Science.gov

Sample records for amplifying progenitor itap

  1. Interoperable Technologies for Advanced Petascale Simulations (ITAPS)

    SciTech Connect

    Shephard, Mark S

    2010-02-05

    Efforts during the past year have contributed to the continued development of the ITAPS interfaces and services as well as specific efforts to support ITAPS applications. The ITAPS interface efforts have two components. The first is working with the ITAPS team on improving the ITAPS software infrastructure and level of compliance of our implementations of ITAPS interfaces (iMesh, iMeshP, iRel and iGeom). The second is being involved with the discussions on the design of the iField fields interface. Efforts to move the ITAPS technologies to petascale computers has identified a number of key technical developments that are required to effectively execute the ITAPS interfaces and services. Research to address these parallel method developments has been a major emphasis of the RPI’s team efforts over the past year. Efforts to move the ITAPS technologies to petascale computers has identified a number of key technical developments that are required to effectively execute the ITAPS interfaces and services. Research to address these parallel method developments has been a major emphasis of the RPI’s team efforts over the past year. The development of parallel unstructured mesh methods has considered the need to scale unstructured mesh solves to massively parallel computers. These efforts, summarized in section 2.1 show that with the addition of the ITAPS procedures described in sections 2.2 and 2.3 we are able to obtain excellent strong scaling with our unstructured mesh CFD code on up to 294,912 cores of IBM Blue Gene/P which is the highest core count machine available. The ITAPS developments that have contributed to the scaling and performance of PHASTA include an iterative migration algorithm to improve the combined region and vertex balance of the mesh partition, which increases scalability, and mesh data reordering, which improves computational performance. The other developments are associated with the further development of the ITAPS parallel unstructured mesh

  2. Electroacupuncture Promotes Proliferation of Amplifying Neural Progenitors and Preserves Quiescent Neural Progenitors from Apoptosis to Alleviate Depressive-Like and Anxiety-Like Behaviours

    PubMed Central

    Yang, Liu; Yue, Na; Zhu, Xiaocang; Han, Qiuqin; Li, Bin; Liu, Qiong; Wu, Gencheng; Yu, Jin

    2014-01-01

    The present study was designed to investigate the effects of electroacupuncture (EA) on depressive-like and anxiety-like behaviours and neural progenitors in the hippocampal dentate gyrus (DG) in a chronic unpredictable stress (CUS) rat model of depression. After being exposed to a CUS procedure for 2 weeks, rats were subjected to EA treatment, which was performed on acupoints Du-20 (Bai-Hui) and GB-34 (Yang-Ling-Quan), once every other day for 15 consecutive days (including 8 treatments), with each treatment lasting for 30 min. The behavioural tests (i.e., forced swimming test, elevated plus-maze test, and open-field entries test) revealed that EA alleviated the depressive-like and anxiety-like behaviours of the stressed rats. Immunohistochemical results showed that proliferative cells (BrdU-positive) in the EA group were significantly larger in number compared with the Model group. Further, the results showed that EA significantly promoted the proliferation of amplifying neural progenitors (ANPs) and simultaneously inhibited the apoptosis of quiescent neural progenitors (QNPs). In a word, the mechanism underlying the antidepressant-like effects of EA is associated with enhancement of ANPs proliferation and preserving QNPs from apoptosis. PMID:24719647

  3. RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1

    PubMed Central

    Joshi, Purna A.; Waterhouse, Paul D.; Kannan, Nagarajan; Narala, Swami; Fang, Hui; Di Grappa, Marco A.; Jackson, Hartland W.; Penninger, Josef M.; Eaves, Connie; Khokha, Rama

    2015-01-01

    Summary Systemic and local signals must be integrated by mammary stem and progenitor cells to regulate their cyclic growth and turnover in the adult gland. Here, we show RANK-positive luminal progenitors exhibiting WNT pathway activation are selectively expanded in the human breast during the progesterone-high menstrual phase. To investigate underlying mechanisms, we examined mouse models and found that loss of RANK prevents the proliferation of hormone receptor-negative luminal mammary progenitors and basal cells, an accompanying loss of WNT activation, and, hence, a suppression of lobuloalveologenesis. We also show that R-spondin1 is depleted in RANK-null progenitors, and that its exogenous administration rescues key aspects of RANK deficiency by reinstating a WNT response and mammary cell expansion. Our findings point to a novel role of RANK in dictating WNT responsiveness to mediate hormone-induced changes in the growth dynamics of adult mammary cells. PMID:26095608

  4. Mobilizing transit-amplifying cell-derived ectopic progenitors prevents hair loss from chemotherapy or radiation therapy.

    PubMed

    Huang, Wen-Yen; Lai, Shih-Fan; Chiu, Hsien-Yi; Chang, Michael; Plikus, Maksim; Chan, Chih-Chieh; Chen, You-Tzung; Tsao, Po-Nien; Yang, Tsung-Lin; Lee, Hsuan-Shu; Chi, Peter; Lin, Sung-Jan

    2017-09-22

    Genotoxicity-induced hair loss from chemotherapy and radiotherapy is often encountered in cancer treatment, and there is a lack of effective treatment. In growing hair follicles (HF), quiescent stem cells (SC) are maintained in the bulge region and hair bulbs at the base contain rapidly dividing, yet genotoxicity-sensitive transit-amplifying cells (TAC) that maintain hair growth. How genotoxicity-induced HF injury is repaired remains unclear. We report here that HF mobilize ectopic progenitors from distinct TAC compartments for regeneration in adaptation to the severity of dystrophy induced by ionizing radiation (IR). Specifically, after low-dose IR, keratin5+ basal hair bulb progenitors, rather than bulge SC, were quickly activated to replenish matrix cells and regenerated all concentric layers of HF, demonstrating their plasticity. After high-dose IR, when both matrix and hair bulb cells were depleted, the surviving outer root sheath cells rapidly acquired a SC-like state and fueled HF regeneration. Their progeny then homed back to SC niche and supported new cycles of HF growth. We also revealed that IR induced HF dystrophy and hair loss and suppressed WNT signaling in a p53- and dose-dependent manner. Augmenting WNT signaling attenuated the suppressive effect of p53 and enhanced ectopic progenitor proliferation after genotoxic injury, thereby preventing both IR- and cyclophosphamide-induced alopecia. Hence, targeted activation of TAC-derived progenitor cells, rather than quiescent bulge SC, for anagen HF repair can be a potential approach to prevent hair loss from chemotherapy and radiotherapy. Copyright ©2017, American Association for Cancer Research.

  5. Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development.

    PubMed

    Viktorin, Gudrun; Riebli, Nadia; Popkova, Anna; Giangrande, Angela; Reichert, Heinrich

    2011-08-15

    The neural stem cells that give rise to the neural lineages of the brain can generate their progeny directly or through transit amplifying intermediate neural progenitor cells (INPs). The INP-producing neural stem cells in Drosophila are called type II neuroblasts, and their neural progeny innervate the central complex, a prominent integrative brain center. Here we use genetic lineage tracing and clonal analysis to show that the INPs of these type II neuroblast lineages give rise to glial cells as well as neurons during postembryonic brain development. Our data indicate that two main types of INP lineages are generated, namely mixed neuronal/glial lineages and neuronal lineages. Genetic loss-of-function and gain-of-function experiments show that the gcm gene is necessary and sufficient for gliogenesis in these lineages. The INP-derived glial cells, like the INP-derived neuronal cells, make major contributions to the central complex. In postembryonic development, these INP-derived glial cells surround the entire developing central complex neuropile, and once the major compartments of the central complex are formed, they also delimit each of these compartments. During this process, the number of these glial cells in the central complex is increased markedly through local proliferation based on glial cell mitosis. Taken together, these findings uncover a novel and complex form of neurogliogenesis in Drosophila involving transit amplifying intermediate progenitors. Moreover, they indicate that type II neuroblasts are remarkably multipotent neural stem cells that can generate both the neuronal and the glial progeny that make major contributions to one and the same complex brain structure.

  6. C-MYC transcriptionally amplifies SOX2 target genes to regulate self-renewal in multipotent otic progenitor cells.

    PubMed

    Kwan, Kelvin Y; Shen, Jun; Corey, David P

    2015-01-13

    Sensorineural hearing loss is caused by the loss of sensory hair cells and neurons of the inner ear. Once lost, these cell types are not replaced. Two genes expressed in the developing inner ear are c-Myc and Sox2. We created immortalized multipotent otic progenitor (iMOP) cells, a fate-restricted cell type, by transient expression of C-MYC in SOX2-expressing otic progenitor cells. This activated the endogenous C-MYC and amplified existing SOX2-dependent transcripts to promote self-renewal. RNA-seq and ChIP-seq analyses revealed that C-MYC and SOX2 occupy over 85% of the same promoters. C-MYC and SOX2 target genes include cyclin-dependent kinases that regulate cell-cycle progression. iMOP cells continually divide but retain the ability to differentiate into functional hair cells and neurons. We propose that SOX2 and C-MYC regulate cell-cycle progression of these cells and that downregulation of C-MYC expression after growth factor withdrawal serves as a molecular switch for differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. C-MYC Transcriptionally Amplifies SOX2 Target Genes to Regulate Self-Renewal in Multipotent Otic Progenitor Cells

    PubMed Central

    Kwan, Kelvin Y.; Shen, Jun; Corey, David P.

    2014-01-01

    Summary Sensorineural hearing loss is caused by the loss of sensory hair cells and neurons of the inner ear. Once lost, these cell types are not replaced. Two genes expressed in the developing inner ear are c-Myc and Sox2. We created immortalized multipotent otic progenitor (iMOP) cells, a fate-restricted cell type, by transient expression of C-MYC in SOX2-expressing otic progenitor cells. This activated the endogenous C-MYC and amplified existing SOX2-dependent transcripts to promote self-renewal. RNA-seq and ChIP-seq analyses revealed that C-MYC and SOX2 occupy over 85% of the same promoters. C-MYC and SOX2 target genes include cyclin-dependent kinases that regulate cell-cycle progression. iMOP cells continually divide but retain the ability to differentiate into functional hair cells and neurons. We propose that SOX2 and C-MYC regulate cell-cycle progression of these cells and that downregulation of C-MYC expression after growth factor withdrawal serves as a molecular switch for differentiation. PMID:25497456

  8. Impact of treatment of ADHD on intimate partner violence (ITAP), a study protocol.

    PubMed

    Buitelaar, Nannet J L; Posthumus, Jocelyne A; Scholing, Agnes; Buitelaar, Jan K

    2014-11-27

    Attention-Deficit/Hyperactivity Disorder (ADHD) in adults is one of the predictive and treatable risk factors for delinquency, including intimate partner violence (IPV). Effective treatment of IPV needs to address personal dynamic risk factors, offender typology, and dynamics of the domestic violence. It is unknown whether treatment of ADHD symptoms contributes to a decrease in IPV. The ITAP study aims to investigate the relationship between treatment of ADHD symptoms and IPV in patients in forensic mental health care. Moreover, this study examines the role of comorbid psychopathology, subtype of the offender, and dynamics of the domestic violence. The ITAP study is a longitudinal observational study. Participants are followed one year through various assessments: one before starting treatment (t0), and four during treatment (8, 16, 24 and 52 weeks after start of the treatment). All participants receive treatment for IPV, ADHD, and comorbid psychopathology, if present. The primary outcome measure is the change in severity of IPV; the primary predictive variable is the change in severity of ADHD symptoms. The secondary outcome measure is the observation of the therapist about change in the offender's general violent behaviour, within and outside the partner relationship. Data are analysed in a multiple regression model with change in severity of IPV as the dependent variable and change in severity of ADHD symptoms as the primary predictor. Other predictive variables taken into account in the analyses are presence of comorbid psychopathology and personality disorder, subtype of the offender, and dynamics of the domestic violence. In addition, compliance with treatment and content of the treatment are documented. Research on the treatment process of IPV offenders and victims is complicated by many factors. This observational design will not allow inferences about causality but may reveal clinically important factors that contribute to more effective treatment of IPV

  9. Cancer mortality in Itapúa--A rural province of Paraguay 2003-2012.

    PubMed

    Codas, Manuel; Pesch, Beate; Adolphs, Madita; Madrazo, Carolina; Matthias, Cristian; Heinze, Evelyn; Taeger, Dirk; Behrens, Thomas; Chaux, Alcides; Brüning, Thomas

    2016-02-01

    Itapúa is a rural department in Paraguay with a population of about 500,000 and a high degree of agro-mechanization for the production of soybean and other crops. So far, only basic health care is provided. Here we analyzed the cancer mortality in this region as a first step towards epidemiological data for cancer prevention. We calculated the age-adjusted mortality rates according to world standard (AMRWs) for the major cancer sites in both males and females between 2003 and 2012, and estimated the differences between the capital and more central districts of Itapúa vs. remote districts. There were about 2000 cancer deaths in the decade studied, with AMRWs for all malignancies of 90.9/100,000 in males from central vs. 49.1/100,000 in remote districts and 69.0/100,000 vs. 45.0/100,000 in women. Cancer was mentioned in 12.4% of all death certificates and outweighed mortality from certain infectious and parasitic diseases (3.6%). Cause of death was ill-defined in 19.6% of all death certificates, especially in remote regions and among the elderly. The part of cancer located in the uterus (47.8%) or cell type of neoplasm of the lymphatic or hematopoietic system (73.1%) were often not specified. The uterus (mainly the cervix) (C53-C55) was the leading cancer site in women with AMRWs of 17.2/100,000 in central and 14.0/100,000 in remote districts, followed by the breast. Lung and prostate were the leading cancer sites among men. The lung cancer mortality rate was 19.3/100,000 in the central region but 9.5/100,000 in remote districts. Although children comprised 36% of the population, only 24 death certificates listed cancer as cause of death in this decade. Analysis of cancer mortality in this rural region of Paraguay, which lacks resources for diagnostics and care, revealed an already large number of cases, with higher rates in the central region than in remote districts. Lung and uterus (primarily the cervix) are common cancer sites and indicate the potential for

  10. HDAC inhibition amplifies gap junction communication in neural progenitors: Potential for cell-mediated enzyme prodrug therapy

    SciTech Connect

    Khan, Zahidul . E-mail: Zahidul.Khan@ki.se; Akhtar, Monira; Asklund, Thomas; Juliusson, Bengt . E-mail: Tomas.Ekstrom@ki.se

    2007-08-01

    Enzyme prodrug therapy using neural progenitor cells (NPCs) as delivery vehicles has been applied in animal models of gliomas and relies on gap junction communication (GJC) between delivery and target cells. This study investigated the effects of histone deacetylase (HDAC) inhibitors on GJC for the purpose of facilitating transfer of therapeutic molecules from recombinant NPCs. We studied a novel immortalized midbrain cell line, NGC-407 of embryonic human origin having neural precursor characteristics, as a potential delivery vehicle. The expression of gap junction protein connexin 43 (C x 43) was analyzed by western blot and immunocytochemistry. While C x 43 levels were decreased in untreated differentiating NGC-407 cells, the HDAC inhibitor 4-phenylbutyrate (4-PB) increased C x 43 expression along with increased membranous deposition in both proliferating and differentiating cells. Simultaneously, Ser 279/282-phosphorylated form of C x 43 was declined in both culture conditions by 4-PB. The 4-PB effect in NGC-407 cells was verified by using HNSC.100 human neural progenitors and Trichostatin A. Improved functional GJC is of imperative importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds. We show here an enhancement by 4-PB, of the functional GJC among NGC-407 cells, as well as between NGC-407 and human glioma cells, as indicated by increased fluorescent dye transfer.

  11. Clinical-scale expansion of CD34(+) cord blood cells amplifies committed progenitors and rapid scid repopulation cells.

    PubMed

    Casamayor-Genescà, Alba; Pla, Arnau; Oliver-Vila, Irene; Pujals-Fonts, Noèlia; Marín-Gallén, Sílvia; Caminal, Marta; Pujol-Autonell, Irma; Carrascal, Jorge; Vives-Pi, Marta; Garcia, Joan; Vives, Joaquim

    2017-03-25

    Umbilical cord blood (UCB) transplantation is associated with long periods of aplastic anaemia. This undesirable situation is due to the low cell dose available per unit of UCB and the immaturity of its progenitors. To overcome this, we present a cell culture strategy aimed at the expansion of the CD34(+) population and the generation of granulocyte lineage-committed progenitors. Two culture products were produced after either 6 or 14days of in vitro expansion, and their characteristics compared to non-expanded UCB CD34(+) controls in terms of phenotype, colony-forming activity and multilineage repopulation potential in NOD-scid IL2Rγ(null) mice. Both expanded cell products maintained rapid SCID repopulation activity similar to the non-expanded control, but 14-day cultured cells showed impaired long term SCID repopulation activity. The process was successfully scaled up to clinically relevant doses of 89×10(6) CD34(+) cells committed to the granulocytic lineage and 3.9×10(9) neutrophil precursors in different maturation stages. Cell yields and biological properties presented by the cell product obtained after 14days in culture were superior and therefore this is proposed as the preferred production setup in a new type of dual transplant strategy to reduce aplastic periods, producing a transient repopulation before the definitive engraftment of the non-cultured UCB unit. Importantly, human telomerase reverse transcriptase activity was undetectable, c-myc expression levels were low and no genetic abnormalities were found, as determined by G-banding karyotype, further confirming the safety of the expanded product. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. iTAP: integrated transcriptomics and phenotype database for stress response of Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Sundararaman, Niveda; Ash, Christine; Guo, Weihua; Button, Rebecca; Singh, Jugroop; Feng, Xueyang

    2015-12-12

    Organisms are subject to various stress conditions, which affect both the organism's gene expression and phenotype. It is critical to understand microbial responses to stress conditions and uncover the underlying molecular mechanisms. To this end, it is necessary to build a database that collects transcriptomics and phenotypic data of microbes growing under various stress factors for in-depth systems biology analysis. Despite of numerous databases that collect gene expression profiles, to our best knowledge, there are few, if any, databases that collect both transcriptomics and phenotype data simultaneously. In light of this, we have developed an open source, web-based database, namely integrated transcriptomics and phenotype (iTAP) database, that records and links the transcriptomics and phenotype data for two model microorganisms, Escherichia coli and Saccharomyces cerevisiae in response to exposure of various stress conditions. To collect the data, we chose relevant research papers from the PubMed database containing all the necessary information for data curation including experimental conditions, transcriptomics data, and phenotype data. The transcriptomics data, including the p value and fold change, were obtained through the comparison of test strains against control strains using Gene Expression Omnibus's GEO2R analyzer. The phenotype data, including the cell growth rate and the productivity, volumetric rate, and mass-based yield of byproducts, were calculated independently from charts or graphs within the reference papers. Since the phenotype data was never reported in a standardized format, the curation of correlated transcriptomics-phenotype datasets became extremely tedious and time-consuming. Despite the challenges, till now, we successfully correlated 57 and 143 datasets of transcriptomics and phenotype for E. coli and S. cerevisiae, respectively, and applied a regression model within the iTAP database to accurately predict over 93 and 73 % of the

  13. Solid Oxide Fuel Cell APU Feasibility Study for a Long Range Commercial Aircraft Using UTC ITAPS Approach. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    NASA Technical Reports Server (NTRS)

    Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry

    2006-01-01

    The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.

  14. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  15. Electronic amplifiers: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Several types of amplifiers and amplifier systems are considered. These include preamplifiers, high power amplifiers, buffer and isolation amplifiers, amplifier circuits, and general purpose amplifiers.

  16. LOGARITHMIC AMPLIFIER

    DOEpatents

    De Shong, J.A. Jr.

    1957-12-31

    A logarithmic current amplifier circuit having a high sensitivity and fast response is described. The inventor discovered the time constant of the input circuit of a system utilizing a feedback amplifier, ionization chamber, and a diode, is inversely proportional to the input current, and that the amplifier becomes unstable in amplifying signals in the upper frequency range when the amplifier's forward gain time constant equals the input circuit time constant. The described device incorporates impedance networks having low frequency response characteristic at various points in the circuit to change the forward gain of the amplifler at a rate of 0.7 of the gain magnitude for every two times increased in frequency. As a result of this improvement, the time constant of the input circuit is greatly reduced at high frequencies, and the amplifier response is increased.

  17. Operational Amplifiers.

    ERIC Educational Resources Information Center

    Foxcroft, G. E.

    1986-01-01

    Addresses the introduction of low cost equipment into high school and college physical science classes. Examines the properties of an "ideal" operational amplifier and discusses how it might be used under saturated and non-saturated conditions. Notes the action of a "real" operational amplifier. (TW)

  18. Operational Amplifiers.

    ERIC Educational Resources Information Center

    Foxcroft, G. E.

    1986-01-01

    Addresses the introduction of low cost equipment into high school and college physical science classes. Examines the properties of an "ideal" operational amplifier and discusses how it might be used under saturated and non-saturated conditions. Notes the action of a "real" operational amplifier. (TW)

  19. Amplifier Distortion

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  20. LOGARITHMIC AMPLIFIER

    DOEpatents

    Wade, E.J.; Stone, R.S.

    1959-03-10

    Electronic,amplifier circuits, especially a logai-ithmic amplifier characterizxed by its greatly improved strability are discussed. According to the in ention, means are provided to feed bach the output valtagee to a diode in the amplifier input circuit, the diode being utilized to produce the logarithmic characteristics. The diode is tics, The diode isition therewith and having its filament operated from thc same source s the filament of the logarithmic diode. A bias current of relatively large value compareii with the signal current is continuously passed through the compiting dioie to render the diode insensitivy to variations in the signal current. by this odes kdu to variaelled, so that the stability of the amlifier will be unimpaired.

  1. Bidirectional amplifier

    DOEpatents

    Wright, James T.

    1986-01-01

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  2. Bidirectional amplifier

    DOEpatents

    Wright, J.T.

    1984-02-02

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  3. Amplified Policymaking

    ERIC Educational Resources Information Center

    Prince, Katherine; Woempner, Carolyn

    2010-01-01

    This brief examines the policy implications of two drivers of change presented in the "2020 Forecast: Creating the Future of Learning"-- Pattern Recognition and Amplified Organization. These drivers point toward a series of cultural shifts and illuminate how we are developing new ways of organizing, constructing, and managing knowledge.…

  4. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  5. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  6. Segmented amplifier configurations for laser amplifier

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    An amplifier system for high power lasers, the system comprising a compact array of segments which (1) preserves high, large signal gain with improved pumping efficiency and (2) allows the total amplifier length to be shortened by as much as one order of magnitude. The system uses a three dimensional array of segments, with the plane of each segment being oriented at substantially the amplifier medium Brewster angle relative to the incident laser beam and with one or more linear arrays of flashlamps positioned between adjacent rows of amplifier segments, with the plane of the linear array of flashlamps being substantially parallel to the beam propagation direction.

  7. Genome-wide gene amplification during differentiation of neural progenitor cells in vitro.

    PubMed

    Fischer, Ulrike; Keller, Andreas; Voss, Meike; Backes, Christina; Welter, Cornelius; Meese, Eckart

    2012-01-01

    DNA sequence amplification is a phenomenon that occurs predictably at defined stages during normal development in some organisms. Developmental gene amplification was first described in amphibians during gametogenesis and has not yet been described in humans. To date gene amplification in humans is a hallmark of many tumors. We used array-CGH (comparative genomic hybridization) and FISH (fluorescence in situ hybridization) to discover gene amplifications during in vitro differentiation of human neural progenitor cells. Here we report a complex gene amplification pattern two and five days after induction of differentiation of human neural progenitor cells. We identified several amplified genes in neural progenitor cells that are known to be amplified in malignant tumors. There is also a striking overlap of amplified chromosomal regions between differentiating neural progenitor cells and malignant tumor cells derived from astrocytes. Gene amplifications in normal human cells as physiological process has not been reported yet and may bear resemblance to developmental gene amplifications in amphibians and insects.

  8. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  9. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2010-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  10. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2011-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  11. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2013-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  12. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2008-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  13. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  14. Portable musical instrument amplifier

    SciTech Connect

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  15. Resident vascular progenitor cells.

    PubMed

    Torsney, Evelyn; Xu, Qingbo

    2011-02-01

    Homeostasis of the vessel wall is essential for maintaining its function, including blood pressure and patency of the lumen. In physiological conditions, the turnover rate of vascular cells, i.e. endothelial and smooth muscle cells, is low, but markedly increased in diseased situations, e.g. vascular injury after angioplasty. It is believed that mature vascular cells have an ability to proliferate to replace lost cells normally. On the other hand, recent evidence indicates stem/progenitor cells may participate in vascular repair and the formation of neointimal lesions in severely damaged vessels. It was found that all three layers of the vessels, the intima, media and adventitia, contain resident progenitor cells, including endothelial progenitor cells, mesenchymal stromal cells, Sca-1+ and CD34+ cells. Data also demonstrated that these resident progenitor cells could differentiate into a variety of cell types in response to different culture conditions. However, collective data were obtained mostly from in vitro culture assays and phenotypic marker studies. There are many unanswered questions concerning the mechanism of cell differentiation and the functional role of these cells in vascular repair and the pathogenesis of vascular disease. In the present review, we aim to summarize the data showing the presence of the resident progenitor cells, to highlight possible signal pathways orchestrating cell differentiation toward endothelial and smooth muscle cells, and to discuss the data limitations, challenges and controversial issues related to the role of progenitors. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".

  16. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  17. Laser amplifier chain

    DOEpatents

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  18. Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation.

    PubMed

    Nakano, Ichiro; Paucar, Andres A; Bajpai, Ruchi; Dougherty, Joseph D; Zewail, Amani; Kelly, Theresa K; Kim, Kevin J; Ou, Jing; Groszer, Matthias; Imura, Tetsuya; Freije, William A; Nelson, Stanley F; Sofroniew, Michael V; Wu, Hong; Liu, Xin; Terskikh, Alexey V; Geschwind, Daniel H; Kornblum, Harley I

    2005-08-01

    Maternal embryonic leucine zipper kinase (MELK) was previously identified in a screen for genes enriched in neural progenitors. Here, we demonstrate expression of MELK by progenitors in developing and adult brain and that MELK serves as a marker for self-renewing multipotent neural progenitors (MNPs) in cultures derived from the developing forebrain and in transgenic mice. Overexpression of MELK enhances (whereas knockdown diminishes) the ability to generate neurospheres from MNPs, indicating a function in self-renewal. MELK down-regulation disrupts the production of neurogenic MNP from glial fibrillary acidic protein (GFAP)-positive progenitors in vitro. MELK expression in MNP is cell cycle regulated and inhibition of MELK expression down-regulates the expression of B-myb, which is shown to also mediate MNP proliferation. These findings indicate that MELK is necessary for proliferation of embryonic and postnatal MNP and suggest that it regulates the transition from GFAP-expressing progenitors to rapid amplifying progenitors in the postnatal brain.

  19. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development.

    PubMed

    Bello, Bruno C; Izergina, Natalya; Caussinus, Emmanuel; Reichert, Heinrich

    2008-02-19

    In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  20. The evolution of basal progenitors in the developing non-mammalian brain

    PubMed Central

    Nomura, Tadashi; Ohtaka-Maruyama, Chiaki; Yamashita, Wataru; Wakamatsu, Yoshio; Murakami, Yasunori; Calegari, Federico; Suzuki, Kunihiro; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2+ intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2+ cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution. PMID:26732839

  1. The Crab Nebula's progenitor

    NASA Technical Reports Server (NTRS)

    Nomoto, K.; Sugimoto, D.; Sparks, W. M.; Fesen, R. A.; Gull, T. R.; Miyaji, S.

    1982-01-01

    The initial mass of the Crab Nebula's progenitor star is estimated by comparing the observed nebular chemical abundances with detailed evolutionary calculations for 2.4- and 2.6-solar-mass helium cores of stars with masses of 8 to 10 solar masses. The results indicate that the mass of the Crab's progenitor was between the upper limit of about 8 solar masses for carbon deflagration and the lower limit of about 9.5 solar masses set by the dredge-up of the helium layer before the development of the helium-burning convective region. A scenario is outlined for the evolution of the progenitor star. It is suggested that the Crab Nebula was probably the product of an electron-capture supernova.

  2. Wireless Josephson amplifier

    SciTech Connect

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-06-09

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  3. Wireless Josephson amplifier

    NASA Astrophysics Data System (ADS)

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-06-01

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9-11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  4. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  5. Dye laser amplifier

    DOEpatents

    Moses, Edward I.

    1992-01-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye lr amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant.

  6. Dye laser amplifier

    DOEpatents

    Moses, E.I.

    1992-12-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  7. DIRECT COUPLED AMPLIFIER

    DOEpatents

    Dandl, R.A.

    1961-09-19

    A transistor amplifier is designed for vyery small currents below 10/sup -8/ amperes. The filrst and second amplifier stages use unusual selected transistors in which the current amplification increases markedly for values of base current below 10/sup -6/ amperes.

  8. DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK

    DOEpatents

    Bell, P.R. Jr.

    1958-10-21

    An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.

  9. Versatile composite amplifier configuration

    NASA Astrophysics Data System (ADS)

    Gift, Stephan J. G.; Maundy, Brent

    2015-06-01

    This paper describes a versatile composite amplifier in which a current feedback amplifier (CFA) drives an operational amplifier (OPA). In the conventional OPA-CFA composite amplifier, an OPA drives a CFA resulting in a composite structure that combines the DC input stability of the OPA and the high speed capability of the CFA. The proposed composite configuration combines different features of the CFA and OPA, specifically the constant bandwidth property of the CFA and the high power and high current output capacity of the OPA. The new circuit is easily implemented in the standard inverting and non-inverting configurations using commercially available devices, and the accuracy and constant bandwidth features were experimentally verified. Local feedback around the associated CFA ensures that the proposed composite amplifier possesses a higher level of bandwidth constancy than a single CFA.

  10. β4 Integrin signaling induces expansion of prostate tumor progenitors

    PubMed Central

    Yoshioka, Toshiaki; Otero, Javier; Chen, Yu; Kim, Young-Mi; Koutcher, Jason A.; Satagopan, Jaya; Reuter, Victor; Carver, Brett; de Stanchina, Elisa; Enomoto, Katsuhiko; Greenberg, Norman M.; Scardino, Peter T.; Scher, Howard I.; Sawyers, Charles L.; Giancotti, Filippo G.

    2013-01-01

    The contextual signals that regulate the expansion of prostate tumor progenitor cells are poorly defined. We found that a significant fraction of advanced human prostate cancers and castration-resistant metastases express high levels of the β4 integrin, which binds to laminin-5. Targeted deletion of the signaling domain of β4 inhibited prostate tumor growth and progression in response to loss of p53 and Rb function in a mouse model of prostate cancer (PB-TAg mice). Additionally, it suppressed Pten loss-driven prostate tumorigenesis in tissue recombination experiments. We traced this defect back to an inability of signaling-defective β4 to sustain self-renewal of putative cancer stem cells in vitro and proliferation of transit-amplifying cells in vivo. Mechanistic studies indicated that mutant β4 fails to promote transactivation of ErbB2 and c-Met in prostate tumor progenitor cells and human cancer cell lines. Pharmacological inhibition of ErbB2 and c-Met reduced the ability of prostate tumor progenitor cells to undergo self-renewal in vitro. Finally, we found that β4 is often coexpressed with c-Met and ErbB2 in human prostate cancers and that combined pharmacological inhibition of these receptor tyrosine kinases exerts antitumor activity in a mouse xenograft model. These findings indicate that the β4 integrin promotes prostate tumorigenesis by amplifying ErbB2 and c-Met signaling in tumor progenitor cells. PMID:23348745

  11. Auto-Zero Differential Amplifier

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard T. (Inventor); Aslam, Shahid (Inventor)

    2017-01-01

    An autozero amplifier may include a window comparator network to monitor an output offset of a differential amplifier. The autozero amplifier may also include an integrator to receive a signal from a latched window comparator network, and send an adjustment signal back to the differential amplifier to reduce an offset of the differential amplifier.

  12. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Hallberg, Carl; Cecil, Jim

    1994-01-01

    A state-of-the-art instrumentation amplifier capable of being used with most types of transducers has been developed at the Kennedy Space Center. This Universal Signal Conditioning Amplifier (USCA) can eliminate costly measurement setup item and troubleshooting, improve system reliability and provide more accurate data than conventional amplifiers. The USCA can configure itself for maximum resolution and accuracy based on information read from a RAM chip attached to each transducer. Excitation voltages or current are also automatically configured. The amplifier uses both analog and digital state-of-the-art technology with analog-to-digital conversion performed in the early stages in order to minimize errors introduced by offset and gain drifts in the analog components. A dynamic temperature compensation scheme has been designed to achieve and maintain 12-bit accuracy of the amplifier from 0 to 70 C. The digital signal processing section allows the implementation of digital filters up to 511th order. The amplifier can also perform real-time linearizations up to fourth order while processing data at a rate of 23.438 kS/s. Both digital and analog outputs are available from the amplifier.

  13. Tuning Broadband Microwave Amplifiers

    SciTech Connect

    Alaniz, Gabriel

    2003-09-05

    The PEP-II/DA {Phi} NE/ALS longitudinal feedback systems are complex wide bandwidth systems requiring analog, digital and microwave circuits. The solid-state amplifier is one of the components in the microwave circuit that is required to suppress the coupled bunch instabilities that exist in the PEP-II accelerator. The suppression is achieved by using an antenna as a kicker structure that provides an electric field in order to increase or decrease the energy of particles passing through the structure. The amplifier is made up of sixteen 30 to 35W microstrip GaAs FET modules that are combined to obtain 500W over a bandwidth of 850MHz to 1850MHz. The amplifier malfunctioned causing a reduction in the functionality and power output of the individual GaAs FET modules. The amplifier must be repaired. After repair, the amplifier must be tuned to optimize the gain while maintaining proper power output. The amplifier is tuned using microstrip circuit techniques. A variety of microstrip methods are used to obtain the proper line impedance. The result is a working amplifier that operates efficiently.

  14. An optically isolated amplifier

    NASA Astrophysics Data System (ADS)

    Smith, C. J.

    1982-11-01

    The design presented was used for biomedical signal detection and monitoring. The amplifier was successfully applied for EMG and ECG research studies. The patient is safely isolated from the processing equipment when using the amplifier. This opto-isolated amplifier was also applied industrially for monitoring mercury arc rectifier control signals. The device has proved itself in an industrial environment as an interface for a microprocessor. This unit can be used whenever large offset voltages are found, and can therefore be put to good use in many power electrical engineering applications.

  15. Type Ia Supernovae Keep Memory of their Progenitor Metallicity

    NASA Astrophysics Data System (ADS)

    Piersanti, Luciano; Bravo, Eduardo; Cristallo, Sergio; Domínguez, Inmaculada; Straniero, Oscar; Tornambé, Amedeo; Martínez-Pinedo, Gabriel

    2017-02-01

    The ultimate understanding of SNe Ia diversity is one of the most urgent issues to exploit thermonuclear explosions of accreted White Dwarfs (WDs) as cosmological yardsticks. In particular, we investigate the impact of the progenitor system metallicity on the physical and chemical properties of the WD at the explosion epoch. We analyze the evolution of CO WDs through the accretion and simmering phases by using evolutionary models based on time-dependent convective mixing and an extended nuclear network including the most important electron captures, beta decays, and URCA processes. We find that, due to URCA processes and electron-captures, the neutron excess and density at which the thermal runaway occurs are substantially larger than previously claimed. Moreover, we find that the higher the progenitor metallicity, the larger the neutron excess variation during the accretion and simmering phases and the higher the central density and the convective velocity at the explosion. Hence, the simmering phase acts as an amplifier of the differences existing in SNe Ia progenitors. When applying our results to the neutron excess estimated for the Tycho and Kepler young supernova remnants, we derive that the metallicity of the progenitors should be in the range Z=0.030{--}0.032, close to the average metallicity value of the thin disk of the Milky Way. As the amount of {}56{Ni} produced in the explosion depends on the neutron excess and central density at the thermal runaway, our results suggest that the light curve properties depend on the progenitor metallicity.

  16. Lung Epithelial Progenitor Cells

    PubMed Central

    Rawlins, Emma L.

    2008-01-01

    The current enthusiasm for stem cell research stems from the hope that damaged or diseased tissues may one day be repaired through the manipulation of endogenous or exogenous stem cells. The postnatal human respiratory system is highly accessible and provides unique opportunities for the application of such techniques. Several putative adult lung epithelial stem cells have been identified in the mouse model system. However, their in vivo capabilities to contribute to different lineages, and their control mechanisms, remain unclear. If stem cell–based therapies are to be successful in the lung, it is vitally important that we understand the normal behavior of adult lung stem cells, and how this is regulated. Lung embryonic progenitor cells are much better defined and characterized than their adult counterparts. Moreover, experiments on a variety of developing tissues are beginning to uncover general mechanisms by which embryonic progenitors influence final organ size and structure. This provides a framework for the study of lung embryonic progenitor cells, facilitating experimental design and interpretation. A similar approach to investigating adult lung stem cells could produce rapid advances in the field. PMID:18684716

  17. Amplify Interest in STS.

    ERIC Educational Resources Information Center

    Chiappetta, Eugene L; Mays, John D.

    1992-01-01

    Presents activities in which students construct simple crystal radio sets and amplifiers out of diodes, transistors, and integrated circuits. Provides conceptual background, materials needed, instructions, diagrams, and classroom applications. (MDH)

  18. Amplify Interest in STS.

    ERIC Educational Resources Information Center

    Chiappetta, Eugene L; Mays, John D.

    1992-01-01

    Presents activities in which students construct simple crystal radio sets and amplifiers out of diodes, transistors, and integrated circuits. Provides conceptual background, materials needed, instructions, diagrams, and classroom applications. (MDH)

  19. Fully relayed regenerative amplifier

    DOEpatents

    Glass, Alexander J.

    1981-01-01

    A regenerative laser apparatus and method using the optical relay concept to maintain high fill factors, to suppress diffraction effects, and to minimize phase distortions in a regenerative amplifier.

  20. High stability amplifier

    NASA Technical Reports Server (NTRS)

    Adams, W. A.; Reinhardt, V. S. (Inventor)

    1983-01-01

    An electrical RF signal amplifier for providing high temperature stability and RF isolation and comprised of an integrated circuit voltage regulator, a single transistor, and an integrated circuit operational amplifier mounted on a circuit board such that passive circuit elements are located on side of the circuit board while the active circuit elements are located on the other side is described. The active circuit elements are embedded in a common heat sink so that a common temperature reference is provided for changes in ambient temperature. The single transistor and operational amplifier are connected together to form a feedback amplifier powered from the voltage regulator with transistor implementing primarily the desired signal gain while the operational amplifier implements signal isolation. Further RF isolation is provided by the voltage regulator which inhibits cross-talk from other like amplifiers powered from a common power supply. Input and output terminals consisting of coaxial connectors are located on the sides of a housing in which all the circuit components and heat sink are located.

  1. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  2. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  3. Electrospun Amplified Fiber Optics

    PubMed Central

    2015-01-01

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm–1). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics. PMID:25710188

  4. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  5. Amplified DNA Biosensors

    NASA Astrophysics Data System (ADS)

    Willner, Itamar; Shlyahovsky, Bella; Willner, Bilha; Zayats, Maya

    Amplified detection of DNA is a central research topic in modern bioanalytical science. Electronic or optical transduction of DNA recognition events provides readout signals for DNA biosensors. Amplification of the DNA analysis is accomplished by the coupling of nucleic acid-functionalized enzymes or nucleic acid-functionalized nanoparticles (NP) as labels for the DNA duplex formation. This chapter discusses the amplified amperometric analysis of DNA by redox enzymes, the amplified optical sensing of DNA by enzymes or DNAzymes, and the amplified voltammetric, optical, or microgravimetric analysis of DNA using metallic or semiconductor nanoparticles. Further approaches to amplify DNA detection involve the use of micro-carriers of redox compounds as labels for DNA complex formation on electrodes, or the use of micro-objects such as liposomes, that label the resulting DNA complexes on electrodes and alter the interfacial properties of the electrodes. Finally, DNA machines are used for the optical detection of DNA, and the systems are suggested as future analytical procedures that could substitute the polymerase chain reaction (PCR) process.

  6. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  7. STABILIZED FEEDBACK AMPLIFIER

    DOEpatents

    Fishbine, H.L.; Sewell, C. Jr.

    1957-08-01

    Negative feedback amplifiers, and particularly a negative feedback circuit which is economical on amode power consumption, are described. Basically, the disclosed circuit comprises two tetrode tubes where the output of the first tube is capacitamce coupled to the grid of the second tube, which in turn has its plate coupled to the cathode of the first tube to form a degenerative feedback circuit. Operating potential for screen of the second tube is supplied by connecting the cathode resistor of the first tube to the screen, while the screen is by-passed to the cathode of its tube for the amplified frequencies. Also, the amplifier incorporates a circuit to stabilize the transconductance of the tubes by making the grid potential of each tube interdependent on anode currents of both lubes by voltage divider circuitry.

  8. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  9. Spatial Light Amplifier Modulators

    NASA Technical Reports Server (NTRS)

    Eng, Sverre T.; Olsson, N. Anders

    1992-01-01

    Spatial light amplifier modulators (SLAM's) are conceptual devices that effect two-dimensional spatial modulation in optical computing and communication systems. Unlike current spatial light modulators, these provide gain. Optical processors incorporating SLAM's designed to operate in reflection or transmission mode. Each element of planar SLAM array is optical amplifier - surface-emitting diode laser. Array addressed electrically with ac modulating signals superimposed on dc bias currents supplied to lasers. SLAM device provides both desired modulation and enough optical gain to enable splitting of output signal into many optical fibers without excessive loss of power.

  10. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  11. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Hallberg, Carl; Medelius, Pedro J.

    1994-01-01

    Engineers at NASA's Kennedy Space Center have designed a signal conditioning amplifier which automatically matches itself to almost any kind of transducer. The product, called Universal Signal Conditioning Amplifier (USCA), uses state-of-the-art technologies to deliver high accuracy measurements. USCA's features which can be either programmable or automated include: voltage, current, or pulsed excitation, unlimited resolution gain, digital filtering and both analog and digital output. USCA will be used at Kennedy Space Center's launch pads for environmental measurements such as vibrations, strains, temperatures and overpressures. USCA is presently being commercialized through a co-funded agreement between NASA, the State of Florida, and Loral Test and Information Systems, Inc.

  12. Fourier plane image amplifier

    DOEpatents

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  13. New microelectronic power amplifier

    NASA Technical Reports Server (NTRS)

    New, T. C.

    1968-01-01

    Integrated push-pull power amplifier fabricated on a chip of silicon has interdigitated power transistors and is hermetically encapsulated in a beryllia flat package. It provides current output greater than the nominal 10 amperes from an input current drive of 1 ampere.

  14. The radical amplifier

    NASA Technical Reports Server (NTRS)

    Hastie, D. R.

    1994-01-01

    The radical amplifier as a method for measuring radical concentrations in the atmosphere has received renewed attention lately. In principle, it can measure the total concentration of HO(x) and RO(x) radicals by reacting ambient air with high concentrations of CO (3-10 percent) and NO (2-6 ppmv), and measuring the NO2 produced.

  15. Improved RF Isolation Amplifier

    NASA Technical Reports Server (NTRS)

    Stevens, G. L.; Macconnell, J.

    1985-01-01

    Circuit has high reverse isolation and wide bandwidth. Wideband isolation amplifier has low intermodulation distortion and high reverse isolation. Circuit does not require selected or matched components or directional coupling device. Circuit used in applications requiring high reverse isolation such as receiver intermediate-frequency (IF) strips and frequency distribution systems. Also applicable in RF and video signaling.

  16. Fourier plane image amplifier

    DOEpatents

    Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.

    1995-01-01

    A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

  17. PEAK LIMITING AMPLIFIER

    DOEpatents

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  18. Optimization of plasma amplifiers

    DOE PAGES

    Sadler, James D.; Trines, Raoul M. G. M.; Tabak, Max; ...

    2017-05-24

    Here, plasma amplifiers offer a route to side-step limitations on chirped pulse amplification and generate laser pulses at the power frontier. They compress long pulses by transferring energy to a shorter pulse via the Raman or Brillouin instabilities. We present an extensive kinetic numerical study of the three-dimensional parameter space for the Raman case. Further particle-in-cell simulations find the optimal seed pulse parameters for experimentally relevant constraints. The high-efficiency self-similar behavior is observed only for seeds shorter than the linear Raman growth time. A test case similar to an upcoming experiment at the Laboratory for Laser Energetics is found tomore » maintain good transverse coherence and high-energy efficiency. Effective compression of a 10kJ, nanosecond-long driver pulse is also demonstrated in a 15-cm-long amplifier.« less

  19. STABILIZED TRANSISTOR AMPLIFIER

    DOEpatents

    Noe, J.B.

    1963-05-01

    A temperature stabilized transistor amplifier having a pair of transistors coupled in cascade relation that are capable of providing amplification through a temperature range of - 100 un. Concent 85% F to 400 un. Concent 85% F described. The stabilization of the amplifier is attained by coupling a feedback signal taken from the emitter of second transistor at a junction between two serially arranged biasing resistances in the circuit of the emitter of the second transistor to the base of the first transistor. Thus, a change in the emitter current of the second transistor is automatically corrected by the feedback adjustment of the base-emitter potential of the first transistor and by a corresponding change in the base-emitter potential of the second transistor. (AEC)

  20. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C.

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  1. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  2. Amplifying genetic logic gates.

