Science.gov

Sample records for amplitude collective motion

  1. Recent progress in the microscopic description of small and large amplitude collective motion

    NASA Astrophysics Data System (ADS)

    Lacroix, D.; Ayik, S.; Scamps, G.; Simenel, C.; Tanimura, Y.; Yilmaz, B.

    2015-10-01

    Dynamical mean-field theory has recently attracted much interests to provide a unified framework for the description of many aspects of nuclear dynamics [1, 2, 3, 4, 5] (for recent reviews see [6, 7]). In particular, the inclusion of pairing correlation has opened new perspectives [8, 9, 10, 11, 12]. A summary of recent applications including giant resonances and transfer reactions will be made in this talk [13, 14, 15, 16]. While new progresses have been made with the use of sophisticated effective interactions and the development of symmetry unrestricted applications, mean-field dynamics suffer from the poor treatment of quantum fluctuations in collective space. As a consequence, these theories are successful in describing average properties of many different experimental observations but generally fail to account realistically for the width of experimental distribution. The increase of predictive power of dynamical mean-field theory is facing the difficulty of going beyond the independent particle or quasi-particle picture. Nevertheless, in the last decade, novel methods have been proposed to prepare the next generation of microscopic mean-field codes able to account for both average properties and fluctuations around the average. A review of recent progresses in this direction as well as recent applications to heavy-ion collisions will be given [17, 18].

  2. Recent progress in the microscopic description of small and large amplitude collective motion

    SciTech Connect

    Lacroix, D. Tanimura, Y.; Ayik, S.; Scamps, G.; Simenel, C.; Yilmaz, B.

    2015-10-15

    Dynamical mean-field theory has recently attracted much interests to provide a unified framework for the description of many aspects of nuclear dynamics [1, 2, 3, 4, 5] (for recent reviews see [6, 7]). In particular, the inclusion of pairing correlation has opened new perspectives [8, 9, 10, 11, 12]. A summary of recent applications including giant resonances and transfer reactions will be made in this talk [13, 14, 15, 16]. While new progresses have been made with the use of sophisticated effective interactions and the development of symmetry unrestricted applications, mean-field dynamics suffer from the poor treatment of quantum fluctuations in collective space. As a consequence, these theories are successful in describing average properties of many different experimental observations but generally fail to account realistically for the width of experimental distribution. The increase of predictive power of dynamical mean-field theory is facing the difficulty of going beyond the independent particle or quasi-particle picture. Nevertheless, in the last decade, novel methods have been proposed to prepare the next generation of microscopic mean-field codes able to account for both average properties and fluctuations around the average. A review of recent progresses in this direction as well as recent applications to heavy-ion collisions will be given [17, 18].

  3. Collective motion

    NASA Astrophysics Data System (ADS)

    Vicsek, Tamás; Zafeiris, Anna

    2012-08-01

    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  4. Stochastic aspects of nuclear large amplitude motion

    SciTech Connect

    Kolomietz, V.M.

    1995-08-01

    A consistent description of the macroscopic large amplitude dynamics and processes of internal excitation of a nucleus is suggested. The cranking model approach is used for the calculation of the response function of the nucleus in a moving frame. Using spectral statistics smearing, the collective mass, friction, and diffusion coefficients are derived. The relation of the response function in a moving frame to the correlation function in a classical chaotic system is established. The rate of dissipation due to the Landau-Zener transitions and through the Kubo mechanism is considered.

  5. Algebraic Nonlinear Collective Motion

    NASA Astrophysics Data System (ADS)

    Troupe, J.; Rosensteel, G.

    1998-11-01

    Finite-dimensional Lie algebras of vector fields determine geometrical collective models in quantum and classical physics. Every set of vector fields on Euclidean space that generates the Lie algebra sl(3, R) and contains the angular momentum algebra so(3) is determined. The subset of divergence-free sl(3, R) vector fields is proven to be indexed by a real numberΛ. TheΛ=0 solution is the linear representation that corresponds to the Riemann ellipsoidal model. The nonlinear group action on Euclidean space transforms a certain family of deformed droplets among themselves. For positiveΛ, the droplets have a neck that becomes more pronounced asΛincreases; for negativeΛ, the droplets contain a spherical bubble of radius |Λ|1/3. The nonlinear vector field algebra is extended to the nonlinear general collective motion algebra gcm(3) which includes the inertia tensor. The quantum algebraic models of nonlinear nuclear collective motion are given by irreducible unitary representations of the nonlinear gcm(3) Lie algebra. These representations model fissioning isotopes (Λ>0) and bubble and two-fluid nuclei (Λ<0).

  6. Collective motion of dimers.

    PubMed

    Penington, Catherine J; Korvasová, Karolína; Hughes, Barry D; Landman, Kerry A

    2012-11-01

    We consider a discrete agent-based model on a one-dimensional lattice and a two-dimensional square lattice, where each agent is a dimer occupying two sites. Agents move by vacating one occupied site in favor of a nearest-neighbor site and obey either a strict simple exclusion rule or a weaker constraint that permits partial overlaps between dimers. Using indicator variables and careful probability arguments, a discrete-time master equation for these processes is derived systematically within a mean-field approximation. In the continuum limit, nonlinear diffusion equations that describe the average agent occupancy of the dimer population are obtained. In addition, we show that multiple species of interacting subpopulations give rise to advection-diffusion equations. Averaged discrete simulation data compares very well with the solution to the continuum partial differential equation models. Since many cell types are elongated rather than circular, this work offers insight into population-level behavior of collective cellular motion.

  7. Resolving High Amplitude Surface Motion with Diffusing Light

    NASA Technical Reports Server (NTRS)

    Wright, W.; Budakian, R.; Putterman, Seth J.

    1996-01-01

    A new technique has been developed for the purpose of imaging high amplitude surface motion. With this method one can quantitatively measure the transition to ripple wave turbulence. In addition, one can measure the phase of the turbulent state. These experiments reveal strong coherent structures in turbulent range of motion.

  8. Small-amplitude viscous motion on arbitrary potential flows

    NASA Astrophysics Data System (ADS)

    Goldstein, M. E.

    1984-02-01

    This paper is concerned with small-amplitude, unsteady, vortical and entropic motion imposed on steady potential flows. It is restricted to the case where the spatial scale of the unsteady motion is small compared to that of the mean flow. Under such conditions, the unsteady motion may be influenced by viscosity even if the mean flow is not. An exact high-frequency (small-wavelength) solution is obtained for the small-amplitude viscous motion imposed on a steady potential flow. It generalizes the one obtained by Pearson (1959) for the homogeneous-strain case to the case of quasi-homogeneous strain. This result is used to study the effect of viscosity on rapidly distorted turbulent flows. Specific numerical results are given for a turbulent flow near a two-dimensional stagnation point.

  9. Large-amplitude motion in polymer crystals and mesophases

    SciTech Connect

    Wunderlich, B. |

    1994-12-31

    Large-amplitude motion of macromolecules involves mainly rotation about bonds (conformational motion). In the liquid phases, the large- amplitude motion is coupled with disorder and accounts for the flow and viscoelastic behavior. Perfectly ordered crystals, in contrast, permit only little large-amplitude motion. The mesophases are intermediate in order and mobility. In crystals, large-amplitude motion leads initially to gauche defects and kinks (conformational defects), and ultimately may produce conformationally disordered crystals (conis crystals). Molecular dynamics simulations of crystals with up to 30,000 atoms have been carried out and show the mechanism of defect formation, permit the study of the distribution of defects, and the visualization of hexagonal crystals. Distinction between main-chain liquid-crystalline macromolecules and condis crystals, the two mesophases of polymers, can be done on basis of analysis of phase separation (partial crystallinity), present in condis crystals and not in liquid crystals. Solid state NMR is the tool of choice for detecting mobile and rigid phases. In highly drawn fibers one can find four different states of order and mobility. Besides the (defect) crystalline phase and the isotropic amorphous phase, an intermediate oriented phase and a rigid amorphous phase exists.

  10. High amplitude surging and plunging motions at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Choi, Jeesoon; Colonius, Tim; Williams, David; Caltech Collaboration; IIT Collaboration

    2014-11-01

    Aerodynamic forces and flow structures associated with high amplitude oscillations of an airfoil in the streamwise (surging) and transverse (plunging) direction are investigated in two-dimensional simulations at low Reynolds number (Re = 102 ~ 103). While the unsteady aerodynamic forces for low-amplitude motions were mainly affected by the leading-edge vortex (LEV) acting in- or out-of phase with the quasi-component of velocity, large-amplitude motions involve complex vortex interactions of LEVs and trailing-edge vortices (TEVs) with the moving body. For high-amplitude surging, the TEV, instead of the LEV, induces low-pressure regions above the airfoil during the retreating portion of the cycle near the reduced frequency, k = 0.5, and enhances the time-average forces. The time required for the LEV to convect along the chord becomes an intrinsic time scale, and for plunging motions, there is a sudden change of flow structure when the period of the motion is not long enough for the LEV to convect through the whole chord.

  11. Large-amplitude inviscid fluid motion in an accelerating container

    NASA Technical Reports Server (NTRS)

    Perko, L. M.

    1968-01-01

    Study of dynamic behavior of the liquid-vapor interface of an inviscid fluid in an accelerating cylindrical container includes an analytical-numerical method for determining large amplitude motion. The method is based on the expansion of the velocity potential in a series of harmonic functions with time dependent coefficients.

  12. The Dynamics of Large-Amplitude Motion in Energized Molecules

    SciTech Connect

    Perry, David S.

    2016-05-27

    Chemical reactions involve large-amplitude nuclear motion along the reaction coordinate that serves to distinguish reactants from products. Some reactions, such as roaming reactions and reactions proceeding through a loose transition state, involve more than one large-amplitude degree of freedom. Because of the limitation of exact quantum nuclear dynamics to small systems, one must, in general, define the active degrees of freedom and separate them in some way from the other degrees of freedom. In this project, we use large-amplitude motion in bound model systems to investigate the coupling of large-amplitude degrees of freedom to other nuclear degrees of freedom. This approach allows us to use the precision and power of high-resolution molecular spectroscopy to probe the specific coupling mechanisms involved, and to apply the associated theoretical tools. In addition to slit-jet spectra at the University of Akron, the current project period has involved collaboration with Michel Herman and Nathalie Vaeck of the Université Libre de Bruxelles, and with Brant Billinghurst at the Canadian Light Source (CLS).

  13. Attenuation of ground-motion spectral amplitudes in southeastern Australia

    USGS Publications Warehouse

    Allen, T.I.; Cummins, P.R.; Dhu, T.; Schneider, J.F.

    2007-01-01

    A dataset comprising some 1200 weak- and strong-motion records from 84 earthquakes is compiled to develop a regional ground-motion model for southeastern Australia (SEA). Events were recorded from 1993 to 2004 and range in size from moment magnitude 2.0 ??? M ??? 4.7. The decay of vertical-component Fourier spectral amplitudes is modeled by trilinear geometrical spreading. The decay of low-frequency spectral amplitudes can be approximated by the coefficient of R-1.3 (where R is hypocentral distance) within 90 km of the seismic source. From approximately 90 to 160 km, we observe a transition zone in which the seismic coda are affected by postcritical reflections from midcrustal and Moho discontinuities. In this hypocentral distance range, geometrical spreading is approximately R+0.1. Beyond 160 km, low-frequency seismic energy attenuates rapidly with source-receiver distance, having a geometrical spreading coefficient of R-1.6. The associated regional seismic-quality factor can be expressed by the polynomial: log Q(f) = 3.66 - 1.44 log f + 0.768 (log f)2 + 0.058 (log f)3 for frequencies 0.78 ??? f ??? 19.9 Hz. Fourier spectral amplitudes, corrected for geometrical spreading and anelastic attenuation, are regressed with M to obtain quadratic source scaling coefficients. Modeled vertical-component displacement spectra fit the observed data well. Amplitude residuals are, on average, relatively small and do not vary with hypocentral distance. Predicted source spectra (i.e., at R = 1 km) are consistent with eastern North American (ENA) Models at low frequencies (f less than approximately 2 Hz) indicating that moment magnitudes calculated for SEA earthquakes are consistent with moment magnitude scales used in ENA over the observed magnitude range. The models presented represent the first spectral ground-motion prediction equations develooed for the southeastern Australian region. This work provides a useful framework for the development of regional ground-motion relations

  14. Optimal Noise Maximizes Collective Motion in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Chepizhko, Oleksandr; Altmann, Eduardo G.; Peruani, Fernando

    2013-06-01

    We study the effect of spatial heterogeneity on the collective motion of self-propelled particles (SPPs). The heterogeneity is modeled as a random distribution of either static or diffusive obstacles, which the SPPs avoid while trying to align their movements. We find that such obstacles have a dramatic effect on the collective dynamics of usual SPP models. In particular, we report about the existence of an optimal (angular) noise amplitude that maximizes collective motion. We also show that while at low obstacle densities the system exhibits long-range order, in strongly heterogeneous media collective motion is quasi-long-range and exists only for noise values in between two critical values, with the system being disordered at both large and low noise amplitudes. Since most real systems have spatial heterogeneities, the finding of an optimal noise intensity has immediate practical and fundamental implications for the design and evolution of collective motion strategies.

  15. Geometric decompositions of collective motion.

    PubMed

    Mischiati, Matteo; Krishnaprasad, P S

    2017-04-01

    Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes-including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots.

  16. Geometric decompositions of collective motion

    NASA Astrophysics Data System (ADS)

    Mischiati, Matteo; Krishnaprasad, P. S.

    2017-04-01

    Collective motion in nature is a captivating phenomenon. Revealing the underlying mechanisms, which are of biological and theoretical interest, will require empirical data, modelling and analysis techniques. Here, we contribute a geometric viewpoint, yielding a novel method of analysing movement. Snapshots of collective motion are portrayed as tangent vectors on configuration space, with length determined by the total kinetic energy. Using the geometry of fibre bundles and connections, this portrait is split into orthogonal components each tangential to a lower dimensional manifold derived from configuration space. The resulting decomposition, when interleaved with classical shape space construction, is categorized into a family of kinematic modes-including rigid translations, rigid rotations, inertia tensor transformations, expansions and compressions. Snapshots of empirical data from natural collectives can be allocated to these modes and weighted by fractions of total kinetic energy. Such quantitative measures can provide insight into the variation of the driving goals of a collective, as illustrated by applying these methods to a publicly available dataset of pigeon flocking. The geometric framework may also be profitably employed in the control of artificial systems of interacting agents such as robots.

  17. Collective organization in aerotactic motion

    NASA Astrophysics Data System (ADS)

    Mazza, Marco G.

    Some bacteria exhibit interesting behavior in the presence of an oxygen concentration. They perform an aerotactic motion along the gradient until they reach their optimal oxygen concentration. But they often organize collectively by forming dense regions, called 'bands', that travel towards the oxygen source. We have developed a model of swimmers with stochastic interaction rules moving in proximity of an air bubble. We perform molecular dynamics simulations and also solve advection-diffusion equations that reproduce the aerotactic behavior of mono-flagellated, facultative anaerobic bacteria. If the oxygen concentration in the system sinks locally below a threshold value, the formation of a migrating aerotactic band toward the bubble can be observed.

  18. Optimality, reduction and collective motion

    PubMed Central

    Justh, Eric W.; Krishnaprasad, P. S.

    2015-01-01

    The planar self-steering particle model of agents in a collective gives rise to dynamics on the N-fold direct product of SE(2), the rigid motion group in the plane. Assuming a connected, undirected graph of interaction between agents, we pose a family of symmetric optimal control problems with a coupling parameter capturing the strength of interactions. The Hamiltonian system associated with the necessary conditions for optimality is reducible to a Lie–Poisson dynamical system possessing interesting structure. In particular, the strong coupling limit reveals additional (hidden) symmetry, beyond the manifest one used in reduction: this enables explicit integration of the dynamics, and demonstrates the presence of a ‘master clock’ that governs all agents to steer identically. For finite coupling strength, we show that special solutions exist with steering controls proportional across the collective. These results suggest that optimality principles may provide a framework for understanding imitative behaviours observed in certain animal aggregations. PMID:27547087

  19. Dynamics of one-dimensional large amplitude motions: molecular Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kleiner, I.

    1998-09-01

    A general description of the usual theoretical approaches used to analyze the spectroscopic data of molecules presenting a one-dimensional large amplitude motion is given. The characteristics of this motion are first described briefly, and the pionner's works which led to the development of the molecular Hamitonian are then shown. A more detailed description is applied to one example of a one- dimensional large amplitude motion, the internal rotation (or torsion) of a symmetric group, typically the methyl CH3 group. Different methods, commonly found in the literature on this topic, such as the “principal axis method”, the “rho axis method" and the “internal axis method”, are described paying particular attention to the group theory implications. Finally, the present understanding of the torsional manifold in molecules containing a methyl internal rotor , which have become recently “prototype” molecular systems for such problems as IVR (Intramolecular Vibrational Relaxation) is presented. Une description générale des approches théoriques utilisées pour analyser les données spectroscopiques des molécules montrant un mouvement de grande amplitude est présentée.Les caractéristiques de ce mouvement sont d'abord décrites brievement et les travaux des “pionniers" du domaine, qui ont permis le développement de l'Hamiltonien moléculaire sont ensuite présentés. Une description plus détaillée est consacrée au problème de la rotation interne d'un groupe symétrique, typiquement le groupe méthyle, CH3. Différentes méthodes, traditionellement utilisées dans la littérature, telles que la méthode des “axes principaux d'inertie", la méthode des “axes rho" ou la “méthode des axes internes" sont décrites avec leurs implications au niveau de la théorie des groupes. Finalement, la compréhension actuelle du “bain" de torsion présent dans les molécules contenant un rotateur interne, qui sont devenues depuis peu des molécules

  20. Collective motion in animal groups

    NASA Astrophysics Data System (ADS)

    Couzin, Iain

    2004-03-01

    In recent years there has been a growing interest in the relationship between individual behavior and population-level properties in animal groups. One of the fundamental problems is related to spatial scale; how do interactions over a local range result in population properties at larger, averaged, scales, and how can we integrate the properties of aggregates over these scales? Many group-living animals exhibit complex, and coordinated, spatio-temporal patterns which despite their ubiquity and ecological importance are very poorly understood. This is largely due to the difficulties associated with quantifying the motion of, and interactions among, many animals simultaneously. It is on how these behaviors scale to collective behaviors that I will focus here. Using a combined empirical approach (using novel computer vision techniques) and individual-based computer models, I investigate pattern formation in both invertebrate and vertebrate systems, including - Collective memory and self-organized group structure in vertebrate groups (Couzin, I.D., Krause, J., James, R., Ruxton, G.D. & Franks, N.R. (2002) Journal of Theoretical Biology 218, 1-11. (2) Couzin, I.D. & Krause, J. (2003) Advances in the Study of Behavior 32, 1-75. (3) Hoare, D.J., Couzin, I.D. Godin, J.-G. & Krause, J. (2003) Animal Behaviour, in press.) - Self-organized lane formation and optimized traffic flow in army ants (Couzin, I.D. & Franks, N.R. (2003) Proceedings of the Royal Society of London, Series B 270, 139-146) - Leadership and information transfer in flocks, schools and swarms. - Why do hoppers hop? Hopping and the generation of long-range order in some of the largest animal groups in nature, locust hopper bands.

  1. Comparison of damping in buildings under low-amplitude and strong motions

    USGS Publications Warehouse

    Celebi, M.

    1996-01-01

    This paper presents a comprehensive assessment of damping values and other dynamic characteristics of five buildings using strong-motion and low-amplitude (ambient vibration) data. The strong-motion dynamic characteristics of five buildings within the San Francisco Bay area are extracted from recordings of the 17 October 1989 Loma Prieta earthquake (LPE). Ambient vibration response characteristics for the same five buildings were inferred using data collected in 1990 following LPE. Additional earthquake data other than LPE for one building and ambient vibration data collected before LPE for two other buildings provide additional confirmation of the results obtained. For each building, the percentages of critical damping and the corresponding fundamental periods determined from low-amplitude test data are appreciably lower than those determined from strong-motion recordings. These differences are attributed mainly to soil-structure interaction and other non-linear behavior affecting the structures during strong shaking. Significant contribution of radiation damping to the effective damping of a specific building is discussed in detail.

  2. Charge polarization with large amplitude hydrogen motion of pyrazinyl radical: implication for the diffusion dynamics

    NASA Astrophysics Data System (ADS)

    Morita, Akihiro; Kato, Shigeki

    2001-11-01

    In this Letter we discuss in the case of pyrazinyl radical the effect of the large amplitude motion on the charge polarization. The extra hydrogen of pyrazinyl radical is nonplanar at the equilibrium geometry, whereas it is delocalized in the vibrational ground state along the wagging direction. The large amplitude motion of the hydrogen triply enhances the effective out-of-plane polarizability of the ground state. This augmented charge polarization could play a considerable role in the diffusion dynamics in solutions.

  3. Collective motion of microswimmers in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Li, Gaojin; Ardekani, Arezoo

    2015-11-01

    The dynamics of suspension of self-propelled microorganisms show fascinating hydrodynamic phenomena, such as, large scale swarming motion, locally correlated motion, enhanced particle diffusion, and enhanced fluid mixing. Even though many studies have been conducted in a Newtonian fluid, the collective motion of microorganisms in non-Newtonian fluids is less understood. The non-Newtonian fluid rheological properties, such as viscoelasticity and shear-dependent viscosity in saliva, mucus and biofilm, significantly affect the swimming properties and hydrodynamic interaction of microorganisms. In this work, we use direct numerical simulation to investigate the collective motion of rod-like swimmers in viscoelastic fluids. Two swimming types, pusher and puller, are investigated. The background viscoelastic fluid is modeled using an Oldroyd-B constitutive equation. This work is supported by NSF CBET-1445955 and Indiana CTSI TR001108.

  4. Emergence of collective motion in bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Liu, Song

    It is well known that bacterial suspensions will exhibit collective motion at high concentrations, in which both steric and hydrodynamic interactions play important roles. We aim to investigate whether steric and hydrodynamic interactions are of equal importance to the emergence of collective motion. Here we will present our efforts to experimentally tune the relative strength of these interactions in bacterial suspensions. Our preliminary results suggest that the transition to collective motion may depend on the interplay between steric and hydrodynamic interactions. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: songliuphy@gmail.com.

  5. Large amplitude ship motions and bow flare slamming pressures in regular head seas

    SciTech Connect

    Tao, Z.; Incecik, A.

    1996-12-31

    In this paper, the motion equations incorporating nonlinear terms due to large amplitude motions and bow flare slamming pressures are described in regular head seas. Numerical predictions of ship motions based on a small amplitude linear theory and large amplitude nonlinear method and experimental data are compared with each other in the frequency and time domain. The nonlinear restoring force, nonlinear damping force and nonlinear fluid momentum force are considered in predicting ship motions. The frequency dependent added mass and damping coefficient are computed at the instantaneous submerged sections of the ship. The momentum slamming theory and Wagner theory are used to predict the bow flare slamming pressure. The total impact pressure is expressed as the sum of water immersion impact pressure and wave striking impact pressure. There is a satisfactory agreement between theoretical predictions and model test measurements.

  6. Locust Collective Motion and Its Modeling

    PubMed Central

    Ariel, Gil; Ayali, Amir

    2015-01-01

    Over the past decade, technological advances in experimental and animal tracking techniques have motivated a renewed theoretical interest in animal collective motion and, in particular, locust swarming. This review offers a comprehensive biological background followed by comparative analysis of recent models of locust collective motion, in particular locust marching, their settings, and underlying assumptions. We describe a wide range of recent modeling and simulation approaches, from discrete agent-based models of self-propelled particles to continuous models of integro-differential equations, aimed at describing and analyzing the fascinating phenomenon of locust collective motion. These modeling efforts have a dual role: The first views locusts as a quintessential example of animal collective motion. As such, they aim at abstraction and coarse-graining, often utilizing the tools of statistical physics. The second, which originates from a more biological perspective, views locust swarming as a scientific problem of its own exceptional merit. The main goal should, thus, be the analysis and prediction of natural swarm dynamics. We discuss the properties of swarm dynamics using the tools of statistical physics, as well as the implications for laboratory experiments and natural swarms. Finally, we stress the importance of a combined-interdisciplinary, biological-theoretical effort in successfully confronting the challenges that locusts pose at both the theoretical and practical levels. PMID:26656851

  7. RW Per - Nodal motion changes its amplitude by 1.4 mag

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Fried, Robert E.

    1991-01-01

    RW Per was found to have large secular changes in its eclipse amplitude. In blue light, for example, the amplitude was 3.2 mag in the early 1900s, 2.2 mag in the late 1960s, and 1.75 mag in 1990. Throughout this time, the brightness at maximum was constant in all colors. It is shown that the only possible explanation is nodal motion, where the inclination varies with a period of roughly 100,000 yr. The nodal motion is caused by a third star, for which the light curve, the colors, and the O - C curve already provide evidence. Thus, RW Per is only the fourth known star with large changes of eclipse amplitude and is only the second example of nodal motion.

  8. Collective motion in populations of colloidal robots

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis; Bricard, Antoine; Caussin, Jean-Baptiste; Dauchot, Olivier; Desreumaux, Nicolas

    2014-03-01

    Could the behavior of bacteria swarms, fish schools, and bird flocks be understood within a unified framework? Can one ignore the very details of the interaction mechanisms at the individual level to elucidate how strikingly similar collective motion emerges at the group level in this broad range of motile systems? These seemingly provocative questions have triggered significant advance in the physics and the biology, communities over the last decade. In the physics language these systems, made of motile individuals, can all be though as different realizations of ``active matter.'' In this talk, I will show how to gain more insight into this vivid field using self-propelled colloids as a proxy for motile organism. I will show how to motorize colloidal particles capable of sensing the orientation of their neighbors. Then, I will demonstrate that these archetypal populations display spontaneous transitions to swarming motion, and to global directed motion with very few density and orientation fluctuations.

  9. Topological and behavioral disorder in collective motion

    NASA Astrophysics Data System (ADS)

    Quint, David

    2014-03-01

    A major underlying assumption in many studies on the collective motion of self-propelled agents has been that the environment is continuous, isotropic and ordered and agents are all identical. In the natural world there are many examples of disordered environments or heterogeneous swarms where collective motion can exist. Examples include bats that navigate natural caverns via echolocation, schools of fish that maneuver through dark and light areas, microbial colonies that move about in heterogeneous soil, quorum sensing bacteria, crowds of people that are evacuating a building and traffic flow in major cities. In general disorder can arise from two basic sources that inhibit/augment both movement and information flow, those that represent physical obstacles (i.e topological), (extrinsic), and those that arise from behavioral heterogeneties within the swarm itself (intrinsic). In either case, extrinsic or intrinsic, disorder can be quenched or dynamic in space or time or both. To understand the effect of the various forms of disorder that can be present in the environment of the agents, we study both discrete and continuous 2 d agent based models that utilize only local interactions and study the transition to the collectively moving state as a function of the amount of disorder or behavioral heterogeneities present in the environment. I will present our recent results and discuss the effect that disorder has on collective motion and the general physical mechanisms that swarms, either real or artificial, could utilize in order to overcome disorder in their environment.

  10. Control Strategies for Guided Collective Motion

    DTIC Science & Technology

    2015-02-27

    and the other control input is decided by using the composite Lyapunov function. We show that the desired location of the center of this circular...stability of the desired collective circular motion by using Lyapunov theory and the LaSalle’s Invariance principle. Achieving a Stationary or...input is decided by using the composite Lyapunov function. We show that the desired location of the center of this circular formation, which is fixed

  11. Amplitude and phase variations of the chandler wobble from 164-yr polar motion series

    NASA Astrophysics Data System (ADS)

    Malkin, Z. M.; Miller, N. O.

    2011-10-01

    This paper is aimed at investigation of the Chandler wobble (CW) at the 164-year interval to search for the major CW amplitude and phase variations. The CW signal was extracted from the IERS polar motion series using digital filtering. The CW amplitude and phase variations were examined by means of several methods which yield very similar results. Results of our analysis have shown that, besides the well-known CW phase jump in the 1920s, two other large phase jumps have been found in the 1850s and 2000s, all three contemporarily with a sharp decrease in the CW amplitude.

  12. Large amplitude collective nuclear motion and soliton concept

    SciTech Connect

    Kartavenko, V.G. |

    1993-12-31

    An application of a soliton theory methods to some nonlinear problems in low and intermediate energies (E {approx} 10--100MeV/nucleon) nucleus - nucleus collisions are presented. Linear and nonlinear excitations of the nuclear density are investigated in the framework of nuclear hydrodynamics. The problem of dynamical instability and clusterization phenomena in a breakup of excited nuclear systems are considered from the points of view of a soliton concept.

  13. Role of latency jittering correction in motion-onset VEP amplitude decay during prolonged visual stimulation.

    PubMed

    Kremláček, J; Hulan, M; Kuba, M; Kubová, Z; Langrová, J; Vít, F; Szanyi, J

    2012-06-01

    Visual evoked potentials to motion-onset stimulation (M-VEPs) gradually attenuate in amplitude during examination. The observed decline in averaged responses can be caused by decreases in single response magnitudes and/or increased variability in a response delays, that is, latency jittering. To illuminate the origins of the suppression of M-VEPs during stimuli repetition, we used correlation technique to estimate an upper bound of possible latency jittering of single sweeps and we evaluated the effect of its correction on the amplitudes of three M-VEP dominant peaks P1, N2 and P3. During prolonged visual motion stimulation, the variability of corrective latency shifts in the occipital region increased (r = 0.35: 0.44) and the number of single responses corresponding to the average curve declined in occipital and parietal derivations (r = -0.48: -0.62). While the P1 peak amplitude did not exhibit any time-specific behaviour, the N2 amplitude exhibited a significant decay of 29.4% that was partially reduced to 16.6% in the central occipital derivation by the latency jitter and non-correspondence corrections. The strongest attenuation (32.7%) was observed in the P3 amplitude and was less sensitive to the corrections, dropping only to 27.9%. The main part of the response suppression to repeated motion stimulation was caused by amplitude drop and represents non-stationary process that likely correspond to a fatigue model. The rise of variability in latency jitter correction and the reduction in single responses correlated with the M-VEP were significant factors associated with prolonged motion stimulation. The relation of these parameters to a hypothetical veridical response is ambiguous and can be caused by a time shift of the response or by a change of signal-to-noise ratio. Using selective averaging and latency jitter correction, the effect of response suppression was partially removed.

  14. Collective motion in populations of colloidal bots

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis

    One of the origins of active matter physics was the idea that flocks, herds, swarms and shoals could be quantitatively described as emergent ordered phases in self-driven materials. From a somehow dual perspective, I will show how to engineer active materials our of colloidal flocks. I will show how to motorize colloidal particles capable of sensing the orientation of their neighbors and how to handle them in microfluidic chips. These populations of colloidal bots display a non-equilibrium transition toward collective motion. A special attention will be paid to the robustness of the resulting colloidal flocks with respect to geometrical frustration and to quenched disorder.

  15. Local disalignment can promote coherent collective motion

    NASA Astrophysics Data System (ADS)

    Meschede, M.; Hallatschek, O.

    2013-04-01

    When particles move at a constant speed and have the tendency to align their directions of motion, ordered large-scale movement can emerge despite significant levels of noise. Many variants of this model of self-propelled particles have been studied to explain the coherent motion of groups of birds, fish or microbes. Here, we generalize the aligning interaction rule of many classical self-propelled particle models to the case where particles after the interaction tend to move in slightly different directions away from each other, as characterized by a deflection angle α. We map out the resulting phase diagram and find that, in sufficiently dense systems, small local disalignment can lead to higher global alignment of particle movement directions. We show that in this dense regime, global alignment is accompanied by a grid-like spatial structure which allows information to rapidly percolate across the system by a ‘domino’ effect. Our results elucidate the relevance of disalignment for the emergence of collective motion in models with repulsive interaction terms.

  16. A Hybrid Program for Fitting Rotationally Resolved Spectra of Floppy Molecules with One Large-Amplitude Rotatory Motion and One Large-Amplitude Oscillatory Motion

    PubMed Central

    Kleiner, Isabelle; Hougen, Jon T.

    2015-01-01

    A new hybrid-model fitting program for methylamine-like molecules has been developed, based on an effective Hamiltonian in which the ammonia-like inversion motion is treated using a tunneling formalism, while the internal-rotation motion is treated using an explicit kinetic energy operator and potential energy function. The Hamiltonian in the computer program is set up as a 2×2 partitioned matrix, where each diagonal block contains a traditional torsion-rotation Hamiltonian (as in the earlier program BELGI), and the two off-diagonal blocks contain tunneling terms. This hybrid formulation permits the use of the permutation-inversion group G6 (isomorphic to C3v) for terms in the two diagonal blocks, but requires G12 for terms in the off-diagonal blocks. The first application of the new program is to 2-methylmalonaldehyde. Microwave data for this molecule were previously fit using an all-tunneling Hamiltonian formalism to treat both large-amplitude-motions. For 2-methylmalonaldehyde, the hybrid program achieves the same quality of fit as was obtained with the all-tunneling program, but fits with the hybrid program eliminate a large discrepancy between internal rotation barriers in the OH and OD isotopologs of 2-methylmalonaldehyde that arose in fits with the all-tunneling program. This large isotopic shift in internal rotation barrier is thus almost certainly an artifact of the all-tunneling model. Other molecules for application of the hybrid program are mentioned. PMID:26439709

  17. Small amplitude approximation and stabilities for dislocation motion in a superlattice

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Zhu; Luo, Shi-Yu; Shao, Ming-Zhu

    2013-04-01

    Starting from the traveling wave solution, in small amplitude approximation, the Sine—Gordon equation can be reduced to a generalized Duffing equation to describe the dislocation motion in a superlattice, and the phase plane properties of the system phase plane are described in the absence of an applied field. The stabilities are also discussed in the presence of an applied field. It is pointed out that the separatrix orbit describing the dislocation motion as the kink wave may transfer the energy along the dislocation line, keep its form unchanged, and reveal the soliton wave properties of the dislocation motion. It is stressed that the dislocation motion process is the energy transfer and release process, and the system is stable when its energy is minimum.

  18. Ground motion: frequency of occurrence versus amplitude of disturbing transient events

    SciTech Connect

    Werner, K.L.

    1983-09-12

    Successful collider operation requires that ground motion not exceed certain tolerances. In this note it is pointed out that on occasion these tolerances are exceeded. The frequency of such events and their amplitudes, measured as a function of time of day, have been measured. An examination of the data leads one to conclude that most events are of cultural (i.e., man-made) origin. 2 references, 20 figures.

  19. Collective cell motion in endothelial monolayers

    PubMed Central

    Szabó, A.; Ünnep, R.; Méhes, E.; Twal, W. O.; Argraves, S. W.; Cao, Y.; Czirók, A.

    2011-01-01

    Collective cell motility is an important aspect of several developmental and pathophysiological processes. Despite its importance, the mechanisms that allow cells to be both motile and adhere to one another are poorly understood. In this study we establish statistical properties of the random streaming behavior of endothelial monolayer cultures. To understand the reported empirical findings, we expand the widely used cellular Potts model to include active cell motility. For spontaneous directed motility we assume a positive feedback between cell displacements and cell polarity. The resulting model is studied with computer simulations, and is shown to exhibit behavior compatible with experimental findings. In particular, in monolayer cultures both the speed and persistence of cell motion decreases, transient cell chains move together as groups, and velocity correlations extend over several cell diameters. As active cell motility is ubiquitous both in vitro and in vivo, our model is expected to be a generally applicable representation of cellular behavior. PMID:21076204

  20. Pedestrian collective motion in competitive room evacuation.

    PubMed

    Garcimartín, A; Pastor, J M; Martín-Gómez, C; Parisi, D; Zuriguel, I

    2017-09-07

    When a sizable number of people evacuate a room, if the door is not large enough, an accumulation of pedestrians in front of the exit may take place. This is the cause of emerging collective phenomena where the density is believed to be the key variable determining the pedestrian dynamics. Here, we show that when sustained contact among the individuals exists, density is not enough to describe the evacuation, and propose that at least another variable -such as the kinetic stress- is required. We recorded evacuation drills with different degrees of competitiveness where the individuals are allowed to moderately push each other in their way out. We obtain the density, velocity and kinetic stress fields over time, showing that competitiveness strongly affects them and evidencing patterns which have been never observed in previous (low pressure) evacuation experiments. For the highest competitiveness scenario, we detect the development of sudden collective motions. These movements are related to a notable increase of the kinetic stress and a reduction of the velocity towards the door, but do not depend on the density.

  1. Sea snakes (Lapemis curtus) are sensitive to low-amplitude water motions.

    PubMed

    Westhoff, Guido; Fry, Bryan G; Bleckmann, Horst

    2005-01-01

    The sea snake Lapemis curtus is a piscivorous predator that hunts at dusk. Like land snakes, sea snakes have scale sensillae that may be mechanoreceptive, i.e. that may be useful for the detection of water motions produced by prey fish. In addition, inner ear hair cells of sea snakes may also be involved in the detection of hydrodynamic stimuli. We generated water motions and pressure fluctuations with a vibrating sphere. In the test range 50-200 Hz evoked potentials were recorded from the midbrain of L. curtus in response to vibrating sphere stimuli. In terms of water displacement the lowest threshold amplitudes were in the frequency range 100-150 Hz. In this range peak-to-peak water displacement amplitudes of 1.8 microm (at 100 Hz) and 2.0 microm (150 Hz) generated a neural response in the most sensitive animal. Although this low sensitivity may be sufficient for the detection of fish-generated water motions, it makes it unlikely that L. curtus has a special hydrodynamic sense.

  2. Complex amplitude correlation for compensation of large in-plane motion in digital speckle pattern interferometry

    SciTech Connect

    Svanbro, Angelica; Sjoedahl, Mikael

    2006-12-01

    The use of complex amplitude correlation to compensate for large in-plane motion in digital speckle pattern interferometry is investigated. The result is compared with experiments where digital speckle photography (DSP) is used for compensation. An advantage of using complex amplitude correlation instead of intensity correlation (as in DSP) is that the phase change describing the deformation is retrieved directly from the correlation peak, and there is no need to compensate for the large movement and then use the interferometric algorithms. A discovered drawback of this method is that the correlation values drop quickly if a phase gradient larger than {pi} is present in the subimages used for cross correlation. This means that, for the complex amplitude correlation to be used, the size of the subimages must be well chosen or a third parameter in the cross-correlation algorithm that compensates for the phase variation is needed.Correlation values and wrapped phase maps from the two techniques (intensity and complex amplitude correlation) are presented.

  3. On large amplitude motions of simplest amides in the ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2016-12-01

    For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T), CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES) sections corresponding to different large amplitude motions (LAM) were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1,T1). For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  4. Aerodynamic and flowfield hysteresis of slender wing aircraft undergoing large-amplitude motions

    NASA Technical Reports Server (NTRS)

    Nelson, Robert C.; Arena, Andrew S., Jr.; Thompson, Scott A.

    1991-01-01

    The implication of maneuvers through large angles of incidence is discussed by examining the unsteady aerodynamic loads, surface pressures, vortical position, and breakdown on slender, flat plate delta wings. Two examples of large amplitude unsteady motions are presented. First, the unsteady characteristics of a 70 degree swept delta wing undergoing pitch oscillation from 0 to 60 degrees is examined. Data is presented that shows the relationship between vortex breakdown and the overshoot and undershoot of the aerodynamic loads and surface pressure distribution. The second example examines the leading edge vortical flow over an 80 degree swept wing undergoing a limit cycle roll oscillation commonly called wing rock.

  5. Structure of the Small Amplitude Motion on Transversely Sheared Mean Flows

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Afsar, Mohamed Z.; Leib, Stewart J.

    2013-01-01

    This paper considers the small amplitude unsteady motion of an inviscid non-heat conducting compressible fluid on a transversely sheared mean flow. It extends a previous result given in Goldstein (1978(b) and 1979(a)) which shows that the hydrodynamic component of the motion is determined by two arbitrary convected quantities in the absence of solid surfaces or other external sources. The result is important because it can be used to specify appropriate boundary conditions for unsteady surface interaction problems on transversely sheared mean flows in the same way that the vortical component of the Kovasznay (1953) decomposition is used to specify these conditions for surface interaction problems on uniform mean flows. But unlike the Kovasznay (1953) case the arbitrary convected quantities no longer bear a simple relation to the physical variables. One purpose of this paper is to derive a formula that relates these quantities to the (physically measurable) vorticity and pressure fluctuations in the flow.

