ferreira; Prado Moura, Flávia de Barros; Goulart Sant'Ana, Antônio Euzebio

    2014-01-01

    This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40 μg·mL−1 (11.1460 μg·mL−1 and 25.8689 μg·mL−1, resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40 μg·mL−1 (29.018 μg·mL−1 and 17.230 μg·mL−1, resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277 μg·mL−1 and 706.990 μg·mL−1) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar. PMID:24688787

  5. Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases.

    PubMed

    Esser, Christian; Kuhn, Anke; Groth, Georg; Lercher, Martin J; Maurino, Veronica G

    2014-05-01

    Glycolate oxidase (GOX) is a crucial enzyme of plant photorespiration. The encoding gene is thought to have originated from endosymbiotic gene transfer between the eukaryotic host and the cyanobacterial endosymbiont at the base of plantae. However, animals also possess GOX activities. Plant and animal GOX belong to the gene family of (L)-2-hydroxyacid-oxidases ((L)-2-HAOX). We find that all (L)-2-HAOX proteins in animals and archaeplastida go back to one ancestral eukaryotic sequence; the sole exceptions are green algae of the chlorophyta lineage. Chlorophyta replaced the ancestral eukaryotic (L)-2-HAOX with a bacterial ortholog, a lactate oxidase that may have been obtained through the primary endosymbiosis at the base of plantae; independent losses of this gene may explain its absence in other algal lineages (glaucophyta, rhodophyta, and charophyta). We also show that in addition to GOX, plants possess (L)-2-HAOX proteins with different specificities for medium- and long-chain hydroxyacids (lHAOX), likely involved in fatty acid and protein catabolism. Vertebrates possess lHAOX proteins acting on similar substrates as plant lHAOX; however, the existence of GOX and lHAOX subfamilies in both plants and animals is not due to shared ancestry but is the result of convergent evolution in the two most complex eukaryotic lineages. On the basis of targeting sequences and predicted substrate specificities, we conclude that the biological role of plantae (L)-2-HAOX in photorespiration evolved by co-opting an existing peroxisomal protein. PMID:24408912

  6. Macrophyta as a vector of contemporary and historical mercury from the marine environment to the trophic web.

    PubMed

    Bełdowska, Magdalena; Jędruch, Agnieszka; Słupkowska, Joanna; Saniewska, Dominka; Saniewski, Michał

    2015-04-01

    Macrophyta are the initial link introducing toxic mercury to the trophic chain. Research was carried out at 24 stations located within the Polish coastal zone of the Southern Baltic, in the years 2006-2012. Fifteen taxa were collected, belonging to four phyla: green algae (Chlorophyta), brown algae (Phaeophyta), red algae (Rhodophyta) and flowering vascular plants (Angiospermophyta), and total mercury concentrations were ascertained. The urbanisation of the coastal zone has influenced the rise in Hg concentrations in macroalgae, and the inflow of contaminants from the river drainage area has contributed to an increase in metal concentration in vascular plants. At the outlets of rivers possessing the largest drainage areas in the Baltic (the Vistula and the Oder), no increases in mercury concentration were observed in macrophyta. Increase in environmental quality and a prolonged vegetative season results in the growing coverage of algae on the seabed and in consequence leads to rapid introduction of contemporary mercury and Hg deposited to sediments over the past decades into the trophic chain. Thriving phytobenthos was found to affect faster integration of Hg into the trophic web. PMID:25563830

  7. Isolation and characterization of agar-digesting Vibrio species from the rotten thallus of Gracilariopsis heteroclada Zhang et Xia.

    PubMed

    Martinez, Joval N; Padilla, Philip Ian P

    2016-08-01

    Gracilariopsis heteroclada Zhang et Xia (Gracilariaceae, Rhodophyta) is one of the most studied marine seaweeds due to its economic importance. This has been cultivated extensively on commercial scale in the Philippines and other Asian countries. However, sustainable production of G. heteroclada in the Philippines could not be maximized due to the occurrence of rotten thallus disease. Thus, isolation and characterization of agar-digesting bacteria from the rotten thalli of G. heteroclada was conducted. A total of seven representative bacterial isolates were randomly selected based on their ability to digest agar as evidenced by the formation of depressions around the bacterial colonies on nutrient agar plates supplemented with 1.5% NaCl and liquefaction of agar. Gram-staining and biochemical characterization revealed that isolates tested were gram-negative rods and taxonomically identified as Vibrio parahaemolyticus (86-99.5%) and Vibrio alginolyticus (94.2-97.7%), respectively. It is yet to be confirmed whether these agar-digesting vibrios are involved in the induction and development of rotten thallus disease in G. heteroclada in concomitance with other opportunistic bacterial pathogens coupled with adverse environmental conditions. PMID:27285614

  8. Atmospheric Dispersal of Bioactive Streptomyces albidoflavus Strains Among Terrestrial and Marine Environments.

    PubMed

    Sarmiento-Vizcaíno, Aida; Braña, Alfredo F; González, Verónica; Nava, Herminio; Molina, Axayacatl; Llera, Eva; Fiedler, Hans-Peter; Rico, José M; García-Flórez, Lucía; Acuña, José L; García, Luis A; Blanco, Gloria

    2016-02-01

    Members of the Streptomyces albidoflavus clade, identified by 16S rRNA sequencing and phylogenetic analyses, are widespread among predominant terrestrial lichens (Flavoparmelia caperata and Xanthoria parietina) and diverse intertidal and subtidal marine macroalgae, brown red and green (Phylum Heterokontophyta, Rhodophyta, and Chlorophyta) from the Cantabrian Cornice. In addition to these terrestrial and coastal temperate habitats, similar strains were also found to colonize deep-sea ecosystems and were isolated mainly from gorgonian and solitary corals and other invertebrates (Phylum Cnidaria, Annelida, Echinodermata, Arthropoda, and Porifera) living up to 4700-m depth and at a temperature of 2-4 °C in the submarine Avilés Canyon. Similar strains have been also repeatedly isolated from atmospheric precipitations (rain drops, snow, and hailstone) collected in the same area throughout a year observation time. These ubiquitous strains were found to be halotolerant, psychrotolerant, and barotolerant. Bioactive compounds with diverse antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. These include antibacterials (paulomycins A and B), antifungals (maltophilins), antifungals displaying also cytotoxic activities (antimycins and 6-epialteramides), and the antitumor compound fredericamycin. A hypothetical dispersion model is here proposed to explain the biogeographical distribution of S. albidoflavus strains in terrestrial, marine, and atmospheric environments. PMID:26224165

  9. Seaweed attachment to bedrock: biophysical evidence for a new geophycology paradigm.

    PubMed

    Morrison, L; Feely, M; Stengel, D B; Blamey, Nigel; Dockery, P; Sherlock, A; Timmins, E

    2009-09-01

    Seaweeds are amongst the most obvious and ecologically important components of rocky shore communities worldwide but until now little has been known about the processes involved in their attachment. This multidisciplinary study investigated for the first time the interactions between marine macroalgal holdfasts and their underlying substrata, requiring the development of specialized sample preparation techniques to maintain the structural integrity of the holdfast-bedrock interface. Transmitted plane polarized light microscopy, scanning electron microscopy with energy dispersive spectroscopy and structured light illumination microscopy were used in the examination of the interface between Ascophyllum nodosum (Fucales, Heterokontophyta) and crustose red algae Lithothamnion sp. (Corallinales, Rhodophyta) on granite and limestone substrates. The new evidence presented here represents a paradigm shift in the way we view seaweed attachment because results show that the holdfasts exploit the physical characteristics of the rock-forming minerals in order to penetrate the bedrock and thus facilitate the attachment process. Mineral cleavage planes together with intercrystalline and intracrystalline boundaries and fractures provide penetration pathways for the holdfast tissue. This process causes disaggregation of rock-forming minerals to depths <10 mm and therefore assists in the bioerosion of coastal bedrock. It is concluded that seaweeds are able to cause weathering of natural rock and the term 'geophycology' is introduced to describe seaweed-bedrock interactions, including seaweed-induced weathering. PMID:19624752

  10. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    PubMed Central

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  11. A Novel Antifouling Defense Strategy from Red Seaweed: Exocytosis and Deposition of Fatty Acid Derivatives at the Cell Wall Surface.

    PubMed

    Paradas, Wladimir Costa; Tavares Salgado, Leonardo; Pereira, Renato Crespo; Hellio, Claire; Atella, Georgia Correa; de Lima Moreira, Davyson; do Carmo, Ana Paula Barbosa; Soares, Angélica Ribeiro; Menezes Amado-Filho, Gilberto

    2016-05-01

    We investigated the organelles involved in the biosynthesis of fatty acid (FA) derivatives in the cortical cells of Laurencia translucida (Rhodophyta) and the effect of these compounds as antifouling (AF) agents. A bluish autofluorescence (with emission at 500 nm) within L. translucida cortical cells was observed above the thallus surface via laser scanning confocal microscopy (LSCM). A hexanic extract (HE) from L. translucida was split into two isolated fractions called hydrocarbon (HC) and lipid (LI), which were subjected to HPLC coupled to a fluorescence detector, and the same autofluorescence pattern as observed by LSCM analyses (emission at 500 nm) was revealed in the LI fraction. These fractions were analyzed by gas chromatography-mass spectrometry (GC-MS), which revealed that docosane is the primary constituent of HC, and hexadecanoic acid and cholesterol trimethylsilyl ether are the primary components of LI. Nile red (NR) labeling (lipid fluorochrome) presented a similar cellular localization to that of the autofluorescent molecules. Transmission and scanning electron microscopy (TEM and SEM) revealed vesicle transport processes involving small electron-lucent vesicles, from vacuoles to the inner cell wall. Both fractions (HC and LI) inhibited micro-fouling [HC, lower minimum inhibitory concentration (MIC) values of 0.1 µg ml(-1); LI, lower MIC value of 10 µg ml(-1)]. The results suggested that L. translucida cortical cells can produce FA derivatives (e.g. HCs and FAs) and secrete them to the thallus surface, providing a unique and novel protective mechanism against microfouling colonization in red algae.

  12. Identification of protein N-termini in Cyanophora paradoxa cyanelles: transit peptide composition and sequence determinants for precursor maturation

    PubMed Central

    Köhler, Daniel; Dobritzsch, Dirk; Hoehenwarter, Wolfgang; Helm, Stefan; Steiner, Jürgen M.; Baginsky, Sacha

    2015-01-01

    Glaucophyta, rhodophyta, and chloroplastida represent the three main evolutionary lineages that diverged from a common ancestor after primary endosymbiosis. Comparative analyses between members of these three lineages are a rich source of information on ancestral plastid features. We analyzed the composition and the cleavage site of cyanelle transit peptides from the glaucophyte Cyanophora paradoxa by terminal amine labeling of substrates (TAILS), and compared their characteristics to those of representatives of the chloroplastida. Our data show that transit peptide architecture is similar between members of these two lineages. This entails a comparable modular structure, an overrepresentation of serine or alanine and similarities in the amino acid composition around the processing peptidase cleavage site. The most distinctive difference is the overrepresentation of phenylalanine in the N-terminal 1–10 amino acids of cyanelle transit peptides. A quantitative proteome analysis with periplasm-free cyanelles identified 42 out of 262 proteins without the N-terminal phenylalanine, suggesting that the requirement for phenylalanine in the N-terminal region is not absolute. Proteins in this set are on average of low abundance, suggesting that either alternative import pathways are operating specifically for low abundance proteins or that the gene model annotation is incorrect for proteins with fewer EST sequences. We discuss these two possibilities and provide examples for both interpretations. PMID:26257763

  13. Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae.

    PubMed

    Guedes, Elíca Amara Cecília; de Carvalho, Cenira M; Ribeiro Junior, Karlos Antonio Lisboa; Lisboa Ribeiro, Thyago Fernando; de Barros, Lurdiana Dayse; de Lima, Maria Raquel Ferreira; Prado Moura, Flávia de Barros; Goulart Sant'ana, Antônio Euzebio

    2014-01-01

    This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40  μ g·mL(-1) (11.1460  μ g·mL(-1) and 25.8689  μ g·mL(-1), resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40  μ g·mL(-1) (29.018  μ g·mL(-1) and 17.230  μ g·mL(-1), resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277  μ g·mL(-1) and 706.990  μ g·mL(-1)) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar. PMID:24688787

  14. Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian Sea.

    PubMed

    Braña, Alfredo F; Braña, Afredo F; Fiedler, Hans-Peter; Nava, Herminio; González, Verónica; Sarmiento-Vizcaíno, Aida; Molina, Axayacatl; Acuña, José L; García, Luis A; Blanco, Gloria

    2015-04-01

    Streptomycetes are widely distributed in the marine environment, although only a few studies on their associations to algae and coral ecosystems have been reported. Using a culture-dependent approach, we have isolated antibiotic-active Streptomyces species associated to diverse intertidal marine macroalgae (Phyllum Heterokontophyta, Rhodophyta, and Chlorophyta), from the central Cantabrian Sea. Two strains, with diverse antibiotic and cytotoxic activities, were found to inhabit these coastal environments, being widespread and persistent over a 3-year observation time frame. Based on 16S rRNA sequence analysis, the strains were identified as Streptomyces cyaneofuscatus M-27 and Streptomyces carnosus M-40. Similar isolates to these two strains were also associated to corals and other invertebrates from deep-sea coral reef ecosystem (Phyllum Cnidaria, Echinodermata, Arthropoda, Sipuncula, and Anelida) living up to 4.700-m depth in the submarine Avilés Canyon, thus revealing their barotolerant feature. These two strains were also found to colonize terrestrial lichens and have been repeatedly isolated from precipitations from tropospheric clouds. Compounds with antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. Antitumor compounds with antibacterial activities and members of the anthracycline family (daunomycin, cosmomycin B, galtamycin B), antifungals (maltophilins), anti-inflamatory molecules also with antituberculosis properties (lobophorins) were identified in this work. Many other compounds produced by the studied strains still remain unidentified, suggesting that Streptomyces associated to algae and coral ecosystems might represent an underexplored promising source for pharmaceutical drug discovery.

  15. Climate change and the microbiology of the Antarctic Peninsula region.

    PubMed

    Pearce, David A

    2008-01-01

    Antarctic terrestrial ecosystems are cold, dry, low nutrient environments, with large temperature fluctuations and paradoxically low levels of water availability. These extreme environments are dominated by microorganisms (viruses, archaea, eubacteria, fungi and microsporidia, alveolata, stmramenopila, rhodophyta, green algae and protists), which can either tolerate or are adapted to exploit unfavourable growth conditions. However, climate change is altering the growth environment in Antarctica, and so selection pressures on these microorganisms are changing which, in turn, might affect microbial activity in key processes such as biogeochemical cycling. Although the direct effect of a change in, for example, temperature, is known for very few Antarctic microorganisms, molecular techniques (to monitor population structure) and genomic techniques (to identify specific gene function) are starting to give us an insight into what the potential effects of climate change might be at the cellular level. The key to how microorganisms respond to such change depends upon the rate and magnitude of the change along with the physiological capability of microorganisms to adapt or tolerate those changes. Here we will examine a number of case studies in which the effects of factors such as temperature, nutrient availability, grazing, salinity, seasonal cycle and carbon dioxide concentration have each been demonstrated to affect bacterial community structure in polar and alpine ecosystems. The results suggest that the spatial distribution of genetic variation and, hence, comparative rates of evolution, colonization and extinction are particularly important when considering the response of microbial communities to climate change.

  16. Immunomodulatory properties of the protein fraction from Phorphyra columbina.

    PubMed

    Cian, Raúl E; López-Posadas, Rocío; Drago, Silvina R; de Medina, Fermín Sánchez; Martínez-Augustin, Olga

    2012-08-22

    The phycobiliproteins from Rhodophyta , R-phycoerythrin (R-PE) and C-phycocyanin (C-PC), have been shown to exert immunomodulatory effects. This study evaluated the effects of a Phorphyra columbina protein fraction (PF) and R-PE and C-PC on rat primary splenocytes, macrophages, and T-lymphocytes in vitro. PF featured various protein species, including R-PE and C-PC. PF showed mitogenic effects on rat splenocytes and was nontoxic to cells except at 1 g L(-1) protein. IL-10 secretion was enhanced by PF in rat splenocytes, macrophages, and especially T-lymphocytes, whereas it was markedly diminished by R-PE and C-PC. The production of pro-inflammatory cytokines by macrophages was inhibited. The effect of PF on IL-10 was evoked by JNK/p38 MAPK and NF-κB-dependent pathways in macrophages and T-lymphocytes. It was concluded that PF has immunomodulatory effects on macrophages and lymphocytes that appear to be predominantly anti-inflammatory via up-regulated IL-10 production and cannot be accounted for by R-PE and C-PC.

  17. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides

    PubMed Central

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2015-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  18. Speciation in red algae: members of the Ceramiales as model organisms.