    PubMed

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew

    2013-05-03

    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  3. Optimization of plasma amplifiers

    NASA Astrophysics Data System (ADS)

    Sadler, James D.; Trines, Raoul M. Â. G. Â. M.; Tabak, Max; Haberberger, Dan; Froula, Dustin H.; Davies, Andrew S.; Bucht, Sara; Silva, Luís O.; Alves, E. Paulo; Fiúza, Frederico; Ceurvorst, Luke; Ratan, Naren; Kasim, Muhammad F.; Bingham, Robert; Norreys, Peter A.

    2017-05-01

    Plasma amplifiers offer a route to side-step limitations on chirped pulse amplification and generate laser pulses at the power frontier. They compress long pulses by transferring energy to a shorter pulse via the Raman or Brillouin instabilities. We present an extensive kinetic numerical study of the three-dimensional parameter space for the Raman case. Further particle-in-cell simulations find the optimal seed pulse parameters for experimentally relevant constraints. The high-efficiency self-similar behavior is observed only for seeds shorter than the linear Raman growth time. A test case similar to an upcoming experiment at the Laboratory for Laser Energetics is found to maintain good transverse coherence and high-energy efficiency. Effective compression of a 10 kJ , nanosecond-long driver pulse is also demonstrated in a 15-cm-long amplifier.

  4. Man-Amplifying Exoskeleton

    NASA Astrophysics Data System (ADS)

    Rosheim, Mark E.

    1990-03-01

    This paper describes a design for a man-amplifying exoskeleton, an electrically powered, articulated frame worn by an operator. The design features modular construction and employ anthropomorphic pitch-yaw joints for arms and legs. These singularity-free designs offer a significant advancement over simple pivot-type joints used in older designs. Twenty-six degrees-of-freedom excluding the hands gives the Man-Amplifier its unique dexterity. A five hundred-pound load capacity is engineered for a diverse range of tasks. Potential applications in emergency rescue work, restoring functionality to the handicapped, and military applications ranging from material handling to an elite fighting core are discussed. A bibliography concludes this paper.

  5. Helical Fiber Amplifier

    DOEpatents

    Koplow, Jeffrey P.; Kliner, Dahy; Goldberg, Lew

    2002-12-17

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  6. Longitudinal space charge amplifier

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2013-05-01

    Longitudinal space charge (LSC) driven microbunching instability in electron beam formation systems of X-ray FELs is a recently discovered effect hampering beam instrumentation and FEL operation. The instability was observed in different facilities in infrared and visible wavelength ranges. In this paper we propose to use such an instability for generation of vacuum ultraviolet (VUV) and X-ray radiation. A typical longitudinal space charge amplifier (LSCA) consists of few amplification cascades (drift space plus chicane) with a short undulator behind the last cascade. If the amplifier starts up from the shot noise, the amplified density modulation has a wide band, on the order of unity. The bandwidth of the radiation within the central cone is given by inverse number of undulator periods. A wavelength compression could be an attractive option for LSCA since the process is broadband, and a high compression stability is not required. LSCA can be used as a cheap addition to the existing or planned short-wavelength FELs. In particular, it can produce the second color for a pump-probe experiment. It is also possible to generate attosecond pulses in the VUV and X-ray regimes. Some user experiments can profit from a relatively large bandwidth of the radiation, and this is easy to obtain in LSCA scheme. Finally, since the amplification mechanism is broadband and robust, LSCA can be an interesting alternative to self-amplified spontaneous emission free electron laser (SASE FEL) in the case of using laser-plasma accelerators as drivers of light sources.

  7. Circulating Progenitor Cells and Scleroderma

    PubMed Central

    2010-01-01

    Scleroderma (systemic sclerosis) is a disease of unknown origins that involves tissue ischemia and fibrosis in the skin and internal organs such as the lungs. The tissue ischemia is due to a lack of functional blood vessels and an inability to form new blood vessels. Bone marrow–derived circulating endothelial progenitor cells play a key role in blood vessel repair and neovascularization. Scleroderma patients appear to have defects in the number and function of circulating endothelial progenitor cells. Scleroderma patients also develop fibrotic lesions, possibly as the result of tissue ischemia. Fibroblast-like cells called fibrocytes that differentiate from a different pool of bone marrow–derived circulating progenitor cells seem to be involved in this process. Manipulating the production, function, and differentiation of circulating progenitor cells represents an exciting new possibility for treating scleroderma. PMID:18638425

  8. Multiple pass laser amplifier system

    DOEpatents

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  9. Improved-Bandwidth Transimpedance Amplifier

    NASA Technical Reports Server (NTRS)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  10. Amplifying Electrochemical Indicators

    NASA Technical Reports Server (NTRS)

    Fan, Wenhong; Li, Jun; Han, Jie

    2004-01-01

    Dendrimeric reporter compounds have been invented for use in sensing and amplifying electrochemical signals from molecular recognition events that involve many chemical and biological entities. These reporter compounds can be formulated to target specific molecules or molecular recognition events. They can also be formulated to be, variously, hydrophilic or amphiphilic so that they are suitable for use at interfaces between (1) aqueous solutions and (2) electrodes connected to external signal-processing electronic circuits. The invention of these reporter compounds is expected to enable the development of highly miniaturized, low-power-consumption, relatively inexpensive, mass-producible sensor units for diverse applications.

  11. Amplified total internal reflection.

    PubMed

    Fan, J; Dogariu, A; Wang, L J

    2003-02-24

    Totally internal reflected beams can be amplified if the lowerindex medium has gain. We analyze the reflection and refraction of light, and analytically derive the expression for the Goos-Hänchen shifts of a Gaussian beam incident on a lower-index medium, both active and absorptive. We examine the energy flow and the Goos-Hänchen shifts for various cases. The analytical results are consistent with the numerical results. For the TE mode, the Goos-Hänchen shift for the transmitted beam is exactly half of that of the reflected beam, resulting in a "1/2" rule.

  12. REGENERATIVE TRANSISTOR AMPLIFIER

    DOEpatents

    Kabell, L.J.

    1958-11-25

    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  13. Mesenchymal progenitor cells for the osteogenic lineage.

    PubMed

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  14. Universal Signal Conditioning Amplifier

    NASA Technical Reports Server (NTRS)

    Kinney, Frank

    1997-01-01

    The Technological Research and Development Authority (TRDA) and NASA-KSC entered into a cooperative agreement in March of 1994 to achieve the utilization and commercialization of a technology development for benefiting both the Space Program and U.S. industry on a "dual-use basis". The technology involved in this transfer is a new, unique Universal Conditioning Amplifier (USCA) used in connection with various types of transducers. The project was initiated in partnership with I-Net Corporation, Lockheed Martin Telemetry & Instrumentation (formerly Loral Test and Information Systems) and Brevard Community College. The project consists of designing, miniaturizing, manufacturing, and testing an existing prototype of USCA that was developed for NASA-KSC by the I-Net Corporation. The USCA is a rugged and field-installable self (or remotely)- programmable amplifier that works in combination with a tag random access memory (RAM) attached to various types of transducers. This summary report comprises performance evaluations, TRDA partnership tasks, a project summary, project milestones and results.

  15. DIAMOND AMPLIFIED PHOTOCATHODES.

    SciTech Connect

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  16. Amplified wind turbine apparatus

    NASA Technical Reports Server (NTRS)

    Hein, L. A.; Myers, W. N. (Inventor)

    1982-01-01

    An invention related to the utilization of wind energy and increasing the effects thereof for power generation is described. Amplified wind turbine apparatus is disclosed wherein ambient inlet air is prerotated in a first air rotation chamber having a high pressure profile increasing the turbulence and Reynolds number thereof. A second rotation chamber adjacent and downstream of the turbine has a low pressure core profile whereby flow across the turbine is accelerated and thereafter exits the turbine apparatus through a draft anti-interference device. Interference with ambient winds at the outlet of the turbine apparatus is thus eliminated. Pivotable vanes controlled in response to prevailing wind direction admit air to the chambers and aid in imparting rotation. A central core may be utilized for creating the desired pressure profile in the chamber.

  17. Nanoscale electromechanical parametric amplifier

    SciTech Connect

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  18. The microstrip SQUID amplifier

    NASA Astrophysics Data System (ADS)

    Therrien, Roy

    A Superconducting Quantum Interference Devices (SQUIDS) can operate at frequencies up to several GHz and can be cooled to less than 100 mK. Such characteristics make the SQUID---a flux-to-voltage transducer---an excellent candidate for use as a low-noise rf amplifier. Coupling of input signals of frequencies larger than 200 MHz, however, has been limited by the parasitic capacitance between the input coil and SQUID body. We present experimental observations of a do SQUID-based rf amplifier which circumvents this problem by incorporating the input coil as a microstrip resonator. The microstrip input configuration uses the capacitance and inductance of the input coil to form a resonant cavity capable of operating up to several GHz. The input signal is applied between the SQUID body and one end of the input coil, while the other end of the coil is left open. We present data from microstrip SQUID amplifiers with gains of up to 22 dB at 900 MHz. In order to understand the gain and input impedance of the microstrip SQUID in greater detail, we made and studied a 1:190 scale analog patterned on a double-sided printed circuit board consisting of copper deposited on a kapton sheet. The measured input impedance of the analog SQUID is successfully modeled by describing the microstrip input as a low-loss transmission line. When operated with the slit in the copper washer ground plane shorted, the input coil behaves exactly like a linear resonator with the resonant frequency given by f = 1/2ℓ(L 0C0)1/2, where L0 and C0 are the inductance and capacitance per unit length and ℓ is the coil length. With the slit in the washer left open, the inductance of the input coil is significantly altered in a manner partially consistent with the Ketchen-Jaycox model in which the reflected inductance of the input coil is Li = n2L, where L is the inductance of the washer loop and n is the number of turns in the coil. We present input impedance measurements on microstrip SQUIDs cooled to 4

  19. THE PROGENITOR OF SN 2011ja: CLUES FROM CIRCUMSTELLAR INTERACTION

    SciTech Connect

    Chakraborti, Sayan; Ray, Alak; Yadav, Naveen; Smith, Randall; Ryder, Stuart; Sutaria, Firoza; Dwarkadas, Vikram V.; Chandra, Poonam; Pooley, David; Roy, Rupak

    2013-09-01

    Massive stars, possibly red supergiants, which retain extended hydrogen envelopes until core collapse, produce Type II plateau (IIP) supernovae. The ejecta from these explosions shocks the circumstellar matter originating from the mass loss of the progenitor during the final phases of its life. This interaction accelerates particles to relativistic energies which then lose energy via synchrotron radiation in the shock-amplified magnetic fields and inverse Compton scattering against optical photons from the supernova. These processes produce different signatures in the radio and X-ray parts of the electromagnetic spectrum. Observed together, they allow us to break the degeneracy between shock acceleration and magnetic field amplification. In this work, we use X-rays observations from the Chandra and radio observations from the Australia Telescope Compact Array to study the relative importance of processes which accelerate particles and those which amplify magnetic fields in producing the non-thermal radiation from SN 2011ja. We use radio observations to constrain the explosion date. Multiple Chandra observations allow us to probe the history of variable mass loss from the progenitor. The ejecta expands into a low-density bubble followed by interaction with a higher density wind from a red supergiant consistent with M{sub ZAMS} {approx}> 12 M{sub Sun }. Our results suggest that a fraction of Type IIP supernovae may interact with circumstellar media set up by non-steady winds.

  20. Embryonic Heart Progenitors and Cardiogenesis

    PubMed Central

    Brade, Thomas; Pane, Luna S.; Moretti, Alessandra; Chien, Kenneth R.; Laugwitz, Karl-Ludwig

    2013-01-01

    The mammalian heart is a highly specialized organ, comprised of many different cell types arising from distinct embryonic progenitor populations during cardiogenesis. Three precursor populations have been identified to contribute to different myocytic and nonmyocytic cell lineages of the heart: cardiogenic mesoderm cells (CMC), the proepicardium (PE), and cardiac neural crest cells (CNCCs). This review will focus on molecular cues necessary for proper induction, expansion, and lineage-specific differentiation of these progenitor populations during cardiac development in vivo. Moreover, we will briefly discuss how the knowledge gained on embryonic heart progenitor biology can be used to develop novel therapeutic strategies for the management of congenital heart disease as well as for improvement of cardiac function in ischemic heart disease. PMID:24086063

  1. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors

    PubMed Central

    Xiang, Jie; Wu, Dai-Chen; Chen, Yuanting

    2015-01-01

    Tissue hypoxia induces a systemic response designed to increase oxygen delivery to tissues. One component of this response is increased erythropoiesis. Steady-state erythropoiesis is primarily homeostatic, producing new erythrocytes to replace old erythrocytes removed from circulation by the spleen. In response to anemia, the situation is different. New erythrocytes must be rapidly made to increase hemoglobin levels. At these times, stress erythropoiesis predominates. Stress erythropoiesis is best characterized in the mouse, where it is extramedullary and utilizes progenitors and signals that are distinct from steady-state erythropoiesis. In this report, we use an in vitro culture system that recapitulates the in vivo development of stress erythroid progenitors. We identify cell-surface markers that delineate a series of stress erythroid progenitors with increasing maturity. In addition, we use this in vitro culture system to expand human stress erythroid progenitor cells that express analogous cell-surface markers. Consistent with previous suggestions that human stress erythropoiesis is similar to fetal erythropoiesis, we demonstrate that human stress erythroid progenitors express fetal hemoglobin upon differentiation. These data demonstrate that similar to murine bone marrow, human bone marrow contains cells that can generate BMP4-dependent stress erythroid burst-forming units when cultured under stress erythropoiesis conditions. PMID:25608563

  2. Reflex ring laser amplifier system

    DOEpatents

    Summers, Mark A.

    1985-01-01

    A laser pulse is injected into an unstable ring resonator-amplifier structure. Inside this resonator the laser pulse is amplified, spatially filtered and magnified. The laser pulse is recirculated in the resonator, being amplified, filtered and magnified on each pass. The magnification is chosen so that the beam passes through the amplifier in concentric non-overlapping regions similar to a single pass MOPA. After a number of passes around the ring resonator the laser pulse is spatially large enough to exit the ring resonator system by passing around an output mirror.

  3. Wavelength tunable alexandrite regenerative amplifier

    SciTech Connect

    Harter, D.J.; Bado, P.

    1988-11-01

    We describe a wavelength tunable alexandrite regenerative amplifier which is used to amplify nanosecond slices from a single-frequency cw dye laser or 50-ps pulses emitted by a diode laser to energies in the 10-mJ range. The amplified 5-ns slices generated by the cw-pumped line narrowed dye laser are Fourier transform limited. The 50-ps pulses emitted by a gain-switched diode laser are amplified by more than 10 orders of magnitude in a single stage.

  4. Optical Amplifier for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Cole, Spencer T.; Gamble, Lisa J.; Diffey, William M.; Keys, Andrew S.

    1999-01-01

    We describe an optical amplifier designed to amplify a spatially sampled component of an optical wavefront to kilowatt average power. The goal is means for implementing a strategy of spatially segmenting a large aperture wavefront, amplifying the individual segments, maintaining the phase coherence of the segments by active means, and imaging the resultant amplified coherent field. Applications of interest are the transmission of space solar power over multi-megameter distances, as to distant spacecraft, or to remote sites with no preexisting power grid.

  5. Deflection amplifier for image dissectors

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1977-01-01

    Balanced symmetrical y-axis amplifier uses zener-diode level shifting to interface operational amplifiers to high voltage bipolar output stages. Nominal voltage transfer characteristic is 40 differential output volts per input volt; bandwidth, between -3-dB points, is approximately 8 kHz; loop gain is nominally 89 dB with closed loop gain of 26 dB.

  6. Suicide Risk: Amplifiers and Attenuators.

    ERIC Educational Resources Information Center

    Plutchik, Robert; Van Praag, Herman M.

    1994-01-01

    Attempts to integrate findings on correlates of suicide and violent risk in terms of a theory called a two-stage model of countervailing forces, which assumes that the strength of aggressive impulses is modified by amplifiers and attenuators. The vectorial interaction of amplifiers and attenuators creates an unstable equilibrium making prediction…

  7. Improved radiographic image amplifier panel

    NASA Technical Reports Server (NTRS)

    Brown, R. L., Sr.

    1968-01-01

    Layered image amplifier for radiographic /X ray and gamma ray/ applications, combines very high radiation sensitivity with fast image buildup and erasure capabilities by adding a layer of material that is both photoconductive and light-emitting to basic image amplifier and cascading this assembly with a modified Thorne panel.

  8. Suicide Risk: Amplifiers and Attenuators.

    ERIC Educational Resources Information Center

    Plutchik, Robert; Van Praag, Herman M.

    1994-01-01

    Attempts to integrate findings on correlates of suicide and violent risk in terms of a theory called a two-stage model of countervailing forces, which assumes that the strength of aggressive impulses is modified by amplifiers and attenuators. The vectorial interaction of amplifiers and attenuators creates an unstable equilibrium making prediction…

  9. DIAMOND AMPLIFIER FOR PHOTOCATHODES.

    SciTech Connect

    RAO,T.; BEN-ZVI,I.; BURRILL,A.; CHANG,X.; HULBERT,S.; JOHNSON,P.D.; KEWISCH,J.

    2004-06-21

    We report a new approach to the generation of high-current, high-brightness electron beams. Primary electrons are produced by a photocathode (or other means) and are accelerated to a few thousand electron-volts, then strike a specially prepared diamond window. The large Secondary Electron Yield (SEY) provides a multiplication of the number of electrons by about two orders of magnitude. The secondary electrons drift through the diamond under an electric field and emerge into the accelerating proper of the ''gun'' through a Negative Electron Affinity surface of the diamond. The advantages of the new approach include the following: (1) Reduction of the number of primary electrons by the large SEY, i.e. a very low laser power in a photocathode producing the primaries. (2) Low thermal emittance due to the NEA surface and the rapid thermalization of the electrons. (3) Protection of the cathode from possible contamination from the gun, allowing the use of large quantum efficiency but sensitive cathodes. (4) Protection of the gun from possible contamination by the cathode, allowing the use of superconducting gun cavities. (5) Production of high average currents, up to ampere class. (6) Encapsulated design, making the ''load-lock'' systems unnecessary. This paper presents the criteria that need to be taken into account in designing the amplifier.

  10. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders.

    PubMed

    Lazzeri, Elena; Ronconi, Elisa; Angelotti, Maria Lucia; Peired, Anna; Mazzinghi, Benedetta; Becherucci, Francesca; Conti, Sara; Sansavini, Giulia; Sisti, Alessandro; Ravaglia, Fiammetta; Lombardi, Duccio; Provenzano, Aldesia; Manonelles, Anna; Cruzado, Josep M; Giglio, Sabrina; Roperto, Rosa Maria; Materassi, Marco; Lasagni, Laura; Romagnani, Paola

    2015-08-01

    The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders.

  11. LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion

    PubMed Central

    Chakraborty, P; Buaas, F.W.; Sharma, M; Snyder, E; de Rooij, D.G.; Braun, R.E.

    2014-01-01

    One of the hallmarks of highly proliferative adult tissues is the presence of a stem cell population that produces progenitor cells bound for differentiation. Progenitor cells undergo multiple transit amplifying (TA) divisions before initiating terminal differentiation. In the adult male germline, daughter cells arising from the spermatogonial stem cells (SSCs) undergo multiple rounds of TA divisions to produce undifferentiated clones of interconnected 2, 4, 8 and 16 cells, collectively termed Aundifferentiated (Aundiff) spermatogonia, before entering a stereotypic differentiation cascade. Although the number of TA divisions markedly affects the tissue output both at steady state and during regeneration, mechanisms regulating the expansion of the TA cell population are poorly understood in mammals. Here, we show that mice with a conditional deletion of Lin28a in the adult male germline, display impaired clonal expansion of the progenitor transit amplifying Aundiff spermatogonia. The in vivo proliferative activity of Aundiff spermatogonial cells as indicated by BrdU incorporation during S phase was reduced in the absence of LIN28A. Thus contrary to the role of LIN28A as a key determinant of cell fate signals in multiple stem cell lineages, in the adult male germline it functions as an intrinsic regulator of proliferation in the population of Aundiff TA spermatogonia. In addition, neither precocious differentiation nor diminished capacity for self-renewal potential as assessed by transplantation was observed, suggesting that neither LIN28A itself, nor the pool of Aal progenitor cells, substantially contribute to the functional stem cell compartment. PMID:24715688

  12. The mechanism of expansion of late erythroid progenitors during erythroid regeneration: target cells and effects of erythropoietin and interleukin-3.

    PubMed

    Umemura, T; Papayannopoulou, T; Stamatoyannopoulos, G

    1989-05-15

    Through immunologic means we have been able to separate primate bone marrow cells into populations containing late erythroid progenitors (colony forming units [CFUe] and e-clusters) but depleted of early erythroid progenitors (burst-forming units [BFUe]) or populations enriched in BFUe in relation to late progenitors. We used these fractionated populations in a two stage liquid/semisolid culture system and have assessed the effect of erythropoietin (Epo) and interleukin-3 (IL-3) on the proliferation and differentiation of erythroid progenitors in the presence or absence of early progenitors. We found that populations that contained CFUe but were depleted of BFUe failed to show any amplification of CFUe or e-clusters in the presence of Epo (or Epo plus IL-3). In contrast, populations containing BFUe yielded a striking (sixfold for CFUe; 23-fold for e-clusters) expansion of late progenitors in the presence of Epo. Maximum amplification (15-fold for CFUe; 32-fold for e-clusters) was achieved when both IL-3 and Epo were present in culture. Our results imply that CFUe and e-clusters lack the capacity to amplify their numbers and suggests that the expansion of late erythroid progenitors during rapid erythroid regeneration is accomplished by influx of BFUe rather than amplification of CFUe. These data are of relevance to models of acute marrow expansion and to the mechanism of activation of fetal hemoglobin production during rapid erythroid regeneration.

  13. Capacities of quantum amplifier channels

    NASA Astrophysics Data System (ADS)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  14. Laser Amplifier Developments at Mercury

    DTIC Science & Technology

    1993-06-01

    particularly foil lifetime, with no degradation in pumping. Mercury Amplifier 2 (A2 or Pluto ) is a downsized version of the Aurora Large Aperture Module (LAM...everywhere above the 4.5% cm-I required. Modifications to Pluto (Amplifier 2) The second amplifier, Pluto , was constructed by modifying Aurora’s...discharge the PFLs into matched resistors when the output switches failed to fire. lJ Figure 3. The diode of Pluto has a 40-cm high by 200-cm long

  15. High-Common-Mode-Rejection Differential Amplifier

    NASA Technical Reports Server (NTRS)

    Lukens, F. E.

    1984-01-01

    High-common-mode-rejection differential amplifier amplifies low-level signals in presence of high frequency noise. Amplifier used in power system requiring current monitoring on high side of high-voltage powerline.

  16. The skin: a home to multiple classes of epithelial progenitor cells

    PubMed Central

    Yan, Xiaohong; Owens, David M.

    2013-01-01

    To maintain homeostasis in the adult skin, epithelial keratinocyte stem cells are thought to divide infrequently giving rise to short-lived (transit amplifying) cells that undergo a limited number of cell divisions and ultimately terminal differentiation. This model for the epidermal stem cell niche has increased in complexity by the multiple putative progenitor keratinocyte populations that have recently been identified in distinct regions of the interfollicular epidermis and hair follicle appendages. Under normal conditions, these progenitor populations are long-lived and able to sustain the cellular input to certain epidermal structures including the interfollicular epidermis and sebaceous gland. Other putative epithelial progenitors derived from the hair follicle possess high in vitro proliferative capacity and are able to regenerate skin, hair and sebaceous lineages in transplantation studies. These new findings present the cutaneous epithelium as a highly compartmentalized structure potentially maintained by multiple classes of progenitor cells. In this review, we will discuss the implications of these new putative epithelial progenitor populations and their potential to be influenced by external stimuli for skin homeostasis and carcinogenesis. PMID:18491239

  17. Enhanced performance CCD output amplifier

    DOEpatents

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  18. New Packaging for Amplifier Slabs

    SciTech Connect

    Riley, M.; Thorsness, C.; Suratwala, T.; Steele, R.; Rogowski, G.

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  19. A single supply biopotential amplifier.

    PubMed

    Spinelli, E M; Martinez, N H; Mayosky, M A

    2001-04-01

    A biopotential amplifier for single supply operation is presented. It uses a Driven Right Leg Circuit (DRL) to drive the patient's body to a DC common mode voltage, centering biopotential signals with respect to the amplifier's input voltage range. This scheme ensures proper range operation when a single power supply is used. The circuit described is especially suited for low consumption, battery-powered applications, requiring a single battery and avoiding switching voltage inverters to achieve dual supplies. The generic circuit is described and, as an example, a biopotential amplifier with a gain of 60 dB and a DC input range of +/-200 mV was implemented using low power operational amplifiers. A Common Mode Rejection Ratio (CMRR) of 126 dB at 50 Hz was achieved without trimming.

  20. Characterization of SLUG microwave amplifiers

    NASA Astrophysics Data System (ADS)

    Hoi, I.-C.; Zhu, S.; Thorbeck, T.; McDermott, R.; Mutus, J.; Jeffrey, E.; Barends, R.; Chen, Y.; Roushan, P.; Fowler, A.; Sank, D.; White, T.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Kelly, J.; Megrant, A.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Vainsencher, A.; Wenner, J.; Martinis, J. M.

    2015-03-01

    With the rapid growth of superconducting circuits quantum technology, a near quantum-limited amplifier at GHz frequency is needed to enable high fidelity measurements. We describe such an amplifier, the SQUID based, superconducting low inductance undulatory galvanometer (SLUG) amplifier. We measure the full scattering matrix of the SLUG. In particular, we measure both forward and reverse gain, as well as reflection. We see 15dB forward gain with added noise from one quanta to several quanta. The -1 dB compression point is around -95 dBm, about two orders of magnitude higher than that of typical Josephson parametric amplifiers. With these properties, SLUG is well suited for the high fidelity, simultaneous multiplexed readout of superconducting qubits.

  1. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  2. Gamma-Ray Burst Progenitors

    NASA Astrophysics Data System (ADS)

    Levan, Andrew; Crowther, Paul; de Grijs, Richard; Langer, Norbert; Xu, Dong; Yoon, Sung-Chul

    2016-12-01

    We review our current understanding of the progenitors of both long and short duration gamma-ray bursts (GRBs). Constraints can be derived from multiple directions, and we use three distinct strands; (i) direct observations of GRBs and their host galaxies, (ii) parameters derived from modelling, both via population synthesis and direct numerical simulation and (iii) our understanding of plausible analog progenitor systems observed in the local Universe. From these joint constraints, we describe the likely routes that can drive massive stars to the creation of long GRBs, and our best estimates of the scenarios that can create compact object binaries which will ultimately form short GRBs, as well as the associated rates of both long and short GRBs. We further discuss how different the progenitors may be in the case of black hole engine or millisecond-magnetar models for the production of GRBs, and how central engines may provide a unifying theme between many classes of extremely luminous transient, from luminous and super-luminous supernovae to long and short GRBs.

  3. Intermediate progenitors are increased by lengthening of the cell cycle through calcium signaling and p53 expression in human neural progenitors

    PubMed Central

    García-García, Elisa; Pino-Barrio, María José; López-Medina, Laura; Martínez-Serrano, Alberto

    2012-01-01

    During development, neurons can be generated directly from a multipotent progenitor or indirectly through an intermediate progenitor (IP). This last mode of division amplifies the progeny of neurons. The mechanisms governing the generation and behavior of IPs are not well understood. In this work, we demonstrate that the lengthening of the cell cycle enhances the generation of neurons in a human neural progenitor cell system in vitro and also the generation and expansion of IPs. These IPs are insulinoma-associated 1 (Insm1)+/BTG family member 2 (Btg2)−, which suggests an increase in a self-amplifying IP population. Later the cultures express neurogenin 2 (Ngn2) and become neurogenic. The signaling responsible for this cell cycle modulation is investigated. It is found that the release of calcium from the endoplasmic reticulum to the cytosol in response to B cell lymphoma-extra large overexpression or ATP addition lengths the cell cycle and increases the number of IPs and, in turn, the final neuron outcome. Moreover, data suggest that the p53–p21 pathway is responsible for the changes in cell cycle. In agreement with this, increased p53 levels are necessary for a calcium-induced increase in neurons. Our findings contribute to understand how calcium signaling can modulate cell cycle length during neurogenesis. PMID:22323293

  4. 32-GHz Wideband Maser Amplifier

    NASA Technical Reports Server (NTRS)

    Shell, J. S.; Neff, D. E.

    1990-01-01

    High-gain, wideband, microwave amplifier based on ruby cooled by liquid helium. Features include low input equivalent noise temperature and 400-MHz bandwidth. Design basically extension of previous reflected-wave masers built for frequency range of 18 to 26 GHz. Maser amplifier includes eight stages connected in reflected-wave configuration. Particularly useful for detection of weak microwave signals in radio astronomy and communications.

  5. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.; Hohman, J.

    1984-01-01

    A flashlamp pumped dye laser suitable for use as a single stage amplifier is described. Particular emphasis is placed on the efforts to increase output pulse energy and improve the temporal profile of the injected pulse. By using high power thin film polarizers, output energies reach from 4 to 45 mJ. Various dispersive elements are used to develop an amplified pulse with an extremely clean temporal profile.

  6. 32-GHz Wideband Maser Amplifier

    NASA Technical Reports Server (NTRS)

    Shell, J. S.; Neff, D. E.

    1990-01-01

    High-gain, wideband, microwave amplifier based on ruby cooled by liquid helium. Features include low input equivalent noise temperature and 400-MHz bandwidth. Design basically extension of previous reflected-wave masers built for frequency range of 18 to 26 GHz. Maser amplifier includes eight stages connected in reflected-wave configuration. Particularly useful for detection of weak microwave signals in radio astronomy and communications.

  7. Operational amplifiers-some misconceptions

    NASA Astrophysics Data System (ADS)

    Summers, M. K.

    1980-03-01

    The simplified theoretical treatments of operational amplifier behaviour found in material for use by teachers and students is often misleading and sometimes inaccurate. The author identifies some of these inadequacies and describes some pedagogical pitfalls which are best avoided. The closed loop gain of an operational amplifier in the inverting configuration taken from the JMB publication Physics (Advanced)-Notes on the Core Syllabus (1978a) is reproduced to act as a focus for discussion.

  8. Modeling Renal Progenitors – Defining the Niche

    PubMed Central

    Tanigawa, Shunsuke; Perantoni, Alan O.

    2016-01-01

    Significant recent advances in methodologies for the differentiation of pluripotent stem cells to renal progenitors as well as the definition of niche conditions for sustaining those progenitors have dramatically enhanced our understanding of their biology and developmental programing, prerequisites for establishing viable approaches to renal regeneration. In this article, we review the evolution of culture techniques and models for the study of metanephric development, describe the signaling mechanisms likely to be driving progenitor self-renewal, and discuss current efforts to generate de novo functional tissues, providing in depth protocols and niche conditions for the stabilization of the nephronic Six2+ progenitor. PMID:26856661

  9. The Microstrip DC SQUID Amplifier

    NASA Astrophysics Data System (ADS)

    Mück, Michael

    2000-03-01

    We have developed an extremely sensitive rf amplifier based on the dc superconducting quantum interference device (dc SQUID). Unlike a conventional semiconductor amplifier, a SQUID can be cooled to ultra low temperatures (300 mK or less) and thus potentially achieve a much lower noise temperature. In a conventional SQUID amplifier, where the integrated input coil is operated as a lumped element, parasitic capacitance between the coil and the SQUID washer limits the frequency up to which a substantial gain can be achieved to a few hundred MHz. This problem can be circumvented by operating the input coil of the SQUID as a microstrip resonator: instead of connecting the input signal between the two ends of the coil, it is connected between the SQUID washer and one end of the coil; the other end is left open. Such amplifiers have gains of 20 dB or more at frequencies up to 1.5 GHz. The resonant nature of the input circuit limits the -3 dB bandwidth of the amplifier to at most 100 MHz. The resonant frequency of the microstrip can be tuned, however, by means of a varactor diode connected across the otherwise open end of the resonator. The noise temperature of microstrip SQUID amplifiers was measured to be between 0.5 K ± 0.3 K at a resonant frequency of 80 MHz and 1.6 K ± 1.2 K at 1 GHz. An even lower noise temperature can be achieved by cooling the SQUID to about 0.4 K. In this case, a noise temperature of 100 mK ± 20 mK was achieved at 90 MHz, and of about 120 ± 100 mK at 440 MHz. The gain of the SQUID amplifier is sensitive to changes of the static magnetic flux through the SQUID. In order to prevent low frequency magnetic noise from changing the amplifier gain, we developed a directly coupled flux-locked loop which stabilizes the static flux bias of the SQUID. Finally, although the maximum output voltage of the SQUID amplifier is relatively small, two-tone intermodulation measurements show an intermodulation-free dynamic range of nearly 50 dB in a bandwidth of

  10. Neural and oligodendrocyte progenitor cells: transferrin effects on cell proliferation

    PubMed Central

    Silvestroff, Lucas; Franco, Paula Gabriela; Pasquini, Juana María

    2013-01-01

    NSC (neural stem cells)/NPC (neural progenitor cells) are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone) of the mammalian CNS (central nervous system). These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres) to evaluate the effects of Tf (transferrin) on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein), Nestin and Sox2 and the OL (oligodendrocyte) progenitor markers NG2 (nerve/glia antigen 2) and PDGFRα (platelet-derived growth factor receptor α). The results of this study indicate that aTf (apoTransferrin) is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1). Since OPCs (oligodendrocyte progenitor cells) represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs. PMID:23368675

  11. Reflex ring laser amplifier system

    DOEpatents

    Summers, M.A.

    1983-08-31

    The invention is a method and apparatus for providing a reflex ring laser system for amplifying an input laser pulse. The invention is particularly useful in laser fusion experiments where efficient production of high-energy and high power laser pulses is required. The invention comprises a large aperture laser amplifier in an unstable ring resonator which includes a combination spatial filter and beam expander having a magnification greater than unity. An input pulse is injected into the resonator, e.g., through an aperture in an input mirror. The injected pulse passes through the amplifier and spatial filter/expander components on each pass around the ring. The unstable resonator is designed to permit only a predetermined number of passes before the amplified pulse exits the resonator. On the first pass through the amplifier, the beam fills only a small central region of the gain medium. On each successive pass, the beam has been expanded to fill the next concentric non-overlapping region of the gain medium.

  12. The involvement of multipotential progenitor cells in Mooren's ulcer.

    PubMed

    Lee, In Gul; Ye, Juan; Kim, Jae Chan

    2005-06-30

    The aim of this study was to assess the involvement of multipotential progenitor cells in the pathogenesis of Mooren's ulcer using immunohistochemical staining techniques. Tissue specimens were collected from 3 Mooren's ulcer patients who underwent lamellar keratectomy. Immunohistochemical staining patterns were analyzed using antibodies: CD34, c-kit, STRO-1, CD45RO, VEGF and a-SMA. Strong positive CD34, c-kit and STRO-1 cells were revealed in Mooren's ulcer specimens, especially in the superficial stroma. A few weakly expressed CD34 stroma cells were seen in normal limbal cornea but no immunoreactivity for c-kit and STRO-1 could be found. CD45RO positive T cells were found to have infiltrated in Mooren's ulcer. The immunostaining pattern of VEGF and a- SMA was closely correlated with the degree of expression and the number of CD34 positive cells. Bone marrow-derived multipotential progenitor cells may be involved in the pathogenesis of Mooren's ulcer by synergizing with other factors to amplify autoimmune destructive reactions and to contribute to the regeneration process. Specific therapeutic strategies that target the role of these cells in the disease are warranted.

  13. Limit circuit prevents overdriving of operational amplifier

    NASA Technical Reports Server (NTRS)

    Openshaw, F. L.

    1967-01-01

    Cutoff-type high gain amplifier coupled by a diode prevents overdriving of operational amplifier. An amplified feedback signal offsets the excess input signal that tends to cause the amplifier to exceed its preset limit. The output is, therfore, held to the set clamp level.

  14. Endothelial progenitor cells in atherosclerosis

    PubMed Central

    Du, Fuyong; Zhou, Jun; Gong, Ren; Huang, Xiao; Pansuria, Meghana; Virtue, Anthony; Li, Xinyuan; Wang, Hong; Yang, Xiao-Feng

    2012-01-01

    Endothelial progenitor cells (EPCs) are involved in the maintenance of endothelial homoeostasis and in the process of new vessel formation. Experimental and clinical studies have shown that atherosclerosis is associated with reduced numbers and dysfunction of EPCs; and that medications alone are able to partially reverse the impairment of EPCs in patients with atherosclerosis. Therefore, novel EPC-based therapies may provide enhancement in restoring EPCs’ population and improvement of vascular function. Here, for a better understanding of the molecular mechanisms underlying EPC impairment in atherosclerosis, we provide a comprehensive overview on EPC characteristics, phenotypes, and the signaling pathways underlying EPC impairment in atherosclerosis. PMID:22652782

  15. Laser system using regenerative amplifier

    DOEpatents

    Emmett, John L. [Pleasanton, CA

    1980-03-04

    High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.

  16. Optical amplifiers for coherent lidar

    NASA Technical Reports Server (NTRS)

    Fork, Richard

    1996-01-01

    We examine application of optical amplification to coherent lidar for the case of a weak return signal (a number of quanta of the return optical field close to unity). We consider the option that has been explored to date, namely, incorporation of an optical amplifier operated in a linear manner located after reception of the signal and immediately prior to heterodyning and photodetection. We also consider alternative strategies where the coherent interaction, the nonlinear processes, and the amplification are not necessarily constrained to occur in the manner investigated to date. We include the complications that occur because of mechanisms that occur at the level of a few, or one, quantum excitation. Two factors combine in the work to date that limit the value of the approach. These are: (1) the weak signal tends to require operation of the amplifier in the linear regime where the important advantages of nonlinear optical processing are not accessed, (2) the linear optical amplifier has a -3dB noise figure (SN(out)/SN(in)) that necessarily degrades the signal. Some improvement is gained because the gain provided by the optical amplifier can be used to overcome losses in the heterodyned process and photodetection. The result, however, is that introduction of an optical amplifier in a well optimized coherent lidar system results in, at best, a modest improvement in signal to noise. Some improvement may also be realized on incorporating more optical components in a coherent lidar system for purely practical reasons. For example, more compact, lighter weight, components, more robust alignment, or more rapid processing may be gained. We further find that there remain a number of potentially valuable, but unexplored options offered both by the rapidly expanding base of optical technology and the recent investigation of novel nonlinear coherent interference phenomena occurring at the single quantum excitation level. Key findings are: (1) insertion of linear optical

  17. Design considerations for neural amplifiers.

    PubMed

    Holleman, Jeremy

    2016-08-01

    The initial amplification stage is a critical element of a neural signal acquisition system, and the design of low-noise, low-power amplifiers has received a great deal of attention in recent publications. In this paper we discuss practical considerations for the design of amplifiers intended for neural interfaces. Noise is a major issue due to the low amplitude of neural signals. Practical system deployments also require adequate rejection of common-mode interference, such as that due to line power noise or muscle artifacts, and supply noise. This paper attempts to provide some guideance for system and circuit designers and point out opportunities for potential future exploration.

  18. Coherent amplified optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Rao, Bin; Chen, Zhongping

    2007-07-01

    A technique to improve the signal-to-noise ratio (SNR) of a high speed 1300 nm swept source optical coherence tomography (SSOCT) system was demonstrated. A semiconductor optical amplifier (SOA) was employed in the sample arm to coherently amplify the weak light back-scattered from sample tissue without increasing laser power illuminated on the sample. The image quality improvement was visualized and quantified by imaging the anterior segment of a rabbit eye at imaging speed of 20,000 A-lines per second. The theory analysis of SNR gain is given followed by the discussion on the technologies that can further improve the SNR gain.

  19. Reactanceless synthesized impedance bandpass amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1985-01-01

    An active R bandpass filter network is formed by four operational amplifier stages interconnected by discrete resistances. One pair of stages synthesize an equivalent input impedance of an inductance (L sub eq) in parallel with a discrete resistance (R sub o) while the second pair of stages synthesizes an equivalent input impedance of a capacitance (C sub eq) serially coupled to another discrete resistance (R sub i) coupled in parallel with the first two stages. The equivalent input impedances aggregately define a tuned resonant bandpass filter in the roll-off regions of the operational amplifiers.

  20. Laser system using regenerative amplifier

    DOEpatents

    Emmett, J.L.

    1980-03-04

    High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.

  1. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.

    1983-01-01

    A flash lamp pumped dye laser suitable for use as an amplifier stage was developed. The desired output laser pulses are of nanosecond duration, tunable in center frequency, and of good optical quality. Its usefulness as a laser oscillator is emphasized, because it constitutes a compact, relatively efficient source of tunable dye laser light.

  2. Hybrid EDFA/Raman Amplifiers

    NASA Astrophysics Data System (ADS)

    Masuda, Hiroji

    This chapter describes the technologies needed for cascading an erbium-doped fiber amplifier (EDFA) and a fiber Raman amplifier (FRA or RA) to create a hybrid amplifier (HA), the EDFA/Raman HA. Two kinds of HA are defined in this chapter: the narrowband HA (NB-HA) and the seamless and wideband HA (SWB-HA). The NB-HA employs distributed Raman amplification in the transmission fiber together with an EDFA and provides low noise transmission in the C- or L-band. The noise figure of the transmission line is lower than it would be if only an EDFA were used. The SWB-HA, on the other hand, employs distributed or discrete Raman amplification together with an EDFA, and provides a low-noise and wideband transmission line or a low-noise and wideband discrete amplifier for the C- and L-bands. The typical gain bandwidth (Δλ) of the NB-HA is ~30 to 40 nm, whereas that of the SWB-HA is ~70 to 80 nm.

  3. Injury-induced purinergic signalling molecules upregulate pluripotency gene expression and mitotic activity of progenitor cells in the zebrafish retina.

    PubMed

    Medrano, Matías P; Bejarano, Claudio A; Battista, Ariadna G; Venera, Graciela D; Bernabeu, Ramón O; Faillace, Maria Paula

    2017-07-14

    Damage in fish activates retina repair that restores sight. The purinergic signalling system serves multiple homeostatic functions and has been implicated in cell cycle control of progenitor cells in the developing retina. We examined whether changes in the expression of purinergic molecules were instrumental in the proliferative phase after injury of adult zebrafish retinas with ouabain. P2RY1 messenger RNA (mRNA) increased early after injury and showed maximal levels at the time of peak progenitor cell proliferation. Extracellular nucleotides, mainly ADP, regulate P2RY1 transcriptional and protein expression. The injury-induced upregulation of P2RY1 is mediated by an autoregulated mechanism. After injury, the transcriptional expression of ecto-nucleotidases and ecto-ATPases also increased and ecto-ATPase activity inhibitors decreased Müller glia-derived progenitor cell amplification. Inhibition of P2RY1 endogenous activation prevented progenitor cell proliferation at two intervals after injury: one in which progenitor Müller glia mitotically activates and the second one in which Müller glia-derived progenitor cells amplify. ADPβS induced the expression of lin28a and ascl1a genes in mature regions of uninjured retinas. The expression of these genes, which regulate multipotent Müller glia reprogramming, was significantly inhibited by blocking the endogenous activation of P2RY1 early after injury. We consistently observed that the number of glial fibrillary acidic protein-BrdU-positive Müller cells after injury was larger in the absence than in the presence of the P2RY1 antagonist. Ecto-ATPase activity inhibitors or P2RY1-specific antagonists did not modify apoptotic cell death at the time of peak progenitor cell proliferation. The results suggested that ouabain injury upregulates specific purinergic signals which stimulates multipotent progenitor cell response.

  4. Aging neural progenitors lose competence to respond to mitogenic Notch signaling

    PubMed Central

    Farnsworth, Dylan R.; Bayraktar, Omer Ali; Doe, Chris Q.

    2015-01-01

    Drosophila neural stem cells (neuroblasts) are a powerful model system for investigating stem cell self-renewal, specification of temporal identity, and progressive restriction in competence. Notch signaling is a conserved cue that is an important determinant of cell fate in many contexts across animal development; for example mammalian T cell differentiation in the thymus and neuroblast specification in Drosophila are both regulated by Notch signaling. However, Notch also functions as a mitogen, and constitutive Notch signaling potentiates T cell leukemia as well as Drosophila neuroblast tumors. While the role of Notch signaling has been studied in these and other cell types, it remains unclear how stem cells and progenitors change competence to respond to Notch over time. Notch is required in type II neuroblasts for normal development of their transit amplifying progeny, intermediate neural progenitors (INPs). Here we find that aging INPs lose competence to respond to constitutively active Notch signaling. Moreover, we show that reducing the levels of the old INP temporal transcription factor Eyeless/Pax6 allows Notch signaling to promote the de-differentiation of INP progeny into ectopic INPs, thereby creating a proliferative mass of ectopic progenitors in the brain. These findings provide a new system for studying progenitor competence, and identify a novel role for the conserved transcription factor Eyeless/Pax6 in blocking Notch signaling during development. PMID:26585279

  5. Aging Neural Progenitors Lose Competence to Respond to Mitogenic Notch Signaling.

    PubMed

    Farnsworth, Dylan R; Bayraktar, Omer Ali; Doe, Chris Q

    2015-12-07

    Drosophila neural stem cells (neuroblasts) are a powerful model system for investigating stem cell self-renewal, specification of temporal identity, and progressive restriction in competence. Notch signaling is a conserved cue that is an important determinant of cell fate in many contexts across animal development; for example, mammalian T cell differentiation in the thymus and neuroblast specification in Drosophila are both regulated by Notch signaling. However, Notch also functions as a mitogen, and constitutive Notch signaling potentiates T cell leukemia as well as Drosophila neuroblast tumors. While the role of Notch signaling has been studied in these and other cell types, it remains unclear how stem cells and progenitors change competence to respond to Notch over time. Notch is required in type II neuroblasts for normal development of their transit amplifying progeny, intermediate neural progenitors (INPs). Here, we find that aging INPs lose competence to respond to constitutively active Notch signaling. Moreover, we show that reducing the levels of the old INP temporal transcription factor Eyeless/Pax6 allows Notch signaling to promote the de-differentiation of INP progeny into ectopic INPs, thereby creating a proliferative mass of ectopic progenitors in the brain. These findings provide a new system for studying progenitor competence and identify a novel role for the conserved transcription factor Eyeless/Pax6 in blocking Notch signaling during development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Genetic Tagging During Human Mesoderm Differentiation Reveals Tripotent Lateral Plate Mesodermal Progenitors.