  6. Preliminary results on flow past a circular cylinder undergoing circular motion: Oscillation amplitude effect

    NASA Astrophysics Data System (ADS)

    Al-Mdallal, Qasem M.

    2017-07-01

    This paper presents a preliminary results of laminar, viscous incompressible flow past a circular cylinder undergoing circular motion at fixed Reynolds number, Re = 180. The oscillation frequency was chosen to be around the vortex shedding frequency from a fixed cylinder, f0 = 0.0951, while the amplitudes of oscillations were varied from 0.6a to 1.0a, where a represents the radius of the cylinder. The motion is described using the two-dimensional Navier-Stokes equations. The numerical method is based on Fourier spectral method together with finite differences approximations. The response of the flow through the fluid forces acting on the surface of the cylinder as well as the occurrence of the lock-in phenomenon are investigated.

  7. Solid-State NMR Provides Evidence for Small-Amplitude Slow Domain Motions in a Multispanning Transmembrane α-Helical Protein

    PubMed Central

    2017-01-01

    Proteins are dynamic entities and populate ensembles of conformations. Transitions between states within a conformational ensemble occur over a broad spectrum of amplitude and time scales, and are often related to biological function. Whereas solid-state NMR (SSNMR) spectroscopy has recently been used to characterize conformational ensembles of proteins in the microcrystalline states, its applications to membrane proteins remain limited. Here we use SSNMR to study conformational dynamics of a seven-helical transmembrane (TM) protein, Anabaena Sensory Rhodopsin (ASR) reconstituted in lipids. We report on site-specific measurements of the 15N longitudinal R1 and rotating frame R1ρ relaxation rates at two fields of 600 and 800 MHz and at two temperatures of 7 and 30 °C. Quantitative analysis of the R1 and R1ρ values and of their field and temperature dependencies provides evidence of motions on at least two time scales. We modeled these motions as fast local motions and slower collective motions of TM helices and of structured loops, and used the simple model-free and extended model-free analyses to fit the data and estimate the amplitudes, time scales and activation energies. Faster picosecond (tens to hundreds of picoseconds) local motions occur throughout the protein and are dominant in the middle portions of the TM helices. In contrast, the amplitudes of the slower collective motions occurring on the nanosecond (tens to hundreds of nanoseconds) time scales, are smaller in the central parts of helices, but increase toward their cytoplasmic sides as well as in the interhelical loops. ASR interacts with a soluble transducer protein on its cytoplasmic surface, and its binding affinity is modulated by light. The larger amplitude of motions on the cytoplasmic side of the TM helices correlates with the ability of ASR to undergo large conformational changes in the process of binding/unbinding the transducer. PMID:28613900

  8. Effect of postextrasystolic potentiation on amplitude and timing of regional left ventricular wall motion in ischaemic heart disease.

    PubMed Central

    Gibson, D G; Fleck, E; Rudolph, W

    1983-01-01

    In order to investigate the effects of postextrasystolic potentiation on left ventricular wall motion, the left ventriculograms of 30 patients were digitised frame by frame and regional movement demonstrated by contour displays. Postextrasystolic potentiation caused significant increases in end-diastolic volume, ejection fraction, and peak ejection and filling rates. The amplitude of normally moving segments increased by 5.7 +/- 2.3 mm, regardless of initial amplitude. Hypokinetic segments moved normally if the initial amplitude was greater than 5 mm, and there was a reduced or absent response if 4 mm or less. Four specific abnormalities of timing of motion were studied during isovolumic contraction, early ejection, and isovolumic relaxation. Their timing and extent were all unaffected in postextrasystolic beats. These results thus give no evidence for the entity "reversible asynergy". Rather, they suggest that the response of local wall motion to postextrasystolic potentiation depends only on basal amplitude and increased volume change in postextrasystolic beats. PMID:6188474

  9. Electron holographic visualization of collective motion of electrons through electric field variation.

    PubMed

    Shindo, Daisuke; Aizawa, Shinji; Akase, Zentaro; Tanigaki, Toshiaki; Murakami, Yasukazu; Park, Hyun Soon

    2014-08-01

    This study demonstrates the accumulation of electron-induced secondary electrons by utilizing a simple geometrical configuration of two branches of a charged insulating biomaterial. The collective motion of these secondary electrons between the branches has been visualized by analyzing the reconstructed amplitude images obtained using in situ electron holography. In order to understand the collective motion of secondary electrons, the trajectories of these electrons around the branches have also been simulated by taking into account the electric field around the charged branches on the basis of Maxwell's equations.

  10. Electron diffraction analysis for the molecules with degenerate large amplitude motions: Intramolecular dynamics in arsenic pentafluoride

    NASA Astrophysics Data System (ADS)

    Kochikov, Igor V.; Kovtun, Dmitry M.; Tarasov, Yury I.

    2017-03-01

    There exists a noticeable disagreement in the difference of axial and equatorial bond lengths in D3h symmetry arsenic and phosphorus pentafluorides between the GED data and high level quantum chemical results. In order to resolve this disagreement, a new structural analysis of the original experiment of (Clippard & Bartell, Inorg. Chem., 9 (1970) 805-811) was undertaken on the basis of modern approach incorporating spectroscopic evidence and quantum chemical information and allowing for intramolecular large-amplitude motion. The results of the analysis prove the internal insufficiency of the experimental material in the description of the accurate positions of the peaks on the radial distribution function. Additional experimental investigation of pentahalide molecules, especially at high temperatures, is of interest.

  11. Control Strategies for Guided Collective Motion

    DTIC Science & Technology

    2015-01-30

    using the composite Lyapunov function. We show that the desired location of the center of this circular formation, which is fixed, is obtained by...circular motion by using Lyapunov theory and the LaSalle’s Invariance principle. Achieving a Stationary or Moving Centroid: In this work, we study...control input is decided by using the composite Lyapunov function. We show that the desired location of the center of this circular formation, which

  12. Open questions on nuclear collective motion

    SciTech Connect

    Frauendorf, S.

    2016-07-07

    The status of the macroscopic and microscopic description of the collective quadrupole modes is reviewed, where limits due to non-adiabaticity and decoherence are exposed. The microscopic description of the yrast states in vibrator-like nuclei in the framework of the rotating mean field is presented.

  13. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering.

    PubMed

    Hong, Liang; Jain, Nitin; Cheng, Xiaolin; Bernal, Ana; Tyagi, Madhusudan; Smith, Jeremy C

    2016-10-01

    Protein function often depends on global, collective internal motions. However, the simultaneous quantitative experimental determination of the forms, amplitudes, and time scales of these motions has remained elusive. We demonstrate that a complete description of these large-scale dynamic modes can be obtained using coherent neutron-scattering experiments on perdeuterated samples. With this approach, a microscopic relationship between the structure, dynamics, and function in a protein, cytochrome P450cam, is established. The approach developed here should be of general applicability to protein systems.

  14. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering

    SciTech Connect

    Hong, Liang; Jain, Nitin; Cheng, Xiaolin; Bernal, Ana; Tyagi, Madhusudan; Smith, Jeremy C.

    2016-10-14

    Protein function often depends on global, collective internal motions. However, the simultaneous quantitative experimental determination of the forms, amplitudes, and time scales of these motions has remained elusive. We demonstrate that a complete description of these large-scale dynamic modes can be obtained using coherent neutron-scattering experiments on perdeuterated samples. With this approach, a microscopic relationship between the structure, dynamics, and function in a protein, cytochrome P450cam, is established. The approach developed here should be of general applicability to protein systems.

  15. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering

    PubMed Central

    Hong, Liang; Jain, Nitin; Cheng, Xiaolin; Bernal, Ana; Tyagi, Madhusudan; Smith, Jeremy C.

    2016-01-01

    Protein function often depends on global, collective internal motions. However, the simultaneous quantitative experimental determination of the forms, amplitudes, and time scales of these motions has remained elusive. We demonstrate that a complete description of these large-scale dynamic modes can be obtained using coherent neutron-scattering experiments on perdeuterated samples. With this approach, a microscopic relationship between the structure, dynamics, and function in a protein, cytochrome P450cam, is established. The approach developed here should be of general applicability to protein systems. PMID:27757419

  16. Allosteric switch regulates protein–protein binding through collective motion

    PubMed Central

    Smith, Colin A.; Pratihar, Supriya; Giller, Karin; Paulat, Maria; Becker, Stefan; Griesinger, Christian; Lee, Donghan; de Groot, Bert L.

    2016-01-01

    Many biological processes depend on allosteric communication between different parts of a protein, but the role of internal protein motion in propagating signals through the structure remains largely unknown. Through an experimental and computational analysis of the ground state dynamics in ubiquitin, we identify a collective global motion that is specifically linked to a conformational switch distant from the binding interface. This allosteric coupling is also present in crystal structures and is found to facilitate multispecificity, particularly binding to the ubiquitin-specific protease (USP) family of deubiquitinases. The collective motion that enables this allosteric communication does not affect binding through localized changes but, instead, depends on expansion and contraction of the entire protein domain. The characterization of these collective motions represents a promising avenue for finding and manipulating allosteric networks. PMID:26961002

  17. Collective motion in Proteus mirabilis swarms

    NASA Astrophysics Data System (ADS)

    Haoran, Xu

    Proteus mirabilisis a Gram-negative, rod-shaped bacterium. It is widely distributed in soil and water, and it is well known for exhibiting swarming motility on nutrient agar surfaces. In our study, we focused on the collective motility of P. mirabilis and uncovered a range of interesting phenomena. Here we will present our efforts to understand these phenomena through experiments and simulation. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail:xhrphx@gmail.com.

  18. An Efficient and Accurate Formalism for the Treatment of Large Amplitude Intramolecular Motion

    PubMed Central

    2012-01-01

    We propose a general approach to describe large amplitude motions (LAM) with multiple degrees of freedom (DOF) in molecules or reaction intermediates, which is useful for the computation of thermochemical or kinetic data. The kinetic part of the LAM Lagrangian is derived using a Z-matrix internal coordinate representation within a new numerical procedure. This derivation is exact for a classical system, and the uncertainties on the prediction of observable quantities largely arise from uncertainties on the LAM potential energy surface (PES) itself. In order to rigorously account for these uncertainties, we present an approach based on Bayesian theory to infer a parametrized physical model of the PES using ab initio calculations. This framework allows for quantification of uncertainties associated with a PES model as well as the forward propagation of these uncertainties to the quantity of interest. A selection and generalization of some treatments accounting for the coupling of the LAM with other internal or external DOF are also presented. Finally, we discuss and validate the approach with two applications: the calculation of the partition function of 1,3-butadiene and the calculation of the high-pressure reaction rate of the CH3 + H → CH4 recombination. PMID:22904694

  19. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions

    NASA Astrophysics Data System (ADS)

    Illig, Steffen; Eggeman, Alexander S.; Troisi, Alessandro; Jiang, Lang; Warwick, Chris; Nikolka, Mark; Schweicher, Guillaume; Yeates, Stephen G.; Henri Geerts, Yves; Anthony, John E.; Sirringhaus, Henning

    2016-02-01

    Thermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their conjugated core are better encapsulated in their crystal structure, which helps reduce large-amplitude thermal motions. Our work provides a general strategy for the design of new classes of very high mobility organic semiconductors with a low degree of dynamic disorder.

  20. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions

    PubMed Central

    Illig, Steffen; Eggeman, Alexander S.; Troisi, Alessandro; Jiang, Lang; Warwick, Chris; Nikolka, Mark; Schweicher, Guillaume; Yeates, Stephen G.; Henri Geerts, Yves; Anthony, John E.; Sirringhaus, Henning

    2016-01-01

    Thermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their conjugated core are better encapsulated in their crystal structure, which helps reduce large-amplitude thermal motions. Our work provides a general strategy for the design of new classes of very high mobility organic semiconductors with a low degree of dynamic disorder. PMID:26898754

  1. Notation Confusion of Symmetry Species for Molecules with Several Large-Amplitude Internal Motions

    NASA Astrophysics Data System (ADS)

    Groner, P.

    2011-06-01

    The Mulliken convention has become the standard notation for symmetry species (irreducible representations) of point groups for quasi-rigid molecules. No such convention exists for symmetry species of symmetry groups for semi-rigid or non-rigid molecules with large amplitude internal motions (LAMs). As a result, we have a situation where we create notations in a do-it-yourself fashion or adopt them from the literature, sometimes even without proper reference to its derivation or to the character table on which it is based. This may be just a nuisance for those who are comfortable enough with group theory and molecular symmetry groups to figure "it" out, but it represents a real problem for everybody else. The notation confusion is illustrated with examples from the literature (both old and new) on molecules with two or more LAMs. Most authors use the notation introduced by Myers and Wilson for molecules such as acetone or propane. No universal notation is in use for molecules with two methyl groups but lower overall symmetry. For example, the notation G_1_8 is used for one of these groups. As it turns out, different people use the same notation for different groups. This presentation is an attempt to bring some light into the dark and to combat confusion with a call for an anti-confusion convention. R. S. Mulliken, Phys. Rev. 43, 279 (1933). R. J. Myers, E. B. Wilson, J. Chem. Phys. 33, 186 (1960).

  2. An Efficient and Accurate Formalism for the Treatment of Large Amplitude Intramolecular Motion.

    PubMed

    Reinisch, Guillaume; Miki, Kenji; Vignoles, Gérard L; Wong, Bryan M; Simmons, Chris S

    2012-08-14

    We propose a general approach to describe large amplitude motions (LAM) with multiple degrees of freedom (DOF) in molecules or reaction intermediates, which is useful for the computation of thermochemical or kinetic data. The kinetic part of the LAM Lagrangian is derived using a Z-matrix internal coordinate representation within a new numerical procedure. This derivation is exact for a classical system, and the uncertainties on the prediction of observable quantities largely arise from uncertainties on the LAM potential energy surface (PES) itself. In order to rigorously account for these uncertainties, we present an approach based on Bayesian theory to infer a parametrized physical model of the PES using ab initio calculations. This framework allows for quantification of uncertainties associated with a PES model as well as the forward propagation of these uncertainties to the quantity of interest. A selection and generalization of some treatments accounting for the coupling of the LAM with other internal or external DOF are also presented. Finally, we discuss and validate the approach with two applications: the calculation of the partition function of 1,3-butadiene and the calculation of the high-pressure reaction rate of the CH(3) + H → CH(4) recombination.

  3. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions.

    PubMed

    Illig, Steffen; Eggeman, Alexander S; Troisi, Alessandro; Jiang, Lang; Warwick, Chris; Nikolka, Mark; Schweicher, Guillaume; Yeates, Stephen G; Henri Geerts, Yves; Anthony, John E; Sirringhaus, Henning

    2016-02-22

    Thermal vibrations and the dynamic disorder they create can detrimentally affect the transport properties of van der Waals bonded molecular semiconductors. The low-energy nature of these vibrations makes it difficult to access them experimentally, which is why we still lack clear molecular design rules to control and reduce dynamic disorder. In this study we discuss the promising organic semiconductors rubrene, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothio-phene and 2,9-di-decyl-dinaphtho-[2,3-b:20,30-f]-thieno-[3,2-b]-thiophene in terms of an exceptionally low degree of dynamic disorder. In particular, we analyse diffuse scattering in transmission electron microscopy, to show that small molecules that have their side chains attached along the long axis of their conjugated core are better encapsulated in their crystal structure, which helps reduce large-amplitude thermal motions. Our work provides a general strategy for the design of new classes of very high mobility organic semiconductors with a low degree of dynamic disorder.

  4. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    NASA Astrophysics Data System (ADS)

    Liu, Shukui; Papanikolaou, Apostolos D.

    2011-03-01

    Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT) of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  5. A Turing test for collective motion

    PubMed Central

    Herbert-Read, J. E.; Romenskyy, M.; Sumpter, D. J. T.

    2015-01-01

    A widespread problem in biological research is assessing whether a model adequately describes some real-world data. But even if a model captures the large-scale statistical properties of the data, should we be satisfied with it? We developed a method, inspired by Alan Turing, to assess the effectiveness of model fitting. We first built a self-propelled particle model whose properties (order and cohesion) statistically matched those of real fish schools. We then asked members of the public to play an online game (a modified Turing test) in which they attempted to distinguish between the movements of real fish schools or those generated by the model. Even though the statistical properties of the real data and the model were consistent with each other, the public could still distinguish between the two, highlighting the need for model refinement. Our results demonstrate that we can use ‘citizen science’ to cross-validate and improve model fitting not only in the field of collective behaviour, but also across a broad range of biological systems. PMID:26631244

  6. Predatory fish select for coordinated collective motion in virtual prey.

    PubMed

    Ioannou, C C; Guttal, V; Couzin, I D

    2012-09-07

    Movement in animal groups is highly varied and ranges from seemingly disordered motion in swarms to coordinated aligned motion in flocks and schools. These social interactions are often thought to reduce risk from predators, despite a lack of direct evidence. We investigated risk-related selection for collective motion by allowing real predators (bluegill sunfish) to hunt mobile virtual prey. By fusing simulated and real animal behavior, we isolated predator effects while controlling for confounding factors. Prey with a tendency to be attracted toward, and to align direction of travel with, near neighbors tended to form mobile coordinated groups and were rarely attacked. These results demonstrate that collective motion could evolve as a response to predation, without prey being able to detect and respond to predators.

  7. Collective motion of cells: from experiments to models.

    PubMed

    Méhes, Előd; Vicsek, Tamás

    2014-09-01

    Swarming or collective motion of living entities is one of the most common and spectacular manifestations of living systems that have been extensively studied in recent years. A number of general principles have been established. The interactions at the level of cells are quite different from those among individual animals, therefore the study of collective motion of cells is likely to reveal some specific important features which we plan to overview in this paper. In addition to presenting the most appealing results from the quickly growing related literature we also deliver a critical discussion of the emerging picture and summarize our present understanding of collective motion at the cellular level. Collective motion of cells plays an essential role in a number of experimental and real-life situations. In most cases the coordinated motion is a helpful aspect of the given phenomenon and results in making a related process more efficient (e.g., embryogenesis or wound healing), while in the case of tumor cell invasion it appears to speed up the progression of the disease. In these mechanisms cells both have to be motile and adhere to one another, the adherence feature being the most specific to this sort of collective behavior. One of the central aims of this review is to present the related experimental observations and treat them in light of a few basic computational models so as to make an interpretation of the phenomena at a quantitative level as well.

  8. Correlation properties of collective motion in bacterial suspensions

    PubMed Central

    Ryan, Shawn D.; Sokolov, Andrey; Berlyand, Leonid; Aranson, Igor. S.

    2013-01-01

    The study of collective motion in bacterial suspensions has been of significant recent interest. To better understand the non-trivial spatio-temporal correlations emerging in the course of collective swimming in suspensions of motile bacteria, a simple model is employed: a bacterium is represented as a force dipole with size, through the use of a short-range repelling potential, and shape. The model emphasizes two fundamental mechanisms: dipolar hydrodynamic interactions and short-range bacterial collisions. Using direct particle simulations validated by a dedicated experiment, we show that changing the swimming speed or concentration alters the time scale of sustained collective motion, consistent with experiment. Also, the correlation length in the collective state is almost constant as concentration and swimming speed change even though increasing each greatly increases the input of energy to the system. We demonstrate that the particle shape is critical for the onset of collective effects. In addition, new experimental results are presented illustrating the onset of collective motion with an ultrasound technique. This work exemplifies the delicate balance between various physical mechanisms governing collective motion in bacterial suspensions and provides important insights into its mesoscopic nature. PMID:24391445

  9. Correlation properties of collective motion in bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Ryan, Shawn D.; Sokolov, Andrey; Berlyand, Leonid; Aranson, Igor S.

    2013-10-01

    The study of collective motion in bacterial suspensions has been of significant recent interest. To better understand the non-trivial spatio-temporal correlations emerging in the course of collective swimming in suspensions of motile bacteria, a simple model is employed: a bacterium is represented as a force dipole with size, through the use of a short-range repelling potential, and shape. The model emphasizes two fundamental mechanisms: dipolar hydrodynamic interactions and short-range bacterial collisions. Using direct particle simulations validated by a dedicated experiment, we show that changing the swimming speed or concentration alters the time scale of sustained collective motion, consistent with experiment. Also, the correlation length in the collective state is almost constant as concentration and swimming speed change even though increasing each greatly increases the input of energy to the system. We demonstrate that the particle shape is critical for the onset of collective effects. In addition, new experimental results are presented illustrating the onset of collective motion with an ultrasound technique. This work exemplifies the delicate balance between various physical mechanisms governing collective motion in bacterial suspensions and provides important insights into its mesoscopic nature.

  10. Large Amplitude Motions and Information Transfer Along Conjugated Bonds: the Case of Paratolualdehyde

    NASA Astrophysics Data System (ADS)

    Saal, Hilkka; Grabow, Jens-Uwe; Hight-Walker, Angela R.; Hougen, Jon T.; Caminati, Walther; Kleiner, Isabelle

    2010-06-01

    Historically, barriers to large amplitude motions are often related, using steric hinderance arguments, to the local atom arrangement. More recently, large changes have been found in the barrier inhibiting methyl rotation, when electronic excitation or ionization of a substituted toluene occurs, suggesting molecular orbital occupancy as a dominant factor in aromatic molecules. Theoretically, the relation can also be made to the molecular orbital and electron density structure. Experimentally, we examine the situation by comparing toluene with paratolualdehyde. In particular, the barrier in toluene, CH3-C6H5, is six-fold by symmetry. In paratolualdehyde, CH3-C6H4-CHO, the aldehyde group is far enough from the methyl rotor that direct through-space interactions should be rather small. Thus, a three-fold contribution to the barrier would leave electron orbital effects in the π-system as the primary causal agent. Microwave spectroscopy is well suited for discriminating between V3 and V6 contributions - but only if torsionally exited states can be accessed which typically requires temperatures much higher that than those encountered in pulsed-jet expansions. Thus, the supersonic-jet FT-MW spectrometers in Hannover and Gaithersburg as well as the free-jet CW mm-wave spectrometer in Bologna were needed to take the spectra. Analyzing 5 torsional species using the Belgi program, the barrier was found to vastly be dominated by the V3 vs. a minor V6 contribution, thus revealing the information transfer though conjugated π-electron systems. L. H. Spangler, J Rev. Phys. Chem. 48 (1997) 481-510

  11. Depletion force induced collective motion of microtubules driven by kinesin.

    PubMed

    Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira

    2015-11-21

    Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.

  12. Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems.

    PubMed

    Yanchuk, S; Perlikowski, P; Wolfrum, M; Stefański, A; Kapitaniak, T

    2015-03-01

    We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.

  13. Amplitude equations for collective spatio-temporal dynamics in arrays of coupled systems

    SciTech Connect

    Yanchuk, S.; Wolfrum, M.; Perlikowski, P.; Stefański, A.; Kapitaniak, T.

    2015-03-15

    We study the coupling induced destabilization in an array of identical oscillators coupled in a ring structure where the number of oscillators in the ring is large. The coupling structure includes different types of interactions with several next neighbors. We derive an amplitude equation of Ginzburg-Landau type, which describes the destabilization of a uniform stationary state and close-by solutions in the limit of a large number of nodes. Studying numerically an example of unidirectionally coupled Duffing oscillators, we observe a coupling induced transition to collective spatio-temporal chaos, which can be understood using the derived amplitude equations.

  14. Microswimmers - From Single Particle Motion to Collective Behavior

    NASA Astrophysics Data System (ADS)

    Gompper, Gerhard; Bechinger, Clemens; Herminghaus, Stephan; Isele-Holder, Rolf; Kaupp, U. Benjamin; Löwen, Hartmut; Stark, Holger; Winkler, Roland G.

    2016-11-01

    Locomotion of autonomous microswimmers is a fascinating field at the cutting edge of science. It combines the biophysics of self-propulsion via motor proteins, artificial propulsion mechanisms, swimming strategies at low Reynolds numbers, the hydrodynamic interaction of swimmers, and the collective motion and synchronisation of large numbers of agents. The articles of this Special Issue are based on the lecture notes of an international summer school, which was organized by the DFG Priority Programme 1726 "Microswimmers - From Single Particle Motion to Collective Behaviour" in the fall of 2015. The minireviews provide a broad overview of the field, covering both elementary and advanced material, as well as selected areas from current research.

  15. Nutritional state and collective motion: from individuals to mass migration.

    PubMed

    Bazazi, Sepideh; Romanczuk, Pawel; Thomas, Sian; Schimansky-Geier, Lutz; Hale, Joseph J; Miller, Gabriel A; Sword, Gregory A; Simpson, Stephen J; Couzin, Iain D

    2011-02-07

    In order to move effectively in unpredictable or heterogeneous environments animals must make appropriate decisions in response to internal and external cues. Identifying the link between these components remains a challenge for movement ecology and is important in understanding the mechanisms driving both individual and collective motion. One accessible way of examining how internal state influences an individual's motion is to consider the nutritional state of an animal. Our experimental results reveal that nutritional state exerts a relatively minor influence on the motion of isolated individuals, but large group-level differences emerge from diet affecting inter-individual interactions. This supports the idea that mass movement in locusts may be driven by cannibalism. To estimate how these findings are likely to impact collective migration of locust hopper bands, we create an experimentally parametrized model of locust interactions and motion. Our model supports our hypothesis that nutrient-dependent social interactions can lead to the collective motion seen in our experiments and predicts a transition in the mean speed and the degree of coordination of bands with increasing insect density. Furthermore, increasing the interaction strength (representing greater protein deprivation) dramatically reduces the critical density at which this transition occurs, demonstrating that individuals' nutritional state could have a major impact on large-scale migration.

  16. Group theoretic approaches to nuclear and hadronic collective motion

    SciTech Connect

    Biedenharn, L.C.

    1982-01-01

    Three approaches to nuclear and hadronic collective motion are reviewed, compared and contrasted: the standard symmetry approach as typified by the Interacting Boson Model, the kinematic symmetry group approach of Gell-Mann and Tomonaga, and the recent direct construction by Buck. 50 references.

  17. New vibration-rotation code for tetraatomic molecules exhibiting wide-amplitude motion: WAVR4

    NASA Astrophysics Data System (ADS)

    Kozin, Igor N.; Law, Mark M.; Tennyson, Jonathan; Hutson, Jeremy M.

    2004-11-01

    A general computational method for the accurate calculation of rotationally and vibrationally excited states of tetraatomic molecules is developed. The resulting program is particularly appropriate for molecules executing wide-amplitude motions and isomerizations. The program offers a choice of coordinate systems based on Radau, Jacobi, diatom-diatom and orthogonal satellite vectors. The method includes all six vibrational dimensions plus three rotational dimensions. Vibration-rotation calculations with reduced dimensionality in the radial degrees of freedom are easily tackled via constraints imposed on the radial coordinates via the input file. Program summaryTitle of program: WAVR4 Catalogue number: ADUN Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUN Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Persons requesting the program must sign the standard CPC nonprofit use license Computer: Developed under Tru64 UNIX, ported to Microsoft Windows and Sun Unix Operating systems under which the program has been tested: Tru64 Unix, Microsoft Windows, Sun Unix Programming language used: Fortran 90 Memory required to execute with typical data: case dependent No. of lines in distributed program, including test data, etc.: 11 937 No. of bytes in distributed program, including test data, etc.: 84 770 Distribution format: tar.gz Nature of physical problem: WAVR4 calculates the bound ro-vibrational levels and wavefunctions of a tetraatomic system using body-fixed coordinates based on generalised orthogonal vectors. Method of solution: The angular coordinates are treated using a finite basis representation (FBR) based on products of spherical harmonics. A discrete variable representation (DVR) [1] based on either Morse-oscillator-like or spherical-oscillator functions [2] is used for the radial coordinates. Matrix elements are computed using an efficient Gaussian quadrature in the angular coordinates and

  18. Head-trunk kinematics during high-velocity-low-amplitude manipulation of the cervical spine in asymptomatic subjects: helical axis computation and anatomic motion modeling.

    PubMed

    Dugailly, Pierre-Michel; Sobczak, Stéphane; Van Geyt, Bernard; Bonnechère, Bruno; Maroye, Laura; Moiseev, Fedor; Rooze, Marcel; Salvia, Patrick; Feipel, Véronique

    2015-01-01

    This study aimed to analyze the in vivo 3-dimensional kinematics of the head during cervical manipulation including helical axis (HA) computation and anatomic motion representation. Twelve asymptomatic volunteers were included in this study. An osteopathic practitioner performed 1 to 3 manipulations (high-velocity and low-amplitude [HVLA] multiple component technique) of the cervical spine (between C2 and C5) with the patient in the sitting position. During manipulation, head motion was collected using an optoelectronic system and expressed relative to the thorax. Motion data were processed to analyze primary and coupled motions and HA parameters. Anatomic motion representation including HA was obtained. During manipulation, average maximal range of motion was 39° (SD, 6°), 21° (SD, 7°), and 8° (SD, 5°) for lateral bending (LB), axial rotation (AR), and flexion extension, respectively. For the impulse period, magnitude averaged of 8° (SD, 2°), 5° (SD, 2°), and 3° (SD, 2°), for LB, AR, and flexion extension, respectively. Mean impulse velocity was 139°/s (SD, 39°/s). Concerning AR/LB ratios, an average of 0.6 (SD, 0.3) was observed for global motion, premanipulation positioning, and impulse. Mean HA was mostly located ipsilateral to the impulse side and displayed an oblique orientation. This study demonstrated limited range of AR during cervical spine manipulation and provided new perspectives for the development of visualization tools, which might be helpful for practitioners and for the analysis of cervical manipulation using HA computation and anatomic representation of motion. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  19. Emergence of collective motion in suspensions of swimming cells

    NASA Astrophysics Data System (ADS)

    Roffin, Maria Chiara; Denissenko, Petr; Kantsler, Vasily

    2015-11-01

    Collective motion is one of the most fascinating manifestations of self-organization in non-equilibrium systems. The phenomena emerges with the increase in concentration of motile individuals ranging from molecular motors to large animals like fish and humans. We have studied the suspension of swimming sperm cells in a microfluidic device which gradually concentrates motile cells in the region of interest. The onset of collective motion is identified by investigating correlations of fluid velocity and image brightness associated with the cell orientation. Cell concentration and the noise parameter are varied to switch on/off the collective interaction. The level of noise is controlled by adjusting the cell motility which depends on the temperature in the microfluidic chip. Fluid velocity is measured by tracing passive fluorescent beads in the suspension.

  20. Physical Properties of Collective Motion in Suspensions of Bacteria

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Aranson, Igor S.

    2012-12-01

    A suspension of microswimmers, the simplest realization of active matter, exhibits novel material properties: the emergence of collective motion, reduction in viscosity, increase in diffusivity, and extraction of useful energy. Bacterial dynamics in dilute suspensions suggest that hydrodynamic interactions and collisions between the swimmers lead to collective motion at higher concentrations. On the example of aerobic bacteria Bacillus subtilis, we report on spatial and temporal correlation functions measurements of collective state for various swimming speeds and concentrations. The experiments produced a puzzling result: while the energy injection rate is proportional to the swimming speed and concentration, the correlation length remains practically constant upon small speeds where random tumbling of bacteria dominates. It highlights two fundamental mechanisms: hydrodynamic interactions and collisions; for both of these mechanisms, the change of the swimming speed or concentration alters an overall time scale.

  1. Trend-Centric Motion Visualization: Designing and Applying a New Strategy for Analyzing Scientific Motion Collections.

    PubMed

    Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M; Nuckley, David; Carlis, John; Keefe, Daniel F

    2014-12-01

    In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection's trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool's effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics.

  2. An underwater robo-leader for collective motion studies

    NASA Astrophysics Data System (ADS)

    Sanchez, Yair; Wilhelmus, Monica M.

    2016-11-01

    A wide range of aquatic species, from bacteria to large tuna, exhibits collective behavior. It has long been hypothesized that the formation of complex configurations brings an energetic advantage to the members of a group as well as protection against larger predators or harmful agents. Lately, however, laboratory experiments have suggested that both the physics and the behavioral aspects of collective motion yield more complexity than previously attributed. With the goal to understand the fluid mechanical implications behind collective motion in a laboratory setting, we have developed a new device to induce this behavior on demand. Following recent studies of lab-induced vertical migration of Artemia salina, we have designed and constructed a remotely controlled underwater robotic swimmer that acts as a leader for groups of phototactic organisms. Preliminary quantitative flow visualizations done during vertical migration of brine shrimp show that this new instrument does induce collective motion in the laboratory. With this setup, we can address the hydrodynamic effect of having different swarm configurations, a variable that so far has been challenging to study in a controllable and reproducible manner.

  3. Collective motion and density fluctuations in swimming bacteria

    NASA Astrophysics Data System (ADS)

    Zhang, Hepeng

    2011-03-01

    The emergence of collective motion such as in fish schools, mammal herds, and insect swarms is a ubiquitous self-organization phenomenon. Such collective behavior plays an important role in a range of problems, such as spreading of deceases in animal or fish groups. Current models have provided a qualitative understanding of collective motion, but progress in quantitative modeling in hindered by the lack of experimental data. Here we examine a model microscopic system, where we are able to measure simultaneously the positions, velocities, and orientations of up to a thousand bacteria in a colony. The motile bacteria form closely-packed dynamic clusters within which they move cooperatively. The number of bacteria in a cluster exhibits a power-law distribution truncated by an exponential tail, and the probability of finding large clusters grows markedly as bacterial density increases. Mobile clusters cause anomalous fluctuations in bacterial density as found in mathematical theories and numerical models. Our results demonstrate that bacteria are an excellent system to study general phenomena of collective motion.

  4. Collective amplitude mode fluctuations in a flat band superconductor formed at a semimetal surface

    NASA Astrophysics Data System (ADS)

    Kauppila, V. J.; Hyart, T.; Heikkilä, T. T.

    2016-01-01

    We study the fluctuations of the amplitude (i.e., the Higgs-Anderson) mode in a superconducting system of coupled Dirac particles proposed as a model for possible surface or interface superconductivity in rhombohedral graphite. This system also serves as a generic model of a topological semimetal with an interaction-driven transition on its surface. We show that the absence of Fermi energy and vanishing of the excitation gap of the collective amplitude mode in the model leads to a large fluctuation contribution to thermodynamic quantities, such as the heat capacity. As a consequence, the mean-field theory becomes inaccurate, indicating that the interactions lead to a strongly correlated state. We also present a microscopic derivation of the Ginzburg-Landau theory corresponding to this model.

  5. Zero-field NMR of small-amplitude motions in a polycrystalline solid

    SciTech Connect

    Millar, J.M.; Thayer, A.M.; Zax, D.B.; Pines, A.

    1986-08-20

    The librational motions of the water molecules in polycrystalline barium chlorate monohydrate have been studied by using proton and deuterium zero-field NMR. In contrast to high-field NMR, subtle molecular motions produce readily observable changes in the zero-field spectrum. Computer simulations and application of a novel-pulsed zero-field technique confirm that the splitting observed in the zero-field spectrum of the hydrate results from the motionally induced asymmetry of the magnetic dipole-dipole coupling tensor.

  6. Collective motion in an active suspension of Escherichia coli bacteria

    NASA Astrophysics Data System (ADS)

    Gachelin, J.; Rousselet, A.; Lindner, A.; Clement, E.

    2014-02-01

    We investigate experimentally the emergence of collective motion in the bulk of an active suspension of Escherichia coli bacteria. When increasing the concentration from a dilute to a semi-dilute regime, we observe a continuous crossover from a dynamical cluster regime to a regime of ‘bio-turbulence’ convection patterns. We measure a length scale characterizing the collective motion as a function of the bacteria concentration. For bacteria fully supplied with oxygen, the increase of the correlation length is almost linear with concentration and at the largest concentrations tested, the correlation length could be as large as 24 bacterial body sizes (or 7-8 when including the flagella bundle). In contrast, under conditions of oxygen shortage the correlation length saturates at a value of around 7 body lengths.

  7. Spatio-temporal patterns of bacteria caused by collective motion

    NASA Astrophysics Data System (ADS)

    Kitsunezaki, So

    2006-04-01

    In incubation experiments on bacterial colonies of Proteus mirabilis, collective motion of bacteria is found to generate macroscopic turbulent patterns on the surface of agar media. We propose a mathematical model to describe the time evolution of the positional and directional distributions of motile bacteria in such systems, and investigate this model both numerically and analytically. It is shown that as the average density of bacteria increases, nonuniform swarming patterns emerge from a uniform stationary state. For a sufficient large density, we find that spiral patterns are caused by interactions between the local bacteria densities and the rotational mode of the collective motion. Unidirectional spiral patterns similar to those observed in experiments appear in the case in which the equilibrium directional distribution is asymmetric.

  8. Trend-Centric Motion Visualization: Designing and Applying a new Strategy for Analyzing Scientific Motion Collections

    PubMed Central

    Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M.; Nuckley, David; Carlis, John; Keefe, Daniel F

    2017-01-01

    In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection’s trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool’s effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics. PMID:26356978

  9. Collective Motion of Mammalian Cell Cohorts in 3D

    PubMed Central

    Sharma, Yasha; Vargas, Diego A.; Pegoraro, Adrian F.; Lepzelter, David; Weitz, David A.; Zaman, Muhammad H

    2016-01-01

    Collective cell migration is ubiquitous in biology, from development to cancer; it occurs in complex systems comprised of heterogeneous cell types, signals and matrices, and requires large scale regulation in space and time. Understanding how cells achieve organized collective motility is crucial to addressing cellular and tissue function and disease progression. While current two-dimensional model systems recapitulate the dynamic properties of collective cell migration, quantitative three-dimensional equivalent model systems have proved elusive. To establish such a model system, we study cell collectives by tracking individuals within cell cohorts embedded in three dimensional collagen scaffolding. We develop a custom algorithm to quantify the temporal and spatial heterogeneity of motion in cell cohorts during motility events. In the absence of external driving agents, we show that these cohorts rotate in short bursts, <2 hours, and translate for up to 6 hours. We observe, track, and analyze three dimensional motion of cell cohorts composed of 3–31 cells, and pave a path toward understanding cell collectives in 3D as a complex emergent system. PMID:26549557

  10. Satellite Motion Effects on Current Collection in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Zhang, T. X.; Hwang, K. S.; Wu, S. T.; Stone, N. H.; Chang, C. L.; Drobot, A.; Wright, K. H., Jr.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Results from the Tethered Satellite System (TSS) missions unambiguously show that the electrodynamic tether system produced 2 to 3 times the predicted current levels in the tether. The pre-mission predictions were based on the well-known Parker-Murphy (PM) model, which describes the collection of current by an electrically biased satellite in the ionospheric plasma. How the TSS satellite was able to collect 2-3 times the PM current has remained an open question. In the present study, self-consistent potential and motional effects are introduced into the Thompson and Dobrowolny sheath models. As a result, the magnetic field aligned sheath-an essential variable in determining current collection by a satellite-is derived and is shown to be explicitly velocity dependent. The orientation of the satellite's orbital motion relative to the geomagnetic field is also considered in the derivation and a velocity dependent expression for the collected current is obtained. The resulting model provides a realistic treatment of current collection by a satellite in low earth orbit. Moreover, the predictions, using the appropriate parameters for TSS, are in good agreement with the tether currents measured during the TSS-1R mission.

  11. Satellite Motion Effects on Current Collection in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Zhang, T. X.; Hwang, K. S.; Wu, S. T.; Stone, N. H.; Chang, C. L.; Drobot, A.; Wright, K. H., Jr.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Results from the Tethered Satellite System (TSS) missions unambiguously show that the electrodynamic tether system produced 2 to 3 times the predicted current levels in the tether. The pre-mission predictions were based on the well-known Parker-Murphy (PM) model, which describes the collection of current by an electrically biased satellite in the ionospheric plasma. How the TSS satellite was able to collect 2-3 times the PM current has remained an open question. In the present study, self-consistent potential and motional effects are introduced into the Thompson and Dobrowolny sheath models. As a result, the magnetic field aligned sheath-an essential variable in determining current collection by a satellite-is derived and is shown to be explicitly velocity dependent. The orientation of the satellite's orbital motion relative to the geomagnetic field is also considered in the derivation and a velocity dependent expression for the collected current is obtained. The resulting model provides a realistic treatment of current collection by a satellite in low earth orbit. Moreover, the predictions, using the appropriate parameters for TSS, are in good agreement with the tether currents measured during the TSS-1R mission.