    PubMed

    Maggs, Christine A; Fletcher, Hugh L; Fewer, David; Loade, Louise; Mineur, Frédéric; Johnson, Mark P

    2011-09-01

    Red algae (Rhodophyta) are an ancient group with unusual morphological, biochemical, and life-history features including a complete absence of flagella. Although the red algae present many opportunities for studying speciation, this has rarely been explicitly addressed. Here, we examine an aspect of paternal gene flow by determining fertilization success of female Neosiphonia harveyi (Ceramiales), which retains a morphological record of all successful and unsuccessful female gametes. High fertilization rates were observed except when there were no males at all within the tidepool, or in a submerged marina environment. Small numbers of reproductive males were able to saturate fertilization rates, suggesting that limited availability of sperm may be less significant in red algae than previously thought. In another member of the Ceramiales, Antithamnion, relatively large chromosomes permit karyological identification of polyploids. The Western Pacific species Antithamnion sparsum is closely related to the diploid species Antithamnion defectum, known only from the Eastern Pacific, and appears to have evolved from it. Molecular evidence suggests that A. sparsum is an autopolyploid, and that the European species known as Antithamnion densum is divergent from the A. sparsum/defectum complex.

  19. Carotenoids in algae: distributions, biosyntheses and functions.

    PubMed

    Takaichi, Shinichi

    2011-01-01

    For photosynthesis, phototrophic organisms necessarily synthesize not only chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, recently, taxonomic studies of algae have been developed. In this review, the relationship between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea and fresh water, including cyanobacteria, red algae, brown algae and green algae, is summarized. These phototrophs contain division- or class-specific carotenoids, such as fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical structures of carotenoids and known characteristics of carotenogenesis enzymes in other organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, light-harvesting and cytochrome b(6)f complexes. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions of carotenoids in photosynthesis are also briefly summarized.

  20. Divergence time estimates and the evolution of major lineages in the florideophyte red algae.

    PubMed

    Yang, Eun Chan; Boo, Sung Min; Bhattacharya, Debashish; Saunders, Gary W; Knoll, Andrew H; Fredericq, Suzanne; Graf, Louis; Yoon, Hwan Su

    2016-02-19

    The Florideophyceae is the most abundant and taxonomically diverse class of red algae (Rhodophyta). However, many aspects of the systematics and divergence times of the group remain unresolved. Using a seven-gene concatenated dataset (nuclear EF2, LSU and SSU rRNAs, mitochondrial cox1, and plastid rbcL, psaA and psbA genes), we generated a robust phylogeny of red algae to provide an evolutionary timeline for florideophyte diversification. Our relaxed molecular clock analysis suggests that the Florideophyceae diverged approximately 943 (817-1,049) million years ago (Ma). The major divergences in this class involved the emergence of Hildenbrandiophycidae [ca. 781 (681-879) Ma], Nemaliophycidae [ca. 661 (597-736) Ma], Corallinophycidae [ca. 579 (543-617) Ma], and the split of Ahnfeltiophycidae and Rhodymeniophycidae [ca. 508 (442-580) Ma]. Within these clades, extant diversity reflects largely Phanerozoic diversification. Divergences within Florideophyceae were accompanied by evolutionary changes in the carposporophyte stage, leading to a successful strategy for maximizing spore production from each fertilization event. Our research provides robust estimates for the divergence times of major lineages within the Florideophyceae. This timeline was used to interpret the emergence of key morphological innovations that characterize these multicellular red algae.

  1. YCF1: A Green TIC: Response to the de Vries et al. Commentary

    PubMed Central

    Nakai, Masato

    2015-01-01

    This response to a recent Commentary article by de Vries et al. highlights critical errors in the annotation and identification of Ycf1 homologs in the sequenced chloroplast genomes. Contrary to what is reported by de Vries et al., the majority of chloroplast genomes sequenced to date appear to have retained a typical Ycf1 sequence (i.e., including the N-terminal 6TM domain and a variable hydrophilic C-terminal domain) as my group previously reported. Our evidence continues to support the model that Ycf1 forms an essential component of a “green TIC” that is largely conserved among the Chlorophyta and land plants. Since the establishment of this green TIC with Tic20 as the core component, some cases of loss of Ycf1 during the evolution of the green lineages might be regarded as modifications or alterations of the complex. Here, I discuss our working model that the presence of an alternative “nonphotosynthetic-type” or “ancestral-type” TIC might explain other (or specific) cases of the lack of Ycf1, not only in early lineages, including Glaucophyta and Rhodophyta, but also in the grasses. PMID:26071422

  2. Comparative sequence analysis of CP12, a small protein involved in the formation of a Calvin cycle complex in photosynthetic organisms.

    PubMed

    Groben, René; Kaloudas, Dimitrios; Raines, Christine A; Offmann, Bernard; Maberly, Stephen C; Gontero, Brigitte

    2010-03-01

    CP12, a small intrinsically unstructured protein, plays an important role in the regulation of the Calvin cycle by forming a complex with phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). An extensive search in databases revealed 129 protein sequences from, higher plants, mosses and liverworts, different groups of eukaryotic algae and cyanobacteria. CP12 was identified throughout the Plantae, apart from in the Prasinophyceae. Within the Chromalveolata, two putative CP12 proteins have been found in the genomes of the diatom Thalassiosira pseudonana and the haptophyte Emiliania huxleyi, but specific searches in further chromalveolate genomes or EST datasets did not reveal any CP12 sequences in other Prymnesiophyceae, Dinophyceae or Pelagophyceae. A species from the Euglenophyceae within the Excavata also appeared to lack CP12. Phylogenetic analysis showed a clear separation into a number of higher taxonomic clades and among different forms of CP12 in higher plants. Cyanobacteria, Chlorophyceae, Rhodophyta and Glaucophyceae, Bryophyta, and the CP12-3 forms in higher plants all form separate clades. The degree of disorder of CP12 was higher in higher plants than in the eukaryotic algae and cyanobacteria apart from the green algal class Mesostigmatophyceae, which is ancestral to the streptophytes. This suggests that CP12 has evolved to become more flexible and possibly take on more general roles. Different features of the CP12 sequences in the different taxonomic groups and their potential functions and interactions in the Calvin cycle are discussed.

  3. Marine flora of the Iles Eparses (Scattered Islands): A longitudinal transect through the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Mattio, L.; Zubia, M.; Maneveldt, G. W.; Anderson, R. J.; Bolton, J. J.; de Gaillande, C.; De Clerck, O.; Payri, C. E.

    2016-04-01

    The diversity of marine macrophytes of small islands in the South Western Indian Ocean region has been poorly documented and little or no information is available for the Iles Eparses (or Scattered Islands) in the Mozambique Channel. We present the first species checklist for the three largest islands of the Iles Eparses: Europa, Juan de Nova and Glorioso. Overall, with a total of 321 marine macrophyte species recorded (incl. 56% Rhodophyta, 27% Chlorophyta, 15% Phaeophyceae and 2% Magnoliophyta; Europa: 134 spp., Juan de Nova: 157 spp. and Glorioso: 170 spp.) these islands harbour 23.5% of the total species recorded for the Mozambique Channel region. We report 36 new records for the Mozambique Channel including 29 undescribed new and cryptic species. Our results highlight a decrease in species richness southward in the Channel. Because of their longitudinal arrangement between the northern and the southern ends of the Channel and their central position, Europa, Juan de Nova and Glorioso Islands represent data points of particular biogeographical interest and could be critical 'stepping stones' for connectivity in the highly dynamic Mozambique Channel region.

  4. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock

    PubMed Central

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf. PMID:26727469

  5. Distribution of Sargassum natans and some of its epibionts in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Niermann, U.

    1986-12-01

    Sargassum was collected during the Sargasso Sea Eel Expedition in Spring 1979. On average, the morphological form type Sargassum natans (I) made up 85 % of the total wet weight of the samples. South of the thermal front, larger amounts of weeds were observed. Here, the bladder size of S. natans (I) was significantly smaller (surface 47±7 mm2) than in the northern part (surface: 64±15 mm2), while phylloids showed no differences. The composition and density of some epibionts were examined. Membranipora tuberculata (Bryozoa), Clytia noliformis (Hydrozoa) and the calcarious algae “ Melobesia sp.” (Rhodophyta) were studied quantitatively according to different features at 17 stations. M. tuberculata was the most abundant epibiont followed by C. noliformis. Compared with these species, " Melobesia sp." occurred in considerably lower quantities. M. tuberculata showed a preference for bladders rather than phylloids; C. noliformis was found more frequently on phylloids than on bladders. " Melobesia sp." did not show any preference. Frequency and abundance of these epibionts were higher north of the thermal front than south of this front. North of the front S. natans (I) was less abundant but bladders were larger.

  6. [Effects of Ulva pertusa and Gracilaria lemaneiformis on growth of Heterosigma akashiwo (Raphidophyceae) in co-culture].

    PubMed

    Wang, You; Yu, Zhi-ming; Song, Xiu-xian; Zhang, Shan-dong

    2006-02-01

    We studied the effects of fresh tissue and culture medium filtrate of two species of macroalgae, Ulva pertusa (Chlorophyta) and Gracilaria lemaneiformis (Rhodophyta) on growth of Heterosigma akashiwo (Raphidophyceae) in co-culture. Both U. pertusa and G. lemaneiformis, and especially their fresh tissues, significantly impede the growth of H. akashiwo. Carbonate limitations and the presence of environment bacteria are not necessary for the negative effects of macroalgal on H. akashiwo. The simultaneous nutrient assays show that nitrate and phosphate are almost exhausted in the G. lemaneiformis co-culture system, but remain at acceptable levels in the U. pertusa system, when all cells of H. akashiwo are completely dead. When f/2 medium is supplied daily to G. lemaneiformis culture, the growth of H. akashiwo is greatly inhibited but not completely terminated. Furthermore, different amounts of fresh seaweed tissue, and culture medium filtrate prepared from different macroalgal concentrations are analyzed to determine their effects on the growth of H. akashiwo. The results show a positive correlation between the initial macroalgal concentration and the negative effects they exert on the co-cultured microalgae. Results suggest that the allelopathic effects of U. pertusa may be essential for negative effects on H. akashiwo; however, the combined roles of allelopathy and nutrient competition may be responsible for the negative effect of G. lemaneiformis the release of allelochemicals by U. pertusa.

  7. Analysis of Porphyra Membrane Transporters Demonstrates Gene Transfer among Photosynthetic Eukaryotes and Numerous Sodium-Coupled Transport Systems1[C][W][OA

    PubMed Central

    Chan, Cheong Xin; Zäuner, Simone; Wheeler, Glen; Grossman, Arthur R.; Prochnik, Simon E.; Blouin, Nicolas A.; Zhuang, Yunyun; Benning, Christoph; Berg, Gry Mine; Yarish, Charles; Eriksen, Renée L.; Klein, Anita S.; Lin, Senjie; Levine, Ira; Brawley, Susan H.; Bhattacharya, Debashish

    2012-01-01

    Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters. PMID:22337920

  8. Comparative analysis of heavy metal and radionuclide contaminants in Black Sea green and red macroalgae.

    PubMed

    Strezov, A S; Nonova, Tz P

    2005-01-01

    A comparative analysis about the accumulation of heavy metal, natural and technogenic radionuclides from the Black Sea environment in different Bulgarian coastline regions is made. The possibilities to use Chlorophyta and Rhodophyta algae phylums as bioindicators in marine environment are investigated. Environmental contamination in the Black Sea alga species (green and red) was studied from 1992 to 2003. Sampling sites were selected to cover the whole coastal region. Low level gamma spectrometry was used to determine the natural and technogenic nuclide concentrations. The heavy metal concentrations were measured by Atomic Absorption Spectrometry (AAS). The obtained data show that radionuclide and metal concentrations depend on the macrophyte type. Tendencies in the concentration of pollutant variations during the studied period are examined and all data give information about different macrophytic species' ability to accumulate certain elements from one and the same sampling location. All obtained results show that use of macroalgae in marine environmental monitoring reduces the need for complex studies on chemical speciation of aquatic contaminants and makes algae valuable indicators for seawater quality assessment. All data show the lack of serious pollution along the Bulgarian Black Sea coast.

  9. Effects of different light conditions on repair of UV-B-induced damage in carpospores of Chondrus ocellatus Holm

    NASA Astrophysics Data System (ADS)

    Ju, Qing; Xiao, Hui; Wang, You; Tang, Xuexi

    2015-05-01

    We evaluated the effects of ultraviolet-B (UV-B) radiation and different light conditions on the repair of UV-B-induced damage in carpospores of Chondrus ocellatus Holm (Rhodophyta) in laboratory experiments. Carpospores were treated daily with different doses of UV-B radiation for 48 days, when vertical branches had formed in all treatments; after each daily treatment, the carpospores were subjected to photosynthetically active radiation (PAR), darkness, red light, or blue light during a 2-h repair stage. Carpospore diameters were measured every 4 days. We measured the growth and cellular contents of cyclobutane pyrimidine dimers (CPDs), chlorophyll a, phycoerythrin, and UV-B-absorbing mycosporine-like amino acids (MAAs) in carpospores on Day 48. Low doses of UV-B radiation (36 and 72 J/m2) accelerated the growth of C. ocellatus. However, as the amount of UV-B radiation increased, the growth rate decreased and morphological changes occurred. UV-B radiation significant damaged DNA and photosynthetic pigments and induced three kind of MAAs, palythine, asterina-330, and shinorine. PAR conditions were best for repairing UV-B-induced damage. Darkness promoted the activity of the DNA darkrepair mechanism. Red light enhanced phycoerythrin synthesis but inhibited light repair of DNA. Although blue light, increased the activity of DNA photolyase, greatly improving remediation efficiency, the growth and development of C. ocellatus carpospores were slower than in other light treatments.

  10. Macroalgal introductions by hull fouling on recreational vessels: seaweeds and sailors.

    PubMed

    Mineur, Frédéric; Johnson, Mark P; Maggs, Christine A

    2008-10-01

    Macroalgal invasions in coastal areas have been a growing concern during the past decade. The present study aimed to assess the role of hull fouling on recreational yachts as a vector for macroalgal introductions. Questionnaire and hull surveys were carried out in marinas in France and Spain. The questionnaires revealed that the majority of yacht owners are aware of seaweed introductions, usually undertake short range journeys, dry dock their boat at least once a year, and use antifouling paints. The hull survey showed that many in-service yachts were completely free of macroalgae. When present, fouling assemblages consisted mainly of one to two macroalgal species. The most commonly found species was the tolerant green seaweed Ulva flexuosa. Most of the other species found are also cosmopolitan and opportunistic. A few nonnative and potentially invasive Ceramiales (Rhodophyta) were found occasionally on in-service yachts. On the basis of the information gathered during interviews of yacht owners in the surveyed area, these occurrences are likely to be uncommon. However they can pose a significant risk of primary or secondary introductions of alien macroalgal species, especially in the light of the increase in yachting activities. With large numbers of recreational yachts and relatively rare occurrences of nonnative species on hulls, comprehensive screening programs do not seem justified or practical. The risks of transferring nonnative species may, however, be minimized by encouraging the behaviors that prevent fouling on hulls and by taking action against neglected boats before they can act as vectors.

  11. New records of marine algae in Vietnam

    NASA Astrophysics Data System (ADS)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  12. Articulated coralline algae of the genus Amphiroa are highly effective natural inducers of settlement in the tropical abalone Haliotis asinina.

    PubMed

    Williams, Elizabeth A; Craigie, Alina; Yeates, Alice; Degnan, Sandie M

    2008-08-01

    The initiation of metamorphosis in marine invertebrates is strongly linked to the environment. Planktonic larvae typically are induced to settle and metamorphose by external cues such as coralline algae (Corallinaceae, Rhodophyta). Although coralline algae are globally abundant, invertebrate larvae of many taxa settle in response to a very limited suite of species. This specificity impacts population structure, as only locations with the appropriate coralline species can attract new recruits. Abalone (Gastropoda, Haliotidae) are among those taxa in which closely related species are known to respond to different coralline algae. Here we identify highly inductive natural cues of the tropical abalone Haliotis asinina. In contrast to reports for other abalone, the greatest proportion of H. asinina larvae are induced to settle and metamorphose (92.8% to 100% metamorphosis by 48 h postinduction) by articulated corallines of the genus Amphiroa. Comparison with field distribution data for different corallines suggests larvae are likely to be settling on the seaward side of the reef crest. We then compare the response of six different H. asinina larval families to five different coralline species to demonstrate that induction by the best inductive cue (Amphiroa spp.) effectively extinguishes substantial intraspecific variation in the timing of settlement.

  13. On reproduction in red algae: further research needed at the molecular level.

    PubMed

    García-Jiménez, Pilar; Robaina, Rafael R

    2015-01-01

    Multicellular red algae (Rhodophyta) have some of the most complex life cycles known in living organisms. Economically valuable seaweeds, such as phycocolloid producers, have a triphasic (gametophyte, carposporophyte, and tetrasporophyte) life cycle, not to mention the intricate alternation of generations in the edible "sushi-alga" nori. It is a well-known fact that reproductive processes are controlled by one or more abiotic factor(s), including day length, light quality, temperature, and nutrients. Likewise, endogenous chemical factors such as plant growth regulators have been reported to affect reproductive events in some red seaweeds. Still, in the genomic era and given the high throughput techniques at our disposal, our knowledge about the endogenous molecular machinery lags far behind that of higher plants. Any potential effective control of the reproductive process will entail revisiting most of these results and facts to answer basic biological questions as yet unresolved. Recent results have shed light on the involvement of several genes in red alga reproductive events. In addition, a working species characterized by a simple filamentous architecture, easy cultivation, and accessible genomes may also facilitate our task. PMID:25755663

  14. DGDG and Glycolipids in Plants and Algae.

    PubMed

    Kalisch, Barbara; Dörmann, Peter; Hölzl, Georg

    2016-01-01

    Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA).