    PubMed

    Chin, Chee Jia; Cooper, Aaron R; Lill, Georgia R; Evseenko, Denis; Zhu, Yuhua; He, Chong Bin; Casero, David; Pellegrini, Matteo; Kohn, Donald B; Crooks, Gay M

    2016-05-01

    Although clonal studies of lineage potential have been extensively applied to organ specific stem and progenitor cells, much less is known about the clonal origins of lineages formed from the germ layers in early embryogenesis. We applied lentiviral tagging followed by vector integration site analysis (VISA) with high-throughput sequencing to investigate the ontogeny of the hematopoietic, endothelial and mesenchymal lineages as they emerge from human embryonic mesoderm. In contrast to studies that have used VISA to track differentiation of self-renewing stem cell clones that amplify significantly over time, we focused on a population of progenitor clones with limited self-renewal capability. Our analyses uncovered the critical influence of sampling on the interpretation of lentiviral tag sharing, particularly among complex populations with minimal clonal duplication. By applying a quantitative framework to estimate the degree of undersampling we revealed the existence of tripotent mesodermal progenitors derived from pluripotent stem cells, and the subsequent bifurcation of their differentiation into bipotent endothelial/hematopoietic or endothelial/mesenchymal progenitors. Stem Cells 2016;34:1239-1250.

  7. Progenitors of Supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    Toonen, S.; Nelemans, G.; Bours, M.; Portegies Zwart, S.; Claeys, J.; Mennekens, N.; Ruiter, A.

    2013-01-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.

  8. Red supergiants as supernova progenitors

    NASA Astrophysics Data System (ADS)

    Davies, Ben

    2017-09-01

    It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  9. The interface between glial progenitors and gliomas

    PubMed Central

    Canoll, Peter

    2009-01-01

    The mammalian brain and spinal cord contain heterogeneous populations of cycling, immature cells. These include cells with stem cell-like properties as well as progenitors in various stages of early glial differentiation. This latter population is distributed widely throughout gray and white matter and numerically represents an extremely large cell pool. In this review, we discuss the possibility that the glial progenitors that populate the adult CNS are one source of gliomas. Indeed, the marker phenotypes, morphologies, and migratory properties of cells in gliomas strongly resemble glial progenitors in many ways. We review briefly some salient features of normal glial development and then examine the similarities and differences between normal progenitors and cells in gliomas, focusing on the phenotypic plasticity of glial progenitors and the responses to growth factors in promoting proliferation and migration of normal and glioma cells, and discussing known mutational changes in gliomas in the context of how these might affect the proliferative and migratory behaviors of progenitors. Finally, we will discuss the “cancer stem cell” hypothesis in light of the possibility that glial progenitors can generate gliomas. PMID:18784926

  10. Prorenin receptor is critical for nephron progenitors

    PubMed Central

    Song, Renfang; Preston, Graeme; Kidd, Laura; Bushnell, Daniel; Sims-Lucas, Sunder; Bates, Carlton M.; Yosypiv, Ihor V.

    2016-01-01

    Deficient nephrogenesis is the major factor contributing to renal hypoplasia defined as abnormally small kidneys. Nephron induction during kidney development is driven by reciprocal interactions between progenitor cells of the cap mesenchyme (CM) and the ureteric bud (UB). The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump H+-ATPase. Global loss of PRR is lethal in mice and PRR mutations are associated with a high blood pressure, left ventricular hypertrophy and X-linked mental retardation in humans. To circumvent lethality of the ubiquitous PRR mutation in mice and to determine the potential role of the PRR in nephrogenesis, we generated a mouse model with a conditional deletion of the PRR in Six2+ nephron progenitors and their epithelial derivatives (Six2PRR−/−). Targeted ablation of PRR in Six2+ nephron progenitors caused a marked decrease in the number of developing nephrons, small cystic kidneys and podocyte foot process effacement at birth, and early postnatal death. Reduced congenital nephron endowment resulted from premature depletion of nephron progenitor cell population due to impaired progenitor cell proliferation and loss of normal molecular inductive response to canonical Wnt/β-catenin signaling within the metanephric mesenchyme. At 2 months of age, heterozygous Six2PRR+/− mice exhibited focal glomerulosclerosis, decreased kidney function and massive proteinuria. Collectively, these findings demonstrate a cell-autonomous requirement for the PRR within nephron progenitors for progenitor maintenance, progression of nephrogenesis, normal kidney development and function. PMID:26658320

  11. Low Cost RF Amplifier for Community TV

    NASA Astrophysics Data System (ADS)

    Ch, Syafaruddin; Sasongko, Sudi Mariyanto Al; Made Budi Suksmadana, I.; Mustiko Okta Muvianto, Cahyo; Ariessaputra, Suthami

    2016-01-01

    he capability of television to deliver audio video makes this media become the most effective method to spread information. This paper presents an experiment of RF amplifier design having low-cost design and providing sufficient RF power particularly for community television. The RF amplifier consists of two stages of amplifier. The first stage amplifier was used to leverage output of TV modulator from 11dBm to enable to drive next stage amplifier. CAD simulation and fabrication were run to reach optimum RF amplifier design circuit. The associated circuit was made by determining stability circle, stability gain, and matching impedance. Hence, the average power of first stage RF amplifier was 24.68dBm achieved. The second stage used RF modules which was ready match to 50 ohm for both input and output port. The experiment results show that the RF amplifier may operate at frequency ranging from 174 to 230MHz. The average output power of the 2nd stage amplifier was 33.38 Watt with the overall gain of 20.54dB. The proposed RF amplifier is a cheap way to have a stable RF amplifier for community TV. The total budget for the designed RF amplifier is only a 1/5 compared to local design of final TV amplifier.

  12. Progenitor's Signatures in Type Ia Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Kosenko, D.; Schure, K. M.; Vink, J.

    2013-01-01

    The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that Kepler's SNR is consistent with a symbiotic binary progenitor consisting of a white dwarf and an AGB star. Our hydrosimulations can reproduce the observed kinematic and morphological properties. For Tycho's remnant we use the characteristics of the X-ray spectrum and kinematics to show that the ejecta has likely interacted with dense circumstellar gas.

  13. Does surface roughness amplify wetting?

    SciTech Connect

    Malijevský, Alexandr

    2014-11-14

    Any solid surface is intrinsically rough on the microscopic scale. In this paper, we study the effect of this roughness on the wetting properties of hydrophilic substrates. Macroscopic arguments, such as those leading to the well-known Wenzel's law, predict that surface roughness should amplify the wetting properties of such adsorbents. We use a fundamental measure density functional theory to demonstrate the opposite effect from roughness for microscopically corrugated surfaces, i.e., wetting is hindered. Based on three independent analyses we show that microscopic surface corrugation increases the wetting temperature or even makes the surface hydrophobic. Since for macroscopically corrugated surfaces the solid texture does indeed amplify wetting there must exist a crossover between two length-scale regimes that are distinguished by opposite response on surface roughening. This demonstrates how deceptive can be efforts to extend the thermodynamical laws beyond their macroscopic territory.

  14. Transverse Bragg resonance laser amplifier.

    PubMed

    Yariv, Amnon; Xu, Yong; Mookherjea, Shayan

    2003-02-01

    We propose and analyze a new type of optical amplifier that is formed by addition of gain in the periodic cladding of a transverse Bragg resonance waveguide [Opt. Lett. 27, 936 (2002)]. Using the coupled-wave formalism, we calculate the mode profiles, the exponential gain constant, and, for comparison, the gain enhancement compared with those of conventional semiconductor optical amplifiers. In contrast with coupled-mode theory, in one-dimensional structures (e.g., the distributed-feedback laser) the exponential gain constant in the longitudinal direction is involved in both longitudinal and transverse confinement, and its solution has to be achieved self-consistently, together with the quantized guiding channel width.

  15. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  16. 338-GHz Semiconductor Amplifier Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; Uyeda, Jansen; Lai, Richard

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  17. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  18. Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells

    PubMed Central

    Kalinkovich, Alexander; Itkin, Tomer; Ludin, Aya; Kao, Wei-Ming; Battista, Michela; Tesio, Melania; Kollet, Orit; Cohen, Neta Netzer; Margalit, Raanan; Buss, Eike C.; Baleux, Francoise; Oishi, Shinya; Fujii, Nobutaka; Larochelle, Andre; Dunbar, Cynthia E.; Broxmeyer, Hal E.; Frenette, Paul S.; Lapidot, Tsvee

    2014-01-01

    Steady-state egress of hematopoietic progenitor cells can be rapidly amplified by mobilizing agents such as AMD3100, the mechanism, however, is poorly understood. We report that AMD3100 increased the homeostatic release of the chemokine SDF-1 to the circulation in mice and non-human primates. Neutralizing antibodies against CXCR4 or SDF-1 inhibited both steady-state and AMD3100-induced SDF-1 release and reduced egress of murine progenitor cells over mature leukocytes. Intra-bone injection of biotinylated SDF-1 also enhanced release of this chemokine and murine progenitor cell mobilization. AMD3100 directly induced SDF-1 release from CXCR4+ human bone marrow osteoblasts and endothelial cells and activated uPA in a CXCR4/JNK-dependent manner. Additionally, ROS inhibition reduced AMD3100-induced SDF-1 release, activation of circulating uPA and mobilization of progenitor cells. Norepinephrine treatment, mimicking acute stress, rapidly increased SDF-1 release and progenitor cell mobilization, while β2-adrenergic antagonist inhibited both steady-state and AMD3100-induced SDF-1 release and progenitor cell mobilization in mice. In conclusion, this study reveals that SDF-1 release from bone marrow stromal cells to the circulation emerges as a pivotal mechanism essential for steady state egress and rapid mobilization of hematopoietic progenitor cells, but not mature leukocytes. PMID:21494253

  19. Compact, harmonic multiplying gyrotron amplifiers

    SciTech Connect

    Guo, H.Z.; Granatstein, V.L.; Antonsen, T.M. Jr.; Levush, B.; Tate, J.; Chen, S.H.

    1995-12-31

    A compact, harmonic multiplying gyrotron traveling wave amplifier is being developed. The device is a three-stage tube with the output section running as a fourth harmonic gyro-TWT, the input section running as a fundamental gyro-TWT, and the middle operating at the second harmonic of the cyclotron frequency. Radiation is suppressed by servers between the sections. The operating beam of the tube is produced by a magnetron injection gun (MIG). A TE{sub 0n} mode selective interaction circuit consisting of mode converters and a filter waveguide is employed for both input and output sections to solve the mode competition problem, which is pervasive in gyro-TWT operation. The input section has an input coupler designed as a TE{sub 0n} mode launcher. It excites a signal at the fundamental cyclotron frequency (17.5 GHz), which is amplified in the first TWT interaction region. So far the device is similar to a two-stage harmonic gyro-TWT. The distinction is that in the three-stage device the second section will be optimized not for output power but for fourth harmonic bunching of the beam. A gyroklystron amplifier has also been designed. The configuration is similar to the gyro-TWT but with the traveling wave interaction structures replaced by mode selective special complex cavities. Cold test results of the wideband input coupler and the TE{sub 0n} mode selective interaction circuit have been obtained.

  20. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  1. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  2. Small and lightweight power amplifiers

    NASA Astrophysics Data System (ADS)

    Shams, Qamar A.; Barnes, Kevin N.; Fox, Robert L.; Moses, Robert W.; Bryant, Robert G.; Robinson, Paul C.; Shirvani, Mir

    2002-07-01

    The control of u wanted structural vibration is implicit in most of NASA's programs. Currently several approaches to control vibrations in large, lightweight, deployable structures and twin tail aircraft at high angles of attack are being evaluated. The Air Force has been examining a vertical tail buffet load alleviation system that can be integrated onboard an F/A-18 and flown. Previous wind tunnel and full-scale ground tests using distributed actuators have shown that the concept works; however, there is insufficient rom available onboard an F/A-18 to store current state-of- the-art system components such as amplifiers, DC-to-DC converter and a computer for performing vibration suppression. Sensor processing, power electronics, DC-to-DC converters, and control electronics that may be collocated with distributed actuators, are particularly desirable. Such electronic system would obviate the need for complex, centralized, control processing and power distribution components that will eliminate the weight associated with lengthy wiring and cabling networks. Several small and lightweight power amplifiers ranging from 300V pp to 650V pp have been designed using off the shelf components for different applications. In this paper, the design and testing of these amplifiers will be presented under various electrical loads.

  3. Highly stable biased amplifier and stretcher system

    NASA Technical Reports Server (NTRS)

    Roddick, R. G.

    1970-01-01

    Amplifier and stretcher system, which minimizes thermal effects and compensates for repetition-rate effects, maintains resolution levels in spectrum analysis. An additional inverting amplifier is used in the system to provide a noiseless charge restorer.

  4. NASA developments in solid state power amplifiers

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  5. Solid state, S-band, power amplifier

    NASA Technical Reports Server (NTRS)

    Digrindakis, M.

    1973-01-01

    The final design and specifications for a solid state, S-band, power amplifier is reported. Modifications from a previously proposed design were incorporated to improve efficiency and meet input overdrive and noise floor requirements. Reports on the system design, driver amplifier, power amplifier, and voltage and current limiter are included along with a discussion of the testing program.

  6. Remote Acquisition Amplifier For 50-Ohm Cable

    NASA Technical Reports Server (NTRS)

    Amador, Jose J.

    1995-01-01

    Buffer-amplifier unit designed to drive 50-Ohm cables up to 100 ft. (30 m) long, compensating for attenuation in cables and enabling remote operation of oscilloscopes. Variable resistor provides for adjustment of gain of amplifier, such that overall gain from input terminals of amplifier to output end of cable set to unity.

  7. A genetic analysis of neural progenitor differentiation.

    PubMed

    Geschwind, D H; Ou, J; Easterday, M C; Dougherty, J D; Jackson, R L; Chen, Z; Antoine, H; Terskikh, A; Weissman, I L; Nelson, S F; Kornblum, H I

    2001-02-01

    Genetic mechanisms regulating CNS progenitor function and differentiation are not well understood. We have used microarrays derived from a representational difference analysis (RDA) subtraction in a heterogeneous stem cell culture system to systematically study the gene expression patterns of CNS progenitors. This analysis identified both known and novel genes enriched in progenitor cultures. In situ hybridization in a subset of clones demonstrated that many of these genes were expressed preferentially in germinal zones, some showing distinct ventricular or subventricular zone labeling. Several genes were also enriched in hematopoietic stem cells, suggesting an overlap of gene expression in neural and hematopoietic progenitors. This combination of methods demonstrates the power of using custom microarrays derived from RDA-subtracted libraries for both gene discovery and gene expression analysis in the central nervous system.

  8. Circulating Vascular Progenitor Cells in Moyamoya Disease

    PubMed Central

    Kang, Hyun-Seung; Wang, Kyu-Chang

    2015-01-01

    Various approaches have been attempted in translational moyamoya disease research. One promising material for modeling and treating this disease is vascular progenitor cells, which can be acquired and expanded from patient peripheral blood. These cells may provide a novel experimental model and enable us to obtain insights regarding moyamoya disease pathogenesis. We briefly present the recent accomplishments in regard to the studies of vascular progenitor cells in moyamoya disease. PMID:26180610

  9. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, William

    1987-01-01

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.

  10. Functional Electronic Amplifiers with Broad Dynamic Band,

    DTIC Science & Technology

    1983-09-27

    dynamic properties of amplifiers, assembled on this type of amplifier instruments, it is expedient to introduce the concept of the dynamic quality...qjvL> ql. 3. Amplifier has data: K" =K’/m; , vus,, q -q4cujvv.4 in Fig. 1). Functional amplifier is assembled on the block diagram Fig. 2b. It has...following data: K-mr’ vv;m-v-mvv’-" qpYmq j° ey" As can be seen from the given examples, dynamic quality of FU, assembled on the identical amplifier

  11. Age affects gene expression in mouse spermatogonial stem/progenitor cells.

    PubMed

    Kokkinaki, Maria; Lee, Tin-Lap; He, Zuping; Jiang, Jiji; Golestaneh, Nady; Hofmann, Marie-Claude; Chan, Wai-Yee; Dym, Martin

    2010-06-01

    Spermatogenesis in man starts with spermatogonial stem cells (SSCs), and leads to the production of sperm in approximately 64 days, common to old and young men. Sperm from elderly men are functional and able to fertilize eggs and produce offspring, even though daily sperm production is more than 50% lower and damage to sperm DNA is significantly higher in older men than in those who are younger. Our hypothesis is that the SSC/spermatogonial progenitors themselves age. To test this hypothesis, we studied the gene expression profile of mouse SSC/progenitor cells at several ages using microarrays. After sequential enzyme dispersion, we purified the SSC/progenitors with immunomagnetic cell sorting using an antibody to GFRA1, a known SSC/progenitor cell marker. RNA was isolated and used for the in vitro synthesis of amplified and labeled cRNAs that were hybridized to the Affymetrix mouse genome microarrays. The experiments were repeated twice with different cell preparations, and statistically significant results are presented. Quantitative RT-PCR analysis was used to confirm the microarray results. Comparison of four age groups (6 days, 21 days, 60 days, and 8 months old) showed a number of genes that were expressed specifically in the older mice. Two of them (i.e. Icam1 and Selp) have also been shown to mark aging hematopoietic stem cells. On the other hand, the expression levels of the genes encoding the SSC markers Gfra1 and Plzf did not seem to be significantly altered by age, indicating that age affects only certain SSC/progenitor properties.

  12. Non-radial instabilities and progenitor asphericities in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Müller, B.; Janka, H.-Th.

    2015-04-01

    Since core-collapse supernova simulations still struggle to produce robust neutrino-driven explosions in 3D, it has been proposed that asphericities caused by convection in the progenitor might facilitate shock revival by boosting the activity of non-radial hydrodynamic instabilities in the post-shock region. We investigate this scenario in depth using 42 relativistic 2D simulations with multigroup neutrino transport to examine the effects of velocity and density perturbations in the progenitor for different perturbation geometries that obey fundamental physical constraints (like the anelastic condition). As a framework for analysing our results, we introduce semi-empirical scaling laws relating neutrino heating, average turbulent velocities in the gain region, and the shock deformation in the saturation limit of non-radial instabilities. The squared turbulent Mach number, , reflects the violence of aspherical motions in the gain layer, and explosive runaway occurs for ≳ 0.3, corresponding to a reduction of the critical neutrino luminosity by ˜ 25 per cent compared to 1D. In the light of this theory, progenitor asphericities aid shock revival mainly by creating anisotropic mass flux on to the shock: differential infall efficiently converts velocity perturbations in the progenitor into density perturbations δρ/ρ at the shock of the order of the initial convective Mach number Maprog. The anisotropic mass flux and ram pressure deform the shock and thereby amplify post-shock turbulence. Large-scale (ℓ = 2, ℓ = 1) modes prove most conducive to shock revival, whereas small-scale perturbations require unrealistically high convective Mach numbers. Initial density perturbations in the progenitor are only of the order of Ma_prog^2 and therefore play a subdominant role.

  13. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  14. ULTRA-STABILIZED D. C. AMPLIFIER

    DOEpatents

    Hartwig, E.C.; Kuenning, R.W.; Acker, R.C.

    1959-02-17

    An improved circuit is described for stabilizing the drift and minimizing the noise and hum level of d-c amplifiers so that the output voltage will be zero when the input is zero. In its detailed aspects, the disclosed circuit incorporates a d-c amplifier having a signal input, a second input, and an output circuit coupled back to the first input of the amplifier through inverse feedback means. An electronically driven chopper having a pair of fixed contacts and a moveable contact alternately connects the two inputs of a difference amplifier to the signal input. The A. E. error signal produced in the difference amplifier is amplified, rectified, and applied to the second input of the amplifier as the d-c stabilizing voltage.

  15. Nondegenerate optical parametric chirped pulse amplifier

    DOEpatents

    Jovanovic, Igor; Ebbers, Christopher A.

    2005-03-22

    A system provides an input pump pulse and a signal pulse. A first dichroic beamsplitter is highly reflective for the input signal pulse and highly transmissive for the input pump pulse. A first optical parametric amplifier nonlinear crystal transfers part of the energy from the input pump pulse to the input signal pulse resulting in a first amplified signal pulse and a first depleted pump pulse. A second dichroic beamsplitter is highly reflective for the first amplified signal pulse and highly transmissive for the first depleted pump pulse. A second optical parametric amplifier nonlinear crystal transfers part of the energy from the first depleted pump pulse to the first amplified signal pulse resulting in a second amplified signal pulse and a second depleted pump pulse. A third dichroic beamsplitter receives the second amplified signal pulse and the second depleted pump pulse. The second depleted pump pulse is discarded.

  16. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1985-01-01

    This semiannual progress report covers the period from April 1, 1985 to Sept. 30, 1985 under NASA grant NAS1-441 entitled direct solar pumped iodine laser amplifier. During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator was carried out before the amplifier studies. The amplifier studies are postponed to the extended period following completion of the parametric studies. In addition, the kinetic modeling of a solar pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) the radiation characteristics of solar simulator and the parametric characteristics of photodissociation iodine laser continuously pumped by a Vortek solar simulator; (2) kinetic modeling of a solar pumped iodine laser amplifier; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  17. High temperature charge amplifier for geothermal applications

    DOEpatents

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  18. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  19. Charge amplifier with bias compensation

    DOEpatents

    Johnson, Gary W.

    2002-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  20. Prorenin receptor is critical for nephron progenitors.

    PubMed

    Song, Renfang; Preston, Graeme; Kidd, Laura; Bushnell, Daniel; Sims-Lucas, Sunder; Bates, Carlton M; Yosypiv, Ihor V

    2016-01-15

    Deficient nephrogenesis is the major factor contributing to renal hypoplasia defined as abnormally small kidneys. Nephron induction during kidney development is driven by reciprocal interactions between progenitor cells of the cap mesenchyme (CM) and the ureteric bud (UB). The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump H(+)-ATPase. Global loss of PRR is lethal in mice and PRR mutations are associated with a high blood pressure, left ventricular hypertrophy and X-linked mental retardation in humans. To circumvent lethality of the ubiquitous PRR mutation in mice and to determine the potential role of the PRR in nephrogenesis, we generated a mouse model with a conditional deletion of the PRR in Six2(+) nephron progenitors and their epithelial derivatives (Six2(PRR-/-)). Targeted ablation of PRR in Six2(+) nephron progenitors caused a marked decrease in the number of developing nephrons, small cystic kidneys and podocyte foot process effacement at birth, and early postnatal death. Reduced congenital nephron endowment resulted from premature depletion of nephron progenitor cell population due to impaired progenitor cell proliferation and loss of normal molecular inductive response to canonical Wnt/β-catenin signaling within the metanephric mesenchyme. At 2 months of age, heterozygous Six2(PRR+/-) mice exhibited focal glomerulosclerosis, decreased kidney function and massive proteinuria. Collectively, these findings demonstrate a cell-autonomous requirement for the PRR within nephron progenitors for progenitor maintenance, progression of nephrogenesis, normal kidney development and function. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    PubMed

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues.

  2. High power RF solid state power amplifier system

    NASA Technical Reports Server (NTRS)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  3. Signal-Conditioning Amplifier Recorders

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Taylor, John

    2003-01-01

    Signal-conditioning amplifier recorders (SCAmpRs) have been proposed as a means of simplifying and upgrading the Kennedy Space Center (KSC) Ground Measurement System (GMS), which is a versatile data-acquisition system that gathers and records a variety of measurement data before and during the launch of a space shuttle. In the present version of the GMS system, signal conditioning amplifiers digitize and transmit data to a VME chassis that multiplexes up to 416 channels. The data is transmitted via a high-speed data bus to a second VME chassis where it is available for snapshots. The data is passed from the second VME chassis to a high-speed data recorder. This process is duplicated for installations at two launch pads and the Vehicle Assembly Building (VAB). Since any failure of equipment in the data path results in loss of data, much of the system is redundant. The architecture of the existing GMS limits expansion or any modification to the system to meet changing requirements because of the cost and time required. A SCAmpR-based system is much more flexible. The basis of the simplification, flexibility, and reliability is the shifting of the recording function to the individual amplifier channels. Each SCAmpR is a self-contained single channel data acquisition system, which in its current implementation, has a data storage capacity of up to 30 minutes when operating at the fastest data sampling rates. The SCAmpR channels are self-configuring and self-calibrating. Multiple SCAmpR channels are ganged on printed circuit boards and mounted in a chassis that provides power, a network hub, and Inter-Range Instrument Group (IRIG) time signals. The SCAmpR channels share nothing except physical mounting on a circuit board. All circuitry is electrically separate for each channel. All that is necessary to complete the data acquisition system is a single master computer tied to the SCAmpR channels by standard network equipment. The size of the data acquisition system

  4. STELLAR BINARY COMPANIONS TO SUPERNOVA PROGENITORS

    SciTech Connect

    Kochanek, Christopher S.

    2009-12-20

    For typical models of binary statistics, 50%-80% of core-collapse supernova (ccSN) progenitors are members of a stellar binary at the time of the explosion. Independent of any consequences of mass transfer, this has observational consequences that can be used to study the binary properties of massive stars. In particular, the secondary companion to the progenitor of a Type Ib/c SN is frequently (approx50%) the more optically luminous star since the high effective temperatures of the stripped progenitors make it relatively easy for a lower luminosity, cooler secondary to emit more optical light. Secondaries to the lower mass progenitors of Type II SN will frequently produce excess blue emission relative to the spectral energy distribution of the red primary. Available data constrain the models weakly. Any detected secondaries also provide an independent lower bound on the progenitor mass and, for historical SN, show that it was not a Type Ia event. Bright ccSN secondaries have an unambiguous, post-explosion observational signature-strong, blueshifted, relatively broad absorption lines created by the developing SN remnant (SNR). These can be used to locate historical SN with bright secondaries, confirm that a source is a secondary, and, potentially, measure abundances of ccSN ejecta. Luminous, hot secondaries will re-ionize the SNR on timescales of 100-1000 yr that are faster than re-ionization by the reverse shock, creating peculiar H II regions due to the high metallicity and velocities of the ejecta.

  5. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  6. Multistaged stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.

  7. Fiber networks amplify active stress

    PubMed Central

    Ronceray, Pierre; Broedersz, Chase P.

    2016-01-01

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks’ disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  8. Resonant isolator for maser amplifier

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Quinn, R. B. (Inventor)

    1983-01-01

    An isolator is described for use in a low noise maser amplifier, which provides low loss across a wide bandwidth and which can be constructed at moderate cost. The isolator includes a train of garnet or ferrite elements extending along the length of a microwave channel parallel to the slow wave structure, with the elements being of staggered height, so that the thin elements which are resonant to the microwaves are separated by much thicker elements. The thick garnet or ferrite elements reduce the magnetic flux passing through the thin elements to permit altering of the shape of the thin elements so as to facilitate their fabrication and to provide better isolation with reduced loss, by increasing the thickness of the thin elements and decreasing their length and width.

  9. Transverse pumped laser amplifier architecture

    DOEpatents

    Bayramian, Andrew James; Manes, Kenneth R.; Deri, Robert; Erlandson, Alvin; Caird, John; Spaeth, Mary L.

    2015-05-19

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  10. Transverse pumped laser amplifier architecture

    DOEpatents

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  11. Resonantly amplified vibronic symmetry breaking

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Rathbone, G. J.; Bozek, J. D.; Lucchese, R. R.

    2002-05-01

    In photoelectron spectroscopy, it is normally assumed that excitation of a single quantum of a non-totally symmetric vibrational mode is forbidden owing to symmetry constraints. Using vibrationally resolved photoelectron spectroscopy over a broad spectral range, we have shown that a previously overlooked mechanism can lead to these nominally forbidden transitions. Specifically, the photoelectron can mediate the oscillator strength for such a transition via resonantly amplified vibronic symmetry breaking, and this effect results from intrachannel rather than interchannel coupling. In our first experiments, we focused on bending excitation accompanying CO2 photoionization. Photoelectron spectroscopy on the CO_2^+(C^2Σ_g^+) state showed that the excitation of the (010) vibrational mode is mediated by a shape resonant continuum electron. The degree of vibrational excitation can be substantial, and extensions to other types of symmetry breaking are currently being investigated.

  12. Hydraulically amplified PZT mems actuator

    DOEpatents

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  13. A THEORY FOR BROADBAND VARACTOR PARAMETRIC AMPLIFIERS

    DTIC Science & Technology

    This thesis is concerned with the development of a general and rigorous broadbanding theory for varactor parametric amplifiers . Fundamental gain...bandwidth limitations of a varactor parametric amplifier are obtained which are independent of the equalizer. Results obtained in this theory lead to the...design and synthesis of broadband varactor parametric amplifiers . The circuit considered in this thesis is that of linear variable capacitors embedded

  14. A dc amplifier for nuclear particle measurement

    NASA Technical Reports Server (NTRS)

    Macnee, A. B.; Masnari, N. A.

    1978-01-01

    A monolithic preamplifier-postamplifier combination has been developed for use with solid state particle detectors. The direct coupled amplifiers employ interdigitated n-channel JFET's, diodes, and diffused resistors. The circuits developed demonstrate the feasibility of matching the performance of existing discrete component designs. The fabrication procedures for the monolithic amplifier fabrication are presented and the results of measurements on a limited number of sample amplifiers are given.

  15. Wnt activity and basal niche position sensitize intestinal stem and progenitor cells to DNA damage.

    PubMed

    Tao, Si; Tang, Duozhuang; Morita, Yohei; Sperka, Tobias; Omrani, Omid; Lechel, André; Sakk, Vadim; Kraus, Johann; Kestler, Hans A; Kühl, Michael; Rudolph, Karl Lenhard

    2015-03-04

    Aging and carcinogenesis coincide with the accumulation of DNA damage and mutations in stem and progenitor cells. Molecular mechanisms that influence responses of stem and progenitor cells to DNA damage remain to be delineated. Here, we show that niche positioning and Wnt signaling activity modulate the sensitivity of intestinal stem and progenitor cells (ISPCs) to DNA damage. ISPCs at the crypt bottom with high Wnt/β-catenin activity are more sensitive to DNA damage compared to ISPCs in position 4 with low Wnt activity. These differences are not induced by differences in cell cycle activity but relate to DNA damage-dependent activation of Wnt signaling, which in turn amplifies DNA damage checkpoint activation. The study shows that instructed enhancement of Wnt signaling increases radio-sensitivity of ISPCs, while inhibition of Wnt signaling decreases it. These results provide a proof of concept that cell intrinsic levels of Wnt signaling modulate the sensitivity of ISPCs to DNA damage and heterogeneity in Wnt activation in the stem cell niche contributes to the selection of ISPCs in the context of DNA damage.

  16. Endothelial progenitor cells in cardiovascular diseases

    PubMed Central

    Lee, Poay Sian Sabrina; Poh, Kian Keong

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells (EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vasculogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk factors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardiovascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evaluate the challenges facing EPC research and how these may be overcome. PMID:25126384

  17. Transient nuclear Prospero induces neural progenitor quiescence.

    PubMed

    Lai, Sen-Lin; Doe, Chris Q

    2014-10-29

    Stem cells can self-renew, differentiate, or enter quiescence. Understanding how stem cells switch between these states is highly relevant for stem cell-based therapeutics. Drosophila neural progenitors (neuroblasts) have been an excellent model for studying self-renewal and differentiation, but quiescence remains poorly understood. In this study, we show that when neuroblasts enter quiescence, the differentiation factor Prospero is transiently detected in the neuroblast nucleus, followed by the establishment of a unique molecular profile lacking most progenitor and differentiation markers. The pulse of low level nuclear Prospero precedes entry into neuroblast quiescence even when the timing of quiescence is advanced or delayed by changing temporal identity factors. Furthermore, loss of Prospero prevents entry into quiescence, whereas a pulse of low level nuclear Prospero can drive proliferating larval neuroblasts into quiescence. We propose that Prospero levels distinguish three progenitor fates: absent for self-renewal, low for quiescence, and high for differentiation.

  18. Neuropeptides: developmental signals in placode progenitor formation.

    PubMed

    Lleras-Forero, Laura; Tambalo, Monica; Christophorou, Nicolas; Chambers, David; Houart, Corinne; Streit, Andrea

    2013-07-29

    Few families of signaling factors have been implicated in the control of development. Here, we identify the neuropeptides nociceptin and somatostatin, a neurotransmitter and neuroendocrine hormone, as a class of developmental signals in both chick and zebrafish. We show that signals from the anterior mesendoderm are required for the formation of anterior placode progenitors, with one of the signals being somatostatin. Somatostatin controls ectodermal expression of nociceptin, and both peptides regulate Pax6 in lens and olfactory progenitors. Consequently, loss of somatostatin and nociceptin signaling leads to severe reduction of lens formation. Our findings not only uncover these neuropeptides as developmental signals but also identify a long-sought-after mechanism that initiates Pax6 in placode progenitors and may explain the ancient evolutionary origin of neuropeptides, predating a complex nervous system.

  19. Class E/F switching power amplifiers

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Aoki, Ichiro (Inventor); Rutledge, David B. (Inventor); Kee, Scott David (Inventor)

    2004-01-01

    The present invention discloses a new family of switching amplifier classes called class E/F amplifiers. These amplifiers are generally characterized by their use of the zero-voltage-switching (ZVS) phase correction technique to eliminate of the loss normally associated with the inherent capacitance of the switching device as utilized in class-E amplifiers, together with a load network for improved voltage and current wave-shaping by presenting class-F.sup.-1 impedances at selected overtones and class-E impedances at the remaining overtones. The present invention discloses a several topologies and specific circuit implementations for achieving such performance.

  20. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, W.

    1985-02-08

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifer circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedstock loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point is offset by a compensating break point or zero.

  1. Retrodiction for optical attenuators, amplifiers, and detectors

    SciTech Connect

    Jedrkiewicz, Ottavia; Loudon, Rodney; Jeffers, John

    2004-09-01

    The transformation that an attenuator makes on the state of an optical field is the time reverse of that of an amplifier. Thus predicting the output state for an amplifier is equivalent to retrodicting the input state of an attenuator. We explore the consequences of this equivalence for simple optical quantum communication channels. One counterintuitive consequence is that the mean number of photons sent into an amplifier as retrodicted from a measurement of the number of output photons does not include the contribution of the amplifier noi0008.

  2. THE AGES OF TYPE Ia SUPERNOVA PROGENITORS

    SciTech Connect

    Brandt, Timothy D.; Aubourg, Eric; Strauss, Michael A.; Tojeiro, Rita; Heavens, Alan; Jimenez, Raul

    2010-09-15

    Using light curves and host galaxy spectra of 101 Type Ia supernovae (SNe Ia) with redshift z {approx}< 0.3 from the Sloan Digital Sky Survey Supernova Survey (SDSS-SN), we derive the SN Ia rate as a function of progenitor age (the delay time distribution, DTD). We use the VESPA stellar population synthesis algorithm to analyze the SDSS spectra of all galaxies in the field searched by SDSS-SN, giving us a reference sample of 77,000 galaxies for our SN Ia hosts. Our method does not assume any a priori shape for the DTD and is therefore minimally parametric. We present the DTD in physical units for high-stretch (luminous, slow declining) and low-stretch (subluminous, fast declining) supernovae in three progenitor age bins. We find strong evidence of two progenitor channels: one that produces high-stretch SNe Ia {approx}<400 Myr after the birth of the progenitor system, and one that produces low-stretch SNe Ia with a delay {approx}>2.4 Gyr. We find that each channel contributes roughly half of the Type Ia rate in our reference sample. We also construct the average spectra of high-stretch and low-stretch SN Ia host galaxies, and find that the difference of these spectra looks like a main-sequence B star with nebular emission lines indicative of star formation. This supports our finding that there are two populations of SNe Ia, and indicates that the progenitors of high-stretch supernovae are at the least associated with very recent star formation in the last few tens of Myr. Our results provide valuable constraints for models of Type Ia progenitors and may help improve the calibration of SNe Ia as standard candles.

  3. Ping-pong auto-zero amplifier with glitch reduction

    DOEpatents

    Larson, Mark R.

    2008-01-22

    A ping-pong amplifier with reduced glitching is described. The ping-pong amplifier includes a nulling amplifier coupled to a switching network. The switching network is used to auto-zero a ping amplifier within a ping-pong amplifier. The nulling amplifier drives the output of a ping amplifier to a proper output voltage level during auto-zeroing of the ping amplifier. By being at a proper output voltage level, glitches associated with transitioning between a ping amplifier and a pong amplifier are reduced or eliminated.

  4. Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells.

    PubMed

    Boone, Jason Q; Doe, Chris Q

    2008-08-01

    Mammalian neural stem cells generate transit amplifying progenitors that expand the neuronal population, but these type of progenitors have not been studied in Drosophila. The Drosophila larval brain contains approximately 100 neural stem cells (neuroblasts) per brain lobe, which are thought to bud off smaller ganglion mother cells (GMCs) that each produce two post-mitotic neurons. Here, we use molecular markers and clonal analysis to identify a novel neuroblast cell lineage containing "transit amplifying GMCs" (TA-GMCs). TA-GMCs differ from canonical GMCs in several ways: each TA-GMC has nuclear Deadpan, cytoplasmic Prospero, forms Prospero crescents at mitosis, and generates up to 10 neurons; canonical GMCs lack Deadpan, have nuclear Prospero, lack Prospero crescents at mitosis, and generate two neurons. We conclude that there are at least two types of neuroblast lineages: a Type I lineage where GMCs generate two neurons, and a type II lineage where TA-GMCs have longer lineages. Type II lineages allow more neurons to be produced faster than Type I lineages, which may be advantageous in a rapidly developing organism like Drosophila. (c) 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008.

  5. Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells

    PubMed Central

    Boone, Jason Q.; Doe, Chris Q.

    2009-01-01

    Mammalian neural stem cells generate transit amplifying progenitors that expand the neuronal population, but these type of progenitors have not been studied in Drosophila. The Drosophila larval brain contains ~100 neural stem cells (neuroblasts) per brain lobe, which are thought to bud off smaller ganglion mother cells (GMCs) that each produce two post-mitotic neurons. Here we use molecular markers and clonal analysis to identify a novel neuroblast cell lineage containing "transit amplifying GMCs" (TA-GMCs). TA-GMCs differ from canonical GMCs in several ways: each TA-GMC has nuclear Deadpan, cytoplasmic Prospero, forms Prospero crescents at mitosis, and generates up to 10 neurons; canonical GMCs lack Deadpan, have nuclear Prospero, lack Prospero crescents at mitosis, and generate two neurons. We conclude that there are at least two types of neuroblast lineages: a type I lineage where GMCs generate two neurons, and a type II lineage where TA-GMCs have longer lineages. Type II lineages allow more neurons to be produced faster than type I lineages, which may be advantageous in a rapidly developing organism like Drosophila. PMID:18548484

  6. Noise figure of hybrid optical parametric amplifiers.

    PubMed

    Marhic, Michel E

    2012-12-17

    Following a fiber optical parametric amplifier, used as a wavelength converter or in the phase-sensitive mode, by a phase-insensitive amplifier (PIA) can significantly reduce four-wave mixing between signals in broadband systems. We derive the quantum mechanical noise figures (NF) for these two hybrid configurations, and show that adding the PIA only leads to a moderate increase in NF.

  7. DESIGN OF A MOLECULAR AMPLIFIER GROUP.

    DTIC Science & Technology

    would be capable of field operation. The Molecular Amplifier Group consists of a traveling -wave amplifier and sufficient support equipment to provide...Ferrite disks of yttrium iron garnet are incorporated in the traveling -wave maser structure to provide sufficient reverse loss for short-circuit

  8. Amplifiers and the origin of animal signals

    PubMed Central

    Johnstone, Rufus A.

    2016-01-01

    In 1989, Hasson introduced the concept of an ‘amplifier’ within animal communication. This display reduces errors in the assessment of traits for which there is direct selection and renders differences in quality among animals more obvious. Amplifiers can evolve to fixation via the benefit they confer on high-quality animals. However, they also impose a cost on low-quality animals by revealing their lower quality, potentially leading these to refrain from amplifying. Hence, it was suggested that, if the level of amplification correlates with quality, direct choice for the amplifying display might emerge. Using the framework of signal detection theory, this article shows that, if the use of an amplifier is observable, direct choice for the amplifying display can indeed evolve. Consequently, low-quality animals may choose to amplify to some extent as well, even though this reveals their lower quality. In effect, the amplifier evolves to become a signal in its own right. We show that, as amplifiers can evolve without direct female choice and are likely to become correlated with male quality, selection for quality-dependent amplification provides a simple explanation for the origin of reliable signals in the absence of pre-existing preferences.

  9. A multicarrier feed-forward amplifier design

    NASA Astrophysics Data System (ADS)

    Myer, Daniel P.

    1994-10-01

    Cellular base stations employ feed-forward amplifiers to maintain low levels of intermodulation distortion. The relative level of distortion depends on the characteristics of the signal (stimulus) as much as the design of the amplifier itself. Careful attention to details in both of these areas is essential for a successful feed-forward design.

  10. Method for reducing snap in magnetic amplifiers

    NASA Technical Reports Server (NTRS)

    Fischer, R. L. E.; Word, J. L.

    1968-01-01

    Method of reducing snap in magnetic amplifiers uses a degenerative feedback circuit consisting of a resistor and a separate winding on a magnetic core. The feedback circuit extends amplifier range by allowing it to be used at lower values of output current.

  11. LIN28A marks the spermatogonial progenitor population and regulates its cyclic expansion.

    PubMed

    Chakraborty, Papia; Buaas, F William; Sharma, Manju; Snyder, Elizabeth; de Rooij, Dirk G; Braun, Robert E

    2014-04-01

    One of the hallmarks of highly proliferative adult tissues is the presence of a stem cell population that produces progenitor cells bound for differentiation. Progenitor cells undergo multiple transit amplifying (TA) divisions before initiating terminal differentiation. In the adult male germline, daughter cells arising from the spermatogonial stem cells undergo multiple rounds of TA divisions to produce undifferentiated clones of interconnected 2, 4, 8, and 16 cells, collectively termed A(undifferentiated) (A(undiff)) spermatogonia, before entering a stereotypic differentiation cascade. Although the number of TA divisions markedly affects the tissue output both at steady state and during regeneration, mechanisms regulating the expansion of the TA cell population are poorly understood in mammals. Here, we show that mice with a conditional deletion of Lin28a in the adult male germline, display impaired clonal expansion of the progenitor TA A(undiff) spermatogonia. The in vivo proliferative activity of Au(ndiff) spermatogonial cells as indicated by BrdU incorporation during S-phase was reduced in the absence of LIN28A. Thus, contrary to the role of LIN28A as a key determinant of cell fate signals in multiple stem cell lineages, in the adult male germline it functions as an intrinsic regulator of proliferation in the population of A(undiff) TA spermatogonia. In addition, neither precocious differentiation nor diminished capacity for self-renewal potential as assessed by transplantation was observed, suggesting that neither LIN28A itself nor the pool of Aal progenitor cells substantially contribute to the functional stem cell compartment. © AlphaMed Press.

  12. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  13. Ultrafast disk lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  14. Multi-pass light amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry (Inventor); Grossman, William M. (Inventor)

    1997-01-01

    A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A confocal resonator or White Cell resonator is provided, including two or three curvilinearly shaped mirrors facing each other along a resonator axis and an optical gain medium positioned on the resonator axis between the mirrors (confocal resonator) or adjacent to one of the mirrors (White Cell). In a first embodiment, two mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. The optical gain medium may be solid-state, liquid or gaseous medium and may be pumped longitudinally or transversely. In a second embodiment, first and second mirrors face a third mirror in a White Cell configuration, and the optical gain medium is positioned at or adjacent to one of the mirrors. Defocusing means and optical gain medium cooling means are optionally provided with either embodiment, to controllably defocus the light beam, to cool the optical gain medium and to suppress thermal lensing in the gain medium.

  15. Single Degenerate Progenitors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Bours, Madelon; Toonen, Silvia; Nelemans, Gijs

    2013-01-01

    There is a general agreement that Type Ia supernovae correspond to the thermonuclear runaway of a white dwarf (WD) in a compact binary. The details of these progenitor systems are still unclear. Using the population synthesis code SeBa and several assumption for the WD retention efficiency, we estimate the delay times and supernova rates for the single degenerate scenario.