  12. Directed collective motion of bacteria under channel confinement

    NASA Astrophysics Data System (ADS)

    Wioland, H.; Lushi, E.; Goldstein, R. E.

    2016-07-01

    Dense suspensions of swimming bacteria are known to exhibit collective behaviour arising from the interplay of steric and hydrodynamic interactions. Unconfined suspensions exhibit transient, recurring vortices and jets, whereas those confined in circular domains may exhibit order in the form of a spiral vortex. Here we show that confinement into a long and narrow macroscopic ‘racetrack’ geometry stabilises bacterial motion to form a steady unidirectional circulation. This motion is reproduced in simulations of discrete swimmers that reveal the crucial role that bacteria-driven fluid flows play in the dynamics. In particular, cells close to the channel wall produce strong flows which advect cells in the bulk against their swimming direction. We examine in detail the transition from a disordered state to persistent directed motion as a function of the channel width, and show that the width at the crossover point is comparable to the typical correlation length of swirls seen in the unbounded system. Our results shed light on the mechanisms driving the collective behaviour of bacteria and other active matter systems, and stress the importance of the ubiquitous boundaries found in natural habitats.

  13. Role of Social Motility in Facilitating Collective Motion of Myxobacteria

    NASA Astrophysics Data System (ADS)

    Wu, Yilin; Chen, Nan; Rissler, Matthew; Jiang, Yi; Kaiser, Dale; Alber, Mark

    2007-03-01

    Social motility is a unique form of behavior exhibited by a wide range of bacteria, including most pathogens that cause plant and animal disease. It is operated by type IV pili that attach to other cells' surfaces and pull; the retracting force pulls the cell forward. Experiments have demonstrated that social motility is important for the collective motion of bacteria colonies, and it facilitates the colonization of pathogens in hosts. We use a cell-based model to study the role of social motility in swarming of bacteria colonies. Mycococcus xathus, a species of myxobacteria, is our model bacteria because it exhibits typical social motility and has been well studied. Our simulation results suggest that social motility has an effect on alignment of neighboring cells, resulting in a highly ordered collective motion. We also show that social motility can significantly improve the swarming efficiency of bacteria. We track GFP labeled Mycococcus xathus cell cultures and derive model parameters from the cell motion data. Our work may shed light on the infection process of many diseases.

  14. Collective motion of binary self-propelled particle mixtures.

    PubMed

    Menzel, Andreas M

    2012-02-01

    In this study, we investigate the phenomenon of collective motion in binary mixtures of self-propelled particles. More precisely, we consider two particle species, each of which consisting of pointlike objects that propel with a velocity of constant magnitude. Within each species, the particles try to achieve polar alignment of their velocity vectors, whereas we analyze the cases of preferred polar, antiparallel, as well as perpendicular alignment between particles of different species. Our focus is on the effect that the interplay between the two species has on the threshold densities for the onset of collective motion and on the nature of the solutions above onset. For this purpose, we start from suitable Langevin equations in the particle picture, from which we derive mean field equations of the Fokker-Planck type and finally macroscopic continuum field equations. We perform particle simulations of the Langevin equations and linear stability analyses of the Fokker-Planck and macroscopic continuum equations, and we numerically solve the Fokker-Planck equations. Both spatially homogeneous and inhomogeneous solutions are investigated, where the latter correspond to stripelike flocks of collectively moving particles. In general, the interaction between the two species reduces the threshold density for the onset of collective motion of each species. However, this interaction also reduces the spatial organization in the stripelike flocks. The case that shows the most interesting behavior is the one of preferred perpendicular alignment between different species. There a competition between polar and truly nematic orientational ordering of the velocity vectors takes place within each particle species. Finally, depending on the alignment rule for particles of different species and within certain ranges of particle densities, identical and inverted spatial density profiles can be found for the two particle species. The system under investigation is confined to two spatial

  15. Collective motion and density fluctuations in bacterial colonies

    NASA Astrophysics Data System (ADS)

    Zhang, Hepeng; Be'Er, Avraham; Florin, E.-L.; Swinney, Harry L.

    2010-03-01

    The emergence of collective motion such as in fish schools and swarming bacteria is a ubiquitous self-organization phenomenon. Such collective behavior plays an important role in a range of phenomenon, such as formation and migration of animal or fish groups. To understand the collective motion, tracking of large numbers of individuals is needed, but such measurements have been lacking. Here we examine a microscopic system, where we are able to measure simultaneously the positions, velocities, and orientations of up to a thousand bacteria in a colony. The motile bacteria form closely-packed dynamic clusters within which they move cooperatively. The number of bacteria in a cluster exhibits a power-law distribution truncated by an exponential tail, and the probability of finding large clusters grows markedly as bacterial density increases. Mobile clusters exhibit anomalous fluctuations in bacterial density: the standard deviation (δN) grows with the mean (N) of the number of bacteria as δN˜N^3/4 rather than δN˜N^1/2, as in thermal equilibrium systems.

  16. Photoionization-induced large-amplitude pendular motion in phenol(+)-Kr.

    PubMed

    Miyazaki, Mitsuhiko; Takeda, Akihiro; Ishiuchi, Shun-ichi; Sakai, Makoto; Dopfer, Otto; Fujii, Masaaki

    2011-02-21

    The dynamics of the intermolecular motion of the phenol(+)-Kr cation generated by photoionization of the neutral π-structure is probed by picosecond time-resolved infrared spectroscopy. The spectrum at zero delay displays only the free OH stretch band of the π-structure. The appearance of the hydrogen-bonded OH stretch band of the H-structure after a few ps is due to ionization-induced π → H site switching. Spectra at long delay (>20 ns) show that the Kr atom delocalizes from one π-site of the aromatic ring to the opposite π-site via the OH-site, like a pendular motion in the classical picture.

  17. Dynamical Transition of Collective Motions in Dry Proteins

    DOE PAGES

    Liu, Zhuo; Huang, Juan; Tyagi, Madhusudan; ...

    2017-07-25

    Water is widely assumed to be essential for protein dynamics and function. In particular, the well-documented “dynamical” transition at ~ 200 K , at which the protein changes from a rigid, nonfunctional form to a flexible, functional state, as detected in hydrogenated protein by incoherent neutron scattering, requires hydration. We report on coherent neutron scattering experiments on perdeuterated proteins and reveal that a transition occurs in dry proteins at the same temperature resulting primarily from the collective heavy-atom motions. Furthermore, the dynamical transition discovered is intrinsic to the energy landscape of dry proteins.

  18. Collective Motion of Microorganisms in a Viscoelastic Fluid

    NASA Astrophysics Data System (ADS)

    Li, Gaojin; Ardekani, Arezoo M.

    2016-09-01

    We study the collective motion of a suspension of rodlike microswimmers in a two-dimensional film of viscoelastic fluids. We find that the fluid elasticity has a small effect on a suspension of pullers, while it significantly affects the pushers. The attraction and orientational ordering of the pushers are enhanced in viscoelastic fluids. The induced polymer stresses break down the large-scale flow structures and suppress velocity fluctuations. In addition, the energy spectra and induced mixing in the suspension of pushers are greatly modified by fluid elasticity.

  19. Time series analysis of collective motions in proteins

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Doruker, Pemra; ćamurdan, Mehmet C.

    2004-01-01

    The dynamics of α-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the Cα atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm-1 range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers.

  20. Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses?

    USGS Publications Warehouse

    Luco, N.; Bazzurro, P.

    2007-01-01

    Limitations of the existing earthquake ground motion database lead to scaling of records to obtain seismograms consistent with a ground motion target for structural design and evaluation. In the engineering seismology community, acceptable limits for 'legitimate' scaling vary from one (no scaling allowed) to 10 or more. The concerns expressed by detractors of scaling are mostly based on the knowledge of, for example, differences in ground motion characteristics for different earthquake magnitude-distance (Mw-Rclose) scenarios, and much less on their effects on structures. At the other end of the spectrum, proponents have demonstrated that scaling is not only legitimate but also useful for assessing structural response statistics for Mw-Rclose scenarios. Their studies, however, have not investigated more recent purposes of scaling and have not always drawn conclusions for a wide spectrum of structural vibration periods and strengths. This article investigates whether scaling of records randomly selected from an Mw-Rclose bin (or range) to a target fundamental-mode spectral acceleration (Sa) level introduces bias in the expected nonlinear structural drift response of both single-degree-of-freedom oscillators and one multi-degree-of-freedom building. The bias is quantified relative to unscaled records from the target Mw-Rclose bin that are 'naturally' at the target Sa level. We consider scaling of records from the target Mw-Rclose bin and from other Mw-Rclose bins. The results demonstrate that scaling can indeed introduce a bias that, for the most part, ca be explained by differences between the elastic response spectra of the scaled versus unscaled records. Copyright ?? 2007 John Wiley & Sons, Ltd.

  1. The added mass, Basset, and viscous drag coefficients in nondilute bubbly liquids undergoing small-amplitude oscillatory motion

    SciTech Connect

    Sangani, A.S. ); Zhang, D.Z.; Prosperetti, A. )

    1991-12-01

    The motion of bubbles dispersed in a liquid when a small-amplitude oscillatory motion is imposed on the mixture is examined in the limit of small frequency and viscosity. Under these conditions, for bubbles with a stress-free surface, the motion can be described in terms of added mass and viscous force coefficients. For bubbles contaminated with surface-active impurities, the introduction of a further coefficient to parametrize the Basset force is necessary. These coefficients are calculated numerically for random configurations of bubbles by solving the appropriate multibubble interaction problem exactly using a method of multipole expansion. Results obtained by averaging over several configurations are presented. Comparison of the results with those for periodic arrays of bubbles shows that these coefficients are, in general, relatively insensitive to the detailed spatial arrangement of the bubbles. On the basis of this observation, it is possible to estimate them via simple formulas derived analytically for dilute periodic arrays. The effect of surface tension and density of bubbles (or rigid particles in the case where the no-slip boundary condition is applicable) is also examined and found to be rather small.

  2. Effects of curvilinear motion in large-amplitude bending of C3

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.; Pearson, W. E.; Henderson, B. J.

    1974-01-01

    The geometry of the bending of a linear triatomic molecule is analyzed, and an expression for the average rotational constant is derived. A harmonic oscillator model of C3 is fitted to the observed rotational constant within 0.6%. The bond distance between atoms at zero bending is 1.287 A according to this model; this is noticeably larger than the average internuclear distance of 1.277 A for the vibrational ground state. The first order perturbation solutions for the vibrational energy levels, taking into account the effect of a quartic perturbation potential, closely match observed levels. For a square well potential model of C3, the effect of curvilinear motion in bending is similar to that found for the harmonic oscillator model, though the decreases in energy are about twice as large. In both models, the average energy decrease is relatively constant at approximately 10% over a wide range of vibrational quantum number.

  3. Effects of curvilinear motion in large-amplitude bending of C3

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.; Pearson, W. E.; Henderson, B. J.

    1974-01-01

    The geometry of the bending of a linear triatomic molecule is analyzed, and an expression for the average rotational constant is derived. A harmonic oscillator model of C3 is fitted to the observed rotational constant within 0.6%. The bond distance between atoms at zero bending is 1.287 A according to this model; this is noticeably larger than the average internuclear distance of 1.277 A for the vibrational ground state. The first order perturbation solutions for the vibrational energy levels, taking into account the effect of a quartic perturbation potential, closely match observed levels. For a square well potential model of C3, the effect of curvilinear motion in bending is similar to that found for the harmonic oscillator model, though the decreases in energy are about twice as large. In both models, the average energy decrease is relatively constant at approximately 10% over a wide range of vibrational quantum number.

  4. Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers.

    PubMed

    Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T

    2015-12-01

    Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.

  5. Modeling closure of circular wounds through coordinated collective motion

    NASA Astrophysics Data System (ADS)

    Li, David S.; Zimmermann, Juliane; Levine, Herbert

    2016-02-01

    Wound healing enables tissues to restore their original states, and is achieved through collective cell migration into the wound space, contraction of the wound edge via an actomyosin filament ‘purse-string,’ as well as cell division. Recently, experimental techniques have been developed to create wounds with various regular morphologies in epithelial monolayers, and these experiments of circular closed-contour wounds support coordinated lamellipodial cell crawling as the predominant driver of gap closure. Through utilizing a particle-based mechanical tissue simulation, exhibiting long-range coordination of cell motility, we computationally model these closed-contour experiments with a high level of agreement between experimentally observed and simulated wound closure dynamics and tissue velocity profiles. We also determine the sensitivity of wound closure time in the model to changes in cell motility force and division rate. Our simulation results confirm that circular wounds can close due to collective cell migration without the necessity for a purse-string mechanism or for cell division, and show that the alignment mechanism of cellular motility force with velocity, leading to collective motion in the model, may speed up wound closure.

  6. Phase Diagram of Collective Motion of Bacterial Cells in a Shallow Circular Pool

    NASA Astrophysics Data System (ADS)

    Wakita, Jun-ichi; Tsukamoto, Shota; Yamamoto, Ken; Katori, Makoto; Yamada, Yasuyuki

    2015-12-01

    The collective motion of bacterial cells in a shallow circular pool is systematically studied using the bacterial species Bacillus subtilis. The ratio of cell length to pool diameter (i.e., the reduced cell length) ranges from 0.06 to 0.43 in our experiments. Bacterial cells in a circular pool show various types of collective motion depending on the cell density in the pool and the reduced cell length. The motion is classified into six types, which we call random motion, turbulent motion, one-way rotational motion, two-way rotational motion, random oscillatory motion, and ordered oscillatory motion. Two critical values of reduced cell lengths are evaluated, at which drastic changes in collective motion are induced. A phase diagram is proposed in which the six phases are arranged.

  7. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging

    NASA Astrophysics Data System (ADS)

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I.; Nikolov, Hristo N.; Holdsworth, David W.

    2015-08-01

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as  ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  8. Infrared Spectroscopic Studies of OCS Trapped in Solid Parahydrogen: Indirect Evidence of Large Amplitude Motions

    NASA Astrophysics Data System (ADS)

    Anderson, David T.

    2016-06-01

    The high-resolution infrared rovibrational spectroscopy of OCS clustered with multiple hydrogen molecules has previously been studied in helium nanodroplets and in the gas-phase in search of another substance other than helium that displays superfluidity. Para-hydrogen (pH2) is one of the most likely candidates because it is a spinless (I=0) composite boson with a light mass similar to helium. However, compared to helium, the pH2-pH2 intermolecular potential is significantly stronger and thus pH2 solidifies at higher temperatures than the predicted superfluid transition temperature thereby blocking access to the superfluid state. Both of these previous studies reveal intriguing results linked to the microscopic details of superfluidity. We were therefore interested to characterize the IR spectrum of OCS in solid pH2. The conventional wisdom is that because pH2 solidifies into a quantum solid, the effects of superfluidity detected in the finite sized clusters should not be manifest in solid pH2. However, the OCS-H2 intermolecular potential strongly favors arranging the first 5 pH2 molecules in a ring around the equator of the OCS (R=3.2 Å). Isolation of OCS in bulk pH2 therefore may result in a solvation site where 6 pH2 molecules in the same basal plane form a ring around the OCS and are pulled inward decoupling them from the bulk. If the periodic barriers to motion around the ring are small, one might expect the 6 equatorial pH2 molecules to become delocalized while still maintaining the permutation symmetry of bosons. These 6 particles-on-a-ring may only show this behavior at low temperatures when thermal excitations are minimized. Analysis of the IR spectroscopy of OCS in solid pH2 indicates 1) the OCS molecule does not freely rotate and 2) there are at least two preferred OCS solvation sites. In principle, the measured OCS peak frequency for these two solvation sites should depend sensitively on the "structure" of the first pH2 solvation shell and therefore

  9. A study of the nonlinear aerodynamics of bodies in nonplanar motion. Ph.D. Thesis - Stanford Univ., Calif.; [numerical analysis of aerodynamic force and moment systems during large amplitude, arbitrary motions

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.

    1974-01-01

    Concepts from the theory of functionals are used to develop nonlinear formulations of the aerodynamic force and moment systems acting on bodies in large-amplitude, arbitrary motions. The analysis, which proceeds formally once the functional dependence of the aerodynamic reactions upon the motion variables is established, ensures the inclusion, within the resulting formulation, of pertinent aerodynamic terms that normally are excluded in the classical treatment. Applied to the large-amplitude, slowly varying, nonplanar motion of a body, the formulation suggests that the aerodynamic moment can be compounded of the moments acting on the body in four basic motions: steady angle of attack, pitch oscillations, either roll or yaw oscillations, and coning motion. Coning, where the nose of the body describes a circle around the velocity vector, characterizes the nonplanar nature of the general motion.

  10. The role of large-amplitude motions in the spectroscopy and dynamics of H{sub 5}{sup +}

    SciTech Connect

    Lin, Zhou; McCoy, Anne B.

    2014-03-21

    Protonated hydrogen dimer, H{sub 5}{sup +}, is the intermediate in the astrochemically important proton transfer reaction between H{sub 3}{sup +} and H{sub 2}. To understand the mechanism for this process, we focus on how large amplitude motions in H{sub 5}{sup +} result in scrambling of the five hydrogen atoms in the collision complex. To this end, the one-dimensional zero-point corrected potential surfaces were mapped out as functions of reaction coordinates for the H{sub 3}{sup +} + H{sub 2} collision using minimized energy path diffusion Monte Carlo [C. E. Hinkle and A. B. McCoy, J. Phys. Chem. Lett. 1, 562 (2010)]. In this study, the previously developed approach was extended to allow for the investigation of selected excited states that are expected to be involved in the proton scrambling dynamics. Specifically, excited states in the shared proton motion between the two H{sub 2} groups, and in the outer H{sub 2} bending motions were investigated. Of particular interest is the minimum distance between H{sub 3}{sup +} and H{sub 2} at which all five hydrogen atoms become free to exchange. In addition, this diffusion Monte Carlo-based approach was used to determine the zero-point energy E{sub 0}, the dissociation energy D{sub 0}, and excitation energies associated with the vibrational motions that were investigated. The evolution of the wave functions was also studied, with a focus on how the intramolecular vibrations in H{sub 5}{sup +} evolve into motions of H{sub 3}{sup +} or H{sub 2}. In the case of the proton scrambling, we find that the relevant transition states become fully accessible at separations between H{sub 3}{sup +} and H{sub 2} of approximately 2.15 Å, a distance that is accessed by the excited states of H{sub 5}{sup +} with two or more quanta in the shared proton stretch. The implications of this finding on the vibrational spectroscopy of H{sub 5}{sup +} are also discussed.

  11. Collective Motions in A = 100-112 Nuclei

    SciTech Connect

    Hamilton, J. H.; Ramayya, A. V.; Hwang, J. K.; Goodin, C.; Zhu, S. J.; Luo, Y. X.; Rasmussen, J. O.; Frauendorf, S.; Ter-Akopian, G. M.

    2010-10-11

    With a very high statistics data set with 5.7x10{sup 11} triple and higher fold {gamma} coincidences from the spontaneous fission of {sup 252}Cf, a wealth of fascinating new collective motions in nuclei with A = 100-112 have been observed. Nothing was known previously about one- and two-phonon {gamma}-bands in odd-A nuclei. We discovered the first one-and two- phonon {gamma} vibrational bands in an odd N-even Z nucleus, {sup 105}Mo. The energies of the one- and two- phonon bands in {sup 104}Mo, {sup 105}Mo, {sup 106}Mo and {sup 108}Mo were recently studied and are remarkably similar in energies. The first chiral doublet bands in e-e nuclei were observed in triaxial {sup 106,108}Mo and {sup 110,112}Ru while such chiral band in {sup 108}Ru are perturbed by its {gamma}-soft shape. The experimental evidences, including our recent angular correlation studies are presented along with what these new bands are telling us about the evolving collective structures and deformation in this region.

  12. Myosin lever arm directs collective motion on cellular actin network

    PubMed Central

    Hariadi, Rizal F.; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-01-01

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions. PMID:24591646

  13. Leadership, collective motion and the evolution of migratory strategies.

    PubMed

    Guttal, Vishwesha; Couzin, Iain D

    2011-05-01

    Migration is a hallmark life history strategy of a diverse range of organisms, and also ubiquitous in ontogenic processes including normal embryonic development as well as tumor progression. In such scenarios, individual organisms/cells typically respond to long range (and often noisy) environmental cues. In addition, individuals may interact socially with one another leading to emergent group-level navigational abilities. Although much progress has been made in understanding the mechanisms of taxis, there is a lack of theoretical and quantitative understanding of how individuals trade-off information obtained through their own migratory ability and that via social interactions. Here, we discuss results and insights from a recent computational model developed to investigate the evolution of leadership and collective motion in migratory populations. It is shown that, for a broad range of parameter values, only a small proportion of the population gather directional information while the majority employ social cues alone. More generally, ecological conditions for the evolution of resident, solitary and collective migratory strategies are obtained. We discuss how consideration of both proximate and ultimate factors within the same framework may provide insights into preserving migratory patterns that are in grave danger due to anthropogenic pressures.

  14. Myosin lever arm directs collective motion on cellular actin network.

    PubMed

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  15. Onset of motion and collective behavior for two-sphere swimmers

    NASA Astrophysics Data System (ADS)

    Klotsa, Daphne; Baldwin, Kyle; Hill, Richard; Bowley, Roger; Swift, Michael; Jones, Shannon

    2016-11-01

    We describe experiments and simulations demonstrating the propulsion of a neutrally buoyant swimmer that consists of a pair of spheres attached by a spring, immersed in a vibrating fluid at intermediate Reynolds numbers. The vibration of the fluid induces relative motion of the spheres which, for sufficiently large amplitudes, can lead to motion of the center of mass of the two spheres. We find that the swimming speed obtained from both experiment and simulation agree and collapse onto a single curve if plotted as a function of the streaming Reynolds number, suggesting that the propulsion is related to streaming flows. There appears to be a critical onset value of the streaming Reynolds number for swimming to occur. We observe a change in the streaming flows as the Reynolds number increases, from that generated by two independent oscillating spheres to a collective flow pattern around the swimmer as a whole. The mechanism for swimming is traced to a strengthening of a jet of fluid in the wake of the swimmer and steady streaming. We discuss the collective behavior of such swimmers.

  16. Large-amplitude nuclear motion formulated in terms of dissipation of quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Kuzyakin, R. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2017-01-01

    The potential-barrier penetrability and quasi-stationary thermal-decay rate of a metastable state are formulated in terms of microscopic quantum diffusion. Apart from linear coupling in momentum between the collective and internal subsystems, the formalism embraces the more general case of linear couplings in both the momentum and the coordinates. The developed formalism is then used for describing the process of projectile-nucleus capture by a target nucleus at incident energies near and below the Coulomb barrier. The capture partial probability, which determines the cross section for formation of a dinuclear system, is derived in analytical form. The total and partial capture cross sections, mean and root-mean-square angular momenta of the formed dinuclear system, astrophysical -factors, logarithmic derivatives, and barrier distributions are derived for various reactions. Also investigated are the effects of nuclear static deformation and neutron transfer between the interacting nuclei on the capture cross section and its isotopic dependence, and the entrance-channel effects on the capture process. The results of calculations for reactions involving both spherical and deformed nuclei are in good agreement with available experimental data.

  17. Continuum Mechanical Analysis of Collective Motion of Robots

    NASA Astrophysics Data System (ADS)

    Itami, Teturo

    Group of robots that works mainly in macroscopic systems is considered as a continuum. We need not mount specific sensors for mutual information among these robots. Increasing number of the robots makes it difficult to predict collective motion of the robots. To give a well organized strategy of designing the task, we describe these robots as that like fluid in continuum mechanics, where number density f_1 (\\vec{x},\\vec{p}; t) of the robots located at around \\vec{x} with momentum around \\vec{p} at time t is a main variable. Also we propose methods to move these robots by external potential energy V(\\vec{x};t). To specify a concept, we take a transportation system by group of robots. The objects located at \\vec{X}(t) that do not feel a potential V(\\vec{X}(t);t) can be transported by a collision with the robots moving aimlessly under the potential force -\\frac{\\partial V(\\vec{x};t)}{\\partial \\vec{x}}. The new scheme of a design based on continuum mechanics is validated by direct method of dynamical development of the system in time.

  18. Dimensionality reduction of collective motion by principal manifolds

    NASA Astrophysics Data System (ADS)

    Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.

    2015-01-01

    While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.

  19. Mean Field Theory for Collective Motion of Quantum Meson Fields

    NASA Astrophysics Data System (ADS)

    Tsue, Y.; Vautherin, D.; Matsui, T.

    1999-08-01

    Mean field theory for the time evolution of quantum meson fields is studied in terms of the functional Schrödinger picture with a time-dependent Gaussian variational wave functional. We first show that the equations of motion for the variational wavefunctional can be rewritten in a compact form similar to the Hartree-Bogoliubov equations in quantum many-body theory and this result is used to recover the covariance of the theory. We then apply this method to the O(N) model and present analytic solutions of the mean field evolution equations for an N-component scalar field. These solutions correspond to quantum rotations in isospin space and represent generalizations of the classical solutions obtained earlier by Anselm and Ryskin. As compared to classical solutions new effects arise because of the coupling between the average value of the field and its quantum fluctuations. We show how to generalize these solutions to the case of mean field dynamics at finite temperature. The relevance of these solutions for the observation of a coherent collective state or a disoriented chiral condensate in ultra-relativistic nuclear collisions is discussed.

  20. Collective nonaffine displacements in amorphous materials during large-amplitude oscillatory shear

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai V.

    2017-02-01

    Using molecular dynamics simulations, we study the transient response of a binary Lennard-Jones glass subjected to periodic shear deformation. The amorphous solid is modeled as a three-dimensional Kob-Andersen binary mixture at a low temperature. The cyclic loading is applied to slowly annealed, quiescent samples, which induces irreversible particle rearrangements at large strain amplitudes, leading to stress-strain hysteresis and a drift of the potential energy towards higher values. We find that the initial response to cyclic shear near the critical strain amplitude involves disconnected clusters of atoms with large nonaffine displacements. In contrast, the amplitude of shear stress oscillations decreases after a certain number of cycles, which is accompanied by the initiation and subsequent growth of a shear band.

  1. Visually induced motion sickness when viewing visual oscillations of different frequencies along the fore-and-aft axis: keeping velocity versus amplitude constant.

    PubMed

    Chen, Daniel Jinzhao; Bao, Beisheng; Zhao, Yue; So, Richard H Y

    2016-04-01

    Exposure to visual oscillations (VOs) can lead to visually induced motion sickness (VIMS). The level of VIMS among viewers has been shown to vary when the frequency of the VOs is changed either by manipulating their amplitude or velocity. The present study investigates whether the level of VIMS would change if we keep the root mean square (rms) velocity or amplitude of VOs constant while manipulating the VO frequency. A total of 25 individuals were exposed to random-dot and checkerboard VOs along the fore-and-aft axis in two experiments. Changing the amplitude (or frequency) of VOs while keeping the rms velocity constant did not affect the level of VIMS; however, increasing the rms velocity (or frequency) of VOs while keeping the amplitude constant made VIMS significantly worse. Practitioner Summary: Exposure to VOs of the same frequency can cause different levels of nausea depending on the combination of oscillation amplitude and velocity. Results suggest an opportunity for game designers to reduce symptoms of game sickness by using the correct combinations of velocity and amplitude of the visual motions.

  2. Simulation study of amplitude-modulated (AM) harmonic motion imaging (HMI) for stiffness contrast quantification with experimental validation.

    PubMed

    Maleke, Caroline; Luo, Jianwen; Gamarnik, Viktor; Lu, Xin L; Konofagou, Elisa E

    2010-07-01

    The objective of this study is to show that Harmonic Motion Imaging (HMI) can be used as a reliable tumor-mapping technique based on the tumor's distinct stiffness at the early onset of disease. HMI is a radiation-force-based imaging method that generates a localized vibration deep inside the tissue to estimate the relative tissue stiffness based on the resulting displacement amplitude. In this paper, a finite-element model (FEM) study is presented, followed by an experimental validation in tissue-mimicking polyacrylamide gels and excised human breast tumors ex vivo. This study compares the resulting tissue motion in simulations and experiments at four different gel stiffnesses and three distinct spherical inclusion diameters. The elastic moduli of the gels were separately measured using mechanical testing. Identical transducer parameters were used in both the FEM and experimental studies, i.e., a 4.5-MHz single-element focused ultrasound (FUS) and a 7.5-MHz diagnostic (pulse-echo) transducer. In the simulation, an acoustic pressure field was used as the input stimulus to generate a localized vibration inside the target. Radiofrequency (rf) signals were then simulated using a 2D convolution model. A one-dimensional cross-correlation technique was performed on the simulated and experimental rf signals to estimate the axial displacement resulting from the harmonic radiation force. In order to measure the reliability of the displacement profiles in estimating the tissue stiffness distribution, the contrast-transfer efficiency (CTE) was calculated. For tumor mapping ex vivo, a harmonic radiation force was applied using a 2D raster-scan technique. The 2D HMI images of the breast tumor ex vivo could detect a malignant tumor (20 x 10 mm2) surrounded by glandular and fat tissues. The FEM and experimental results from both gels and breast tumors ex vivo demonstrated that HMI was capable of detecting and mapping the tumor or stiff inclusion with various diameters or

  3. From Animal Collectives and Complex Networks to Decentralized Motion Control Strategies

    NASA Astrophysics Data System (ADS)

    Buscarino, Arturo; Fortuna, Luigi; Frasca, Mattia; Rizzo, Alessandro

    The following sections are included: * Collective Behavior and Motion Coordination in Animal Groups * Mathematical Models for Collective Motion * Applying Complex Network Theory to Coordination Models * Effect of long-range connections in the Vicsek's model * Effect of long-range connections in the Couzin's model * Proximity graphs and topological interactions * From Biological Networks to Engineering Problems * References

  4. Rotational Spectrum and Large Amplitude Motions of 3,4-, 2,5- and 3,5-DIMETHYL-BENZALDEHYDE

    NASA Astrophysics Data System (ADS)

    Kleiner, I.; Tudorie, M.; Jahn, M.; Grabow, J.-U.; Goubet, M.

    2012-06-01

    The microwave spectra of the 3,4-, 2,5- and 3,5-Dimethyl-Benzaldehyde (DMBA) molecules have been recorded for the first time in the 2-26.5 GHz frequency range, using the COBRA-FTMW spectrometer in Hannover, with an instrumental uncertainty of 0.5 kHz for unblended lines. The experimental assignments and fits are supplemented by ab initio quantum chemical calculations,conformational energy landscape, and dipole moment components. The analysis of the spectra for the three isomers are in progress. The latest results, including spectroscopic constants and large amplitude motion parameters, will be presented. This investigation follows the study of the spectra of the 4-Methyl-Benzaldehyde molecule. The DMBA isomers belong to a similar series of molecules formally obtained by adding a second methyl group at the aromatic ring. These molecules serve as prototype systems for the development of the theoretical model of asymmetric top molecules having Cs symmetry while containing two inequivalent methyl tops (C3v), exhibiting different barrier heights and coupling terms to methyl internal rotation. Thus, the DMBA isomers represent benchmark species for testing the two-top internal rotors BELGI program written recently. Supported by the ANR-08-BLAN-0054 contract (France), the Deutsche Forschungsgemeinschaft, and the Land Niedersachsen (Germany). H. Saal, W. Caminati, I. Kleiner, A. R. Hight-Walker, J. T. Hougen, J.-U. Grabow, to be published. M. Tudorie, I. Kleiner, J. T. Hougen, S. Melandri, L. W. Sutikdja, W. Stahl, J. Mol. Spectrosc., 269 (2011), 211-225

  5. Competition Between Two Large-Amplitude Motion Models: New Hybrid Hamiltonian Versus Old Pure-Tunneling Hamiltonian

    NASA Astrophysics Data System (ADS)

    Kleiner, Isabelle; Hougen, Jon T.

    2017-06-01

    In this talk we report on our progress in trying to make the hybrid Hamiltonian competitive with the pure-tunneling Hamiltonian for treating large-amplitude motions in methylamine. A treatment using the pure-tunneling model has the advantages of: (i) requiring relatively little computer time, (ii) working with relatively uncorrelated fitting parameters, and (iii) yielding in the vast majority of cases fits to experimental measurement accuracy. These advantages are all illustrated in the work published this past year on a gigantic v_{t} = 1 data set for the torsional fundamental band in methyl amine. A treatment using the hybrid model has the advantages of: (i) being able to carry out a global fit involving both v_{t} = 0 and v_{t} = 1 energy levels and (ii) working with fitting parameters that have a clearer physical interpretation. Unfortunately, a treatment using the hybrid model has the great disadvantage of requiring a highly correlated set of fitting parameters to achieve reasonable fitting accuracy, which complicates the search for a good set of molecular fitting parameters and a fit to experimental accuracy. At the time of writing this abstract, we have been able to carry out a fit with J up to 15 that includes all available infrared data in the v_{t} = 1-0 torsional fundamental band, all ground-state microwave data with K up to 10 and J up to 15, and about a hundred microwave lines within the v_{t} = 1 torsional state, achieving weighted root-mean-square (rms) deviations of about 1.4, 2.8, and 4.2 for these three categories of data. We will give an update of this situation at the meeting. I. Gulaczyk, M. Kreglewski, V.-M. Horneman, J. Mol. Spectrosc., in Press (2017).

  6. Master equation for collective spontaneous emission with quantized atomic motion

    NASA Astrophysics Data System (ADS)

    Damanet, François; Braun, Daniel; Martin, John

    2016-02-01

    We derive a Markovian master equation for the internal dynamics of an ensemble of two-level atoms including all effects related to the quantization of their motion. Our equation provides a unifying picture of the consequences of recoil and indistinguishability of atoms beyond the Lamb-Dicke regime on both their dissipative and conservative dynamics, and applies equally well to distinguishable and indistinguishable atoms. We give general expressions for the decay rates and the dipole-dipole shifts for any motional states, and we find closed-form formulas for a number of relevant states (Gaussian states, Fock states, and thermal states). In particular, we show that dipole-dipole interactions and cooperative photon emission can be modulated through the external state of motion.

  7. Effective temperature and spontaneous collective motion of active matter

    NASA Astrophysics Data System (ADS)

    Wang, Shenshen; Wolynes, Peter

    2012-02-01

    Spontaneous directed motion, a hallmark of cell biology, is unusual in classical statistical physics. Here we study, using both numerical and analytical methods, organized motion in models of the cytoskeleton in which constituents are driven by energy-consuming motors. Although systems driven by small-step motors are described by an effective temperature and are thus quiescent, at higher order in step size, both homogeneous and inhomogeneous, flowing and oscillating behavior emerges. Motors that respond with a negative susceptibility to imposed forces lead to an apparent negative temperature system in which beautiful structures form resembling the asters seen in cell division.

  8. On the spontaneous collective motion of active matter

    PubMed Central

    Wang, Shenshen; Wolynes, Peter G.

    2011-01-01

    Spontaneous directed motion, a hallmark of cell biology, is unusual in classical statistical physics. Here we study, using both numerical and analytical methods, organized motion in models of the cytoskeleton in which constituents are driven by energy-consuming motors. Although systems driven by small-step motors are described by an effective temperature and are thus quiescent, at higher order in step size, both homogeneous and inhomogeneous, flowing and oscillating behavior emerges. Motors that respond with a negative susceptibility to imposed forces lead to an apparent negative-temperature system in which beautiful structures form resembling the asters seen in cell division. PMID:21876141

  9. Two Decades of Advances in High-Resolution Spectroscopy of Large-Amplitude Motions in N-Fold Potential Wells, as Illustrated by Methanol

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong

    2016-06-01

    Methanol is a simple and intensively studied organic molecule possessing one large-amplitude torsional motion. It has, for nearly a century, been a favorite of researchers in many fields, e.g., instrument builders, for whom methanol is often the first molecule chosen for testing an improved or a newly built instrument (including HIFI, the Heterodyne Instrument for the Far Infrared on board the Herschel space mission); theorists and/or dynamicists studying the challenging effects of a large-amplitude motion coupling with small-amplitude motions to enhance intramolecular vibrational energy redistribution; astronomers who have elevated methanol to their #1 interstellar weed because of its rich and omnipresent spectrum in the interstellar garden, where it serves as a unique probe for diagnosing conditions in star-forming regions; astrochemists studying isotopic ratios as clues to the chemical evolution of the universe; and fundamentalists seeking possible time variation of the proton/electron mass ratio in the standard model; just to name a few. From high-resolution to high-precision spectroscopy, the large-amplitude internal rotation of the methyl top against its OH framework in methanol has never failed to produce new surprises in spectral regions from the microwave all the way to the near IR. The very recent observation of completely unexpected large methanol hyperfine splittings is a vivid testimonial that the large-amplitude torsional motion can still lead us to unexplored landscapes. This talk will focus on the complicated vibration-torsion-rotation energy networks and interactions deduced from high resolution spectra; our efforts to understand some of them using ab-initio-assisted approaches and the modeling of torsion-rotation and torsionally mediated spin-rotation hyperfine splittings in methanol. These topics represent one part of the much larger fascinating world inhabited by methanolics.

  10. Collective detection of motion in the presence of noise

    NASA Astrophysics Data System (ADS)

    Keirstead, W. P.; Huberman, B. A.

    1986-03-01

    We study the dynamical behavior of novel computing arrays which can accurately detect moving spots in one dimension in the presence of noise, while able to operate reliably with temporary failures in their units. Their response to a purely fluctuating background without spuriously detecting nonexistent motion can be accounted for by the dynamics of a simple spin model.

  11. Charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion

    SciTech Connect

    Rahmi, Kinanti Aldilla Yudiarsah, Efta

    2016-04-19

    By using tight binding Hamiltonian model, charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion is studied. The DNA chain used is 32 base pairs long poly(dA)-poly(dT) molecule. The molecule is contacted to electrode at both ends. The influence of environment on charge transport in DNA is modeled as variation of backbone disorder. The twisting motion amplitude is taking into account by assuming that the twisting angle distributes following Gaussian distribution function with zero average and standard deviation proportional to square root of temperature and inversely proportional to the twisting motion frequency. The base-pair twisting motion influences both the onsite energy of the bases and electron hopping constant between bases. The charge transport properties are studied by calculating current using Landauer-Buttiker formula from transmission probabilities which is calculated by transfer matrix methods. The result shows that as the backbone disorder increases, the maximum current decreases. By decreasing the twisting motion frequency, the current increases rapidly at low voltage, but the current increases slower at higher voltage. The threshold voltage can increase or decrease with increasing backbone disorder and increasing twisting frequency.

  12. Quantifying and controlling collective motion in externally guided cells

    NASA Astrophysics Data System (ADS)

    Parker, Joshua; Guven, Can; Wang, Chenlu; Ott, Edward; Losert, Wolfgang

    2015-03-01

    Many motile cells use chemical signals to coordinate their motion to aid in performing a larger task, be it healing a wound or aggregating to form a spore. This coordination can vary from subtle variations in overall alignment to broad, visibly structured patterns. Of particular interest of study are two organisms We introduce a model for motion towards a chemical signal and study these spatio-temporal correlations in the context of autocrine relay, such as seen in Dictyostelium discoideum, where we demonstrate that adhesion and chemical degradation both enhance visible ``streaming'' structures. We also study a model of paracrine signal relay relevant to human neutrophil migration and demonstrate how temporally varying chemical signals can be used to coordinate cell migration. We discuss both of these results in the context of their relevance to the survival of the organism and highlight future experimental tests.

  13. Inherent noise can facilitate coherence in collective swarm motion

    PubMed Central

    Yates, Christian A.; Erban, Radek; Escudero, Carlos; Couzin, Iain D.; Buhl, Jerome; Kevrekidis, Ioannis G.; Maini, Philip K.; Sumpter, David J. T.