  15. Macroalgae in a spring stream in Shanxi Province: composition and relation to physical and chemical variables

    NASA Astrophysics Data System (ADS)

    Hu, Bianfang; Xie, Shulian

    2007-07-01

    Fourteen stream segments were investigated throughout the Xin’an Spring in Shanxi Province, China in 2004. The variation ranges in stream size, current velocity, discharge, dissolved oxygen, and specific conductance were large. Twenty-two macroalgae species were found in the stream. Major divisions in terms of species numbers were Chlorophyta (59.1%), Cyanophyta (22.8%), Xanthophyta (9.1%), Rhodophyta (4.5%) and Charophyta (4.5%). The most widespread species, Cladophora rivularis (50.0%), also Oedogonium sp. (42.9%) and Spirogyra sp. (42.9%) were well represented throughout the stream, whereas another 10 species were found in only one sampling site. Total percentage cover varied from <1% to 90%. Red algae Batrachospermum acuatum and the charophytes Chara vulgaris have the highest percentage cover. Among the parameters analyzed, the stream width, specific conductance and dissolved oxygen were the ones that more closely related to the species number and percentage cover of macroalgal communities. The species number of each site was negatively correlated with dissolved oxygen content. The total percentage cover of the macroalgae was negatively correlated with the stream width and the specific conductance.

  16. Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases.

    PubMed

    Esser, Christian; Kuhn, Anke; Groth, Georg; Lercher, Martin J; Maurino, Veronica G

    2014-05-01

    Glycolate oxidase (GOX) is a crucial enzyme of plant photorespiration. The encoding gene is thought to have originated from endosymbiotic gene transfer between the eukaryotic host and the cyanobacterial endosymbiont at the base of plantae. However, animals also possess GOX activities. Plant and animal GOX belong to the gene family of (L)-2-hydroxyacid-oxidases ((L)-2-HAOX). We find that all (L)-2-HAOX proteins in animals and archaeplastida go back to one ancestral eukaryotic sequence; the sole exceptions are green algae of the chlorophyta lineage. Chlorophyta replaced the ancestral eukaryotic (L)-2-HAOX with a bacterial ortholog, a lactate oxidase that may have been obtained through the primary endosymbiosis at the base of plantae; independent losses of this gene may explain its absence in other algal lineages (glaucophyta, rhodophyta, and charophyta). We also show that in addition to GOX, plants possess (L)-2-HAOX proteins with different specificities for medium- and long-chain hydroxyacids (lHAOX), likely involved in fatty acid and protein catabolism. Vertebrates possess lHAOX proteins acting on similar substrates as plant lHAOX; however, the existence of GOX and lHAOX subfamilies in both plants and animals is not due to shared ancestry but is the result of convergent evolution in the two most complex eukaryotic lineages. On the basis of targeting sequences and predicted substrate specificities, we conclude that the biological role of plantae (L)-2-HAOX in photorespiration evolved by co-opting an existing peroxisomal protein.

  17. Efficient gusA transient expression in Porphyra yezoensis protoplasts mediated by endogenous beta-tubulin flanking sequences

    NASA Astrophysics Data System (ADS)

    Gong, Qianhong; Yu, Wengong; Dai, Jixun; Liu, Hongquan; Xu, Rifu; Guan, Huashi; Pan, Kehou

    2007-01-01

    Endogenous tubulin promoter has been widely used for expressing foreign genes in green algae, but the efficiency and feasibility of endogenous tubulin promoter in the economically important Porphyra yezoensis (Rhodophyta) are unknown. In this study, the flanking sequences of beta-tubulin gene from P. yezoensis were amplified and two transient expression vectors were constructed to determine their transcription promoting feasibility for foreign gene gusA. The testing vector pATubGUS was constructed by inserting 5'-and 3'-flanking regions ( Tub5' and Tub3') up-and down-stream of β-glucuronidase (GUS) gene ( gusA), respectively, into pA, a derivative of pCAT®3-enhancer vector. The control construct, pAGUSTub3, contains only gusA and Tub3'. These constructs were electroporated into P. yezoensis protoplasts and the GUS activities were quantitatively analyzed by spectrometry. The results demonstrated that gusA gene was efficiently expressed in P. yezoensis protoplasts under the regulation of 5'-flanking sequence of the beta-tubulin gene. More interestingly, the pATubGUS produced stronger GUS activity in P. yezoensis protoplasts when compared to the result from pBI221, in which the gusA gene was directed by a constitutive CaMV 35S promoter. The data suggest that the integration of P. yezoensis protoplast and its endogenous beta-tubulin flanking sequences is a potential novel system for foreign gene expression.

  18. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology

    PubMed Central

    Jehlička, Jan; Edwards, Howell G. M.; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-01-01

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings. PMID:25368348

  19. Methanolic extracts from brown seaweeds Dictyota cilliolata and Dictyota menstrualis induce apoptosis in human cervical adenocarcinoma HeLa cells.

    PubMed

    Gomes, Dayanne Lopes; Telles, Cinthia Beatrice Silva; Costa, Mariana Santana Santos Pereira; Almeida-Lima, Jailma; Costa, Leandro Silva; Keesen, Tatjana Souza Lima; Rocha, Hugo Alexandre Oliveira

    2015-01-01

    Carcinoma of the uterine cervix is the second most common female tumor worldwide, surpassed only by breast cancer. Natural products from seaweeds evidencing apoptotic activity have attracted a great deal of attention as new leads for alternative and complementary preventive or therapeutic anticancer agents. Here, methanol extracts from 13 species of tropical seaweeds (Rhodophytas, Phaeophyta and Chlorophyta) collected from the Northeast of Brazil were assessed as apoptosis-inducing agents on human cervical adenocarcinoma (HeLa). All extracts showed different levels of cytotoxicity against HeLa cells; the most potent were obtained from the brown alga Dictyota cilliolata (MEDC) and Dictyota menstrualis (MEDM). In addition, MEDC and MEDM also inhibits SiHa (cervix carcinoma) cell proliferation. Studies with these two extracts using flow cytometry and fluorescence microscopy showed that HeLa cells exposed to MEDM and MEDC exhibit morphological and biochemical changes that characterize apoptosis as shown by loss of cell viability, chromatin condensation, phosphatidylserine externalization, and sub-G1 cell cycle phase accumulation, also MEDC induces cell cycle arrest in cell cycle phase S. Moreover, the activation of caspases 3 and 9 by these extracts suggests a mitochondria-dependent apoptosis route. However, other routes cannot be ruled out. Together, these results point out the methanol extracts of the brown algae D. mentrualis and D. cilliolata as potential sources of molecules with antitumor activity. PMID:25871374

  20. Direct evaluation of macroalgal removal by herbivorous coral reef fishes

    NASA Astrophysics Data System (ADS)

    Mantyka, C. S.; Bellwood, D. R.

    2007-06-01

    Few studies have examined the relative functional impacts of individual herbivorous fish species on coral reef ecosystem processes in the Indo-Pacific. This study assessed the potential grazing impact of individual species within an inshore herbivorous reef fish assemblage on the central Great Barrier Reef (GBR), by determining which fish species were able to remove particular macroalgal species. Transplanted multiple-choice algal assays and remote stationary underwater digital video cameras were used to quantify the impact of local herbivorous reef fish species on 12 species of macroalgae. Macroalgal removal by the fishes was rapid. Within 3 h of exposure to herbivorous reef fishes there was significant evidence of intense grazing. After 12 h of exposure, 10 of the 12 macroalgal species had decreased to less than 15% of their original mass. Chlorodesmis fastigiata (Chlorophyta) and Galaxaura sp. (Rhodophyta) showed significantly less susceptibility to herbivorous reef fish grazing than all other macroalgae, even after 24 h exposure. Six herbivorous and/or nominally herbivorous reef fish species were identified as the dominant grazers of macroalgae: Siganus doliatus, Siganus canaliculatus, Chlorurus microrhinos, Hipposcarus longiceps, Scarus rivulatus and Pomacanthus sexstriatus. The siganid S. doliatus fed heavily on Hypnea sp., while S. canaliculatus fed intensively on Sargassum sp. Variation in macroalgal susceptibility was not clearly correlated with morphological and/or chemical defenses that have been previously suggested as deterrents against herbivory. Nevertheless, the results stress the potential importance of individual herbivorous reef fish species in removing macroalgae from coral reefs.

  1. Heavy metal concentrations in marine green, brown, and red seaweeds from coastal waters of Yemen, the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Al-Shwafi, Nabil A.; Rushdi, Ahmed I.

    2008-08-01

    The purpose of this study was to investigate the concentration levels of heavy metals in different species of the main three marine algal divisions from the Gulf of Aden coastal waters, Yemen. The divisions included Chlorophyta—green plants ( Halimeda tuna, Rhizoclonium kochiamum, Caldophora koiei, Enteromorpha compressa, and Caulerpa racemosa species), Phaeophyta—brown seaweeds ( Padina boryana, Turbinaria elatensis, Sargassum binderi, Cystoseira myrica, and Sargassum boveanum species), and Rhodophyta—red seaweeds ( Hypnea cornuta, Champia parvula, Galaxaura marginate, Laurencia paniculata, Gracilaria foliifere, and species). The heavy metals, which included cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), Iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn), and vanadium (V) were measured by Atomic Absorption Spectrophotometer (AAs). The concentrations of heavy metals in all algal species are in the order of Fe >> Cu > Mn > Cr > Zn > Ni > Pb > Cd > V > Co. The results also showed that the uptake of heavy metals by different marine algal divisions was in the order of Chlorophyta > Phaeophyta > Rhodophyta. These heavy metals were several order of magnitude higher than the concentrations of the same metals in seawater. This indicates that marine alga progressively uptake heavy metals from seawater.

  2. Seasonal variations in biomass and species composition of seaweeds along the northern coasts of Persian Gulf (Bushehr Province)

    NASA Astrophysics Data System (ADS)

    Dadolahi-Sohrab, A.; Garavand-Karimi, M.; Riahi, H.; Pashazanoosi, H.

    2012-02-01

    This study was carried out to evaluate the seasonal variations of seaweed biomass and species composition at six different sites along the coastal areas in Bushehr Province. Sampling depths varied among sites, from 0.3 to 2.0 m below mean sea level. A total of 37 (i.e., 10 Chlorophyta, 12 Phaeophyta and 15 Rhodophyta) seaweed species were collected. Studies were conducted for quantifying the seaweeds during four seasons from October 2008 until July 2009. During present research, Ulva intestinalis and Cladophora nitellopsis of green, Polycladia myrica, Sirophysalia trinodis and Sargassum angustifolium of brown and Gracilaria canaliculata and Hypnea cervicornis of red seaweeds showed highest biomass in coastal areas of Bushehr Province. The Cheney`s ratio of 2.1 indicated a temperate algal flora to this area. All sites exhibited more than 50% similarity of algal species, indicating a relatively homogenous algal distribution. Total biomass showed the highest value of 3280.7 ± 537.8 g dry wt m - 2 during summer and lowest value of 856.9 ± 92.0 g dry wt m - 2 during winter. During this study, the highest and lowest seaweed biomass were recorded on the site 2 (2473.7 ± 311.0 g dry wt m - 2) and site 5 (856.7 ± 96.8 g dry wt m - 2), respectively.

  3. Hydrodynamic transport of drifting macroalgae through a tidal cut

    NASA Astrophysics Data System (ADS)

    Biber, Patrick D.

    2007-09-01

    Drifting macroalgae are unattached seaweeds that are commonly found in many South Florida and Gulf of Mexico shallow-water seagrass habitats. They are primarily comprised of species of red algae (Rhodophyta) and some brown algae (Phaeophyta). Because of the unattached nature of these species, drift algae have the ability to be moved around the landscape primarily by tidal, as well as wind-driven and alongshore currents. Numerous invertebrates and some fish species are typically found associated with drift algal clumps and aggregations. Transport of drift algae is an important dispersal mechanism for both the plants and their associated fauna. Dispersal distances have been studied in numerous locations over a range of spatial scales. However, little is known about quantities of algal material that are involved. In this study I report on composition and biomass of drifting algae that are transported through a tidal inlet in Biscayne Bay, Florida. Sargassum (a brown alga) and about 12 genera of red algae were found in three seasonal collections (Aug., Dec., May). Total biomass collected varied among seasons, with larger average amounts of drift algae collected in May than the other two months sampled. From this data, I calculate the approximate quantities of drift algae that are potentially moving in, or out of, Biscayne Bay, about a half to one ton of biomass per day.

  4. Examination of the structures of several glycerolipids from marine macroalgae by NMR and GC-MS.

    PubMed

    Logvinov, Stepan; Gerasimenko, Natalia; Esipov, Andrey; Denisenko, Vladimir A

    2015-12-01

    Several classes of glycerolipids were isolated from the total lipids of the algae Saccharina cichorioides, Eualaria fistulosa, Fucus evanescens, Sargassum pallidum, Silvetia babingtonii (Ochrophyta, Phaeophyceae), Tichocarpus crinitus, and Neorhodomela larix (Rhodophyta, Florideophyceae). The structures of these lipids were examined by nuclear magnetic resonance (NMR) spectroscopy, including 1D ((1) H and (13) C) and 2D (COSY, HSQC and HMBC) experiments. All of the investigated algae included common galactolipids and sulfonoglycolipids as the major glycolipids. Minor glycolipids isolated from S. cichorioides, T. crinitus, and N. laris were identified as lyso-galactolipids with a polar group consisted of the galactose. Comparison of the (1) H NMR data of minor nonpolar lipids isolated from the extracts of the brown algae S. pallidum and F. evanescens with the (1) H NMR data of other lipids allowed them to be identified as diacylglycerols. The structures of betaine lipids isolated from brown algae were confirmed by NMR for the first time. The fatty acid compositions of the isolated lipids were determined by gas chromatography-mass spectrometry. PMID:26987002

  5. [Distribution of macroalgal community and environmental effects in Yangma Island, Yantai, Shandon Province, China].

    PubMed

    Han, Qiu-ying; Yin, Xiang-bo; Liu, Dong-yan

    2014-12-01

    Distribution of macroalgal community was investigated monthly in the intertidal zone of Yangma Island, Yantai, Shandong Province, China during April 2010 to March 2011. Macroalgae sampling was conducted at two sites (A and B) along Yangma Island coastline. The relationships between macroalgae species composition and biomass and environment variables were studied. In total, 35 macroalgae species were identified, including 24 Rhodophyta (68.6% of the total number), 6 Chlorophyta (17.1% of the total number) and 5 Phaeophyta (14.3% of the total number). Brown algae and green algae dominated in summer, and red algae and brown algae dominated in other seasons. Sargassum thunbergii was the dominant species all the year. The biomass of macroalgae was higher in summer and lower in winter. The highest biomass of macroalgae was observed in June. The lowest biomass of macroalgae was observed in January at A sampling site and in November at B sampling site with the characters of macroalgae in the temperate seas. Seawater temperature, nutrients and pH could have significant effects on the variations of macroalgae biomass in the Yangma Island intertidal zone. PMID:25876420

  6. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides.

    PubMed

    Song, Lin; Chen, Xiaolin; Liu, Xiaodong; Zhang, Fubo; Hu, Linfeng; Yue, Yang; Li, Kecheng; Li, Pengcheng

    2016-01-01

    Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV. PMID:26729137

  7. Main nutritional contents of 30 Dalian coastal microalgae species

    NASA Astrophysics Data System (ADS)

    Su, Xiurong; Liu, Huihui; Chen, Kwan Paul

    2004-12-01

    This paper reports results of study on the contents of proteins, amino acids, polysaccharose and uronic acids in 30 species of macroalgae from Shicao, Heishijiao, Shimiao, and Xiaofujiazhuang in the vicinity of Dalian City, N.E.China. The results showed that the protein contents of the 30 algae from highest (112.55 μ g/ml) to the lowest (0.24 μg/ml) was in the descending order of Dictyopteris ndalata, Gelidium vagum, Gymnogongrus japonican, Ectocarpus confervoides, Tinocladia crassa, Sargassum thunberii. In general, the protein content in red algae was higher than that in brown algae. The content of free amino acids showed no significent differences from 7.44 μg/ml4.96 μg/ml in all these algae, in the descending order of Gymnogongrus japonican, Sargassum confusum, Undoria pinnatifida, Laminaria japonica and Ectocarpus confervoides. The content of polysaccharose varied from 168.2 μ/ml-22.15 μg/ml in the descending order of Symphocladia latiuscula, Scytosiphon lomentarius, Desmarestia viridis., Tinocladia crassa, Gracilaria asiatica and Porphyra yezoensis. The content of uronic acids is from 196.24μg/ml-20.77 μg/ml in the descending order of Ulva lactuca, Symphyoclaldia latiuscula, Scytosiphon lomentarius, Ceramimum kodoi, Gracilaria vemucosa and Porphyra yezoensis. The fatty acids in 30 species of algae belong to Rhodophyta, Chlorophyta and Phaeophyta. Most phaeophytes have many (4 12) types of fatty acids.