  16. Direct Conversion of Fibroblasts to Megakaryocyte Progenitors.

    PubMed

    Pulecio, Julian; Alejo-Valle, Oriol; Capellera-Garcia, Sandra; Vitaloni, Marianna; Rio, Paula; Mejía-Ramírez, Eva; Caserta, Ilaria; Bueren, Juan A; Flygare, Johan; Raya, Angel

    2016-10-11

    Current sources of platelets for transfusion are insufficient and associated with risk of alloimmunization and blood-borne infection. These limitations could be addressed by the generation of autologous megakaryocytes (MKs) derived in vitro from somatic cells with the ability to engraft and differentiate in vivo. Here, we show that overexpression of a defined set of six transcription factors efficiently converts mouse and human fibroblasts into MK-like progenitors. The transdifferentiated cells are CD41(+), display polylobulated nuclei, have ploidies higher than 4N, form MK colonies, and give rise to platelets in vitro. Moreover, transplantation of MK-like murine progenitor cells into NSG mice results in successful engraftment and further maturation in vivo. Similar results are obtained using disease-corrected fibroblasts from Fanconi anemia patients. Our results combined demonstrate that functional MK progenitors with clinical potential can be obtained in vitro, circumventing the use of hematopoietic progenitors or pluripotent stem cells.

  17. The Progenitors of Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Tout, C. A.

    2005-08-01

    Type Ia supernovae are identified as exploding degenerate stars. Their luminosity is due to the radioactive decay of about a solar mass of 56Ni through 56Co to 56Fe. As such they are a major source of iron in the inter-stellar medium. Although it is generally accepted that a degenerate carbon/oxygen white dwarf explodes as it accretes material from a binary companion, the progenitors of type Ia supernovae have not been categorically identified. We discuss the various possible progenitors in detail and indicate theoretical and observational difficulties with each possibility. It may well be that the true nature of the progenitors has not yet even been conceived of. We look at why population synthesis fails to help distinguish and consider how the advent of population nucleosynthesis may change this. When used as universal standard candles SNe Ia are calibrated with the Phillips relation between absolute luminosity and light curve shape. This must therefore be valid at all redshifts and so both the absolute luminosity and the light curve decay must only depend on a single major property of the progenitors. We report on the latest understanding of this relation and find little to justify its universality beyond the local empirical evidence. A major effect on the absolute luminosities is the neutron to proton ratio at the time of the explosion because this determines the fraction of iron group elements made up of 56Ni.

  18. Targeting human oligodendrocyte progenitors for myelin repair.

    PubMed

    Dietz, Karen C; Polanco, Jessie J; Pol, Suyog U; Sim, Fraser J

    2016-09-01

    Oligodendrocyte development has been studied for several decades, and has served as a model system for both neurodevelopmental and stem/progenitor cell biology. Until recently, the vast majority of studies have been conducted in lower species, especially those focused on rodent development and remyelination. In humans, the process of myelination requires the generation of vastly more myelinating glia, occurring over a period of years rather than weeks. Furthermore, as evidenced by the presence of chronic demyelination in a variety of human neurologic diseases, it appears likely that the mechanisms that regulate development and become dysfunctional in disease may be, in key ways, divergent across species. Improvements in isolation techniques, applied to primary human neural and oligodendrocyte progenitors from both fetal and adult brain, as well as advancements in the derivation of defined progenitors from human pluripotent stem cells, have begun to reveal the extent of both species-conserved signaling pathways and potential key differences at cellular and molecular levels. In this article, we will review the commonalities and differences in myelin development between rodents and man, describing the approaches used to study human oligodendrocyte differentiation and myelination, as well as heterogeneity within targetable progenitor pools, and discuss the advances made in determining which conserved pathways may be both modeled in rodents and translate into viable therapeutic strategies to promote myelin repair.

  19. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  20. Post pulse shutter for laser amplifier

    DOEpatents

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  1. Dual-range linearized transimpedance amplifier system

    DOEpatents

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  2. Bandwidth tunable amplifier for recording biopotential signals.

    PubMed

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer

    2010-01-01

    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  3. Calculations of superconducting parametric amplifiers performances

    NASA Astrophysics Data System (ADS)

    Goto, T.; Takeda, M.; Saito, S.; Shimakage, H.

    2017-07-01

    A superconducting parametric amplifier is an electromagnetic wave amplifier with high-quality characteristics such as a wide bandwidth, an extremely low noise, and a high dynamic range. In this paper, we report on the estimations of a YBCO superconducting parametric amplifier characteristic. The YBCO thin films were deposited on an MgO substrate by a pulsed laser deposition method. Based on the measured YBCO thin film parameters, theoretical calculations were implemented for evaluations of kinetic inductance nonlinearities and parametric gains. The nonlinearity of the YBCO thin film was estimated to be stronger than a single crystal NbTiN thin film. It is indicated that the YBCO parametric amplifier has a potential to be realized the amplifier with the high parametric gain. It is also expected that it could be operated in the range of the high frequency band, at the high temperature, and low applied current.

  4. Design and performance of the beamlet amplifiers

    SciTech Connect

    Erlandson, A.C.; Rotter, M.D.; Frank, M.D.; McCracken, R.W.

    1996-06-01

    In future laser systems, such as the National Ignition Facility (NIF), multi-segment amplifiers (MSAs) will be used to amplify the laser beam to the required levels. As a prototype of such a laser architecture, the authors have designed, built, and tested flash-lamp-pumped, Nd:Glass, Brewster-angle slab MSAs for the Beamlet project. In this article, they review the fundamentals of Nd:Glass amplifiers, describe the MSA geometry, discuss parameters that are important in amplifier design, and present our results on the characterization of the Beamlet MSAs. In particular, gain and beam steering measurements show that the Beamlet amplifiers meet all optical performance specifications and perform close to model predictions.

  5. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1986-01-01

    During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator were carried out before amplifier studies. The amplifier studies are postponed to the extended period after completing the parametric studies. In addition, the kinetic modeling of a solar-pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) a 10 W CW iodine laser pumped by a Vortek solar simulator; (2) kinetic modeling to predict the time to lasing threshold, lasing time, and energy output of solar-pumped iodine laser; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  6. Study of corneal epithelial progenitor origin and the Yap1 requirement using keratin 12 lineage tracing transgenic mice

    PubMed Central

    Kasetti, Ramesh Babu; Gaddipati, Subhash; Tian, Shifu; Xue, Lei; Kao, Winston W.-Y.; Lu, Qingxian; Li, Qiutang

    2016-01-01

    Key issues in corneal epithelium biology are the mechanism for corneal epithelium stem cells to maintain the corneal epithelial homeostasis and wound healing responses, and what are the regulatory molecular pathways involved. There are apparent discrepancies about the locations of the progenitor populations responsible for corneal epithelial self-renewal. We have developed a genetic mouse model to trace the corneal epithelial progenitor lineages during adult corneal epithelial homeostasis and wound healing response. Our data revealed that the early corneal epithelial progenitor cells expressing keratin-12 originated from limbus, and gave rise to the transit amplifying cells that migrated centripetally to differentiate into corneal epithelial cells. Our results support a model that both corneal epithelial homeostasis and wound healing are mainly maintained by the activated limbal stem cells originating form limbus, but not from the corneal basal epithelial layer. In the present study, we further demonstrated the nuclear expression of transcriptional coactivator YAP1 in the limbal and corneal basal epithelial cells and its essential role for maintaining the high proliferative potential of those corneal epithelial progenitor cells in vivo. PMID:27734924

  7. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration.

    PubMed

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante; Tuan, Rocky S; Ouyang, Hong Wei

    2016-06-01

    contribute to tissue renewal and homeostasis, the derivation, biological function, and application potential of stem/progenitor cells found in adult human articular cartilage are incompletely understood. This study reports the derivation of a population of cartilage stem/progenitor cells from fully differentiated chondrocytes under specific culture conditions, which have the potential to reassume their chondrocytic phenotype for efficient cartilage regeneration. These findings support the possibility of using in vitro amplified chondrocyte-derived progenitor cells for joint cartilage repair. ©AlphaMed Press.

  8. Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration

    PubMed Central

    Jiang, Yangzi; Cai, Youzhi; Zhang, Wei; Yin, Zi; Hu, Changchang; Tong, Tong; Lu, Ping; Zhang, Shufang; Neculai, Dante

    2016-01-01

    to contribute to tissue renewal and homeostasis, the derivation, biological function, and application potential of stem/progenitor cells found in adult human articular cartilage are incompletely understood. This study reports the derivation of a population of cartilage stem/progenitor cells from fully differentiated chondrocytes under specific culture conditions, which have the potential to reassume their chondrocytic phenotype for efficient cartilage regeneration. These findings support the possibility of using in vitro amplified chondrocyte-derived progenitor cells for joint cartilage repair. PMID:27130221

  9. SUPERNOVA REMNANT PROGENITOR MASSES IN M31

    SciTech Connect

    Jennings, Zachary G.; Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Fouesneau, Morgan; Weisz, Daniel R.; Murphy, Jeremiah W.; Dolphin, Andrew E. E-mail: adolphin@raytheon.com

    2012-12-10

    Using Hubble Space Telescope photometry, we age-date 59 supernova remnants (SNRs) in the spiral galaxy M31 and use these ages to estimate zero-age main-sequence masses (M{sub ZAMS}) for their progenitors. To accomplish this, we create color-magnitude diagrams (CMDs) and employ CMD fitting to measure the recent star formation history of the regions surrounding cataloged SNR sites. We identify any young coeval population that likely produced the progenitor star, then assign an age and uncertainty to that population. Application of stellar evolution models allows us to infer the M{sub ZAMS} from this age. Because our technique is not contingent on identification or precise location of the progenitor star, it can be applied to the location of any known SNRs. We identify significant young star formation around 53 of the 59 SNRs and assign progenitor masses to these, representing a factor of {approx}2 increase over currently measured progenitor masses. We consider the remaining six SNRs as either probable Type Ia candidates or the result of core-collapse progenitors that have escaped their birth sites. In general, the distribution of recovered progenitor masses is bottom-heavy, showing a paucity of the most massive stars. If we assume a single power-law distribution, dN/dM{proportional_to}M{sup {alpha}}, then we find a distribution that is steeper than a Salpeter initial mass function (IMF) ({alpha} = -2.35). In particular, we find values of {alpha} outside the range -2.7 {>=} {alpha} {>=} -4.4 to be inconsistent with our measured distribution at 95% confidence. If instead we assume a distribution that follows a Salpeter IMF up to some maximum mass, then we find that values of M{sub Max} > 26 are inconsistent with the measured distribution at 95% confidence. In either scenario, the data suggest that some fraction of massive stars may not explode. The result is preliminary and requires more SNRs and further analysis. In addition, we use our distribution to estimate a

  10. Origin of hemopoietic stromal progenitor cells in chimeras

    SciTech Connect

    Chertkov, J.L.; Drize, N.J.; Gurevitch, O.A.; Samoylova, R.S.

    1985-12-01

    Intravenously injected bone marrow cells do not participate in the regeneration of hemopoietic stromal progenitors in irradiated mice, nor in the curetted parts of the recipient's marrow. The hemopoietic stromal progenitors in allogeneic chimeras are of recipient origin. The adherent cell layer (ACL) of long-term cultures of allogeneic chimera bone marrow contains only recipient hemopoietic stromal progenitors. However, in ectopic hemopoietic foci produced by marrow implantation under the renal capsule and repopulated by the recipient hemopoietic cells after irradiation and reconstitution by syngeneic hemopoietic cells, the stromal progenitors were of implant donor origin, as were stromal progenitors of the ACL in long-term cultures of hemopoietic cells from ectopic foci. Our results confirm that the stromal and hemopoietic progenitors differ in origin and that hemopoietic stromal progenitors are not transplantable by the intravenous route in mice.

  11. Progress on diamond amplified photo-cathode

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Burrill, A.; Kewisch, J.; Chang, X.; Rao, T.; Smedley, J.; Wu, Q.; Muller, E.; Xin, T.

    2011-03-28

    Two years ago, we obtained an emission gain of 40 from the Diamond Amplifier Cathode (DAC) in our test system. In our current systematic study of hydrogenation, the highest gain we registered in emission scanning was 178. We proved that our treatments for improving the diamond amplifiers are reproducible. Upcoming tests planned include testing DAC in a RF cavity. Already, we have designed a system for these tests using our 112 MHz superconducting cavity, wherein we will measure DAC parameters, such as the limit, if any, on emission current density, the bunch charge, and the bunch length. The diamond-amplified photocathode, that promises to support a high average current, low emittance, and a highly stable electron beam with a long lifetime, is under development for an electron source. The diamond, functioning as a secondary emitter amplifies the primary current, with a few KeV energy, that comes from the traditional cathode. Earlier, our group recorded a maximum gain of 40 in the secondary electron emission from a diamond amplifier. In this article, we detail our optimization of the hydrogenation process for a diamond amplifier that resulted in a stable emission gain of 140. We proved that these characteristics are reproducible. We now are designing a system to test the diamond amplifier cathode using an 112MHz SRF gun to measure the limits of the emission current's density, and on the bunch charge and bunch length.

  12. Quasi-optical constrained lens amplifiers

    NASA Astrophysics Data System (ADS)

    Schoenberg, Jon S.

    1995-09-01

    A major goal in the field of quasi-optics is to increase the power available from solid state sources by combining the power of individual devices in free space, as demonstrated with grid oscillators and grid amplifiers. Grid amplifiers and most amplifier arrays require a plane wave feed, provided by a far field source or at the beam waist of a dielectric lens pair. These feed approaches add considerable loss and size, which is usually greater than the quasi-optical amplifier gain. In addition, grid amplifiers require external polarizers for stability, further increasing size and complexity. This thesis describes using constrained lens theory in the design of quasi optical amplifier arrays with a focal point feed, improving the power coupling between the feed and the amplifier for increased gain. Feed and aperture arrays of elements, input/output isolation and stability, amplifier circuitry, delay lines and bias distribution are all contained on a single planar substrate, making monolithic circuit integration possible. Measured results of X band transmission lenses and a low noise receive lens are presented, including absolute power gain up to 13 dB, noise figure as low as 1.7 dB, beam scanning to +/-30 deg, beam forming and beam switching of multiple sources, and multiple level quasi-optical power combining. The design and performance of millimeter wave power combining amplifier arrays is described, including a Ka Band hybrid array with 1 watt output power, and a V Band 36 element monolithic array with a 5 dB on/off ratio.

  13. A Low-Noise Semiconductor Optical Amplifier

    SciTech Connect

    Ratowsky, R.P.; Dijaili, S.; Kallman, J.S.; Feit, M.D.; Walker, J.

    1999-03-23

    Optical amplifiers are essential devices for optical networks, optical systems, and computer communications. These amplifiers compensate for the inevitable optical loss in long-distance propagation (>50 km) or splitting (>10x). Fiber amplifiers such as the erbium-doped fiber amplifier have revolutionized the fiber-optics industry and are enjoying widespread use. Semiconductor optical amplifiers (SOAs) are an alternative technology that complements the fiber amplifiers in cost and performance. One obstacle to the widespread use of SOAs is the severity of the inevitable noise output resulting from amplified spontaneous emission (ASE). Spectral filtering is often used to reduce ASE noise, but this constrains the source spectrally, and improvement is typically limited to about 10 dB. The extra components also add cost and complexity to the final assembly. The goal of this project was to analyze, design, and take significant steps toward the realization of an innovative, low-noise SOA based on the concept of ''distributed spatial filtering'' (DSF). In DSF, we alternate active SOA segments with passive free-space diffraction regions. Since spontaneous emission radiates equally in all directions, the free-space region lengthens the amplifier for a given length of gain region, narrowing the solid angle into which the spontaneous emission is amplified [1,2]. Our innovation is to use spatial filtering in a differential manner across many segments, thereby enhancing the effect when wave-optical effects are included [3]. The structure quickly and effectively strips the ASE into the higher-order modes, quenching the ASE gain relative to the signal.

  14. Phase noise in RF and microwave amplifiers.

    PubMed

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  15. Diode amplifier of modulated optical beam power

    SciTech Connect

    D'yachkov, N V; Bogatov, A P; Gushchik, T I; Drakin, A E

    2014-11-30

    Analytical relations are obtained between characteristics of modulated light at the output and input of an optical diode power amplifier operating in the highly saturated gain regime. It is shown that a diode amplifier may act as an amplitude-to-phase modulation converter with a rather large bandwidth (∼10 GHz). The low sensitivity of the output power of the amplifier to the input beam power and its high energy efficiency allow it to be used as a building block of a high-power multielement laser system with coherent summation of a large number of optical beams. (lasers)

  16. Self-Amplified Optical Pattern Recognizer

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1993-01-01

    Self-amplified optical pattern recognizers developed for use in recognition of patterns, in optical computing, and in optoelectronic neural networks. In recognizer, photorefractive crystal serves as medium in which one holographically records diffraction-grating filter representing pattern with which recognition sought. Apparatus "self-amplified" because signal amplified within filter to many orders of magnitude greater than in prior optical pattern recognizers. Basic principle of operation applicable to many types of correlation filters, including (but not limited to) Vander Lugt matched filters, joint-transform filters, and phase-only filters.

  17. High Efficiency Microwave Power Amplifier (HEMPA) Design

    NASA Technical Reports Server (NTRS)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  18. Quantum coherence effects in a Raman amplifier

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond; Harun, S. W.; Ahmad, H.

    2011-01-01

    We have studied optical pulse propagation in a Raman fiber amplifier doped with a three-level medium and driven by a control laser pulse. We analyze the spatial-temporal dynamics of pulse propagation for different atomic initial conditions. The propagation of an optical pulse through the amplifier can be sustained by a control laser that induces transparency via quantum coherence, which is useful for extending the distance between optical repeaters. Under certain conditions, amplification is achieved without population inversion. The results could be useful for laser control of optical pulses in amplifiers and waveguides.

  19. Achieving and maintaining cleanliness in NIF amplifiers

    SciTech Connect

    Burnham, A. K.; Horvath, J. A.; Letts, S. A.; Menapace, J. A.; Stowers, I. F.

    1998-07-28

    Cleanliness measurements made on AMPLAB prototype National Ignition Facility (NIF) laser amplifiers during assembly, cassette transfer, and amplifier operation are summarized. These measurements include particle counts from surface cleanliness assessments using filter swipe techniques and from airborne particle monitoring. Results are compared with similar measurements made on the Beamlet and Nova lasers and in flashlamp test fixtures. Observations of Class 100,000 aerosols after flashlamp firings are discussed. Comparisons are made between typical damage densities on laser amplifier optics from Novette, NOVA, Beamlet, and AMPLAB.

  20. The 60 GHz solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Mcclymonds, J.

    1991-01-01

    A new amplifier architecture was developed during this contract that is superior to any other solid state approach. The amplifier produced 6 watts with 4 percent efficiency over a 2 GHz band at 61.5 GHz. The unit was 7 x 9 x 3 inches in size, 5.5 pounds in weight, and the conduction cooling through the baseplate is suitable for use in space. The amplifier used high efficiency GaAs IMPATT diodes which were mounted in 1-diode circuits, called modules. Eighteen modules were used in the design, and power combining was accomplished with a proprietary passive component called a combiner plate.

  1. Galactic constraints on supernova progenitor models

    NASA Astrophysics Data System (ADS)

    Acharova, I. A.; Gibson, B. K.; Mishurov, Yu. N.; Kovtyukh, V. V.

    2013-09-01

    Aims: To estimate the mean masses of oxygen and iron ejected per each type of supernovae (SNe) event from observations of the elemental abundance patterns in the Galactic disk and constrain the relevant SNe progenitor models. Methods: We undertake a statistical analysis of the radial abundance distributions in the Galactic disk within a theoretical framework for Galactic chemical evolution which incorporates the influence of spiral arms. This framework has been shown to recover the non-linear behaviour in radial gradients, the mean masses of oxygen and iron ejected during SNe explosions to be estimated, and constraints to be placed on SNe progenitor models. Results: (i) The mean mass of oxygen ejected per core-collapse SNe (CC SNe) event (which are concentrated within spiral arms) is ~0.27 M⊙; (ii) the mean mass of iron ejected by tardy Type Ia SNe (SNeIa, whose progenitors are older/longer-lived stars with ages ≳100 Myr and up to several Gyr, which do not concentrate within spiral arms) is ~0.58 M⊙; (iii) the upper mass of iron ejected by prompt SNeIa (SNe whose progenitors are younger/shorter-lived stars with ages ≲100 Myr, which are concentrated within spiral arms) is ≤0.23 M⊙ per event; (iv) the corresponding mean mass of iron produced by CC SNe is ≤0.04 M⊙ per event; (v) short-lived SNe (core-collapse or prompt SNeIa) supply ~85% of the Galactic disk's iron. Conclusions: The inferred low mean mass of oxygen ejected per CC SNe event implies a low upper mass limit for the corresponding progenitors of ~23 M⊙, otherwise the Galactic disk would be overabundant in oxygen. This inference is the consequence of the non-linear dependence between the upper limit of the progenitor initial mass and the mean mass of oxygen ejected per CC SNe explosion. The low mean mass of iron ejected by prompt SNeIa, relative to the mass produced by tardy SNeIa (~2.5 times lower), prejudices the idea that both sub-populations of SNeIa have the same physical nature. We

  2. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells

    PubMed Central

    Lee, Soo Ok; Ma, Zhifang; Yeh, Chiuan-Ren; Luo, Jie; Lin, Tzu-Hua; Lai, Kuo-Pao; Yamashita, Shinichi; Liang, Liang; Tian, Jing; Li, Lei; Jiang, Qi; Huang, Chiung-Kuei; Niu, Yuanjie; Yeh, Shuyuan; Chang, Chawnshang

    2013-01-01

    The androgen deprivation therapy (ADT) to systematically suppress/reduce androgens binding to the androgen receptor (AR) has been the standard therapy for prostate cancer (PCa); yet, most of ADT eventually fails leading to the recurrence of castration resistant PCa. Here, we found that the PCa patients who received ADT had increased PCa stem/progenitor cell population. The addition of the anti-androgen, Casodex®, or AR-siRNA in various PCa cells led to increased stem/progenitor cells, whereas, in contrast, the addition of functional AR led to decreased stem/progenitor cell population but increased non-stem/progenitor cell population, suggesting that AR functions differentially in PCa stem/progenitor vs. non-stem/progenitor cells. Therefore, the current ADT might result in an undesired expansion of PCa stem/progenitor cell population, which explains why this therapy fails. Using various human PCa cell lines and three different mouse models, we concluded that targeting PCa non-stem/progenitor cells with AR degradation enhancer ASC-J9® and targeting PCa stem/progenitor cells with 5-azathioprine and γ-tocotrienol resulted in a significant suppression of the tumors at the castration resistant stage. This suggests that a combinational therapy that simultaneously targets both stem/progenitor and non-stem/progenitor cells will lead to better therapeutic efficacy and may become a new therapy to battle the PCa before and after castration resistant stages. PMID:22831834

  3. Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors.

    PubMed

    Ohmori, Tomoko; Tanigawa, Shunsuke; Kaku, Yusuke; Fujimura, Sayoko; Nishinakamura, Ryuichi

    2015-10-29

    The mammalian kidney develops from reciprocal interactions between the metanephric mesenchyme and ureteric bud, the former of which contains nephron progenitors. The third lineage, the stroma, fills up the interstitial space and is derived from distinct progenitors that express the transcription factor Foxd1. We showed previously that deletion of the nuclear factor Sall1 in nephron progenitors leads to their depletion in mice. However, Sall1 is expressed not only in nephron progenitors but also in stromal progenitors. Here we report that specific Sall1 deletion in stromal progenitors leads to aberrant expansion of nephron progenitors, which is in sharp contrast with a nephron progenitor-specific deletion. The mutant mice also exhibited cystic kidneys after birth and died before adulthood. We found that Decorin, which inhibits Bmp-mediated nephron differentiation, was upregulated in the mutant stroma. In contrast, the expression of Fat4, which restricts nephron progenitor expansion, was reduced mildly. Furthermore, the Sall1 protein binds to many stroma-related gene loci, including Decorin and Fat4. Thus, the expression of Sall1 in stromal progenitors restricts the excessive expansion of nephron progenitors in a non-cell autonomous manner, and Sall1-mediated regulation of Decorin and Fat4 might at least partially underlie the pathogenesis.

  4. Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors

    PubMed Central

    Ohmori, Tomoko; Tanigawa, Shunsuke; Kaku, Yusuke; Fujimura, Sayoko; Nishinakamura, Ryuichi

    2015-01-01

    The mammalian kidney develops from reciprocal interactions between the metanephric mesenchyme and ureteric bud, the former of which contains nephron progenitors. The third lineage, the stroma, fills up the interstitial space and is derived from distinct progenitors that express the transcription factor Foxd1. We showed previously that deletion of the nuclear factor Sall1 in nephron progenitors leads to their depletion in mice. However, Sall1 is expressed not only in nephron progenitors but also in stromal progenitors. Here we report that specific Sall1 deletion in stromal progenitors leads to aberrant expansion of nephron progenitors, which is in sharp contrast with a nephron progenitor-specific deletion. The mutant mice also exhibited cystic kidneys after birth and died before adulthood. We found that Decorin, which inhibits Bmp-mediated nephron differentiation, was upregulated in the mutant stroma. In contrast, the expression of Fat4, which restricts nephron progenitor expansion, was reduced mildly. Furthermore, the Sall1 protein binds to many stroma-related gene loci, including Decorin and Fat4. Thus, the expression of Sall1 in stromal progenitors restricts the excessive expansion of nephron progenitors in a non-cell autonomous manner, and Sall1-mediated regulation of Decorin and Fat4 might at least partially underlie the pathogenesis. PMID:26511275

  5. Multi-pass light amplifier

    NASA Technical Reports Server (NTRS)

    Plaessmann, Henry (Inventor); Grossman, William M. (Inventor); Olson, Todd E. (Inventor)

    1996-01-01

    A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A resonator or a White Cell cavity is provided, including two or more mirrors (planar or curvilinearly shaped) facing each other along a resonator axis and an optical gain medium positioned on a resonator axis between the mirrors or adjacent to one of the mirrors. In a first embodiment, two curvilinear mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. A second embodiment uses two curvilinear mirrors and one planar mirror, with a gain medium positioned in the optical path between each curvilinear mirror and the planar mirror. A third embodiment uses two curvilinear mirrors and two planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses a curvilinear mirror and three planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses four planar mirrors and a focusing lens system, with a gain medium positioned between the four mirrors. A fifth embodiment uses first and second planar mirrors, a focusing lens system and a third mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the third mirror. A sixth embodiment uses two planar mirrors and a curvilinear mirror and a fourth mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the fourth mirror. In a seventh embodiment, first and second mirrors face a third

  6. Generating Entangled State with Parametric Amplifier

    NASA Astrophysics Data System (ADS)

    Huang, Jian

    2017-04-01

    We present a scheme for generating entangled state with parametric amplifier with different initial states. Its shown that the entangled state is always generated except some special cases by adjusting the coupling strength and the total number of photons.

  7. Operational Amplifier Experiments for the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Braun, Robert D.

    1996-01-01

    Provides details of experiments that deal with the use of operational amplifiers and are part of a course in instrumental analysis. These experiments are performed after the completion of a set of electricity and electronics experiments. (DDR)

  8. Noise in phase-preserving linear amplifiers

    SciTech Connect

    Pandey, Shashank; Jiang, Zhang; Combes, Joshua; Caves, Carlton M.

    2014-12-04

    The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state σ for the ancillary mode; σ determines the properties of the added noise.

  9. Cryogenic Amplifier Based Receivers at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Reck, Theodore and; Schlecht, Erich; Lin, Robert; Deal, William

    2012-01-01

    The operating frequency of InP high electron mobility transistor (HEMT) based amplifiers has moved well in the submillimeter-wave frequencies over the last couple of years. Working amplifiers with usable gain in waveguide packages has been reported beyond 700 GHz. When cooled cryogenically, they have shown substantial improvement in their noise temperature. This has opened up the real possibility of cryogenic amplifier based heterodyne receivers at submillimeter wavelengths for ground-based, air-borne, and space-based instruments for astrophysics, planetary, and Earth science applications. This paper provides an overview of the science applications at submillimeter wavelengths that will benefit from this technology. It also describes the current state of the InP HEMT based cryogenic amplifier receivers at submillimeter wavelengths.

  10. High bandwidth differential amplifier for shock experimentsa)

    NASA Astrophysics Data System (ADS)

    Ross, P. W.; Tran, V.; Chau, R.

    2012-10-01

    We developed a high bandwidth differential amplifier for gas gun shock experiments of low-resistance metals. The circuit has a bandwidth up to 1 GHz, and is capable of measuring signals of ≤1.5 V with a common mode rejection of 250 V. Conductivity measurements of gas gun targets are measured by flowing high currents through the targets. The voltage is measured across the target using a technique similar to a four-point probe. Because of the design of the current source and load, the target voltage is ˜250 V relative to ground. Since the expected voltage change in the target is <1 V, the differential amplifier must have a large common mode rejection. Various amplifying designs are shown, although the increased amplification decreases bandwidth. Bench tests show that the amplifier can withstand significant common mode dc voltage and measure 10 ns, and 50 mV signals.

  11. How to characterize the nonlinear amplifier?

    NASA Technical Reports Server (NTRS)

    Kallistratova, Dmitri Kouznetsov; Cotera, Carlos Flores

    1994-01-01

    The conception of the amplification of the coherent field is formulated. The definition of the coefficient of the amplification as the relation between the mean value of the field at the output to the value at the input and the definition of the noise as the difference between the number of photons in the output mode and square of the modulus of the mean value of the output amplitude are considered. Using a simple example it is shown that by these definitions the noise of the nonlinear amplifier may be less than the noise of the ideal linear amplifier of the same amplification coefficient. Proposals to search another definition of basic parameters of the nonlinear amplifiers are discussed. This definition should enable us to formulate the universal fundamental lower limit of the noise which should be valid for linear quantum amplifiers as for nonlinear ones.

  12. Tester periodically registers dc amplifier characteristics

    NASA Technical Reports Server (NTRS)

    Cree, D.; Wenzel, G. E.

    1966-01-01

    Motor-driven switcher-recorder periodically registers the zero drift and gain drift signals of a dc amplifier subjected to changes in environment. A time coding method is used since several measurements are shared on a single recorder trace.

  13. Signal amplifier-shapers for multiwire detectors

    NASA Astrophysics Data System (ADS)

    Bushnin, Yu. B.; Konoplyannikov, A. K.

    Circuit diagram and specification of 8 and 16 channel modules of amplifier-shapers are described for multiwire detectors. The modules have input impedance 200 Ohm sensitivity threshold 1.5 micro-A, output pulse width 80 nsec.

  14. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  15. Operational Amplifier Experiments for the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Braun, Robert D.

    1996-01-01

    Provides details of experiments that deal with the use of operational amplifiers and are part of a course in instrumental analysis. These experiments are performed after the completion of a set of electricity and electronics experiments. (DDR)

  16. Defibrillator-embedded rapid recovery electrocardiogram amplifier.

    PubMed

    Neycheva, T; Krasteva, V

    2003-01-01

    One of the most important performances of the defibrillator-embedded amplifier-monitor-recorder tract, connected to defibrillator electrodes, is its rapid recovery after the application of the shock pulse. Practically near-immediate restoration of the signal trace is mandatory for studies of post-shock effects on the myocardium. Automatic analysis of the electrocardiogram signal in public-access defibrillation, aiming for about 100% correct recognition of shockable and non-shockable rhythms, now requires fast amplifier settling, as the decision time should not exceed 10-20 s. Two circuits of post-shock amplifier transient suppressors were developed with non-linear feedback, resulting in second-order high-pass filtering, with gradual return to normally accepted first-order response. Simulation and testing in real conditions resulted in recovery periods in the range of 1-2 s for an amplifier tract of 1-30 Hz bandwidth, depending on the pulse waveform and electrode type.

  17. Noninvasive Imaging of Administered Progenitor Cells

    SciTech Connect

    Steven R Bergmann, M.D., Ph.D.

    2012-12-03

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusion and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a 90

  18. Resident mesenchymal progenitors of articular cartilage.

    PubMed

    Candela, Maria Elena; Yasuhara, Rika; Iwamoto, Masahiro; Enomoto-Iwamoto, Motomi

    2014-10-01

    Articular cartilage has poor capacity of self-renewal and repair. Insufficient number and activity of resident mesenchymal (connective tissue) progenitors is likely one of the underlying reasons. Chondroprogenitors reside not only in the superficial zone of articular cartilage but also in other zones of articular cartilage and in the neighboring tissues, including perichondrium (groove of Ranvier), synovium and fat pad. These cells may respond to injury and contribute to articular cartilage healing. In addition, marrow stromal cells can migrate through subchondral bone when articular cartilage is damaged. We should develop drugs and methods that correctly stimulate resident progenitors for improvement of repair and inhibition of degenerative changes in articular cartilage. Copyright © 2014. Published by Elsevier B.V.

  19. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  20. Interneuron Progenitor Transplantation to Treat CNS Dysfunction

    PubMed Central

    Chohan, Muhammad O.; Moore, Holly

    2016-01-01

    Due to the inadequacy of endogenous repair mechanisms diseases of the nervous system remain a major challenge to scientists and clinicians. Stem cell based therapy is an exciting and viable strategy that has been shown to ameliorate or even reverse symptoms of CNS dysfunction in preclinical animal models. Of particular importance has been the use of GABAergic interneuron progenitors as a therapeutic strategy. Born in the neurogenic niches of the ventral telencephalon, interneuron progenitors retain their unique capacity to disperse, integrate and induce plasticity in adult host circuitries following transplantation. Here we discuss the potential of interneuron based transplantation strategies as it relates to CNS disease therapeutics. We also discuss mechanisms underlying their therapeutic efficacy and some of the challenges that face the field. PMID:27582692

  1. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  2. Chondrogenic Progenitor Cells Respond to Cartilage Injury

    PubMed Central

    Choe, Hyeonghun; Zheng, Hongjun; Yu, Yin; Jang, Keewoong; Walter, Morgan W.; Lehman, Abigail D.; Ding, Lei; Buckwalter, Joseph A.; Martin, James A.

    2014-01-01

    Objective Hypocellularity resulting from chondrocyte death in the aftermath of mechanical injury is thought to contribute to posttraumatic osteoarthritis. However, we observed that nonviable areas in cartilage injured by blunt impact were repopulated within 7–14 days by cells that appeared to migrate from the surrounding matrix. The aim of this study was to assess our hypothesis that the migrating cell population included chondrogenic progenitor cells that were drawn to injured cartilage by alarmins. Methods Osteochondral explants obtained from mature cattle were injured by blunt impact or scratching, resulting in localized chondrocyte death. Injured sites were serially imaged by confocal microscopy, and migrating cells were evaluated for chondrogenic progenitor characteristics. Chemotaxis assays were used to measure the responses to chemokines, injury-conditioned medium, dead cell debris, and high mobility group box chromosomal protein 1 (HMGB-1). Results Migrating cells were highly clonogenic and multipotent and expressed markers associated with chondrogenic progenitor cells. Compared with chondrocytes, these cells overexpressed genes involved in proliferation and migration and underexpressed cartilage matrix genes. They were more active than chondrocytes in chemotaxis assays and responded to cell lysates, conditioned medium, and HMGB-1. Glycyrrhizin, a chelator of HMGB-1 and a blocking antibody to receptor for advanced glycation end products (RAGE), inhibited responses to cell debris and conditioned medium and reduced the numbers of migrating cells on injured explants. Conclusion Injuries that caused chondrocyte death stimulated the emergence and homing of chondrogenic progenitor cells, in part via HMGB-1 release and RAGE-mediated chemotaxis. Their repopulation of the matrix could promote the repair of chondral damage that might otherwise contribute to progressive cartilage loss. PMID:22777600

  3. Endothelial progenitor cell biology in ankylosing spondylitis.

    PubMed

    Verma, Inderjeet; Syngle, Ashit; Krishan, Pawan

    2015-03-01

    Endothelial progenitor cells (EPCs) are unique populations which have reparative potential in overcoming endothelial damage and reducing cardiovascular risk. Patients with ankylosing spondylitis (AS) have increased risk of cardiovascular morbidity and mortality. The aim of this study was to investigate the endothelial progenitor cell population in AS patients and its potential relationships with disease variables. Endothelial progenitor cells were measured in peripheral blood samples from 20 AS and 20 healthy controls by flow cytometry on the basis of CD34 and CD133 expression. Disease activity was evaluated by using Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Functional ability was monitored by using Bath Ankylosing Spondylitis Functional Index (BASFI). EPCs were depleted in AS patients as compared to healthy controls (CD34(+) /CD133(+) : 0.027 ± 0.010% vs. 0.044 ± 0.011%, P < 0.001). EPC depletions were significantly associated with disease duration (r = -0.52, P = 0.01), BASDAI (r = -0.45, P = 0.04) and C-reactive protein (r = -0.5, P = 0.01). This is the first study to demonstrate endothelial progenitor cell depletion in AS patients. EPC depletions inversely correlate with disease duration, disease activity and inflammation, suggesting the pivotal role of inflammation in depletion of EPCs. EPC would possibly also serve as a therapeutic target for preventing cardiovascular disease in AS. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  4. Amplifiers of free-space terahertz radiation

    DOE PAGES

    Kao, Tsung -Yu; Reno, John L.; Hu, Qing

    2017-07-20

    Here, amplifiers of free-space radiation are quite useful, especially in spectral ranges where the radiation is weak and sensitive detectors are hard to come by. A preamplification of the said weak radiation signal will significantly boost the S/N ratio in remote sensing and imaging applications. This is especially true in the terahertz (THz) range where the radiation signal is often weak and sensitive detectors require the cooling of liquid helium. Although quantum cascade structures are promising for providing amplification in the terahertz band from 2 to 5 THz, a THz amplifier has been demonstrated in an integrated form, in whichmore » the source is in close proximity to the amplifier, which will not be suitable for the aforementioned applications. Here we demonstrate what we believe is a novel approach to achieve significant amplification of free-space THz radiation using an array of short-cavity, surface-emitting THz quantum cascade lasers operating marginally below the lasing threshold as a Fabry–Perot amplifier. This free-space “slow light” amplifier provides 7.5 dB(×5.6) overall gain at ~3.1 THz. The proposed devices are suitable for low-noise pre-amplifiers in heterodyne detection systems and for THz imaging systems. With the sub-wavelength pixel size of the array, the reflective amplifier can also be categorized as active metasurface, with the ability to amplify or absorb specific frequency components of the input THz signal.« less

  5. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon; Stock, Larry V.

    1989-01-01

    This semiannual progress report covers the period from September 1, 1988 to February 28, 1989 under NASA grant NAG-1-441 entitled, Direct Solar-Pumped Iodine Laser Amplifier. During this period, the research effort was concentrated on the solar pumped master oscillator power amplifier (MOPA) system using n-C3F7I. In the experimental work, the amplification measurement was conducted to identify the optimum conditions for amplification of the center's Vortek solar simulator pumped iodine laser amplifier. A modeling effort was also pursued to explain the experimental results in the theoretical work. The amplification measurement of the solar simulator pumped iodine laser amplifier is the first amplification experiment on the continuously pumped amplifier. The small signal amplification of 5 was achieved for the triple pass geometry of the 15 cm long solar simulator pumped amplifier at the n-C3F7I pressure of 20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 solar constants. The XeCl laser pumped iodine laser oscillator, which was developed in the previous research, was employed as the master oscillator for the amplification measurement. In the theoretical work, the rate equations of the amplifier was established and the small signal amplification was calculated for the solar simulator pumped iodine laser amplifier. The amplification calculated from the kinetic equations with the previously measured rate coefficients reveals very large disagreement with experimental measurement. Moreover, the optimum condition predicted by the kinetic equation is quite discrepant with that measured by experiment. This fact indicates the necessity of study in the measurement of rate coefficients of the continuously pumped iodine laser system.

  6. MMIC Amplifiers for 90 to 130 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Pukala, David; Peralta, Alejandro; Bryerton, Eric; Morgan, Matt; Boyd, T.; Hu, Ming; Schmitz, Adele

    2007-01-01

    This brief describes two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 - 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

  7. Efficient Power Amplifier for Motor Control

    NASA Technical Reports Server (NTRS)

    Brown, R. J.

    1986-01-01

    Pulse-width-modulated amplifier supplies high current as efficiently as low current needed for starting and running motor. Key to efficiency of motor-control amplifier is V-channel metal-oxide/semiconductor transistor Q1. Device has low saturation resistance. However, has large gate input capacitance and small margin between its turn-on voltage and maximum allowable gate-to-source voltage. Circuits for output stages overcome limitations of VMOS device.

  8. Bolometers - Ultimate sensitivity, optimization, and amplifier coupling

    NASA Technical Reports Server (NTRS)

    Mather, J. C.

    1984-01-01

    Theoretical expressions for Johnson noise and thermal noise in bolometers are considered, and optimization with respect to thermal conductivity and bias power is performed. Numerical approximations are given for the ultimate NEP of bolometers as a function of material parameters and compared with photon noise including photon correlations. A resonating capacitor is shown to improve the coupling to an amplifier, so that the amplifier need not limit performance even for very low temperature bolometers.

  9. EVOLUTION OF PROGENITORS FOR ELECTRON CAPTURE SUPERNOVAE

    SciTech Connect

    Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi E-mail: umeda@astron.s.u-tokyo.ac.jp

    2013-07-01

    We provide progenitor models for electron capture supernovae (ECSNe) with detailed evolutionary calculation. We include minor electron capture nuclei using a large nuclear reaction network with updated reaction rates. For electron capture, the Coulomb correction of rates is treated and the contribution from neutron-rich isotopes is taken into account in each nuclear statistical equilibrium (NSE) composition. We calculate the evolution of the most massive super asymptotic giant branch stars and show that these stars undergo off-center carbon burning and form ONe cores at the center. These cores become heavier up to the critical mass of 1.367 M{sub Sun} and keep contracting even after the initiation of O+Ne deflagration. Inclusion of minor electron capture nuclei causes convective URCA cooling during the contraction phase, but the effect on the progenitor evolution is small. On the other hand, electron capture by neutron-rich isotopes in the NSE region has a more significant effect. We discuss the uniqueness of the critical core mass for ECSNe and the effect of wind mass loss on the plausibility of our models for ECSN progenitors.

  10. Endothelial Progenitors: A Consensus Statement on Nomenclature.

    PubMed

    Medina, Reinhold J; Barber, Chad L; Sabatier, Florence; Dignat-George, Francoise; Melero-Martin, Juan M; Khosrotehrani, Kiarash; Ohneda, Osamu; Randi, Anna M; Chan, Jerry K Y; Yamaguchi, Teruhide; Van Hinsbergh, Victor W M; Yoder, Mervin C; Stitt, Alan W

    2017-03-10

    Endothelial progenitor cell (EPC) nomenclature remains ambiguous and there is a general lack of concordance in the stem cell field with many distinct cell subtypes continually grouped under the term "EPC." It would be highly advantageous to agree standards to confirm an endothelial progenitor phenotype and this should include detailed immunophenotyping, potency assays, and clear separation from hematopoietic angiogenic cells which are not endothelial progenitors. In this review, we seek to discourage the indiscriminate use of "EPCs," and instead propose precise terminology based on defining cellular phenotype and function. Endothelial colony forming cells and myeloid angiogenic cells are examples of two distinct and well-defined cell types that have been considered EPCs because they both promote vascular repair, albeit by completely different mechanisms of action. It is acknowledged that scientific nomenclature should be a dynamic process driven by technological and conceptual advances; ergo the ongoing "EPC" nomenclature ought not to be permanent and should become more precise in the light of strong scientific evidence. This is especially important as these cells become recognized for their role in vascular repair in health and disease; and, in some cases, progress toward use in cell therapy. © Stem Cells Translational Medicine 2017.

  11. Transient nuclear Prospero induces neural progenitor quiescence

    PubMed Central

    Lai, Sen-Lin; Doe, Chris Q

    2014-01-01

    Stem cells can self-renew, differentiate, or enter quiescence. Understanding how stem cells switch between these states is highly relevant for stem cell-based therapeutics. Drosophila neural progenitors (neuroblasts) have been an excellent model for studying self-renewal and differentiation, but quiescence remains poorly understood. In this study, we show that when neuroblasts enter quiescence, the differentiation factor Prospero is transiently detected in the neuroblast nucleus, followed by the establishment of a unique molecular profile lacking most progenitor and differentiation markers. The pulse of low level nuclear Prospero precedes entry into neuroblast quiescence even when the timing of quiescence is advanced or delayed by changing temporal identity factors. Furthermore, loss of Prospero prevents entry into quiescence, whereas a pulse of low level nuclear Prospero can drive proliferating larval neuroblasts into quiescence. We propose that Prospero levels distinguish three progenitor fates: absent for self-renewal, low for quiescence, and high for differentiation. DOI: http://dx.doi.org/10.7554/eLife.03363.001 PMID:25354199

  12. Some Notes on Wideband Feedback Amplifiers

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-03-16

    The extension of the passband of wideband amplifiers is a highly important problem to the designer of electronic circuits. Throughout the electronics industry and in many research programs in physics and allied fields where extensive use is made of video amplifiers, the foremost requirement is a passband of maximum width. This is necessary if it is desired to achieve a more faithful reproduction of transient wave forms, a better time resolution in physical measurements, or perhaps just a wider band gain-frequency response to sine wave signals. The art of electronics is continually faced with this omnipresent amplifier problem. In particular, the instrumentation techniques of nuclear physics require amplifiers with short rise times, a high degree of gain stability, and a linear response to high signal levels. While the distributed amplifier may solve the problems of those seeking only a wide passband, the requirements of stability and linearity necessitate using feedback circuits. This paper considers feedback amplifiers from the standpoint of high-frequency performance. The circuit conditions for optimum steady-state (sinusoidal) and transient response are derived and practical circuits (both interstage and output) are presented which fulfill these conditions. In general, the results obtained may be applied to the low-frequency end.

  13. V-band IMPATT power amplifier

    NASA Technical Reports Server (NTRS)

    Schell, S. W.