    2009-01-01

    Among the most striking aspects of the movement of many animal groups are their sudden coherent changes in direction. Recent observations of locusts and starlings have shown that this directional switching is an intrinsic property of their motion. Similar direction switches are seen in self-propelled particle and other models of group motion. Comprehending the factors that determine such switches is key to understanding the movement of these groups. Here, we adopt a coarse-grained approach to the study of directional switching in a self-propelled particle model assuming an underlying one-dimensional Fokker–Planck equation for the mean velocity of the particles. We continue with this assumption in analyzing experimental data on locusts and use a similar systematic Fokker–Planck equation coefficient estimation approach to extract the relevant information for the assumed Fokker–Planck equation underlying that experimental data. In the experiment itself the motion of groups of 5 to 100 locust nymphs was investigated in a homogeneous laboratory environment, helping us to establish the intrinsic dynamics of locust marching bands. We determine the mean time between direction switches as a function of group density for the experimental data and the self-propelled particle model. This systematic approach allows us to identify key differences between the experimental data and the model, revealing that individual locusts appear to increase the randomness of their movements in response to a loss of alignment by the group. We give a quantitative description of how locusts use noise to maintain swarm alignment. We discuss further how properties of individual animal behavior, inferred by using the Fokker–Planck equation coefficient estimation approach, can be implemented in the self-propelled particle model to replicate qualitatively the group level dynamics seen in the experimental data. PMID:19336580

  14. Wobbling motion in 135Pr within a collective Hamiltonian

    NASA Astrophysics Data System (ADS)

    Chen, Q. B.; Zhang, S. Q.; Meng, J.

    2016-11-01

    The recently reported wobbling bands in 135Pr are investigated by the collective Hamiltonian, in which the collective parameters, including the collective potential and the mass parameter, are respectively determined from the tilted axis cranking (TAC) model and the harmonic frozen alignment (HFA) formula. It is shown that the experimental energy spectra of both yrast and wobbling bands are well reproduced by the collective Hamiltonian. It is confirmed that the wobbling mode in 135Pr changes from transverse to longitudinal with the rotational frequency. The mechanism of this transition is revealed by analyzing the effective moments of inertia of the three principal axes, and the corresponding variation trend of the wobbling frequency is determined by the softness and shapes of the collective potential.

  15. Three-quark light-cone amplitudes of the proton and quark orbital-motion-dependent observables

    NASA Astrophysics Data System (ADS)

    Ji, Xiangdong; Ma, Jian-Ping; Yuan, Feng

    2003-03-01

    We study the three-quark light-cone amplitudes of the proton including quarks' transverse momenta. We classify these amplitudes using a newly-developed method in which light-cone wave functions are constructed from a class of light-cone matrix elements. We derive the constraints on the amplitudes from parity and time-reversal symmetries. We use the amplitudes to calculate the physical observables which vanish when the quark orbital angular momentum is absent. These include transverse-momentum dependent parton distributions Δ qT( x, k⊥), qT( x, k⊥), δq( x, k⊥), and δqL( x, k⊥), twist-three parton distributions gT( x) and hL( x), helicity-flip generalized parton distributions E( x, ξ=0, Q2) and its associates, and the Pauli form factor F2( Q2).

  16. Motion of individual and coupled amoebae during collective migration

    NASA Astrophysics Data System (ADS)

    Wang, Chenlu; Driscoll, Meghan; Chowdhury, Sagar; Gupta, Satyandra K.; Parent, Carole; Losert, Wolfgang

    2013-03-01

    Collective migration is a ubiquitous natural phenomenon. We analyzed the migration of Dictyostelium Discoideum amoebae, which migrate both individually and collectively. We previously found that individually and collectively migrating cells have similar speed and straightness. We analyzed the effects of cell-cell contact and cell-surface contact on cell characteristics, such as adhesion, speed, and shape. We found that in the absence of cell-surface contact, cells form irregular clumps, yet are still able to migrate collectively in response to an external signal. Individually migrating cells exhibit waves of high boundary curvature that travel from the fronts to the backs of cells. By comparing the shape dynamics of individual cells and groups of cells, we found that these boundary curvature waves can be transmitted from one cell to another.

  17. Generator coordinate method and nuclear collective motions (VII): the preservation of symmetry properties

    SciTech Connect

    XU Gong-ou

    1985-01-01

    In order to preserve all the symmetry properties for the effective collective Hamiltonian obtained with the generator coordinate method, it is necessary for the trial wave function to have proper transformation properties. The generator coordinates should then transform in the same way as the represented collective operators. Also, the center-of-mass motion should be independent of the internal motion in conformity with the invariance of the nuclear Hamiltonian with respect to space rotation and Galilean transformation.

  18. Collective motion with anticipation: Flocking, spinning, and swarming

    NASA Astrophysics Data System (ADS)

    Morin, Alexandre; Caussin, Jean-Baptiste; Eloy, Christophe; Bartolo, Denis

    2015-01-01

    We investigate the collective dynamics of self-propelled particles able to probe and anticipate the orientation of their neighbors. We show that a simple anticipation strategy hinders the emergence of homogeneous flocking patterns. Yet anticipation promotes two other forms of self-organization: collective spinning and swarming. In the spinning phase, all particles follow synchronous circular orbits, while in the swarming phase, the population condensates into a single compact swarm that cruises coherently without requiring any cohesive interactions. We quantitatively characterize and rationalize these phases of polar active matter and discuss potential applications to the design of swarming robots.

  19. Emergent Structural Mechanisms for High-Density Collective Motion Inspired by Human Crowds

    NASA Astrophysics Data System (ADS)

    Bottinelli, Arianna; Sumpter, David T. J.; Silverberg, Jesse L.

    2016-11-01

    Collective motion of large human crowds often depends on their density. In extreme cases like heavy metal concerts and black Friday sales events, motion is dominated by physical interactions instead of conventional social norms. Here, we study an active matter model inspired by situations when large groups of people gather at a point of common interest. Our analysis takes an approach developed for jammed granular media and identifies Goldstone modes, soft spots, and stochastic resonance as structurally driven mechanisms for potentially dangerous emergent collective motion.

  20. Living liquid crystal: collective bacteria motion in anisotropic viscoelastic media

    NASA Astrophysics Data System (ADS)

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2014-03-01

    By transducing energy stored in the environment to drive systematic movements, bio-mechanical hybrids can move and reconfigure their structure and properties in response to external stimuli. Here, we create a fundamentally new class of bio-mechanical hybrid - living liquid crystals (LLCs), by combining two seemingly incompatible concepts, living swimming bacteria and inanimate but orientationally ordered lyotropic liquid crystal. The coupling between the activity-triggered flows and director reorientations results in a wealth of phenomena, including: (a) a characteristic length ξ to describe the coupling between the orientation of LLC and the bacterial motion, (b) periodic stripe instabilities of the director in surface-anchored LLCs, (c) director pattern evolution into an array of disclinations with positive and negative topological charges as the surface anchoring is weakened or when the bacterial activity is enhanced. Our study provides an insight in understanding hierarchy of spatial scales in other active matter systems, as well as providing basis for devices with new functionalities, including specific responses to chemical agents, toxins, or photons. This work is supported by US DOE under the Contract No. DE AC02-06CH11357 and NSF grants DMR 1104850 and 1121288.

  1. Evidence from the motions of galaxies for a large-scale, large-amplitude flow toward the great attractor

    SciTech Connect

    Burstein, D.; Faber, S.M.; Dressler, A. Lick Observatory, Santa Cruz, CA Mount Wilson and Las Campanas Observatories, Pasadena, CA )

    1990-05-01

    The available distances of galaxies are combined to produce a unified view of galaxy motions within the so-called great attractor (GA) region. The data base includes 253 galaxies within 40 deg of the nominal GA center. Spirals and ellipticals are grouped into clusters to reduce Malmquist bias. Checks are made for systematic errors in the motions of ellipticals that are correlated with cluster richness, structural parameters of the galaxies, or errors in Galactic absorption, and no significant effects on the observed large-scale motions are found. Other evidence strongly supporting the current distance indicators is reviewed, and arguments are presented in favor of the cosmic background radiation defining the correct velocity rest frame. The basic conclusion of the study is the affirmation of the fundamental correctness of the present body of measured galaxy motions. 49 refs.

  2. Collective motion of self-propelled particles wiith memory.

    SciTech Connect

    Nagai, Ken H.; Sumino, Yutaka; Montagne, Raul; Aranson, Igor S.; Chate, Hugues

    2015-04-24

    We show that memory, in the form of underdamped angular dynamics, is a crucial ingredient for the collective properties of self-propelled particles. Using Vicsek-style models with an Ornstein-Uhlenbeck process acting on angular velocity, we uncover a rich variety of collective phases not observed in usual overdamped systems, including vortex lattices and active foams. In a model with strictly nematic interactions the smectic arrangement of Vicsek waves giving rise to global polar order is observed.We also provide a calculation of the effective interaction between vortices in the case where a telegraphic noise process is at play, explaining thus the emergence and structure of the vortex lattices observed here and motility assay experiments.

  3. Collective Molecular Motion during V-Shaped Switching in a Smectic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Park, Byoungchoo; Seomun, San-seong; Nakata, Michi; Takahashi, Masayoshi; Takanishi, Yoichi; Ishikawa, Ken; Takezoe, Hideo

    1999-03-01

    The molecular motion during V-shaped switching in a homogeneously aligned smectic C*-like liquid crystal (LC) cell has been investigated by measuring the effective optical anisotropy Δneff, apparent tilt angle θapp, switching current, and second-harmonic generation and comparing them with the simulated results based on two extreme models, i.e., random model and collective model, where molecules switch randomly and collectively, respectively. The comparison revealed that the collective switching motion of LC molecules is more reasonable than the random motion. Moreover, it was also confirmed that the observed infrared absorption anisotropy of the phenyl stretching mode due to LC molecular distributions strongly supports the collective model. From these results, it was demonstrated that LC molecules do not switch randomly but all the LC molecules rotate collectively on a cone under the driving field.

  4. Wireless System and Method for Collecting Motion and Non-Motion Related Data of a Rotating System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2011-01-01

    A wireless system for collecting data indicative of a tire's characteristics uses at least one open-circuit electrical conductor in a tire. The conductor is shaped such that it can store electrical and magnetic energy. In the presence of a time-varying magnetic field, the conductor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder is used to (i) wirelessly transmit the time-varying magnetic field to the conductor, and (ii) wirelessly detect the harmonic response and the frequency, amplitude and bandwidth, associated therewith. The recorder is adapted to be positioned in a location that is fixed with respect to the tire as the tire rotates.

  5. String-like collective atomic motion in the melting and freezing of nanoparticles.

    PubMed

    Zhang, Hao; Kalvapalle, Pranav; Douglas, Jack F

    2011-12-08

    The melting of a solid represents a transition between a solid state in which atoms are localized about fixed average crystal lattice positions to a fluid state that is characterized by relative atomic disorder and particle mobility so that the atoms wander around the material as a whole, impelled by the random thermal impulses of surrounding atoms. Despite the fundamental nature and practical importance of this particle delocalization transition, there is still no fundamental theory of melting and instead one often relies on the semi-phenomenological Lindemann-Gilvarry criterion to estimate roughly the melting point as an instability of the crystal lattice. Even the earliest simulations of melting in hexagonally packed hard discs by Alder and Wainwright indicated the active role of nonlocal collective atomic motions in the melting process, and here we utilize molecular dynamics (MD) simulation to determine whether the collective particle motion observed in melting has a similar geometrical form as those in recent studies of nanoparticle (NP) interfacial dynamics and the molecular dynamics of metastable glass-forming liquids. We indeed find string-like collective atomic motion in NP melting that is remarkably similar in form to the collective interfacial motions in NPs at equilibrium and to the collective motions found in the molecular dynamics of glass-forming liquids. We also find that the spatial localization and extent of string-like motion in the course of NP melting and freezing evolves with time in distinct ways. Specifically, the collective atomic motion propagates from the NP surface and from within the NP in melting and freezing, respectively, and the average string length varies smoothly with time during melting. In contrast, the string-like cooperative motion peaks in an intermediate stage of the freezing process, reflecting a general asymmetry in the dynamics of NP superheating and supercooling.

  6. Social behaviour and collective motion in plant-animal worms.

    PubMed

    Franks, Nigel R; Worley, Alan; Grant, Katherine A J; Gorman, Alice R; Vizard, Victoria; Plackett, Harriet; Doran, Carolina; Gamble, Margaret L; Stumpe, Martin C; Sendova-Franks, Ana B

    2016-02-24

    Social behaviour may enable organisms to occupy ecological niches that would otherwise be unavailable to them. Here, we test this major evolutionary principle by demonstrating self-organizing social behaviour in the plant-animal, Symsagittifera roscoffensis. These marine aceol flat worms rely for all of their nutrition on the algae within their bodies: hence their common name. We show that individual worms interact with one another to coordinate their movements so that even at low densities they begin to swim in small polarized groups and at increasing densities such flotillas turn into circular mills. We use computer simulations to: (i) determine if real worms interact socially by comparing them with virtual worms that do not interact and (ii) show that the social phase transitions of the real worms can occur based only on local interactions between and among them. We hypothesize that such social behaviour helps the worms to form the dense biofilms or mats observed on certain sun-exposed sandy beaches in the upper intertidal of the East Atlantic and to become in effect a super-organismic seaweed in a habitat where macro-algal seaweeds cannot anchor themselves. Symsagittifera roscoffensis, a model organism in many other areas in biology (including stem cell regeneration), also seems to be an ideal model for understanding how individual behaviours can lead, through collective movement, to social assemblages.

  7. Embedding dual function into molecular motors through collective motion

    PubMed Central

    Saito, Nen; Kaneko, Kunihiko

    2017-01-01

    Protein motors, such as kinesins and dyneins, bind to a microtubule and travel along it in a specific direction. Previously, it was thought that the directionality for a given motor was constant in the absence of an external force. However, the directionality of the kinesin-5 Cin8 was recently found to change as the number of motors that bind to the same microtubule is increased. Here, we introduce a simple mechanical model of a microtubule-sliding assay in which multiple motors interact with the filament. We show that, due to the collective phenomenon, the directionality of the motor changes (e.g., from minus- to plus- end directionality), depending on the number of motors. This is induced by a large diffusive component in the directional walk and by the subsequent frustrated motor configuration, in which multiple motors pull the filament in opposite directions, similar to a game of tug-of-war. A possible role of the dual-directional motors for the mitotic spindle formation is also discussed. Our framework provides a general mechanism to embed two conflicting tasks into a single molecular machine, which works context-dependently. PMID:28281683

  8. Social behaviour and collective motion in plant-animal worms

    PubMed Central

    Grant, Katherine A. J.; Gorman, Alice R.; Vizard, Victoria; Plackett, Harriet; Gamble, Margaret L.

    2016-01-01

    Social behaviour may enable organisms to occupy ecological niches that would otherwise be unavailable to them. Here, we test this major evolutionary principle by demonstrating self-organizing social behaviour in the plant-animal, Symsagittifera roscoffensis. These marine aceol flat worms rely for all of their nutrition on the algae within their bodies: hence their common name. We show that individual worms interact with one another to coordinate their movements so that even at low densities they begin to swim in small polarized groups and at increasing densities such flotillas turn into circular mills. We use computer simulations to: (i) determine if real worms interact socially by comparing them with virtual worms that do not interact and (ii) show that the social phase transitions of the real worms can occur based only on local interactions between and among them. We hypothesize that such social behaviour helps the worms to form the dense biofilms or mats observed on certain sun-exposed sandy beaches in the upper intertidal of the East Atlantic and to become in effect a super-organismic seaweed in a habitat where macro-algal seaweeds cannot anchor themselves. Symsagittifera roscoffensis, a model organism in many other areas in biology (including stem cell regeneration), also seems to be an ideal model for understanding how individual behaviours can lead, through collective movement, to social assemblages. PMID:26911961

  9. Perspectives in the theory of nuclear collective motion

    SciTech Connect

    Klein, A.

    1980-03-13

    This report discusses three different subjects. The first is the development of a generalized version of the VMI (variable moment of inertia) model that ties it to the original form of the IBM (interacting boson model) and provides a possibility of fitting vibrational spectra with generalized vibrational formulas. The second is a suggestion for fitting band crossing calculations of the phenomenological type more completely than has hitherto been done into the framework of the VMI method. The third, which is the most important and far reaching, is the description f a complete mathematical method for the microscopic derivation of the IBM from a conventional shell-model Hamiltonian. In addition to elements already foreseen by previous authors, there is proposed a solution for the most important problem outstanding, not only within the framework of the IBM, but also in all previous work on boson expansion. This is the problem of actually selecting, in a general fashion, the most collective excitations. A criterion is introduced that the subspace constructed from these excitations should possess an average energy that is lower than the rest of the shell model space; the actual implementation of this criterion is explained. 8 tables, 62 references.

  10. Embedding dual function into molecular motors through collective motion.

    PubMed

    Saito, Nen; Kaneko, Kunihiko

    2017-03-10

    Protein motors, such as kinesins and dyneins, bind to a microtubule and travel along it in a specific direction. Previously, it was thought that the directionality for a given motor was constant in the absence of an external force. However, the directionality of the kinesin-5 Cin8 was recently found to change as the number of motors that bind to the same microtubule is increased. Here, we introduce a simple mechanical model of a microtubule-sliding assay in which multiple motors interact with the filament. We show that, due to the collective phenomenon, the directionality of the motor changes (e.g., from minus- to plus- end directionality), depending on the number of motors. This is induced by a large diffusive component in the directional walk and by the subsequent frustrated motor configuration, in which multiple motors pull the filament in opposite directions, similar to a game of tug-of-war. A possible role of the dual-directional motors for the mitotic spindle formation is also discussed. Our framework provides a general mechanism to embed two conflicting tasks into a single molecular machine, which works context-dependently.

  11. Local collective motion analysis for multi-probe dynamic imaging and microrheology.

    PubMed

    Khan, Manas; Mason, Thomas G

    2016-08-03

    Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches.

  12. Local collective motion analysis for multi-probe dynamic imaging and microrheology

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Mason, Thomas G.

    2016-08-01

    Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches.

  13. Collective Motion of Humans in Mosh and Circle Pits at Heavy Metal Concerts

    NASA Astrophysics Data System (ADS)

    Silverberg, Jesse L.; Bierbaum, Matthew; Sethna, James P.; Cohen, Itai

    2013-05-01

    Human collective behavior can vary from calm to panicked depending on social context. Using videos publicly available online, we study the highly energized collective motion of attendees at heavy metal concerts. We find these extreme social gatherings generate similarly extreme behaviors: a disordered gaslike state called a mosh pit and an ordered vortexlike state called a circle pit. Both phenomena are reproduced in flocking simulations demonstrating that human collective behavior is consistent with the predictions of simplified models.

  14. Collective motion of humans in mosh and circle pits at heavy metal concerts.

    PubMed

    Silverberg, Jesse L; Bierbaum, Matthew; Sethna, James P; Cohen, Itai

    2013-05-31

    Human collective behavior can vary from calm to panicked depending on social context. Using videos publicly available online, we study the highly energized collective motion of attendees at heavy metal concerts. We find these extreme social gatherings generate similarly extreme behaviors: a disordered gaslike state called a mosh pit and an ordered vortexlike state called a circle pit. Both phenomena are reproduced in flocking simulations demonstrating that human collective behavior is consistent with the predictions of simplified models.

  15. Unsteady aerodynamic characteristics of a fighter model undergoing large-amplitude pitching motions at high angles of attack

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Shah, Gautam H.

    1990-01-01

    The effects of harmonic or constant-rate-ramp pitching motions (giving angles of attack from 0 to 75 deg) on the aerodynamic performance of a fighter-aircraft model with highly swept leading-edge extensions are investigated experimentally in the NASA Langley 12-ft low-speed wind tunnel. The model configuration and experimental setup are described, and the results of force and moment measurements and flow visualizations are presented graphically and discussed in detail. Large force overshoots and hysteresis are observed and attributed to lags in vortical-flow development and breakup. The motion variables have a strong influence on the persistence of dynamic effects, which are found to affect pitch-rate capability more than flight-path turning performance.

  16. Robust preparation of four-qubit decoherence-free states for superconducting quantum interference devices against collective amplitude damping

    NASA Astrophysics Data System (ADS)

    Shao, Xiao-Qiang; Zheng, Tai-Yu; Zhang, Shou

    2013-11-01

    Based on the quantum Zeno dynamics, we present an approach for deterministic preparation of arbitrary four-qubit decoherence-free state of superconducting quantum interference devices with respective to collective amplitude damping in a decoherence-free way, namely, not only the form of the target state is free of decoherence, but also the whole process for preparation. The operation is fast and convenient since we only need to manipulate three weak laser pulses sequentially. Other decoherence effects such as cavity decay and the spontaneous emission of qubits are also taken into account in virtue of master equation, and the strictly numerical simulation signifies the final fidelity is high corresponding to the current experimental technology.

  17. Hydrodynamically Induced Collective Motion of Optically Driven Colloidal Particles on a Circular Path

    NASA Astrophysics Data System (ADS)

    Kimura, Yasuyuki

    2017-10-01

    Among typical active matter such as self-propelled micro-objects, the characteristic collective motion originating from the hydrodynamic interaction between constituents has been observed in both biological and artificial systems. In illustrating such motion of micrometer-size particles in a one-dimensional optically driven system with a low Reynolds number, we highlight the importance of the hydrodynamic interaction. We show the appearance of regular stationary and dynamic arrangements resembling "crystals" or "clusters" observed in the equilibrium state. A transition in the collective motion has been observed by varying the hydrodynamic interaction in a system of two particle sizes and in a spatially confined system. An optical manipulation technique and the related hydrodynamic equations are also discussed. These are useful tools for elucidating the complex collective behavior of the hydrodynamically coupled micro-objects.

  18. Cell Division Induces and Switches Coherent Angular Motion within Bounded Cellular Collectives.

    PubMed

    Siedlik, Michael J; Manivannan, Sriram; Kevrekidis, Ioannis G; Nelson, Celeste M

    2017-06-06

    Collective cell migration underlies many biological processes, including embryonic development, wound healing, and cancer progression. In the embryo, cells have been observed to move collectively in vortices using a mode of collective migration known as coherent angular motion (CAM). To determine how CAM arises within a population and changes over time, here, we study the motion of mammary epithelial cells within engineered monolayers, in which the cells move collectively about a central axis in the tissue. Using quantitative image analysis, we find that CAM is significantly reduced when mitosis is suppressed. Particle-based simulations recreate the observed trends, suggesting that cell divisions drive the robust emergence of CAM and facilitate switches in the direction of collective rotation. Our simulations predict that the location of a dividing cell, rather than the orientation of the division axis, facilitates the onset of this motion. These predictions agree with experimental observations, thereby providing, to our knowledge, new insight into how cell divisions influence CAM within a tissue. Overall, these findings highlight the dynamic nature of CAM and suggest that regulating cell division is crucial for tuning emergent collective migratory behaviors, such as vortical motions observed in vivo. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Flocking and Turning: a New Model for Self-organized Collective Motion

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas; Jelic, Asja; Melillo, Stefania; Mora, Thierry; Parisi, Leonardo; Silvestri, Edmondo; Viale, Massimiliano; Walczak, Aleksandra M.

    2015-02-01

    Birds in a flock move in a correlated way, resulting in large polarization of velocities. A good understanding of this collective behavior exists for linear motion of the flock. Yet observing actual birds, the center of mass of the group often turns giving rise to more complicated dynamics, still keeping strong polarization of the flock. Here we propose novel dynamical equations for the collective motion of polarized animal groups that account for correlated turning including solely social forces. We exploit rotational symmetries and conservation laws of the problem to formulate a theory in terms of generalized coordinates of motion for the velocity directions akin to a Hamiltonian formulation for rotations. We explicitly derive the correspondence between this formulation and the dynamics of the individual velocities, thus obtaining a new model of collective motion. In the appropriate overdamped limit we recover the well-known Vicsek model, which dissipates rotational information and does not allow for polarized turns. Although the new model has its most vivid success in describing turning groups, its dynamics is intrinsically different from previous ones in a wide dynamical regime, while reducing to the hydrodynamic description of Toner and Tu at very large length-scales. The derived framework is therefore general and it may describe the collective motion of any strongly polarized active matter system.

  20. Probing the Role of Mobility in the Collective Motion of Nonequilibrium Systems

    NASA Astrophysics Data System (ADS)

    Shen, Hongchuan; Tan, Peng; Xu, Lei

    2016-01-01

    By systematically varying the mobility of self-propelled particles in a 2D lattice, we experimentally study the influence of particle mobility on system's collective motion. Our system is intrinsically nonequilibrium due to the lack of energy equipartition. By constructing the covariance matrix of spatial fluctuations and solving for its eigenmodes, we obtain the collective motions of the system with various magnitudes. Interestingly, our structurally ordered nonequilibrium system exhibits properties almost identical to disordered glassy systems under thermal equilibrium: the modes with large overall motions are spatially correlated and quasilocalized while the modes with small collective motions are highly localized, resembling the low- and high-frequency modes in glass. More surprisingly, a peak similar to the boson peak forms in our nonequilibrium system as the number of mobile particles increases, revealing the possible origin of the boson peak from a dynamic aspect. We further illustrate that the spatially correlated large-movement modes can be produced by the cooperation of highly active particles above a threshold fraction, while the localized small-movement modes can be created by adding individual inactive particles. Our study clarifies the role of mobility in collective motions, and further suggests a promising possibility of extending the powerful mode analysis approach to nonequilibrium systems.

  1. 3D basin-shape ratio effects on frequency content and spectral amplitudes of basin-generated surface waves and associated spatial ground motion amplification and differential ground motion

    NASA Astrophysics Data System (ADS)

    Kamal; Narayan, J. P.

    2015-04-01

    This paper presents the effects of basin-shape ratio (BSR) on the frequency content and spectral amplitudes of the basin-generated surface (BGS) waves and the associated spatial variation of ground motion amplification and differential ground motion (DGM) in a 3D semi-spherical (SS) basin. Seismic responses were computed using a recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on the parsimonious staggered-grid approximation of the 3D viscoelastic wave equations. The simulated results revealed the decrease of both the frequency content and the spectral amplitudes of the BGS waves and the duration of ground motion in the SS basin with the decrease of BSR. An increase of the average spectral amplification (ASA), DGM and the average aggravation factor (AAF) towards the centre of the SS basin was obtained due to the focusing of the surface waves. A decrease of ASA, DGM and AAF with the decrease of BSR was also obtained.

  2. Singular perturbation analysis of a reduced model for collective motion: a renormalization group approach.

    PubMed

    Lee, Chiu Fan

    2011-03-01

    In a system of noisy self-propelled particles with interactions that favor directional alignment, collective motion will appear if the density of particles is beyond a critical density. Starting with a reduced model for collective motion, we determine how the critical density depends on the form of the initial perturbation. Specifically, we employ a renormalization-group improved perturbative method to analyze the model equations and show analytically, up to first order in the perturbation parameter, how the critical density is modified by the strength of the initial angular perturbation in the system.

  3. Observation of collective atomic recoil motion in a degenerate fermion gas.

    PubMed

    Wang, Pengjun; Deng, L; Hagley, E W; Fu, Zhengkun; Chai, Shijie; Zhang, Jing

    2011-05-27

    We demonstrate collective atomic recoil motion with a dilute, ultracold, degenerate fermion gas in a single spin state. By utilizing an adiabatically decompressed magnetic trap with an aspect ratio different from that of the initial trap, a momentum-squeezed fermion cloud is achieved. With a single pump pulse of the proper polarization, we observe, for the first time, multiple wave-mixing processes that result in distinct collective atomic recoil motion modes in a degenerate fermion cloud. Contrary to the case with Bose condensates, no pump-laser detuning asymmetry is present.

  4. A semi-analytical approach to the study of an elastic circular cylinder confined in a cylindrical fluid domain subjected to small-amplitude transient motions

    NASA Astrophysics Data System (ADS)

    Leblond, C.; Sigrist, J. F.; Auvity, B.; Peerhossaini, H.

    2009-01-01

    This paper deals with the transient motions experienced by an elastic circular cylinder in a cylindrical fluid domain initially at rest and subjected to small-amplitude imposed displacements. Three fluid models are considered, namely potential, viscous and acoustic, to cover different fluid-structure interaction regimes. They are derived here from the general compressible Navier-Stokes equations by a formal perturbation method so as to underline their links and ranges of validity a priori. The resulting fluid models are linear owing to the small-amplitude-displacement hypothesis. For simplicity, the elastic flexure beam model is chosen for the circular cylinder dynamics. The semi-analytical approach used here is based on the methods of Laplace transform in time, in vacuo eigenvector expansion with time-dependent coefficients for the transverse beam displacement and separation of variables for the fluid. Moreover, the viscous case is handled with a matched asymptotic expansion performed at first order. The projection of the fluid forces on the in vacuo eigenvectors leads to a fully coupled system involving the modal time-dependent displacement coefficients. These coefficients are then obtained by matrix inversion in the Laplace domain and fast numerical inversion of the Laplace transform. The three models, written in the form of convolution products, are described through the analysis of their kernels, involving both the wave propagation phenomena in the fluid domain and the beam elasticity. Last, the three models are illustrated for a specific imposed motion mimicking shock loading. It is shown that their combination permits coverage of a broad range of motions.

  5. Conformational equilibria and large-amplitude motions in dimers of carboxylic acids: rotational spectrum of acetic acid-difluoroacetic acid.

    PubMed

    Gou, Qian; Feng, Gang; Evangelisti, Luca; Caminati, Walther

    2014-10-06

    We report the rotational spectra of two conformers of the acetic acid-difluoroacetic acid adduct (CH3COOH-CHF2COOH) and supply information on its internal dynamics. The two conformers differ from each other, depending on the trans or gauche orientation of the terminal -CHF2 group. Both conformers display splittings of the rotational transitions, due to the internal rotation of the methyl group of acetic acid. The corresponding barriers are determined to be V3(trans)=99.8(3) and V3(gauche)=90.5(9) cm(-1) (where V3 is the methyl rotation barrier height). The gauche form displays a further doubling of the rotational transitions, due to the tunneling motion of the -CHF2 group between its two equivalent conformations. The corresponding B2 barrier is estimated to be 108(2) cm(-1). The increase in the distance between the two monomers upon OH→OD deuteration (the Ubbelohde effect) is determined.

  6. Generator coordinate method and nuclear collective motions (IV)-TDGCM versus ATDHF

    SciTech Connect

    Xu, G.

    1982-04-01

    Considering the time-dependent generator coordinate method, the time-dependent Schroedinger equation for nuclear collective motions is obtained. It is then possible to obtain through the Wigner matrix a variational expression for mean collective properties q-bar(t) and p-bar(t) in classical limits. Under adiabatic approximation this is just the expression by which Villars has obtained the ATDHF results.

  7. Glassy Interfacial Dynamics of Ni Nanoparticles: Part I Colored Noise, Dynamic Heterogeneity and Collective Atomic Motion

    PubMed Central

    Zhang, Hao; Douglas, Jack F.

    2014-01-01

    Most condensed materials exhibit a significant fraction of atoms, molecules or particles that are strongly interacting with each other, while being configured geometrically at any instant of time in an ‘amorphous’ state having a relatively uniform density. Recently, both simulations and experiments have revealed that the dynamics of diverse condensed amorphous materials is generally characterized by significant heterogeneity in the local mobility and by progressively increasing collective motion upon cooling that takes the form of string-like collective particle rearrangements. The direct experimental observation of this type of collective motion, which has been directly linked to the growing relaxation times of glass-forming materials, and its quantification under different thermodynamic conditions, has so far been restricted to colloidal and driven granular fluids. The present work addresses the fundamental problem of how to determine the scale of this type of collective motion in materials composed of molecules or atoms. The basic premise of our work is that large scale dynamic particle clustering in amorphous materials must give rise to large fluctuations in particle mobility so that transport properties, especially those related to particle mobility, should naturally exhibit noise related to the cooperative motion scale. In our initial exploratory study seeking a relationship of this kind, we find 1/fα or ‘colored noise’, in both potential energy and particle displacements fluctuations of the atoms within the glassy interfacial layer of Ni nanoparticles (NPs). A direct relation between the particle displacement (mobility) noise exponent α and the average polymerization index of the string-like collective motion L is observed for a range of NP sizes, temperatures and for surface doping of the NPs with other metal atoms (Ag, Au, Pt) to change of fragility of the glassy interfacial layer at the surface of the Ni NPs. We also introduce a successful

  8. Role of Domain Interactions in the Collective Motion of Phosphoglycerate Kinase

    PubMed Central

    Schay, Gusztáv; Herényi, Levente; Fidy, Judit; Osváth, Szabolcs

    2013-01-01

    Protein function is governed by the underlying conformational dynamics of the molecule. The experimental and theoretical work leading to contemporary understanding of enzyme dynamics was mostly restricted to the large-scale movements of single-domain proteins. Collective movements resulting from a regulatory interplay between protein domains is often crucial for enzymatic activity. It is not clear, however, how our knowledge could be extended to describe collective near-equilibrium motions of multidomain enzymes. We examined the effect of domain interactions on the low temperature near equilibrium dynamics of the native state, using phosphoglycerate kinase as model protein. We measured thermal activation of tryptophan phosphorescence quenching to explore millisecond-range protein motions. The two protein domains of phosphoglycerate kinase correspond to two dynamic units, but interdomain interactions link the motion of the two domains. The effect of the interdomain interactions on the activation of motions in the individual domains is asymmetric. As the temperature of the frozen protein is increased from the cryogenic, motions of the N domain are activated first. This is a partial activation, however, and the full dynamics of the domain becomes activated only after the activation of the C domain. PMID:23442918

  9. Role of domain interactions in the collective motion of phosphoglycerate kinase.

    PubMed

    Schay, Gusztáv; Herényi, Levente; Fidy, Judit; Osváth, Szabolcs

    2013-02-05

    Protein function is governed by the underlying conformational dynamics of the molecule. The experimental and theoretical work leading to contemporary understanding of enzyme dynamics was mostly restricted to the large-scale movements of single-domain proteins. Collective movements resulting from a regulatory interplay between protein domains is often crucial for enzymatic activity. It is not clear, however, how our knowledge could be extended to describe collective near-equilibrium motions of multidomain enzymes. We examined the effect of domain interactions on the low temperature near equilibrium dynamics of the native state, using phosphoglycerate kinase as model protein. We measured thermal activation of tryptophan phosphorescence quenching to explore millisecond-range protein motions. The two protein domains of phosphoglycerate kinase correspond to two dynamic units, but interdomain interactions link the motion of the two domains. The effect of the interdomain interactions on the activation of motions in the individual domains is asymmetric. As the temperature of the frozen protein is increased from the cryogenic, motions of the N domain are activated first. This is a partial activation, however, and the full dynamics of the domain becomes activated only after the activation of the C domain. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Effects of seawater on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes

    NASA Astrophysics Data System (ADS)

    Todoriki, Masaru; Furumura, Takashi; Maeda, Takuto

    2016-10-01

    We investigated the effects of seawater on the propagation of seismic waves using a three-dimensional (3D) finite-difference-method (FDM) simulation of seismic wave propagation following offshore earthquakes. When using a one-dimensional (1D) layered structure, the simulation results showed strong S- to P-wave conversion at the sea bottom; accordingly, S-wave energy was dramatically decreased by the seawater layer. This seawater de-amplification effect had strong frequency dependence, therefore resembling a low-pass filter in which the cut-off frequency and damping coefficients were defined by the thickness of the seawater layer. The seawater also acted to elongate the duration of Rayleigh wave packet. The importance of the seawater layer in modelling offshore earthquakes was further demonstrated by a simulation using a realistic 3D velocity structure model with and without seawater for a shallow (h = 14 km) outer-rise Nankai Trough event, the 2004 SE Off Kii Peninsula earthquake (Mw = 7.2). Synthetic seismograms generated by the model when seawater was included were in accordance with observed seismograms for long-term longer-period motions, particularly those in the shape of Rayleigh waves.

  11. Effects of sea water on elongated duration of ground motion as well as variation in its amplitude for offshore earthquakes

    NASA Astrophysics Data System (ADS)

    Todoriki, Masaru; Furumura, Takashi; Maeda, Takuto

    2017-01-01

    We investigated the effects of sea water on the propagation of seismic waves using a 3-D finite-difference-method simulation of seismic wave propagation following offshore earthquakes. When using a 1-D layered structure, the simulation results showed strong S- to P-wave conversion at the sea bottom; accordingly, S-wave energy was dramatically decreased by the sea water layer. This sea water de-amplification effect had strong frequency dependence, therefore resembling a low-pass filter in which the cut-off frequency and damping coefficients were defined by the thickness of the sea water layer. The sea water also acted to elongate the duration of Rayleigh wave packet. The importance of the sea water layer in modelling offshore earthquakes was further demonstrated by a simulation using a realistic 3-D velocity structure model with and without sea water for a shallow (h = 14 km) outer-rise Nankai Trough event, the 2004 SE Off Kii Peninsula earthquake (Mw = 7.2). Synthetic seismograms generated by the model when sea water was included were in accordance with observed seismograms for long-term longer period motions, particularly those in the shape of Rayleigh waves.

  12. Scaling laws and accurate small-amplitude stationary solution for the motion of a planar vortex filament in the Cartesian form of the local induction approximation.

    PubMed

    Van Gorder, Robert A

    2013-04-01

    We provide a formulation of the local induction approximation (LIA) for the motion of a vortex filament in the Cartesian reference frame (the extrinsic coordinate system) which allows for scaling of the reference coordinate. For general monotone scalings of the reference coordinate, we derive an equation for the planar solution to the derivative nonlinear Schrödinger equation governing the LIA. We proceed to solve this equation perturbatively in small amplitude through an application of multiple-scales analysis, which allows for accurate computation of the period of the planar vortex filament. The perturbation result is shown to agree strongly with numerical simulations, and we also relate this solution back to the solution obtained in the arclength reference frame (the intrinsic coordinate system). Finally, we discuss nonmonotone coordinate scalings and their application for finding self-intersections of vortex filaments. These self-intersecting vortex filaments are likely unstable and collapse into other structures or dissipate completely.

  13. Onset of collective motion in locusts is captured by a minimal model

    NASA Astrophysics Data System (ADS)

    Dyson, Louise; Yates, Christian A.; Buhl, Jerome; McKane, Alan J.

    2015-11-01

    We present a minimal model to describe the onset of collective motion seen when a population of locusts are placed in an annular arena. At low densities motion is disordered, while at high densities locusts march in a common direction, which may reverse during the experiment. The data are well captured by an individual-based model, in which demographic noise leads to the observed density-dependent effects. By fitting the model parameters to equation-free coefficients, we give a quantitative comparison, showing time series, stationary distributions, and the mean switching times between states.

  14. Collective atomic motion and spin dynamics in a driven optical cavity

    NASA Astrophysics Data System (ADS)

    Stamper-Kurn, Dan

    2016-05-01

    Cavity quantum electrodynamics generally highlights the interchange of quantum noise and information between light and matter. I will discuss experiments in which the collective motion and spin of a trapped gas of ultracold atoms interact with and are detected by light in a single mode of a high-finesse optical cavity. I will present recent results on quantum-limited force detection, on the damping and amplification of Larmor precession through dynamical backaction, and on cavity-induced coupling between mechanical oscillators and between spin and motional degrees of freedom.

  15. Collective motion of two-electron atom in hyperspherical adiabatic approximation

    SciTech Connect

    Mohamed, A. S.; Nikitin, S. I.

    2015-03-30

    This work is devoted to calculate bound states in the two-electron atoms. The separation of variables has carried out in hyper spherical coordinate system (R, θ, α). Assuming collective motion of the electrons, where the hper angle (α∼π/4) and (θ∼π). The separation of the rotational variables leads to system of differential equations with more simple form as compared with non restricted motion. Energy of doubly excited P{sup e} and D{sup 0} states are calculated semi classically by using quantization condition of Bohr -Somerfield. The results compared with previously published data.