  8. Macroalgal assemblages of disturbed coastal detritic bottoms subject to invasive species

    NASA Astrophysics Data System (ADS)

    Klein, Judith C.; Verlaque, Marc

    2009-04-01

    Characteristic flora and fauna that are highly sensitive to disturbances colonize coastal detritic bottoms in the Mediterranean Sea. In the present study, a comparison of the assemblage composition and colonization by invasive macroalgae was made between two coastal detritic macrophyte assemblages, one dominated by rhodoliths (free-living non-geniculate Corallinales) and the other dominated by fleshy algae, in an area that has been exposed to important levels of anthropogenic disturbance, mainly pollution (including changed sedimentation regimes) in the recent past (bay of Marseilles, France). In comparison with less strongly impacted Mediterranean regions, the macrophyte assemblages in the bay of Marseilles were characteristic in terms of species identity and richness of coastal detritic macrophyte assemblages. However, extremely low species abundance (cover) was observed. As far as invasive species were concerned, Caulerpa racemosa var. cylindracea was only abundant in the rhodolith assemblage whereas the two invasive Rhodophyta Asparagopsis armata and Womersleyella setacea were mainly found in the fleshy algae assemblage. The seasonality observed in the Rhodolith assemblage seemed to be related to the development of C. racemosa var. cylindracea and did not follow the typical pattern of other Mediterranean assemblages. This study represents the first study of coastal detritic assemblages invaded by C. racemosa var. cylindracea.

  9. Screening of Dengue Virus Antiviral Activity of Marine Seaweeds by an In Situ Enzyme-Linked Immunosorbent Assay

    PubMed Central

    Koishi, Andrea Cristine; Zanello, Paula Rodrigues; Bianco, Éverson Miguel; Bordignon, Juliano; Nunes Duarte dos Santos, Claudia

    2012-01-01

    Dengue is a significant public health problem worldwide. Despite the important social and clinical impact, there is no vaccine or specific antiviral therapy for prevention and treatment of dengue virus (DENV) infection. Considering the above, drug discovery research for dengue is of utmost importance; in addition natural marine products provide diverse and novel chemical structures with potent biological activities that must be evaluated. In this study we propose a target-free approach for dengue drug discovery based on a novel, rapid, and economic in situ enzyme-linked immunosorbent assay and the screening of a panel of marine seaweed extracts. The in situ ELISA was standardized and validated for Huh7.5 cell line infected with all four serotypes of DENV, among them clinical isolates and a laboratory strain. Statistical analysis showed an average S/B of 7.2 and Z-factor of 0.62, demonstrating assay consistency and reliability. A panel of fifteen seaweed extracts was then screened at the maximum non-toxic dose previously determined by the MTT and Neutral Red cytotoxic assays. Eight seaweed extracts were able to reduce DENV infection of at least one serotype tested. Four extracts (Phaeophyta: Canistrocarpus cervicornis, Padina gymnospora; Rhodophyta: Palisada perforate; Chlorophyta: Caulerpa racemosa) were chosen for further evaluation, and time of addition studies point that they might act at an early stage of the viral infection cycle, such as binding or internalization. PMID:23227238

  10. Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs

    NASA Astrophysics Data System (ADS)

    Roff, George; Chollett, Iliana; Doropoulos, Christopher; Golbuu, Yimnang; Steneck, Robert S.; Isechal, Adelle L.; van Woesik, Robert; Mumby, Peter J.

    2015-09-01

    Environmental conditions play an important role in post-disturbance dynamics of ecosystems by modulating recovery of surviving communities and influencing patterns of succession. Here, we document the effects of wave exposure following a catastrophic disturbance on coral reefs in driving a phase shift to macroalgal dominance. In December 2012, a Category 5 super typhoon (`Typhoon Bopha') passed 50 km to the south of Palau (Micronesia), causing a major loss of reef corals. Immediately post-disturbance, a rapid and extensive phase shift of the macroalgae Liagora sp. (Rhodophyta) was observed at sites exposed to chronic wave exposure. To quantify the influence of biotic and abiotic drivers in modulating the extent of post-disturbance Liagora blooms, we compared benthic substrates and herbivore assemblages at sites surveyed pre- and post-disturbance across a gradient of wave exposure. Relative changes in herbivore biomass and coral cover before and after disturbance did not significantly predict the extent of Liagora cover, indicating that changes in herbivore biomass or reductions in grazing pressure were not directly responsible for driving the Liagora blooms. By contrast, the degree of wave exposure experienced at sites post-disturbance explained >90 % of model variance ( p < 0.001, R 2 = 0.69), in that Liagora was absent at low exposure sites, while most extensive blooms were observed at highly exposed sites. At regional scales, spatial maps of wave exposure accurately predicted the presence of Liagora at impacted sites throughout the Palau archipelago (>150 km distance), highlighting the predictive capacity of wave exposure as an explanatory variable and the deterministic nature of post-disturbance macroalgal blooms. Understanding how physical conditions modulate recovery of ecosystems after disturbance allows insight into post-disturbance dynamics and succession of communities, ultimately allowing management strategies to prioritise restoration efforts in regions

  11. Cultivation and conversion of marine macroalgae. [Gracilaria and Ulva

    SciTech Connect

    Ryther, J.H.; DeBusk, T.A.; Blakeslee, M.

    1984-05-01

    Research was conducted on the development of an alternative ocean energy farm concept that would not be dependent upon deep ocean water or other extraneous sources for its nutrient supply and that could be located in shallow, near shore, and protected coastal ocean areas. There are five tasks reported in this document: determination of the annual yield of Ulva in non-intensive cultures; evaluation of the effect of carbon concentration on Gracilaria and Ulva yields; evaluation of spray/mist culture of Ulva and Gracilaria; species screening for the production of petroleum replacement products; and synthesis analysis, and economic energy evaluation of culture data. An alternative concept to open ocean culture is a land-based energy production system utilizing saline waters from underground aquifers or enclosed coastal areas. Research was performed to evaluate growth and biomass production of all macroscopic algal species that could be obtained in adequate quantity in the central Florida area. A total of 42 species were grown in specially adapted burial vaults. These included 16 green algae (Garcilaria 4 weekshlorophyta), 2 brown algae (Phaeophyta), and 18 red algae (Rhodophyta). Of these, the most successful and suitable species were a strain of Gracilaria (a red seaweed) and Ulva (a green seaweed). These two species have a high carbohydrate content that may be anaerobically digested to methane gas. Well-nourished Gracilaria will double its biomass in 1 to 4 weeks, depending on the season, water flow, and other variables. After its biomass has doubled (i.e., from 2 to 4 kg/m/sup 2/) the incremental growth is harvested to return the crop to a starting density. Enrichment of the new starting crop following harvest could conceivably be accomplished onsite at the seaweed farm, but the rapid uptake and storage of nutrients by depleted seaweeds makes possible a simpler process, known as pulse fertilization.

  12. Marine Invasion in the Mediterranean Sea: The Role of Abiotic Factors When There Is No Biological Resistance

    PubMed Central

    2012-01-01

    The tropical red alga Womersleyella setacea (Rhodomelaceae, Rhodophyta) is causing increasing concern in the Mediterranean Sea because of its invasive behavior. After its introduction it has colonized most Mediterranean areas, but the mechanism underlying its acclimatization and invasion process remains unknown. To understand this process, we decided i) to assess in situ the seasonal biomass and phenological patterns of populations inhabiting the Mediterranean Sea in relation to the main environmental factors, and ii) to experimentally determine if the tolerance of W. setacea to different light and temperature conditions can explain its colonization success, as well as its bathymetric distribution range. The bathymetric distribution, biomass, and phenology of W. setacea were studied at two localities, and related to irradiance and temperature values recorded in situ. Laboratory experiments were set up to study survival, growth and reproduction under contrasting light and temperature conditions in the short, mid, and long term.Results showed that, in the studied area, the bathymetric distribution of W. setacea is restricted to a depth belt between 25 and 40 m deep, reaching maximum biomass values (126 g dw m−2) at 30 m depth. In concordance, although in the short term W. setacea survived and grew in a large range of environmental conditions, its life requirements for the mid and long term were dim light levels and low temperatures. Biomass of Womersleyella setacea did not show any clear seasonal pattern, though minimum values were reported in spring. Reproductive structures were always absent. Bearing in mind that no herbivores feed on Womersleyella setacea and that its thermal preferences are more characteristic of temperate than of tropical seaweeds, low light (50 µmol photon m−2 s−1) and low temperature (12°C) levels are critical for W. setacea survival and growth, thus probably determining its spread and bathymetric distribution across the Mediterranean

  13. XET Activity is Found Near Sites of Growth and Cell Elongation in Bryophytes and Some Green Algae: New Insights into the Evolution of Primary Cell Wall Elongation

    PubMed Central

    Van Sandt, Vicky S. T.; Stieperaere, Herman; Guisez, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2007-01-01

    Background and Aims In angiosperms xyloglucan endotransglucosylase (XET)/hydrolase (XTH) is involved in reorganization of the cell wall during growth and development. The location of oligo-xyloglucan transglucosylation activity and the presence of XTH expressed sequence tags (ESTs) in the earliest diverging extant plants, i.e. in bryophytes and algae, down to the Phaeophyta was examined. The results provide information on the presence of an XET growth mechanism in bryophytes and algae and contribute to the understanding of the evolution of cell wall elongation in general. Methods Representatives of the different plant lineages were pressed onto an XET test paper and assayed. XET or XET-related activity was visualized as the incorporation of fluorescent signal. The Physcomitrella genome database was screened for the presence of XTHs. In addition, using the 3′ RACE technique searches were made for the presence of possible XTH ESTs in the Charophyta. Key Results XET activity was found in the three major divisions of bryophytes at sites corresponding to growing regions. In the Physcomitrella genome two putative XTH-encoding cDNA sequences were identified that contain all domains crucial for XET activity. Furthermore, XET activity was located at the sites of growth in Chara (Charophyta) and Ulva (Chlorophyta) and a putative XTH ancestral enzyme in Chara was identified. No XET activity was identified in the Rhodophyta or Phaeophyta. Conclusions XET activity was shown to be present in all major groups of green plants. These data suggest that an XET-related growth mechanism originated before the evolutionary divergence of the Chlorobionta and open new insights in the evolution of the mechanisms of primary cell wall expansion. PMID:17098750

  14. Shining light on benthic macroalgae: mechanisms of complementarity in layered macroalgal assemblages.

    PubMed

    Tait, Leigh W; Hawes, Ian; Schiel, David R

    2014-01-01

    Phototrophs underpin most ecosystem processes, but to do this they need sufficient light. This critical resource, however, is compromised along many marine shores by increased loads of sediments and nutrients from degraded inland habitats. Increased attenuation of total irradiance within coastal water columns due to turbidity is known to reduce species' depth limits and affect the taxonomic structure and architecture of algal-dominated assemblages, but virtually no attention has been paid to the potential for changes in spectral quality of light energy to impact production dynamics. Pioneering studies over 70 years ago showed how different pigmentation of red, green and brown algae affected absorption spectra, action spectra, and photosynthetic efficiency across the PAR (photosynthetically active radiation) spectrum. Little of this, however, has found its way into ecological syntheses of the impacts of optically active contaminants on coastal macroalgal communities. Here we test the ability of macroalgal assemblages composed of multiple functional groups (including representatives from the chlorophyta, rhodophyta and phaeophyta) to use the total light resource, including different light wavelengths and examine the effects of suspended sediments on the penetration and spectral quality of light in coastal waters. We show that assemblages composed of multiple functional groups are better able to use light throughout the PAR spectrum. Macroalgal assemblages with four sub-canopy species were between 50-75% more productive than assemblages with only one or two sub-canopy species. Furthermore, attenuation of the PAR spectrum showed both a loss of quanta and a shift in spectral distribution with depth across coastal waters of different clarity, with consequences to productivity dynamics of diverse layered assemblages. The processes of light complementarity may help provide a mechanistic understanding of how altered turbidity affects macroalgal assemblages in coastal waters

  15. Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community.

    PubMed

    Yoon, Tae-Ho; Kang, Hye-Eun; Kang, Chang-Keun; Lee, Sang Heon; Ahn, Do-Hwan; Park, Hyun; Kim, Hyun-Woo

    2016-01-01

    We developed a cost-effective metabarcoding strategy to analyze phytoplankton community structure using the Illumina MiSeq system. The amplicons (404-411 bp) obtained by end-pairing of two reads were sufficiently long to distinguish algal species and provided barcode data equivalent to those generated with the Roche 454 system, but at less than 1/20th of the cost. The original universal primer sequences targeting the 23S rDNA region and the PCR strategy were both modified, and this resulted in higher numbers of eukaryotic algal sequences by excluding non-photosynthetic proteobacterial sequences supporting effectiveness of this strategy. The novel strategy was used to analyze the phytoplankton community structure of six water samples from the East/Japan Sea: surface and 50 m depths at coastal and open-sea sites, with collections in May and July 2014. In total, 345 operational taxonomic units (OTUs) were identified, which covered most of the prokaryotic and eukaryotic algal phyla, including Dinophyta, Rhodophyta, Ochrophyta, Chlorophyta, Streptophyta, Cryptophyta, Haptophyta, and Cyanophyta. This highlights the importance of plastid 23S primers, which perform better than the currently used 16S primers for phytoplankton community surveys. The findings also revealed that more efforts should be made to update 23S rDNA sequences as well as those of 16S in the databases. Analysis of algal proportions in the six samples showed that community structure differed depending on location, depth and season. Across the six samples evaluated, the numbers of OTUs in each phylum were similar but their relative proportions varied. This novel strategy would allow laboratories to analyze large numbers of samples at reasonable expense, whereas this has not been possible to date due to cost and time. In addition, we expect that this strategy will generate a large amount of novel data that could potentially change established methods and tools that are currently used in the realms of

  16. Physiologic and metagenomic attributes of the rhodoliths forming the largest CaCO3 bed in the South Atlantic Ocean

    PubMed Central

    Cavalcanti, Giselle S; Gregoracci, Gustavo B; dos Santos, Eidy O; Silveira, Cynthia B; Meirelles, Pedro M; Longo, Leila; Gotoh, Kazuyoshi; Nakamura, Shota; Iida, Tetsuya; Sawabe, Tomoo; Rezende, Carlos E; Francini-Filho, Ronaldo B; Moura, Rodrigo L; Amado-Filho, Gilberto M; Thompson, Fabiano L

    2014-01-01

    Rhodoliths are free-living coralline algae (Rhodophyta, Corallinales) that are ecologically important for the functioning of marine environments. They form extensive beds distributed worldwide, providing a habitat and nursery for benthic organisms and space for fisheries, and are an important source of calcium carbonate. The Abrolhos Bank, off eastern Brazil, harbors the world's largest continuous rhodolith bed (of ∼21 000 km2) and has one of the largest marine CaCO3 deposits (producing 25 megatons of CaCO3 per year). Nevertheless, there is a lack of information about the microbial diversity, photosynthetic potential and ecological interactions within the rhodolith holobiont. Herein, we performed an ecophysiologic and metagenomic analysis of the Abrolhos rhodoliths to understand their microbial composition and functional components. Rhodoliths contained a specific microbiome that displayed a significant enrichment in aerobic ammonia-oxidizing betaproteobacteria and dissimilative sulfate-reducing deltaproteobacteria. We also observed a significant contribution of bacterial guilds (that is, photolithoautotrophs, anaerobic heterotrophs, sulfide oxidizers, anoxygenic phototrophs and methanogens) in the rhodolith metagenome, suggested to have important roles in biomineralization. The increased hits in aromatic compounds, fatty acid and secondary metabolism subsystems hint at an important chemically mediated interaction in which a functional job partition among eukaryal, archaeal and bacterial groups allows the rhodolith holobiont to thrive in the global ocean. High rates of photosynthesis were measured for Abrolhos rhodoliths (52.16 μmol carbon m−2 s−1), allowing the entire Abrolhos rhodolith bed to produce 5.65 × 105 tons C per day. This estimate illustrates the great importance of the Abrolhos rhodolith beds for dissolved carbon production in the South Atlantic Ocean. PMID:23985749

  17. In vivo estimation of pigment composition and optical absorption cross-section by spectroradiometry in four aquatic photosynthetic micro-organisms.