    1985-01-01

    This program is the result of the continuing demand and future requirement for a high data rate 60-GHz communications link. A reliable solid-state transmitter which delivers the necessary power over a wide bandwidth using the present IMPATT diode technology required the development of combining techniques. The development of a 60-GHz IMPATT power combiner amplifier is detailed. The results form a basis from which future wideband, high-power IMPATT amplifiers may be developed. As a result, several state-of-the-art advancements in millimeter-wave components technology were achieved. Specific achievements for the amplifier integration were: development of a nonresonant divider/combiner circuit; reproducible multiple junction circulator assemblies; and reliable high power 60-GHz IMPATT diodes. The various design approaches and tradeoffs which lead to the final amplifier configuration are discussed. A detailed circuit design is presented for the various amplifier components, and the conical line combiner, radial line combiner, and circulator development are discussed. The performance of the amplifier, the overall achievement of the program, the implications of the results, and an assessment of future development needs and recommendations are examined.

  14. Multiple excitation regenerative amplifier inertial confinement system

    DOEpatents

    George, Victor E. [Livermore, CA; Haas, Roger A. [Pleasanton, CA; Krupke, William F. [Pleasanton, CA; Schlitt, Leland G. [Livermore, CA

    1980-05-27

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation.

  15. Multiple excitation regenerative amplifier inertial confinement system

    DOEpatents

    George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.

    1980-05-27

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation. 11 figs.

  16. Low Noise Optically Pre-amplified Lightwave Receivers and Other Applications of Fiber Optic Parametric Amplifiers

    DTIC Science & Technology

    2010-07-27

    noise performance, optical gain bandwidth, and power efficiency. An interesting alternative to the mature Erbium-doped fiber amplifier ( EDFA ) is the...fibers (HNLF) and high power booster EDFAs . The FOPA can provide a very wide gain bandwidth [2], very high gain (70 dB was demonstrated in [3]), and...amplified spontaneous emission (ASE) noise in EDFAs is also generated. It is sometimes referred to as amplified quantum noise. Maximum gain (at the gain

  17. Adrenomedullary progenitor cells: Isolation and characterization of a multi-potent progenitor cell population.

    PubMed

    Vukicevic, Vladimir; Rubin de Celis, Maria Fernandez; Pellegata, Natalia S; Bornstein, Stefan R; Androutsellis-Theotokis, Andreas; Ehrhart-Bornstein, Monika

    2015-06-15

    The adrenal is a highly plastic organ with the ability to adjust to physiological needs by adapting hormone production but also by generating and regenerating both adrenocortical and adrenomedullary tissue. It is now apparent that many adult tissues maintain stem and progenitor cells that contribute to their maintenance and adaptation. Research from the last years has proven the existence of stem and progenitor cells also in the adult adrenal medulla throughout life. These cells maintain some neural crest properties and have the potential to differentiate to the endocrine and neural lineages. In this article, we discuss the evidence for the existence of adrenomedullary multi potent progenitor cells, their isolation and characterization, their differentiation potential as well as their clinical potential in transplantation therapies but also in pathophysiology.

  18. Real Time Calibration Method for Signal Conditioning Amplifiers

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Mata, Carlos T. (Inventor); Eckhoff, Anthony (Inventor); Perotti, Jose (Inventor); Lucena, Angel (Inventor)

    2004-01-01

    A signal conditioning amplifier receives an input signal from an input such as a transducer. The signal is amplified and processed through an analog to digital converter and sent to a processor. The processor estimates the input signal provided by the transducer to the amplifier via a multiplexer. The estimated input signal is provided as a calibration voltage to the amplifier immediately following the receipt of the amplified input signal. The calibration voltage is amplified by the amplifier and provided to the processor as an amplified calibration voltage. The amplified calibration voltage is compared to the amplified input signal, and if a significant error exists, the gain and/or offset of the amplifier may be adjusted as necessary.

  19. Real Time Calibration Method for Signal Conditioning Amplifiers

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Mata, Carlos T. (Inventor); Eckhoff, Anthony (Inventor); Perotti, Jose (Inventor); Lucena, Angel (Inventor)

    2004-01-01

    A signal conditioning amplifier receives an input signal from an input such as a transducer. The signal is amplified and processed through an analog to digital converter and sent to a processor. The processor estimates the input signal provided by the transducer to the amplifier via a multiplexer. The estimated input signal is provided as a calibration voltage to the amplifier immediately following the receipt of the amplified input signal. The calibration voltage is amplified by the amplifier and provided to the processor as an amplified calibration voltage. The amplified calibration voltage is compared to the amplified input signal, and if a significant error exists, the gain and/or offset of the amplifier may be adjusted as necessary.

  20. Regulation of the nascent brain vascular network by neural progenitors.

    PubMed

    Santhosh, Devi; Huang, Zhen

    2015-11-01

    Neural progenitors are central players in the development of the brain neural circuitry. They not only produce the diverse neuronal and glial cell types in the brain, but also guide their migration in this process. Recent evidence indicates that neural progenitors also play a critical role in the development of the brain vascular network. At an early stage, neural progenitors have been found to facilitate the ingression of blood vessels from outside the neural tube, through VEGF and canonical Wnt signaling. Subsequently, neural progenitors directly communicate with endothelial cells to stabilize nascent brain vessels, in part through down-regulating Wnt pathway activity. Furthermore, neural progenitors promote nascent brain vessel integrity, through integrin αvβ8-dependent TGFβ signaling. In this review, we will discuss the evidence for, as well as questions that remain, regarding these novel roles of neural progenitors and the underlying mechanisms in their regulation of the nascent brain vascular network.

  1. High-Efficiency Microwave Power Amplifier

    NASA Technical Reports Server (NTRS)

    Sims, Williams H.

    2005-01-01

    A high-efficiency power amplifier that operates in the S band (frequencies of the order of a few gigahertz) utilizes transistors operating under class-D bias and excitation conditions. Class-D operation has been utilized at lower frequencies, but, until now, has not been exploited in the S band. Nominally, in class D operation, a transistor is switched rapidly between "on" and "off" states so that at any given instant, it sustains either high current or high voltage, but not both at the same time. In the ideal case of zero "on" resistance, infinite "off" resistance, zero inductance and capacitance, and perfect switching, the output signal would be a perfect square wave. Relative to the traditional classes A, B, and C of amplifier operation, class D offers the potential to achieve greater power efficiency. In addition, relative to class-A amplifiers, class-D amplifiers are less likely to go into oscillation. In order to design this amplifier, it was necessary to derive mathematical models of microwave power transistors for incorporation into a larger mathematical model for computational simulation of the operation of a class-D microwave amplifier. The design incorporates state-of-the-art switching techniques applicable only in the microwave frequency range. Another major novel feature is a transmission-line power splitter/combiner designed with the help of phasing techniques to enable an approximation of a square-wave signal (which is inherently a wideband signal) to propagate through what would, if designed in a more traditional manner, behave as a more severely band-limited device (see figure). The amplifier includes an input, a driver, and a final stage. Each stage contains a pair of GaAs-based field-effect transistors biased in class D. The input signal can range from -10 to +10 dBm into a 50-ohm load. The table summarizes the performances of the three stages

  2. Transfusion Support for ABO-Incompatible Progenitor Cell Transplantation

    PubMed Central

    Kopko, Patricia M.

    2016-01-01

    Summary ABO-incompatible transplants comprise up to 50% of allogeneic progenitor cell transplants. Major, minor and bidirectional ABO-incompatible transplants each have unique complications that can occur, including hemolysis at the time of progenitor cell infusion, hemolysis during donor engraftment, passenger lymphocyte syndrome, delayed red blood cell engraftment, and pure red cell aplasia. Appropriate transfusion support during the different phases of the allogeneic progenitor cell transplant process is an important part of ABO-incompatible transplantation. PMID:27022318

  3. Nutritional regulation of stem and progenitor cells in Drosophila

    PubMed Central

    Shim, Jiwon; Gururaja-Rao, Shubha; Banerjee, Utpal

    2013-01-01

    Stem cells and their progenitors are maintained within a microenvironment, termed the niche, through local cell-cell communication. Systemic signals originating outside the niche also affect stem cell and progenitor behavior. This review summarizes studies that pertain to nutritional effects on stem and progenitor cell maintenance and proliferation in Drosophila. Multiple tissue types are discussed that utilize the insulin-related signaling pathway to convey nutritional information either directly to these progenitors or via other cell types within the niche. The concept of systemic control of these cell types is not limited to Drosophila and may be functional in vertebrate systems, including mammals. PMID:24255094

  4. CD133+ Renal Progenitor Cells Contribute to Tumor Angiogenesis

    PubMed Central

    Bruno, Stefania; Bussolati, Benedetta; Grange, Cristina; Collino, Federica; Efrem Graziano, Manuela; Ferrando, Ugo; Camussi, Giovanni

    2006-01-01

    In the present study, we tested the hypothesis that resident progenitor cells may contribute to tumor vascularization and growth. CD133+ cells were isolated from 30 human renal carcinomas and characterized as renal resident progenitor cells on the basis of the expression of renal embryonic and mesenchymal stem cell markers. CD133+ progenitors differentiated into endothelial and epithelial cells as the normal CD133+ counterpart present in renal tissue. In the presence of tumor-derived growth factors, these cells were committed to differentiate into endothelial cells able to form vessels in vivo in SCID mice. Undifferentiated CD133+ progenitors were unable to form tumors when transplanted alone in SCID mice. When co-transplanted with renal carcinoma cells, CD133+ progenitors significantly enhanced tumor development and growth. This effect was not attributable to the tumorigenic nature of CD133+ progenitor cells because the same results were obtained with CD133+ cells from normal kidney. CD133+ progenitors contributed to tumor vascularization as the majority of neoformed vessels present within the transplanted tumors were of human origin and derived from the co-transplanted CD133+ progenitors. In conclusion, these results indicate the presence of a renal progenitor cell population in renal carcinomas that may differentiate in endothelial cells and favor vascularization and tumor growth. PMID:17148683

  5. Defining human dendritic cell progenitors by multiparametric flow cytometry

    PubMed Central

    Breton, Gaëlle; Lee, Jaeyop; Liu, Kang; Nussenzweig, Michel C

    2015-01-01

    Human dendritic cells (DCs) develop from progressively restricted bone marrow (BM) progenitors: these progenitor cells include granulocyte, monocyte and DC progenitor (GMDP) cells; monocyte and DC progenitor (MDP) cells; and common DC progenitor (CDP) and DC precursor (pre-DC) cells. These four DC progenitors can be defined on the basis of the expression of surface markers such as CD34 and hematopoietin receptors. In this protocol, we describe five multiparametric flow cytometry panels that can be used as a tool (i) to simultaneously detect or phenotype the four DC progenitors, (ii) to isolate DC progenitors to enable in vitro differentiation or (iii) to assess the in vitro differentiation and proliferation of DC progenitors. The entire procedure from isolation of cells to flow cytometry can be completed in 3–7 h. This protocol provides optimized antibody panels, as well as gating strategies, for immunostaining of BM and cord blood specimens to study human DC hematopoiesis in health, disease and vaccine settings. PMID:26292072

  6. Progenitor Cells in Proximal Airway Epithelial Development and Regeneration

    PubMed Central

    Lynch, Thomas J.; Engelhardt, John F.

    2015-01-01

    Multiple distinct epithelial domains are found throughout the airway that are distinguishable by location, structure, function, and cell-type composition. Several progenitor cell populations in the proximal airway have been identified to reside in confined microenvironmental niches including the submucosal glands (SMGs), which are embedded in the tracheal connective tissue between the surface epithelium and cartilage, and basal cells that reside within the surface airway epithelium (SAE). Current research suggests that regulatory pathways that coordinate development of the proximal airway and establishment of progenitor cell niches may overlap with pathways that control progenitor cell responses during airway regeneration following injury. SMGs have been shown to harbor epithelial progenitor cells, and this niche is dysregulated in diseases such as cystic fibrosis. However, mechanisms that regulate progenitor cell proliferation and maintenance within this glandular niche are not completely understood. Here we discuss glandular progenitor cells during development and regeneration of the proximal airway and compare properties of glandular progenitors to those of basal cell progenitors in the SAE. Further investigation into glandular progenitor cell control will provide a direction for interrogating therapeutic interventions to correct aberrant conditions affecting the SMGs in diseases such as cystic fibrosis, chronic bronchitis, and asthma. PMID:24818588

  7. Injection- Seeded Optoplasmonic Amplifier in the Visible

    PubMed Central

    Gartia, Manas Ranjan; Seo, Sujin; Kim, Junhwan; Chang, Te-Wei; Bahl, Gaurav; Lu, Meng; Liu, Gang Logan; Eden, J. Gary

    2014-01-01

    A hybrid optoplasmonic amplifier, injection-seeded by an internally-generated Raman signal and operating in the visible (563–675 nm), is proposed and evidence for amplification is presented. Comprising a gain medium tethered to a whispering gallery mode (WGM) resonator with a protein, and a plasmonic surface, the optical system described here selectively amplifies a single (or a few) Raman line(s) produced within the WGM resonator and is well-suited for routing narrowband optical power on-a-chip. Over the past five decades, optical oscillators and amplifiers have typically been based on the buildup of the field from the spontaneous emission background. Doing so limits the temporal coherence of the output, lengthens the time required for the optical field intensity to reach saturation, and often is responsible for complex, multiline spectra. In addition to the spectral control afforded by injection-locking, the effective Q of the amplifier can be specified by the bandwidth of the injected Raman signal. This characteristic contrasts with previous WGM-based lasers and amplifiers for which the Q is determined solely by the WGM resonator. PMID:25156810

  8. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  9. High power, high beam quality regenerative amplifier

    DOEpatents

    Hackel, Lloyd A.; Dane, Clifford B.

    1993-01-01

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  10. Plastic optical amplifier using europium complex

    NASA Astrophysics Data System (ADS)

    Oh, Doogie; Song, Namwoong; Kim, Jang-Joo

    2001-04-01

    Potential of polymer optical amplifier doped with europium complex has been analyzed for practical use in visible range. Europium this(2-thenoyltrifluoroacetonate)-1,10- phenanthroline was used as the amplification dopant and PMMA as matrix. Spectroscopic properties of the dopant such as metastable excited state lifetime, simulated emission cross section, and stimulated absorption cross section were obtained using the photoluminescence spectroscopy, UV visible spectrophotometry and time-resolved spectroscopy. Lifetime of 5D0 metastable state is 0.9 ms, which is longer than usual rare earth complex. Its emission cross section is comparable to erbium ions and absorption cross section is 4 orders of magnitude higher than bare rare earth ions. Optical amplifier was fabricated by the dip-coating method. The refractive index profile of the polymer optical amplifier was designed to manifest a single mode structure for the optimization of amplification performance. Amplification characteristics were simulated with respect to pump power, amplifier length, and number density of Eu(TTA)3phen. The simulations showed that optical gains are saturated above some maximum po9int. More than 30 dB optical gain can be achieved with 5 m long amplifier at 300 mW pump power.

  11. Thermal recovery of the NIF amplifiers

    SciTech Connect

    Beullier, J; Bicrel,; Erlandson, A; London, R; Manes, K; Marshall, C; Petty, C; Pierce, R; Smith, L; Sutton, S; Zapata, L

    1998-06-30

    With approximately 99% of the electrical energy supplied to the National Ignition Facility (NIF) appearing as heat in the amplifiers, thermal recovery of the NIF system is a major consideration in the design process. The NIF shot rate is one shot every 8 hours, with a goal of 4 hours between shots. This necessitates that thermal recovery take place in no more than 7 hours, with a goal of 3 hours for the accelerated shot rate. Residual optical distortions, which restrict the shot rate, are grouped into two discrete categories: (1) distortions associated with residual temperature gradients in the laser slabs, and (2) distortions associated with buoyantly driven convective currents in the amplifier cavity and beam-tube regions. Thermal recovery of the amplifiers is achieved by cooling the flashlamps and blastshields with a turbulent gas flow. The cooled blastshields then serve as a cold boundary to radiatively extract the residual heat deposited in the slabs and edge claddings. Advanced concepts, such as the use of slightly chilled gas to accelerate some aspects of recovery, are addressed. To quantify recovery rates of the amplifiers, experiments and numerical models are used to measure and calculate the temperatures and optical distortions in NIF-like amplifier elements. The calculation results are benchmarked against AMLAB temperature measurements, thus allowing a quantitative prediction of NIF thermal recovery. These results indicate that the NIF requirement of 7 hour thermal recovery can be achieved with chilled temperature cooling gas.

  12. Intermediate Progenitors Facilitate Intracortical Progression of Thalamocortical Axons and Interneurons through CXCL12 Chemokine Signaling.

    PubMed

    Abe, Philipp; Molnár, Zoltán; Tzeng, Yi-Shiuan; Lai, Dar-Ming; Arnold, Sebastian J; Stumm, Ralf

    2015-09-23

    Glutamatergic principal neurons, GABAergic interneurons and thalamocortical axons (TCAs) are essential elements of the cerebrocortical network. Principal neurons originate locally from radial glia and intermediate progenitors (IPCs), whereas interneurons and TCAs are of extrinsic origin. Little is known how the assembly of these elements is coordinated. C-X-C motif chemokine 12 (CXCL12), which is known to guide axons outside the neural tube and interneurons in the cortex, is expressed in the meninges and IPCs. Using mouse genetics, we dissected the influence of IPC-derived CXCL12 on TCAs and interneurons by showing that Cxcl12 ablation in IPCs, leaving meningeal Cxcl12 intact, attenuates intracortical TCA growth and disrupts tangential interneuron migration in the subventricular zone. In accordance with strong CXCR4 expression in the forming thalamus and TCAs, we identified a CXCR4-dependent growth-promoting effect of CXCL12 on TCAs in thalamus explants. Together, our findings indicate a cell-autonomous role of CXCR4 in promoting TCA growth. We propose that CXCL12 signals from IPCs link cortical neurogenesis to the progression of TCAs and interneurons spatially and temporally. Significance statement: The cerebral cortex exerts higher brain functions including perceptual and emotional processing. Evolutionary expansion of the mammalian cortex is mediated by intermediate progenitors, transient amplifying cells generating cortical excitatory neurons. During the peak period of cortical neurogenesis, migrating precursors of inhibitory interneurons originating in subcortical areas and thalamic axons invade the cortex. Although defects in the assembly of cortical network elements cause neurological and mental disorders, little is known how neurogenesis, interneuron recruitment, and axonal ingrowth are coordinated. We demonstrate that intermediate progenitors release the chemotactic cytokine CXCL12 to promote intracortical interneuron migration and growth of thalamic axons

  13. EpCAM and the biology of hepatic stem/progenitor cells.

    PubMed

    Dollé, Laurent; Theise, Neil D; Schmelzer, Eva; Boulter, Luke; Gires, Olivier; van Grunsven, Leo A

    2015-02-15

    Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is frequently and highly expressed on carcinomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult stem cells. During liver development, EpCAM demonstrates a dynamic expression, since it can be detected in fetal liver, including cells of the parenchyma, whereas mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a population of EpCAM-positive cells within ductular reactions, which gradually lose the expression of EpCAM along with maturation into hepatocytes. EpCAM can be switched on and off through a wide panel of strategies to fine-tune EpCAM-dependent functional and differentiative traits. EpCAM-associated functions relate to cell-cell adhesion, proliferation, maintenance of a pluripotent state, regulation of differentiation, migration, and invasion. These functions can be conferred by the full-length protein and/or EpCAM-derived fragments, which are generated upon regulated intramembrane proteolysis. Control by EpCAM therefore not only depends on the presence of full-length EpCAM at cellular membranes but also on varying rates of the formation of EpCAM-derived fragments that have their own regulatory properties and on changes in the association of EpCAM with interaction partners. Thus spatiotemporal localization of EpCAM in immature liver progenitors, transit-amplifying cells, and mature liver cells will decisively impact the regulation of EpCAM functions and might be one of the triggers that contributes to the adaptive processes in stem/progenitor cell lineages. This review will summarize EpCAM-related molecular events and how they relate to hepatobiliary differentiation and regeneration.

  14. EpCAM and the biology of hepatic stem/progenitor cells

    PubMed Central

    Theise, Neil D.; Schmelzer, Eva; Boulter, Luke; Gires, Olivier; van Grunsven, Leo A.

    2014-01-01

    Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is frequently and highly expressed on carcinomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult stem cells. During liver development, EpCAM demonstrates a dynamic expression, since it can be detected in fetal liver, including cells of the parenchyma, whereas mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a population of EpCAM-positive cells within ductular reactions, which gradually lose the expression of EpCAM along with maturation into hepatocytes. EpCAM can be switched on and off through a wide panel of strategies to fine-tune EpCAM-dependent functional and differentiative traits. EpCAM-associated functions relate to cell–cell adhesion, proliferation, maintenance of a pluripotent state, regulation of differentiation, migration, and invasion. These functions can be conferred by the full-length protein and/or EpCAM-derived fragments, which are generated upon regulated intramembrane proteolysis. Control by EpCAM therefore not only depends on the presence of full-length EpCAM at cellular membranes but also on varying rates of the formation of EpCAM-derived fragments that have their own regulatory properties and on changes in the association of EpCAM with interaction partners. Thus spatiotemporal localization of EpCAM in immature liver progenitors, transit-amplifying cells, and mature liver cells will decisively impact the regulation of EpCAM functions and might be one of the triggers that contributes to the adaptive processes in stem/progenitor cell lineages. This review will summarize EpCAM-related molecular events and how they relate to hepatobiliary differentiation and regeneration. PMID:25477371

  15. Improved Grid-Array Millimeter-Wave Amplifier

    NASA Technical Reports Server (NTRS)

    Rosenberg, James J.; Rutledge, David B.; Smith, R. Peter; Weikle, Robert

    1993-01-01

    Improved grid-array amplifiers operating at millimeter and submillimeter wavelengths developed for use in communications and radar. Feedback suppressed by making input polarizations orthogonal to output polarizations. Amplifier made to oscillate by introducing some feedback. Several grid-array amplifiers concatenated to form high-gain beam-amplifying unit.

  16. Method to amplify variable sequences without imposing primer sequences

    DOEpatents

    Bradbury, Andrew M.; Zeytun, Ahmet

    2006-11-14

    The present invention provides methods of amplifying target sequences without including regions flanking the target sequence in the amplified product or imposing amplification primer sequences on the amplified product. Also provided are methods of preparing a library from such amplified target sequences.

  17. Bone Marrow Stress Decreases Osteogenic Progenitors.

    PubMed

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential.

  18. Ethanol induces cytostasis of cortical basal progenitors.

    PubMed

    Riar, Amanjot Kaur; Narasimhan, Madhusudhanan; Rathinam, Mary Latha; Henderson, George I; Mahimainathan, Lenin

    2016-01-19

    Developing brain is a major target for alcohol's actions and neurological/functional abnormalities include microencephaly, reduced frontal cortex, mental retardation and attention-deficits. Previous studies have shown that ethanol altered the lateral ventricular neuroepithelial cell proliferation. However, the effect of ethanol on subventricular basal progenitors which generate majority of the cortical layers is not known. We utilized spontaneously immortalized rat brain neuroblasts obtained from cultures of 18-day-old fetal rat cerebral cortices using in vitro ethanol exposures and an in utero binge model. In the in vitro acute model, cells were exposed to 86 mM ethanol for 8, 12 and 24 h. The second in vitro model comprised of chronic intermittent ethanol (CIE) exposure which consisted of 14 h of ethanol treatment followed by 10 h of withdrawal with three repetitions. E18 neuroblasts expressing Tbr2 representing immature basal progenitors displayed significant reduction of proliferation in response to ethanol in both the models. The decreased proliferation was accompanied by absence of apoptosis or autophagy as illustrated by FACS analysis and expression of apoptotic and autophagic markers. The BrdU incorporation assay indicated that ethanol enhanced the accumulation of cells at G1 with reduced cell number in S phase. In addition, the ethanol-inhibited basal neuroblasts proliferation was connected to decrease in cyclin D1 and Rb phosphorylation indicating cell cycle arrest. Further, in utero ethanol exposure in pregnant rats during E15-E18 significantly decreased Tbr2 and cyclin D1 positive cell number in cerebral cortex of embryos as assessed by cell sorting analysis by flow cytometry. Altogether, the current findings demonstrate that ethanol impacts the expansion of basal progenitors by inducing cytostasis that might explain the anomalies of cortico-cerebral development associated with fetal alcohol syndrome.

  19. Adipose Tissue Residing Progenitors (Adipocyte Lineage Progenitors and Adipose Derived Stem Cells (ADSC)

    PubMed Central

    Berry, Ryan; Rodeheffer, Matthew S.; Rosen, Clifford J.; Horowitz, Mark C.

    2015-01-01

    The formation of brown, white and beige adipocytes have been a subject of intense scientific interest in recent years due to the growing obesity epidemic in the United States and around the world. This interest has led to the identification and characterization of specific tissue resident progenitor cells that give rise to each adipocyte population in vivo. However, much still remains to be discovered about each progenitor population in terms of their “niche” within each tissue and how they are regulated at the cellular and molecular level during healthy and diseased states. While our knowledge of brown, white and beige adipose tissue is rapidly increasing, little is still known about marrow adipose tissue and its progenitor despite recent studies demonstrating possible roles for marrow adipose tissue in regulating the hematopoietic space and systemic metabolism at large. This chapter focuses on our current knowledge of brown, white, beige and marrow adipose tissue with a specific focus on the formation of each tissue from tissue resident progenitor cells. PMID:26526875

  20. Implementation of a nondeterministic optical noiseless amplifier.

    PubMed

    Ferreyrol, Franck; Barbieri, Marco; Blandino, Rémi; Fossier, Simon; Tualle-Brouri, Rosa; Grangier, Philippe

    2010-03-26

    Quantum mechanics imposes that any amplifier that works independently on the phase of the input signal has to introduce some excess noise. The impossibility of such a noiseless amplifier is rooted in the unitarity and linearity of quantum evolution. A possible way to circumvent this limitation is to interrupt such evolution via a measurement, providing a random outcome able to herald a successful-and noiseless-amplification event. Here we show a successful realization of such an approach; we perform a full characterization of an amplified coherent state using quantum homodyne tomography, and observe a strong heralded amplification, with about a 6 dB gain and a noise level significantly smaller than the minimal allowed for any ordinary phase-independent device.

  1. Ultraflexible organic amplifier with biocompatible gel electrodes.

    PubMed

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-29

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm(-2) and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  2. Ultraflexible organic amplifier with biocompatible gel electrodes

    PubMed Central

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-01-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm−2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ∼200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue. PMID:27125910

  3. Single mode terahertz quantum cascade amplifier

    SciTech Connect

    Ren, Y. Wallis, R.; Shah, Y. D.; Jessop, D. S.; Degl'Innocenti, R.; Klimont, A.; Kamboj, V.; Beere, H. E.; Ritchie, D. A.

    2014-10-06

    A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-mode radiation output is demonstrated.

  4. Ultrashort pulse amplification in cryogenically cooled amplifiers

    DOEpatents

    Backus, Sterling J.; Kapteyn, Henry C.; Murnane, Margaret Mary

    2004-10-12

    A laser amplifier system amplifies pulses in a single "stage" from .about.10.sup.-9 joules to more than 10.sup.-3 joules, with average power of 1-10 watts, and beam quality M.sup.2 <2. The laser medium is cooled substantially below room temperature, as a means to improve the optical and thermal characteristics of the medium. This is done with the medium inside a sealed, evacuated or purged cell to avoid moisture or other materials condensing on the surface. A "seed" pulse from a separate laser is passed through the laser medium, one or more times, in any of a variety of configurations including single-pass, multiple-pass, and regenerative amplifier configurations.

  5. Modulation instability in high power laser amplifiers.

    PubMed

    Rubenchik, Alexander M; Turitsyn, Sergey K; Fedoruk, Michail P

    2010-01-18

    The modulation instability (MI) is one of the main factors responsible for the degradation of beam quality in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI control in passive optics devices. For amplifiers the adiabatic model, assuming locally the Bespalov-Talanov expression for MI growth, is commonly used to estimate the destructive impact of the instability. We present here the exact solution of MI development in amplifiers. We determine the parameters which control the effect of MI in amplifiers and calculate the MI growth rate as a function of those parameters. The safety range of operational parameters is presented. The results of the exact calculations are compared with the adiabatic model, and the range of validity of the latest is determined. We demonstrate that for practical situations the adiabatic approximation noticeably overestimates MI. The additional margin of laser system design is quantified.

  6. High Bandwidth Differential Amplifier for Shock Experiments

    SciTech Connect

    Ross, P. W., Tran, V., Chau, R.

    2012-04-30

    We developed a high bandwidth differential amplifier for gas gun shock experiments/applications. The circuit has a bandwidth > 1 GHz, and is capable of measuring signals of ≤1.5 V with a common mode rejection of 250 V. Conductivity measurements of gas gun targets are measured by flowing high currents through the targets. The voltage is measured across the target using a technique similar to a four-point probe. Because of the design of the current source and load, the target voltage is approximately 250 V relative to ground. Since the expected voltage change in the target is < 1 V, the differential amplifier must have a large common mode rejection. High pass filters suppress internal ringing of operational amplifiers. Results of bench tests are shown.

  7. Noise in chi (3) and photorefractive amplifiers

    NASA Astrophysics Data System (ADS)

    Sternklar, Shmuel; Glick, Yaakov

    1995-12-01

    A comparison of the noise characteristics of chi (3) and photorefractive coherent amplifiers reveals basic differences in their dependence on operating parameters. Unlike all types of chi (3) amplifiers, which are shown to have a well-defined optimum working point in the region of the self-stimulated scattering threshold, the photorefractive amplifier can be made increasingly quieter by lowering the pump power. This is demonstrated by use of highly doped Co:BaTiO3 in a tight-focus reflection grating geometry. It is shown that scattering from inhomogeneities in the crystal is the major limiting noise source and is significantly higher than predictions resulting from fundamental considerations such as random space-charge noise. An extremely high small-signal gain of 107 was measured with this crystal and geometry. To our knowledge this is the highest photorefractive gain reported to date.

  8. Ultraflexible organic amplifier with biocompatible gel electrodes

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Yokota, Tomoyuki; Kuribara, Kazunori; Kaltenbrunner, Martin; Fukushima, Takanori; Inoue, Yusuke; Sekino, Masaki; Isoyama, Takashi; Abe, Yusuke; Onodera, Hiroshi; Someya, Takao

    2016-04-01

    In vivo electronic monitoring systems are promising technology to obtain biosignals with high spatiotemporal resolution and sensitivity. Here we demonstrate the fabrication of a biocompatible highly conductive gel composite comprising multi-walled carbon nanotube-dispersed sheet with an aqueous hydrogel. This gel composite exhibits admittance of 100 mS cm-2 and maintains high admittance even in a low-frequency range. On implantation into a living hypodermal tissue for 4 weeks, it showed a small foreign-body reaction compared with widely used metal electrodes. Capitalizing on the multi-functional gel composite, we fabricated an ultrathin and mechanically flexible organic active matrix amplifier on a 1.2-μm-thick polyethylene-naphthalate film to amplify (amplification factor: ~200) weak biosignals. The composite was integrated to the amplifier to realize a direct lead epicardial electrocardiography that is easily spread over an uneven heart tissue.

  9. Short pulse free electron laser amplifier

    DOEpatents

    Schlitt, Leland G.; Szoke, Abraham

    1985-01-01

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  10. Progenitor endothelial cell involvement in Alzheimer's disease

    SciTech Connect

    Budinger, Thomas F.

    2003-05-01

    There is compelling evidence that endothelial cells of the brain and periphery are dysfunctional in Alzheimer's Disease. There is evidence for a fundamental defect in, or abnormal aging of, endothelial progenitor cells in atherosclerosis. The possibility that endothelial cell defects are a primary cause for Alzheimer's Disease or other dementias can be researched by molecular and cell biology studies as well as cell trafficking studies using recently demonstrated molecular imaging methods. The evidence for abnormal endothelial function and the methods to explore this hypothesis are presented.

  11. Design and analysis of a high efficiency linear power amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Sucheng; Zhou, Luowei; Liu, Xiaodong; Lu, Weiguo

    2011-10-01

    A high efficiency linear power amplifier is introduced based on the idea of Switch-Linear Hybrid (SLH) power conversion. The SLH power amplifier developed from the conventional class B power amplifier, while the class B configuration power unit in the SLH power amplifier is fed by a dynamic switching power supply, not the usual constant DC power supply. Thus, the efficiency of the class B configuration power unit in SLH power amplifier can be greatly improved. By combining linear power amplifier with switching power supply, the SLH power amplifier has synthetic performance of high fidelity, high efficiency and excellent dynamic characteristics. In this article, analysis of SLH power amplifier is performed, especially focusing on its linear power unit which is the core of SLH power amplifier. Design considerations are also presented parallel with the analysis. Both the theoretical analysis and experimental results verify the validity of SLH power amplifier.

  12. Class E power amplifiers for wireless communications

    NASA Astrophysics Data System (ADS)

    Sowlati Hashjani, Tirdad

    In this thesis, the use of Class E power amplifiers for digital wireless communication applications is presented for the first time. A linear transmitter design using Class E amplifier is proposed for the North American Digital Cellular Standard. In this architecture, a phase correcting feedback loop is used to cancel the AM-PM distortion in Class E power amplifier. Several low voltage Class E power amplifiers, and the phase correcting feedback loop are designed and implemented in a commercially available 0.8 mum GaAs MESFET process. A fully integrated Class E power module operating at 835 MHz is presented. The power module consists of a Class F driver stage and a Class E power amplifier, and delivers 250 mW to the standard 50 Omega load with a power added efficiency of 51%. The design and implementation of a hybrid Class E power module operating at 835 MHz is also discussed. In this design, the output matching network is implemented on an alumina substrate, and has a lower power dissipation than its GaAs counterpart. The power module delivers 443 mW to the 50 Omega load with a power added efficiency of 67%. A 1.8 GHz fully integrated Class E power module is also presented. In this case, the power module delivers 200 mW of power to the 50 Omega load with a power added efficiency of 57%. The design and implementation of the phase correcting feedback loop, which consists of a limiting amplifier, a phase detector and two phase shifters, are discussed. The phase correcting feedback loop is used to linearize the 835 MHz Class E hybrid power module. With a loop gain of 20, the maximum phase distortion in the power module was reduced from 30sp° to 4sp° and the total power added efficiency was 65%.

  13. Transverse intensity transformation by laser amplifiers

    NASA Astrophysics Data System (ADS)

    Litvin, Igor A.; King, Gary; Collett, Oliver J. P.; Strauss, Hencharl J.

    2015-03-01

    Lasers beams with a specific intensity profile such as super-Gaussian, Airy or Dougnut-like are desirable in many applications such as laser materials processing, medicine and communications. We propose a new technique for laser beam shaping by amplifying a beam in an end-pumped bulk amplifier that is pumped with a beam that has a modified intensity profile. Advantages of this method are that it is relatively easy to implement, has the ability to reshape multimode beams and is naturally suited to high power/energy beams. Both three and four level gain materials can be used as amplifier media. However, a big advantage of using three level materials is their ability to attenuate of the seed beam, which enhances the contrast of the shaping. We first developed a numerical method to obtain the required pump intensity for an arbitrary beam transformation. This method was subsequently experimentally verified using a three level system. The output of a 2.07 μm seed laser was amplified in a Ho:YLF bulk amplifier which was being pumped by a 1.89 μm Tm:YLF laser which had roughly a TEM10 Hermit Gaussian intensity profile. The seed beam was amplified from 0.3 W to 0.55 W at the full pump power of 35 W. More importantly, the beam profile in one transverse direction was significantly shaped from Gaussian to roughly flat-top, as the model predicted. The concept has therefore been shown to be viable and can be used to optimise the beam profile for a wide range of applications.

  14. Beyond nonlinear saturation of backward Raman amplifiers

    SciTech Connect

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A.; Fisch, Nathaniel J.

    2016-06-27

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. We employed pump detuning in order to mitigate the relativistic phase mismatch and to overcome the associated saturation. In an amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. Finally, this detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small.

  15. Implementation of Digital Lock-in Amplifier

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sabyasachi; Nasir Ahmed, Ragib; Bijoy Purkayastha, Basab; Bhattacharyya, Kaustubh

    2016-10-01

    The recovery of signal under the presence of noise is utmost essential for proper communication. The signals corrupted due to noise can be recovered using various techniques. However the weak signals are more prone to noise and hence they can be easily degraded due to noise. In such cases, a digital lock-in amplifier becomes an essential device for recovery of such weak signals. Keeping the cost, speed and other considerations, we will present the implementation of digital lock-in amplifier and how it recovers the weak signal under extreme noisy conditions.

  16. Master-Oscillator/Power-Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Unger, Glenn L.

    1994-01-01

    Master-oscillator/power-amplifier (MOPA) laser system operates in continuous-wave mode or in amplitude-modulation (e.g., pulse) mode by modulation of oscillator current. Power amplifier is laser-diode-pumped neodymium:yttrium lithium fluoride (Nd:YLF) laser; oscillator is laser diode. Offers relatively high efficiency and power. Because drive current to oscillator modulated, external electro-optical modulator not needed. Potential uses include free-space optical communications, coded laser ranging, and generation of high-power, mode-locked pulses.

  17. Master-Oscillator/Power-Amplifier Laser System

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Unger, Glenn L.

    1994-01-01

    Master-oscillator/power-amplifier (MOPA) laser system operates in continuous-wave mode or in amplitude-modulation (e.g., pulse) mode by modulation of oscillator current. Power amplifier is laser-diode-pumped neodymium:yttrium lithium fluoride (Nd:YLF) laser; oscillator is laser diode. Offers relatively high efficiency and power. Because drive current to oscillator modulated, external electro-optical modulator not needed. Potential uses include free-space optical communications, coded laser ranging, and generation of high-power, mode-locked pulses.

  18. Beyond nonlinear saturation of backward Raman amplifiers

    DOE PAGES

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A.; ...

    2016-06-27

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. We employed pump detuning in order to mitigate the relativistic phase mismatch and to overcome the associated saturation. In an amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. Finally, this detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small.

  19. Transportable setup for amplifier phase fidelity measurements

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Bogan, C.; Barke, S.; Kühn, G.; Reiche, J.; Heinzel, G.; Danzmann, K.

    2015-05-01

    One possible laser source for the Laser Interferometer Space Antenna (LISA) consists of an Ytterbium-doped fiber amplifier originally developed for inter-satellite communication, seeded by the laser used for the technology demonstrator mission LISA Pathfinder. LISA needs to transmit clock information between its three spacecraft to correct for phase noise between the clocks on the individual spacecraft. For this purpose phase modulation sidebands at GHz frequencies will be imprinted on the laser beams between spacecraft. Differential phase noise between the carrier and a sideband introduced within the optical chain must be very low. We report on a transportable setup to measure the phase fidelity of optical amplifiers.

  20. CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in the dental stem cell niche

    PubMed Central

    Otsu, Keishi; Harada, Hidemitsu; Shibata, Shunichi; Obara, Nobuko; Irie, Kazuharu; Taniguchi, Akiyoshi; Nagasawa, Takashi; Aoki, Kazunari; Caliari, Steven R.; Weisgerber, Daniel W.

    2015-01-01

    Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche. PMID:26246398

  1. Neurotrophic Requirements of Human Motor Neurons Defined Using Amplified and Purified Stem Cell-Derived Cultures

    PubMed Central

    Lamas, Nuno Jorge; Johnson-Kerner, Bethany; Roybon, Laurent; Kim, Yoon A.; Garcia-Diaz, Alejandro; Wichterle, Hynek; Henderson, Christopher E.

    2014-01-01

    Human motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC50 1–2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening. PMID:25337699

  2. The progenitors of supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia

    2014-09-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. SNeIa are generally thought to be thermonuclear explosions of carbon/oxygen (CO) white dwarfs (WDs). The canonical scenarios involve white dwarfs reaching the Chandrasekhar mass, either by accretion from a non-degenerate companion (single-degenerate channel, SD) or by a merger of two CO WDs (double-degenerate channel, DD). The study of SNeIa progenitors is a very active field of research for binary population synthesis (BPS) studies. The strength of the BPS approach is to study the effect of uncertainties in binary evolution on the macroscopic properties of a binary population, in order to constrain binary evolutionary processes. I will discuss the expected SNeIa rate from the BPS approach and the uncertainties in their progenitor evolution, and compare with current observations. I will also discuss the results of the POPCORN project in which four BPS codes were compared to better understand the differences in the predicted SNeIa rate of the SD channel. The goal of this project is to investigate whether differences in the simulated populations are due to numerical effects or whether they can be explained by differences in the input physics. I will show which assumptions in BPS codes affect the results most and hence should be studied in more detail.

  3. Defining and redefining the nephron progenitor population.

    PubMed

    Hendry, Caroline; Rumballe, Bree; Moritz, Karen; Little, Melissa H

    2011-09-01

    It has long been appreciated that the mammalian kidney arises via reciprocal interactions between an epithelial ureteric epithelium and the surrounding metanephric mesenchyme. More recently, lineage tracing has confirmed that the portion of the metanephric mesenchyme closest to the advancing ureteric tips, the cap mesenchyme, represents the progenitor population for the nephron epithelia. This Six2(+)Cited1(+) population undergoes self-renewal throughout nephrogenesis while retaining the potential to epithelialize. In contrast, the Foxd1(+) portion of the metanephric mesenchyme shows no epithelial potential, developing instead into the interstitial, perivascular, and possibly endothelial elements of the kidney. The cap mesenchyme rests within a nephrogenic niche, surrounded by the stroma and the ureteric tip. While the role of Wnt signaling in nephron induction is known, there remains a lack of clarity over the intrinsic and extrinsic regulation of cap mesenchyme specification, self-renewal, and nephron potential. It is also not known what regulates cessation of nephrogenesis, but there is no nephron generation in response to injury during the postnatal period. In this review, we will examine what is and is not known about this nephron progenitor population and discuss how an increased understanding of the regulation of this population may better explain the observed variation in final nephron number and potentially facilitate the reinitiation or prolongation of nephron formation.

  4. ENDOTHELIAL PROGENITOR CELLS: FROM SENESCENCE TO REJUVENATION

    PubMed Central

    Goligorsky, Michael S

    2014-01-01

    Discovered more than 15 years ago, endothelial progenitor cells attract both basic and translational researchers. It has become clear that they represent a heterogeneous population of endothelial colony forming cells, early or late outgrowth endothelial cells, or blood outgrowth endothelial cells, each characterized by differing proliferative and regenerative capacity. Scattered within the vascular wall, these cells participate in angiogenesis and vasculogenesis and support regeneration of epithelial cells. There is growing evidence that this cell population is impaired during the course of chronic cardiovascular and kidney disease when it undergoes premature senescence and loss of specialized functions. Senescence-associated secretory products released by such cells can affect the neighboring cells and further exacerbate their regenerative capacity. For those reasons adoptive transfer of endothelial progenitor cells is being used in more than 150 on-going clinical trials in diverse cardiovascular diseases. There is emergence of attempts to rejuvenate this cell population either ex vivo or in situ. The progress in this field is paramount to regenerate the injured kidney. PMID:25217265

  5. Endothelial progenitor cells: from senescence to rejuvenation.

    PubMed

    Goligorsky, Michael S

    2014-07-01

    Discovered more than 15 years ago, endothelial progenitor cells attract both basic and translational researchers. It has become clear that they represent a heterogeneous population of endothelial colony-forming cells, early or late outgrowth endothelial cells, or blood outgrowth endothelial cells, each characterized by differing proliferative and regenerative capacity. Scattered within the vascular wall, these cells participate in angiogenesis and vasculogenesis and support regeneration of epithelial cells. There is growing evidence that this cell population is impaired during the course of chronic cardiovascular and kidney disease when it undergoes premature senescence and loss of specialized functions. Senescence-associated secretory products released by such cells can affect the neighboring cells and further exacerbate their regenerative capacity. For these reasons, adoptive transfer of endothelial progenitor cells is being used in more than 150 ongoing clinical trials of diverse cardiovascular diseases. Attempts to rejuvenate this cell population either ex vivo or in situ are emerging. The progress in this field is paramount to regenerate the injured kidney. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Predicting the nature of supernova progenitors

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.

    2017-09-01

    Stars more massive than about 8 solar masses end their lives as a supernova (SN), an event of fundamental importance Universe-wide. The physical properties of massive stars before the SN event are very uncertain, both from theoretical and observational perspectives. In this article, I briefly review recent efforts to predict the nature of stars before death, in particular, by performing coupled stellar evolution and atmosphere modelling of single stars in the pre-SN stage. These models are able to predict the high-resolution spectrum and broadband photometry, which can then be directly compared with the observations of core-collapse SN progenitors. The predictions for the spectral types of massive stars before death can be surprising. Depending on the initial mass and rotation, single star models indicate that massive stars die as red supergiants, yellow hypergiants, luminous blue variables and Wolf-Rayet stars of the WN and WO subtypes. I finish by assessing the detectability of SN Ibc progenitors. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  7. Progenitor Cell Dysfunctions Underlie Some Diabetic Complications

    PubMed Central

    Rodrigues, Melanie; Wong, Victor W.; Rennert, Robert C.; Davis, Christopher R.; Longaker, Michael T.; Gurtner, Geoffrey C.