  16. Nuclear collective motion with a coherent coupling interaction between quadrupole and octupole modes

    NASA Astrophysics Data System (ADS)

    Minkov, N.; Yotov, P.; Drenska, S.; Scheid, W.; Bonatsos, D.; Lenis, D.; Petrellis, D.

    2006-04-01

    A collective Hamiltonian for the rotation-vibration motion of nuclei is considered in which the axial quadrupole and octupole degrees of freedom are coupled through the centrifugal interaction. The potential of the system depends on the two deformation variables β2 and β3. The system is considered to oscillate between positive and negative β3 values by rounding an infinite potential core in the (β2,β3) plane with β2>0. By assuming a coherent contribution of the quadrupole and octupole oscillation modes in the collective motion, the energy spectrum is derived in an explicit analytic form, providing specific parity shift effects. On this basis several possible ways in the evolution of quadrupole-octupole collectivity are outlined. A particular application of the model to the energy levels and electric transition probabilities in alternating parity spectra of the nuclei Nd150, Sm152, Gd154, and Dy156 is presented.

  17. Increase in the Amplitude of Line-of-sight Velocities of the Small-scale Motions in a Solar Filament before Eruption

    NASA Astrophysics Data System (ADS)

    Seki, Daikichi; Otsuji, Kenichi; Isobe, Hiroaki; Ishii, Takako T.; Sakaue, Takahito; Hirose, Kumi

    2017-07-01

    We present a study on the evolution of the small-scale velocity field in a solar filament as it approaches the eruption. The observation was carried out by the Solar Dynamics Doppler Imager (SDDI) that was newly installed on the Solar Magnetic Activity Research Telescope at Hida Observatory. The SDDI obtains a narrowband full-disk image of the Sun at 73 channels from Hα - 9.0 Å to Hα + 9.0 Å, allowing us to study the line-of-sight (LOS) velocity of the filament before and during the eruption. The observed filament is a quiescent filament that erupted on 2016 November 5. We derived the LOS velocity at each pixel in the filament using the Becker’s cloud model, and made the histograms of the LOS velocity at each time. The standard deviation of the LOS velocity distribution can be regarded as a measure for the amplitude of the small-scale motion in the filament. We found that the standard deviation on the previous day of the eruption was mostly constant around 2-3 km s-1, and it slightly increased to 3-4 km s-1 on the day of the eruption. It shows a further increase, with a rate of 1.1 m s-2, about three hours before eruption, and another increase, with a rate of 2.8 m s-2, about an hour before eruption. From this result we suggest that the increase in the amplitude of the small-scale motions in a filament can be regarded as a precursor of the eruption.

  18. Small amplitude transverse waves on taut strings: exploring the significant effects of longitudinal motion on wave energy location and propagation

    NASA Astrophysics Data System (ADS)

    Rowland, David R.

    2013-03-01

    Introductory discussions of energy transport due to transverse waves on taut strings universally assume that the effects of longitudinal motion can be neglected, but this assumption is not even approximately valid unless the string is idealized to have a zero relaxed length, a requirement approximately met by the slinky spring. While making this additional idealization is probably the best approach to take when discussing waves on strings at the introductory level, for intermediate to advanced undergraduate classes in continuum mechanics and general wave phenomena where somewhat more realistic models of strings can be investigated, this paper makes the following contributions. First, various approaches to deriving the general energy continuity equation are critiqued and it is argued that the standard continuum mechanics approach to deriving such equations is the best because it leads to a conceptually clear, relatively simple derivation which provides a unique answer of greatest generality. In addition, a straightforward algorithm for calculating the transverse and longitudinal waves generated when a string is driven at one end is presented and used to investigate a cos2 transverse pulse. This example illustrates much important physics regarding energy transport in strings and allows the ‘attack waves’ observed when strings in musical instruments are struck or plucked to be approximately modelled and analysed algebraically. Regarding the ongoing debate as to whether the potential energy density in a string can be uniquely defined, it is shown by coupling an external energy source to a string that a suggested alternative formula for potential energy density requires an unphysical potential energy to be ascribed to the source for overall energy to be conserved and so cannot be considered to be physically valid.

  19. Single-Photon Interference due to Motion in an Atomic Collective Excitation

    NASA Astrophysics Data System (ADS)

    Whiting, D. J.; Šibalić, N.; Keaveney, J.; Adams, C. S.; Hughes, I. G.

    2017-06-01

    We experimentally demonstrate the heralded generation of bichromatic single photons from an atomic collective spin excitation (CSE). The photon arrival times display collective quantum beats, a novel interference effect resulting from the relative motion of atoms in the CSE. A combination of velocity-selective excitation with strong laser dressing and the addition of a magnetic field allows for exquisite control of this collective beat phenomenon. The present experiment uses a diamond scheme with near-IR photons that can be extended to include telecommunications wavelengths or modified to allow storage and retrieval in an inverted-Y scheme.

  20. Extended Fluid-Dynamics and Collective Motion of Two Trapped Fermion Species with Pairing Interactions

    NASA Astrophysics Data System (ADS)

    Hernández, E. S.; Capuzzi, P.; Szybisz, L.

    2011-02-01

    We extend our earlier fluid-dynamical description of fermion superfluids incorporating the particle energy flow together with the equation of motion for the internal kinetic energy of the pairs. The formal scheme combines a set of equations similar to those of classical hydrodynamics with the equations of motion for the anomalous density and for its related momentum density and kinetic energy density. This dynamical frame represents a second order truncation of an infinite hierarchy of equations of motion isomorphic to the full time dependent Hartree-Fock-Bogoliubov equations in coordinate representation. We analyze the equilibrium solutions and fluctuations for a homogeneous, unpolarized fermion system of two species, and show that the collective spectrum presents the well-known Anderson-Bogoliubov low energy mode of homogeneous superfluids and a pairing vibration near the gap energy.

  1. Theory of collective proton motion at interfaces with densely packed protogenic surface groups.

    PubMed

    Golovnev, Anatoly; Eikerling, Michael

    2013-01-30

    We present a theoretical study of collective proton transport at a 2D array of end-grafted protogenic surface groups with sulfonic acid head groups. The graft positions of the surface groups form a regular hexagonal lattice. We consider the interfacial array at a high packing density of the surface groups and under minimal hydration with one water molecule added per head group. For these conditions, the stable interfacial conformation consists of a bicomponent lattice of hexagonally ordered sulfonate anions and interstitial hydronium cations. Hydronium ion motion occurs as a travelling solitary wave. We analyse the microscopic parameters of the solitons and study the influence of different potential profiles on the proton motion created by rotation and tilting of sidechains and sulfonate anions. Using soliton solutions of the equation of motion, we establish relations between the energy and mobility of the solitons and the microscopic structural and interaction parameters of the array.

  2. Adding flexibility to the “particles-on-a-sphere” model for large-amplitude motion: POSflex force field for protonated methane

    SciTech Connect

    Uhl, Felix; Walewski, Łukasz; Forbert, Harald; Marx, Dominik

    2014-09-14

    The so-called “particles-on-a-sphere” (POS) model has been introduced a while ago in order to describe in simple terms large-amplitude motion of polyatomic hydrides, XH{sub n}. The POS model of protonated methane, CH{sub 5}{sup +}, has been shown to capture well the essence of the fluxional nature of this enigmatic floppy molecule. Here, we extend this model to the POSflex force field by adding flexibility to the C–H bonds, which are constrained to a common fixed bond length in the original model. This makes the present model extremely efficient for computer simulation, including path integral molecular dynamics in order to assess the crucial quantum effects on nuclear motion at low temperatures. Moreover, the POSflex force field can be conveniently used to study microsolvation effects upon combining it with intermolecular pair potentials to account for solute-solvent interactions. Upon computing static properties as well as thermal and quantum fluctuation effects at ambient and low temperatures, respectively, it is shown that the POSflex model is very well suited to describe the structural properties of bare CH{sub 5}{sup +}, including hydrogen scrambling and thus fluxionality in the first place. The far- to mid-infrared spectrum up to the bending band is roughly described, whereas the model fails to account for the well-structured stretching band by construction.

  3. Adding flexibility to the "particles-on-a-sphere" model for large-amplitude motion: POSflex force field for protonated methane.

    PubMed

    Uhl, Felix; Walewski, Łukasz; Forbert, Harald; Marx, Dominik

    2014-09-14

    The so-called "particles-on-a-sphere" (POS) model has been introduced a while ago in order to describe in simple terms large-amplitude motion of polyatomic hydrides, XH(n). The POS model of protonated methane, CH₅⁺, has been shown to capture well the essence of the fluxional nature of this enigmatic floppy molecule. Here, we extend this model to the POSflex force field by adding flexibility to the C-H bonds, which are constrained to a common fixed bond length in the original model. This makes the present model extremely efficient for computer simulation, including path integral molecular dynamics in order to assess the crucial quantum effects on nuclear motion at low temperatures. Moreover, the POSflex force field can be conveniently used to study microsolvation effects upon combining it with intermolecular pair potentials to account for solute-solvent interactions. Upon computing static properties as well as thermal and quantum fluctuation effects at ambient and low temperatures, respectively, it is shown that the POSflex model is very well suited to describe the structural properties of bare CH₅⁺, including hydrogen scrambling and thus fluxionality in the first place. The far- to mid-infrared spectrum up to the bending band is roughly described, whereas the model fails to account for the well-structured stretching band by construction.

  4. Electron diffraction analysis for the molecules with multiple large-amplitude motions. 3-nitrostyrene--a molecule with two internal rotors.

    PubMed

    Kovtun, Dmitry M; Kochikov, Igor V; Tarasov, Yury I

    2015-03-05

    Dynamic structural analysis of the molecules possessing large-amplitude degrees of freedom has been attempted by many researchers; however, so far, electron diffraction investigations involved only one large-amplitude coordinate (internal rotation or bending). The current state of computational facilities allows extending of the general dynamic approach to the systems possessing two or more large-amplitude motions. This paper presents the first practical implementation of the theoretical method developed previously by the authors for solving the dynamic-structural problem with two or more large-amplitude coordinates; the procedure is applied to a molecule of 3-nitrostyrene. The molecule is represented as a set of pseudoconformers built on a two-dimensional grid corresponding to both internal rotation coordinates present in the molecule (with 10-30° steps by each angle); altogether, up to 342 pseudoconformers were used. Structural analysis was based on the experimental electron diffraction data supported by quantum chemical calculations (at the MP2 and B3LYP levels of theory) and molecular spectroscopy data. Quantum chemistry predicts the planar structure of both syn- and anti- stable conformations with close energies and weak interaction between internal rotations of nitro and vinyl groups. The gas-phase electron diffraction experimental data are compatible with the quantum chemical predictions. The principal equilibrium geometry parameters of the molecule (syn- conformation) have been determined as follows: r(e)(C-C)(ring, avg.) = 1.391(1) Å, r(e)(C-C) = 1.477(5) Å, r(e)(C═C) = 1.333(7) Å, r(e)(C-N) = 1.463(5) Å, r(e)(N═O) = 1.227(3) Å, ∠e(O═N═O) = 124.3 (4)°. Experimental data for this molecule are insufficient to make estimates of the barrier heights of internal rotation; the population ratio of syn- and anti- conformations is evaluated as 50 ± 20%. Results of our investigation confirm the presence of significant internal rotations in the 3

  5. Crossing scales, crossing disciplines: collective motion and collective action in the Global Commons†

    PubMed Central

    Levin, Simon

    2010-01-01

    Two conflicting tendencies can be seen throughout the biological world: individuality and collective behaviour. Natural selection operates on differences among individuals, rewarding those who perform better. Nonetheless, even within this milieu, cooperation arises, and the repeated emergence of multicellularity is the most striking example. The same tendencies are played out at higher levels, as individuals cooperate in groups, which compete with other such groups. Many of our environmental and other global problems can be traced to such conflicts, and to the unwillingness of individual agents to take account of the greater good. One of the great challenges in achieving sustainability will be in understanding the basis of cooperation, and in taking multicellularity to yet a higher level, finding the pathways to the level of cooperation that is the only hope for the preservation of the planet. PMID:20008381

  6. Simple Models of Self-Propelled Colloids and Liquid Drops: From Individual Motion to Collective Behaviors

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko

    2017-10-01

    In this review, we discuss recent developments in the theoretical models of self-propelled particles. We first summarize simple models, including active Brownian particles (ABPs), squirmers, and Janus particles (self-phoretic swimmers). We then consider the extension of these models in order to demonstrate the symmetry-breaking mechanism of the motion. Finally, we investigate the emergence of the rich collective behaviors of these models.

  7. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed

    NASA Astrophysics Data System (ADS)

    Lu, Shengtao; Liu, Fang; Xing, Bengang; Yeow, Edwin K. L.

    2015-12-01

    A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.

  8. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed.

    PubMed

    Lu, Shengtao; Liu, Fang; Xing, Bengang; Yeow, Edwin K L

    2015-12-01

    A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.

  9. GDR as a Probe of the Collective Motion in Nuclei at High Spins, Temperatures or Isospins

    SciTech Connect

    Maj, Adam

    2008-11-11

    The gamma-decay of the Giant Dipole Resonance (GDR), the high-frequency collective vibration of protons against neutrons, has been proven to be a basic probe for the shapes of hot nuclei, especially to study the effective shape evolution caused by the collective rotation of a nucleus. In this context an interesting question arises: what is the nuclear shape at extreme values of spin or temperatures, close to the limit impose by another collective motion--fission, and how evolves the giant dipole collective vibrations as a function of isospin. Short overview of the results from the experiments aimed to answer these questions are presented and possible perspectives of these type of studies for exotic nuclei to be obtained with the novel gamma-calorimeter PARIS and soon available intense radioactive beams are discussed.

  10. Collective motion of motile cilia: from human airways to model systems

    NASA Astrophysics Data System (ADS)

    Cicuta, Pietro; Feriani, Luigi; Chioccioli, Maurizio; Kotar, Jurij

    Mammalian airways are a fantastic playground of nonlinear phenomena, from the function of individual active filaments, to the emerging collective behaviour, to the rheology of the mucus solution surrounding cilia. We have been investigating the fundamental physics of this system through a variety of model system approaches, both experimental and computational. In the last year we have started measurements on living human cells, observing cilia shape during beating, and measuring speed and coherence of the collective dynamics. We report on significant differences in the collective motion in ciliated cell carpets from a variety of diseases, and we attempt to reconcile the collective dynamical phenotypes to the properties of individual filaments and the mechanics of the environment.

  11. Physics of active jamming during collective cellular motion in a monolayer.

    PubMed

    Garcia, Simon; Hannezo, Edouard; Elgeti, Jens; Joanny, Jean-François; Silberzan, Pascal; Gov, Nir S

    2015-12-15

    Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell-cell and cell-substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data.

  12. Physics of active jamming during collective cellular motion in a monolayer

    PubMed Central

    Garcia, Simon; Hannezo, Edouard; Elgeti, Jens; Joanny, Jean-François; Silberzan, Pascal; Gov, Nir S.

    2015-01-01

    Although collective cell motion plays an important role, for example during wound healing, embryogenesis, or cancer progression, the fundamental rules governing this motion are still not well understood, in particular at high cell density. We study here the motion of human bronchial epithelial cells within a monolayer, over long times. We observe that, as the monolayer ages, the cells slow down monotonously, while the velocity correlation length first increases as the cells slow down but eventually decreases at the slowest motions. By comparing experiments, analytic model, and detailed particle-based simulations, we shed light on this biological amorphous solidification process, demonstrating that the observed dynamics can be explained as a consequence of the combined maturation and strengthening of cell−cell and cell−substrate adhesions. Surprisingly, the increase of cell surface density due to proliferation is only secondary in this process. This analysis is confirmed with two other cell types. The very general relations between the mean cell velocity and velocity correlation lengths, which apply for aggregates of self-propelled particles, as well as motile cells, can possibly be used to discriminate between various parameter changes in vivo, from noninvasive microscopy data. PMID:26627719

  13. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review.

    PubMed

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L; Ramírez-Velez, Robinson; González-Izal, Miriam; Jauregi, Andoni; Izquierdo, Mikel

    2017-09-01

    Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. This review aims to describe the effects of cervical HVLA manipulation techniques on range of motion, strength, and cardiovascular performance. A systematic search was conducted of the electronic databases from January 2000 to August 2016: PubMed (n = 131), ScienceDirect (n = 101), Scopus (n = 991), PEDro (n = 33), CINAHL (n = 884), and SciELO (n = 5). Two independent reviewers conducted the screening process to determine article eligibility. The intervention that included randomized controlled trials was thrust, or HVLA, manipulative therapy directed to the cervical spine. Methodological quality was assessed using the Cochrane risk-of-bias tool. The initial search rendered 2145 articles. After screening titles and abstracts, 11 articles remained for full-text review. The review shows that cervical HVLA manipulation treatment results in a large effect size (d > 0.80) on increasing cervical range of motion and mouth opening. In patients with lateral epicondylalgia, cervical HVLA manipulation resulted in increased pain-free handgrip strength, with large effect sizes (1.44 and 0.78, respectively). Finally, in subjects with hypertension the blood pressure seemed to decrease after cervical HVLA manipulation. Higher quality studies are needed to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions.

  14. Large collective motions regulate the functional properties of glutamate transporter trimers

    PubMed Central

    Jiang, Jie; Shrivastava, Indira H.; Watts, Spencer D.; Bahar, Ivet; Amara, Susan G.

    2011-01-01

    Glutamate transporters clear synaptically released glutamate to maintain precise communication between neurons and limit glutamate neurotoxicity. Although much progress has been made on the topology, structure, and function of these carriers, few studies have addressed large-scale structural motions collectively associated with substrate transport. Here we show that a series of single cysteine substitutions in the helical hairpin HP2 of excitatory amino acid transporter 1 form intersubunit disulfide cross-links within the trimer. After cross-linking, substrate uptake, but not substrate-activated anion conductance, is completely inhibited in these mutants. These disulfide bridges link residue pairs > 40 Å apart in the outward-facing crystal structure, and can be explained by concerted subunit movements predicted by the anisotropic network model (ANM). The existence of these global motions is further supported by the observation that single cysteine substitutions at the extracellular part of the transmembrane domain 8 can also be cross-linked by copper phenanthroline as predicted by the ANM. Interestingly, the transport domain in the un-cross-linked subunit of the trimer assumes an inward-facing orientation, suggesting that individual subunits potentially undergo separate transitions between outward- and inward-facing forms, rather than an all-or-none transition of the three subunits, a mechanism also supported by ANM-predicted intrinsic dynamics. These results shed light on how large collective motions contribute to the functional dynamics of glutamate transporters. PMID:21876140

  15. Bacteria as self-propelled liquid crystals: non-equilibrium clustering, polar order, collective motion, and aggregation

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando

    2014-03-01

    Bacteria exhibit fascinating collective phenomena such as collective motion and aggregation. It is usually believed that such kind of collective effects require cells to coordinate their motion via chemotactic signaling. Despite of this common belief, I will show that in experiments with myxobacteria such collective effects emerge in absence of biochemical regulation, and even hydrodynamic interactions, and result from simple physical interaction among the motile bacteria. As proof of principle, I will show that collective phenomena such as collective motion and aggregation naturally emerge in models of simple self-propelled rods that interact by volume exclusion. Combining experiments and theoretical models, we will explain that the interplay of bacterial self-propulsion and steric interactions among the elongated bacteria leads to an effective velocity alignment mechanism (VAM). Such VAM allows cells to display a non-equilibrium clustering transition that marks the onset of collective motion. I will argue that even though the symmetry of the resulting VAM is clearly nematic, it induces, counter intuitively, polar order. Finally, I will show that by increasing the cell density, or alternatively the aspect ratio of bacteria, collective motion patterns become unstable, and cells form aggregates. In short, our results indicate that for bacteria moving on surfaces, the cell shape plays a crucial role in the bacterial self-organization process. By thinking of bacteria as self-propelled liquid crystals, we can explain complex behaviors such as collective motion and aggregation.

  16. Measurements and simulation of controlled beamfront motion in the Laser Controlled Collective Accelerator

    SciTech Connect

    Yao, R.L.; Destler, W.W.; Striffler, C.D.; Rodgers, J.; Scgalov, Z.

    1989-01-01

    In the Laser Controlled Collective Accelerator, an intense electron beam is injected at a current above the vacuum space charge limit into an initially evacuated drift tube. A plasma channel, produced by time-sequenced, multiple laser beam ionization of a solid target on the drift tube wall, provides the necessary neutralization to allow for effective beam propagation. By controlling the rate of production of the plasma channel as a function of time down the drift tube, control of the electron beamfront can be achieved. Recent experimental measurements of controlled beamfront motion in this configuration are presented, along with results of ion acceleration experiments conducted using two different accelerating gradients. These results are compared with numerical simulations of the system in which both controlled beamfront motion and ion acceleration is observed consistent with both design expectations and experimental results. 5 refs., 6 figs.

  17. Collective atomic scattering and motional effects in a dense coherent medium

    NASA Astrophysics Data System (ADS)

    Bromley, S. L.; Zhu, B.; Bishof, M.; Zhang, X.; Bothwell, T.; Schachenmayer, J.; Nicholson, T. L.; Kaiser, R.; Yelin, S. F.; Lukin, M. D.; Rey, A. M.; Ye, J.

    2016-03-01

    We investigate collective emission from coherently driven ultracold 88Sr atoms. We perform two sets of experiments using a strong and weak transition that are insensitive and sensitive, respectively, to atomic motion at 1 μK. We observe highly directional forward emission with a peak intensity that is enhanced, for the strong transition, by >103 compared with that in the transverse direction. This is accompanied by substantial broadening of spectral lines. For the weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile, a density-dependent frequency shift of the weak transition (~10% of the natural linewidth) is observed. In contrast, this shift is suppressed to <1% of the natural linewidth for the strong transition. Along the transverse direction, we observe strong polarization dependences of the fluorescence intensity and line broadening for both transitions. The measurements are reproduced with a theoretical model treating the atoms as coherent, interacting radiating dipoles.

  18. IMART software for correction of motion artifacts in images collected in intravital microscopy

    PubMed Central

    Dunn, Kenneth W; Lorenz, Kevin S; Salama, Paul; Delp, Edward J

    2014-01-01

    Intravital microscopy is a uniquely powerful tool, providing the ability to characterize cell and organ physiology in the natural context of the intact, living animal. With the recent development of high-resolution microscopy techniques such as confocal and multiphoton microscopy, intravital microscopy can now characterize structures at subcellular resolution and capture events at sub-second temporal resolution. However, realizing the potential for high resolution requires remarkable stability in the tissue. Whereas the rigid structure of the skull facilitates high-resolution imaging of the brain, organs of the viscera are free to move with respiration and heartbeat, requiring additional apparatus for immobilization. In our experience, these methods are variably effective, so that many studies are compromised by residual motion artifacts. Here we demonstrate the use of IMART, a software tool for removing motion artifacts from intravital microscopy images collected in time series or in three dimensions. PMID:26090271

  19. Collective atomic scattering and motional effects in a dense coherent medium

    PubMed Central

    Bromley, S. L.; Zhu, B.; Bishof, M.; Zhang, X.; Bothwell, T.; Schachenmayer, J.; Nicholson, T. L.; Kaiser, R.; Yelin, S. F.; Lukin, M. D.; Rey, A. M.; Ye, J.

    2016-01-01

    We investigate collective emission from coherently driven ultracold 88Sr atoms. We perform two sets of experiments using a strong and weak transition that are insensitive and sensitive, respectively, to atomic motion at 1 μK. We observe highly directional forward emission with a peak intensity that is enhanced, for the strong transition, by >103 compared with that in the transverse direction. This is accompanied by substantial broadening of spectral lines. For the weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile, a density-dependent frequency shift of the weak transition (∼10% of the natural linewidth) is observed. In contrast, this shift is suppressed to <1% of the natural linewidth for the strong transition. Along the transverse direction, we observe strong polarization dependences of the fluorescence intensity and line broadening for both transitions. The measurements are reproduced with a theoretical model treating the atoms as coherent, interacting radiating dipoles. PMID:26984643

  20. The HAMP Signal Relay Domain Adopts Multiple Conformational States through Collective Piston and Tilt Motions

    PubMed Central

    Zhu, Lizhe; Bolhuis, Peter G.; Vreede, Jocelyne

    2013-01-01

    The HAMP domain is a linker region in prokaryotic sensor proteins and relays input signals to the transmitter domain and vice versa. Functional as a dimer, the structure of HAMP shows a parallel coiled-coil motif comprising four helices. To date, it is unclear how HAMP can relay signals from one domain to another, although several models exist. In this work, we use molecular simulation to test the hypothesis that HAMP adopts different conformations, one of which represents an active, signal-relaying configuration, and another an inactive, resting state. We first performed molecular dynamics simulation on the prototype HAMP domain Af1503 from Archaeoglobus fulgidus. We explored its conformational space by taking the structure of the A291F mutant disabling HAMP activity as a starting point. These simulations revealed additional conformational states that differ in the tilt angles between the helices as well as the relative piston shifts of the helices relative to each other. By enhancing the sampling in a metadynamics set up, we investigated three mechanistic models for HAMP signal transduction. Our results indicate that HAMP can access additional conformational states characterized by piston motion. Furthermore, the piston motion of the N-terminal helix of one monomer is directly correlated with the opposite piston motion of the C-terminal helix of the other monomer. The change in piston motion is accompanied by a change in tilt angle between the monomers, thus revealing that HAMP exhibits a collective motion, i.e. a combination of changes in tilt angles and a piston-like displacement. Our results provide insights into the conformational changes that underlie the signaling mechanism involving HAMP. PMID:23468603

  1. The HAMP signal relay domain adopts multiple conformational states through collective piston and tilt motions.

    PubMed

    Zhu, Lizhe; Bolhuis, Peter G; Vreede, Jocelyne

    2013-01-01

    The HAMP domain is a linker region in prokaryotic sensor proteins and relays input signals to the transmitter domain and vice versa. Functional as a dimer, the structure of HAMP shows a parallel coiled-coil motif comprising four helices. To date, it is unclear how HAMP can relay signals from one domain to another, although several models exist. In this work, we use molecular simulation to test the hypothesis that HAMP adopts different conformations, one of which represents an active, signal-relaying configuration, and another an inactive, resting state. We first performed molecular dynamics simulation on the prototype HAMP domain Af1503 from Archaeoglobus fulgidus. We explored its conformational space by taking the structure of the A291F mutant disabling HAMP activity as a starting point. These simulations revealed additional conformational states that differ in the tilt angles between the helices as well as the relative piston shifts of the helices relative to each other. By enhancing the sampling in a metadynamics set up, we investigated three mechanistic models for HAMP signal transduction. Our results indicate that HAMP can access additional conformational states characterized by piston motion. Furthermore, the piston motion of the N-terminal helix of one monomer is directly correlated with the opposite piston motion of the C-terminal helix of the other monomer. The change in piston motion is accompanied by a change in tilt angle between the monomers, thus revealing that HAMP exhibits a collective motion, i.e. a combination of changes in tilt angles and a piston-like displacement. Our results provide insights into the conformational changes that underlie the signaling mechanism involving HAMP.

  2. Analysis of electron diffraction data for several symmetric coordinates of large-amplitude motions in the case of the 1,3,5-trinitrobenzene molecule

    NASA Astrophysics Data System (ADS)

    Khaikin, L. S.; Kochikov, I. V.; Tikhonov, D. S.; Grikina, O. E.

    2015-06-01

    A brief description of a solution of the problem on electron diffraction analysis using the potential procedure for nonrigid molecules with large-amplitude motions along several symmetric internal coordinates was given. The efficiency of the approach was demonstrated for determination of the equilibrium geometry of the 1,3,5-trinitrobenzene molecule with three equivalent internal rotation coordinates of NO2 groups. The results of the electron diffraction experiment and quantum-chemical calculation at the MP2( full)/ cc-pVTZ level were considered along with the vibrational spectra of 1,3,5-trinitrobenzene and a planar equilibrium D 3 h symmetry conformation for the molecule was found reliably for the first time. The geometrical parameters of the molecule were determined ( r e , the bond lengths are given in Å, the angles in deg): CC 1.387(2), CN 1.474(4), NO 1.220(1), CH 1.072(31), ONO 125.8(2), CC(H)C 116.6(3), HCC* 121.7(1), CC(N)C* 123.4(3), NCC* 118.3(1), and CNO* 117.1(1); the asterisk marks the dependent parameters.

  3. Mosh pits and Circle pits: Collective motion at heavy metal concerts

    NASA Astrophysics Data System (ADS)

    Bierbaum, Matthew; Silverberg, Jesse L.; Sethna, James P.; Cohen, Itai

    2013-03-01

    Heavy metal concerts present an extreme environment in which large crowds (~102 -105) of humans experience very loud music (~ 130 dB) in sync with bright, flashing lights, often while intoxicated. In this setting, we find two types of collective motion: mosh pits, in which participants collide with each other randomly in a manner resembling an ideal gas, and circle pits, in which participants run collectively in a circle forming a vortex of people. We model these two collective behaviors using a flocking model and find qualitative and quantitative agreement with the behaviors found in videos of metal concerts. Futhermore, we find a phase diagram showing the transition from a mosh pit to a circle pit as well as a predicted third phase, lane formation.

  4. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  5. Motion.

    ERIC Educational Resources Information Center

    Gerhart, James B.; Nussbaum, Rudi H.

    This monograph was written for the Conference on the New Instructional Materials in Physics held at the University of Washington in summer, 1965. It is intended for use in an introductory course in college physics. It consists of an extensive qualitative discussion of motion followed by a detailed development of the quantitative methods needed to…

  6. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  7. Theoretical investigation of polarization effects in solution: Importance of solvent collective motions

    SciTech Connect

    Ishida, Tateki

    2015-01-22

    Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF{sub 6}]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.

  8. Theoretical investigation of polarization effects in solution: Importance of solvent collective motions

    NASA Astrophysics Data System (ADS)

    Ishida, Tateki

    2015-01-01

    Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.

  9. Collective Motion of Swarming Agents Evolving on a Sphere Manifold: A Fundamental Framework and Characterization

    PubMed Central

    Li, Wei

    2015-01-01

    Collective motion of self-propelled agents has attracted much attention in vast disciplines. However, almost all investigations focus on such agents evolving in the Euclidean space, with rare concern of swarms on non-Euclidean manifolds. Here we present a novel and fundamental framework for agents evolving on a sphere manifold, with which a variety of concrete cooperative-rules of agents can be designed separately and integrated easily into the framework, which may perhaps pave a way for considering general spherical collective motion (SCM) of a swarm. As an example, one concrete cooperative-rule, i.e., the spherical direction-alignment (SDA), is provided, which corresponds to the usual and popular direction-alignment rule in the Euclidean space. The SCM of the agents with the SDA has many unique statistical properties and phase-transitions that are unexpected in the counterpart models evolving in the Euclidean space, which unveils that the topology of the sphere has an important impact on swarming emergence. PMID:26350632

  10. Exploring the Contribution of Collective Motions to the Dynamics of Forced-Unfolding in Tubulin

    PubMed Central

    Joshi, Harshad; Momin, Farhana; Haines, Kelly E.; Dima, Ruxandra I.

    2010-01-01

    Abstract Decomposition of the intrinsic dynamics of proteins into collective motions among distant regions of the protein structure provides a physically appealing approach that couples the dynamics of the system with its functional role. The cellular functions of microtubules (an essential component of the cytoskeleton in all eukaryotic cells) depend on their dynamic instability, which is altered by various factors among which applied forces are central. To shed light on the coupling between forces and the dynamic instability of microtubules, we focus on the investigation of the response of the microtubule subunits (tubulin) to applied forces. We address this point by adapting an approach designed to survey correlations for the equilibrium dynamics of proteins to the case of correlations for proteins forced-dynamics. The resulting collective motions in tubulin have a number of functional implications, such as the identification of long-range couplings with a role in blocking the dynamic instability of microtubules. A fundamental implication of our study for the life of a cell is that, to increase the likelihood of unraveling of large cytoskeletal filaments under physiological forces, molecular motors must use a combination of pulling and torsion rather than just pulling. PMID:20159162

  11. Physics of microswimmers--single particle motion and collective behavior: a review.

    PubMed

    Elgeti, J; Winkler, R G; Gompper, G

    2015-05-01

    Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.

  12. Collective motion of groups of self-propelled particles following interacting leaders

    NASA Astrophysics Data System (ADS)

    Ferdinandy, B.; Ozogány, K.; Vicsek, T.

    2017-08-01

    In order to keep their cohesiveness during locomotion gregarious animals must make collective decisions. Many species boast complex societies with multiple levels of communities. A common case is when two dominant levels exist, one corresponding to leaders and the other consisting of followers. In this paper we study the collective motion of such two-level assemblies of self-propelled particles. We present a model adapted from one originally proposed to describe the movement of cells resulting in a smoothly varying coherent motion. We shall use the terminology corresponding to large groups of some mammals where leaders and followers form a group called a harem. We study the emergence (self-organization) of sub-groups within a herd during locomotion by computer simulations. The resulting processes are compared with our prior observations of a Przewalski horse herd (Hortobágy, Hungary) which we use as results from a published case study. We find that the model reproduces key features of a herd composed of harems moving on open ground, including fights for followers between leaders and bachelor groups (group of leaders without followers). One of our findings, however, does not agree with the observations. While in our model the emerging group size distribution is normal, the group size distribution of the observed herd based on historical data have been found to follow lognormal distribution. We argue that this indicates that the formation (and the size) of the harems must involve a more complex social topology than simple spatial-distance based interactions.

  13. Physics of microswimmers—single particle motion and collective behavior: a review

    NASA Astrophysics Data System (ADS)

    Elgeti, J.; Winkler, R. G.; Gompper, G.

    2015-05-01

    Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.

  14. Slow dynamics in glycerol: collective de gennes narrowing and independent angstrom motion

    NASA Astrophysics Data System (ADS)

    Saito, Makina; Kobayashi, Yasuhiro; Masuda, Ryo; Kurokuzu, Masayuki; Kitao, Shinji; Yoda, Yoshitaka; Seto, Makoto

    2016-12-01

    The slow dynamics of microscopic density correlations in supercooled glycerol was studied by time-domain interferometry using 57Fe-nuclear resonant scattering gamma rays of synchrotron radiation. The dependence of the relaxation time at 250 K on the momentum transfer q is maximum near the first peak of the static structure factor S( q) at q ˜ 15 nm -1. The q-dependent behavior of the relaxation time known as de Gennes narrowing was confirmed in glycerol. Conversely, de Gennes narrowing around the second and third peaks of S( q) at q ˜ 26 nm -1 and 54 nm -1 was not detected. The q dependence of the relaxation time was found to follow a power-law equation with power-law index of 1.9(2) in the q region well above the first peak of S( q) up to ˜ 60 nm -1, which corresponds to angstrom scale, within experimental error. This suggests that in the angstrom-scale dynamics of supercooled glycerol, independent motions dominate over collective motion.

  15. Collective motion of self-propelled particles with density-dependent switching effect

    NASA Astrophysics Data System (ADS)

    Chen, Qiu-shi; Ma, Yu-qiang

    2016-05-01

    We study the effect of density-dependent angular response on large scale collective motion, that particles are more likely to switch their moving direction within lower local density region. We show that the presence of density-dependent angular response leads to three typical phases: polar liquid, micro-phase separation and disordered gas states. In our model, the transition between micro-phase separation and disordered gas is discontinuous. Giant number fluctuation is observed in polar liquid phase with statistically homogeneous order. In the micro-phase separation parameter space, high order and high density bands dominate the dynamics. We also compare our results with Vicsek model and show that the density-dependent directional switching response can stabilize the band state to very low noise condition. This band stripe could recruit almost all the particles in the system, which greatly enhances the coherence of the system. Our results could be helpful for understanding extremely coherent motion in nature and also would have practical implications for designing novel self-organization pattern.

  16. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures.

    PubMed

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-05-10

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.

  17. Collective concerted motion in a molecular adlayer visualized through the surface diffusion of isolated vacancies.

    PubMed

    Urban, Christian; Otero, Roberto; Écija, David; Trelka, Marta; Martín, Nazario; Gallego, José M; Miranda, Rodolfo

    2016-10-21

    We have measured STM movies to study the diffusion of individual vacancies in a self-assembled layer of a tetrathiafulvalene derivative (exTTF) on Au(111) at room temperature. The diffusion is anisotropic, being faster along the compact direction of the molecular lattice. A detailed analysis of the anisotropic displacement distribution of the single vacancies shows that the relative abundance of double jumps (that is, the collective motion of molecular dimers) with respect to single jumps is rather large, the number of double jumps being more than 20% of the diffusion events. We conjecture that the relative abundances of long jumps might be related to the strength of the intermolecular bonding and the misfit of the molecular overlayer with the substrate lattice.

  18. Collective concerted motion in a molecular adlayer visualized through the surface diffusion of isolated vacancies

    NASA Astrophysics Data System (ADS)

    Urban, Christian; Otero, Roberto; Écija, David; Trelka, Marta; Martín, Nazario; Gallego, José M.; Miranda, Rodolfo

    2016-10-01

    We have measured STM movies to study the diffusion of individual vacancies in a self-assembled layer of a tetrathiafulvalene derivative (exTTF) on Au(111) at room temperature. The diffusion is anisotropic, being faster along the compact direction of the molecular lattice. A detailed analysis of the anisotropic displacement distribution of the single vacancies shows that the relative abundance of double jumps (that is, the collective motion of molecular dimers) with respect to single jumps is rather large, the number of double jumps being more than 20% of the diffusion events. We conjecture that the relative abundances of long jumps might be related to the strength of the intermolecular bonding and the misfit of the molecular overlayer with the substrate lattice.

  19. Density fluctuations and topological structures in collective surface motion of microswimmers

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Shelley, Michael

    2014-11-01

    Active matter that consists of self-propelled particles, such as bacterial suspensions and assays of self-driven biofilaments, can exhibit collective motions with large-scale complex flows and topological defect dynamics. Using a Doi-Onsager kinetic theory, we study suspensions of microswimmers confined to an air/liquid interface, and identify correlations between particle density fluctuations, defect structures, nematic order, and surface flows. When considering a free-standing liquid film where the microswimmers are distributed on the air/liquid interfaces, we capture hydrodynamic coupling of the two active surface, characterized by synchronization of motile disclination defects. We estimate the effective ``penetration distance'' between the two coupled surfaces through a linear stability analysis.

  20. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    PubMed Central

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-01-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. PMID:27160484

  1. Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin.

    PubMed

    Haller, Jens D; Schanda, Paul

    2013-11-01

    Solid-state NMR provides insight into protein motion over time scales ranging from picoseconds to seconds. While in solution state the methodology to measure protein dynamics is well established, there is currently no such consensus protocol for measuring dynamics in solids. In this article, we perform a detailed investigation of measurement protocols for fast motions, i.e. motions ranging from picoseconds to a few microseconds, which is the range covered by dipolar coupling and relaxation experiments. We perform a detailed theoretical investigation how dipolar couplings and relaxation data can provide information about amplitudes and time scales of local motion. We show that the measurement of dipolar couplings is crucial for obtaining accurate motional parameters, while systematic errors are found when only relaxation data are used. Based on this realization, we investigate how the REDOR experiment can provide such data in a very accurate manner. We identify that with accurate rf calibration, and explicit consideration of rf field inhomogeneities, one can obtain highly accurate absolute order parameters. We then perform joint model-free analyses of 6 relaxation data sets and dipolar couplings, based on previously existing, as well as new data sets on microcrystalline ubiquitin. We show that nanosecond motion can be detected primarily in loop regions, and compare solid-state data to solution-state relaxation and RDC analyses. The protocols investigated here will serve as a useful basis towards the establishment of a routine protocol for the characterization of ps-μs motions in proteins by solid-state NMR.

  2. Limiting Temperatures for Collective Motion: The Giant Dipole Resonance in Very Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Piattelli, P.; Blumenfeld, Y.; Le Faou, J. H.; Suomijärvi, T.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.