    PubMed

    Méléder, Vona; Laviale, Martin; Jesus, Bruno; Mouget, Jean Luc; Lavaud, Johann; Kazemipour, Farzaneh; Launeau, Patrick; Barillé, Laurent

    2013-12-01

    The objective of the present study was to estimate in vivo pigment composition and to retrieve absorption cross-section values, a(∗), of photosynthetic micro-organisms using a non-invasive technique of reflectance spectrometry. To test the methodology, organisms from different taxonomical groups and different pigment composition were used (Spirulina platensis a Cyanophyta, Porphyridium cruentum a Rhodophyta, Dunaliella tertiolecta a Chlorophyta and Entomoneis paludosa a Bacillariophyta) and photoacclimated to two different irradiance levels: 25 μmol photonm(-2)s(-1) (Low Light, LL) and 500 μmol photonm(-2)s(-1) (High Light, HL). Second derivative spectra from reflectance were used to identify pigment in vivo absorption bands that were linked to specific pigments detected by high performance liquid chromatography. Whereas some absorption bands such as those induced by Chlorophyll (Chl) a (416, 440, 625 and around 675 nm) were ubiquous, others were taxonomically specific (e.g. 636 nm for Chl c in E. paludosa) and/or photo-physiological dependent (e.g. 489 nm for zeaxanthin in the HL-acclimated S. platensis). The optical absorption cross-section, a(∗), was retrieved from reflectance data using a radiative transfer model previously developed for microphytobenthos. Despite the cellular Chl a decrease observed from LL to HL (up to 88% for S. platensis), the a(∗) increased, except for P. cruentum. This was attributed to a 'package effect' and to a greater absorption by photoprotective carotenoids that did not contribute to the energy transfer to the core Chl a.

  18. Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community

    PubMed Central

    Yoon, Tae-Ho; Kang, Hye-Eun; Kang, Chang-Keun; Lee, Sang Heon; Ahn, Do-Hwan

    2016-01-01

    We developed a cost-effective metabarcoding strategy to analyze phytoplankton community structure using the Illumina MiSeq system. The amplicons (404–411 bp) obtained by end-pairing of two reads were sufficiently long to distinguish algal species and provided barcode data equivalent to those generated with the Roche 454 system, but at less than 1/20th of the cost. The original universal primer sequences targeting the 23S rDNA region and the PCR strategy were both modified, and this resulted in higher numbers of eukaryotic algal sequences by excluding non-photosynthetic proteobacterial sequences supporting effectiveness of this strategy. The novel strategy was used to analyze the phytoplankton community structure of six water samples from the East/Japan Sea: surface and 50 m depths at coastal and open-sea sites, with collections in May and July 2014. In total, 345 operational taxonomic units (OTUs) were identified, which covered most of the prokaryotic and eukaryotic algal phyla, including Dinophyta, Rhodophyta, Ochrophyta, Chlorophyta, Streptophyta, Cryptophyta, Haptophyta, and Cyanophyta. This highlights the importance of plastid 23S primers, which perform better than the currently used 16S primers for phytoplankton community surveys. The findings also revealed that more efforts should be made to update 23S rDNA sequences as well as those of 16S in the databases. Analysis of algal proportions in the six samples showed that community structure differed depending on location, depth and season. Across the six samples evaluated, the numbers of OTUs in each phylum were similar but their relative proportions varied. This novel strategy would allow laboratories to analyze large numbers of samples at reasonable expense, whereas this has not been possible to date due to cost and time. In addition, we expect that this strategy will generate a large amount of novel data that could potentially change established methods and tools that are currently used in the realms of

  19. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity.

    PubMed

    Haas, Andreas F; Nelson, Craig E; Wegley Kelly, Linda; Carlson, Craig A; Rohwer, Forest; Leichter, James J; Wyatt, Alex; Smith, Jennifer E

    2011-01-01

    Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata--Ochrophyta; Amansia rhodantha--Rhodophyta; Halimeda opuntia--Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h⁻¹ dm⁻²), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h⁻¹) and concomitant oxygen drawdown (0.16±0.05 µmol L⁻¹ h⁻¹ dm⁻²). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial

  20. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives.

    PubMed

    Kendel, Melha; Wielgosz-Collin, Gaëtane; Bertrand, Samuel; Roussakis, Christos; Bourgougnon, Nathalie; Bedoux, Gilles

    2015-09-02

    Lipids from the proliferative macroalgae Ulva armoricana (Chlorophyta) and Solieria chordalis (Rhodophyta) from Brittany, France, were investigated. The total content of lipids was 2.6% and 3.0% dry weight for U. armoricana and S. chordalis, respectively. The main fractions of S. chordalis were neutral lipids (37%) and glycolipids (38%), whereas U. armoricana contained mostly neutral lipids (55%). Polyunsaturated fatty acids (PUFA) represented 29% and 15% of the total lipids in U. armoricana and S. chordalis, respectively. In both studied algae, the phospholipids were composed of PUFA for 18%. In addition, PUFA were shown to represent 9% and 4.5% of glycolipids in U. armoricana and S. chordalis, respectively. The essential PUFA were 16:4n-3, 18:4n-3, 18:2n-3, 18:2n-6, and 22:6n-3 in U. armoricana, and 20:4n-6 and 20:5n-3 in S. chordalis. It is important to notice that six 2-hydroxy-, three 3-hydroxy-, and two monounsaturated hydroxy fatty acids were also identified and may provide a chemotaxonomic basis for algae. These seaweeds contained interesting compounds such as squalene, α-tocopherol, cholest-4-en-3-one and phytosterols. The antiproliferative effect was evaluated in vitro on human non-small-cell bronchopulmonary carcinoma line (NSCLC-N6) with an IC50 of 23 μg/mL for monogalactosyldiacylglycerols isolated from S. chordalis and 24 μg/mL for digalactosyldiacylglycerols from U. armoricana. These results confirm the potentialities of valorization of these two species in the fields of health, nutrition and chemotaxonomy.

  1. [Use of macroalgae for the evaluation of organic pollution in the Preto river, northwest of São Paulo State].

    PubMed

    Necchi Júnior, O; Branco, H Z; Dip, M R

    1994-01-01

    The Preto River, located in the northwest of São Paulo State, receives a total wastewater load of 15.150 kg DBO day-1, from which 13.685 kg DBO day-1 (90.5%) corresponds to domestic sewage, and the city of São José do Rio Preto contributes with 12.400 kg DBO day-1 (90% of domestic sewage). During the period from August 1990 through January 1991, monthly sampling was carried out to evaluate the use of macroalgae as bioindicator of organic pollution. Five sampling sites were established along the main river and the following variables were analised: temperature, conductance, turbidity, dissolved oxygen, BOD, COD, total and fecal coliforms, and composition and abundance of macroalgal communities. Data were submitted to analysis of variance, correlation coefficient, cluster analysis (four different approaches) and converted to biological indices (species deficit, relative pollution, saprobity, diversity and uniformity indices). A wide range in water quality was found (particularly for conductance, oxygen, BOD and COD) among the sampling sites, which were classified into three groups (polluted, moderately polluted and unpolluted/weakly polluted). As regards the occurrence and abundance of macroalgae the Rhodophyta were found only in unpolluted or weakly polluted sites, whereas Cyanophyta occurred mostly under high pollution load; the Chlorophyta species were observed under a wide range of conditions. Among the biological indices, saprobity was the most sensitive and correlated to all water variables and the other indices. Cluster analyses showed that the composition of macroalgal communities was consistent with the levels of organic pollution in the Preto River.

  2. Marine invasion in the Mediterranean Sea: the role of abiotic factors when there is no biological resistance.

    PubMed

    Cebrian, Emma; Rodríguez-Prieto, Conxi

    2012-01-01

    The tropical red alga Womersleyella setacea (Rhodomelaceae, Rhodophyta) is causing increasing concern in the Mediterranean Sea because of its invasive behavior. After its introduction it has colonized most Mediterranean areas, but the mechanism underlying its acclimatization and invasion process remains unknown. To understand this process, we decided i) to assess in situ the seasonal biomass and phenological patterns of populations inhabiting the Mediterranean Sea in relation to the main environmental factors, and ii) to experimentally determine if the tolerance of W. setacea to different light and temperature conditions can explain its colonization success, as well as its bathymetric distribution range. The bathymetric distribution, biomass, and phenology of W. setacea were studied at two localities, and related to irradiance and temperature values recorded in situ. Laboratory experiments were set up to study survival, growth and reproduction under contrasting light and temperature conditions in the short, mid, and long term. Results showed that, in the studied area, the bathymetric distribution of W. setacea is restricted to a depth belt between 25 and 40 m deep, reaching maximum biomass values (126 g dw m(-2)) at 30 m depth. In concordance, although in the short term W. setacea survived and grew in a large range of environmental conditions, its life requirements for the mid and long term were dim light levels and low temperatures. Biomass of Womersleyella setacea did not show any clear seasonal pattern, though minimum values were reported in spring. Reproductive structures were always absent. Bearing in mind that no herbivores feed on Womersleyella setacea and that its thermal preferences are more characteristic of temperate than of tropical seaweeds, low light (50 µmol photon m(-2) s(-1)) and low temperature (12°C) levels are critical for W. setacea survival and growth, thus probably determining its spread and bathymetric distribution across the Mediterranean

  3. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution.

  4. The mineralogical responses of marine calcifiers to CO2-induced ocean acidification

    NASA Astrophysics Data System (ADS)

    Ries, J. B.; Cohen, A. L.; McCorkle, D. C.

    2008-12-01

    We have conducted 6-month laboratory experiments to investigate the effect of pCO2-induced reductions in seawater CaCO3 saturation state on biocalcification by 18 aragonitic and calcitic (low-high Mg) taxa representing eight of the major marine calcifying groups: Chlorophyta; Rhodophyta; Crustacea; Bivalvia; Gastropoda; Annelida; Cnidaria; and Echinodermata. The CaCO3 saturation states of the experimental seawaters, constrained by intercalibrated determinations of pH, alkalinity, and DIC, were attained with bubbled air-CO2 mixtures of 400 (ambient), 600, 900, and 2850 ppm pCO2, yielding Ωarag of 2.5 (ambient), 2.0, 1.5, 0.7, respectively. We previously showed that while rates of net calcification obtained from buoyant weighing declined with increasing pCO2 for nearly half of the species investigated, a nearly equal number exhibited constant or, in some cases, increased calcification under moderately (600 ppm) or extremely (900 or 2850 ppm) elevated pCO2. The organisms' investigated in this study secrete various forms of CaCO3, which differ in crystallographic structure and therefore solubility: aragonite and high-Mg are generally more soluble than low-Mg calcite. We have employed powder x-ray diffraction, Raman spectroscopy, inductively-coupled-plasma mass-spectrometry, and scanning electron microscopy to quantify changes in the organisms' skeletal mineralogy (aragonite:calcite ratio) and Mg-content (MgCO3:CaCO3 ratio) that occurred in response to the prescribed reductions in seawater CaCO3 saturation state. We will compare calcification and mineralogical response patterns amongst the organisms to elucidate the role of mineral lability in driving species-specific responses to CO2-induced ocean acidification.

  5. Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity

    PubMed Central

    Haas, Andreas F.; Nelson, Craig E.; Wegley Kelly, Linda; Carlson, Craig A.; Rohwer, Forest; Leichter, James J.; Wyatt, Alex; Smith, Jennifer E.

    2011-01-01

    Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 µmol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef

  6. Shining light on benthic macroalgae: mechanisms of complementarity in layered macroalgal assemblages.

    PubMed

    Tait, Leigh W; Hawes, Ian; Schiel, David R

    2014-01-01

    Phototrophs underpin most ecosystem processes, but to do this they need sufficient light. This critical resource, however, is compromised along many marine shores by increased loads of sediments and nutrients from degraded inland habitats. Increased attenuation of total irradiance within coastal water columns due to turbidity is known to reduce species' depth limits and affect the taxonomic structure and architecture of algal-dominated assemblages, but virtually no attention has been paid to the potential for changes in spectral quality of light energy to impact production dynamics. Pioneering studies over 70 years ago showed how different pigmentation of red, green and brown algae affected absorption spectra, action spectra, and photosynthetic efficiency across the PAR (photosynthetically active radiation) spectrum. Little of this, however, has found its way into ecological syntheses of the impacts of optically active contaminants on coastal macroalgal communities. Here we test the ability of macroalgal assemblages composed of multiple functional groups (including representatives from the chlorophyta, rhodophyta and phaeophyta) to use the total light resource, including different light wavelengths and examine the effects of suspended sediments on the penetration and spectral quality of light in coastal waters. We show that assemblages composed of multiple functional groups are better able to use light throughout the PAR spectrum. Macroalgal assemblages with four sub-canopy species were between 50-75% more productive than assemblages with only one or two sub-canopy species. Furthermore, attenuation of the PAR spectrum showed both a loss of quanta and a shift in spectral distribution with depth across coastal waters of different clarity, with consequences to productivity dynamics of diverse layered assemblages. The processes of light complementarity may help provide a mechanistic understanding of how altered turbidity affects macroalgal assemblages in coastal waters

  7. The Complete Chloroplast and Mitochondrial Genomes of the Green Macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta)

    PubMed Central

    Melton, James T.; Leliaert, Frederik; Tronholm, Ana; Lopez-Bautista, Juan M.

    2015-01-01

    Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales). PMID:25849557

  8. Effect of the dietary brominated phenol, lanasol, on chemical biotransformation enzymes in the gumboot chiton Cryptochiton stelleri (Middendorf, 1846).

    PubMed

    Debusk, B C; Chimote, S S; Rimoldi, J M; Schenk, D

    2000-09-01

    The effects of diet and other non-anthropogenic stressors on biochemical defenses and their relationship to susceptibility have been largely ignored in wildlife populations. Lanosol is a compound found in relatively high amounts in various marine species of Rhodophyta, including Odonthalia dentata. While previous studies demonstrated that lanosol is a feeding deterrent to several marine herbivores, Cryptochiton stelleri readily feeds upon O. dentata. To examine the effects of lanosol on the profile of biochemical defenses in C. stelleri, chitons were gavaged daily with 0, 1, 2.5, 5, or 10 mg/kg of lanosol. After three days of exposure, digestive gland microsomes were probed for expression of homologous isoforms of cytochromes P450 (CYP1A, CYP3A, and CYP2) and phase II enzymatic activities. Expression of a 43 kDa CYP3A-like protein was increased by approximately 45%, over control following 2.5, 5, and 10 mg/kg treatments. Estradiol hydroxylase activity tended to increase with the dose of lanosol. UDP-glucuronosyl transferase activity was highly variable but appeared to increase at the two highest treatments, while sulfotranserase activity was significantly decreased at the three highest doses. Kinetic studies of GST activity showed lanosol is a non-competitive inhibitor of both CDNB and GSH in the GST-mediated conjugation reaction. These results show that dietary exposure to the brominated-phenol, lanosol, may alter expression and activity of some phase I and II biotransformation enzymes in chitons, potentially providing a dietary advantage for the species.

  9. Development of a cost-effective metabarcoding strategy for analysis of the marine phytoplankton community.

    PubMed

    Yoon, Tae-Ho; Kang, Hye-Eun; Kang, Chang-Keun; Lee, Sang Heon; Ahn, Do-Hwan; Park, Hyun; Kim, Hyun-Woo

    2016-01-01

    We developed a cost-effective metabarcoding strategy to analyze phytoplankton community structure using the Illumina MiSeq system. The amplicons (404-411 bp) obtained by end-pairing of two reads were sufficiently long to distinguish algal species and provided barcode data equivalent to those generated with the Roche 454 system, but at less than 1/20th of the cost. The original universal primer sequences targeting the 23S rDNA region and the PCR strategy were both modified, and this resulted in higher numbers of eukaryotic algal sequences by excluding non-photosynthetic proteobacterial sequences supporting effectiveness of this strategy. The novel strategy was used to analyze the phytoplankton community structure of six water samples from the East/Japan Sea: surface and 50 m depths at coastal and open-sea sites, with collections in May and July 2014. In total, 345 operational taxonomic units (OTUs) were identified, which covered most of the prokaryotic and eukaryotic algal phyla, including Dinophyta, Rhodophyta, Ochrophyta, Chlorophyta, Streptophyta, Cryptophyta, Haptophyta, and Cyanophyta. This highlights the importance of plastid 23S primers, which perform better than the currently used 16S primers for phytoplankton community surveys. The findings also revealed that more efforts should be made to update 23S rDNA sequences as well as those of 16S in the databases. Analysis of algal proportions in the six samples showed that community structure differed depending on location, depth and season. Across the six samples evaluated, the numbers of OTUs in each phylum were similar but their relative proportions varied. This novel strategy would allow laboratories to analyze large numbers of samples at reasonable expense, whereas this has not been possible to date due to cost and time. In addition, we expect that this strategy will generate a large amount of novel data that could potentially change established methods and tools that are currently used in the realms of

  10. Role of Recruitment Processes in Structuring Coralligenous Benthic Assemblages in the Northern Adriatic Continental Shelf

    PubMed Central

    Abbiati, Marco

    2016-01-01

    Coralligenous biogenic reefs are among the most diverse marine habitats in the Mediterranean Sea. The northern Adriatic mesophotic coralligenous outcrops host very rich and diverse epibenthic assemblages. Several studies quantified the low temporal variability and high spatial heterogeneity of these habitats, while processes driving structuring and differentiation are still poorly understood. To shed light on these processes, temporal and spatial patterns of colonisation were investigated using travertine tiles deployed on three coralligenous outcrops, corresponding to the main typologies of benthic assemblages described in previous studies. Three years after deployment, assemblages colonising travertine tiles resembled the differentiation among sites revealed by the natural assemblages in terms of major ecological groups. Processes structuring and maintaining species diversity have been explored. Pioneer species with high reproduction rate, long distance larval dispersal and fast growth (e.g. the serpulid polychaete Spirobranchus triqueter and the bivalve Anomia ephippium), were the most abundant in the early stages of recruitment on the two outcrops further away from the coast and with lower sedimentation. Their success may vary according to larval availability and environmental conditions (e.g., sedimentation rates). At these sites early-stage lasted 10–12 months, during which even species from natural substrates began colonising tiles by settlement of planktonic propagules (e.g., encrusting calcareous Rhodophyta) and lateral encroachment (e.g., sponges and ascidians). On coastal outcrop, exposed to a higher sedimentation rates, tiles were colonised by fast-growing algal turfs. Resilience of northern Adriatic coralligenous assemblages, and maintenance of their diversity, appeared largely entrusted to asexual reproduction. Exploring the mechanisms that underlie the formation and maintenance of the species diversity is crucial to improve our understanding of

  11. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).