    2016-01-01

    Stem cells and progenitor cells are integral to tissue homeostasis and repair. They contribute to health through their ability to self-renew and commit to specialized effector cells. Recently, defects in a variety of progenitor cell populations have been described in both preclinical and human diabetes. These deficits affect multiple aspects of stem cell biology, including quiescence, renewal, and differentiation, as well as homing, cytokine production, and neovascularization, through mechanisms that are still unclear. More important, stem cell aberrations resulting from diabetes have direct implications on tissue function and seem to persist even after return to normoglycemia. Understanding how diabetes alters stem cell signaling and homeostasis is critical for understanding the complex pathophysiology of many diabetic complications. Moreover, the success of cell-based therapies will depend on a more comprehensive understanding of these deficiencies. This review has three goals: to analyze stem cell pathways dysregulated during diabetes, to highlight the effects of hyperglycemic memory on stem cells, and to define ways of using stem cell therapy to overcome diabetic complications. PMID:26079815

  8. Type Ia Supernovae: Colors, Rates, and Progenitors

    NASA Astrophysics Data System (ADS)

    Heringer, Epson; Pritchet, Chris; Kezwer, Jason; Graham, Melissa L.; Sand, David; Bildfell, Chris

    2017-01-01

    The rate of type Ia supernovae (SNe Ia) in a galaxy depends not only on stellar mass, but also on star formation history (SFH). Here we show that two simple observational quantities (g ‑ r or u ‑ r host galaxy color, and r-band luminosity), coupled with an assumed delay time distribution (DTD) (the rate of SNe Ia as a function of time for an instantaneous burst of star formation), are sufficient to accurately determine a galaxy’s SN Ia rate, with very little sensitivity to the precise details of the SFH. Using this result, we compare observed and predicted color distributions of SN Ia hosts for the MENeaCS cluster supernova survey, and for the SDSS Stripe 82 supernova survey. The observations are consistent with a continuous DTD, without any cutoff. For old progenitor systems, the power-law slope for the DTD is found to be -{1.50}-0.15+0.19. This result favors the double degenerate scenario for SN Ia, though other interpretations are possible. We find that the late-time slopes of the DTD are different at the 1σ level for low and high stretch supernova, which suggest a single degenerate (SD) scenario for the latter. However, due to ambiguity in the current models’ DTD predictions, SD progenitors can neither be confirmed as causing high stretch supernovae nor ruled out from contributing to the overall sample.

  9. Neutrino emission from nearby supernova progenitors

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Takahashi, Koh; Umeda, Hideyuki

    2016-05-01

    Neutrinos have an important role for energy loss process during advanced evolution of massive stars. Although the luminosity and average energy of neutrinos during the Si burning are much smaller than those of supernova neutrinos, these neutrinos are expected to be detected by the liquid scintillation neutrino detector KamLAND if a supernova explosion occurs at the distance of ~100 parsec. We investigate the neutrino emission from massive stars during advanced evolution. We calculate the evolution of the energy spectra of neutrinos produced through electron-positron pair-annihilation in the supernova progenitors with the initial mass of 12, 15, and 20 M ⊙ during the Si burning and core-collapse stages. The neutrino emission rate increases from ~ 1050 s-1 to ~ 1052 s-1. The average energy of electron-antineutrinos is about 1.25 MeV during the Si burning and gradually increases until the core-collapse. For one week before the supernova explosion, the KamLAND detector is expected to observe 12-24 and 6-13 v¯e events in the normal and inverted mass hierarchies, respectively, if a supernova explosion of a 12-20 M ⊙ star occurs at the distance of 200 parsec, corresponding to the distance to Betelgeuse. Observations of neutrinos from SN progenitors have a possibility to constrain the core structure and the evolution just before the core collapse of massive stars.

  10. Red supergiants as type II supernova progenitors

    NASA Astrophysics Data System (ADS)

    Negueruela, Ignacio; Dorda, Ricardo; González-Fernández, Carlos; Marco, Amparo

    2015-08-01

    Recent searches for supernova IIp progenitors in external galaxies have led to the identification of red objects with magnitudes and colours indicative of red supergiants, in most cases implying quite low luminosities and hence masses well below 10Msol. Stellar models, on the other hand, do not predict explosions from objects below 9 Msol. What does our knowledge of local red supergiants tells us about the expected properties of such objects?We have carried out a comprehensive spectroscopic and photometric study of a sample of hundreds of red supergiants in the Milky Way and both Magellanic Clouds. We have explored correlations between different parameters and the position of stars in the HR diagrams of open clusters. At solar metallicty, there is strong evidence for a phase of very heavy mass loss at the end of the red supergiant phase, but the existence of such a phase is still not confirmed at SMC metallicities. Objects of ~ 7Msol, on the other hand, become very dusty in the SMC, and appear as very luminous Miras.Among Milky Way clusters, we find a surprising lack of objects readily identifiable as the expected 7 to 10 Msol red supergiants or AGB stars. We are carrying out an open cluster survey aimed at filling this region of the HR diagram with reliable data. Finally, we will discuss the implications of all this findings for the expected properties of supernova progenitors, as it looks unlikely that typical red supergiants may explode without undergoing further evolution.

  11. Hierarchization of myogenic and adipogenic progenitors within human skeletal muscle.

    PubMed

    Pisani, Didier F; Clement, Noémie; Loubat, Agnès; Plaisant, Magali; Sacconi, Sabrina; Kurzenne, Jean-Yves; Desnuelle, Claude; Dani, Christian; Dechesne, Claude A

    2010-12-01

    Skeletal muscle cells constitute a heterogeneous population that maintains muscle integrity through a high myogenic regenerative capacity. More unexpectedly, this population is also endowed with an adipogenic potential, even in humans, and intramuscular adipocytes have been found to be present in several disorders. We tested the distribution of myogenic and adipogenic commitments in human muscle-derived cells to decipher the cellular basis of the myoadipogenic balance. Clonal analysis showed that adipogenic progenitors can be separated from myogenic progenitors and, interestingly, from myoadipogenic bipotent progenitors. These progenitors were isolated in the CD34(+) population on the basis of the expression of CD56 and CD15 cell surface markers. In vivo, these different cell types have been found in the interstitial compartment of human muscle. In vitro, we show that the proliferation of bipotent myoadipogenic CD56(+)CD15(+) progenitors gives rise to myogenic CD56(+)CD15(-) progenitors and adipogenic CD56(-)CD15(+) progenitors. A cellular hierarchy of muscle and fat progenitors thus occurs within human muscle. These results provide cellular bases for adipogenic differentiation in human skeletal muscle, which may explain the fat development encountered in different muscle pathological situations.

  12. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis

    PubMed Central

    Gehling, Ursula M; Willems, Marc; Schlagner, Kathleen; Benndorf, Ralf A; Dandri, Maura; Petersen, Jörg; Sterneck, Martina; Pollok, Joerg-Matthias; Hossfeld, Dieter K; Rogiers, Xavier

    2010-01-01

    AIM: To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS: Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry. Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1 (SDF-1) were measured using an enzyme linked immunosorbent assay. RESULTS: Progenitor cells with a CD133+/CD45+/CD14+ phenotype were observed in 61% of the patients. Between 1% and 26% of the peripheral blood mononuclear cells (MNCs) displayed this phenotype. Furthermore, a distinct population of c-kit+ progenitor cells (between 1% and 38 % of the MNCs) could be detected in 91% of the patients. Additionally, 18% of the patients showed a population of progenitor cells (between 1% and 68% of the MNCs) that was characterized by expression of breast cancer resistance protein-1. Further phenotypic analysis disclosed that the circulating precursors expressed CXC chemokine receptor 4, the receptor for SDF-1. In line with this finding, elevated plasma levels of SDF-1 were present in all patients and were found to correlate with the number of mobilized CD133+ progenitor cells. CONCLUSION: These data indicate that in humans, liver cirrhosis leads to recruitment of various populations of hematopoietic progenitor cells that display markers of intrahepatic progenitor cells. PMID:20066741

  13. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis.

    PubMed

    Singh, Ajeet Pratap; Dinwiddie, April; Mahalwar, Prateek; Schach, Ursula; Linker, Claudia; Irion, Uwe; Nüsslein-Volhard, Christiane

    2016-08-08

    The neural crest is a transient, multipotent embryonic cell population in vertebrates giving rise to diverse cell types in adults via intermediate progenitors. The in vivo cell-fate potential and lineage segregation of these postembryonic progenitors is poorly understood, and it is unknown if and when the progenitors become fate restricted. We investigate the fate restriction in the neural crest-derived stem cells and intermediate progenitors in zebrafish, which give rise to three distinct adult pigment cell types: melanophores, iridophores, and xanthophores. By inducing clones in sox10-expressing cells, we trace and quantitatively compare the pigment cell progenitors at four stages, from embryogenesis to metamorphosis. At all stages, a large fraction of the progenitors are multipotent. These multipotent progenitors have a high proliferation ability, which diminishes with fate restriction. We suggest that multipotency of the nerve-associated progenitors lasting into metamorphosis may have facilitated the evolution of adult-specific traits in vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Progenitor cells in arteriosclerosis: good or bad guys?

    PubMed

    Campagnolo, Paola; Wong, Mei Mei; Xu, Qingbo

    2011-08-15

    Accumulating evidence indicates that the mobilization and recruitment of circulating or tissue-resident progenitor cells that give rise to endothelial cells (ECs) and smooth muscle cells (SMCs) can participate in atherosclerosis, neointima hyperplasia after arterial injury, and transplant arteriosclerosis. It is believed that endothelial progenitor cells do exist and can repair and rejuvenate the arteries under physiologic conditions; however, they may also contribute to lesion formation by influencing plaque stability in advanced atherosclerotic plaque under specific pathologic conditions. At the same time, smooth muscle progenitors, despite their capacity to expedite lesion formation during restenosis, may serve to promote atherosclerotic plaque stabilization by producing extracellular matrix proteins. This profound evidence provides support to the hypothesis that both endothelial and smooth muscle progenitors may act as a double-edged sword in the pathogenesis of arteriosclerosis. Therefore, the understanding of the regulatory networks that control endothelial and smooth muscle progenitor differentiation is undoubtedly fundamental both for basic research and for improving current therapeutic avenues for atherosclerosis. We update the progress in progenitor cell study related to the development of arteriosclerosis, focusing specifically on the role of progenitor cells in lesion formation and discuss the controversial issues that regard the origins, frequency, and impact of the progenitors in the disease.

  15. Vascular Endothelial Growth Factor (VEGF) Bioavailability Regulates Angiogenesis and Intestinal Stem and Progenitor Cell Proliferation during Postnatal Small Intestinal Development.

    PubMed

    Schlieve, Christopher R; Mojica, Salvador Garcia; Holoyda, Kathleen A; Hou, Xiaogang; Fowler, Kathryn L; Grikscheit, Tracy C

    2016-01-01

    Vascular endothelial growth factor (VEGF) is a highly conserved, master regulatory molecule required for endothelial cell proliferation, organization, migration and branching morphogenesis. Podocoryne carnea and drosophila, which lack endothelial cells and a vascular system, express VEGF homologs, indicating potential roles beyond angiogenesis and vasculogenesis. The role of VEGF in the development and homeostasis of the postnatal small intestine is unknown. We hypothesized regulating VEGF bioavailability in the postnatal small intestine would exhibit effects beyond the vasculature and influence epithelial cell stem/progenitor populations. VEGF mutant mice were created that overexpressed VEGF in the brush border of epithelium via the villin promotor following doxycycline treatment. To decrease VEGF bioavailability, sFlt-1 mutant mice were generated that overexpressed the soluble VEGF receptor sFlt-1 upon doxycycline administration in the intestinal epithelium. Mice were analyzed after 21 days of doxycycline administration. Increased VEGF expression was confirmed by RT-qPCR and ELISA in the intestine of the VEGF mutants compared to littermates. The VEGF mutant duodenum demonstrated increased angiogenesis and vascular leak as compared to littermate controls. The VEGF mutant duodenum revealed taller villi and increased Ki-67-positive cells in the transit-amplifying zone with reduced Lgr5 expression. The duodenum of sFlt-1 mutants revealed shorter villi and longer crypts with reduced proliferation in the transit-amplifying zone, reduced expression of Dll1, Bmp4 and VE-cadherin, and increased expression of Sox9 and EphB2. Manipulating VEGF bioavailability leads to profound effects on not only the intestinal vasculature, but epithelial stem and progenitor cells in the intestinal crypt. Elucidation of the crosstalk between VEGF signaling in the vasculature, mesenchyme and epithelial stem/progenitor cell populations may direct future cell therapies for intestinal

  16. AMPLIFIED TELEPHONE AS A TEACHING MEDIUM.

    ERIC Educational Resources Information Center

    JOLLY, JOAN; MADDEN, CHARLES F.

    A GRANT TOTALING $58,400 FROM THE FUND FOR THE ADVANCEMENT OF EDUCATION ENABLED STEPHENS COLLEGE TO INITIATE AN EXPERIMENTAL EDUCATIONAL PROGRAM BY WHICH AMPLIFIED TELEPHONE COMMUNICATION BROUGHT HIGH-QUALITY INSTRUCTION TO GROUPS OF SMALL LIBERAL ARTS COLLEGES. A "MASTER TEACHER" ORGANIZED AND PRESENTED THE BASIC MATERIALS OF THE…

  17. LOW-LEVEL DIRECT CURRENT AMPLIFIER

    DOEpatents

    Kerns, Q.A.

    1959-05-01

    A d-c amplifier is described. Modulation is provided between a d-c signal and an alternating current to give an output signal proportional to the d- c signal. The circuit has high sensitivity and accuracy. (T.R.H.)

  18. Stereoscopy Amplifies Emotions Elicited by Facial Expressions

    PubMed Central

    Kätsyri, Jari; Häkkinen, Jukka

    2015-01-01

    Mediated facial expressions do not elicit emotions as strongly as real-life facial expressions, possibly due to the low fidelity of pictorial presentations in typical mediation technologies. In the present study, we investigated the extent to which stereoscopy amplifies emotions elicited by images of neutral, angry, and happy facial expressions. The emotional self-reports of positive and negative valence (which were evaluated separately) and arousal of 40 participants were recorded. The magnitude of perceived depth in the stereoscopic images was manipulated by varying the camera base at 15, 40, 65, 90, and 115 mm. The analyses controlled for participants’ gender, gender match, emotional empathy, and trait alexithymia. The results indicated that stereoscopy significantly amplified the negative valence and arousal elicited by angry expressions at the most natural (65 mm) camera base, whereas stereoscopy amplified the positive valence elicited by happy expressions in both the narrowed and most natural (15–65 mm) base conditions. Overall, the results indicate that stereoscopy amplifies the emotions elicited by mediated emotional facial expressions when the depth geometry is close to natural. The findings highlight the sensitivity of the visual system to depth and its effect on emotions. PMID:27551358

  19. Amplified Optomechanical Transduction of Virtual Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Cirio, Mauro; Debnath, Kamanasish; Lambert, Neill; Nori, Franco

    2017-08-01

    Here we describe how, utilizing a time-dependent optomechanical interaction, a mechanical probe can provide an amplified measurement of the virtual photons dressing the quantum ground state of an ultrastrongly coupled light-matter system. We calculate the thermal noise tolerated by this measurement scheme and discuss an experimental setup in which it could be realized.

  20. Wide-Temperature-Range Integrated Operational Amplifier

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Levanas, Greg; Chen, Yuan; Kolawa, Elizabeth; Cozy, Raymond; Blalock, Benjamin; Greenwell, Robert; Terry, Stephen

    2007-01-01

    A document discusses a silicon-on-insulator (SOI) complementary metal oxide/semiconductor (CMOS) integrated- circuit operational amplifier to be replicated and incorporated into sensor and actuator systems of Mars-explorer robots. This amplifier is designed to function at a supply potential less than or equal to 5.5 V, at any temperature from -180 to +120 C. The design is implemented on a commercial radiation-hard SOI CMOS process rated for a supply potential of less than or equal to 3.6 V and temperatures from -55 to +110 C. The design incorporates several innovations to achieve this, the main ones being the following: NMOS transistor channel lengths below 1 m are generally not used because research showed that this change could reduce the adverse effect of hot carrier injection on the lifetimes of transistors at low temperatures. To enable the amplifier to withstand the 5.5-V supply potential, a circuit topology including cascade devices, clamping devices, and dynamic voltage biasing was adopted so that no individual transistor would be exposed to more than 3.6 V. To minimize undesired variations in performance over the temperature range, the transistors in the amplifier are biased by circuitry that maintains a constant inversion coefficient over the temperature range.

  1. CMOS SiPM with integrated amplifier

    NASA Astrophysics Data System (ADS)

    Schwinger, Alexander; Brockherde, Werner; Hosticka, Bedrich J.; Vogt, Holger

    2017-02-01

    The integration of silicon photomultiplier (SiPM) and frontend electronics in a suitable optoelectronic CMOS process is a promising approach to increase the versatility of single-photon avalanche diode (SPAD)-based singlephoton detectors. By integrating readout amplifiers, the device output capacitance can be reduced to minimize the waveform tail, which is especially important for large area detectors (>10 × 10mm2). Possible architectures include a single readout amplifier for the whole detector, which reduces the output capacitance to 1:1 pF at minimal reduction in detector active area. On the other hand, including a readout amplifier in every SiPM cell would greatly improve the total output capacitance by minimizing the influence of metal routing parasitic capacitance, but requiring a prohibitive amount of detector area. As tradeoff, the proposed detector features one readout amplifier for each column of the detector matrix to allow for a moderate reduction in output capacitance while allowing the electronics to be placed in the periphery of the active detector area. The presented detector with a total size of 1.7 ♢ 1.0mm2 features 400 cells with a 50 μm pitch, where the signal of each column of 20 SiPM cells is summed in a readout channel. The 20 readout channels are subsequently summed into one output channel, to allow the device to be used as a drop-in replacement for commonly used analog SiPMs.

  2. 32 CFR 245.12 - Amplifying instructions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) The ESCAT Plan § 245.12 Amplifying... management, airspace and/or security measures required. Every effort will be made to obtain the approval of... air traffic identification and control procedures to the more restrictive identification and control...

  3. 32 CFR 245.12 - Amplifying instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) The ESCAT Plan § 245.12 Amplifying... management, airspace and/or security measures required. Every effort will be made to obtain the approval of... air traffic identification and control procedures to the more restrictive identification and control...

  4. 32 CFR 245.12 - Amplifying instructions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) The ESCAT Plan § 245.12 Amplifying... management, airspace and/or security measures required. Every effort will be made to obtain the approval of... air traffic identification and control procedures to the more restrictive identification and control...

  5. 32 CFR 245.12 - Amplifying instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appropriate, regarding any changes in the air traffic management, airspace, and/or security measures required...) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) The ESCAT Plan § 245.12 Amplifying... with DOT through the FAA Administrator and DHS through the TSA Administrator to discuss the air traffic...

  6. 32 CFR 245.12 - Amplifying instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate, regarding any changes in the air traffic management, airspace, and/or security measures required...) MISCELLANEOUS PLAN FOR THE EMERGENCY SECURITY CONTROL OF AIR TRAFFIC (ESCAT) The ESCAT Plan § 245.12 Amplifying... with DOT through the FAA Administrator and DHS through the TSA Administrator to discuss the air traffic...

  7. Design of a lock-amplifier circuit

    NASA Astrophysics Data System (ADS)

    Liu, H.; Huang, W. J.; Song, X.; Zhang, W. Y.; Sa, L. B.

    2017-01-01

    The lock-in amplifier is recovered by phase sensitive detection technique for the weak signal submerged in the noise background. This design is based on the TI ultra low power LM358, INA129, OPA227, OP07 and other chips as the core design and production of the lock-in amplifier. Signal generator by 10m ohms /1K ohm resistance points pressure network 10 mu V 1mV adjustable sine wave signal s (T). The concomitant interference signal together through the AC amplifier and band-pass filter signal x (T), on the other hand reference signal R (T) driven by square wave phase shift etc. steps to get the signal R (T), two signals and by phase sensitive detector are a DC full wave, again through its low pass filter and a DC amplifier to be measured signal more accurate detection, the final circuit through the AD conversion and the use of single-chip will display the output.

  8. Parametric Oscillations in High Power Microwave Amplifiers.

    DTIC Science & Technology

    1979-01-01

    report. I j I 1 1) G. Dohler, Parametric Oscillations in High Power Microwave Amplifiers, L Contract No. F49620-77-C-O0 (1979). 2) O. Doehler B. Dohler...IEEE Transactions on Electron Devices, ED 26(10),[ 1602 (19795. 3) 0. Doehler , G. Dohler, International Electron Devices Meeting, I Washington, D.C

  9. Output performance of idealized microwave power amplifiers

    NASA Astrophysics Data System (ADS)

    Kushner, Lawrence J.

    1989-10-01

    Output power, efficiency, power dissipation and optimum load resistance expressions for idealized microwave class A and class B power amplifiers are derived based on a waveform analysis. The effects of device transconductance variation with bias and circuit harmonic termination are examined.

  10. Microwave power amplifier analysis and design

    NASA Astrophysics Data System (ADS)

    Kushner, L. J.

    1988-12-01

    Output power, efficiency, power dissipation, and optimum load-resistance expressions for idealized microwave Class A and B power amplifiers are derived based on a waveform analysis. The effects of device transconductance variation with bias and circuit harmonic termination are examined. Large-signal gain is determined by calculating the input power needed to produce a given output power. Both closed-form and CAD-based solutions are presented, all based on device dc I-V characteristics and small-signal models. A practical power amplifier design procedure is given and used to design a 22-GHz permeable-based transistor (PBT) power amplifier. Although the analysis and design results presented here are useful by themselves, they are also intended to be used in conjunction with other CAD and measurement techniques (such as harmonic balance and load pull) to arrive at a starting point. Device designers also should find these results useful, allowing them to predict how changes in device parameters will affect microwave power amplifier performance.

  11. Stable spatial solitons in semiconductor optical amplifiers.

    PubMed

    Ultanir, E A; Michaelis, D; Lederer, F; Stegeman, G I

    2003-02-15

    The existence of stable dissipative spatial solitons at low intensities in patterned electrode semiconductor optical amplifiers (SOAs) is predicted theoretically. In contrast to conventional SOAs, this system may support stable solitons because the inherent saturating losses provide subcritical bifurcations for both the plane-wave and the soliton solution.

  12. Stable dissipative solitons in semiconductor optical amplifiers.

    PubMed

    Ultanir, Erdem A; Stegeman, George I; Michaelis, Dirk; Lange, Christoph H; Lederer, Falk

    2003-06-27

    We have observed for the first time stable spatial solitons in semiconductor optical amplifiers. Soliton destabilization due to the growth of background noise was suppressed by using patterned electrodes on the device. Numerical simulations fit very well with the experiment results. We show that it is possible to excite these solitons with about 60 mW input power.

  13. Simulations of the LANL regenerative amplifier FEL

    SciTech Connect

    Kesselring, M.; Colson, W.B.; Wong, R.K.; Sheffield, R.L.

    1997-08-01

    The LANL regenerative amplifier FEL is designed to produce an average output power of 1 kW. Simulations study the transverse effects due to guiding by the intense electron beam and feedback. These simulations coupled with experimental measurements can be used to improve future high-power FEL designs.

  14. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  15. Stereoscopy Amplifies Emotions Elicited by Facial Expressions.

    PubMed

    Hakala, Jussi; Kätsyri, Jari; Häkkinen, Jukka

    2015-12-01

    Mediated facial expressions do not elicit emotions as strongly as real-life facial expressions, possibly due to the low fidelity of pictorial presentations in typical mediation technologies. In the present study, we investigated the extent to which stereoscopy amplifies emotions elicited by images of neutral, angry, and happy facial expressions. The emotional self-reports of positive and negative valence (which were evaluated separately) and arousal of 40 participants were recorded. The magnitude of perceived depth in the stereoscopic images was manipulated by varying the camera base at 15, 40, 65, 90, and 115 mm. The analyses controlled for participants' gender, gender match, emotional empathy, and trait alexithymia. The results indicated that stereoscopy significantly amplified the negative valence and arousal elicited by angry expressions at the most natural (65 mm) camera base, whereas stereoscopy amplified the positive valence elicited by happy expressions in both the narrowed and most natural (15-65 mm) base conditions. Overall, the results indicate that stereoscopy amplifies the emotions elicited by mediated emotional facial expressions when the depth geometry is close to natural. The findings highlight the sensitivity of the visual system to depth and its effect on emotions.

  16. Research on fluidics, valves, and proportional amplifiers

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Research and development being conducted at the Systems and Controls Laboratory is reviewed. Static characteristics (supply, input, transfer, output, and noise characteristics) of laminar proportional amplifiers were investigated. Other topics discussed include velocity profiles for laminar fluidic jets, speed control systems employing a jet pipe valve, and power amplification with a vortex valve.

  17. High Power Amplifier Harmonic Output Level Measurement

    NASA Technical Reports Server (NTRS)

    Perez, R. M.; Hoppe, D. J.; Khan, A. R.

    1995-01-01

    A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.

  18. GSK-3 is a master regulator of neural progenitor homeostasis

    PubMed Central

    Kim, Woo-Yang; Wang, Xinshuo; Wu, Yaohong; Doble, Bradley W; Patel, Satish; Woodgett, James R; Snider, William D

    2016-01-01

    The development of the brain requires the exquisite coordination of progenitor proliferation and differentiation to achieve complex circuit assembly. It has been suggested that glycogen synthase kinase 3 (GSK-3) acts as an integrating molecule for multiple proliferation and differentiation signals because of its essential role in the RTK, Wnt and Shh signaling pathways. We created conditional mutations that deleted both the α and β forms of GSK-3 in mouse neural progenitors. GSK-3 deletion resulted in massive hyperproliferation of neural progenitors along the entire neuraxis. Generation of both intermediate neural progenitors and postmitotic neurons was markedly suppressed. These effects were associated with the dysregulation of β-catenin, Sonic Hedgehog, Notch and fibroblast growth factor signaling. Our results indicate that GSK-3 signaling is an essential mediator of homeostatic controls that regulate neural progenitors during mammalian brain development. PMID:19801986

  19. Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission.

    PubMed

    Yang, Zining; Wang, Hongyan; Lu, Qisheng; Hua, Weihong; Xu, Xiaojun

    2011-11-07

    Diode pumped alkali vapor amplifier (DPAA) is a potential candidate in high power laser field. In this paper, we set up a model for the diode double-side-pumped alkali vapor amplifier. For the three-dimensional volumetric gain medium, both the longitudinal and transverse amplified spontaneous emission (ASE) effects are considered and coupled into the rate equations. An iterative numerical approach is proposed to solve the model. Some important influencing factors are simulated and discussed. The results show that in the case of saturated amplification, the ASE effect can be well suppressed rather than a limitation in power scaling of a DPAA.

  20. Operating characteristics of a high-power monolithically integrated flared amplifier master oscillator power amplifier

    SciTech Connect

    O'Brien, S.; Welch, D.F.; Parke, R.A.; Mehuys, D.; Dzurko, K.; Lang, R.J.; Waarts, R. )

    1993-06-01

    High-power monolithically integrated flared amplifier master oscillator power amplifiers (MFA-MOPA's) have been fabricated that operate up to 2 W continuous wave in a single diffraction-limited lobe. The spectral output of the MFA-MOPA is single longitudinal mode with a side-mode suppression ratio greater than 25 dB. Several operating characteristics of the MFA-MOPA, including the beam astigmatism, amplifier gain saturation, linewidth, far-field extinction ratio, and beam quality metrics, are investigated and discussed.

  1. Valves Based on Amplified Piezoelectric Actuators

    NASA Astrophysics Data System (ADS)

    Le Letty, R.; Lhermet, N.; Patient, G.; Claeyssen, F.; Lang, M.

    2004-10-01

    Amplified Piezo Actuators have been developed at CEDRAT TECHNOLOGIES for several years and found several applications in space. Their well-known advantages (rapid response and precise positioning) have been used in valve designs to obtain either rapid or fine proportional valves. A first gas valve is using a small amplified piezo actuator and is further driven with a switched amplifier to get a high frequency modulation. A frequency modulation higher than 400 Hz with a stroke of 100 m has been measured. These properties can also be used for gasoline injectors. A second gas valve is also using an amplified piezo actuator, a linear amplifier, and a servo controller to get an accurate proportional valve dedicated to precise gas flow control in the fields of instrumentation and space. A linear and stable flow control has been demonstrated. The low power consumption of the piezoelectric valve in the space applications is an additional advantage. A stable flow of dry Nitrogen ranging from 0.1 sccm to 200 sccm has been measured with an inlet pressure of 1 bar. These valves have been designed with the help of several modelling tools: finite element procedure for the electro-mechanical part, the contact mechanics between the poppet and the seat, the computational fluid dynamics. The valves have been further measured by using several measuring equipment's, including a laser interferometer, a spectrum analyser to measure the gas flow stability, Thermal vacuum and leak tests have also been performed. A special emphasis is realised on the driving and control aspects of this valve for space applications.

  2. Multi-pass amplifier architecture for high power laser systems

    DOEpatents

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C

    2014-04-01

    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  3. A balanced wide-band amplifier for microwave applications

    NASA Astrophysics Data System (ADS)

    Panzariu, Mircea; Lupescu, Horia; Dumitrascu, Ana; Tamas, Razvan D.

    2015-02-01

    Due to its better performance, high fiability and large power capability, balanced amplifier is one of the most popular designs used in narrow band applications. However, with a balanced amplifier in class A operation, the band-pass is still narrow with classical coupler [1]. In this paper, we propose a new method for widen the band-pass and linearity of the amplifier, by using two Lange couplers and by adding two drivers, so that small signal could be amplified [2], [3], [4], [5]. The proposed amplifier works in the 0.9 - 2.4 GHz band, with good performances. We also propose an A class X-band amplifier, with Wilkinson power divider used as a combiner and divider. The amplifier will operate at 9,5 GHz with Continuous Wave (C.W). The two methods were validated by simulating the balanced amplifier with Lange coupler and the balanced amplifier with Wilkinson power divider, in class A operation.

  4. The warm, rich sound of valve guitar amplifiers

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2017-03-01

    Practical solid state diodes and transistors have made glass valve technology nearly obsolete. Nevertheless, valves survive largely because electric guitar players much prefer the sound of valve amplifiers to the sound of transistor amplifiers. This paper discusses the introductory-level physics behind that preference. Overdriving an amplifier adds harmonics to an input sound. While a moderately overdriven valve amplifier produces strong even harmonics that enhance a sound, an overdriven transistor amplifier creates strong odd harmonics that can cause dissonance. The functioning of a triode valve explains its creation of even and odd harmonics. Music production software enables the examination of both the wave shape and the harmonic content of amplified sounds.

  5. Low phase noise oscillator using two parallel connected amplifiers

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1987-01-01

    A high frequency oscillator is provided by connecting two amplifier circuits in parallel where each amplifier circuit provides the other amplifier circuit with the conditions necessary for oscillation. The inherent noise present in both amplifier circuits causes the quiescent current, and in turn, the generated frequency, to change. The changes in quiescent current cause the transconductance and the load impedance of each amplifier circuit to vary, and this in turn results in opposing changes in the input susceptance of each amplifier circuit. Because the changes in input susceptance oppose each other, the changes in quiescent current also oppose each other. The net result is that frequency stability is enhanced.

  6. Assembly and maintenance of full scale NIF amplifiers in the amplifier module prototype laboratory (AMPLAB)

    SciTech Connect

    Horvath, J. A.

    1998-07-16

    Mechanical assembly and maintenance of the prototype National Ignition Facility amplifiers in the Amplifier Module Prototype Laboratory (AMPLAB) at Lawrence Livermore National Laboratory requires specialized equipment designed to manipulate large and delicate amplifier components in a safe and clean manner. Observations made during the operation of this assembly and maintenance equipment in AMPLAB provide design guidance for similar tools being built for the National Ignition Facility. Fixtures used for amplifier frame installation, laser slab and flashlamp cassette assembly, transport, and installation, and in-situ blastshield exchange are presented. Examples include a vacuum slab gripper, slab handling clean crane, slab cassette assembly fixture, sealed transport vehicle for slab cassette movement between the cleanroom and amplifier, slab cassette transfer fixture between the cleanroom and transport vehicle, and equipment needed for frame assembly unit, blastshield, an d flashlamp cassette installation and removal. The use of these tools for amplifier assembly, system reconfiguration, reflector replacement, and recovery from an abnormal occurrence such as a flashlamp explosion is described. Observations are made on the design and operation of these tools and their contribution to the final design.

  7. High-gain cryogenic amplifier assembly employing a commercial CMOS operational amplifier.

    PubMed

    Proctor, J E; Smith, A W; Jung, T M; Woods, S I

    2015-07-01

    We have developed a cryogenic amplifier for the measurement of small current signals (10 fA-100 nA) from cryogenic optical detectors. Typically operated with gain near 10(7) V/A, the amplifier performs well from DC to greater than 30 kHz and exhibits noise level near the Johnson limit. Care has been taken in the design and materials to control heat flow and temperatures throughout the entire detector-amplifier assembly. A simple one-board version of the amplifier assembly dissipates 8 mW to our detector cryostat cold stage, and a two-board version can dissipate as little as 17 μW to the detector cold stage. With current noise baseline of about 10 fA/(Hz)(1/2), the cryogenic amplifier is generally useful for cooled infrared detectors, and using blocked impurity band detectors operated at 10 K, the amplifier enables noise power levels of 2.5 fW/(Hz)(1/2) for detection of optical wavelengths near 10 μm.

  8. PET imaging of adoptive progenitor cell therapies.

    SciTech Connect

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  9. Multipotent pancreas progenitors: Inconclusive but pivotal topic

    PubMed Central

    Jiang, Fang-Xu; Morahan, Grant

    2015-01-01

    The establishment of multipotent pancreas progenitors (MPP) should have a significant impact not only on the ontology of the pancreas, but also for the translational research of glucose-responding endocrine β-cells. Deficiency of the latter may lead to the pandemic type 1 or type 2 diabetes mellitus, a metabolic disorder. An ideal treatment of which would potentially be the replacement of destroyed or failed β-cells, by restoring function of endogenous pancreatic endocrine cells or by transplantation of donor islets or in vitro generated insulin-secreting cells. Thus, considerable research efforts have been devoted to identify MPP candidates in the pre- and post-natal pancreas for the endogenous neogenesis or regeneration of endocrine insulin-secreting cells. In order to advance this inconclusive but critical field, we here review the emerging concepts, recent literature and newest developments of potential MPP and propose measures that would assist its forward progression. PMID:26730269

  10. Stem/Progenitor cells in vascular regeneration.

    PubMed

    Zhang, Li; Xu, Qingbo

    2014-06-01

    A series of studies has been presented in the search for proof of circulating and resident vascular progenitor cells, which can differentiate into endothelial and smooth muscle cells and pericytes in animal and human studies. In terms of pluripotent stem cells, including embryonic stem cells, iPS, and partial-iPS cells, they display a great potential for vascular lineage differentiation. Development of stem cell therapy for treatment of vascular and ischemic diseases remains a major challenging research field. At the present, there is a clear expansion of research into mechanisms of stem cell differentiation into vascular lineages that are tested in animal models. Although there are several clinical trials ongoing that primarily focus on determining the benefits of stem cell transplantation in ischemic heart or peripheral ischemic tissues, intensive investigation for translational aspects of stem cell therapy would be needed. It is a hope that stem cell therapy for vascular diseases could be developed for clinic application in the future.

  11. The Progenitor of SN 1987A. [IUE

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.

    1988-01-01

    Spatially resolved IUE spectra (1150 to 2000 A) taken at the position of SN 1987A in March 1987 show that the 12th mag B3 I star Sk -69 deg 202 disappeared. Only the fainter companion stars (Star 2 and Star 3) are present near the site of the supernova. It is concluded that Sk -69 deg 202 exploded to produce SN 1987A. The known characteristics of Sk -69 deg 202 are consistent with the interpretation that the progenitor was a relatively compact star, having a high-velocity low-density stellar wind prior to the outburst. Recent IUE spectra of SN 1987A (May 1988) show no evidence that Sk -69 deg 202 still exists inside the expanding ejecta.

  12. L1 Retrotransposition in Neural Progenitor Cells.

    PubMed

    Muotri, Alysson R

    2016-01-01

    Long interspersed nucleotide element 1 (LINE-1 or L1) is a family of non-LTR retrotransposons that can replicate and reintegrate into the host genome. L1s have considerably influenced mammalian genome evolution by retrotransposing during germ cell development or early embryogenesis, leading to massive genome expansion. For many years, L1 retrotransposons were viewed as a selfish DNA parasite that had no contribution in somatic cells. Historically, L1s were thought to only retrotranspose during gametogenesis and in neoplastic processes, but recent studies have shown that L1s are extremely active in the mouse, rat, and human neuronal progenitor cells (NPCs). These de novo L1 insertions can impact neuronal transcriptional expression, creating unique transcriptomes of individual neurons, possibly contributing to the uniqueness of the individual cognition and mental disorders in humans.

  13. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals.

    PubMed

    Yoder, Mervin C; Mead, Laura E; Prater, Daniel; Krier, Theresa R; Mroueh, Karim N; Li, Fang; Krasich, Rachel; Temm, Constance J; Prchal, Josef T; Ingram, David A

    2007-03-01

    The limited vessel-forming capacity of infused endothelial progenitor cells (EPCs) into patients with cardiovascular dysfunction may be related to a misunderstanding of the biologic potential of the cells. EPCs are generally identified by cell surface antigen expression or counting in a commercially available kit that identifies "endothelial cell colony-forming units" (CFU-ECs). However, the origin, proliferative potential, and differentiation capacity of CFU-ECs is controversial. In contrast, other EPCs with blood vessel-forming ability, termed endothelial colony-forming cells (ECFCs), have been isolated from human peripheral blood. We compared the function of CFU-ECs and ECFCs and determined that CFU-ECs are derived from the hematopoietic system using progenitor assays, and analysis of donor cells from polycythemia vera patients harboring a Janus kinase 2 V617F mutation in hematopoietic stem cell clones. Further, CFU-ECs possess myeloid progenitor cell activity, differentiate into phagocytic macrophages, and fail to form perfused vessels in vivo. In contrast, ECFCs are clonally distinct from CFU-ECs, display robust proliferative potential, and form perfused vessels in vivo. Thus, these studies establish that CFU-ECs are not EPCs and the role of these cells in angiogenesis must be re-examined prior to further clinical trials, whereas ECFCs may serve as a potential therapy for vascular regeneration.

  14. Power-Amplifier Module for 145 to 165 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Peralta, Alejandro

    2007-01-01

    A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.

  15. Identification of functional progenitor cells in the pulmonary vasculature

    PubMed Central

    Firth, Amy L.; Yuan, Jason X. -J.

    2012-01-01

    The pulmonary vasculature comprises a complex network of branching arteries and veins all functioning to reoxygenate the blood for circulation around the body. The cell types of the pulmonary artery are able to respond to changes in oxygen tension in order to match ventilation to perfusion. Stem and progenitor cells in the pulmonary vasculature are also involved, be it in angiogenesis, endothelial dysfunction or formation of vascular lesions. Stem and progenitor cells may be circulating around the body, residing in the pulmonary artery wall or stimulated for release from a central niche like the bone marrow and home to the pulmonary vasculature along a chemotactic gradient. There may currently be some controversy over the pathogenic versus therapeutic roles of stem and progenitor cells and, indeed, it is likely both chains of evidence are correct due to the specific influence of the immediate environmental niche a progenitor cell may be in. Due to their great plasticity and a lack of specific markers for stem and progenitor cells, they can be difficult to precisely identify. This review discusses the methodological approaches used to validate the presence of and subtype of progenitors cells in the pulmonary vasculature while putting it in context of the current knowledge of the therapeutic and pathogenic roles for such progenitor cells. PMID:22558524

  16. Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation

    PubMed Central

    2012-01-01

    Background Pannexin 1 forms ion and metabolite permeable hexameric channels and is abundantly expressed in the brain. After discovering pannexin 1 expression in postnatal neural stem and progenitor cells we sought to elucidate its functional role in neuronal development. Results We detected pannexin 1 in neural stem and progenitor cells in vitro and in vivo. We manipulated pannexin 1 expression and activity in Neuro2a neuroblastoma cells and primary postnatal neurosphere cultures to demonstrate that pannexin 1 regulates neural stem and progenitor cell proliferation likely through the release of adenosine triphosphate (ATP). Conclusions Permeable to ATP, a potent autocrine/paracine signaling metabolite, pannexin 1 channels are ideally suited to influence the behavior of neural stem and progenitor cells. Here we demonstrate they play a robust role in the regulation of neural stem and progenitor cell proliferation. Endogenous postnatal neural stem and progenitor cells are crucial for normal brain health, and their numbers decline with age. Furthermore, these special cells are highly responsive to neurological injury and disease, and are gaining attention as putative targets for brain repair. Therefore, understanding the fundamental role of pannexin 1 channels in neural stem and progenitor cells is of critical importance for brain health and disease. PMID:22458943

  17. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors.

    PubMed

    Hendry, Caroline E; Vanslambrouck, Jessica M; Ineson, Jessica; Suhaimi, Norseha; Takasato, Minoru; Rae, Fiona; Little, Melissa H

    2013-09-01

    Direct reprogramming involves the enforced re-expression of key transcription factors to redefine a cellular state. The nephron progenitor population of the embryonic kidney gives rise to all cells within the nephron other than the collecting duct through a mesenchyme-to-epithelial transition, but this population is exhausted around the time of birth. Here, we sought to identify the conditions under which adult proximal tubule cells could be directly transcriptionally reprogrammed to nephron progenitors. Using a combinatorial screen for lineage-instructive transcription factors, we identified a pool of six genes (SIX1, SIX2, OSR1, EYA1, HOXA11, and SNAI2) that activated a network of genes consistent with a cap mesenchyme/nephron progenitor phenotype in the adult proximal tubule (HK2) cell line. Consistent with these reprogrammed cells being nephron progenitors, we observed differential contribution of the reprogrammed population into the Six2(+) nephron progenitor fields of an embryonic kidney explant. Dereplication of the pool suggested that SNAI2 can suppress E-CADHERIN, presumably assisting in the epithelial-to-mesenchymal transition (EMT) required to form nephron progenitors. However, neither TGFβ-induced EMT nor SNAI2 overexpression alone was sufficient to create this phenotype, suggesting that additional factors are required. In conclusion, these results suggest that reinitiation of kidney development from a population of adult cells by generating embryonic progenitors may be feasible, opening the way for additional cellular and bioengineering approaches to renal repair and regeneration.

  18. Thrombopoietin is a growth factor for rat hepatic progenitors.

    PubMed

    Schmelzer, Eva; Deiwick, Andrea; Bruns, Helge; Fiegel, Henning C; Bader, Augustinus

    2008-03-01

    The liver is the primary site of hematopoiesis during fetal development; it has been shown that thrombopoietin (TPO) produced by the liver during fetal development is a major regulator of megakaryocytopoiesis. As maximum liver growth and hematopoiesis occur simultaneously, we hypothesized that TPO may act as a growth factor for hepatic progenitors. Therefore, the influence of TPO on the proliferation of fetal hepatic progenitors in vitro compared with that of adult hepatocytes was analyzed. The expression of the TPO receptor, c-mpl, was investigated in fetal and adult liver. Cell proliferation was measured by bromodeoxyuridine incorporation and total cell counts. TPO and c-mpl gene expression was investigated by reverse transcription polymerase chain reaction. The cell surface expression of c-mpl was analyzed in fetal and adult human liver by immunohistochemistry. Hepatic progenitors of fetal and adult liver but not hepatocytes expressed the TPO receptor, c-mpl, on the cell surface. Fetal hepatic progenitors expressed mRNA for TPO and its receptor. TPO stimulated cell proliferation and increased cell numbers of cultured rat fetal hepatic progenitors but not adult hepatocytes. We conclude that TPO acts in addition to its known role in megakaryocytopoiesis as a growth factor for hepatic progenitors but not hepatocytes in vitro; thus, TPO represents a growth factor for hepatic progenitors during fetal liver development.

  19. THE PROGENITOR OF THE TYPE IIb SN 2008ax REVISITED

    SciTech Connect

    Folatelli, Gastón; Bersten, Melina C.; Benvenuto, Omar G.; Kuncarayakti, Hanindyo; Maeda, Keiichi; Nomoto, Ken’ichi

    2015-10-01

    Hubble Space Telescope observations of the site of the supernova (SN) SN 2008ax obtained in 2011 and 2013 reveal that the possible progenitor object detected in pre-explosion images was in fact multiple. Four point sources are resolved in the new, higher-resolution images. We identify one of the sources with the fading SN. The other three objects are consistent with single supergiant stars. We conclude that their light contaminated the previously identified progenitor candidate. After subtraction of these stars, the progenitor appears to be significantly fainter and bluer than previously measured. Post-explosion photometry at the SN location indicates that the progenitor object has disappeared. If single, the progenitor is compatible with a supergiant star of B to mid-A spectral type, while a Wolf–Rayet (W-R) star would be too luminous in the ultraviolet to account for the observations. Moreover, our hydrodynamical modeling shows that the pre-explosion mass was 4–5 M{sub ⊙} and the radius was 30–50 R{sub ⊙}, which is incompatible with a W-R progenitor. We present a possible interacting binary progenitor computed with our evolutionary models that reproduces all the observational evidence. A companion star as luminous as an O9–B0 main-sequence star may have remained after the explosion.

  20. Magnetic Amplifier for Power Flow Control

    SciTech Connect

    2012-02-24

    GENI Project: ORNL is developing an electromagnet-based, amplifier-like device that will allow for complete control over the flow of power within the electric grid. To date, complete control of power flow within the grid has been prohibitively expensive. ORNL’s controller could provide a reliable, cost-effective solution to this problem. The team is combining two types of pre-existing technologies to assist in flow control, culminating in a prototype iron-based magnetic amplifier. Ordinarily, such a device would require expensive superconductive wire, but the magnetic iron core of ORNL’s device could serve as a low-cost alternative that is equally adept at regulating power flow.