    1996-02-01

    The study of the Giant Dipole Resonance (GDR) excited in hot nuclei allows to follow the evolution of collective motion with increasing nuclear temperature. A brief review of the characteristics of the GDR excited in nuclei with excitation energies up to ˜ 500 MeV is given. The results of recent experiments in which very hot nuclei have been studied with a nearly 4π detector are presented. Gamma-rays, light charged particles and evaporation residues emitted from hot nuclei of mass around 115 and excitation energies above 300 MeV, formed in the 36Ar + 90Zr at 27 MeV/u and 36Ar + 98Mo at 37 MeV/u reactions, have been measured with the MEDEA multidetector. The γ-ray yield from the decay of the Giant Dipole Resonance in these nuclei has been found to be independent of excitation energy and bombarding energy. The measured γ-ray spectra are compared with statistical calculations encompassing several recent theoretical models for the quenching of gamma-ray emission from the dipole resonance at very high temperatures. The best agreement with the data is obtained by assuming a cut-off of the resonance γ-emission above an excitation energy of 250 MeV.

  3. Mapping quadrupole collectivity in the Cd isotopes: The breakdown of harmonic vibrational motion

    SciTech Connect

    Garrett, P. E.; Green, K. L.; Bangay, J.; Varela, A. Diaz; Sumithrarachchi, C. S.; Bandyopadhyay, D. S.; Bianco, L.; Demand, G. A.; Finlay, P.; Grinyer, G. F.; Leach, K. G.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Austin, R. A. E.; Colosimo, S.; Ball, G. C.; Garnsworthy, A. B.; Hackman, G.

    2011-10-28

    The stable Cd isotopes have long been used as paradigms for spherical vibrational motion. Extensive investigations with in-beam {gamma} spectroscopy have resulted in very-well-established level schemes, including many lifetimes or lifetime limits. A programme has been initiated to complement these studies with very-high-statistics {beta} decay using the 8{pi} spectrometer at the TRIUMF radioactive beam facility. The decays of {sup 112}In and {sup 112}Ag have been studied with an emphasis on the observation of, or the placement of stringent limits on, low-energy branches between potential multi-phonon levels. A lack of suitable 0{sup +} or 2{sup +} three-phonon candidates has been revealed. Further, the sum of the B(E2) strength from spin 0{sup +} and 2{sup +} states up to 3 MeV in excitation energy to the assigned two-phonon levels falls far short of the harmonic-vibrational expectations. This lack of strength points to the failing of collective models based on vibrational phonon structures.

  4. Why and how does collective red blood cells motion occur in the blood microcirculation?

    NASA Astrophysics Data System (ADS)

    Ghigliotti, Giovanni; Selmi, Hassib; Asmi, Lassaad El; Misbah, Chaouqi

    2012-10-01

    The behaviour of red blood cells (RBCs), modelled as vesicles, in Poiseuille flow, mimicking the microvasculature, is studied with numerical simulations in two dimensions. RBCs moving in the centre of the Poiseuille flow (as in blood capillaries) are shown to attract each other and form clusters only due to hydrodynamic interactions, provided that their distance at a given time is below a certain critical value. This distance depends on physical parameters, such as the flow strength. Our simulations reveal that clusters are unstable above a threshold value in the number of forming RBCs, beyond which one or few cells escape the pack by a self-regulating mechanism that select the marginally stable size. This size selection depends on the flow strength as well as on the RBC swelling ratio. The results are interpreted via the analysis of the perturbation of the flow field induced by the vesicles and the interplay with bending and tension forces. This sheds a novel light on the process of collective motion of RBCs observed in vivo.

  5. d-alpha correlation functions and collective motion in Xe+Au collisions at E/A=50 MeV

    SciTech Connect

    Verde, G; Danielewicz, P; Lynch, W; Chan, C; Gelbke, C; Kwong, L; Liu, T; Liu, X; Seymour, D; Tan, W; Tsang, M; Wagner, A; Xu, H; Brown, D; Davin, B; Larochelle, Y; de Souza, R; Charity, R; Sobotka, L

    2006-07-27

    The interplay of the effects of geometry and collective motion on d-{alpha} correlation functions is investigated for central Xe+Au collisions at E/A=50 MeV. The data cannot be explained with out collective motion, which could be partly along the beam axis. A semi-quantitative description of the data can be obtained using a Monte -Carlo model, where thermal emission is superimposed on collective motion. Both the emission volume and the competition between the thermal and collective motion influence significantly the shape of the correlation function, motivating new strategies for extending intensity interferometry studies to massive particles.

  6. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGES

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; ...

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  7. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    SciTech Connect

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; West, Damien; Meunier, Vincent; Zhang, Shengbai; Liang, Linagbo

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherent charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface

  8. Single-particle and collective motion in unbound deformed 39Mg

    NASA Astrophysics Data System (ADS)

    Fossez, K.; Rotureau, J.; Michel, N.; Liu, Quan; Nazarewicz, W.

    2016-11-01

    Background: Deformed neutron-rich magnesium isotopes constitute a fascinating territory where the interplay between collective rotation and single-particle motion is strongly affected by the neutron continuum. The unbound f p -shell nucleus 39Mg is an ideal candidate to study this interplay. Purpose: In this work, we predict the properties of low-lying resonant states of 39Mg, using a suite of realistic theoretical approaches rooted in the open quantum system framework. Method: To describe the spectrum and decay modes of 39Mg we use the conventional shell model, Gamow shell model, resonating group method, density matrix renormalization group method, and the nonadiabatic particle-plus-rotor model formulated in the Berggren basis. Results: The unbound ground state of 39Mg is predicted to be either a Jπ=7/2 - state or a 3/2 - state. A narrow Jπ=7/2 - ground-state candidate exhibits a resonant structure reminiscent of that of its one-neutron halo neighbor 37Mg, which is dominated by the f7 /2 partial wave at short distances and a p3 /2 component at large distances. A Jπ=3/2 - ground-state candidate is favored by the large deformation of the system. It can be associated with the 1/2 -[321 ] Nilsson orbital dominated by the ℓ =1 wave; hence its predicted width is large. The excited Jπ=1/2 - and 5 /2- states are expected to be broad resonances, while the Jπ=9/2 - and 11/2 - members of the ground-state rotational band are predicted to have very small neutron decay widths. Conclusion: We demonstrate that the subtle interplay between deformation, shell structure, and continuum coupling can result in a variety of excitations in an unbound nucleus just outside the neutron drip line.

  9. Effects of non-idealities and quantization of the center of mass motion on symmetric and asymmetric collective states in a collective state atomic interferometer

    NASA Astrophysics Data System (ADS)

    Sarkar, Resham; Kim, May E.; Fang, Renpeng; Tu, Yanfei; Shahriar, Selim M.

    2015-09-01

    We investigate the behavior of an ensemble of ? non-interacting, identical atoms excited by a laser. In general, the ?-th atom sees a Rabi frequency ?, an initial position dependent laser phase ?, and a motion induced Doppler shift of ?. When ? or ? is distinct for each atom, the system evolves into a superposition of ? intercoupled states, of which there are ? symmetric and ? asymmetric collective states. For a collective state atomic interferometer (COSAIN), we recently proposed, it is important to understand the behavior of all the collective states under various conditions. In this paper, we show how to formulate the properties of these states under various non-idealities, and use this formulation to understand the dynamics thereof. We also consider the effect of treating the center of mass degree of freedom of the atoms quantum mechanically on the description of the collective states, illustrating that it is indeed possible to construct a generalized collective state, as needed for the COSAIN, when each atom is assumed to be in a localized wave packet. The analysis presented in this paper is important for understanding the dynamics of the COSAIN, and will help advance the analysis and optimization of spin squeezing in the presence of practically unavoidable non-idealities as well as in the domain where the center of mass motion of the atoms is quantized.

  10. Collective coordinate models of domain wall motion in perpendicularly magnetized systems under the spin hall effect and longitudinal fields

    NASA Astrophysics Data System (ADS)

    Nasseri, S. Ali; Moretti, Simone; Martinez, Eduardo; Serpico, Claudio; Durin, Gianfranco

    2017-03-01

    Recent studies on heterostructures of ultrathin ferromagnets sandwiched between a heavy metal layer and an oxide have highlighted the importance of spin-orbit coupling (SOC) and broken inversion symmetry in domain wall (DW) motion. Specifically, chiral DWs are stabilized in these systems due to the Dzyaloshinskii-Moriya interaction (DMI). SOC can also lead to enhanced current induced DW motion, with the Spin Hall effect (SHE) suggested as the dominant mechanism for this observation. The efficiency of SHE driven DW motion depends on the internal magnetic structure of the DW, which could be controlled using externally applied longitudinal in-plane fields. In this work, micromagnetic simulations and collective coordinate models are used to study current-driven DW motion under longitudinal in-plane fields in perpendicularly magnetized samples with strong DMI. Several extended collective coordinate models are developed to reproduce the micromagnetic results. While these extended models show improvements over traditional models of this kind, there are still discrepancies between them and micromagnetic simulations which require further work.

  11. Alignment vs noise in self-propelled particles: minimal models for collective motion and their continuous descriptions

    NASA Astrophysics Data System (ADS)

    Chate, Hugues

    2012-02-01

    Two important 1995 papers have marked the birth of collective motion studies in physics: Vicsek et al introduced what could now be described as the ``Ising model'' of this new subfield. This prompted Toner and Tu to propose a continuum theory of flocks which they showed to give rise to long-range orientational order even in two space dimensions. In this setting, the complexity of most natural instances of collective motion is reduced to the competition between local alignment and noise in interacting self-propelled particles. As I will show, this nevertheless gives rise to important and new physics. In this talk, I will give an update of our current knowledge about the Vicsek model, the Toner-Tu theory, and their relationship. I will also present the emerging picture of universality classes brought about by recent progress in the study of Vicsek-like models together with their continuous descriptions.

  12. Computational design of microscopic swimmers and capsules: From directed motion to collective behavior

    SciTech Connect

    Nikolov, Svetoslav V.; Shum, Henry; Balazs, Anna C.; Alexeev, Alexander

    2016-02-01

    Systems of motile microscopic particles can exhibit behaviors that resemble those of living microorganisms, including cooperative motion, self-organization, and adaptability to changing environments. Using mesoscale computational modeling, we design synthetic microswimmers and microcapsules that undergo controllable, self-propelled motion in solution. Stimuli-responsive hydrogels are used to actuate the microswimmers and to enable their navigation and chemotaxing behavior. The self-propelled motion of microcapsules on solid surfaces is achieved by the release of encapsulated solutes that alter the surface adhesiveness. These signaling solutes also enable interactions among multiple microcapsules that lead to complex, cooperative behavior. Our findings provide guidelines for creating microscopic devices and machines able to autonomously move and mimic the communication and chemotaxis of biological microorganisms.

  13. Two large-amplitude motions in triatomic molecules. Force field of the 1B2 (1A') state of SO2

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.; Ramachandra Rao, Ch. V. S.

    1980-01-01

    A program has been developed to calculate the energy levels associated with the two large-amplitude stretching vibrations ν1 and ν3 of a bent triatomic molecule in which the ν3 oscillation occurs in a double minimum potential. Employing the two large-amplitude Hamiltonian H0s(ρ1,ρ3) obtained earlier by Brand and Rao. [J. Mol. Spectrosc., 61, 360 (1976)], the vibrational energy levels (v1,v3even/odd) of SO2 molecule in its 1B2 (1A') excited state are calculated. The nine parameters of the potential function V0(ρ1,ρ3) are then adjusted to give a least-square fit to the 12 observed vibrational term values corresponding to the levels (v1,v3even) of S16O2 and S18O2. A three-dimensional picture of the potential surface V0(ρ1,ρ3) using the final set of force constants is also presented. The saddle point of this surface is at (ρO1=1.5525 Å, ρO3=0.0 Å) and the absolute minima occur at (ρe1=1.5644 Å, ρe3=±0.0745 Å). Barrier height, i.e., the height of the saddle point above the absolute minima, is 140 cm-1.

  14. A Collection and Statistical Analysis of Biophysical Data to Predict Motion Sickness Incidence

    DTIC Science & Technology

    1986-12-01

    control interval. Surface. Skin TemperaturA In most cases, the subject’s skin temperature, which is measured on the finger, decreased during pre...motion sickness response. 2. Chair control console which controls the chair’s rotation speed. 3. NDM Corporation Silvon Stress Test ECG electrodes and

  15. Correction of motion artifacts in OCT-AFI data collected in airways (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abouei, Elham; Lane, Pierre M.; Pahlevaninezhad, Hamid; Lee, Anthony; Lam, Stephen; MacAulay, Calum E.

    2016-03-01

    Abstract: Optical coherence tomography (OCT) provides in vivo imaging with near-histologic resolution of tissue morphology. OCT has been successfully employed in clinical practice in non-pulmonary fields of medicine such as ophthalmology and cardiology. Studies suggest that OCT has the potential to be a powerful tool for the detection and localization of malignant and non-malignant pulmonary diseases. The combination of OCT with autofluorescence imaging (AFI) provides valuable information about the structural and metabolic state of tissues. Successful application of OCT or OCT-AFI to the field of pulmonary medicine requires overcoming several challenges. This work address those associated with motion: cardiac cycle, breathing and non-uniform rotation distortion (NURD) artifacts. Mechanically rotated endoscopic probes often suffer from image degradation due to NURD. In addition cardiac and breathing motion artifacts may be present in-vivo that are not seen ex-vivo. These motion artifacts can be problematic in OCT-AFI systems with slower acquisition rates and have been observed to generate identifiable prominent artifacts which make confident interpretation of observed structures (blood vessels, etc) difficult. Understanding and correcting motion artifact could improve the image quality and interpretation. In this work, the motion artifacts in pulmonary OCT-AFI data sets are estimated in both AFI and OCT images using a locally adaptive registration algorithm that can be used to correct/reduce such artifacts. Performance of the algorithm is evaluated on images of a NURD phantom and on in-vivo OCT-AFI datasets of peripheral lung airways.

  16. Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions.

    PubMed

    Hung, Andrew; Tai, Kaihsu; Sansom, Mark S P

    2005-05-01

    Multiple nanosecond duration molecular dynamics simulations were performed on the transmembrane region of the Torpedo nicotinic acetylcholine receptor embedded within a bilayer mimetic octane slab. The M2 helices and M2-M3 loop regions were free to move, whereas the outer (M1, M3, M4) helix bundle was backbone restrained. The M2 helices largely retain their hydrogen-bonding pattern throughout the simulation, with some distortions in the helical end and loop regions. All of the M2 helices exhibit bending motions, with the hinge point in the vicinity of the central hydrophobic gate region (corresponding to residues alphaL251 and alphaV255). The bending motions of the M2 helices lead to a degree of dynamic narrowing of the pore in the region of the proposed hydrophobic gate. Calculations of Born energy profiles for various structures along the simulation trajectory suggest that the conformations of the M2 bundle sampled correspond to a closed conformation of the channel. Principal components analyses of each of the M2 helices, and of the five-helix M2 bundle, reveal concerted motions that may be relevant to channel function. Normal mode analyses using the anisotropic network model reveal collective motions similar to those identified by principal components analyses.

  17. Collective Cell Motion in an Epithelial Sheet Can Be Quantitatively Described by a Stochastic Interacting Particle Model

    PubMed Central

    Cochet, Olivier; Grasland-Mongrain, Erwan; Silberzan, Pascal; Hakim, Vincent

    2013-01-01

    Modelling the displacement of thousands of cells that move in a collective way is required for the simulation and the theoretical analysis of various biological processes. Here, we tackle this question in the controlled setting where the motion of Madin-Darby Canine Kidney (MDCK) cells in a confluent epithelium is triggered by the unmasking of free surface. We develop a simple model in which cells are described as point particles with a dynamic based on the two premises that, first, cells move in a stochastic manner and, second, tend to adapt their motion to that of their neighbors. Detailed comparison to experimental data show that the model provides a quantitatively accurate description of cell motion in the epithelium bulk at early times. In addition, inclusion of model “leader” cells with modified characteristics, accounts for the digitated shape of the interface which develops over the subsequent hours, providing that leader cells invade free surface more easily than other cells and coordinate their motion with their followers. The previously-described progression of the epithelium border is reproduced by the model and quantitatively explained. PMID:23505356

  18. Equation of motion and subsonic-transonic transitions of rectilinear edge dislocations: A collective-variable approach

    NASA Astrophysics Data System (ADS)

    Pellegrini, Yves-Patrick

    2014-08-01

    A theoretical framework is proposed to derive a dynamic equation motion for rectilinear dislocations within isotropic continuum elastodynamics. The theory relies on a recent dynamic extension of the Peierls-Nabarro equation, so as to account for core-width generalized stacking-fault energy effects. The degrees of freedom of the solution of the latter equation are reduced by means of the collective-variable method, well known in soliton theory, which we reformulate in a way suitable to the problem at hand. Through these means, two coupled governing equations for the dislocation position and core width are obtained, which are combined into one single complex-valued equation of motion, of compact form. The latter equation embodies the history dependence of dislocation inertia. It is employed to investigate the motion of an edge dislocation under uniform time-dependent loading, with focus on the subsonic/transonic transition. Except in the steady-state supersonic range of velocities—which the equation does not address—our results are in good agreement with atomistic simulations on tungsten. In particular, we provide an explanation for the transition, showing that it is governed by a loading-dependent dynamic critical stress. The transition has the character of a delayed bifurcation. Moreover, various quantitative predictions are made, that could be tested in atomistic simulations. Overall, this work demonstrates the crucial role played by core-width variations in dynamic dislocation motion.

  19. Solvable model of the collective motion of heterogeneous particles interacting on a sphere

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuma

    2014-02-01

    I propose a model of mutually interacting particles on an M-dimensional unit sphere. I derive the dynamics of the particles by extending the dynamics of the Kuramoto-Sakaguchi model. The dynamics include a natural-frequency matrix, which determines the motion of a particle with no external force, and an external force vector. The position (state variable) of a particle at a given time is obtained by the projection transformation of the initial position of the particle. The same projection transformation gives the position of the particles with the same natural-frequency matrix. I show that the motion of the center of mass of an infinite number of heterogeneous particles whose natural-frequency matrices are obtained from a class of multivariate Lorentz distribution is given by an M-dimensional ordinary differential equation in closed form. This result is an extension of the Ott-Antonsen theory.

  20. Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register

    DTIC Science & Technology

    2016-09-13

    electronic states. We find that heating of the modes of relative ion motion is substantially suppressed relative to that of the center-of-mass modes...computation [1] provides a gen- eral framework for fundamental investigations into sub- jects such as entanglement, quantum measurement , and quantum...tential fstd ­ V0 cossVT td 1 U0 to the (elliptical) ring electrode relative to the end cap electrodes. If several ions are trapped and cooled, they

  1. Fluid flow due to collective non-reciprocal motion of symmetrically-beating artificial cilia

    PubMed Central

    Khaderi, S. N.; den Toonder, J. M. J.; Onck, P. R.

    2012-01-01

    Using a magneto-mechanical solid-fluid numerical model for permanently magnetic artificial cilia, we show that the metachronal motion of symmetrically beating cilia establishes a net pressure gradient in the direction of the metachronal wave, which creates a unidirectional flow. The flow generated is characterised as a function of the cilia spacing, the length of the metachronal wave, and a dimensionless parameter that characterises the relative importance of the viscous forces over the elastic forces in the cilia. PMID:22662092

  2. Nuclear dissipation as damping of collective motion in the time-dependent RPA and extensions of it

    SciTech Connect

    Yannouleas, C.P.

    1982-07-01

    We have formulated a nonperturbative, microscopic dissipative process in the limit of an infinite mean free path which does not require any statistical assumptions. It attributes the damping of the collective motion to real transitions from the collective state to degenerate, more complicated nucelar states. The dissipation is described through wave packets which solve an approximate Schroedinger equation within extended subspaces, larger than the original subspace of the undamped motion. When the simple RPA is used, this process associates the dissipation with the escape width for direct particle emission. When the Second RPA is used, it associates the dissipation with the spreading width for transitions to the 2p-2h components of the nuclear compound states. The energy loss rate for sharp n-phonon initial states is proportional to the total collective energy. The classical dissipation, however, is obtained for coherent, multiphonon, initial packets which describe the damping of the mean field oscillations, and allow a theoretical connection with the Vibrating Potential Model, and thereby with models of one-body dissipation. The present model contrasts with linear response theories. Canonical coordinates for the collective degree of freedom are explicitly introduced. This allows the construction of a nonlinear frictional Hamiltonian which provides a connection with quantal friction. The dissipation process developed here is properly reversible rather than irreversible, in the sense that it is described by an approximate Schroedinger equation which honors time reversibility, rather than by a coarse grained master equation which violates it. Thus, the present theory contrasts with transport theories.

  3. Promoting collective motion of self-propelled agents by distance-based influence.

    PubMed

    Yang, Han-Xin; Zhou, Tao; Huang, Liang

    2014-03-01

    We propose a dynamic model for a system consisting of self-propelled agents in which the influence of an agent on another agent is weighted by geographical distance. A parameter α is introduced to adjust the influence: The smaller value of α means that the closer neighbors have a stronger influence on the moving direction. We find that there exists an optimal value of α leading to the highest degree of direction consensus. The value of optimal α increases as the system size increases, while it decreases as the absolute velocity, the sensing radius, and the noise amplitude increase.

  4. a Diatomic Molecule with Extremely Large Amplitude Motion in its Vibrational States that have Lengths of at Least 12,000 Angstroms.

    NASA Astrophysics Data System (ADS)

    Dattani, Nikesh S.

    2016-06-01

    The state-of-the-art empirical potential, and the state-of-the-art ab initio potential for the b(1^3Π2_u) state of 7,7Li_2 agree with each other that the (v=100,J=0) ro-vibrational state has an outer classical turning point larger than the diameter of most bacteria and many animal cells. The 2015 empirical potential based on a significant amount of spectroscopic data, predicts the (v=100,J=0) level to be bound by only 0.000 000 000 004 cm-1 (<0.2 Hz). The outer turning point of the vibrational wavefunction is about 671 000 Å or 0.07 mm. Here, the two Li atoms are bound to each other, despite being nearly as far apart as the lines on a macroscopic ruler. The 2014 ab initio calculation based on a powerful Fock space MRCC method and with the long-range tail anchored by C_3^7{Li}/r^3 with the ultra-high precision 2015 value of C_3^7{Li}, has this same level bound by 0.000 000 000 1 cm-1 (<3 Hz), with an outer turning point of >0.01 mm. While this discovery occurred during a study of Li_2, the b(1^3Π2_u) states of heavier alkali diatomics are expected to have even larger amplitude vibrational states. While it might be tempting to call these very large molecules ``Rydberg molecules", it is important to remember that this term is already used to describe highly excited electronic states whose energy levels follow a formula similar to that for the famous Rydberg series. The highly delocalized vibrational states are a truly unfamiliar phenomenon. Dattani (2015) http://arxiv.org/abs/1508.07184v1 Musial & Kucharski (2014) Journal of Chemical Theory and Computation, 10, 1200

  5. Detection of collective motions in dielectric spectra and the meaning of the generalized Vogel-Fulcher-Tamman equation

    NASA Astrophysics Data System (ADS)

    Nigmatullin, Raoul R.

    2009-02-01

    Based on the reduction property of dielectric spectra associated with the power-law function [∼( jωτ) ± ν] that appears in the frequency domain, one can develop an effective procedure for detection of different reduced motions (described by the corresponding power-law exponents) in temperature domain. If the power-law exponent ν is related to characteristic relaxation time τ by the relationship ν= ν0 ln( τ/ τ s)/ln( τ/ τ0) (here τ s, τ0 are the characteristic times characterizing a movement over fractal cluster that is defined in Ref. [Ya.E. Ryabov, Yu. Feldman, J. Chem. Phys. 116 (2002) 8610]) and the simple temperature dependence of τ( T)= τ A exp( E/ T) obeys the traditional Arrhenius relationship, then one can prove that any extreme point figuring in the complex permittivity ε( jω) spectra (characterized by the values [ ω m, y( ω m)]) obeys the generalized Vogel-Fulcher-Tamman (VFT) equation. This important statement confirms the existence of the ‘universal’ response (UR) (discovered and classified by Jonscher in frequency domain) and opens new possibilities in the detection of the ‘hidden’ collective motions in temperature region for self-similar (heterogeneous) systems. It gives also the extended interpretation of the VFT equation and allows one to differentiate collective motions passing through an extreme point. This differentiation, in turn, allows one to select the proper fitting function containing one or two (at least) relaxation times for the fitting of the complex permittivity function ε( jω) in the limited frequency domain. This conclusion can allow for the classification of dielectric spectroscopy as the spectroscopy of the reduced ( collective) motions, which are described by different power-law exponents on the mesoscale region. The verification of this approach on available DS data (poly(ethylene glycol)-based-single-ion conductors) completely confirms the basic statements of this theory and opens new possibilities

  6. Evaluating the potential of structure from motion technology for forest inventory data collection

    Treesearch

    Demetrios Gatziolis

    2015-01-01

    Since the inception of its annual plot design, the Forest Inventory and Analysis (FIA) Program of the USDA Forest Service has integrated into its data collection operations elements of digital technology, including data loggers, laser distance recorders and clinometers, and GPS devices. Data collected with the assistance of this technology during a typical plot visit...

  7. Collective motion of macroscopic spheres floating on capillary ripples: dynamic heterogeneity and dynamic criticality.

    PubMed

    Sanlı, Ceyda; Saitoh, Kuniyasu; Luding, Stefan; van der Meer, Devaraj

    2014-09-01

    When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal subdiffusion for the caging time scales followed by a diffusive regime at later times. We apply the methods developed to study dynamic heterogeneity and show that the typical time and length scales of the fluctuations due to rearrangements of observed particle groups significantly increase when the system approaches its largest experimentally accessible packing concentration. To connect the system to the dynamic criticality literature, we fit power laws to our results. The resultant critical exponents are consistent with those found in densely packed suspensions of colloids.

  8. Collective motion in selected central collisions of Au on Au at 150A MeV

    NASA Astrophysics Data System (ADS)

    Jeong, S. C.; Herrmann, N.; Fan, Z. G.; Freifelder, R.; Gobbi, A.; Hildenbrand, K. D.; Krämer, M.; Randrup, J.; Reisdorf, W.; Schüll, D.; Sodan, U.; Teh, K.; Wessels, J. P.; Pelte, D.; Trzaska, M.; Wienold, T.; Alard, J. P.; Amouroux, V.; Basrak, Z.; Bastid, N.; Belayev, I. M.; Berger, L.; Bini, M.; Blaich, Th.; Boussange, S.; Buta, A.; Čaplar, R.; Cerruti, C.; Cindro, N.; Coffin, J. P.; Dona, R.; Dupieux, P.; Erö, J.; Fintz, P.; Fodor, Z.; Fraysse, L.; Frolov, S.; Grigorian, Y.; Guillaume, G.; Hölbling, S.; Houari, A.; Jundt, F.; Kecskemeti, J.; Koncz, P.; Korchagin, Y.; Kotte, R.; Kuhn, C.; Ibnouzahir, M.; Legrand, I.; Lebedev, A.; Maguire, C.; Manko, V.; Maurenzig, P.; Mgebrishvili, G.; Mösner, J.; Moisa, D.; Montarou, G.; Montbel, I.; Morel, P.; Neubert, W.; Olmi, A.; Pasquali, G.; Petrovici, M.; Poggi, G.; Rami, F.; Ramillien, V.; Sadchikov, A.; Seres, Z.; Sikora, B.; Simion, V.; Smolyankin, S.; Tezkratt, R.; Vasiliev, M. A.; Wagner, P.; Wilhelmi, Z.; Wohlfarth, D.; Zhilin, A. V.

    1994-05-01

    Using the FOPI facility at GSI Darmstadt complete data of Au on Au collisions at 150A MeV were collected for charged products (Z=1-15) at laboratory angles 1°<=Θlab<=30°. Central collisions were selected by applying various criteria. The kinetic energy spectra of fragments from an isolated midrapidity source are investigated in detail for center-of-mass angles 25°<=Θc.m.<=45°. The heavy products (Z>=3) are used to determine the collective energy which is found to be at least 10A MeV.

  9. Digital Correction of Motion Artifacts in Microscopy Image Sequences Collected from Living Animals Using Rigid and Non-Rigid Registration

    PubMed Central

    Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2013-01-01

    Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail, and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artifacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and non-rigid components. The rigid registration component corrects global image translations, while the non-rigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung, and salivary gland of living rodents. PMID:22092443

  10. The crossover from collective motion to periphery diffusion for two-dimensional adatom-islands on Cu(111).

    PubMed

    Karim, Altaf; Kara, Abdelkader; Trushin, Oleg; Rahman, Talat S

    2011-11-23

    The diffusion of two-dimensional adatom-islands (up to 100 atoms) on Cu(111) has been studied, using the self-learning kinetic Monte Carlo method (Trushin et al 2005 Phys. Rev. B 72 115401). A variety of multiple- and single-atom processes are revealed in the simulations, and the size dependences of the diffusion coefficients and effective diffusion barriers are calculated for each. From the tabulated frequencies of events found in the simulation, we show a crossover from diffusion due to the collective motion of the island to a regime in which the island diffuses through periphery-dominated mass transport. This crossover occurs for island sizes between 13 and 19 atoms. For islands containing 19-100 atoms the scaling exponent is 1.5, which is in good agreement with previous work. The diffusion of islands containing 2-13 atoms can be explained primarily on the basis of a linear increase of the barrier for the collective motion with the size of the island.

  11. Lattice-free descriptions of collective motion with crowding and adhesion.

    PubMed

    Johnston, Stuart T; Simpson, Matthew J; Plank, Michael J

    2013-12-01

    Cell-to-cell adhesion is an important aspect of malignant spreading that is often observed in images from the experimental cell biology literature. Since cell-to-cell adhesion plays an important role in controlling the movement of individual malignant cells, it is likely that cell-to-cell adhesion also influences the spatial spreading of populations of such cells. Therefore, it is important for us to develop biologically realistic simulation tools that can mimic the key features of such collective spreading processes to improve our understanding of how cell-to-cell adhesion influences the spreading of cell populations. Previous models of collective cell spreading with adhesion have used lattice-based random walk frameworks which may lead to unrealistic results, since the agents in the random walk simulations always move across an artificial underlying lattice structure. This is particularly problematic in high-density regions where it is clear that agents in the random walk align along the underlying lattice, whereas no such regular alignment is ever observed experimentally. To address these limitations, we present a lattice-free model of collective cell migration that explicitly incorporates crowding and adhesion. We derive a partial differential equation description of the discrete process and show that averaged simulation results compare very well with numerical solutions of the partial differential equation.

  12. Dynamical Signatures of Collective Quality Grading in a Social Activity: Attendance to Motion Pictures

    PubMed Central

    Escobar, Juan V.; Sornette, Didier

    2015-01-01

    We investigate the laws governing people’s decisions and interactions by studying the collective dynamics of a well-documented social activity for which there exist ample records of the perceived quality: the attendance to movie theaters in the US. We picture the flows of attendance as impulses or “shocks” driven by external factors that in turn can create new cascades of attendances through direct recommendations whose effectiveness depends on the perceived quality of the movies. This corresponds to an epidemic branching model comprised of a decaying exponential function determining the time between cause and action, and a cascade of actions triggered by previous ones. We find that the vast majority of the ~3,500 movies studied fit our model remarkably well. From our results, we are able to translate a subjective concept such as movie quality into a probability of the deriving individual activity, and from it we build concrete quantitative predictions. Our analysis opens up the possibility of understanding other collective dynamics for which the perceived quality or appeal of an action is also known. PMID:25612292

  13. Steady-state spin synchronization through the collective motion of trapped ions

    NASA Astrophysics Data System (ADS)

    Shankar, Athreya; Cooper, John; Bohnet, Justin G.; Bollinger, John J.; Holland, Murray

    2017-03-01

    Ultranarrow-linewidth atoms coupled to a lossy optical cavity mode synchronize, i.e., develop correlations, and exhibit steady-state superradiance when continuously repumped. This type of system displays rich collective physics and promises metrological applications. These features inspire us to investigate if analogous spin synchronization is possible in a different platform that is one of the most robust and controllable experimental testbeds currently available: ion-trap systems. We design a system with a primary and secondary species of ions that share a common set of normal modes of vibration. In analogy to the lossy optical mode, we propose to use a lossy normal mode, obtained by sympathetic cooling with the secondary species of ions, to mediate spin synchronization in the primary species of ions. Our numerical study shows that spin-spin correlations develop, leading to a macroscopic collective spin in steady state. We propose an experimental method based on Ramsey interferometry to detect signatures of this spin synchronization; we predict that correlations prolong the visibility of Ramsey fringes, and that population statistics at the end of the Ramsey sequence can be used to directly infer spin-spin correlations.

  14. Dynamical signatures of collective quality grading in a social activity: attendance to motion pictures.

    PubMed

    Escobar, Juan V; Sornette, Didier

    2015-01-01

    We investigate the laws governing people's decisions and interactions by studying the collective dynamics of a well-documented social activity for which there exist ample records of the perceived quality: the attendance to movie theaters in the US. We picture the flows of attendance as impulses or "shocks" driven by external factors that in turn can create new cascades of attendances through direct recommendations whose effectiveness depends on the perceived quality of the movies. This corresponds to an epidemic branching model comprised of a decaying exponential function determining the time between cause and action, and a cascade of actions triggered by previous ones. We find that the vast majority of the ~3,500 movies studied fit our model remarkably well. From our results, we are able to translate a subjective concept such as movie quality into a probability of the deriving individual activity, and from it we build concrete quantitative predictions. Our analysis opens up the possibility of understanding other collective dynamics for which the perceived quality or appeal of an action is also known.

  15. Modeling the Emergence of Modular Leadership Hierarchy During the Collective Motion of Herds Made of Harems

    NASA Astrophysics Data System (ADS)

    Ozogány, Katalin; Vicsek, Tamás

    2015-02-01

    Gregarious animals need to make collective decisions in order to keep their cohesiveness. Several species of them live in multilevel societies, and form herds composed of smaller communities. We present a model for the development of a leadership hierarchy in a herd consisting of loosely connected sub-groups (e.g. harems) by combining self organization and social dynamics. It starts from unfamiliar individuals without relationships and reproduces the emergence of a hierarchical and modular leadership network that promotes an effective spreading of the decisions from more capable individuals to the others, and thus gives rise to a beneficial collective decision. Our results stemming from the model are in a good agreement with our observations of a Przewalski horse herd (Hortobágy, Hungary). We find that the harem-leader to harem-member ratio observed in Przewalski horses corresponds to an optimal network in this approach regarding common success, and that the observed and modeled harem size distributions are close to a lognormal.

  16. Transition to collective motion and mixing in suspensions of micro-rotors

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia; Lushi, Enkeleida

    2015-11-01

    Self-organization of active objects has attracted considerable attention recently, in particular in the context of living matter. Hydrodynamic interactions play a crucial role in the emerging behavior when the objects are immersed in fluid, especially in the low Reynolds number regime. While self-propelled active objects have been extensively investigated, the collective behavior of rotating active particle has received limited attention.To elucidate the transition to collective behavior and especially the role of multi-body hydrodynamic interactions, we numerically study systems of co- and counter-rotating spheres by varying the mixture ratio as well as the total volume fraction. We show that while macroscopic patterns emerge with increasing volume fraction in all the mixtures, the organization of the 100-0 and 50-50 mixtures are different in nature. The 50-50 rotor mixtures generate macroscopic fluid flows that are larger in magnitude and more chaotic, due to the propensity of rotors of opposite spins to pair up and co-swim. The properties of these generated fluid flows are investigated, and in particular we show that the mixing of a passive dye field is more efficiently done by 50-50 rotor mixtures. We acknowledge support from NSF CBET 1437545 and NSF CBET 1544196.

  17. Single-particle and collective motion in nuclear open quantum systems

    NASA Astrophysics Data System (ADS)

    Fossez, Kevin

    2017-01-01

    The properties of drip-line nuclei are profoundly affected by the environment of continuum states and the presence of decay channels. Their description requires the development of realistic theoretical approaches rooted in the open quantum system framework. However this formidable task presents many challenges and calls for closer collaborations between theorists and experimentalists. In this presentation a brief introduction to the problem of the description of weakly bound and unbound nuclei will be given with an emphasis on the relationship between nuclear structure and reactions. This will be illustrated by two recent investigations on the nuclei 11Be and 39Mg, where the role of the interplay between the collectivity and the continuum on single-particle structure has been studied. Finally the question of the existence of a nuclear system in the continuum is discussed for the case of the four-neutron system.

  18. Low work-function thermionic emission and orbital-motion-limited ion collection at bare-tether cathodic contact

    SciTech Connect

    Chen, Xin Sanmartín, J. R.

    2015-05-15

    With a thin coating of low-work-function material, thermionic emission in the cathodic segment of bare tethers might be much greater than orbital-motion-limited (OML) ion collection current. The space charge of the emitted electrons decreases the electric field that accelerates them outwards, and could even reverse it for high enough emission, producing a potential hollow. In this work, at the conditions of high bias and relatively low emission that make the potential monotonic, an asymptotic analysis is carried out, extending the OML ion-collection analysis to investigate the probe response due to electrons emitted by the negatively biased cylindrical probe. At given emission, the space charge effect from emitted electrons increases with decreasing magnitude of negative probe bias. Although emitted electrons present negligible space charge far away from the probe, their effect cannot be neglected in the global analysis for the sheath structure and two thin layers in between sheath and the quasineutral region. The space-charge-limited condition is located. It is found that thermionic emission increases the range of probe radius for OML validity and is greatly more effective than ion collection for cathodic contact of tethers.

  19. Characterization of Protein Flexibility Using Small-Angle X-Ray Scattering and Amplified Collective Motion Simulations

    PubMed Central

    Wen, Bin; Peng, Junhui; Zuo, Xiaobing; Gong, Qingguo; Zhang, Zhiyong

    2014-01-01

    Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations. PMID:25140431

  20. Spatio-temporal correlations in models of collective motion ruled by different dynamical laws

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S.; Melillo, Stefania; Viale, Massimiliano

    2016-12-01

    Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.

  1. Emergence of Swarming Behavior: Foraging Agents Evolve Collective Motion Based on Signaling.

    PubMed

    Witkowski, Olaf; Ikegami, Takashi

    2016-01-01

    Swarming behavior is common in biology, from cell colonies to insect swarms and bird flocks. However, the conditions leading to the emergence of such behavior are still subject to research. Since Reynolds' boids, many artificial models have reproduced swarming behavior, focusing on details ranging from obstacle avoidance to the introduction of fixed leaders. This paper presents a model of evolved artificial agents, able to develop swarming using only their ability to listen to each other's signals. The model simulates a population of agents looking for a vital resource they cannot directly detect, in a 3D environment. Instead of a centralized algorithm, each agent is controlled by an artificial neural network, whose weights are encoded in a genotype and adapted by an original asynchronous genetic algorithm. The results demonstrate that agents progressively evolve the ability to use the information exchanged between each other via signaling to establish temporary leader-follower relations. These relations allow agents to form swarming patterns, emerging as a transient behavior that improves the agents' ability to forage for the resource. Once they have acquired the ability to swarm, the individuals are able to outperform the non-swarmers at finding the resource. The population hence reaches a neutral evolutionary space which leads to a genetic drift of the genotypes. This reductionist approach to signal-based swarming not only contributes to shed light on the minimal conditions for the evolution of a swarming behavior, but also more generally it exemplifies the effect communication can have on optimal search patterns in collective groups of individuals.

  2. Emergence of Swarming Behavior: Foraging Agents Evolve Collective Motion Based on Signaling

    PubMed Central

    Ikegami, Takashi

    2016-01-01

    Swarming behavior is common in biology, from cell colonies to insect swarms and bird flocks. However, the conditions leading to the emergence of such behavior are still subject to research. Since Reynolds’ boids, many artificial models have reproduced swarming behavior, focusing on details ranging from obstacle avoidance to the introduction of fixed leaders. This paper presents a model of evolved artificial agents, able to develop swarming using only their ability to listen to each other’s signals. The model simulates a population of agents looking for a vital resource they cannot directly detect, in a 3D environment. Instead of a centralized algorithm, each agent is controlled by an artificial neural network, whose weights are encoded in a genotype and adapted by an original asynchronous genetic algorithm. The results demonstrate that agents progressively evolve the ability to use the information exchanged between each other via signaling to establish temporary leader-follower relations. These relations allow agents to form swarming patterns, emerging as a transient behavior that improves the agents’ ability to forage for the resource. Once they have acquired the ability to swarm, the individuals are able to outperform the non-swarmers at finding the resource. The population hence reaches a neutral evolutionary space which leads to a genetic drift of the genotypes. This reductionist approach to signal-based swarming not only contributes to shed light on the minimal conditions for the evolution of a swarming behavior, but also more generally it exemplifies the effect communication can have on optimal search patterns in collective groups of individuals. PMID:27119340

  3. Temperature-Accelerated Sampling and Amplified Collective Motion with Adiabatic Reweighting to Obtain Canonical Distributions and Ensemble Averages.