    PubMed

    Diaz-Pulido, Guillermo; Anthony, Kenneth R N; Kline, David I; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-02-01

    Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2 ). Little is known, however, about the combined impacts of increased pCO2 , ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from <1% to 9% under high CO2 (from 400 to 1,100 ppm) and exacerbated to 15% under warming conditions (from 26°C to 29°C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems.

  12. Identification of sulfoglycolipid bioactivities and characteristic fatty acids of marine macroalgae.

    PubMed

    Tsai, Cheng-Jung; Sun Pan, Bonnie

    2012-08-29

    The fatty acid compositions of 21 species of marine macroalgae, including 5 species of Chlorophyta (green algae), 13 of Rhodophyta (red algae), and 3 of Heterokontophyta (brown algae), were collected from northeastern Taiwan to survey their functional lipids. The lipid contents of green algae ranged from 15.36 to 20.15 mg/g, dry basis (db), and were characterized by a high content of C18:2 and C18:3, red algae (18.57-28.34 mg/g db) were high in C20:4 and C20:5, and brown algae (13.11-19.56 mg/g db) were high in C18:4, C20:4, and C:20:5. All algal lipids contained fatty acids of odd-number carbons, C17:0, and C17:1. Red algae had relatively higher levels of polyunsaturated fatty acids (PUFAs) and were richer in eicosapentaenoic acid (EPA) than green and brown algae. A red alga, Porphyra crispata , was extracted with ethanol and separated on a hydrophobic column (Diaion HP-20 column) to obtain sulfoglycolipids (sulfoquinovosyldiacylglycerols, SQDGs). The main fatty acids in SQDGs were palmitic acid (C16:0), 33.3%; EPA (C20:5), 30.0%; arachidonic acid (C20:4), 12.7%; oleic acid (C18:1), 7.52%; and stearic acid (C18:0), 6.83%. The n-3/n-6 ratio was 1.9, whereas the authentic standard, spinach SQDG, did not contain n-3 fatty acids. Sulfoglycolipids inhibited the growth of human hepatocellular carcinoma cell line (HepG2). The IC50 was 126 μg/mL, which is lower than that of the spinach SQDG (255 μg/mL).

  13. Comprehensive Phylogenetic Analysis Sheds Light on the Diversity and Origin of the MLO Family of Integral Membrane Proteins

    PubMed Central

    Kusch, Stefan; Pesch, Lina; Panstruga, Ralph

    2016-01-01

    Mildew resistance Locus O (MLO) proteins are polytopic integral membrane proteins that have long been considered as plant-specific and being primarily involved in plant–powdery mildew interactions. However, research in the past decade has revealed that MLO proteins diverged into a family with several clades whose members are associated with different physiological processes. We provide a largely increased dataset of MLO amino acid sequences, comprising nearly all major land plant lineages. Based on this comprehensive dataset, we defined seven phylogenetic clades and reconstructed the likely evolution of the MLO family in embryophytes. We further identified several MLO peptide motifs that are either conserved in all MLO proteins or confined to one or several clades, supporting the notion that clade-specific diversification of MLO functions is associated with particular sequence motifs. In baker’s yeast, some of these motifs are functionally linked to transmembrane (TM) transport of organic molecules and ions. In addition, we attempted to define the evolutionary origin of the MLO family and found that MLO-like proteins with highly diverse membrane topologies are present in green algae, but also in the distinctly related red algae (Rhodophyta), Amoebozoa, and Chromalveolata. Finally, we discovered several instances of putative fusion events between MLO proteins and different kinds of proteins. Such Rosetta stone-type hybrid proteins might be instructive for future analysis of potential MLO functions. Our findings suggest that MLO is an ancient protein that possibly evolved in unicellular photosynthetic eukaryotes, and consolidated in land plants with a conserved topology, comprising seven TM domains and an intrinsically unstructured C-terminus. PMID:26893454

  14. Multigene phylogeny of the red algal subclass Nemaliophycidae.

    PubMed

    Lam, Daryl W; Verbruggen, Heroen; Saunders, Gary W; Vis, Morgan L

    2016-01-01

    The red algae (Rhodophyta) are a lineage of primary endosymbionts whose ancestors represent some of the first photosynthetic eukaryotes on the planet. They primarily inhabit marine ecosystems, with only ∼5% of species found in freshwater systems. The subclass Nemaliophycidae is very diverse in ecological and life history features and therefore a useful model to study these traits, but the phylogenetic relationships among the orders are, for the most part, poorly resolved. To elucidate the phylogeny of the Nemaliophycidae, we constructed a nine-gene dataset comprised of nuclear, plastid, and mitochondrial markers for 67 red algal specimens. The resulting maximum likelihood (ML) phylogeny confirmed the monophyly of all orders. The sister relationship of the Acrochaetiales and Palmariales received high support and the relationship of the Balliales with Balbianiales and Entwisleiales with Colaconematales was moderately supported. The Nemaliales, Entwisleiales, Colaconematales, Palmariales and Acrochaetiales formed a highly supported clade. Unfortunately, all other relationships among the orders had low bootstrap support. Although the ML analysis did not resolve many of the relationships, further analyses suggested that a resolution is possible. A Phycas analysis supported a dichotomously branching tree and Bayesian analysis showed a similar topology with all relationships highly supported. Simulations extrapolating the number of nucleotide characters beyond the current size of the dataset suggested that most nodes in the phylogeny would be resolved if more data become available. Phylogenomic approaches will be necessary to provide a well-supported phylogeny of this subclass with all relationships resolved such that the evolution of freshwater species from marine ancestors as well as reproductive traits can be explored.

  15. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives

    PubMed Central

    Kendel, Melha; Wielgosz-Collin, Gaëtane; Bertrand, Samuel; Roussakis, Christos; Bourgougnon, Nathalie; Bedoux, Gilles

    2015-01-01

    Lipids from the proliferative macroalgae Ulva armoricana (Chlorophyta) and Solieria chordalis (Rhodophyta) from Brittany, France, were investigated. The total content of lipids was 2.6% and 3.0% dry weight for U. armoricana and S. chordalis, respectively. The main fractions of S. chordalis were neutral lipids (37%) and glycolipids (38%), whereas U. armoricana contained mostly neutral lipids (55%). Polyunsaturated fatty acids (PUFA) represented 29% and 15% of the total lipids in U. armoricana and S. chordalis, respectively. In both studied algae, the phospholipids were composed of PUFA for 18%. In addition, PUFA were shown to represent 9% and 4.5% of glycolipids in U. armoricana and S. chordalis, respectively. The essential PUFA were 16:4n-3, 18:4n-3, 18:2n-3, 18:2n-6, and 22:6n-3 in U. armoricana, and 20:4n-6 and 20:5n-3 in S. chordalis. It is important to notice that six 2-hydroxy-, three 3-hydroxy-, and two monounsaturated hydroxy fatty acids were also identified and may provide a chemotaxonomic basis for algae. These seaweeds contained interesting compounds such as squalene, α-tocopherol, cholest-4-en-3-one and phytosterols. The antiproliferative effect was evaluated in vitro on human non-small-cell bronchopulmonary carcinoma line (NSCLC-N6) with an IC50 of 23 μg/mL for monogalactosyldiacylglycerols isolated from S. chordalis and 24 μg/mL for digalactosyldiacylglycerols from U. armoricana. These results confirm the potentialities of valorization of these two species in the fields of health, nutrition and chemotaxonomy. PMID:26404323

  16. Antioxidant activity and mineral composition of three Mediterranean common seaweeds from Abu-Qir Bay, Egypt

    PubMed Central

    Khairy, Hanan M.; El-Sheikh, Mohamed A.

    2015-01-01

    Antioxidant activity and mineral composition were evaluated seasonally from spring to autumn 2010 in the three common seaweeds Ulva lactuca Linnaeus (Chlorophyta), Jania rubens (Linnaeus) J.V. Lamouroux and Pterocladia capillacea (S.G. Gmelin) Bornet (Rhodophyta). The antioxidant activity was measured with β-carotene, total phenol content and DPPH (2,2-diphenyl-1-picrylhydrazyl). Seaweeds were collected from the rocky site near Boughaz El-Maadya Abu-Qir Bay of Alexandria, Egypt. The results showed maximum increase of β-carotene in P. capillacea during summer. A significant increase in total phenolic content at P ⩽ 0.05 was found in the red alga (J. rubens) during summer. Also, U. lactuca showed the maximum antioxidant scavenging activity especially during summer. Minerals in all investigated samples were higher than those in conventional edible vegetables. Na/K ratio ranged between 0.78 and 2.4 mg/100 g, which is a favorable value. All trace metals exceeded the recommended doses by Reference Nutrient Intake (RNI). During summer season, it was found that Cu = 2.02 ± 0.13 and Cr = 0.46 ± 0.14 mg/100 g in U. lactuca and Fe had a suitable concentration (18.37 ± 0.5 mg/100 g) in P. capillacea. The studied species were rich in carotenoids, phenolic compounds, DPPH free radicals and minerals, therefore, they can be used as potential source of health food in human diets and may be of use to food industry. PMID:26288568

  17. Wenyingzhuangia gracilariae sp. nov., a novel marine bacterium of the phylum Bacteroidetes isolated from the red alga Gracilaria vermiculophylla.

    PubMed

    Yoon, Jaewoo; Oku, Naoya; Kasai, Hiroaki

    2015-06-01

    A Gram-negative, strictly aerobic, beige-pigmented, non-motile, rod-shaped bacterial strain designated N5DB13-4(T) was isolated from the red alga Gracilaria vermiculophylla (Rhodophyta) collected at Sodegaura Beach, Chiba, Japan. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that the novel isolate is affiliated with the family Flavobacteriaceae within the phylum Bacteroidetes and that it showed highest sequence similarity (97.3 %) to Wenyingzhuangia heitensis H-MN17(T). The hybridization values for DNA-DNA relatedness between the strains N5DB13-4(T) and W. heitensis H-MN17(T) were 34.1 ± 3.5 %, which is below the threshold accepted for the phylogenetic definition of a novel prokaryotic species. The DNA G+C content of strain N5DB13-4(T) was determined to be 31.8 mol%; MK-6 was identified as the major menaquinone; and the presence of iso-C15:0, iso-C15:0 3-OH and iso-C17:0 3-OH as the major (>10 %) cellular fatty acids. A complex polar lipid profile was present consisting of phosphatidylethanolamine, two unidentified glycolipids and four unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species of the genus Wenyingzhuangia for which the name Wenyingzhuangia gracilariae sp. nov. is proposed. The type strain of W. gracilariae sp. nov. is N5DB13-4(T) (=KCTC 42246 (T)=NBRC 110602(T)).

  18. Molecular and Ecological Evidence for Species Specificity and Coevolution in a Group of Marine Algal-Bacterial Symbioses

    PubMed Central

    Ashen, Jon B.; Goff, Lynda J.

    2000-01-01

    The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the α subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation. PMID:10877801

  19. Compositional Biases among Synonymous Substitutions Cause Conflict between Gene and Protein Trees for Plastid Origins

    PubMed Central

    Li, Blaise; Lopes, João S.; Foster, Peter G.; Embley, T. Martin; Cox, Cymon J.

    2014-01-01

    Archaeplastida (=Kingdom Plantae) are primary plastid-bearing organisms that evolved via the endosymbiotic association of a heterotrophic eukaryote host cell and a cyanobacterial endosymbiont approximately 1,400 Ma. Here, we present analyses of cyanobacterial and plastid genomes that show strongly conflicting phylogenies based on 75 plastid (or nuclear plastid-targeted) protein-coding genes and their direct translations to proteins. The conflict between genes and proteins is largely robust to the use of sophisticated data- and tree-heterogeneous composition models. However, by using nucleotide ambiguity codes to eliminate synonymous substitutions due to codon-degeneracy, we identify a composition bias, and dependent codon-usage bias, resulting from synonymous substitutions at all third codon positions and first codon positions of leucine and arginine, as the main cause for the conflicting phylogenetic signals. We argue that the protein-coding gene data analyses are likely misleading due to artifacts induced by convergent composition biases at first codon positions of leucine and arginine and at all third codon positions. Our analyses corroborate previous studies based on gene sequence analysis that suggest Cyanobacteria evolved by the early paraphyletic splitting of Gloeobacter and a specific Synechococcus strain (JA33Ab), with all other remaining cyanobacterial groups, including both unicellular and filamentous species, forming the sister-group to the Archaeplastida lineage. In addition, our analyses using better-fitting models suggest (but without statistically strong support) an early divergence of Glaucophyta within Archaeplastida, with the Rhodophyta (red algae), and Viridiplantae (green algae and land plants) forming a separate lineage. PMID:24795089

  20. Centrohelida is still searching for a phylogenetic home: analyses of seven Raphidiophrys contractilis genes.

    PubMed

    Sakaguchi, Miako; Inagaki, Yuji; Hashimoto, Tetsuo

    2007-12-15

    By recent advance in evolutionary biology, the majority of eukaryotes are classified into six eukaryotic assemblages called as "supergroups". However, several eukaryotic groups show no clear evolutionary affinity to any of the six supergroups. Centrohelida, one of major heliozoan groups, are such an unresolved lineage. In this study, we newly determined the genes encoding translation elongation factor 2 (EF2), cytosolic heat shock protein 70 (HSP70), and cytosolic heat shock protein 90 (HSP90) from the centroheliozoan Raphidiophrys contractilis. The three Raphidiophrys genes were then combined with previously determined actin, alpha-tubulin, beta-tubulin, and SSU rRNA sequences to phylogenetically analyze the position of Centrohelida in global eukaryotic phylogeny. Although the multi-gene data sets examined in this study are the largest ones including the centroheliozoan sequences, the relationships between Centrohelida and the eukaryotic groups considered were unresolved. Our careful investigation revealed that the phylogenetic estimates were highly sensitive to genes included in the multi-gene alignment. The signal of SSU rRNA and that of alpha-tubulin appeared to conflict with one another: the former strongly prefers a monophyly of Diplomonadida (e.g., Giardia), Parabasalia (e.g., Trichomonas), Heterolobosea (e.g., Naegleria), and Euglenozoa (e.g., Trypanosoma), while the latter unites Diplomonadida, Parabasalia, Metazoa, and Fungi. In addition, EF2 robustly unites Rhodophyta and Viridiplantae, while the remaining genes considered in this study do not positively support the particular relationship. Thus, it is difficult to identify the phylogenetic relatives of Centrohelida in the present study, since strong (and some are conflicting) gene-specific "signals" are predominant in the current multi-gene data. We concluded that larger scale multi-gene phylogenies are necessary to elucidate the origin and evolution of Centrohelida. PMID:17931802

  1. Characterization of the RNA Required for Biosynthesis of δ-Aminolevulinic Acid from Glutamate 1

    PubMed Central

    Schneegurt, Mark A.; Beale, Samuel I.