  1. Wave optics modelling of amplified spontaneous emission

    SciTech Connect

    Ritchie, B.; Garrison, J.

    1990-11-06

    A laser works by amplified spontaneous emission (ASE) of inverted atomic ions confined in an amplifier of rod-like geometry, such that ASE radiation is directed out of both ends of the rod. The forward and backward ASE waves are coupled through the population-rate equations and cause the saturation of the lasing transition (gain saturation). Diffraction of the waves in the transverse direction is responsible for the radiation pattern (angular distribution) observed on a distant screen and for the degree of spatial coherence of the radiation. Refraction of the light also occurs due to spatial gradients in the electron density. In order to describe this situation a code has been developed which numerically solves paraxial Maxwell's equations in the time and two spatial dimensions. The code uses the Peaceman-Rachford Alternating-Direction-Implicit algorithm and is benchmarked against laboratory DYE-LASER experiments. 4 refs., 1 fig.

  2. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Kim, K. H.; Stock, L. V.

    1986-01-01

    In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.

  3. Linear control of oscillator and amplifier flows*

    NASA Astrophysics Data System (ADS)

    Schmid, Peter J.; Sipp, Denis

    2016-08-01

    Linear control applied to fluid systems near an equilibrium point has important applications for many flows of industrial or fundamental interest. In this article we give an exposition of tools and approaches for the design of control strategies for globally stable or unstable flows. For unstable oscillator flows a feedback configuration and a model-based approach is proposed, while for stable noise-amplifier flows a feedforward setup and an approach based on system identification is advocated. Model reduction and robustness issues are addressed for the oscillator case; statistical learning techniques are emphasized for the amplifier case. Effective suppression of global and convective instabilities could be demonstrated for either case, even though the system-identification approach results in a superior robustness to off-design conditions.

  4. Low noise amplifiers above 18 GHz

    NASA Astrophysics Data System (ADS)

    Kennan, W.; Chye, P.

    Noise reduction in ground stations operating above 18 GHz are explored in terms of current limitations in device, measurement and circuit technology and progress on a low noise amplifier. GaAs FETs have, as of 1982, reached a level of 1.55 dB noise and 12.3 dB gain. The devices include a 75 micron gate width and sub-quarter micron gate length. The noise figures are thus far determined in the 20-22 GHz range. A balanced microstrip circuit 0.65 x 0.51 cm in size featuring Lange couplers, input and output matching circuits, quarter wavelength bias chokes and TaN resistor bias networks has been developed for VSWR and cascading stages applications. The amplifier, in a two-stage configuration, has furnished a bandwidth of 12-22 GHz.

  5. Output performance of idealized microwave power amplifiers

    NASA Astrophysics Data System (ADS)

    Kushner, Lawrence J.

    1989-10-01

    Output power, drain efficiency, power dissipation, and optimum load resistance, for maximum output power, are calculated for class A and class B power amplifiers based on a waveform analysis and the device's static I-V characteristics. The analysis presented derives results for amplifiers with either constant or linear transconductance devices and with resistive or tuned loads. Besides the two simple load types, the basic derivations allow a broader range of load impedances to be evaluated. The effect of finite output impedance is considered, and it is shown that by appropriately adjusting the input drive, finite output impedance does not reduce the output power or drain efficiency, but does result in decreased large signal gain. The effects of device transconductance variation with bias and circuit harmonic termination are also examined.

  6. Solid state radiographic image amplifiers, part C

    NASA Technical Reports Server (NTRS)

    Szepesi, Z.

    1971-01-01

    The contrast sensitivity of the radiographic amplifiers, both the storage type and nonstorage type, their absolute sensitivity, and the reproducibility of fabrication were investigated. The required 2-2T quality level was reached with the radiographic storage screen. The sensitivity threshold was 100 to 200 mR with 45 to 100 kV filtered X-rays. The quality level of the radiographic amplifier screen (without storage) was 4-4T; for a 6 mm (0.25 in.) thick aluminum specimen, a 1 mm (0.040 in.) diameter hole in a 0.25 mm (0.010 in.) thick penetrameter was detected. Its sensitivity threshold was 2 to 6 mR/min. The developed radiographic screens are applicable for uses in nondestructive testing.

  7. Ideal photon number amplifier and duplicator

    NASA Technical Reports Server (NTRS)

    Dariano, G. M.

    1992-01-01

    The photon number-amplification and number-duplication mechanism are analyzed in the ideal case. The search for unitary evolutions leads to consider also a number-deamplification mechanism, the symmetry between amplification and deamplification being broken by the integer-value nature of the number operator. Both transformations, amplification and duplication, need an auxiliary field which, in the case of amplification, turns out to be amplified in the inverse way. Input-output energy conservation is accounted for using a classical pump or through frequency-conversion of the fields. Ignoring one of the fields is equivalent to considering the amplifier as an open system involving entropy production. The Hamiltonians of the ideal devices are given and compared with those of realistic systems.

  8. Design and simulation of a gyroklystron amplifier

    SciTech Connect

    Chauhan, M. S. Swati, M. V.; Jain, P. K.

    2015-03-15

    In the present paper, a design methodology of the gyroklystron amplifier has been described and subsequently used for the design of a typically selected 200 kW, Ka-band, four-cavity gyroklystron amplifier. This conceptual device design has been validated through the 3D particle-in-cell (PIC) simulation and nonlinear analysis. Commercially available PIC simulation code “MAGIC” has been used for the electromagnetic study at the different location of the device RF interaction structure for the beam-absent case, i.e., eigenmode study as well as for the electron beam and RF wave interaction behaviour study in the beam present case of the gyroklystron. In addition, a practical problem of misalignment of the RF cavities with drift tubes within the tube has been also investigated and its effect on device performance studied. The analytical and simulation results confirmed the validity of the gyroklystron device design. The PIC simulation results of the present gyroklystron produced a stable RF output power of ∼218 kW for 0% velocity spread at 35 GHz, with ∼45 dB gain, 37% efficiency, and a bandwidth of 0.3% for a 70 kV, 8.2 A gyrating electron beam. The simulated values of RF output power have been found in agreement with the nonlinear analysis results within ∼5%. Further, the PIC simulation has been extended to study a practical problem of misalignment of the cavities axis and drift tube axis of the gyroklystron amplifier and found that the RF output power is more sensitive to misalignments in comparison to the device bandwidth. The present paper, gyroklystron device design, nonlinear analysis, and 3D PIC simulation using commercially available code had been systematically described would be of use to the high-power gyro-amplifier tube designers and research scientists.

  9. Radiation and particle detector and amplifier

    NASA Technical Reports Server (NTRS)

    Schmidt, K. C. (Inventor)

    1973-01-01

    A radiation or charged particle detector is described which incorporates a channel multiplier structure to amplify the detected rays or particles. The channel multiplier structure has a support multiplying element with a longitudinal slot along one side. The element supports a pair of plates positioned contiguous with the slot. The plates funnel the particles or rays to be detected into the slotted aperture and the element, thus creating an effectively wide aperture detector of the windowless type.

  10. Gas amplified ionization detector for gas chromatography

    DOEpatents

    Huston, Gregg C.

    1992-01-01

    A gas-amplified ionization detector for gas chromatrography which possesses increased sensitivity and a very fast response time. Solutes eluding from a gas chromatographic column are ionized by UV photoionization of matter eluting therefrom. The detector is capable of generating easily measured voltage signals by gas amplification/multiplication of electron products resulting from the UV photoionization of at least a portion of each solute passing through the detector.

  11. Multiwatts narrow linewidth fiber Raman amplifiers.

    PubMed

    Feng, Yan; Taylor, Luke; Bonaccini Calia, Domenico

    2008-07-21

    Up to 4.8 W, approximately 10 MHz, 1178 nm laser is obtained by Raman amplification of a distributed feedback diode laser in standard single mode fibers pumped by an 1120 nm Yb fiber laser. More than 10% efficiency and 27 dB amplification is achieved, limited by onset of stimulated Brillouin scattering. The ratio of Raman to Brillouin gain coefficient of a fiber is identified as a figure of merit for building a narrow linewidth fiber Raman amplifier.

  12. Self-amplifying mRNA vaccines.

    PubMed

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization.

  13. Novel 140 GHz gyro-TWT amplifier

    SciTech Connect

    Hu, W.; Kreischer, K.E.; Shapiro, M.; Temkin, R.J.

    1996-12-31

    The authors have designed and are currently building a novel gyro-TWT amplifier at powers up to 100 kW at a frequency of 140 GHz. The electron beam will be provided by an existing MIG electron gun which has been previously used in gyrotron oscillator research at the 100 kW power level at 140 GHz. The gun operates at 65 kV and up to 8A with {nu}{sub {perpendicular}}/{nu}{sub {parallel}} equal to 1.5. The novel wave circuit consists of two facing mirrors with confocal profiles in the transverse direction and flat profiles in the longitudinal direction. The mode is Gaussian-like in the transverse direction. This cavity design effectively reduces the mode competition problem in conventional amplifiers from two dimensions to one dimension. Another advantage of this circuit is the relatively large circuit size, which improves power capacity. Preliminary calculations indicate that the linear gain is about 2.7 dB/cm with an efficiency exceeding 20%. The driver of the Gyro-TWT amplifier is a 95 GHz Varian EIO generator with 100 W peak output power. The amplifier also employs a confocal mode converter which launches a gaussian beam along the axis. The slot size of the cavity is optimized to have minimal operating mode loss while maximizing losses of competing modes. A preliminary experiment using an oscillator configuration has also been designed. The device could easily be scaled to 95 GHz to meet D.O.D. needs at that frequency.

  14. Erbium-doped-fiber optical limiting amplifiers

    NASA Astrophysics Data System (ADS)

    Graydon, Oliver C.; Nickolaos Zervas, Michael; Laming, Richard I.

    1995-05-01

    A novel configuration of an erbium-doped-fiber optical output-limiting amplifier (OLA) is presented which is realized by simply introducing a differential lump-loss between the signal and the pump power at a particular point along the fiber. The OLA exhibits an input-power dynamic range in excess of 40 dB and the capacity to control optically the level of the constant-output signal.

  15. One Kilowatt UHF Solid State Power Amplifier.

    DTIC Science & Technology

    1982-02-01

    den:fiy t, . .mber) One-Killowat t Satellite Communications UHF Hopping Filter Solid State Amplifier 20. ABSTRACT (Continue on reverse aide It neceeary...in this report are power input versus power output, intermodulation products measurement, thermal, and satellite tests.FORM13 DD , JAN73 1 3 EDITION OF...DESCRIPTIONS OF TESTS 18 1. Laboratory and Flight Preliminary Tests 18 2. Power Input vs Power Output Tests 27 3. Satellite Tests 30 4

  16. Design and simulation of a gyroklystron amplifier

    NASA Astrophysics Data System (ADS)

    Chauhan, M. S.; Swati, M. V.; Jain, P. K.

    2015-03-01

    In the present paper, a design methodology of the gyroklystron amplifier has been described and subsequently used for the design of a typically selected 200 kW, Ka-band, four-cavity gyroklystron amplifier. This conceptual device design has been validated through the 3D particle-in-cell (PIC) simulation and nonlinear analysis. Commercially available PIC simulation code "MAGIC" has been used for the electromagnetic study at the different location of the device RF interaction structure for the beam-absent case, i.e., eigenmode study as well as for the electron beam and RF wave interaction behaviour study in the beam present case of the gyroklystron. In addition, a practical problem of misalignment of the RF cavities with drift tubes within the tube has been also investigated and its effect on device performance studied. The analytical and simulation results confirmed the validity of the gyroklystron device design. The PIC simulation results of the present gyroklystron produced a stable RF output power of ˜218 kW for 0% velocity spread at 35 GHz, with ˜45 dB gain, 37% efficiency, and a bandwidth of 0.3% for a 70 kV, 8.2 A gyrating electron beam. The simulated values of RF output power have been found in agreement with the nonlinear analysis results within ˜5%. Further, the PIC simulation has been extended to study a practical problem of misalignment of the cavities axis and drift tube axis of the gyroklystron amplifier and found that the RF output power is more sensitive to misalignments in comparison to the device bandwidth. The present paper, gyroklystron device design, nonlinear analysis, and 3D PIC simulation using commercially available code had been systematically described would be of use to the high-power gyro-amplifier tube designers and research scientists.

  17. Wide Band Gyrotron Traveling Wave Amplifier Analysis.

    DTIC Science & Technology

    1987-12-01

    phase versus frequency characteristics. It is in these aspects that the gyrotron amplifier effort has been less than successful. A C-band gyro- TWT ...proposals were made several years ago, no experimental results have yet been reported. Another concept for increasing the bandwidth of the gyro- TWT is to...including dielectric loading of the waveguide [24], helix loaded waveguide (25]-[26], and disc-loaded waveguide [26]-(27). No experimental results on

  18. In vitro toxicity of trichothecenes on human haematopoietic progenitors.

    PubMed

    Parent-Massin, D; Fuselier, R; Thouvenot, D

    1994-01-01

    The culture of human haematopoietic progenitors, Colony-Forming-Unit Granulocyte and Macrophage (CFU-GM), has been performed in the presence of four trichothecenes, T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS), and deoxynivalenol (DON). Our results showed that trichothecenes were cytotoxic for human haematopoietic progenitors. This work and the analysis of results described in the literature allowed us to propose that the haematologic lesions observed during human intoxication could be due to a destruction of haematopoietic progenitors such as granulocytic and macrophage colony-forming cells.

  19. Vascular smooth muscle progenitor cells: building and repairing blood vessels.

    PubMed

    Majesky, Mark W; Dong, Xiu Rong; Regan, Jenna N; Hoglund, Virginia J

    2011-02-04

    Molecular pathways that control the specification, migration, and number of available smooth muscle progenitor cells play key roles in determining blood vessel size and structure, capacity for tissue repair, and progression of age-related disorders. Defects in these pathways produce malformations of developing blood vessels, depletion of smooth muscle progenitor cell pools for vessel wall maintenance and repair, and aberrant activation of alternative differentiation pathways in vascular disease. A better understanding of the molecular mechanisms that uniquely specify and maintain vascular smooth muscle cell precursors is essential if we are to use advances in stem and progenitor cell biology and somatic cell reprogramming for applications directed to the vessel wall.

  20. Effect of acyclovir and interferon on human hematopoietic progenitor cells.

    PubMed Central

    Parker, L M; Lipton, J M; Binder, N; Crawford, E L; Kudisch, M; Levin, M J

    1982-01-01

    Continuous in vitro exposure of human bone marrow cells to acyclovir (approximately 200 microM) or human leukocyte interferon (approximately 250 U/ml) caused 50% inhibition of granulocyte colony-forming cell differentiation. Colonies expressed in the presence of either agent were reduced both in size and number. Erythroid progenitors were more resistant than granulocyte progenitors to the antiproliferative effects of acyclovir. Progenitor cells of patients recovering from cytotoxic chemotherapy were no more sensitive to the effects of acyclovir or interferon than were cells obtained from patients before chemotherapy. PMID:6177284

  1. Parallel reservoir computing using optical amplifiers.

    PubMed

    Vandoorne, Kristof; Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Bienstman, Peter

    2011-09-01

    Reservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation. We have previously proposed a network of coupled semiconductor optical amplifiers as an interesting test case for such a hardware implementation. In this paper, we investigate the important design parameters and the consequences of process variations through simulations. We use an isolated word recognition task with babble noise to evaluate the performance of the photonic reservoirs with respect to traditional software reservoir implementations, which are based on leaky hyperbolic tangent functions. Our results show that the use of coherent light in a well-tuned reservoir architecture offers significant performance benefits. The most important design parameters are the delay and the phase shift in the system's physical connections. With optimized values for these parameters, coherent semiconductor optical amplifier (SOA) reservoirs can achieve better results than traditional simulated reservoirs. We also show that process variations hardly degrade the performance, but amplifier noise can be detrimental. This effect must therefore be taken into account when designing SOA-based RC implementations.

  2. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In H.; Stock, Larry V.

    1988-01-01

    A XeCl laser which was developed earlier for an iodine laser oscillator was modified in order to increase the output pulse energy of XeCl laser so that the iodine laser output energy could be increased. The electrical circuit of the XeCl laser was changed from a simple capacitor discharge circuit of the XeCl laser to a Marx system. Because of this improvement the output energy from the XeCl laser was increased from 60 mj to 80 mj. Subsequently, iodine laser output energy was increased from 100 mj to 3 mj. On the other hand, the energy storage capability and amplification characteristics of the Vortek solar simulator-pumped amplifier was calculated expecting the calculated amplification factor is about 2 and the energy extraction efficiency is 26 percent due to the very low input energy density to the amplifier. As a result of an improved kinetic modeling for the iodine solar simulator pumped power amplifier, it is found that the I-2 along the axis of the tube affects seriously the gain profile. For the gas i-C3F7I at the higher pressures, the gain will decrease due to the I-2 as the pumping intensity increases, and at these higher pressures an increase in flow velocity will increase the gain.

  3. LLNL/Lion Precision LVDT amplifier

    SciTech Connect

    Hopkins, D.J.

    1994-04-01

    A high-precision, low-noise, LVDT amplifier has been developed which is a significant advancement on the current state of the art in contact displacement measurement. This amplifier offers the dynamic range of a typical LVDT probe but with a resolution that rivals that of non contact displacement measuring systems such as capacitance gauges and laser interferometers. Resolution of 0.1 {mu} in with 100 Hz bandwidth is possible. This level of resolution is over an order of magnitude greater than what is now commercially available. A front panel switch can reduce the bandwidth to 2.5 Hz and attain a resolution of 0.025 {mu} in. This level of resolution meets or exceeds that of displacement measuring laser interferometry or capacitance gauge systems. Contact displacement measurement offers high part spatial resolution and therefore can measure not only part contour but surface finish. Capacitance gauges and displacement laser interferometry offer poor part spatial resolution and can not provide good surface finish measurements. Machine tool builders, meteorologists and quality inspection departments can immediately utilize the higher accuracy and capabilities that this amplifier offers. The precision manufacturing industry can improve as a result of improved capability to measure parts that help reduce costs and minimize material waste.

  4. Variable Gain Semiconductor Optical Linear Amplifier (OLA)

    NASA Astrophysics Data System (ADS)

    Michie, W. Craig; Kelly, Tony; Tomlinson, Andy; Andonovic, Ivan

    2002-12-01

    The semiconductor optical amplifier (SOA) is a versatile component that can be deployed to meet the expanding applications associated with the introduction of additional functionalities at the optical level in wavelength division multiplexed systems. The future network requires low cost, small footprint, directly controllable amplification throughout the different application layers from long haul through to metro; the intrinsic size and integration capability advantages will ensure that the SOA plays a key role in this evolution. In multi-wavelength gating/amplification applications the gain dynamics, oscillating at timescales comparable to that of the data which is being amplified, introduce issues of pattern dependent waveform distortion (patterning) in single channel, and inter-channel cross-talk in multi-wavelength cases which require management through careful SOA design and understanding of the network application scenarios. In this paper, an optical linear amplifier (OLA) architecture with the unique capability to provide variable gain whilst maintaining linear operation at high output saturation powers will be described. Initial characterisation results for the OLA will be presented.

  5. Novel 140 GHz Gyro-TWT Amplifier

    NASA Astrophysics Data System (ADS)

    Hu, W.; Kreischer, K. E.; Shapiro, M.; Temkin, R. J.

    1996-11-01

    We have designed and are currently building a novel gyro-twt amplifier to operate at 100 kW and a frequency of 95 GHz. However, due to equipment availability in our laboratory, the amplifier will actually be operated a frequency of 140 GHz. The electron beam will be provided by an existing MIG electron gun which has been previously used in gyrotron oscillator research at the 100 kW power level at 140 GHz. The gun operates at 65 kV and up to 8A with equal to 1.5. The novel wave circuit consists of two facing mirrors with confocal profiles in the transverse direction and flat profiles in the longitudinal direction. The mode is Gaussian-like in the transverse direction. This design effectively reduces the mode competition problem in conventional amplifiers from two dimensional to one dimensional. Another advantage of this circuit is the relatively large cavity size, which improves power capacity. Preliminary calculations indicate that the linear gain is about 2.7dB/cm with an efficiency exceeding 20preliminary experiment using an oscillator configuration has also been designed.

  6. Hearing Aids and Personal Sound Amplifiers: Know the Difference

    MedlinePlus

    ... Consumers Consumer Updates Hearing Aids and Personal Sound Amplifiers: Know the Difference Share Tweet Linkedin Pin it ... seen them advertised on television—small electronic sound amplifiers that allow users to enjoy nighttime TV without ...

  7. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range.

  8. Tiny biomedical amplifier combines high performance, low power drain

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.

    1965-01-01

    Transistorized, portable, high performance amplifier with low power drain facilitates biomedical studies on mobile subjects. This device, which utilizes a differential input to obtain a common-mode rejection, is used for amplifying electrocardiogram and electromyogram signals.

  9. Experimental research of a chain of diode pumped rubidium amplifiers.

    PubMed

    Li, Yunfei; Hua, Weihong; Li, Lei; Wang, Hongyan; Yang, Zining; Xu, Xiaojun

    2015-10-05

    In this paper, we have set up a diode pumped rubidium MOPA system with a chain of two amplifiers. The experimental results show an amplified laser power of 26W with amplification factor of 16.3 and power extraction efficiency of 53% for a single amplifier, and an amplified laser power of 11W with amplification factor of 7.9 and power extraction efficiency of 26% for a chain of two amplifiers. The reason for lower performance of cascade amplification is mainly due to the limited total pump power, which will be not sufficient for efficient pumping when assigned from a single amplifier into two amplifiers. The situation could be well improved by increasing the seed laser power as well as the pump power for each amplifier to realize high efficient saturated amplification. Such MOPA configuration has the potential for scaling high beam quality alkali laser into high powers.

  10. Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats

    PubMed Central

    Wang, Lin; Wang, Xiangdong; Xie, Guanhua; Wang, Lei; Hill, Colin K.; DeLeve, Laurie D.

    2012-01-01

    The ability of the liver to regenerate is crucial to protect liver function after injury and during chronic disease. Increases in hepatocyte growth factor (HGF) in liver sinusoidal endothelial cells (LSECs) are thought to drive liver regeneration. However, in contrast to endothelial progenitor cells, mature LSECs express little HGF. Therefore, we sought to establish in rats whether liver injury causes BM LSEC progenitor cells to engraft in the liver and provide increased levels of HGF and to examine the relative contribution of resident and BM LSEC progenitors. LSEC label-retaining cells and progenitors were identified in liver and LSEC progenitors in BM. BM LSEC progenitors did not contribute to normal LSEC turnover in the liver. However, after partial hepatectomy, BM LSEC progenitor proliferation and mobilization to the circulation doubled. In the liver, one-quarter of the LSECs were BM derived, and BM LSEC progenitors differentiated into fenestrated LSECs. When irradiated rats underwent partial hepatectomy, liver regeneration was compromised, but infusion of LSEC progenitors rescued the defect. Further analysis revealed that BM LSEC progenitors expressed substantially more HGF and were more proliferative than resident LSEC progenitors after partial hepatectomy. Resident LSEC progenitors within their niche may play a smaller role in recovery from partial hepatectomy than BM LSEC progenitors, but, when infused after injury, these progenitors engrafted and expanded markedly over a 2-month period. In conclusion, LSEC progenitor cells are present in liver and BM, and recruitment of BM LSEC progenitors is necessary for normal liver regeneration. PMID:22406533

  11. Testing of active Fresnel rhomb zig-zag slab amplifier

    SciTech Connect

    Bikmatov, R.G.; Charikov, A.V.; Chernyak, V.M.; Ignat`ev, L.P.; Kondrashov, V.N.; Kuznetsov, V.G.; Nikolaevskii, V.G.; Nugumanov, A.M.; Pergament, M.I.; Rozhkov, A.D.; Manes, K.

    1995-12-31

    The work is devoted to the investigation of a wide-aperture amplifier which is intended to be installed in the laser system Nova Upgrade. The amplifier should meet rather severe requirements. The authors have carried out the experimental investigation of gain nonuniformity over all the aperture of the amplifier and estimated depolarization and phase distortions to determine the sizes of the amplifier aperture operating zone.

  12. Radiation-resistant optical fiber amplifiers for satellite communications

    NASA Astrophysics Data System (ADS)

    Stampoulidis, L.; Edmunds, J.; Kechagias, M.; Stevens, G.; Farzana, J.; Welch, M.; Kehayas, E.

    2017-02-01

    Optical fiber amplifiers are key building blocks in laser communication terminals and telecom photonic payloads. In this paper we present 1.55μm booster amplifiers and pre-amplifiers suitable for satellite to ground, inter-satellite links and flexible photonic payloads. We validate the designs in the relevant space environment by characterizing the performance against ionizing radiation and report on functional performance of the amplifiers over temperature, in thermal vacuum and after vibration and mechanical shock.

  13. Lineage tracing of neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk progenitor cell maintenance and differentiation.

    PubMed

    Garriock, Robert J; Chalamalasetty, Ravindra B; Kennedy, Mark W; Canizales, Lauren C; Lewandoski, Mark; Yamaguchi, Terry P

    2015-05-01

    In the development of the vertebrate body plan, Wnt3a is thought to promote the formation of paraxial mesodermal progenitors (PMPs) of the trunk region while suppressing neural specification. Recent lineage-tracing experiments have demonstrated that these trunk neural progenitors and PMPs derive from a common multipotent progenitor called the neuromesodermal progenitor (NMP). NMPs are known to reside in the anterior primitive streak (PS) region; however, the extent to which NMPs populate the PS and contribute to the vertebrate body plan, and the precise role that Wnt3a plays in regulating NMP self-renewal and differentiation are unclear. To address this, we used cell-specific markers (Sox2 and T) and tamoxifen-induced Cre recombinase-based lineage tracing to locate putative NMPs in vivo. We provide functional evidence for NMP location primarily in the epithelial PS, and to a lesser degree in the ingressed PS. Lineage-tracing studies in Wnt3a/β-catenin signaling pathway mutants provide genetic evidence that trunk progenitors normally fated to enter the mesodermal germ layer can be redirected towards the neural lineage. These data, combined with previous PS lineage-tracing studies, support a model that epithelial anterior PS cells are Sox2(+)T(+) multipotent NMPs and form the bulk of neural progenitors and PMPs of the posterior trunk region. Finally, we find that Wnt3a/β-catenin signaling directs trunk progenitors towards PMP fates; however, our data also suggest that Wnt3a positively supports a progenitor state for both mesodermal and neural progenitors. © 2015. Published by The Company of Biologists Ltd.

  14. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Physiological signal amplifier. 882.1835 Section 882.1835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device...

  15. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  16. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Physiological signal amplifier. 882.1835 Section 882.1835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device...

  17. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Physiological signal amplifier. 882.1835 Section 882.1835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device...

  18. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  19. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  20. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Physiological signal amplifier. 882.1835 Section 882.1835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device...

  1. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  2. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  3. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  4. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  5. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  6. 21 CFR 882.1835 - Physiological signal amplifier.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Physiological signal amplifier. 882.1835 Section 882.1835 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... signal amplifier. (a) Identification. A physiological signal amplifier is a general purpose device...

  7. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  8. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  9. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  10. 21 CFR 870.2050 - Biopotential amplifier and signal conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Biopotential amplifier and signal conditioner. 870.2050 Section 870.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Biopotential amplifier and signal conditioner. (a) Identification. A biopotential amplifier and...

  11. 47 CFR 2.815 - External radio frequency power amplifiers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false External radio frequency power amplifiers. 2... External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power amplifier is any device which, (1) when used in conjunction with a radio transmitter as a signal source...

  12. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  13. 21 CFR 870.2060 - Transducer signal amplifier and conditioner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Transducer signal amplifier and conditioner. 870.2060 Section 870.2060 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Transducer signal amplifier and conditioner. (a) Identification. A transducer signal amplifier...

  14. Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design

    DTIC Science & Technology

    2012-10-01

    Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design by John E. Penn ARL-TR-6237 October 2012...Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design John E. Penn Sensors and Electron Devices Directorate, ARL...TITLE AND SUBTITLE Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  15. Differential transimpedance amplifier circuit for correlated differential amplification

    DOEpatents

    Gresham, Christopher A.; Denton, M. Bonner; Sperline, Roger P.

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  16. Signal Conditioning Amplifier and Recorder (SCAmpR)

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Voska, Ned (Technical Monitor)

    2002-01-01

    The Signal Conditioning Amplifier and Recorder (SCAmpR) system is presented. The topics include: 1) System Description; 2) Universal Signal Conditioning Amplifier (USCA); 3) Advanced Data Acquisition System (ADAS); and 4) Signal Conditioning Amplifier and Recorder (SCAmpR). This paper is presented in viewgraph form.

  17. Digital system provides superregulation of nanosecond amplifier-discriminator circuit

    NASA Technical Reports Server (NTRS)

    Forges, K. G.

    1966-01-01

    Feedback system employing a digital logic comparator to detect and correct amplifier drift provides stable gain characteristics for nanosecond amplifiers used in counting applications. Additional anticoincidence logic enables application of the regulation circuit to the amplifier and discriminator while they are mounted in an operable circuit.

  18. Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers (Part 2)

    DTIC Science & Technology

    2013-07-01

    Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers (Part 2) by John E. Penn ARL-TN-0556 July 2013...Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers (Part 2) John E. Penn Sensors and Electron Devices...TITLE AND SUBTITLE Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers (Part 2) 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  19. Monolithic Microwave Integrated Circuits (MMIC) Broadband Power Amplifiers

    DTIC Science & Technology

    2012-12-01

    Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers by John E. Penn ARL-TR-6278 December 2012...Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers John E. Penn Sensors and Electron Devices Directorate, ARL...SUBTITLE Monolithic Microwave Integrated Circuits ( MMIC ) Broadband Power Amplifiers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  20. A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory

    NASA Astrophysics Data System (ADS)

    Guo, Jiarong

    2017-04-01

    A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).

  1. Dual-pump wave mixing in semiconductor optical amplifiers: performance enhancement with long amplifiers

    NASA Astrophysics Data System (ADS)

    Tomkos, Ioannis; Zacharopoulos, Ioannis; Syvridis, Dimitrios

    1999-05-01

    We demonstrate experimentally the improvement of the performance of the dual pump wave mixing scheme in semiconductor optical amplifiers, using long amplifier chips and high optical pump powers. The optical amplifiers used in the experiment had a ridge waveguide structure with bulk active layer and antireflective-coated angled facets. Measurements of the conversion efficiency and SBR as a function of wavelength shift are presented for a wavelength shift of more than 40 nm. The above measurements are carried out for three amplifier lengths (500 micrometers , 1000 micrometers , and 1500 micrometers ) and for different levels of the optical power of the two pumps. It will be shown that an increase in the amplifier length from 500 micrometers to 1500 micrometers results to an increase of more than 25 dB for the efficiency and more than 20 dB for the SBR. This improvement combined with the inherent advantages of the dual pump scheme (almost constant SBR and high efficiency for large wavelength shifts) results in a highly performing wavelength converter/phase conjugator, suitable for many applications.

  2. Stem and progenitor cell dysfunction in human trisomies

    PubMed Central

    Liu, Binbin; Filippi, Sarah; Roy, Anindita; Roberts, Irene

    2015-01-01

    Trisomy 21, the commonest constitutional aneuploidy in humans, causes profound perturbation of stem and progenitor cell growth, which is both cell context dependent and developmental stage specific and mediated by complex genetic mechanisms beyond increased Hsa21 gene dosage. While proliferation of fetal hematopoietic and testicular stem/progenitors is increased and may underlie increased susceptibility to childhood leukemia and testicular cancer, fetal stem/progenitor proliferation in other tissues is markedly impaired leading to the characteristic craniofacial, neurocognitive and cardiac features in individuals with Down syndrome. After birth, trisomy 21-mediated premature aging of stem/progenitor cells may contribute to the progressive multi-system deterioration, including development of Alzheimer's disease. PMID:25520324

  3. Luminal progenitors restrict their lineage potential during mammary gland development.

    PubMed

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  4. Luminal Progenitors Restrict Their Lineage Potential during Mammary Gland Development

    PubMed Central

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-01-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes. PMID:25688859

  5. Sox9 and programming of liver and pancreatic progenitors

    PubMed Central

    Kawaguchi, Yoshiya

    2013-01-01

    Recent advances in developmental biology have greatly expanded our understanding of progenitor cell programming and the fundamental roles that Sox9 plays in liver and pancreas organogenesis. In the last 2 years, several studies have dissected the behavior of the Sox9+ duct cells in adult organs, but conflicting results have left unanswered the long-standing question of whether physiologically functioning progenitors exist in adult liver and pancreas. On the other hand, increasing evidence suggests that duct cells function as progenitors in the tissue restoration process after injury, during which embryonic programs are sometimes reactivated. This article discusses the role of Sox9 in programming liver and pancreatic progenitors as well as controversies in the field. PMID:23635786

  6. Circulating endothelial progenitor cells in periodontitis.

    PubMed

    Jönsson, Daniel; Spinell, Thomas; Vrettos, Anastasios; Stoecklin-Wasmer, Christin; Celenti, Romanita; Demmer, Ryan T; Kebschull, Moritz; Papapanou, Panos N

    2014-12-01

    Several biologically plausible mechanisms have been proposed to mediate the association between periodontitis and atherosclerotic vascular disease (AVD), including adverse effects on vascular endothelial function. Circulating endothelial progenitor cells (cEPCs) are known to contribute to vascular repair, but limited data are available regarding the relationship between cEPC levels and periodontitis. The aims of this cross-sectional study are to investigate the levels of hemangioblastic and monocytic cEPCs in patients with periodontitis and periodontally healthy controls and to associate cEPC levels with the extent and severity of periodontitis. A total of 112 individuals (56 patients with periodontitis and 56 periodontally healthy controls, aged 26 to 65 years; mean age: 43 years) were enrolled. All participants underwent a full-mouth periodontal examination and provided a blood sample. Hemangioblastic cEPCs were assessed using flow cytometry, and monocytic cEPCs were identified using immunohistochemistry in cultured peripheral blood mononuclear cells. cEPC levels were analyzed in the entire sample, as well as in a subset of 50 pairs of patients with periodontitis/periodontally healthy controls, matched with respect to age, sex, and menstrual cycle. Levels of hemangioblastic cEPCs were approximately 2.3-fold higher in patients with periodontitis than periodontally healthy controls, after adjustments for age, sex, physical activity, systolic blood pressure, and body mass index (P = 0.001). A non-significant trend for higher levels of monocytic cEPCs in periodontitis was also observed. The levels of hemangioblastic cEPCs were positively associated with the extent of bleeding on probing, probing depth, and clinical attachment loss. Hemangioblastic and monocytic cEPC levels were not correlated (Spearman correlation coefficient 0.03, P = 0.77), suggesting that they represent independent populations of progenitor cells. These findings further support the notion that

  7. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  8. The Limbal Epithelial Progenitors in the Limbal Niche Environment

    PubMed Central

    Zhang, Yuan; Sun, Hong; Liu, Yongsong; Chen, Shuangling; Cai, Subo; Zhu, Yingting; Guo, Ping

    2016-01-01

    Limbal epithelial progenitors are stem cells located in limbal palisades of vogt. In this review, we present the audience with recent evidence that limbal epithelial progenitors may be a powerful stem cell resource for the cure of human corneal stem cell deficiency. Further understanding of their mechanism may shed lights to the future successful application of stem cell therapy not only to the eye tissue, but also to the other tissues in the human body. PMID:27877075

  9. Dendritic cell potentials of early lymphoid and myeloid progenitors.

    PubMed

    Manz, M G; Traver, D; Miyamoto, T; Weissman, I L; Akashi, K

    2001-06-01

    It has been proposed that there are at least 2 classes of dendritic cells (DCs), CD8alpha(+) DCs derived from the lymphoid lineage and CD8alpha(-) DCs derived from the myeloid lineage. Here, the abilities of lymphoid- and myeloid-restricted progenitors to generate DCs are compared, and their overall contributions to the DC compartment are evaluated. It has previously been shown that primitive myeloid-committed progenitors (common myeloid progenitors [CMPs]) are efficient precursors of both CD8alpha(+) and CD8alpha(-) DCs in vivo. Here it is shown that the earliest lymphoid-committed progenitors (common lymphoid progenitors [CLPs]) and CMPs and their progeny granulocyte-macrophage progenitors (GMPs) can give rise to functional DCs in vitro and in vivo. CLPs are more efficient in generating DCs than their T-lineage descendants, the early thymocyte progenitors and pro-T cells, and CMPs are more efficient DC precursors than the descendant GMPs, whereas pro-B cells and megakaryocyte-erythrocyte progenitors are incapable of generating DCs. Thus, DC developmental potential is preserved during T- but not B-lymphoid differentiation from CLP and during granulocyte-macrophage but not megakaryocyte-erythrocyte development from CMP. In vivo reconstitution experiments show that CLPs and CMPs can reconstitute CD8alpha(+) and CD8alpha(-) DCs with similar efficiency on a per cell basis. However, CMPs are 10-fold more numerous than CLPs, suggesting that at steady state, CLPs provide only a minority of splenic DCs and approximately half the DCs in thymus, whereas most DCs, including CD8alpha(+) and CD8alpha(-) subtypes, are of myeloid origin. (Blood. 2001;97:3333-3341)

  10. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema.

    PubMed

    Doyle, Margaret F; Tracy, Russell P; Parikh, Megha A; Hoffman, Eric A; Shimbo, Daichi; Austin, John H M; Smith, Benjamin M; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50-79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema.

  11. Coherent combining technology of master oscillator power amplifier fiber arrays.

    PubMed

    Xiao, R; Hou, J; Liu, M; Jiang, Z F

    2008-02-04

    Coherent beam combination of fiber laser array is an important technology of realize high-power, high-radiance fiber laser system. In this paper, Master Oscillator-Power Amplifier scheme is used to realize phase controlling of three ytterbium fiber amplifiers, the experiment results of both two and three fiber amplifiers are given and compared. Far-field patterns with different fill factor are studied experimentally. We perform optical phase-noise measurements of a commercial 1-W ytterbium fiber amplifier using our phase control electronics, the dominant phase noises of the 1-W fiber amplifier are at frequencies below one kilohertz.

  12. Characterization of a Common-Source Amplifier Using Ferroelectric Transistors

    NASA Technical Reports Server (NTRS)

    Hunt, Mitchell; Sayyah, Rana; MacLeond, Todd C.; Ho, Pat D.

    2010-01-01

    This paper presents empirical data that was collected through experiments using a FeFET in the established common-source amplifier circuit. The unique behavior of the FeFET lends itself to interesting and useful operation in this widely used common-source amplifier. The paper examines the effect of using a ferroelectric transistor for the amplifier. It also examines the effects of varying load resistance, biasing, and input voltages on the output signal and gives several examples of the output of the amplifier for a given input. The difference between a commonsource amplifier using a ferroelectric transistor and that using a MOSFET is addressed.

  13. Characterization of a Common-Gate Amplifier Using Ferroelectric Transistors

    NASA Technical Reports Server (NTRS)

    Hunt, Mitchell; Sayyah, Rana; MacLeod, Todd C.; Ho, Fat D.

    2011-01-01

    In this paper, the empirical data collected through experiments performed using a FeFET in the common-gate amplifier circuit is presented. The FeFET common-gate amplifier was characterized by varying all parameters in the circuit, such as load resistance, biasing of the transistor, and input voltages. Due to the polarization of the ferroelectric layer, the particular behavior of the FeFET common-gate amplifier presents interesting results. Furthermore, the differences between a FeFET common-gate amplifier and a MOSFET common-gate amplifier are examined.

  14. Development of a transimpedance amplifier for cryotemperatures, study

    NASA Astrophysics Data System (ADS)

    Brunsmann, U.; Frenzl, O.; Zimmer, G.; Wrede, M.

    1984-06-01

    Design, construction and measured data of three versions of a monolithic transimpedance amplifier for cryotemperatures are described. The amplifier is implemented in Si-gate-CMOS technology and provided with a MOSFET, a process-compatible JFET and an open input. The implemented versions of the amplifier do not reach the simulated operating points because of the shift of the characteristics at cryotemperatures. With respect to power dissipation and noise, it is necessary to redesign the amplifier, in order to fabricate amplifiers suitable for the German infrared observatory GIRL on Spacelab.

  15. Characterization of Botulinum Progenitor Toxins by Mass Spectrometry†

    PubMed Central

    Hines, Harry B.; Lebeda, Frank; Hale, Martha; Brueggemann, Ernst E.

    2005-01-01

    Botulinum toxin analysis has renewed importance. This study included the use of nanochromatography-nanoelectrospray-mass spectrometry/mass spectrometry to characterize the protein composition of botulinum progenitor toxins and to assign botulinum progenitor toxins to their proper serotype and strain by using currently available sequence information. Clostridium botulinum progenitor toxins from strains Hall, Okra, Stockholm, MDPH, Alaska, and Langeland and 89 representing serotypes A through G, respectively, were reduced, alkylated, digested with trypsin, and identified by matching the processed product ion spectra of the tryptic peptides to proteins in accessible databases. All proteins known to be present in progenitor toxins from each serotype were identified. Additional proteins, including flagellins, ORF-X1, and neurotoxin binding protein, not previously reported to be associated with progenitor toxins, were present also in samples from several serotypes. Protein identification was used to assign toxins to a serotype and strain. Serotype assignments were accurate, and strain assignments were best when either sufficient nucleotide or amino acid sequence data were available. Minor difficulties were encountered using neurotoxin-associated protein identification for assigning serotype and strain. This study found that combined nanoscale chromatographic and mass spectrometric techniques can characterize C. botulinum progenitor toxin protein composition and that serotype/strain assignments based upon these proteins can provide accurate serotype and, in most instances, strain assignments using currently available information. Assignment accuracy will continue to improve as more nucleotide/amino acid sequence information becomes available for different botulinum strains. PMID:16085839

  16. Characterization of botulinum progenitor toxins by mass spectrometry.

    PubMed

    Hines, Harry B; Lebeda, Frank; Hale, Martha; Brueggemann, Ernst E

    2005-08-01

    Botulinum toxin analysis has renewed importance. This study included the use of nanochromatography-nanoelectrospray-mass spectrometry/mass spectrometry to characterize the protein composition of botulinum progenitor toxins and to assign botulinum progenitor toxins to their proper serotype and strain by using currently available sequence information. Clostridium botulinum progenitor toxins from strains Hall, Okra, Stockholm, MDPH, Alaska, and Langeland and 89 representing serotypes A through G, respectively, were reduced, alkylated, digested with trypsin, and identified by matching the processed product ion spectra of the tryptic peptides to proteins in accessible databases. All proteins known to be present in progenitor toxins from each serotype were identified. Additional proteins, including flagellins, ORF-X1, and neurotoxin binding protein, not previously reported to be associated with progenitor toxins, were present also in samples from several serotypes. Protein identification was used to assign toxins to a serotype and strain. Serotype assignments were accurate, and strain assignments were best when either sufficient nucleotide or amino acid sequence data were available. Minor difficulties were encountered using neurotoxin-associated protein identification for assigning serotype and strain. This study found that combined nanoscale chromatographic and mass spectrometric techniques can characterize C. botulinum progenitor toxin protein composition and that serotype/strain assignments based upon these proteins can provide accurate serotype and, in most instances, strain assignments using currently available information. Assignment accuracy will continue to improve as more nucleotide/amino acid sequence information becomes available for different botulinum strains.

  17. Biology and Flow Cytometry of Proangiogenic Hematopoietic Progenitors Cells

    PubMed Central

    Rose, Jonathan A.; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative “endothelial progenitor cells” that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multi-disciplinary expertise in flow cytometry, hematology and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and bone marrow. PMID:25418030

  18. Dual Function of Sox1 in Telencephalic Progenitor Cells

    PubMed Central

    Kan, Lixin; Jalali, Ali; Zhao, Li-Ru; Zhou, Xiaojing; McGuire, Tammy; Kazanis, Ilias; Episkopou, Vasso; Bassuk, Alexander G.; Kessler, John A.

    2012-01-01

    The transcription factor, Sox1 has been implicated in the maintenance of neural progenitor cell status, but accumulating evidence suggests that this is only part of its function. This study examined the role of Sox1 expression in proliferation, lineage commitment, and differentiation by telencephalic neural progenitor cells in vitro and in vivo, and further clarified the pattern of Sox1 expression in postnatal and adult mouse brain. Telencephalic neural progenitor cells isolated from Sox1 null embryos formed neurospheres normally, but were specifically deficient in neuronal differentiation. Conversely, overexpression of Sox1 in the embryonic telencephalon in vivo both expanded the progenitor pool and biased neural progenitor cells towards neuronal lineage commitment. Sox1 mRNA and protein were found to be persistently expressed in the postnatal and adult brain in both differentiated and neurogenic regions. Importantly, in differentiated regions Sox1 co-labeled only with neuronal markers. These observations, coupled with previous studies, suggest that Sox1 expression by early embryonic progenitor cells initially helps to maintain the cells in cell cycle, but that continued expression subsequently promotes neuronal lineage commitment. PMID:17719572

  19. Interstitial stromal progenitors during kidney development: here, there and everywhere.

    PubMed

    Fanni, Daniela; Gerosa, Clara; Vinci, Laura; Ambu, Rossano; Dessì, Angelica; Eyken, Peter Van; Fanos, Vassilios; Faa, Gavino

    2016-12-01

    In recent years, the renal interstitium has been identified as the site of multiple cell types, giving rise to multiple contiguous cellular networks with multiple fundamental structural and functional roles. Few studies have been carried out on the morphological and functional properties of the stromal/interstitial renal cells during the intrauterine life. This work was aimed at reviewing the peculiar features of renal interstitial stem/progenitor cells involved in kidney development. The origin of the renal interstitial progenitor cells remains unknown. During kidney development, besides the Six2 + cells of the cap mesenchyme, a self-renewing progenitor population, characterized by the expression of Foxd1, represents the first actor of the non-nephrogenic lineage. Foxd1 + interstitial progenitors originate the cortical and the renal medullary interstitial progenitors. Here, the most important stromal/interstitial compartments present in the developing human kidney will be analyzed: capsular stromal cells, cortical interstitial cells, medullary interstitial cells, the interstitium inside the renal stem cell niche, Hilar interstitial cells and Ureteric interstitial cells. Data reported here indicate that the different interstitial compartments of the developing kidney are formed by different cell types that characterize the different renal areas. Further studies are needed to better characterize the different pools of renal interstitial progenitors and their role in human nephrogenesis.