    PubMed

    Hu, Yue; Hong, Wei; Shi, Yunyu; Liu, Haiyan

    2012-10-09

    In molecular simulations, accelerated sampling can be achieved efficiently by raising the temperature of a small number of coordinates. For collective coordinates, the temperature-accelerated molecular dynamics method or TAMD has been previously proposed, in which the system is extended by introducing virtual variables that are coupled to these coordinates and simulated at higher temperatures (Maragliano, L.; Vanden-Eijnden, E. Chem. Phys. Lett.2005, 426, 168-175). In such accelerated simulations, steady state or equilibrium distributions may exist but deviate from the canonical Boltzmann one. We show that by assuming adiabatic decoupling between the subsystems simulated at different temperatures, correct canonical distributions and ensemble averages can be obtained through reweighting. The method makes use of the low-dimensional free energy surfaces that are estimated as Gaussian mixture probability densities through maximum likelihood and expectation maximization. Previously, we proposed the amplified collective motion method or ACM. The method employs the coarse-grained elastic network model or ANM to extract collective coordinates for accelerated sampling. Here, we combine the ideas of ACM and of TAMD to develop a general technique that can achieve canonical sampling through reweighting under the adiabatic approximation. To test the validity and accuracy of adiabatic reweighting, first we consider a single n-butane molecule in a canonical stochastic heat bath. Then, we use explicitly solvated alanine dipeptide and GB1 peptide as model systems to demonstrate the proposed approaches. With alanine dipeptide, it is shown that sampling can be accelerated by more than an order of magnitude with TAMD while correct distributions and canonical ensemble averages can be recovered, necessarily through adiabatic reweighting. For the GB1 peptide, the conformational distribution sampled by ACM-TAMD, after adiabatic reweighting, suggested that a normal simulation suffered

  4. Disentangling random thermal motion of particles and collective expansion of source from transverse momentum spectra in high energy collisions

    NASA Astrophysics Data System (ADS)

    Wei, Hua-Rong; Liu, Fu-Hu; Lacey, Roy A.

    2016-12-01

    In the framework of a multisource thermal model, we describe experimental results of the transverse momentum spectra of final-state light flavor particles produced in gold-gold (Au-Au), copper-copper (Cu-Cu), lead-lead (Pb-Pb), proton-lead (p-Pb), and proton-proton (p -p) collisions at various energies, measured by the PHENIX, STAR, ALICE, and CMS Collaborations, by using the Tsallis-standard (Tsallis form of Fermi-Dirac or Bose-Einstein), Tsallis, and two- or three-component standard distributions which can be in fact regarded as different types of ‘thermometers’ or ‘thermometric scales’ and ‘speedometers’. A central parameter in the three distributions is the effective temperature which contains information on the kinetic freeze-out temperature of the emitting source and reflects the effects of random thermal motion of particles as well as collective expansion of the source. To disentangle both effects, we extract the kinetic freeze-out temperature from the intercept of the effective temperature (T) curve as a function of particle’s rest mass (m 0) when plotting T versus m 0, and the mean transverse flow velocity from the slope of the mean transverse momentum (< {p}T> ) curve as a function of mean moving mass (\\overline{m}) when plotting < {p}T> versus \\overline{m}.

  5. Large Amplitude Oscillations in Prominences

    NASA Astrophysics Data System (ADS)

    Tripathi, D.; Isobe, H.; Jain, R.

    2009-12-01

    Since the first reports of oscillations in prominences in the 1930s, there have been major theoretical and observational developments to understand the nature of these oscillatory phenomena, leading to the whole new field of the so-called “prominence seismology”. There are two types of oscillatory phenomena observed in prominences; “small-amplitude oscillations” (2-3 km s-1), which are quite common, and “large-amplitude oscillations” (>20 km s-1) for which observations are scarce. Large-amplitude oscillations have been found as “winking filament” in H α as well as motion in the plane-of-sky in H α, EUV, micro-wave and He 10830 observations. Historically, it has been suggested that the large-amplitude oscillations in prominences were triggered by disturbances such as fast-mode MHD waves (Moreton wave) produced by remote flares. Recent observations show, in addition, that near-by flares or jets can also create such large-amplitude oscillations in prominences. Large-amplitude oscillations, which are observed both in transverse as well as longitudinal direction, have a range of periods varying from tens of minutes to a few hours. Using the observed period of oscillation and simple theoretical models, the obtained magnetic field in prominences has shown quite a good agreement with directly measured one and, therefore, justifies prominence seismology as a powerful diagnostic tool. On rare occasions, when the large-amplitude oscillations have been observed before or during the eruption, the oscillations may be applied to diagnose the stability and the eruption mechanism. Here we review the recent developments and understanding in the observational properties of large-amplitude oscillations and their trigger mechanisms and stability in the context of prominence seismology.

  6. Visual and motion cueing in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1985-01-01

    Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.

  7. Normal-state conductivity in underdoped La2-xSrxCuO4 thin films: Search for nonlinear effects related to collective stripe motion

    NASA Astrophysics Data System (ADS)

    Lavrov, A. N.; Tsukada, I.; Ando, Yoichi

    2003-09-01

    We report a detailed study of the electric-field dependence of the normal-state conductivity in La2-xSrxCuO4 thin films for two concentrations of doped holes, x=0.01 and 0.06, where formation of diagonal and vertical charged stripes was recently suggested. In order to elucidate whether high electric fields are capable of depinning the charged stripes and inducing their collective motion, we have measured current-voltage characteristics for various orientations of the electric field with respect to the crystallographic axes. However, even for the highest possible fields (˜1000 V/cm for x=0.01 and ˜300 V/cm for x=0.06) we observed no nonlinear conductivity features except for those related to the conventional Joule heating of the films. Our analysis indicates that Joule heating, rather than collective electron motion, may also be responsible for the nonlinear conductivity observed in some other two-dimensional transition-metal oxides as well. We discuss that a possible reason why moderate electric fields fail to induce a collective stripe motion in layered oxides is that fairly flexible and compressible charged stripes can adjust themselves to the crystal lattice and individual impurities, which makes their pinning much stronger than in the case of conventional rigid charge-density waves.

  8. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept.

    PubMed

    Ceseracciu, Elena; Sawacha, Zimi; Cobelli, Claudio

    2014-01-01

    During the last decade markerless motion capture techniques have gained an increasing interest in the biomechanics community. In the clinical field, however, the application of markerless techniques is still debated. This is mainly due to a limited number of papers dedicated to the comparison with the state of the art of marker based motion capture, in term of repeatability of the three dimensional joints' kinematics. In the present work the application of markerless technique to data acquired with a marker-based system was investigated. All videos and external data were recorded with the same motion capture system and included the possibility to use markerless and marker-based methods simultaneously. Three dimensional markerless joint kinematics was estimated and compared with the one determined with traditional marker based systems, through the evaluation of root mean square distance between joint rotations. In order to compare the performance of markerless and marker-based systems in terms of clinically relevant joint angles estimation, the same anatomical frames of reference were defined for both systems. Differences in calibration and synchronization of the cameras were excluded by applying the same wand calibration and lens distortion correction to both techniques. Best results were achieved for knee flexion-extension angle, with an average root mean square distance of 11.75 deg, corresponding to 18.35% of the range of motion. Sagittal plane kinematics was estimated better than on the other planes also for hip and ankle (root mean square distance of 17.62 deg e.g. 44.66%, and 7.17 deg e.g. 33.12%), meanwhile estimates for hip joint were the most incorrect. This technique enables users of markerless technology to compare differences with marker-based in order to define the degree of applicability of markerless technique.

  9. Theory of dielectric relaxation in non-crystalline solids: from a set of micromotions to the averaged collective motion in the mesoscale region

    NASA Astrophysics Data System (ADS)

    Nigmatullin, R. R.

    2005-04-01

    Based on the rather general decoupling procedure that reduces a set of micromotions to the averaged collective motion in the mesoscale region, a consistent and general theory of dielectric relaxation describing a wide set of dielectric spectroscopy (DS) data measured in a certain frequency/temperature range can be developed. The new theory explains and generalizes the Vogel-Fulcher-Tamman (VFT) equation and leads to the new type of kinetic equation, containing non-integer operators of differentiation and integration combined in the specific triads. Each triad combines three operators: the first non-integer operator has a real exponent, the other two form a pair of non-integer operators having the complex conjugate power-law exponents. This approach explains naturally the ‘universal response’ (UR) phenomenon discovered by Jonscher in a wide class of heterogeneous materials and confirms the justified data-curve fitting approach developed previously as a phenomenological tool for the analysis of raw complex permittivity data. It explains and generalizes some well-established experimental facts and contains also new predictions that can be verified in the experiment. This general approach helps to find the proper place for the DS as a science studying the different types of the ‘reduced’ collective motions and their various interactions with each other in the mesoscale region. This new theory explains also the fact why kinetic equations containing non-integer operators are realized in reality. They are necessary for description of slow collective motions which are probably realized in the intermediate range of scales not only in DS. Reology and mechanical relaxation represent also interesting and not well-understood phenomena, where the ‘fractional’ kinetics will find its proper place.

  10. Collective motion in a fluid complex plasma induced by interaction with a slow projectile under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Zhukhovitskii, Dmitry; Ivlev, Alexei; Thomas, Hubertus; Fortov, Vladimir; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir; Naumkin, Vadim

    Subsonic motion of a large particle (projectile) moving through the bulk of a dust crystal formed by negatively charged small particles is investigated using the PK-3 Plus laboratory onboard the International Space Station. Tracing the dust particle trajectories show that the projectile moves almost freely through the bulk of plasma crystal, while dust particles move along characteristic alpha-shaped pathways near the large particle. We develop a theory of nonviscous dust particles motion about a projectile and calculate particle trajectories. The deformation of a cavity around a subsonic projectile in the cloud of small dust particles is investigated with due regard for friction between the dust particles and atoms of neutral gas. The pressure of a dust cloud at the surface of a cavity around the projectile can become negative, which entails the emergence of a considerable asymmetry of the cavity, i.e., the cavity deformation. Corresponding threshold velocity is calculated, which is found to decrease with increasing cavity size. Developed theory makes it possible to estimate the static pressure of dust particles in a cloud on the basis of experimental data. A good agreement with experiment validates our approach.

  11. Large Amplitude Oscillations of a Double Pendulum

    NASA Astrophysics Data System (ADS)

    Gerres, Jeffrey M.; Jacobs, Robert M.; Kasun, Sara F.; Bacon, Margaret E.; Nagolu, Chakravarthi M.; Owens, Erin L.; Siehl, Kevin F.; Thomsen, Marshall; Troyer, Jon S.

    2008-03-01

    The nature of the normal modes of oscillation in the small angle regime of a double pendulum is well established. However, for large amplitude oscillations, a closed form solution of the differential equations of motion does not exist. Using Lagrange formalism, we explore both the in-phase and out-of-phase normal modes of oscillation of a double pendulum as a function of the mass ratio of the two bobs and their initial angular positions. We conduct the analysis using MatLab, where we initially verify our code in the known small amplitude limit. Among our results we find that certain symmetries between the in-phase and out-of-phase normal modes that exist in the small amplitude limit are no longer present at large amplitudes.

  12. Data Collection and Analysis Using Wearable Sensors for Monitoring Knee Range of Motion after Total Knee Arthroplasty.

    PubMed

    Chiang, Chih-Yen; Chen, Kun-Hui; Liu, Kai-Chun; Hsu, Steen Jun-Ping; Chan, Chia-Tai

    2017-02-22

    Total knee arthroplasty (TKA) is the most common treatment for degenerative osteoarthritis of that articulation. However, either in rehabilitation clinics or in hospital wards, the knee range of motion (ROM) can currently only be assessed using a goniometer. In order to provide continuous and objective measurements of knee ROM, we propose the use of wearable inertial sensors to record the knee ROM during the recovery progress. Digitalized and objective data can assist the surgeons to control the recovery status and flexibly adjust rehabilitation programs during the early acute inpatient stage. The more knee flexion ROM regained during the early inpatient period, the better the long-term knee recovery will be and the sooner early discharge can be achieved. The results of this work show that the proposed wearable sensor approach can provide an alternative for continuous monitoring and objective assessment of knee ROM recovery progress for TKA patients compared to the traditional goniometer measurements.

  13. Data Collection and Analysis Using Wearable Sensors for Monitoring Knee Range of Motion after Total Knee Arthroplasty

    PubMed Central

    Chiang, Chih-Yen; Chen, Kun-Hui; Liu, Kai-Chun; Hsu, Steen Jun-Ping; Chan, Chia-Tai

    2017-01-01

    Total knee arthroplasty (TKA) is the most common treatment for degenerative osteoarthritis of that articulation. However, either in rehabilitation clinics or in hospital wards, the knee range of motion (ROM) can currently only be assessed using a goniometer. In order to provide continuous and objective measurements of knee ROM, we propose the use of wearable inertial sensors to record the knee ROM during the recovery progress. Digitalized and objective data can assist the surgeons to control the recovery status and flexibly adjust rehabilitation programs during the early acute inpatient stage. The more knee flexion ROM regained during the early inpatient period, the better the long-term knee recovery will be and the sooner early discharge can be achieved. The results of this work show that the proposed wearable sensor approach can provide an alternative for continuous monitoring and objective assessment of knee ROM recovery progress for TKA patients compared to the traditional goniometer measurements. PMID:28241434

  14. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhong, Cheng; Douglas, Jack F.; Wang, Xiaodong; Cao, Qingping; Zhang, Dongxian; Jiang, Jian-Zhong

    2015-04-01

    We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by "dynamic heterogeneity" in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔGa with temperature of both the Cu and Zr diffusion coefficients D, and the alpha structural relaxation time τα can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract "cooperatively rearranging regions" of AG. We also find coexisting clusters of relatively "immobile" atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of "mobile" atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized ("immobile") and wandering ("mobile") particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.

  15. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys

    SciTech Connect

    Zhang, Hao; Zhong, Cheng; Wang, Xiaodong; Cao, Qingping; Jiang, Jian-Zhong E-mail: jack.douglas@nist.gov; Douglas, Jack F. E-mail: jack.douglas@nist.gov; Zhang, Dongxian

    2015-04-28

    We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by “dynamic heterogeneity” in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔG{sub a} with temperature of both the Cu and Zr diffusion coefficients D, and the alpha structural relaxation time τ{sub α} can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract “cooperatively rearranging regions” of AG. We also find coexisting clusters of relatively “immobile” atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of “mobile” atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized (“immobile”) and wandering (“mobile”) particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.

  16. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys.

    PubMed

    Zhang, Hao; Zhong, Cheng; Douglas, Jack F; Wang, Xiaodong; Cao, Qingping; Zhang, Dongxian; Jiang, Jian-Zhong

    2015-04-28

    We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by "dynamic heterogeneity" in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔGa with temperature of both the Cu and Zr diffusion coefficients D, and the alpha structural relaxation time τα can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract "cooperatively rearranging regions" of AG. We also find coexisting clusters of relatively "immobile" atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of "mobile" atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized ("immobile") and wandering ("mobile") particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.

  17. PULSE AMPLITUDE ANALYSERS

    DOEpatents

    Lewis, I.A.D.

    1956-05-15

    This patent pentains to an electrical pulse amplitude analyzer, capable of accepting input pulses having a separation between adjacent pulses in the order of one microsecond while providing a large number of channels of classification. In its broad aspect the described pulse amplitude analyzer utilizes a storage cathode ray tube und control circuitry whereby the amplitude of the analyzed pulses controls both the intensity and vertical defiection of the beam to charge particular spots in horizontal sectors of the tube face as the beam is moved horizontally across the tube face. As soon as the beam has swept the length of the tube the information stored therein is read out by scanning individually each horizontal sector corresponding to a certain range of pulse amplitudes and applying the output signal from each scan to separate indicating means.

  18. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  19. Real topological string amplitudes

    NASA Astrophysics Data System (ADS)

    Narain, K. S.; Piazzalunga, N.; Tanzini, A.

    2017-03-01

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.

  20. Collective cargo hauling by a bundle of parallel microtubules: bi-directional motion caused by load-dependent polymerization and depolymerization

    NASA Astrophysics Data System (ADS)

    Ghanti, Dipanwita; Chowdhury, Debashish

    2015-01-01

    A microtubule (MT) is a hollow tube of approximately 25 nm diameter. The two ends of the tube are dissimilar and are designated as ‘plus’ and ‘minus’ ends. Motivated by the collective push and pull exerted by a bundle of MTs during chromosome segregation in a living cell, we have developed here a much simplified theoretical model of a bundle of parallel dynamic MTs. The plus-end of all the MTs in the bundle is permanently attached to a movable ‘wall’ by a device whose detailed structure is not treated explicitly in our model. The only requirement is that the device allows polymerization and depolymerization of each MT at the plus-end. In spite of the absence of external force and direct lateral interactions between the MTs, the group of polymerizing MTs attached to the wall create a load force against the group of depolymerizing MTs and vice versa; the load against a group is shared equally by the members of that group. Such indirect interactions among the MTs give rise to the rich variety of possible states of collective dynamics that we have identified by computer simulations of the model in different parameter regimes. The bi-directional motion of the cargo, caused by the load-dependence of the polymerization kinetics, is a ‘proof-of-principle’ that the bi-directional motion of chromosomes before cell division does not necessarily need active participation of motor proteins.

  1. Collective responses of a large mackerel school depend on the size and speed of a robotic fish but not on tail motion.

    PubMed

    Kruusmaa, Maarja; Rieucau, Guillaume; Montoya, José Carlos Castillo; Markna, Riho; Handegard, Nils Olav

    2016-10-06

    So far, actuated fish models have been used to study animal interactions in small-scale controlled experiments. This study, conducted in a semi-controlled setting, investigates robot(5) interactions with a large wild-caught marine fish school (∼3000 individuals) in their natural social environment. Two towed fish robots were used to decouple size, tail motion and speed in a series of sea-cage experiments. Using high-resolution imaging sonar and sonar-video blind scoring, we monitored and classified the school's collective reaction towards the fish robots as attraction or avoidance. We found that two key releasers-the size and the speed of the robotic fish-were responsible for triggering either evasive reactions or following responses. At the same time, we found fish reactions to the tail motion to be insignificant. The fish evaded a fast-moving robot even if it was small. However, mackerels following propensity was greater towards a slow small robot. When moving slowly, the larger robot triggered significantly more avoidance responses than a small robot. Our results suggest that the collective responses of a large school exposed to a robotic fish could be manipulated by tuning two principal releasers-size and speed. These results can help to design experimental methods for in situ observations of wild fish schools or to develop underwater robots for guiding and interacting with free-ranging aggregated aquatic organisms.

  2. 78 FR 17701 - Agency Information Collection Activities: Notice of Appeal or Motion, Form I-290B; Revision of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... SECURITY U.S. Citizenship and Immigration Services Agency Information Collection Activities: Notice of...: The Department of Homeland Security (DHS), U.S. Citizenship and Immigration Services (USCIS) invites....S. Citizenship and Immigration Services. (4) Affected public who will be asked or required...

  3. Coherent quantum states from classical oscillator amplitudes

    NASA Astrophysics Data System (ADS)

    Briggs, John S.; Eisfeld, Alexander

    2012-05-01

    In the first days of quantum mechanics Dirac pointed out an analogy between the time-dependent coefficients of an expansion of the Schrödinger equation and the classical position and momentum variables solving Hamilton's equations. Here it is shown that the analogy can be made an equivalence in that, in principle, systems of classical oscillators can be constructed whose position and momenta variables form time-dependent amplitudes which are identical to the complex quantum amplitudes of the coupled wave function of an N-level quantum system with real coupling matrix elements. Hence classical motion can reproduce quantum coherence.

  4. Mass of nonrelativistic meson from leading twist distribution amplitudes

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.

    2011-01-01

    In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.

  5. Protostring scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Thorn, Charles B.

    2016-11-01

    We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.

  6. Oscillations of a Simple Pendulum with Extremely Large Amplitudes

    ERIC Educational Resources Information Center

    Butikov, Eugene I.

    2012-01-01

    Large oscillations of a simple rigid pendulum with amplitudes close to 180[degrees] are treated on the basis of a physically justified approach in which the cycle of oscillation is divided into several stages. The major part of the almost closed circular path of the pendulum is approximated by the limiting motion, while the motion in the vicinity…

  7. Oscillations of a Simple Pendulum with Extremely Large Amplitudes

    ERIC Educational Resources Information Center

    Butikov, Eugene I.

    2012-01-01

    Large oscillations of a simple rigid pendulum with amplitudes close to 180[degrees] are treated on the basis of a physically justified approach in which the cycle of oscillation is divided into several stages. The major part of the almost closed circular path of the pendulum is approximated by the limiting motion, while the motion in the vicinity…

  8. Collective motion in fully reconstructed gold on gold collisions between 2 and 8 GeV per nucleon

    NASA Astrophysics Data System (ADS)

    Liu, Heng

    Quark Gluon Plasma (QGP), is believed to have been formed at an early stage of the universe, about 10-6 sec after the Big Bang. QGP is a state of matter in which the quarks are deconfined and can move freely in the sea of gluons. According to the theory of quantum chromodynamics (QCD), conditions for a phase transition to QGP are reached at a critical temperature Tc /approx 150 MeV, or a critical energy density ɛc = 2 - 3 GeV/fm3 (roughly 10 times that of the nuclear ground state). These conditions might be achieved when two nuclei collide at relativistic energies where we expect deposition of energy in the overlap region is more than sufficient for ɛc to be exceeded. To create a QGP in the laboratory environment and to explore its properties is currently the most visible goal of relativistic heavy-ion physics. The E895 experiment was conducted at the Alternating Gradient Synchrotron accelerator at Brookhaven National Laboratory with the state-of-the-art EOS Time Projection Chamber (TPC) which effectively imaged the trajectories of charged fragments emerging from each collision in a three-dimensional array of 2+ million pixels. The TPC was located inside a large aperture dipole magnet with a field of 0.75 or 1 T. The TPC provided nearly 4π solid angle acceptance and particle identification via energy loss measurement. During January 1996 and November 1996, high statistics Au beam data were recorded at four beam energies: 2, 4, 6 and 8 GeV/nucleon. The 2-8 GeV/nucleon energy range is one of only two regions between a few MeV/nucleon and 160 GeV/nucleon where heavy-ion collisions are still largely unexplored. Collective effects observed at both higher and lower beam energies suggest that a measurable sideward flow signal (a type of first moment of fragment momenta with respect to the event reaction plane) should be observed in this experiment. Hydrodynamic and transport models indicate that collective effects are sensitive to various features of the nuclear

  9. Coupling of collective motions of the protein matrix to vibrations of the non-heme iron in bacterial photosynthetic reaction centers.

    PubMed

    Orzechowska, A; Lipińska, M; Fiedor, J; Chumakov, A; Zajac, M; Slezak, T; Matlak, K; Strzałka, K; Korecki, J; Fiedor, L; Burda, K

    2010-10-01

    Non-heme iron is a conservative component of type II photosynthetic reaction centers of unknown function. We found that in the reaction center from Rba. sphaeroides it exists in two forms, high and low spin ferrous states, whereas in Rsp. rubrum mostly in a low spin state, in line with our earlier finding of its low spin state in the algal photosystem II reaction center (Burda et al., 2003). The temperature dependence of the non-heme iron displacement studied by Mössbauer spectroscopy shows that the surrounding of the high spin iron is more flexible (Debye temperature ~165K) than that of the low spin atom (~207K). Nuclear inelastic scattering measurements of the collective motions in the Rba. sphaeroides reaction center show that the density of vibrational states, originating from non-heme iron, has well-separated modes between lower (4-17meV) and higher (17-25meV) energies while in the one from Rsp. rubrum its distribution is more uniform with only little contribution of low energy (~6meV) vibrations. It is the first experimental evidence that the fluctuations of the protein matrix in type II reaction center are correlated to the spin state of non-heme iron. We propose a simple mechanism in which the spin state of non-heme iron directly determines the strength of coupling between the two quinone acceptors (Q(A) and Q(B)) and fast collective motions of protein matrix that play a crucial role in activation and regulation of the electron and proton transfer between these two quinones. We suggest that hydrogen bond network on the acceptor side of reaction center is responsible for stabilization of non-heme iron in different spin states. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Amplitudes of Field Theories

    SciTech Connect

    Feng Bo

    2007-11-20

    In this talk, we will present recent progresses in perturbative calculations of scattering amplitudes at tree and one-loop levels. At tree level, we will discuss MHV-diagram method and on-shell recursion relation. At one-loop level, we will establish the framework of Unitarity cut method.

  11. Reinforcing Saccadic Amplitude Variability

    ERIC Educational Resources Information Center

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  12. A course in amplitudes

    NASA Astrophysics Data System (ADS)

    Taylor, Tomasz R.

    2017-05-01

    This a pedagogical introduction to scattering amplitudes in gauge theories. It proceeds from Dirac equation and Weyl fermions to the two pivot points of current developments: the recursion relations of Britto, Cachazo, Feng and Witten, and the unitarity cut method pioneered by Bern, Dixon, Dunbar and Kosower. In ten lectures, it covers the basic elements of on-shell methods.

  13. Planar amplitude ammonia sensor

    NASA Astrophysics Data System (ADS)

    Karasinski, Pawel; Rogozinski, Roman

    2004-09-01

    The paper presents the results of investigation involving the influence of the change of launching conditions on the characteristics of amplitude ammonia sensors produced with the application of strip waveguides of different refractive profiles. Strip waveguides were produced using ion exchange technique, and the absorption sensitive films were produced using sol-gel technology.

  14. Steric interactions lead to collective tilting motion in the ribosome during mRNA-tRNA translocation

    NASA Astrophysics Data System (ADS)

    Nguyen, Kien; Whitford, Paul C.

    2016-02-01

    Translocation of mRNA and tRNA through the ribosome is associated with large-scale rearrangements of the head domain in the 30S ribosomal subunit. To elucidate the relationship between 30S head dynamics and mRNA-tRNA displacement, we apply molecular dynamics simulations using an all-atom structure-based model. Here we provide a statistical analysis of 250 spontaneous transitions between the A/P-P/E and P/P-E/E ensembles. Consistent with structural studies, the ribosome samples a chimeric ap/P-pe/E intermediate, where the 30S head is rotated ~18°. It then transiently populates a previously unreported intermediate ensemble, which is characterized by a ~10° tilt of the head. To identify the origins of head tilting, we analyse 781 additional simulations in which specific steric features are perturbed. These calculations show that head tilting may be attributed to specific steric interactions between tRNA and the 30S subunit (PE loop and protein S13). Taken together, this study demonstrates how molecular structure can give rise to large-scale collective rearrangements.

  15. Steric interactions lead to collective tilting motion in the ribosome during mRNA–tRNA translocation

    PubMed Central

    Nguyen, Kien; Whitford, Paul C.

    2016-01-01

    Translocation of mRNA and tRNA through the ribosome is associated with large-scale rearrangements of the head domain in the 30S ribosomal subunit. To elucidate the relationship between 30S head dynamics and mRNA–tRNA displacement, we apply molecular dynamics simulations using an all-atom structure-based model. Here we provide a statistical analysis of 250 spontaneous transitions between the A/P–P/E and P/P–E/E ensembles. Consistent with structural studies, the ribosome samples a chimeric ap/P–pe/E intermediate, where the 30S head is rotated ∼18°. It then transiently populates a previously unreported intermediate ensemble, which is characterized by a ∼10° tilt of the head. To identify the origins of head tilting, we analyse 781 additional simulations in which specific steric features are perturbed. These calculations show that head tilting may be attributed to specific steric interactions between tRNA and the 30S subunit (PE loop and protein S13). Taken together, this study demonstrates how molecular structure can give rise to large-scale collective rearrangements. PMID:26838673

  16. Movement amplitude and tempo change in piano performance

    NASA Astrophysics Data System (ADS)

    Palmer, Caroline

    2004-05-01

    Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.

  17. Weak boson production amplitude zeros; equalities of the helicity amplitudes

    NASA Astrophysics Data System (ADS)

    Mamedov, Fizuli

    2002-08-01

    We investigate the radiation amplitude zeros exhibited by many standard model amplitudes for triple weak gauge boson production processes. We show that WZγ production amplitudes have an especially rich structure in terms of zeros; these amplitudes have zeros originating from several different sources. It is also shown that the type-I current null zone is the special case of the equality of the specific helicity amplitudes.

  18. Ramped-amplitude NOVEL

    NASA Astrophysics Data System (ADS)

    Can, T. V.; Weber, R. T.; Walish, J. J.; Swager, T. M.; Griffin, R. G.

    2017-04-01

    We present a pulsed dynamic nuclear polarization (DNP) study using a ramped-amplitude nuclear orientation via electron spin locking (RA-NOVEL) sequence that utilizes a fast arbitrary waveform generator (AWG) to modulate the microwave pulses together with samples doped with narrow-line radicals such as 1,3-bisdiphenylene-2-phenylallyl (BDPA), sulfonated-BDPA (SA-BDPA), and trityl-OX063. Similar to ramped-amplitude cross polarization in solid-state nuclear magnetic resonance, RA-NOVEL improves the DNP efficiency by a factor of up to 1.6 compared to constant-amplitude NOVEL (CA-NOVEL) but requires a longer mixing time. For example, at τmix = 8 μs, the DNP efficiency reaches a plateau at a ramp amplitude of ˜20 MHz for both SA-BDPA and trityl-OX063, regardless of the ramp profile (linear vs. tangent). At shorter mixing times (τmix = 0.8 μs), we found that the tangent ramp is superior to its linear counterpart and in both cases there exists an optimum ramp size and therefore ramp rate. Our results suggest that RA-NOVEL should be used instead of CA-NOVEL as long as the electronic spin lattice relaxation T1e is sufficiently long and/or the duty cycle of the microwave amplifier is not exceeded. To the best of our knowledge, this is the first example of a time domain DNP experiment that utilizes modulated microwave pulses. Our results also suggest that a precise modulation of the microwave pulses can play an important role in optimizing the efficiency of pulsed DNP experiments and an AWG is an elegant instrumental solution for this purpose.

  19. Amplitude Modulator Chassis

    SciTech Connect

    Erbert, G

    2009-09-01

    The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 ps apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.

  20. Effects of Motion Sickness Severity on the Vestibular-Evoked Myogenic Potentials

    PubMed Central

    Fowler, Cynthia G.; Sweet, Amanda; Steffel, Emily

    2015-01-01

    Background Motion sickness is a common debilitating condition associated with both actual and perceived motion. Despite the commonality, little is known about the underlying physiological mechanisms. One theory proposes that motion sickness arises from a mismatch between reality and past experience in vertical motions. Physiological tests of the vestibular system, however, have been inconclusive regarding the underlying pathogenesis. Cervical vestibular-evoked myogenic potentials (cVEMPs) arise from the saccule, which responds to vertical motion. If vertical motion elicits motion sickness, the cVEMP should be affected. Purpose The purpose of this investigation was to determine if cVEMP characteristics differ among individuals with a range of motion sickness susceptibility from negligible to severe. The hypothesis was that individuals with high susceptibility would have larger cVEMP amplitudes and shorter cVEMP latencies relative to those who are resistant to motion sickness. Research Design The study had two parts. The first was quasi-experimental in which participants comprised three groups based on susceptibility to motion sickness (low, mild-moderate, high) as identified on the short version of the Motion Sickness Susceptibility Questionnaire (MSSQ-S). The second part of the study was correlational and evaluated the specific relationships between the degree of motion sickness susceptibility and characteristics of the VEMPs. Study Sample A total of 24 healthy young adults (ages 20–24 yr) were recruited from the university and the community without regard to motion sickness severity. Data Collection and Analysis Participants took the MSSQ-S, which quantifies susceptibility to motion sickness. The participants had a range of motion sickness susceptibility with MSSQ raw scores from 0.0–36.6, which correspond to percent susceptibility from 0.0–99.3%. VEMPs were elicited by 500 Hz tone-bursts monaurally in both ears at 120 dB pSPL. MSSQ-S percent scores were

  1. High amplitude propagated contractions.

    PubMed

    Bharucha, A E

    2012-11-01

    While most colonic motor activity is segmental and non-propulsive, colonic high amplitude propagated contractions (HAPC) can transfer colonic contents over long distances and often precede defecation. High amplitude propagated contractions occur spontaneously, in response to pharmacological agents or colonic distention. A subset of patients with slow transit constipation have fewer HAPC. In this issue of Neurogastroenterology and Motility, Rodriguez et al. report that anal relaxation during spontaneous and bisacodyl-induced HAPC exceeds anal relaxation during rectal distention in constipated children undergoing colonic manometry. Moreover, and consistent with a neural mechanism, anal relaxation often precedes arrival of HAPC in the left colon. High amplitude propagated contractions are also used to evaluate the motor response to a meal and pharmacological stimuli (e.g., bisacodyl, neostigmine) and to identify colonic inertia during colonic motility testing in chronic constipation. This editorial comprehensively reviews the characteristics, physiology and pharmacology of HAPC, their assessment by manometry, and relevance to constipation and diarrhea. © 2012 Blackwell Publishing Ltd.

  2. Amplitudes of Spiral Perturbations

    NASA Astrophysics Data System (ADS)

    Grosbol, P.; Patsis, P. A.

    2014-03-01

    It has proven very difficult to estimate the amplitudes of spiral perturbations in disk galaxies from observations due to the variation of mass-to-light ratio and extinction across spiral arms. Deep, near-infrared images of grand-design spiral galaxies obtained with HAWK-I/VLT were used to analyze the azimuthal amplitude and shape of arms, which, even in the K-band may, be significantly biased by the presence of young stellar populations. Several techniques were applied to evaluate the relative importance of young stars across the arms, such as surface brightness of the disk with light from clusters subtracted, number density of clusters detected, and texture of the disk. The modulation of the texture measurement, which correlates with the number density of faint clusters, yields amplitudes of the spiral perturbation in the range 0.1-0.2. This estimate gives a better estimate of the mass perturbation in the spiral arms, since it is dominated by old clusters.

  3. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Gray, G.W.; Jensen, A.S.

    1957-10-22

    A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.

  4. HIGH AMPLITUDE PROPAGATED CONTRACTIONS

    PubMed Central

    Bharucha, Adil E.

    2012-01-01

    While most colonic motor activity is segmental and non-propulsive, colonic high amplitude propagated contractions (HAPC) can transfer colonic contents over long distances and often precede defecation. HAPC occur spontaneously, in response to pharmacological agents or colonic distention. In this issue of Neurogastroenterology and Motility, Rodriguez and colleagues report that anal relaxation during spontaneous and bisacodyl-induced HAPC exceeds anal relaxation during rectal distention in constipated children undergoing colonic manometry. Moreover, and consistent with a neural mechanism, anal relaxation often precedes arrival of HAPC in the left colon. This editorial comprehensively reviews the characteristics, physiology and pharmacology of HAPC, their assessment by manometry, and relevance to constipation and diarrhea. PMID:23057554

  5. Pion distribution amplitude and quasidistributions

    DOE PAGES

    Radyushkin, Anatoly V.

    2017-03-27

    We extend our analysis of quasidistributions onto the pion distribution amplitude. Using the formalism of parton virtuality distribution amplitudes, we establish a connection between the pion transverse momentum dependent distribution amplitude Ψ(x,k2⊥) and the pion quasidistribution amplitude (QDA) Qπ(y,p3). We build models for the QDAs from the virtuality-distribution-amplitude-based models for soft transverse momentum dependent distribution amplitudes, and analyze the p3 dependence of the resulting QDAs. As there are many models claimed to describe the primordial shape of the pion distribution amplitude, we present the p3-evolution patterns for models producing some popular proposals: Chernyak-Zhitnitsky, flat, and asymptotic distribution amplitude. Finally, ourmore » results may be used as a guide for future studies of the pion distribution amplitude on the lattice using the quasidistribution approach.« less

  6. Modelling of grain boundary dynamics using amplitude equations

    NASA Astrophysics Data System (ADS)

    Hüter, Claas; Neugebauer, Jörg; Boussinot, Guillaume; Svendsen, Bob; Prahl, Ulrich; Spatschek, Robert

    2017-07-01

    We discuss the modelling of grain boundary dynamics within an amplitude equations description, which is derived from classical density functional theory or the phase field crystal model. The relation between the conditions for periodicity of the system and coincidence site lattices at grain boundaries is investigated. Within the amplitude equations framework, we recover predictions of the geometrical model by Cahn and Taylor for coupled grain boundary motion, and find both {<100\\rangle} and {<110\\rangle} coupling. No spontaneous transition between these modes occurs due to restrictions related to the rotational invariance of the amplitude equations. Grain rotation due to coupled motion is also in agreement with theoretical predictions. Whereas linear elasticity is correctly captured by the amplitude equations model, open questions remain for the case of nonlinear deformations.

  7. Classifying Motion.

    ERIC Educational Resources Information Center

    Duzen, Carl; And Others

    1992-01-01

    Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)

  8. Classifying Motion.

    ERIC Educational Resources Information Center

    Duzen, Carl; And Others

    1992-01-01

    Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)

  9. Is DAMAs modulation amplitude changing with time?

    NASA Astrophysics Data System (ADS)

    Kelso, Chris

    2016-06-01

    If dark matter is composed of weakly interacting particles, Earth's orbital motion induces a small annual variation in the rate at which these particles interact in a terrestrial detector. The DAMA collaboration has identified at a 9.3σ confidence level (CL) such an annual modulation in their event rate over two detector iterations, DAMA/NaI and DAMA/LIBRA, each with about 7 years of observations. We examine the nature of this modulation signal and find the modulation amplitude for the two detectors is inconsistent at the 3σ CL over 2-6 keVee. Such a time-dependence in the modulation amplitude is unexpected behavior for a dark matter signal, at least for dark matter halo morphologies consistent with the DAMA signal. We also find unusual behavior over the 5-6 keVee energy range that might indicate problems with the data.

  10. A demonstration of motion base design alternatives for the National Advanced Driving Simulator

    NASA Technical Reports Server (NTRS)

    Mccauley, Michael E.; Sharkey, Thomas J.; Sinacori, John B.; Laforce, Soren; Miller, James C.; Cook, Anthony

    1992-01-01

    A demonstration of the capability of NASA's Vertical Motion Simulator to simulate two alternative motion base designs for the National Advanced Driving simulator (NADS) is reported. The VMS is located at ARC. The motion base conditions used in this demonstration were as follows: (1) a large translational motion base; and (2) a motion base design with limited translational capability. The latter had translational capability representative of a typical synergistic motion platform. These alternatives were selected to test the prediction that large amplitude translational motion would result in a lower incidence or severity of simulator induced sickness (SIS) than would a limited translational motion base. A total of 10 drivers performed two tasks, slaloms and quick-stops, using each of the motion bases. Physiological, objective, and subjective measures were collected. No reliable differences in SIS between the motion base conditions was found in this demonstration. However, in light of the cost considerations and engineering challenges associated with implementing a large translation motion base, performance of a formal study is recommended.

  11. PULSE AMPLITUDE DISTRIBUTION RECORDER

    DOEpatents

    Cowper, G.

    1958-08-12

    A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.