    1988-01-01

    The heme and chlorophyll precursor δ-aminolevulinic acid acid (ALA) is formed in plants and algae from glutamate in a process that requires at least three enzyme components plus a low molecular weight RNA which co-purifies with the tRNA fraction during DEAE-cellulose column chromatography. RNA that is effective in the in vitro ALA biosynthetic system was extracted from several plant and algal species that form ALA via this route. In all cases, the effective RNA contained the UUC glutamate anticodon, as determined by its specific retention on an affinity resin containing an affine ligand directed against this anticodon. Construction of the affinity resin was based on the fact that the UUC glutamate anticodon is complementary to the GAA phenylalanine anticodon. By covalently linking the 3′ terminus of yeast tRNAPhe(GAA) to hydrazine-activated polyacrylamide gel beads, a resin carrying an affine ligand specific for the anticodon of tRNAGlu(UUC) was obtained. Column chromatography of plant and algal RNA extracts over this resin yielded a fraction that was highly enriched in the ability to stimulate ALA formation from glutamate when added to enzyme extracts of the unicellular green alga Chlorella vulgaris. Enhancement of ALA formation per A260 unit added was as much as 50 times greater with the affinity-purified RNA than with the RNA before affinity purification. The affinity column selectively retained RNA which supported ALA formation upon chromatography of RNA extracts from species of the diverse algal groups Chlorophyta (Chlorella Vulgaris), Euglenophyta (Euglena gracilis), Rhodophyta (Cyanidium caldarium), and Cyanophyta (Synechocystis sp. PCC 6803), and a higher plant (spinach). Other glutamate-accepting tRNAs that were not retained by the affinity column were ineffective in supporting ALA formation. These results indicate that possession of the UUC glutamate anticodon is a general requirement for RNA to participate in the conversion of glutamate to ALA in

  2. Metabolically active eukaryotic communities in extremely acidic mine drainage.

    PubMed

    Baker, Brett J; Lutz, Michelle A; Dawson, Scott C; Bond, Philip L; Banfield, Jillian F

    2004-10-01

    Acid mine drainage (AMD) microbial communities contain microbial eukaryotes (both fungi and protists) that confer a biofilm structure and impact the abundance of bacteria and archaea and the community composition via grazing and other mechanisms. Since prokaryotes impact iron oxidation rates and thus regulate AMD generation rates, it is important to analyze the fungal and protistan populations. We utilized 18S rRNA and beta-tubulin gene phylogenies and fluorescent rRNA-specific probes to characterize the eukaryotic diversity and distribution in extremely acidic (pHs 0.8 to 1.38), warm (30 to 50 degrees C), metal-rich (up to 269 mM Fe(2+), 16.8 mM Zn, 8.5 mM As, and 4.1 mM Cu) AMD solutions from the Richmond Mine at Iron Mountain, Calif. A Rhodophyta (red algae) lineage and organisms from the Vahlkampfiidae family were identified. The fungal 18S rRNA and tubulin gene sequences formed two distinct phylogenetic groups associated with the classes Dothideomycetes and Eurotiomycetes. Three fungal isolates that were closely related to the Dothideomycetes clones were obtained. We suggest the name "Acidomyces richmondensis" for these isolates. Since these ascomycete fungi were morphologically indistinguishable, rRNA-specific oligonucleotide probes were designed to target the Dothideomycetes and Eurotiomycetes via fluorescent in situ hybridization (FISH). FISH analyses indicated that Eurotiomycetes are generally more abundant than Dothideomycetes in all of the seven locations studied within the Richmond Mine system. This is the first study to combine the culture-independent detection of fungi with in situ detection and a demonstration of activity in an acidic environment. The results expand our understanding of the subsurface AMD microbial community structure.

  3. Root of the Eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data.

    PubMed

    Arisue, Nobuko; Hasegawa, Masami; Hashimoto, Tetsuo

    2005-03-01

    Extensive studies aiming to establish the structure and root of the Eukaryota tree by phylogenetic analyses of molecular sequences have thus far not resulted in a generally accepted tree. To re-examine the eukaryotic phylogeny using alternative genes, and to obtain a more robust inference for the root of the tree as well as the relationship among major eukaryotic groups, we sequenced the genes encoding isoleucyl-tRNA and valyl-tRNA synthetases, cytosolic-type heat shock protein 90, and the largest subunit of RNA polymerase II from several protists. Combined maximum likelihood analyses of 22 protein-coding genes including the above four genes clearly demonstrated that Diplomonadida and Parabasala shared a common ancestor in the rooted tree of Eukaryota, but only when the fast-evolving sites were excluded from the original data sets. The combined analyses, together with recent findings on the distribution of a fused dihydrofolate reductase-thymidylate synthetase gene, narrowed the possible position of the root of the Eukaryota tree on the branch leading to Opisthokonta or to the common ancestor of Diplomonadida/Parabasala. However, the analyses did not agree with the position of the root located on the common ancestor of Opisthokonta and Amoebozoa, which was argued by Stechmann and Cavalier-Smith [Curr. Biol. 13:R665-666, 2003] based on the presence or absence of a three-gene fusion of the pyrimidine biosynthetic pathway: carbamoyl-phosphate synthetase II, dihydroorotase, and aspartate carbamoyltransferase. The presence of the three-gene fusion recently found in the Cyanidioschyzon merolae (Rhodophyta) genome sequence data supported our analyses against the Stechmann and Cavalier-Smith-rooting in 2003.

  4. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications

    PubMed Central

    Saunders, Gary W

    2005-01-01

    Marine macroalgae, especially the Rhodophyta, can be notoriously difficult to identify owing to their relatively simple morphology and anatomy, convergence, rampant phenotypic plasticity, and alternation of heteromorphic generations. It is thus not surprising that algal systematists have come to rely heavily on genetic tools for molecular assisted alpha taxonomy. Unfortunately the number of suitable marker systems in the three available genomes is enormous and, although most workers have settled on one of three or four models, the lack of an accepted standard hinders the comparison of results between laboratories. The advantages of a standard system are obvious for practical purposes of species discovery and identification; as well, compliance with a universal marker, such as cox1 being developed under the label ‘DNA barcode’, would allow algal systematists to benefit from the rapidly emerging technologies. Novel primers were developed for red algae to PCR amplify and sequence the 5′ cox1 ‘barcode’ region and were used to assess three known species-complex questions: (i) Mazzaella species in the Northeast Pacific; (ii) species of the genera Dilsea and Neodilsea in the Northeast Pacific; and (iii) Asteromenia peltata from three oceans. These models were selected because they have all caused confusion with regards to species number, distribution, and identification in the field, and because they have all been studied with molecular tools. In all cases the DNA barcode resolved accurately and unequivocally species identities and, with the enhanced sampling here, turned up a variety of novel observations in need of further taxonomic investigation. PMID:16214745

  5. Shining Light on Benthic Macroalgae: Mechanisms of Complementarity in Layered Macroalgal Assemblages

    PubMed Central

    Tait, Leigh W.; Hawes, Ian; Schiel, David R.

    2014-01-01

    Phototrophs underpin most ecosystem processes, but to do this they need sufficient light. This critical resource, however, is compromised along many marine shores by increased loads of sediments and nutrients from degraded inland habitats. Increased attenuation of total irradiance within coastal water columns due to turbidity is known to reduce species' depth limits and affect the taxonomic structure and architecture of algal-dominated assemblages, but virtually no attention has been paid to the potential for changes in spectral quality of light energy to impact production dynamics. Pioneering studies over 70 years ago showed how different pigmentation of red, green and brown algae affected absorption spectra, action spectra, and photosynthetic efficiency across the PAR (photosynthetically active radiation) spectrum. Little of this, however, has found its way into ecological syntheses of the impacts of optically active contaminants on coastal macroalgal communities. Here we test the ability of macroalgal assemblages composed of multiple functional groups (including representatives from the chlorophyta, rhodophyta and phaeophyta) to use the total light resource, including different light wavelengths and examine the effects of suspended sediments on the penetration and spectral quality of light in coastal waters. We show that assemblages composed of multiple functional groups are better able to use light throughout the PAR spectrum. Macroalgal assemblages with four sub-canopy species were between 50–75% more productive than assemblages with only one or two sub-canopy species. Furthermore, attenuation of the PAR spectrum showed both a loss of quanta and a shift in spectral distribution with depth across coastal waters of different clarity, with consequences to productivity dynamics of diverse layered assemblages. The processes of light complementarity may help provide a mechanistic understanding of how altered turbidity affects macroalgal assemblages in coastal

  6. Comprehensive Phylogenetic Analysis Sheds Light on the Diversity and Origin of the MLO Family of Integral Membrane Proteins.

    PubMed

    Kusch, Stefan; Pesch, Lina; Panstruga, Ralph

    2016-03-01

    Mildew resistanceLocusO(MLO) proteins are polytopic integral membrane proteins that have long been considered as plant-specific and being primarily involved in plant-powdery mildew interactions. However, research in the past decade has revealed that MLO proteins diverged into a family with several clades whose members are associated with different physiological processes. We provide a largely increased dataset of MLO amino acid sequences, comprising nearly all major land plant lineages. Based on this comprehensive dataset, we defined seven phylogenetic clades and reconstructed the likely evolution of the MLO family in embryophytes. We further identified several MLO peptide motifs that are either conserved in all MLO proteins or confined to one or several clades, supporting the notion that clade-specific diversification of MLO functions is associated with particular sequence motifs. In baker's yeast, some of these motifs are functionally linked to transmembrane (TM) transport of organic molecules and ions. In addition, we attempted to define the evolutionary origin of the MLO family and found that MLO-like proteins with highly diverse membrane topologies are present in green algae, but also in the distinctly related red algae (Rhodophyta), Amoebozoa, and Chromalveolata. Finally, we discovered several instances of putative fusion events between MLO proteins and different kinds of proteins. Such Rosetta stone-type hybrid proteins might be instructive for future analysis of potential MLO functions. Our findings suggest that MLO is an ancient protein that possibly evolved in unicellular photosynthetic eukaryotes, and consolidated in land plants with a conserved topology, comprising seven TM domains and an intrinsically unstructured C-terminus. PMID:26893454

  7. YCF1: A Green TIC?

    PubMed Central

    de Vries, Jan; Sousa, Filipa L.; Bölter, Bettina; Soll, Jürgen; Gould, Sven B.

    2015-01-01

    A pivotal step in the transformation of an endosymbiotic cyanobacterium to a plastid some 1.5 billion years ago was the evolution of a protein import apparatus, the TOC/TIC machinery, in the common ancestor of Archaeplastida. Recently, a putative new TIC member was identified in Arabidopsis thaliana: TIC214. This finding is remarkable for a number of reasons: (1) TIC214 is encoded by ycf1, so it would be the first plastid-encoded protein of this apparatus; (2) ycf1 is unique to the green lineage (Chloroplastida) but entirely lacking in glaucophytes (Glaucophyta) and the red lineage (Rhodophyta) of the Archaeplastida; (3) ycf1 has been shown to be one of the few indispensable plastid genes (aside from the ribosomal machinery), yet it is missing in the grasses; and (4) 30 years of previous TOC/TIC research missed it. These observations prompted us to survey the evolution of ycf1. We found that ycf1 is not only lacking in grasses and some parasitic plants, but also for instance in cranberry (Ericaceae). The encoded YCF proteins are highly variable, both in sequence length and in the predicted number of N-terminal transmembrane domains. The evolution of the TOC/TIC machinery in the green lineage experienced specific modifications, but our analysis does not support YCF1 to be a general green TIC. It remains to be explained how the apparent complete loss of YCF1 can be tolerated by some embryophytes and whether what is observed for YCF1 function in a member of the Brassicaceae is also true for, e.g., algal and noncanonical YCF1 homologs. PMID:25818624

  8. Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions.

    PubMed

    Hardeland, Rüdiger

    2015-02-01

    Melatonin is synthesized in Alphaproteobacteria, Cyanobacteria, Dinoflagellata, Euglenoidea, Rhodophyta, Phae ophyta, and Viridiplantae. The biosynthetic pathways have been identified in dinoflagellates and plants. Other than in dinoflagellates and animals, tryptophan is not 5-hydroxylated in plants but is first decarboxylated. Serotonin is formed by 5-hydroxylation of tryptamine. Serotonin N-acetyltransferase is localized in plastids and lacks homology to the vertebrate aralkylamine N-acetyltransferase. Melatonin content varies considerably among species, from a few picograms to several micrograms per gram, a strong hint for different actions of this indoleamine. At elevated levels, the common and presumably ancient property as an antioxidant may prevail. Although melatonin exhibits nocturnal maxima in some phototrophs, it is not generally a mediator of the signal 'darkness'. In various plants, its formation is upregulated by visible and/or UV light. Increases are often induced by high or low temperature and several other stressors including drought, salinity, and chemical toxins. In Arabidopsis, melatonin induces cold- and stress-responsive genes. It has been shown to support cold resistance and to delay experimental leaf senescence. Transcriptome data from Arabidopsis indicate upregulation of genes related to ethylene, abscisic acid, jasmonic acid, and salicylic acid. Auxin-like actions have been reported concerning root growth and inhibition, and hypocotyl or coleoptile lengthening, but effects caused by melatonin and auxins can be dissected. Assumptions on roles in flower morphogenesis and fruit ripening are based mainly on concentration changes. Whether or not melatonin will find a place in the phytohormone network depends especially on the identification of molecular signals regulating its synthesis, high-affinity binding sites, and signal transduction pathways.

  9. In vivo estimation of pigment composition and optical absorption cross-section by spectroradiometry in four aquatic photosynthetic micro-organisms.

    PubMed

    Méléder, Vona; Laviale, Martin; Jesus, Bruno; Mouget, Jean Luc; Lavaud, Johann; Kazemipour, Farzaneh; Launeau, Patrick; Barillé, Laurent

    2013-12-01

    The objective of the present study was to estimate in vivo pigment composition and to retrieve absorption cross-section values, a(∗), of photosynthetic micro-organisms using a non-invasive technique of reflectance spectrometry. To test the methodology, organisms from different taxonomical groups and different pigment composition were used (Spirulina platensis a Cyanophyta, Porphyridium cruentum a Rhodophyta, Dunaliella tertiolecta a Chlorophyta and Entomoneis paludosa a Bacillariophyta) and photoacclimated to two different irradiance levels: 25 μmol photonm(-2)s(-1) (Low Light, LL) and 500 μmol photonm(-2)s(-1) (High Light, HL). Second derivative spectra from reflectance were used to identify pigment in vivo absorption bands that were linked to specific pigments detected by high performance liquid chromatography. Whereas some absorption bands such as those induced by Chlorophyll (Chl) a (416, 440, 625 and around 675 nm) were ubiquous, others were taxonomically specific (e.g. 636 nm for Chl c in E. paludosa) and/or photo-physiological dependent (e.g. 489 nm for zeaxanthin in the HL-acclimated S. platensis). The optical absorption cross-section, a(∗), was retrieved from reflectance data using a radiative transfer model previously developed for microphytobenthos. Despite the cellular Chl a decrease observed from LL to HL (up to 88% for S. platensis), the a(∗) increased, except for P. cruentum. This was attributed to a 'package effect' and to a greater absorption by photoprotective carotenoids that did not contribute to the energy transfer to the core Chl a. PMID:24211563

  10. Physiologic and metagenomic attributes of the rhodoliths forming the largest CaCO3 bed in the South Atlantic Ocean.

    PubMed

    Cavalcanti, Giselle S; Gregoracci, Gustavo B; dos Santos, Eidy O; Silveira, Cynthia B; Meirelles, Pedro M; Longo, Leila; Gotoh, Kazuyoshi; Nakamura, Shota; Iida, Tetsuya; Sawabe, Tomoo; Rezende, Carlos E; Francini-Filho, Ronaldo B; Moura, Rodrigo L; Amado-Filho, Gilberto M; Thompson, Fabiano L

    2014-01-01

    Rhodoliths are free-living coralline algae (Rhodophyta, Corallinales) that are ecologically important for the functioning of marine environments. They form extensive beds distributed worldwide, providing a habitat and nursery for benthic organisms and space for fisheries, and are an important source of calcium carbonate. The Abrolhos Bank, off eastern Brazil, harbors the world's largest continuous rhodolith bed (of ∼21,000 km(2)) and has one of the largest marine CaCO3 deposits (producing 25 megatons of CaCO3 per year). Nevertheless, there is a lack of information about the microbial diversity, photosynthetic potential and ecological interactions within the rhodolith holobiont. Herein, we performed an ecophysiologic and metagenomic analysis of the Abrolhos rhodoliths to understand their microbial composition and functional components. Rhodoliths contained a specific microbiome that displayed a significant enrichment in aerobic ammonia-oxidizing betaproteobacteria and dissimilative sulfate-reducing deltaproteobacteria. We also observed a significant contribution of bacterial guilds (that is, photolithoautotrophs, anaerobic heterotrophs, sulfide oxidizers, anoxygenic phototrophs and methanogens) in the rhodolith metagenome, suggested to have important roles in biomineralization. The increased hits in aromatic compounds, fatty acid and secondary metabolism subsystems hint at an important chemically mediated interaction in which a functional job partition among eukaryal, archaeal and bacterial groups allows the rhodolith holobiont to thrive in the global ocean. High rates of photosynthesis were measured for Abrolhos rhodoliths (52.16 μmol carbon m(-2 )s(-1)), allowing the entire Abrolhos rhodolith bed to produce 5.65 × 10(5) tons C per day. This estimate illustrates the great importance of the Abrolhos rhodolith beds for dissolved carbon production in the South Atlantic Ocean.