  20. Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

    PubMed

    Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M

    2016-01-01

    The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  1. Harnessing endogenous stem/progenitor cells for tendon regeneration

    PubMed Central

    Lee, Chang H.; Lee, Francis Y.; Tarafder, Solaiman; Kao, Kristy; Jun, Yena; Yang, Guodong; Mao, Jeremy J.

    2015-01-01

    Current stem cell–based strategies for tissue regeneration involve ex vivo manipulation of these cells to confer features of the desired progenitor population. Recently, the concept that endogenous stem/progenitor cells could be used for regenerating tissues has emerged as a promising approach that potentially overcomes the obstacles related to cell transplantation. Here we applied this strategy for the regeneration of injured tendons in a rat model. First, we identified a rare fraction of tendon cells that was positive for the known tendon stem cell marker CD146 and exhibited clonogenic capacity, as well as multilineage differentiation ability. These tendon-resident CD146+ stem/progenitor cells were selectively enriched by connective tissue growth factor delivery (CTGF delivery) in the early phase of tendon healing, followed by tenogenic differentiation in the later phase. The time-controlled proliferation and differentiation of CD146+ stem/progenitor cells by CTGF delivery successfully led to tendon regeneration with densely aligned collagen fibers, normal level of cellularity, and functional restoration. Using siRNA knockdown to evaluate factors involved in tendon generation, we demonstrated that the FAK/ERK1/2 signaling pathway regulates CTGF-induced proliferation and differentiation of CD146+ stem/progenitor cells. Together, our findings support the use of endogenous stem/progenitor cells as a strategy for tendon regeneration without cell transplantation and suggest this approach warrants exploration in other tissues. PMID:26053662

  2. Harnessing endogenous stem/progenitor cells for tendon regeneration.

    PubMed

    Lee, Chang H; Lee, Francis Y; Tarafder, Solaiman; Kao, Kristy; Jun, Yena; Yang, Guodong; Mao, Jeremy J

    2015-07-01

    Current stem cell-based strategies for tissue regeneration involve ex vivo manipulation of these cells to confer features of the desired progenitor population. Recently, the concept that endogenous stem/progenitor cells could be used for regenerating tissues has emerged as a promising approach that potentially overcomes the obstacles related to cell transplantation. Here we applied this strategy for the regeneration of injured tendons in a rat model. First, we identified a rare fraction of tendon cells that was positive for the known tendon stem cell marker CD146 and exhibited clonogenic capacity, as well as multilineage differentiation ability. These tendon-resident CD146+ stem/progenitor cells were selectively enriched by connective tissue growth factor delivery (CTGF delivery) in the early phase of tendon healing, followed by tenogenic differentiation in the later phase. The time-controlled proliferation and differentiation of CD146+ stem/progenitor cells by CTGF delivery successfully led to tendon regeneration with densely aligned collagen fibers, normal level of cellularity, and functional restoration. Using siRNA knockdown to evaluate factors involved in tendon generation, we demonstrated that the FAK/ERK1/2 signaling pathway regulates CTGF-induced proliferation and differentiation of CD146+ stem/progenitor cells. Together, our findings support the use of endogenous stem/progenitor cells as a strategy for tendon regeneration without cell transplantation and suggest this approach warrants exploration in other tissues.

  3. Constraining the Progenitor Masses of Core Collapse Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Díaz Rodríguez, Mariangelly; Murphy, Jeremiah Wayne; Elwood, Benjamin; Williams, Benjamin F.; Rubin, David

    2016-01-01

    Understanding the progenitor mass distribution of supernova explosions is an important observational constraint of stellar evolution theory. Recently, a novel approach was proposed to significantly increase the number of progenitor masses: characterize the progenitor mass of supernova remnants (SNRs) by age-dating the local stellar population. Preliminary statistical analyses suggested that there is a lack of SNRs around the most massive of massive stars. This suggested that there is a maximum mass for core collapse supernova explosions, or there is a bias against finding SNRs associated with the most massive stars. We test for a bias by considering the distribution of SNRs sizes using a Monte Carlo simulation. We find that the distribution of remnants sizes is the same for low mass progenitors and high mass progenitors. This implies that there is no bias against finding SNRs around the most massive progenitors. Our next step is to apply Bayesian statistical inference and obtain the joint probability for all the parameters involved in the statistical distribution model: the minimum mass, maximum mass, and slope of the mass distribution.

  4. Viral disruption of olfactory progenitors is exacerbated in allergic mice.

    PubMed

    Ueha, R; Mukherjee, S; Ueha, S; de Almeida Nagata, D E; Sakamoto, T; Kondo, K; Yamasoba, T; Lukacs, N W; Kunkel, S L

    2014-09-01

    Upper airway viral infection in patients with airway allergy often exacerbates olfactory dysfunction, but the mechanism for this exacerbation remains unclear. Here, we examined the effects of respiratory syncytial virus (RSV) infection, in the presence or absence of airway allergy, on olfactory receptor neurons (ORNs) and their progenitors in mice. Immunohistological analyses revealed that cockroach allergen (CRA)-induced airway allergy alone did not affect the number of OMP(+) mature ORNs and SOX2(+) ORN progenitors. Intranasal RSV line 19 infection in allergy-free mice resulted in a transient decrease in SOX2(+) ORN progenitors without affecting OMP(+) ORNs. In contrast, the RSV-induced decrease in SOX2(+) ORN progenitors was exacerbated and prolonged in allergic mice, which resulted in eventual loss of OMP(+) ORNs. In the allergic mice, reduction of RSV in the olfactory epithelium was delayed as compared with allergy-free mice. These results suggest that ORN progenitors were impaired by RSV infection and that airway allergy exacerbated damage to ORN progenitors by reducing viral clearance.

  5. [Characterization of hematopoietic progenitor cells during the human embryonic development].

    PubMed

    Coulombel, L; Huyhn, A; Izac, B

    1995-01-01

    In a search for assays that might facilitate identification of pluripotent stem cells with extended potentialities, we analysed the properties of hematopoietic progenitor cells detected in the extraembryonic yolk sac and in the intraembryonic part of human embryos between approximately 28 and 45 days of development. Cells from the yolk sac, the liver rudiment and the remainder of the embryo were plated in semi solid methylcellulose colony-assays supplemented with combinations of cytokines. Large BFU-E-derived colonies as well as granulocytic colonies were detected in every yolk sac sample. Interestingly, progenitor cells were also detected in the intraembryonic part, outside the liver and a subclass of these progenitors were detected that generated large granulomacrophagic colonies capable of generating secondary colonies when replated. These were preferentially located in the embryo. Colony-assays initiated with CD34+ cells sorted from the different tissues confirmed these data. These results first indicate that embryonic progenitors exhibit unique phenotypic features, and second, analysis of the distribution of progenitors between the different tissues may suggest the existence of other sites of hematopoietic production. More detailed analysis of the potentialities of these progenitors should now be assessed in vitro in cocultures assays and in vivo by reconstituting immunodeficient mice.

  6. On the progenitor of the Type IIb supernova 2016gkg

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Charles D.; Foley, Ryan J.; Abramson, Louis E.; Pan, Yen-Chen; Lu, Cicero-Xinyu; Williams, Peter; Treu, Tommaso; Siebert, Matthew R.; Fassnacht, Christopher D.; Max, Claire E.

    2017-03-01

    We present a detection in pre-explosion Hubble Space Telescope (HST) imaging of a point source consistent with being the progenitor star of the Type IIb supernova (SN IIb) 2016gkg. Post-explosion imaging from the Keck adaptive optics system was used to perform relative astrometry between the Keck and HST imaging. We identify a single point source in the HST images coincident with the SN position to 0.89σ. The HST photometry is consistent with the progenitor star being an A0 Ia star with T = 9500 K and log (L/L⊙) = 5.15. We find that the SN 2016gkg progenitor star appears more consistent with binary than single-star evolutionary models. In addition, early-time light-curve data from SN 2016gkg revealed a rapid rise in luminosity within ∼0.4 d of non-detection limits, consistent with models of the cooling phase after shock break-out. We use these data to determine an explosion date of 2016 September 20.15 and progenitor-star radius of log (R/R⊙) = 2.41, which agrees with photometry from the progenitor star. Our findings are also consistent with detections of other SNe IIb progenitor stars, although more luminous and bluer than most other examples.

  7. LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS

    SciTech Connect

    Foley, Ryan J.; Kirshner, Robert P.; Simon, Joshua D.; Burns, Christopher R.; Gal-Yam, Avishay; Hamuy, Mario; Morrell, Nidia I.; Phillips, Mark M.; Shields, Gregory A.; Sternberg, Assaf

    2012-06-20

    Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

  8. Large volume leukapheresis maximizes the progenitor cell yield for allogeneic peripheral blood progenitor donation.

    PubMed

    Kobbe, G; Soehngen, D; Heyll, A; Fischer, J; Thiele, K P; Aul, C; Wernet, P

    1997-04-01

    We have investigated the efficiency and safety of large volume leukapheresis (LVL) for the collection of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood progenitor cells (PBPCs) from healthy donors. In six apheresis sessions in four healthy individuals on a COBE-BCT Spectra cell separator (median processed volume 3.5 X total blood volume, TBV, range 3.3-4.4 X TBV), harvested cells were collected sequentially into three single bags. The collection bags were changed after processing 33%, 66%, and 100% of the prospective apheresis volume, allowing analysis of PBPCs collected at different periods during one harvest. Mononuclear cells (MNCs), CD34+ cells, CD34+ subsets, and lymphocyte subsets were determined in each bag. Substantially more PBPCs were harvested than were in the circulation before G-CSF administration preceding LVL (median 171%, range 69-267%), reflecting progenitor release during the procedure. In donors 1 and 3, the CD34+ cell yields decreased in the third bag to 53% and 42% of that collected in the first bag, whereas the progenitor cell yields in donors 2 and 4 were stable or rose during the procedure, achieving in the third bag 157% and 105% of the number of CD34+ cells collected in the first bag. Minor changes were found in the subsets of CD34+ cells, lymphocytes, and monocytes collected at different periods during a single harvest. LVL was well tolerated. Reversible thombocytopenia developed in all cases. No late effects attributable to LVL or G-CSF were found in the 4 donors and 16 other healthy individuals who have undergone LVL in our institution. We conclude that LVL is safe and maximizes PBPC yields for allogeneic transplantation.

  9. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells

    PubMed Central

    1985-01-01

    Data from previous multiparameter fluorescence-activated cell sorter (FACS) analysis and sorting studies define a subset of murine B cells that expresses the Ly-1 surface determinant in conjunction with IgM, IgD, Ia, and other typical B cell markers. These Ly-1 B cells are physically and functionally distinct. They express more IgM and less IgD than most other B cells; they are not normally found in lymph node or bone marrow; they are always present at low frequencies (1-5%) in normal spleens, and, as we show here, they comprise about half of the B cells (10-20% of total cells) recovered from the peritoneal cavity in normal mice. Furthermore, most of the commonly studied IgM autoantibodies in normal and autoimmune mice are produced by these Ly-1 B cells, even though they seldom produce antibodies to exogenous antigens such as trinitrophenyl-Ficoll or trinitrophenyl-keyhole limpet hemocyanin. Cell transfer studies presented here demonstrate that the progenitors of Ly-1 B cells are different from the progenitors of the predominant B cell populations in spleen and lymph node. In these studies, we used FACS analysis and functional assays to characterize donor-derived (allotype-marked) B cells present in lethally irradiated recipients 1-2 mo after transfer. Surprisingly, adult bone marrow cells typically used to reconstitute B cells in irradiated recipients selectively failed to reconstitute the Ly-1 B subset. Liver, spleen, and bone marrow cells from young mice, in contrast, reconstituted all B cells (including Ly-1 B), and peritoneal "washout" cells (PerC) from adult mice uniquely reconstituted Ly-1 B. Bone marrow did not block Ly- 1 B development, since PerC and newborn liver still gave rise to Ly-1 B when jointly transferred with marrow. These findings tentatively assign Ly-1 B to a distinct developmental lineage originating from progenitors that inhabit the same locations as other B cell progenitors in young animals, but move to unique location(s) in adults. PMID

  10. Numerical simulation of cross field amplifiers

    SciTech Connect

    Eppley, K.

    1990-01-01

    Cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. One feature distinguishing cross field amplifiers is that the operating current is produced by secondary emission from a cold cathode. This removes the need for a heater and enables the device to act as a switch tube, drawing no power until the rf drive is applied. However, this method of generating the current does complicate the simulation. We are developing a simulation model of cross field amplifiers using the PIC code CONDOR. We simulate an interaction region, one traveling wavelength long, with periodic boundary conditions. An electric field with the appropriate phase velocity is imposed on the upper boundary of the problem. Evaluation of the integral of E{center dot}J gives the power interchanged between the wave and the beam. Given the impedance of the structure, we then calculate the change in the traveling wave field. Thus we simulate the growth of the wave through the device. The main advance of our model over previous CFA simulations is the realistic tracking of absorption and secondary emission. The code uses experimental curves to calculate secondary production as a function of absorbed energy, with a theoretical expression for the angular dependence. We have used this code to model the 100 MW X-band CFA under construction at SLAC, as designed by Joseph Feinstein and Terry Lee. We are examining several questions of practical interest, such as the power and spectrum of absorbed electrons, the minimum traveling wave field needed to initiate spoke formation, and the variation of output power with dc voltage, anode-cathode gap, and magnetic field. 5 refs., 8 figs.

  11. High sensitivity amplifier/discriminator for PWC's

    SciTech Connect

    Hansen, S.

    1983-01-01

    The facility support group at Fermilab is designing and building a general purpose beam chamber for use in several locations at the laboratory. This pwc has 128 wires per plane spaced 1 mm apart. An initial production of 25 signal planes is anticipated. In proportional chambers, the size of the signal depends exponentially on the charge stored per unit of length along the anode wire. As the wire spacing decreases, the capacitance per unit length decreases, thereby requiring increased applied voltage to restore the necessary charge per unit length. In practical terms, this phenomenon is responsible for difficulties in constructing chambers with less than 2 mm wire spacing. 1 mm chambers, therefore, are frequently operated very near to their breakdown point and/or a high gain gas containing organic compounds such as magic gas is used. This argon/iso-butane mixture has three drawbacks: it is explosive when exposed to the air, it leaves a residue on the wires after extended use and is costly. An amplifier with higher sensitivity would reduce the problems associated with operating chambers with small wire spacings and allow them to be run a safe margin below their breakdown voltage even with an inorganic gas mixture such as argon/CO2, this eliminating the need to use magic gas. Described here is a low cost amplifier with a usable threshold of less than 0.5 ..mu..A. Data on the performance of this amplifier/discriminator in operation on a prototype beam chamber are given. This data shows the advantages of the high sensitivity of this design.

  12. The Binary Progenitor of Tycho Brahe's Supernova

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, P.

    2006-08-01

    The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion. Unless the companion star is another white dwarf (in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova (SN 1572) provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0-G2 star, similar to our Sun in surface temperature and luminosity (but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.

  13. Possible Progenitor of Special Supernova Type Detected

    NASA Astrophysics Data System (ADS)

    2008-04-01

    caused by material being pulled off a companion star onto the white dwarf, fusion of this material on the surface of the star should heat the star and produce a strong source of X-radiation prior to the explosion. Once the supernova explosion occurs, the white dwarf is expected to be completely destroyed and then would be undetectable in X-rays. In the merger scenario, the intensity of X-ray emission prior to the explosion is expected to be much weaker. Based on the detection of a fairly strong X-ray source at approximately the position of SN 2007on 4 years before the explosion, Voss and Nelemans conclude that the data support the scenario where matter is pulled off a companion star. The small number of X-ray sources in the field implies that there is only a small chance of an unrelated source being so close by coincidence. Also, the X-ray source has similar properties to those expected for fusion on a white dwarf, unlike most X-ray sources in the sky. However, in follow-up studies, Voss, Nelemans and colleagues Gijs Roelofs (Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.) and Cees Bassa (McGill University, Canada) used higher-quality optical images to better determine the supernova's position. This work, which is not yet published, shows a small, but significant difference in the measured positions of the supernova and the X-ray source, suggesting the source may not be the progenitor. Follow-up Chandra observations hint that the X-ray object has disappeared, but further observations are needed to finally decide whether the source was the progenitor or not. The team is also applying this new method to other supernovas and has high hopes that they will eventually succeed in identifying the elusive cause of at least some of these explosions. "We're very excited about opening up a new way of studying supernovas, even though we're not sure that we've seen this particular stellar bomb before it exploded," said Gijs Roelofs. "We're very confident that we

  14. Role of liver progenitors in liver regeneration.

    PubMed

    Best, Jan; Manka, Paul; Syn, Wing-Kin; Dollé, Laurent; van Grunsven, Leo A; Canbay, Ali

    2015-02-01

    During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.

  15. Human Retinal Progenitor Cell Transplantation Preserves Vision*

    PubMed Central

    Luo, Jing; Baranov, Petr; Patel, Sherrina; Ouyang, Hong; Quach, John; Wu, Frances; Qiu, Austin; Luo, Hongrong; Hicks, Caroline; Zeng, Jing; Zhu, Jing; Lu, Jessica; Sfeir, Nicole; Wen, Cindy; Zhang, Meixia; Reade, Victoria; Patel, Sara; Sinden, John; Sun, Xiaodong; Shaw, Peter; Young, Michael; Zhang, Kang

    2014-01-01

    Cell transplantation is a potential therapeutic strategy for retinal degenerative diseases involving the loss of photoreceptors. However, it faces challenges to clinical translation due to safety concerns and a limited supply of cells. Human retinal progenitor cells (hRPCs) from fetal neural retina are expandable in vitro and maintain an undifferentiated state. This study aimed to investigate the therapeutic potential of hRPCs transplanted into a Royal College of Surgeons (RCS) rat model of retinal degeneration. At 12 weeks, optokinetic response showed that hRPC-grafted eyes had significantly superior visual acuity compared with vehicle-treated eyes. Histological evaluation of outer nuclear layer (ONL) characteristics such as ONL thickness, spread distance, and cell count demonstrated a significantly greater preservation of the ONL in hRPC-treated eyes compared with both vehicle-treated and control eyes. The transplanted hRPCs arrested visual decline over time in the RCS rat and rescued retinal morphology, demonstrating their potential as a therapy for retinal diseases. We suggest that the preservation of visual acuity was likely achieved through host photoreceptor rescue. We found that hRPC transplantation into the subretinal space of RCS rats was well tolerated, with no adverse effects such as tumor formation noted at 12 weeks after treatment. PMID:24407289

  16. Developmental origin of postnatal cardiomyogenic progenitor cells

    PubMed Central

    Liu, Yuan-Hung; Lai, Ling-Ping; Huang, Shih-Yun; Lin, Yi-Shuan; Wu, Shinn-Chih; Chou, Chih-Jen; Lin, Jiunn-Lee

    2016-01-01

    Aim: To trace the cell origin of the cells involved in postnatal cardiomyogenesis. Materials & methods: Nkx2.5 enhancer-eGFP (Nkx2.5 enh-eGFP) mice were used to test the cardiomyogenic potential of Nkx2.5 enhancer-expressing cells. By analyzing Cre excision of activated Nkx2.5-eGFP+ cells from different lineage-Cre/Nkx2.5 enh-eGFP/ROSA26 reporter mice, we traced the developmental origin of Nkx2.5 enhancer-expressing cells. Results: Nkx2.5 enhancer-expressing cells could differentiate into striated cardiomyocytes both in vitro and in vivo. Nkx2.5-eGFP+ cells increased remarkably after experimental myocardial infarction (MI). The post-MI Nkx2.5-eGFP+ cells originated from the embryonic epicardial cells, not from the pre-existing cardiomyocytes, endothelial cells, cardiac neural crest cells or perinatal/postnatal epicardial cells. Conclusion: Postnatal Nkx2.5 enhancer-expressing cells are cardiomyogenic progenitor cells and originate from embryonic epicardium-derived cells. PMID:28031967

  17. NFAT restricts osteochondroma formation from entheseal progenitors

    PubMed Central

    Tsang, Kelly; He, Lizhi; Garcia, Roberto A.; Ermann, Joerg; Mizoguchi, Fumitaka; Zhang, Minjie; Aliprantis, Antonios O.

    2016-01-01

    Osteochondromas are common benign osteocartilaginous tumors in children and adolescents characterized by cartilage-capped bony projections on the surface of bones. These tumors often cause pain, deformity, fracture, and musculoskeletal dysfunction, and they occasionally undergo malignant transformation. The pathogenesis of osteochondromas remains poorly understood. Here, we demonstrate that nuclear factor of activated T cells c1 and c2 (NFATc1 and NFATc2) suppress osteochondromagenesis through individual and combinatorial mechanisms. In mice, conditional deletion of NFATc1 in mesenchymal limb progenitors, Scleraxis-expressing (Scx-expressing) tendoligamentous cells, or postnatally in Aggrecan-expressing cells resulted in osteochondroma formation at entheses, the insertion sites of ligaments and tendons onto bone. Combinatorial deletion of NFATc1 and NFATc2 gave rise to larger and more numerous osteochondromas in inverse proportion to gene dosage. A population of entheseal NFATc1- and Aggrecan-expressing cells was identified as the osteochondroma precursor, previously believed to be growth plate derived or perichondrium derived. Mechanistically, we show that NFATc1 restricts the proliferation and chondrogenesis of osteochondroma precursors. In contrast, NFATc2 preferentially inhibits chondrocyte hypertrophy and osteogenesis. Together, our findings identify and characterize a mechanism of osteochondroma formation and suggest that regulating NFAT activity is a new therapeutic approach for skeletal diseases characterized by defective or exaggerated osteochondral growth. PMID:27158674

  18. Harmine stimulates proliferation of human neural progenitors

    PubMed Central

    Dakic, Vanja; Maciel, Renata de Moraes; Drummond, Hannah; Nascimento, Juliana M.; Trindade, Pablo

    2016-01-01

    Harmine is the β-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive) derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY), and an irreversible selective inhibitor of monoamine oxidase (MAO) but not DYRK1A (pargyline). INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferation in vitro and antidepressant effects in vivo. PMID:27957390

  19. Investigations of electronic amplifiers supplying a piezobimorph actuator

    NASA Astrophysics Data System (ADS)

    Milecki, Andrzej; Regulski, Roman

    2016-10-01

    Piezoelectric bending actuators, also known as bimorphs, are characterized by very good dynamic properties and by displacements in a range of a few millimeters. Therefore these actuators are used in a wide range of applications. However their usage is limited because they require supplying amplifiers with output voltage of about 200 V, which are rather expensive. This paper presents investigation results of such amplifiers with high voltage output. The model of a piezobending actuator is proposed and implemented in Matlab-Simulink software in order to simulate the behavior of the actuator supplied by the amplifiers. The simulation results are presented and compared with investigation results of high voltage amplifier used for supplying a piezoactuator. The influence of current limitation of operational amplifier on the actuator current is tested. Finally, a low cost audio power amplifier is proposed to control the piezobender actuator (as a cheaper alternative to the high-voltage amplifier) and its investigations results are presented in the paper.

  20. Low power RF amplifier circuit for ion trap applications.

    PubMed

    Noriega, J R; García-Delgado, L A; Gómez-Fuentes, R; García-Juárez, A

    2016-09-01

    A low power RF amplifier circuit for ion trap applications is presented and described. The amplifier is based on a class-D half-bridge amplifier with a voltage mirror driver. The RF amplifier is composed of an RF class-D amplifier, an envelope modulator to ramp up the RF voltage during the ion analysis stage, a detector or amplitude demodulation circuit for sensing the output signal amplitude, and a feedback amplifier that linearizes the steady state output of the amplifier. The RF frequency is set by a crystal oscillator and the series resonant circuit is tuned to the oscillator frequency. The resonant circuit components have been chosen, in this case, to operate at 1 MHz. In testings, the class-D stage operated at a maximum of 78 mW at 1.1356 MHz producing 225 V peak.

  1. Low power RF amplifier circuit for ion trap applications

    NASA Astrophysics Data System (ADS)

    Noriega, J. R.; García-Delgado, L. A.; Gómez-Fuentes, R.; García-Juárez, A.

    2016-09-01

    A low power RF amplifier circuit for ion trap applications is presented and described. The amplifier is based on a class-D half-bridge amplifier with a voltage mirror driver. The RF amplifier is composed of an RF class-D amplifier, an envelope modulator to ramp up the RF voltage during the ion analysis stage, a detector or amplitude demodulation circuit for sensing the output signal amplitude, and a feedback amplifier that linearizes the steady state output of the amplifier. The RF frequency is set by a crystal oscillator and the series resonant circuit is tuned to the oscillator frequency. The resonant circuit components have been chosen, in this case, to operate at 1 MHz. In testings, the class-D stage operated at a maximum of 78 mW at 1.1356 MHz producing 225 V peak.

  2. A new semicustom integrated bipolar amplifier for silicon strip detectors

    SciTech Connect

    Zimmerman, T.

    1989-07-11

    The QPA02 is a four channel DC coupled two stage transimpedance amplifier designed at Fermilab on a semicustom linear array (Quickchip 2S) manufactured by Tektronix. The chip was developed as a silicon strip amplifier but may have other applications as well. Each channel consists of a preamplifier and a second stage amplifier/sharper with differential output which can directly drive a transmission line (90 to 140 ohms). External bypass capacitors are the only discrete components required. QPA02 has been tested and demonstrated to be an effective silicon strip amplifier. Other applications may exist which can use this amplifier or a modified version of this amplifier. For example, another design is now in progress for a wire chamber amplifier, QPA03, to be reported later. Only a relatively small effort was required to modify the design and layout for this application. 11 figs.

  3. Waveguide harmonic damper for klystron amplifier.

    SciTech Connect

    Kang, Y.

    1998-10-27

    A waveguide harmonic damper was designed for removing the harmonic frequency power from the klystron amplifiers of the APS linac. Straight coaxial probe antennas are used in a rectangular waveguide to form a damper. A linear array of the probe antennas is used on a narrow wall of the rectangular waveguide for damping klystron harmonics while decoupling the fundamental frequency in dominent TE{sub 01} mode. The klystron harmonics can exist in the waveguide as waveguide higher-order modes above cutoff. Computer simulations are made to investigate the waveguide harmonic damping characteristics of the damper.

  4. On Distortion in Digital Microwave Power Amplifiers

    NASA Astrophysics Data System (ADS)

    Al-Mozani, Dhamia; Wentzel, Andreas; Heinrich, Wolfgang

    2017-01-01

    In this paper, a first study of distortion in digital power amplifiers (PA) is presented. The work is based on a voltage mode class-S PA with a GaN MMIC for the 900 MHz frequency band. The investigation focuses on the quasi-static amplitude-to-amplitude (AM-AM) and amplitude-to-phase (AM-PM) distortions. Different digital modulation schemes are applied and studied versus output power back-off. This includes two pulse-width modulation (PWM) versions as well as band-pass delta-sigma (BPDS) modulation. The results are verified by measurement data.

  5. Near-Quantum-Limited SQUID Amplifier

    NASA Astrophysics Data System (ADS)

    Clarke, John

    2009-03-01

    The SET (Single-Electron Transistor), which detects charge, is the dual of the SQUID (Superconducting QUantum Interference Device), which detects flux. In 1998, Schoelkopf and co-workers introduced the RFSET, which uses a resonance circuit to increase the frequency response to the 100-MHz range. The same year saw the introduction of the Microstrip SQUID Amplifier^1 (MSA) in which the input coil forms a microstrip with the SQUID washer, thereby extending the operating frequency to the gigahertz range. I briefly describe the theory of SQUID amplifiers involving a tuned input circuit with resonant frequency f. For an optimized SQUID at temperature T, the power gain and noise temperature are approximately G = fp/πf and TN = 20T(f/fp), respectively; fp is the plasma frequency of one of the Josephson junctions. Because the SQUID voltage and current noise are correlated, however, the optimum noise temperature is at a frequency below resonance. For a phase-preserving amplifier, TN = (.5ex1-.1em/ -.15em.25ex2 + A)hf/kB, where Caves' added noise number A = .5ex1-.1em/ -.15em.25ex2 at the quantum limit. Simulations based on the quantum Langevin equation (QLE) suggest that the SQUID amplifier should attain A = .5ex1-.1em/ -.15em.25ex2 . We have measured the gain and noise of an MSA in which the resistive shunts of the junctions are coupled to cooling fins to reduce hot electron effects. The minimum value A = 1.1 ± 0.2 occurs at a frequency below resonance. On resonance, the value A = 1.5 ± 0.3 is close to the predictions of the QLE, suggesting that this model may fail to predict the cross-correlated noise term correctly. Indeed, recent work suggests that a fully quantum mechanical theory is required to account properly for this term^2. This work is in collaboration with D. Kinion and supported by DOE BES. ^1M. Mueck, et al., Appl. Phys. Lett. 72, 2885 (1998). ^2A. Clerk, et al., http://arxiv.org/abs/0810.4729.

  6. Undulations from amplified low frequency surface waves

    SciTech Connect

    Coutant, Antonin; Parentani, Renaud

    2014-04-15

    We study the linear scattering of gravity waves in longitudinal inhomogeneous stationary flows. When the flow becomes supercritical, it is known that counterflow propagating shallow waves are blocked and converted into deep waves. Here we show that in the zero-frequency limit, the reflected waves are amplified in such a way that the free surface develops an undulation, i.e., a zero-frequency wave of large amplitude with nodes located at specific places. This amplification involves negative energy waves and implies that flat surfaces are unstable against incoming perturbations of arbitrary small amplitude. The relation between this instability and black hole radiation (the Hawking effect) is established.

  7. Chemically amplified photoresist: Materials and processes

    NASA Astrophysics Data System (ADS)

    Pawloski, Adam Richard

    2002-01-01

    Advances in microfabrication technology to construct smaller and faster integrated circuits depend on improving resolution capabilities of patterning thin films of photoresist materials by photolithographic imaging. Positive-tone, chemically amplified photoresists represent one of the most important classes of photoresist materials. These materials function by the generation of a photoacid catalyst from the decomposition of a photoacid generator with exposure that catalyzes chemical reactions that alter the development rate of the exposed resist. Chemical amplification is derived from the fact that a single molecule of photogenerated catalyst may participate in numerous reactions. Photoacid catalyzes the cleavage of acid-labile protecting groups from the backbone of the resin polymer, increasing the dissolution rate of the resist in aqueous base. A pattern is formed in the photoresist film from the difference between dissolution rates of the exposed and unexposed material. The continual improvement of the resolution of chemically amplified resists depends on understanding, controlling, and optimizing the chemical processes that govern pattern formation, namely photoacid generation, resin deprotection, and resist dissolution. To elucidate how the formulation of the resist affects these processes, a systematic methodology was designed, validated and implemented to analyze the materials and processing of chemically amplified photoresist systems. The efficiency of photoacid generation and the concentration of photoacid produced upon exposure were determined for a wide range of resist formulations, processing conditions, and exposure technologies. The chemical structure of photoacid generators and base quenchers were found to affect the processes of acid-base neutralization, resin deprotection, and resist development. The reaction-diffusion process of photoacid to deprotect the resin was identified to depend on the concentration of the photoacid generator. A much

  8. Integrating and Amplifying Signal from Riboswitch Biosensors

    DTIC Science & Technology

    2014-08-01

    we describe the design, building, and testing of a riboswitch-based Boolean logic AND gate in bacteria , where an output requires the activation of...transformed bacteria . 9  Distribution A. Approved for public release; distribution is unlimited. 88ABW-2014-1997; Cleared 30 April 2014 3.0 RIBOSWITCH...pSB3K3 and pSB4A3 (generous gifts from Dr. Christopher Voigt, MIT, MA).  Primers to amplify LasI and RhlI from Pseudomonas aeruginosa PA01 ( ATCC 47085

  9. Voltage Amplifier Based on Organic Electrochemical Transistor

    PubMed Central

    Braendlein, Marcel; Lonjaret, Thomas; Leleux, Pierre; Badier, Jean‐Michel

    2016-01-01

    Organic electrochemical transistors (OECTs) are receiving a great deal of attention as amplifying transducers for electrophysiology. A key limitation of this type of transistors, however, lies in the fact that their output is a current, while most electrophysiology equipment requires a voltage input. A simple circuit is built and modeled that uses a drain resistor to produce a voltage output. It is shown that operating the OECT in the saturation regime provides increased sensitivity while maintaining a linear signal transduction. It is demonstrated that this circuit provides high quality recordings of the human heart using readily available electrophysiology equipment, paving the way for the use of OECTs in the clinic. PMID:28105401

  10. An x-band peeled HEMT amplifier

    NASA Technical Reports Server (NTRS)

    Young, Paul G.; Romanofsky, Robert R.; Alterovitz, Samuel A.; Smith, Edwyn D.

    1993-01-01

    A discrete peeled high electron mobility transistor (HEMT) device was integrated into a 10 GHz amplifier. The discrete HEMT device interconnects were made using photo patterned metal, stepping from the 10 mil alumina host substrate onto the 1.3 microns thick peeled GaAs HEMT layer, eliminating the need for bond wires and creating a fully integrated circuit. Testing of devices indicate that the peeled device is not degraded by the peel off step but rather there is an improvement in the quantum well carrier confinement. Circuit testing resulted in a maximum gain of 8.5 dB and a return loss minimum of -12 dB.

  11. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license.

    PubMed

    Schwob, James E; Jang, Woochan; Holbrook, Eric H; Lin, Brian; Herrick, Daniel B; Peterson, Jesse N; Hewitt Coleman, Julie

    2017-03-01

    The capacity of the olfactory epithelium (OE) for lifelong neurogenesis and regeneration depends on the persistence of neurocompetent stem cells, which self-renew as well as generating all of the cell types found within the nasal epithelium. This Review focuses on the types of stem and progenitor cells in the epithelium and their regulation. Both horizontal basal cells (HBCs) and some among the population of globose basal cells (GBCs) are stem cells, but the two types plays vastly different roles. The GBC population includes the basal cells that proliferate in the uninjured OE and is heterogeneous with respect to transcription factor expression. From upstream in the hierarchy to downstream, GBCs encompass 1) Sox2(+) /Pax6(+) stem-like cells that are totipotent and self-renew over the long term, 2) Ascl1(+) transit-amplifying progenitors with a limited capacity for expansive proliferation, and 3) Neurog1(+) /NeuroD1(+) immediate precursor cells that make neurons directly. In contrast, the normally quiescent HBCs are activated to multipotency and proliferate when sustentacular cells are killed, but not when only OSNs die, indicating that HBCs are reserve stem cells that respond to severe epithelial injury. The master regulator of HBC activation is the ΔN isoform of the transcription factor p63; eliminating ΔNp63 unleashes HBC multipotency. Notch signaling, via Jagged1 ligand on Sus cells and Notch1 and Notch2 receptors on HBCs, is likely to play a major role in setting the level of p63 expression. Thus, ΔNp63 becomes a potential therapeutic target for reversing the neurogenic exhaustion characteristic of the aged OE. J. Comp. Neurol. 525:1034-1054, 2017. © 2016 Wiley Periodicals, Inc.

  12. Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice

    PubMed Central

    Dekaney, Christopher M.; Gulati, Ajay S.; Garrison, Aaron P.; Helmrath, Michael A.; Henning, Susan J.

    2009-01-01

    The intestinal epithelium is in a constant state of renewal. The rapid turnover of cells is fed by a hierarchy of transit amplifying and stem/progenitor cells destined to give rise to the four differentiated epithelial lineages of the small intestine. Doxorubicin (Dox) is a commonly used chemotherapeutic agent that preferentially induces apoptosis in the intestinal stem cell zone (SCZ). We hypothesized that Dox treatment would initially decrease “+4” intestinal stem cell numbers with a subsequent expansion during mucosal repair. Temporal assessment following Dox treatment demonstrated rapid induction of apoptosis in the SCZ leading to a decrease in the number of intestinal stem/progenitor cells as determined by flow cytometry for CD45(−) SP cells, and immunohistochemistry of cells positive for putative +4 stem cell markers β-catSer552 and DCAMKL1. Between 96 and 168 h postinjection, overall proliferation in the crypts increased concomitant with increases in both absolute and relative numbers of goblet, Paneth, and enteroendocrine cells. This regeneration phase was also associated with increases of CD45(−) SP cells, β-catSer552-positive cells, crypt fission, and crypt number. We used Lgr5-lacZ mice to assess behavior of Lgr5-positive stem cells following Dox and found no change in this cell population. Lgr5 mRNA level was also measured and showed no change immediately after Dox but decreased during the regeneration phase. Together these data suggest that, following Dox-induced injury, expansion of intestinal stem cells occurs during mucosal repair. On the basis of available markers this expansion appears to be predominantly the +4 stem cell population rather than those of the crypt base. PMID:19589945

  13. Peripheral Blood Endothelial Progenitors as Potential Reservoirs of Kaposi's Sarcoma-Associated Herpesvirus

    PubMed Central

    Della Bella, Silvia; Brambilla, Lucia; Bellinvia, Monica; Bergamo, Elisa; Clerici, Mario; Villa, Maria L.

    2008-01-01

    Background The cellular reservoirs of Kaposi's sarcoma-associated herpesvirus (KSHV) and the exact nature of the putative KSHV-infected circulating precursor of spindle cells of Kaposi's sarcoma (KS) still remain poorly defined. Because KS spindle cells are thought to be of endothelial origin, and because mature endothelial cells do not sustain persistent KSHV-infection, our attention was focalized on circulating hematopoietic precursors able to differentiate into endothelial lineage. Methods and Findings Late endothelial progenitor cells (late-EPCs) were cultured from the peripheral blood mononuclear cells of 16 patients with classic KS. The presence and load of KSHV genomes were analyzed by real-time polymerase chain reaction in DNA extracted from cells and supernatants of late-EPC cultures obtained from 7 patients. Endothelial colonies cultured from the peripheral blood of KS patients were found to satisfy all requisites to be defined late-EPCs: they appeared from the CD14-negative fraction of adherent cells after 11–26 days of culture, could be serially expanded in vitro, expressed high levels of endothelial antigens but lacked leukocyte markers. Late-EPC cultures were found to harbor KSHV-DNA at variable levels and to retain the virus after multiple passages in cells as well as in supernatants, suggesting that a quote of KSHV lytic infection may spontaneously occur. Lytic phase induction or hypoxia could amplify virus release in supernatants. Conclusion Our results suggest that circulating endothelial progenitors from KS patients are KSHV-infected and support viral productive replication and may therefore represent potential virus reservoirs and putative precursors of KS spindle cells. PMID:18231605

  14. Two distinct muscle progenitor populations coexist throughout amniote development.

    PubMed

    Picard, Cyril A; Marcelle, Christophe

    2013-01-01

    During embryonic and fetal life, skeletal muscle growth is dependent upon the proliferation and the differentiation of a population of resident muscle progenitors, from which derive the muscle stem cells of the adult, the satellite cells. Under poorly defined extrinsic and intrinsic influences, muscle progenitors proliferate, differentiate or enter a quiescent state to become reserve satellite cells. Despite their primordial role, surprisingly little is known on the homeostasis of resident progenitors during embryogenesis. Preliminary studies in chick and mouse describing the key progenitor populations contributing to muscle growth during embryogenesis have led to differing results that could be due to technical issues or to fundamental differences between animal models. To address this question, we have undertaken a comprehensive analysis of the state of differentiation and proliferation of muscle progenitor cells from the time of their emergence within the dermomyotome until late fetal life, when they adopt a satellite cell-like position under the basal lamina. This was done by immunostaining against key players of myogenic differentiation, in muscles chosen from different regions of the body in two model organisms, the chick and mouse. This study identified two co-existing populations of progenitors during embryonic and fetal life in both chick and mouse: a minor, slow-cycling pool of undifferentiated resident progenitors which express Pax7, co-existing with a major fast-cycling population that co-express Pax7 and the early myogenic differentiation marker Myf5. We found that the overall proliferation rate of both progenitors drastically decreased with embryonic age, as an increasingly large portion of slow and fast-cycling progenitors entered quiescence during development. Together, this data suggests that the cellular strategies that drive muscle growth during embryonic and fetal life are remarkably conserved in amniotes throughout evolution. They rely on the

  15. SF/FAF Laser Oscillator/Amplifiers

    NASA Astrophysics Data System (ADS)

    Shah, S. T.; Steen, W. M.

    1987-09-01

    There are two major requirements in laser design; sufficient power and correct mode structure. In the design of higher powered lasers the mode structure may suffer. Current designs are often based upon coupled cavities, in which a basic laser module is joined to another to make a single vacuum, optical cavity system. Examples of such an arrangement are the latest Ferranti CLL10, UTRC 25kW and the older Spectra Physics 5kW lasers. An alternative approach is to couple two or more lasers as an oscillator/amplifier system. The results of joining two Fast Axial Flow (FAF) lasers in this way have been discussed previously (1). This paper discusses some results from the coupling of a slow flow (SF) laser oscillator having a near Gaussian mode structure to a FAF amplifier. The result was a more powerful beam with a similar near Gaussian mode. The possibilit ies for laser design and mode engineering by this technique are illustrated by reference to cutting and welding experiments.

  16. Amplifying elements of arthritis and joint destruction.

    PubMed

    van den Berg, Wim B; van Lent, Peter L; Joosten, Leo A B; Abdollahi-Roodsaz, Shahla; Koenders, Marije I

    2007-11-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease characterised by chronic joint inflammation and variable degrees of bone and cartilage erosion. Studies in animal models of arthritis provide insight into elements which can amplify destructive features. The presence of immune complexes in the joint makes arthritis more erosive. Although considerable bone erosion still occurs in the absence of FcgammaR triggering by immune complexes, through cytokine-induced RANKL and direct osteoclast activation, cartilage erosion is heavily dependent on the FcgammaR pathway. T cell factors such as IFNgamma and IL17 further amplify erosion through upregulation of the damaging FcgammaRI and stimulation of the influx of granulocytes, respectively. Apart from immune elements, environmental pressure and components of tissue damage contribute through innate pathways. Spontaneous T cell-dependent arthritis in IL1Ra-/- mice is absent under germ-free conditions, and markedly suppressed in TLR4-deficient mice. Moreover, TLR4 blocking with a receptor antagonist suppresses erosive arthritis.

  17. Design criteria for ultrafast optical parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Manzoni, C.; Cerullo, G.

    2016-10-01

    Optical parametric amplifiers (OPAs) exploit second-order nonlinearity to transfer energy from a fixed frequency pump pulse to a variable frequency signal pulse, and represent an easy way of tuning over a broad range the frequency of an otherwise fixed femtosecond laser system. OPAs can also act as broadband amplifiers, transferring energy from a narrowband pump to a broadband signal and thus considerably shortening the duration of the pump pulse. Due to these unique properties, OPAs are nowadays ubiquitous in ultrafast laser laboratories, and are employed by many users, such as solid state physicists, atomic/molecular physicists, chemists and biologists, who are not experts in ultrafast optics. This tutorial paper aims at providing the non-specialist reader with a self-consistent guide to the physical foundations of OPAs, deriving the main equations describing their performance and discussing how they can be used to understand their most important working parameters (frequency tunability, bandwidth, pulse energy/repetition rate scalability, control over the carrier-envelope phase of the generated pulses). Based on this analysis, we derive practical design criteria for OPAs, showing how their performance depends on the type of the nonlinear interaction (crystal type, phase-matching configuration, crystal length), on the characteristics of the pump pulse (frequency, duration, energy, repetition rate) and on the OPA architecture.

  18. Backward Raman Amplifier for Laser Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Ludwig, Joshua; Masson-Laborde, Paul-Edouard; Huller, Stefan; Rozmus, Wojciech; Wilks, Scott C.

    2016-10-01

    Particle in cell simulations via SCPIC and theoretical work on Raman amplification and laser wake field acceleration will be presented. Laser energy depletion has been shown to be a limiting factor during wake field acceleration. This work focuses on optimizing parameters for Raman amplification to work in conjunction with wake field acceleration in order in order to sustain an accelerating laser pulse as it generates plasma waves. It has been shown that laser pulses undergo red shifting during wake generation. Our work demonstrates that this red shifting results in a detuning between pump and seed in the backward Raman Amplifier. This detuning limits the amount of energy that can be transferred from the pump to the seed, and places new limits on backward Raman amplification. To overcome this limiting factor, this study makes use of a chirped pump allowing for extended coupling to the accelerating pulse. Three wave coupling model of Raman amplifier with a frequency shift term due to wake field will also be discussed and compared with PIC simulations.

  19. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon

    1990-01-01

    The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.

  20. Discretization analysis of bifurcation based nonlinear amplifiers

    NASA Astrophysics Data System (ADS)

    Feldkord, Sven; Reit, Marco; Mathis, Wolfgang

    2017-09-01

    Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.