  11. THE BIOGEOGRAPHIC ORIGIN OF ARCTIC ENDEMIC SEAWEEDS: A THERMOGEOGRAPHIC VIEW(1).

    PubMed

    Adey, Walter H; Lindstrom, Sandra C; Hommersand, Max H; Müller, Kirsten M

    2008-12-01

    The Arctic is geologically and biogeographically young, and the origin of its seaweed flora has been widely debated. The Arctic littoral biogeographic region dates from the latest Tertiary and Pleistocene. Following the opening of Bering Strait, about 3.5 mya, the "Great Trans-Arctic Biotic Interchange" populated the Arctic with a fauna strongly dominated by species of North Pacific origin. The Thermogeographic Model (TM) demonstrates why climate and geography continued to support this pattern in the Pleistocene. Thus, Arctic and Atlantic subarctic species of seaweeds are likely to be evolutionarily "based" in the North Pacific, subarctic species are likely to be widespread in the warmer Arctic, and species of Atlantic Boreal or warmer origin are unlikely in the Arctic and Subarctic. Although Arctic seaweeds have been thought to have a greater affinity with the North Atlantic, we have reanalyzed the Arctic endemic algal flora, using the Thermogeographic Model and evolutionary trees based on molecular data, to demonstrate otherwise. There are 35 congeneric species of the six, abundant Arctic Rhodophyta that we treat in this paper; 32 of these species (91%) occur in the North Pacific, two species (6%) occur in the Boreal or warmer Atlantic Ocean, and a single species is panoceanic, but restricted to the Subarctic. Laminaria solidungula J. Agardh, a kelp Arctic "endemic" species, has 18 sister species. While only eleven (61%) occur in the North Pacific, this rapidly dispersing and evolving genus is a terminal member of a diverse family and order (Laminariales) widely accepted to have evolved in the North Pacific. Thus, both the physical/time-based TM and the dominant biogeographic pattern of relatives of Arctic macrophytes suggest strong compliance with the evidence of zoology, geology, and paleoclimatology that the Arctic marine flora is largely of Pacific origin. PMID:27039853

  12. The kingdom Protista and its 45 phyla.

    PubMed

    Corliss, J O

    1984-01-01

    . Chytridiomycota Sparrow, 1959). III. The chlorobionts (Chlorophyta Pascher, 1914; Prasinophyta Christensen, 1962; Conjugatophyta Engler, 1892; Charophyta Rabenhorst, 1863; incert. sed. Glaucophyta Bohlin, 1901). IV. The euglenozoa (Euglenophyta Pascher, 1931; Kinetoplastidea Honigberg, 1963; incert. sed. Pseudociliata Corliss & Lipscomb, 1982). V. The rhodophytes (Rhodophyta Rabenhorst, 1863). VI. The cryptomonads (Cryptophyta Pascher, 1914). VII. The choanoflagellates (Choanoflagellata Kent, 1880).(ABSTRACT TRUNCATED AT 400 WORDS)

  13. The kingdom Protista and its 45 phyla.

    PubMed

    Corliss, J O

    1984-01-01

    . Chytridiomycota Sparrow, 1959). III. The chlorobionts (Chlorophyta Pascher, 1914; Prasinophyta Christensen, 1962; Conjugatophyta Engler, 1892; Charophyta Rabenhorst, 1863; incert. sed. Glaucophyta Bohlin, 1901). IV. The euglenozoa (Euglenophyta Pascher, 1931; Kinetoplastidea Honigberg, 1963; incert. sed. Pseudociliata Corliss & Lipscomb, 1982). V. The rhodophytes (Rhodophyta Rabenhorst, 1863). VI. The cryptomonads (Cryptophyta Pascher, 1914). VII. The choanoflagellates (Choanoflagellata Kent, 1880).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6395918

  14. Trace Elements in Calcifying Marine Invertebrates Indicate Diverse Sensitivities to the Seawater Carbonate System

    NASA Astrophysics Data System (ADS)

    Doss, W. C.

    2015-12-01

    Surface ocean absorption of anthropogenic CO2 emissions resulting in ocean acidification may interfere with the ability of calcifying marine organisms to biomineralize, since the drop in pH is accompanied by reductions in CaCO3 saturation state. However, recent experiments show that net calcification rates of cultured benthic invertebrate taxa exhibit diverse responses to pCO2-induced changes in saturation state (Ries et al., 2009). Advancement of geochemical tools as biomineralization indicators will enable us to better understand these results and therefore help predict the impacts of ongoing and future decrease in seawater pH on marine organisms. Here we build upon previous work on these specimens by measuring the elemental composition of biogenic calcite and aragonite precipitated in four pCO2 treatments (400; 600; 900; and 2850 ppm). Element ratios (including Sr/Ca, Mg/Ca, Li/Ca, B/Ca, U/Ca, Ba/Ca, Cd/Ca, and Zn/Ca) were analyzed in 18 macro-invertebrate species representing seven phyla (crustacea, cnidaria, echinoidea, rhodophyta, chlorophyta, gastropoda, bivalvia, annelida), then compared to growth rate data and experimental seawater carbonate system parameters: [CO32-], [HCO3-], pH, saturation state, and DIC. Correlations between calcite or aragonite composition and seawater carbonate chemistry are highly taxa-specific, but do not resemble trends observed in growth rate for all species. Apparent carbonate system sensitivities vary widely by element, ranging from strongly correlated to no significant response. Interpretation of these results is guided by mounting evidence for the capacity of individual species to modulate pH and/or saturation state at the site of calcification in response to ambient seawater chemistry. Such biomineralization pathways and strategies in turn likely influence elemental fractionation during CaCO3 precipitation. Ries, J.B., A.L. Cohen, A.L., and D.C. McCorkle (2009), Marine calcifiers exhibit mixed responses to CO2-induced ocean

  15. Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms.

    PubMed

    Saunders, Gary W; McDevit, Daniel C

    2012-01-01

    This chapter outlines the current practices used in our laboratory for routine DNA barcode analyses of the three major marine macroalgal groups, viz., brown (Phaeophyceae), red (Rhodophyta), and green (Chlorophyta) algae, as well as for the microscopic diatoms (Bacillariophyta). We start with an outline of current streamlined field protocols, which facilitate the collection of substantial (hundreds to thousands) specimens during short (days to weeks) field excursions. We present the current high-throughput DNA extraction protocols, which can, nonetheless, be easily modified for manual molecular laboratory use. We are advocating a two-marker approach for the DNA barcoding of protists with each major lineage having a designated primary and secondary barcode marker of which one is always the LSU D2/D3 (divergent domains D2/D3 of the nuclear ribosomal large subunit DNA). We provide a listing of the primers that we currently use in our laboratory for amplification of DNA barcode markers from the groups that we study: LSU D2/D3, which we advocate as a eukaryote-wide barcode marker to facilitate broad ecological and environmental surveys (secondary barcode marker in this capacity); COI-5P (the standard DNA barcode region of the mitochondrial cytochrome c oxidase 1 gene) as the primary barcode marker for brown and red algae; rbcL-3P (the 3' region of the plastid large subunit of ribulose-l-5-bisphosphate carboxylase/oxygenase) as the primary barcode marker for diatoms; and tufA (plastid elongation factor Tu gene) as the primary barcode marker for chlorophytan green algae. We outline our polymerase chain reaction and DNA sequencing methodologies, which have been streamlined for efficiency and to reduce unnecessary cleaning steps. The combined information should provide a helpful guide to those seeking to complete barcode research on these and related "protistan" groups (the term protist is not used in a phylogenetic context; it is simply a catch-all term for the bulk of

  16. Widespread presence of "bacterial-like" PPP phosphatases in eukaryotes

    PubMed Central

    Andreeva, Alexandra V; Kutuzov, Mikhail A

    2004-01-01

    Background In eukaryotes, PPP (protein phosphatase P) family is one of the two known protein phosphatase families specific for Ser and Thr. The role of PPP phosphatases in multiple signaling pathways in eukaryotic cell has been extensively studied. Unlike eukaryotic PPP phosphatases, bacterial members of the family have broad substrate specificity or may even be Tyr-specific. Moreover, one group of bacterial PPPs are diadenosine tetraphosphatases, indicating that bacterial PPP phosphatases may not necessarily function as protein phosphatases. Results We describe the presence in eukaryotes of three groups of expressed genes encoding "non-conventional" phosphatases of the PPP family. These enzymes are more closely related to bacterial PPP phosphatases than to the known eukaryotic members of the family. One group, found exclusively in land plants, is most closely related to PPP phosphatases from some α-Proteobacteria, including Rhizobiales, Rhodobacterales and Rhodospirillaceae. This group is therefore termed Rhizobiales / Rhodobacterales / Rhodospirillaceae-like phosphatases, or Rhilphs. Phosphatases of the other group are found in Viridiplantae, Rhodophyta, Trypanosomatidae, Plasmodium and some fungi. They are structurally related to phosphatases from psychrophilic bacteria Shewanella and Colwellia, and are termed Shewanella-like phosphatases, or Shelphs. Phosphatases of the third group are distantly related to ApaH, bacterial diadenosine tetraphosphatases, and are termed ApaH-like phosphatases, or Alphs. Patchy distribution of Alphs in animals, plants, fungi, diatoms and kinetoplasts suggests that these phosphatases were present in the common ancestor of eukaryotes but were independently lost in many lineages. Rhilphs, Shelphs and Alphs form PPP clades, as divergent from "conventional" eukaryotic PPP phosphatases as they are from each other and from major bacterial clades. In addition, comparison of primary structures revealed a previously unrecognised (I

  17. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    NASA Technical Reports Server (NTRS)

    Hedges, S. Blair; Blair, Jaime E.; Venturi, Maria L.; Shoe, Jason L.

    2004-01-01

    BACKGROUND: The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. RESULTS: Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20-188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to

  18. Water quality of the Crescent River basin, Lake Clark National Park and Preserve, Alaska, 2003-2004

    USGS Publications Warehouse

    Brabets, Timothy P.; Ourso, Robert T.

    2006-01-01

    relatively small number of ovigerous (egg-bearing) individuals. Cyclops sp. are one of the primary food sources for rearing sockeye salmon juveniles and were most prevalent in the July sampling. Qualitative-Multi-Habitat algae samples were collected from two surface-water sites. A total of 59 taxa were found and were comprised of 4 phyla: Rhodophyta (red algae), Cyanophyta (blue-green algae), Chlorophyta (green algae), and Chrysophyta (diatoms). Twenty-two algal taxa were collected from the upper site, North Fork Crescent River, whereas twice as many taxa were collected from the downstream site, Crescent River near the mouth.

  19. Biological and remote sensing perspectives of pigmentation in coral reef organisms.

    PubMed

    Hedley, John D; Mumby, Peter J

    2002-01-01

    categories. The basis of reflectance is considered as the sum of pigmented components, such as zooxanthellae, host tissues and skeletons of corals. Problems in the empirical in situ measurement of reflectance are identified, such as the differing types of reflectance which can be measured, the interaction of the light field with morphology, and depth-dependent variability of measured reflectance due to fluorescence. The latter is estimated in some cases to introduce an error of up to 20% when depth differs by 8 m. Spectral features useful in discriminating reef benthos are identified and related to pigmentation. The slope in the reflectance spectra between 650 and 690 nm is dependent on chlorophyll-a concentration and can be used to discriminate bare sand with no algal component from chlorophyll-a containing benthos (algae, corals). The slope in reflectance at various locations between 500 and 560 nm can be useful in discriminating bleached and unbleached corals, possibly due to reduced peridinin concentration. Rhodophyta may be discernible by the presence of a dip in reflectance at 570 nm, due to a phycoerythrin absorption peak. However, the utility of some discriminatory criteria in deeper waters is mitigated by the relatively poor transmission of light through water at longer wavelengths (especially > 600 nm). Contrary to suggested categorizations of fluorescent pigments in coral host tissues, it is shown that these pigments form an almost continuous distribution with respect to their excitation and emission peaks. Remote sensing by induced fluorescence is a promising approach, but further details about the variation and distribution of these pigments are required. It is hoped that this review will promote cross-disciplinary collaboration between pigment biologists and the reef remote sensing community. Where possible, the discriminative criteria adopted in remote sensing should be related to biological phenomena, thus lending an intuitive, process-orientated basis for

  20. Evaluation of biological data, Guanella Pass Area, Clear Creek and Park counties, Colorado, water years 1995-97

    USGS Publications Warehouse

    Cox-Lillis, Jennifer R.

    2000-01-01

    density, were Cyanophyta (blue-green algae), Chrysophyta (diatoms), Chlorophyta (green algae), Rhodophyta (red algae), and Euglenophyta (euglenoids). In general, diatom biovolumes dominated the algal assemblage, followed by blue-green algae, green algae, red algae, and euglenoids. Algal densities ranged from 3.1 X 102 to more than 4.7 X 106 cells per square centimeter, and algal biovolume ranged from 2.3 X 104 to 4.6 X 109 cells per cubic centimeter. Diversity values for diatoms ranged from 1.5 to 4.9. The pollution tolerance index (PTI) for diatoms ranged from 1.8 to 3.0. Sensitive diatoms were present at each site and ranged from 21 to 97 percent. The percentage of motile diatoms ranged from 0 to 13 percent. The presence of acid-tolerant diatoms ranged from less than 0.5 to greater than 20 percent. The percentage of community similarity between site pairs ranged from 1 to 97 percent. Overall, the biotic metrics that were evaluated during this study indicate that the macroinvertebrate and algal communities in the streams on Guanella Pass are not degraded by the existing road. Erosion may cause some localized effects but may not affect the overall health of the whole stream system. The degraded condition of Geneva Creek probably is due to natural effects as opposed to road effects. Although upper South Clear Creek, upstream from Naylor Creek, is located downstream from several sources of road runoff, the biological community at this site does not seem to be negatively affected.

  1. Carbon isotopic fractionation in macroalgae from Cádiz Bay (Southern Spain): Comparison with other bio-geographic regions

    NASA Astrophysics Data System (ADS)

    Mercado, Jesús M.; de los Santos, Carmen B.; Lucas Pérez-Lloréns, J.; Vergara, Juan J.

    2009-11-01

    The 13C signature of forty-five macroalgal species from intertidal zones at Cádiz Bay was analysed in order to research the extension of diffusive vs. non-diffusive utilisation of dissolved inorganic carbon (DIC) and to perform a comparison with data published for other bio-geographic regions. The ∂ 13C values ranged from -6.8‰ to -33‰, although the span of variation was different depending on the taxa. Thus, ∂ 13C for Chlorophyta varied from -7‰ ( Codium adhaerens) to -29.6‰ ( Flabellia petiolata), while all the Phaeophyceae (excepting Padina pavonica with ∂ 13C higher than -10‰) had values between -10‰, and -20‰. The widest variation range was recorded in Rhodophyta, from values above -10‰ ( Liagora viscida) to values lower than -30‰ obtained in three species belonging to the subclass Rhodymeniophycidae. Accordingly, the mean ∂ 13C value calculated for red algae (-20.2‰) was significantly lower than that for brown (-15.9‰) and green algae (-15.6‰). Most of the analysed red algae were species inhabiting crevices and the low intertidal fringe which explains that, on average, the shaded-habitat species had a ∂ 13C value lower than those growing fully exposed to sun (i.e. in rockpools or at the upper intertidal zone). The comparison between the capacity for non-diffusive use of DIC (i.e. active or facilitated transport of HCO 3- and/or CO 2) and the ∂ 13C values reveals that values more negative than -30‰ indicate that photosynthesis is dependent on CO 2 diffusive entry, whereas values above this threshold would not indicate necessary the operation of a non-diffusive DIC transport mechanism. Furthermore, external carbonic anhydrase activity ( extCA) and ∂ 13C values were negatively correlated indicating that the higher the dependence of the photosynthesis on the CO 2 supplied from HCO 3- via extCA, the lower the ∂ 13C in the algal material. The comparison between the ∂ 13C values obtained for the analysed species and those

  2. The extreme environments and their microbes as models for extraterrestrial life

    NASA Astrophysics Data System (ADS)

    Seckbach, J.; Oren, A.; Chela-Flores, J.

    2008-09-01

    British Penetrator Consortium (Smith et al., 2008), a modest penetration depth of penetrators (instruments in the process of development to be deployed on planetary bodies such as the Moon to bury themselves into the surface) into the icy surface of Europa would be sufficient to obtain samples that can be used to correctly interpret isotopic abundances of sulfur. When derived from the activity of putative S-reducing microbes, the sulfur can be used as a biomarker, based on its characteristic isotopic composition, not influenced by radiation interference. References Blanc, M. and the LAPLACE consortium (2008). LAPLACE: a mission to Europa and the Jupiter System, Astrophysical Instruments and Methods, in press. (The LAPLACE Consortium: http://www.ictp.it/~chelaf/ss164.html). Chela-Flores, J. (2006). The sulphur dilemma: Are there biosignatures on Europa's icy and patchy surface? International Journal of Astrobiology 5: 17-22. Chela-Flores, J. and Kumar, N. (2008). Returning to Europa: Can traces of surficial life be detected? International Journal of Astrobiology, in press. Dudeja, S., Bhattacherjee, A.B. and Chela-Flores, J. (2008). Manuscript in preparation. Greenberg, R. (2005). Europa - The Ocean Moon. Springer and Praxia Publishing, Chichester, 328 pp. Oren, A. (2002). Halophilic Microorganisms and their Environments. Kluwer Scientific Publishers, Dordrecht, 575 pp. Oren, A. (2008). Life at low water activity. Halophilic micro-organisms and their adaptations. The Biochemist, in press. Seckbach, J. (1994). The natural history of Cyanidium (Geitler 1933): past and present perspectives. in: Seckbach, J. (ed.), Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells, Kluwer Academic Publishers, Dordrecht, pp. 99-112. Seckbach, J., Baker, F.A. and Shugarman, P.M. (1970). Algae thrive under pure CO2. Nature 227: 744-745. Seckbach, J. and Chela-Flores, J. (2007). Extremophiles and chemotrophs as contributors to astrobiological signatures