  12. Adaptation to real motion reveals direction-selective interactions between real and implied motion processing.

    PubMed

    Lorteije, Jeannette A M; Kenemans, J Leon; Jellema, Tjeerd; van der Lubbe, Rob H J; Lommers, Marjolein W; van Wezel, Richard J A

    2007-08-01

    Viewing static pictures of running humans evokes neural activity in the dorsal motion-sensitive cortex. To establish whether this response arises from direction-selective neurons that are also involved in real motion processing, we measured the visually evoked potential to implied motion following adaptation to static or moving random dot patterns. The implied motion response was defined as the difference between evoked potentials to pictures with and without implied motion. Interaction between real and implied motion was found as a modulation of this difference response by the preceding motion adaptation. The amplitude of the implied motion response was significantly reduced after adaptation to motion in the same direction as the implied motion, compared to motion in the opposite direction. At 280 msec after stimulus onset, the average difference in amplitude reduction between opposite and same adapted direction was 0.5 muV on an average implied motion amplitude of 2.0 muV. These results indicate that the response to implied motion arises from direction-selective motion-sensitive neurons. This is consistent with interactions between real and implied motion processing at a neuronal level.

  13. Invariant amplitudes for pion electroproduction

    NASA Astrophysics Data System (ADS)

    Pasquini, B.; Drechsel, D.; Tiator, L.

    2007-12-01

    The invariant amplitudes for pion electroproduction on the nucleon are evaluated by dispersion relations at constant t with MAID as input for the imaginary parts of these amplitudes. In the threshold region these amplitudes are confronted with the predictions of several low-energy theorems derived in the soft-pion limit. In general agreement with chiral perturbation theory, the dispersive approach yields large corrections to these theorems because of the finite pion mass.

  14. Amplitude variations in coarticulated vowels

    PubMed Central

    Jacewicz, Ewa; Fox, Robert Allen

    2008-01-01

    This paper seeks to characterize the nature, size, and range of acoustic amplitude variation in naturally produced coarticulated vowels in order to determine its potential contribution and relevance to vowel perception. The study is a partial replication and extension of the pioneering work by House and Fairbanks [J. Acoust. Soc. Am. 22, 105–113 (1953)], who reported large variation in vowel amplitude as a function of consonantal context. Eight American English vowels spoken by men and women were recorded in ten symmetrical CVC consonantal contexts. Acoustic amplitude measures included overall rms amplitude, amplitude of the rms peak along with its relative location in the CVC-word, and the amplitudes of individual formants F1–F4 along with their frequencies. House and Fairbanks’ amplitude results were not replicated: Neither the overall rms nor the rms peak varied appreciably as a function of consonantal context. However, consonantal context was shown to affect significantly and systematically the amplitudes of individual formants at the vowel nucleus. These effects persisted in the auditory representation of the vowel signal. Auditory spectra showed that the pattern of spectral amplitude variation as a function of contextual effects may still be encoded and represented at early stages of processing by the peripheral auditory system. PMID:18529192

  15. On the Period-Amplitude and Amplitude-Period Relationships

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    Examined are Period-Amplitude and Amplitude-Period relationships based on the cyclic behavior of the 12-month moving averages of monthly mean sunspot numbers for cycles 0.23, both in terms of Fisher's exact tests for 2x2 contingency tables and linear regression analyses. Concerning the Period-Amplitude relationship (same cycle), because cycle 23's maximum amplitude is known to be 120.8, the inferred regressions (90-percent prediction intervals) suggest that its period will be 131 +/- 24 months (using all cycles) or 131 +/- 18 months (ignoring cycles 2 and 4, which have the extremes of period, 108 and 164 months, respectively). Because cycle 23 has already persisted for 142 months (May 1996 through February 2008), based on the latter prediction, it should end before September 2008. Concerning the Amplitude-Period relationship (following cycle maximum amplitude versus preceding cycle period), because cycle 23's period is known to be at least 142 months, the inferred regressions (90-percent prediction intervals) suggest that cycle 24's maximum amplitude will be about less than or equal to 96.1 +/- 55.0 (using all cycle pairs) or less than or equal to 91.0 +/- 36.7 (ignoring statistical outlier cycle pairs). Hence, cycle 24's maximum amplitude is expected to be less than 151, perhaps even less than 128, unless cycle pair 23/24 proves to be a statistical outlier.

  16. Coupling of Large Amplitude Inversion with Other States

    NASA Astrophysics Data System (ADS)

    Pearson, John; Yu, Shanshan

    2016-06-01

    The coupling of a large amplitude motion with a small amplitude vibration remains one of the least well characterized problems in molecular physics. Molecular inversion poses a few unique and not intuitively obvious challenges to the large amplitude motion problem. In spite of several decades of theoretical work numerous challenges in calculation of transition frequencies and more importantly intensities persist. The most challenging aspect of this problem is that the inversion coordinate is a unique function of the overall vibrational state including both the large and small amplitude modes. As a result, the r-axis system and the meaning of the K-quantum number in the rotational basis set are unique to each vibrational state of large or small amplitude motion. This unfortunate reality has profound consequences to calculation of intensities and the coupling of nearly degenerate vibrational states. The case of NH3 inversion and inversion through a plane of symmetry in alcohols will be examined to find a general path forward.

  17. Amplitude-dependent station magnitude

    NASA Astrophysics Data System (ADS)

    Radzyner, Yael; Ben Horin, Yochai; Steinberg, David M.

    2016-04-01

    Magnitude, a concept first presented by Gutenberg and Richter, adjusts measurements of ground motion for epicentral distance and source depth. Following this principle, the IDC defines the j'th station body wave magnitude for event i as mb(stai,j) = log 10(Aj,i/Tj,i) + V C(Δj,i,hi) , where VC is the Veith-Clawson (VC) correction to compensate for the epicentral distance of the station and the depth of the source. The network magnitude is calculated as the average of station magnitudes. The IDC magnitude estimation is used for event characterization and discrimination and it should be as accurate as possible. Ideally, the network magnitude should be close in value to the station magnitudes. In reality, it is observed that the residuals range between -1 and 1 mu or ±25% of a given mb(neti) value. We show that the residual, mb(neti) -mb(staj,i), depends linearly on log 10(Aj,i/Tj,i), and we correct for this dependence using the following procedure: Calculate a "jackknifed" network magnitude, mbj,n(neti), i.e. an average over all participating stations except station n. Using all measurements at station n, calculate the parameters an, bn of the linear fit of the residual mbj,n(neti) - mb(stan,i to log 10(An,i/Tn,i). For each event i at station n calculate the new station magnitude mbnew(stan,i) = (an + 1)log(An,i/Tn,i) + V C(Δn,i,hi) + bn Calculate the new network magnitude: mbnew(neti) = 1N- ∑ n=1nmbnew(stan,i) The procedure was used on more than two million station-event pairs. Correcting for the station-specific dependence on log amplitude reduces the residuals by roughly a third. We have calculated the spread of the distributions, and compared the original values and those for the corrected magnitudes. The spread is the ratio between the variance of the network magnitudes, and the variance of the residual. Calculations show an increase in the ratio of the variance, meaning that the correction process presented in this document did not lead to loss of variance

  18. Motion Sickness

    MedlinePlus

    Motion sickness is a common problem in people traveling by car, train, airplanes, and especially boats. Anyone ... children, pregnant women, and people taking certain medicines. Motion sickness can start suddenly, with a queasy feeling ...

  19. Chaotic ion motion in magnetosonic plasma waves

    NASA Technical Reports Server (NTRS)

    Varvoglis, H.

    1984-01-01

    The motion of test ions in a magnetosonic plasma wave is considered, and the 'stochasticity threshold' of the wave's amplitude for the onset of chaotic motion is estimated. It is shown that for wave amplitudes above the stochasticity threshold, the evolution of an ion distribution can be described by a diffusion equation with a diffusion coefficient D approximately equal to 1/v. Possible applications of this process to ion acceleration in flares and ion beam thermalization are discussed.

  20. Measurement, characterization, and prediction of strong ground motion

    USGS Publications Warehouse

    Joyner, William; Boore, David M.

    1988-01-01

    A number of predictive relationships derived from regression analysis of strong-motion data are available for horizontal peak acceleration, velocity, and response spectral values. Theoretical prediction of ground motion calls for stochastic source models because source heterogeneities control the amplitude of ground motion at most, if not all, frequencies of engineering interest. Theoretical methods have been developed for estimation of ground-motion parameters and simulation of ground-motion time series. These methods are particularly helpful for regions such, as eastern North America where strong-motion data are sparse. The authors survey the field, first reviewing developments in ground-motion measurement and data processing. The authors then consider the choice of parameters for characterizing strong ground motion and describe the wave-types involved in strong ground motion and the factors affecting ground-motion amplitudes. They conclude by describing methods for predicting ground motion.

  1. Substorm statistics: Occurrences and amplitudes

    SciTech Connect

    Borovsky, J.E.; Nemzek, R.J.

    1994-05-01

    The occurrences and amplitudes of substorms are statistically investigated with the use of three data sets: the AL index, the Los Alamos 3-satellite geosynchronous energetic-electron measurements, and the GOES-5 and -6 geosynchronous magnetic-field measurements. The investigation utilizes {approximately} 13,800 substorms in AL, {approximately} 1400 substorms in the energetic-electron flux, and {approximately} 100 substorms in the magnetic field. The rate of occurrence of substorms is determined as a function of the time of day, the time of year, the amount of magnetotail bending, the orientation of the geomagnetic dipole, the toward/away configuration of the IMF, and the parameters of the solar wind. The relative roles of dayside reconnection and viscous coupling in the production of substorms are assessed. Three amplitudes are defined for a substorms: the jump in the AL index, the peak of the >30-keV integral electron flux at geosynchronous orbit near midnight, and the angle of rotation of the geosynchronous magnetic field near midnight. The substorm amplitudes are statistically analyzed, the amplitude measurements are cross correlated with each other, and the substorm amplitudes are determined as functions of the solar-wind parameters. Periodically occurring and randomly occurring substorms are analyzed separately. The energetic-particle-flux amplitudes are consistent with unloading and the AL amplitudes are consistent with direct driving plus unloading.

  2. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  3. Small amplitude quasibreathers and oscillons

    SciTech Connect

    Fodor, Gyula; Lukacs, Arpad; Forgacs, Peter; Horvath, Zalan

    2008-07-15

    Quasibreathers (QB) are time-periodic solutions with weak spatial localization introduced in G. Fodor et al. in [Phys. Rev. D 74, 124003 (2006)]. QB's provide a simple description of oscillons (very long-living spatially localized time dependent solutions). The small amplitude limit of QB's is worked out in a large class of scalar theories with a general self-interaction potential, in D spatial dimensions. It is shown that the problem of small amplitude QB's is reduced to a universal elliptic partial differential equation. It is also found that there is the critical dimension, D{sub crit}=4, above which no small amplitude QB's exist. The QB's obtained this way are shown to provide very good initial data for oscillons. Thus these QB's provide the solution of the complicated, nonlinear time dependent problem of small amplitude oscillons in scalar theories.

  4. Acoustic Measurement Of Periodic Motion Of Levitated Object

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Barmatz, Martin B.

    1992-01-01

    Some internal vibrations, oscillations in position, and rotations of acoustically levitated object measured by use of microphone already installed in typical levitation chamber for tuning chamber to resonance and monitoring operation. Levitating acoustic signal modulated by object motion of lower frequency. Amplitude modulation detected and analyzed spectrally to determine amplitudes and frequencies of motions.

  5. Tempo and amplitude in growth.

    PubMed

    Hermanussen, Michael

    2011-01-01

    Growth is defined as an increase of size over time with time usually defined as physical time. Yet, the rigid metric of physical time is not directly relevant to the internal dynamics of growth. Growth is linked to maturation. Children and adolescents differ in the tempo at which they mature. One calendar year differs in its meaning in a fast maturing, and in a slow maturing child. The slow child needs more calendar years for completing the same stage of maturity. Many characteristics in the human growth curve are tempo characteristics. Tempo - being fast or slow maturing - has to be carefully separated from amplitude - being tall or short. Several characteristic phenomena such as catch-up growth after periods of illness and starvation are largely tempo phenomena, and do usually not affect the amplitude component of growth. Applying Functional Data Analysis and Principal Component Analysis, the two main sources of height variance: tempo and amplitude can statistically be separate and quantified. Tempo appears to be more sensitive than amplitude to nutrition, health and environmental stress. An appropriate analysis of growth requires disentangling its two major components: amplitude and tempo. The assessment of the developmental tempo thus is an integral part of assessing child and adolescent growth. Though an Internet portal is currently available to process small amounts of height data (www.willi-will-wachsen.com) for separately determining amplitude and tempo in growth, there is urgent need of better and practical solutions for analyzing individual growth.

  6. Modeling the interaction of microbubbles: Effects of proximity, confinement, and excitation amplitude

    NASA Astrophysics Data System (ADS)

    Wiedemair, W.; Tukovic, Z.; Jasak, H.; Poulikakos, D.; Kurtcuoglu, V.

    2014-06-01

    The interaction of closely spaced microbubbles (MBs) exposed to a transient external pressure field is relevant for a variety of industrial and medical applications. We present a computational framework employing an interface tracking approach to model the transient dynamics of multiple, interacting, insonated MBs in arbitrary settings. In particular, this technique allows studying the effects of mutual proximity, confinement, and variations in excitation amplitude on the translatory motion of pairs of differently sized MBs. Domains of mutual repulsion or attraction are observed for closely spaced MBs in the investigated range of excitation frequencies. The repulsion domain widens and shifts to lower frequencies with increasing excitation pressure amplitude. When the MBs are confined in rigid tubes of decreasing diameters, we observe a shift of the translatory patterns towards lower frequencies, accompanied by a change in relative strength of the two translation modes. This effect is correlated to a decrease of the resonance frequency due to confinement which causes changes in oscillation amplitude and phase shift between the bubble vibrations. Coupling to the viscous host liquid gives rise to phenomena such as collective MB drift, non-symmetric attraction or repulsion, and reversal of translation direction. A system comprising six MBs inside a narrow tube highlights the potential of the computational framework to treat complex setups with multiple bubbles.

  7. Motion compensation and noise tolerance in phase-shifting digital in-line holography.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2006-05-15

    We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.

  8. Effect of tumor amplitude and frequency on 4D modeling of Vero4DRT system.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Hayata, Masahiro; Tsuda, Shintaro; Yamada, Kiyoshi; Nagata, Yasushi

    2017-01-01

    An important issue in indirect dynamic tumor tracking with the Vero4DRT system is the accuracy of the model predictions of the internal target position based on surrogate infrared (IR) marker measurement. We investigated the predictive uncertainty of 4D modeling using an external IR marker, focusing on the effect of the target and surrogate amplitudes and periods. A programmable respiratory motion table was used to simulate breathing induced organ motion. Sinusoidal motion sequences were produced by a dynamic phantom with different amplitudes and periods. To investigate the 4D modeling error, the following amplitudes (peak-to-peak: 10-40 mm) and periods (2-8 s) were considered. The 95th percentile 4D modeling error (4D-E95%) between the detected and predicted target position (μ + 2SD) was calculated to investigate the 4D modeling error. 4D-E95% was linearly related to the target motion amplitude with a coefficient of determination R(2) = 0.99 and ranged from 0.21 to 0.88 mm. The 4D modeling error ranged from 1.49 to 0.14 mm and gradually decreased with increasing target motion period. We analyzed the predictive error in 4D modeling and the error due to the amplitude and period of target. 4D modeling error substantially increased with increasing amplitude and decreasing period of the target motion.

  9. Effects of prolonged weightlessness on self-motion perception and eye movements evoked by roll and pitch

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Parker, Donald E.

    1987-01-01

    Seven astronauts reported translational self-motion during roll simulation 1-3 h after landing following 5-7 d of orbital flight. Two reported strong translational self-motion perception when they performed pitch head motions during entry and while the orbiter was stationary on the runway. One of two astronauts from whom adequate data were collected exhibited a 132-deg shift in the phase angle between roll stimulation and horizontal eye position 2 h after landing. Neither of two from whom adequate data were collected exhibited increased horizontal eye movement amplitude or disturbance of voluntary pitch or roll body motion immediately postflight. These results are generally consistent with an otolith tilt-translation reinterpretation model and are being applied to the development of apparatus and procedures intended to preadapt astronauts to the sensory rearrangement of weightlessness.

  10. Grassmannian origin of scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Trnka, Jaroslav

    Quantum field theory (QFT) is our central theoretical framework to describe the microscopic world, arising from the union of quantum mechanics and special relativity. Since QFTs play such a central role in our understanding of Nature, a deeper study of their physical properties is one of the most exciting directions of research in theoretical physics. This has led to the discovery of many important theoretical concepts, such as supersymmetry and string theory. One of the most prominent physical observable in any QFT is the scattering amplitude, which describes scattering processes of elementary particles. Theoretical progress in understanding and computing scattering amplitudes has accelerated in last few years with the discovery of amazing new mathematical structures in a close cousin of QCD, known as N=4 Super-Yang-Mills theory (SYM). In the first chapter we study integrands of loop amplitudes in planar N=4 SYM and show their astonishing simplicity when written in terms of special set of chiral integrals. In chapter two we show how to reconstruct the multi-loop integrand recursively starting from tree-level amplitudes. This approach makes the long-hidden Yangian symmetry of the theory completely manifest and provides a Lagrangian-independent approach for determining the integrand at any loop order. In chapter three we demonstrate that the problem of calculating of scattering amplitudes in planar N=4 SYM can be completely reformulated in a new framework in terms of on-shell diagrams and integrals over the positive Grassmannian G(k,n). Remarkably, the building blocks for amplitudes play a fundamental role in an active area of research in mathematics spanning algebraic geometry to combinatorics. In chapter four we sketch the argument that the amplitude itself is represented by a single geometrical object defined purely using a new striking property -- positivity -- and all physical concepts like unitarity and locality emerge as derived concepts, each having a sharp

  11. Brownian motion

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    1985-02-01

    Brownian motion, the doubly random motion of small particles suspended in a liquid due to molecular collisions, and its implications and applications in the history of modern science are discussed. Topics examined include probabilistic phenomena, the kinetic theory of gases, Einstein's atomic theory of Brownian motion, particle displacement, diffusion measurements, the determination of the mass of the atom and of Avogadro's number, the statistical mechanics of thermodynamics, nonequilibrium systems, Langevin's equation of motion, time-reversed evolution, mathematical analogies, and applications in economics and radio navigation. Diagrams and drawings are provided.

  12. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory`s Source Region Program. Appendix B: Surface ground motion

    SciTech Connect

    Weaver, T.A.; Baker, D.F.; Edwards, C.L.; Freeman, S.H.

    1993-10-01

    Surface ground motion was recorded for many of the Integrated Verification Experiments using standard 10-, 25- and 100-g accelerometers, force-balanced accelerometers and, for some events, using golf balls and 0.39-cm steel balls as surface inertial gauges (SIGs). This report contains the semi-processed acceleration, velocity, and displacement data for the accelerometers fielded and the individual observations for the SIG experiments. Most acceleration, velocity, and displacement records have had calibrations applied and have been deramped, offset corrected, and deglitched but are otherwise unfiltered or processed from their original records. Digital data for all of these records are stored at Los Alamos National Laboratory.

  13. Nonlinear amplitude approximation for bilinear systems

    NASA Astrophysics Data System (ADS)

    Jung, Chulwoo; D'Souza, Kiran; Epureanu, Bogdan I.

    2014-06-01

    An efficient method to predict vibration amplitudes at the resonant frequencies of dynamical systems with piecewise-linear nonlinearity is developed. This technique is referred to as bilinear amplitude approximation (BAA). BAA constructs a single vibration cycle at each resonant frequency to approximate the periodic steady-state response of the system. It is postulated that the steady-state response is piece-wise linear and can be approximated by analyzing the response over two time intervals during which the system behaves linearly. Overall the dynamics is nonlinear, but the system is in a distinct linear state during each of the two time intervals. Thus, the approximated vibration cycle is constructed using linear analyses. The equation of motion for analyzing the vibration of each state is projected along the overlapping space spanned by the linear mode shapes active in each of the states. This overlapping space is where the vibratory energy is transferred from one state to the other when the system switches from one state to the other. The overlapping space can be obtained using singular value decomposition. The space where the energy is transferred is used together with transition conditions of displacement and velocity compatibility to construct a single vibration cycle and to compute the amplitude of the dynamics. Since the BAA method does not require numerical integration of nonlinear models, computational costs are very low. In this paper, the BAA method is first applied to a single-degree-of-freedom system. Then, a three-degree-of-freedom system is introduced to demonstrate a more general application of BAA. Finally, the BAA method is applied to a full bladed disk with a crack. Results comparing numerical solutions from full-order nonlinear analysis and results obtained using BAA are presented for all systems.

  14. Computing Maximally Supersymmetric Scattering Amplitudes

    NASA Astrophysics Data System (ADS)

    Stankowicz, James Michael, Jr.

    This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at

  15. Lorentzian proper vertex amplitude: Asymptotics

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan; Vilensky, Ilya; Zipfel, Antonia

    2016-09-01

    In previous work, the Lorentzian proper vertex amplitude for a spin-foam model of quantum gravity was derived. In the present work, the asymptotics of this amplitude are studied in the semiclassical limit. The starting point of the analysis is an expression for the amplitude as an action integral with action differing from that in the Engle-Pereira-Rovelli-Livine (EPRL) case by an extra "projector" term. This extra term scales linearly with spins only in the asymptotic limit, and is discontinuous on a (lower dimensional) submanifold of the integration domain in the sense that its value at each such point depends on the direction of approach. New tools are introduced to generalize stationary phase methods to this case. For the case of boundary data which can be glued to a nondegenerate Lorentzian 4-simplex, the asymptotic limit of the amplitude is shown to equal the single Feynman term, showing that the extra term in the asymptotics of the EPRL amplitude has been eliminated.

  16. Factorization of chiral string amplitudes

    NASA Astrophysics Data System (ADS)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  17. Visible Motion Blur

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor); Ahumada, Albert J. (Inventor)

    2014-01-01

    A method of measuring motion blur is disclosed comprising obtaining a moving edge temporal profile r(sub 1)(k) of an image of a high-contrast moving edge, calculating the masked local contrast m(sub1)(k) for r(sub 1)(k) and the masked local contrast m(sub 2)(k) for an ideal step edge waveform r(sub 2)(k) with the same amplitude as r(sub 1)(k), and calculating the measure or motion blur Psi as a difference function, The masked local contrasts are calculated using a set of convolution kernels scaled to simulate the performance of the human visual system, and Psi is measured in units of just-noticeable differences.

  18. Stability of a steady, large amplitude whistler wave.

    NASA Technical Reports Server (NTRS)

    Palmadesso, P. J.; Schmidt, G.

    1972-01-01

    Study of the behavior of weak electrostatic waves in a collisionless magnetoplasma supporting a steady large amplitude whistler wave. All waves are assumed to propagate parallel to a uniform background magnetic field B sub zero. In the presence of the whistler wave fields each particle executes an oscillatory motion parallel to B sub zero, in addition to a translation along B sub zero and transverse motions. This oscillation causes the Landau resonance to be replaced by a series of new resonances between particles and the electrostatic modes. A distribution function for the perturbed plasma is constructed by solving the Vlasov equation, linearized in the electrostatic wave amplitudes. A dispersion relation is obtained and solved approximately for the growth/damping rate of the perturbations. Growing electrostatic modes are found to be approximately uncoupled. Trapped particles have a strong influence on the stability of the system.

  19. Respiratory Amplitude Guided 4-Dimensional Magnetic Resonance Imaging

    SciTech Connect

    Hu, Yanle; Caruthers, Shelton D.; Low, Daniel A.; Parikh, Parag J.; Mutic, Sasa

    2013-05-01

    Purpose: To evaluate the feasibility of prospectively guiding 4-dimensional (4D) magnetic resonance imaging (MRI) image acquisition using triggers at preselected respiratory amplitudes to achieve T{sub 2} weighting for abdominal motion tracking. Methods and Materials: A respiratory amplitude-based triggering system was developed and integrated into a commercial turbo spin echo MRI sequence. Initial feasibility tests were performed on healthy human study participants. Four respiratory states, the middle and the end of inhalation and exhalation, were used to trigger 4D MRI image acquisition of the liver. To achieve T{sub 2} weighting, the echo time and repetition time were set to 75 milliseconds and 4108 milliseconds, respectively. Single-shot acquisition, together with parallel imaging and partial k-space imaging techniques, was used to improve image acquisition efficiency. 4D MRI image sets composed of axial or sagittal slices were acquired. Results: Respiratory data measured and logged by the MRI scanner showed that the triggers occurred at the appropriate respiratory levels. Liver motion could be easily observed on both 4D MRI image datasets by sensing either the change of liver in size and shape (axial) or diaphragm motion (sagittal). Both 4D MRI image datasets were T{sub 2}-weighted as expected. Conclusions: This study demonstrated the feasibility of achieving T{sub 2}-weighted 4D MRI images using amplitude-based respiratory triggers. With the aid of the respiratory amplitude-based triggering system, the proposed method is compatible with most MRI sequences and therefore has the potential to improve tumor-tissue contrast in abdominal tumor motion imaging.

  20. Simplified theory of large-amplitude wave propagation

    NASA Technical Reports Server (NTRS)

    Kim, H.

    1976-01-01

    An orbit perturbation procedure was applied to the description of monochromatic, large-amplitude, electrostatic plasma wave propagation. In the lowest order approximation, untrapped electrons were assumed to follow constant-velocity orbits and trapped electrons were assumed to execute simple harmonic motion. The deviations of these orbits from the actual orbits were regarded as perturbations. The nonlinear damping rate and frequency shift were then obtained in terms of simple functions. The results are in good agreement with previous less approximate analyses.

  1. Large amplitude drop shape oscillations

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Wang, T. G.

    1982-01-01

    An experimental study of large amplitude drop shape oscillation was conducted in immiscible liquids systems and with levitated free liquid drops in air. In liquid-liquid systems the results indicate the existence of familiar characteristics of nonlinear phenomena. The resonance frequency of the fundamental quadrupole mode of stationary, low viscosity Silicone oil drops acoustically levitated in water falls to noticeably low values as the amplitude of oscillation is increased. A typical, experimentally determined relative frequency decrease of a 0.5 cubic centimeters drop would be about 10% when the maximum deformed shape is characterized by a major to minor axial ratio of 1.9. On the other hand, no change in the fundamental mode frequency could be detected for 1 mm drops levitated in air. The experimental data for the decay constant of the quadrupole mode of drops immersed in a liquid host indicate a slight increase for larger oscillation amplitudes. A qualitative investigation of the internal fluid flows for such drops revealed the existence of steady internal circulation within drops oscillating in the fundamental and higher modes. The flow field configuration in the outer host liquid is also significantly altered when the drop oscillation amplitude becomes large.

  2. Toward complete pion nucleon amplitudes

    DOE PAGES

    Mathieu, Vincent; Danilkin, Igor V.; Fernández-Ramírez, Cesar; ...

    2015-10-05

    We compare the low-energy partial wave analyses πN scattering with a high-energy data via finite energy sum rules. We also construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and then reconstruct the real parts using dispersion relations.

  3. Toward complete pion nucleon amplitudes

    SciTech Connect

    Mathieu, Vincent; Danilkin, Igor V.; Fernández-Ramírez, Cesar; Pennington, Michael R.; Schott, Diane M.; Szczepaniak, Adam P.; Fox, G.

    2015-10-05

    We compare the low-energy partial wave analyses πN scattering with a high-energy data via finite energy sum rules. We also construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and then reconstruct the real parts using dispersion relations.

  4. Human motion analysis and modeling

    NASA Astrophysics Data System (ADS)

    Prussing, Keith; Cathcart, J. Michael; Kocher, Brian

    2011-06-01

    Georgia Tech has investigated methods for the detection and tracking of personnel in a variety of acquisition environments. This research effort focused on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. As a fundamental part of this research effort, Georgia Tech collected motion capture data on an individual for a variety of walking speeds, carrying loads, and load distributions. These data formed the basis for deriving fundamental properties of the individual's motion and supported the development of a physiologically-based human motion model. Subsequently this model aided the derivation and analysis of motion-based observables, particularly changes in the motion of various body components resulting from load variations. This paper will describe the data acquisition process, development of the human motion model, and use of the model in the observable analysis. Video sequences illustrating the motion data and modeling results will also be presented.

  5. Nonlinear ionospheric responses to large-amplitude infrasonic-acoustic waves generated by undersea earthquakes

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.

    2017-02-01

    Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.

  6. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  7. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  8. True amplitude prestack depth migration

    NASA Astrophysics Data System (ADS)

    Deng, Feng

    Reliable analysis of amplitude variation with offset (or with angle) requires accurate amplitudes from prestack migration. In routine seismic data processing, amplitude balancing and automatic gain control are often used to reduce amplitude lateral variations. However, these methods are empirical and lack a solid physical basis; thus, there are uncertainties that might produce erroneous conclusions, and hence cause economic loss. During wavefield propagation, geometrical spreading, intrinsic attenuation, transmission losses and the energy conversion significantly distort the wavefield amplitude. Most current true-amplitude migrations usually compensate only for geometrical spreading. A new prestack depth migration based on the framework of reverse-time migration in the time-space domain was developed in this dissertation with the aim of compensating all of the propagation effects in one integrated algorithm. Geometrical spreading is automatically included because of the use of full two-way wave extrapolation. Viscoelastic wave equations are solved to handle the intrinsic attenuation with a priori quality factor. Transmission losses for both up- and down-going waves are compensated using a two-pass, recursive procedure based on extracting the angle-dependent reflection/transmission coefficients from prestack migration. The losses caused by the conversion of energy from one elastic model to another are accounted for through elastic wave extrapolation; the influence of the S wave velocity contrast on the P wave reflection coefficient is implicitly included by using the Zoeppritz equations to describe the reflection and transmission at an elastic interface. Only smooth background models are assumed to be known. The contrasts/ratios of the model parameters can be estimated by fitting the compensated angle-dependent reflection coefficients obtained from data for multiple sources. This is one useful by-product of the algorithm. Numerical tests on both 2D and 3D scalar

  9. Pulse amplitude modulated chlorophyll fluorometer

    DOEpatents

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  10. Genus dependence of superstring amplitudes

    SciTech Connect

    Davis, Simon

    2006-11-15

    The problem of the consistency of the finiteness of the supermoduli space integral in the limit of vanishing super-fixed point distance and the genus-dependence of the integral over the super-Schottky coordinates in the fundamental region containing a neighborhood of |K{sub n}|=0 is resolved. Given a choice of the categories of isometric circles representing the integration region, the exponential form of bounds for superstring amplitudes is derived.

  11. Modeling the polar motion of Titan

    NASA Astrophysics Data System (ADS)

    Coyette, Alexis; Van Hoolst, Tim; Baland, Rose-Marie; Tokano, Tetsuya

    2016-02-01

    The angular momentum of the atmosphere and of the hydrocarbon lakes of Titan have a large equatorial component that can excite polar motion, a variable orientation of the rotation axis of Titan with respect to its surface. We here use the angular momentum obtained from a General Circulation Model of the atmosphere of Titan and from an Ocean Circulation Model for Titan's polar lakes to model the polar motion of Titan as a function of the interior structure. Besides the gravitational torque exerted by Saturn on Titan's aspherical mass distribution, the rotational model also includes torques arising due to the presence of an ocean under a thin ice shell as well as the influence of the elasticity of the different layers. The Chandler wobble period of a solid and rigid Titan without its atmosphere is about 279 years. The period of the Chandler wobble is mainly influenced by the atmosphere of Titan (-166 years) and the presence of an internal global ocean (+135 to 295 years depending on the internal model) and to a lesser extent by the elastic deformations (+3.7 years). The forced polar motion of a solid and rigid Titan is elliptical with an amplitude of about 50 m and a main period equal to the orbital period of Saturn. It is mainly forced by the atmosphere of Titan while the lakes of Titan are at the origin of a displacement of the mean polar motion, or polar offset. The subsurface ocean can largely increase the polar motion amplitude due to resonant amplification with a wobble free mode of Titan. The amplitudes as well as the main periods of the polar motion depend on whether and which forcing period is close to the period of a free mode. For a thick ice shell, the polar motion mainly has an annual period and an amplitude of about 1 km. For thinner ice shells, the polar motion amplitude can reach several tens of km and shorter periods become dominant. We demonstrate that for thick ice shells, the ice shell rigidity weakly influences the amplitude of the polar motion

  12. Phase variation of hadronic amplitudes

    SciTech Connect

    Dedonder, J.-P.; Gibbs, W. R.; Nuseirat, Mutazz

    2008-04-15

    The phase variation with angle of hadronic amplitudes is studied with a view to understanding the underlying physical quantities that control it and how well it can be determined in free space. We find that unitarity forces a moderately accurate determination of the phase in standard amplitude analyses but that the nucleon-nucleon analyses done to date do not give the phase variation needed to achieve a good representation of the data in multiple scattering calculations. Models are examined that suggest its behavior near forward angles is related to the radii of the real and absorptive parts of the interaction. The dependence of this phase on model parameters is such that if these radii are modified in the nuclear medium (in combination with the change due to the shift in energy of the effective amplitude in the medium) then the larger magnitudes of the phase needed to fit the data might be attainable but only for negative values of the phase variation parameter.

  13. Crisis in Amplitude Control Hides in Multistability

    NASA Astrophysics Data System (ADS)

    Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan

    2016-12-01

    A crisis of amplitude control can occur when a system is multistable. This paper proposes a new chaotic system with a line of equilibria to demonstrate the threat to amplitude control from multistability. The new symmetric system has two coefficients for amplitude control, one of which is a partial amplitude controller, while the other is a total amplitude controller that simultaneously controls the frequency. The amplitude parameter rescales the basins of attraction and triggers a state switch among different states resulting in a failure of amplitude control to the desired state.

  14. Calculation of multi-loop superstring amplitudes

    NASA Astrophysics Data System (ADS)

    Danilov, G. S.

    2016-12-01

    The multi-loop interaction amplitudes in the closed, oriented superstring theory are obtained by the integration of local amplitudes. The local amplitude is represented by a sum over the spinning string local amplitudes. The spinning string local amplitudes are given explicitly through super-Schottky group parameters and through interaction vertex coordinates on the (1| 1) complex, non-split supermanifold. The obtained amplitudes are free from divergences. They are consistent with the world-sheet spinning string symmetries. The vacuum amplitude vanishes along with 1-, 2- and 3-point amplitudes of massless states. The vanishing of the above-mentioned amplitude occurs after the integration of the corresponding local amplitude has been performed over the super-Schottky group limiting points and over interaction vertex coordinate, except for those (3| 2) variables which are fixed due to SL(2)-symmetry.

  15. Joint amplitude and frequency analysis of tremor activity.

    PubMed

    Foerster, F; Smeja, M

    1999-01-01

    Clinical tremor analysis mostly is used for the measurement of tremor frequency. The analysis is based on short segments of EMG recordings and on clinical ratings of tremor intensity. Accelerometry appears to have some practical advantages. The present study was concerned with the development of a methodology for assessing tremor activity using the three parameters, frequency (Hz), amplitude (g), and occurrence of tremor (in per cent of time). These parameters were derived from joint amplitude frequency analysis of the calibrated accelerometer raw signal and from appropriate decision rules. This methodology was used in connection with 27 patients with Parkinson's disease, to investigate the aforesaid parameters of tremor activity. Postural tremor had a higher occurrence time (right-hand only) and higher frequency (left-hand only) than resting tremor, however, the average amplitudes did not differ. The correlations between right-hand and left-hand measures were higher during postural tremor test. Frequency was not correlated to amplitude or occurrence time, however, moderate correlations did exist between amplitude and occurrence time. In addition to the assessment of tremor activity, multi-channel accelerometry may be used for the detection of posture and motion. Further applications of this methodology, for example, in 24 hr ambulatory monitoring of tremor, are discussed.

  16. Amplitude analysis of the charmed decay D0 to KKpipi

    NASA Astrophysics Data System (ADS)

    Skidmore, Nicola

    2017-01-01

    An amplitude analysis of the 4-body charmed decay D0 -> KKππ is presented using data collected from electron-positron collisions at the CLEO experiment. Both flavour tagged and CP tagged data are utilized in the analysis making it unique from amplitude analyses performed at other colliders and providing extra sensitivity to the phases of the amplitude components. The amplitude model is used to search for CP violation in the D0 decay by analysing D0 and D0 decays separately. The model is also crucial input for a model-dependent measurement of the CP-violating phase γ using B+/- ->D0(-> KKππ) K+/- decays, which remains one of the least constrained parameters of the Standard Model. Forum on International Physics Distinguished Student Seminar Program, and European Research Council

  17. Muscle motion and EMG activity in vibration treatment.

    PubMed

    Fratini, Antonio; La Gatta, Antonio; Bifulco, Paolo; Romano, Maria; Cesarelli, Mario

    2009-11-01

    The aim of this study is to highlight the relationship between muscle motion, generated by whole body vibration, and the correspondent electromyographic (EMG) activity and to suggest a new method to customize the stimulation frequency. Simultaneous recordings of EMG and tri-axial accelerations of quadriceps rectus femoris from fifteen subjects undergoing vibration treatments were collected. Vibrations were delivered via a sinusoidal oscillating platform at different frequencies (10-45 Hz). Muscle motion was estimated by processing the accelerometer data. Large EMG motion artifacts were removed using sharp notch filters centred at the vibration frequency and its superior harmonics. EMG-RMS values were computed and analyzed before and after artifact suppression to assess muscular activity. Muscles acceleration amplitude increased with frequency. Muscle displacements revealed a mechanical resonant-like behaviour of the muscle. Resonance frequencies and dumping factors depended on subject. Moreover, RMS of artifact-free EMG was found well correlated (R(2)=0.82) to the actual muscle displacement, while the maximum of the EMG response was found related to the mechanical resonance frequency of muscle. Results showed that maximum muscular activity was found in correspondence to the mechanical resonance of the muscle itself. Assuming the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization (i.e. to choose the best stimulation frequency) could be obtained by simply monitoring local acceleration (resonance), leading to a more effective muscle stimulation. Motion artifact produced an overestimation of muscle activity, therefore its removal was essential.

  18. Natural and systematic polar motion jumps

    NASA Astrophysics Data System (ADS)

    Chapanov, Y.; Vondrak, J.; Ron, C.; Pachalieva, R.

    2014-12-01

    Polar motion consists mainly of two harmonic oscillations with variable phases and amplitudes and small irregular variations. The small irregular variations may be due to various geophysical excitations and observation inaccuracy (mostly in the first half of the last century). A part of irregular polar motion variations consists of fast jumps of the mean values of polar motion coordinates. The direct determination of the polar motion jumps is difficult, because the jump values are very small relative to the seasonal and Chandler amplitudes. A useful high sensitive method of data jumps determination is proposed. The method consists of data integration and piecewise linear or parabolic trends determina- tion. This method is applied to determine the natural and systematic polar motion jumps existing in pole coordinates from the solutions OA10 for the period 1899.7ñ1962.0 and C04 for the period 1962.0- 2013.5. Only a few of the determined polar motion jumps can be interpreted as systematic biases due to observational errors. The major part of the detected polar motion jumps occurs almost regularly near the epochs of minimum amplitude (due to the beat of seasonal and Chandler wobbles), so the natural origin of these jumps is supposed.

  19. Ground motion input in seismic evaluation studies

    SciTech Connect

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.

  20. Focused Ultrasound Surgery Control Using Local Harmonic Motion: VX2 Tumor Study

    NASA Astrophysics Data System (ADS)

    Curiel, Laura; Chopra, Rajiv; Goertz, David; Hynynen, Kullervo

    2009-04-01

    The objective of this study was to develop a real-time method for controlling focused ultrasound surgery using ultrasound imaging. The approach uses measurements of localized harmonic motion (LHM) in order to perform controlled FUS exposures by detecting changes in the elastic properties of tissues during coagulation. Methods: Nine New Zealand rabbits with VX2 tumors implanted in the thigh were used for this study. LHM was generated within the tumors by periodic induction of radiation force using a FUS transducer (80-mm focal length, 100-mm diameter, 20-mm central hole, 1.485-MHz). Tissue motion was tracked by collecting and cross-correlating RF signals during the motion using a separate diagnostic transducer (3-kHz PRF, 5-MHz). After locating the tumor in MR images, a series of sonications were performed to treat the tumors using a reduction in LHM amplitude to control the exposure. Results: LHM was successfully used to control the sonications. A LHM amplitude threshold value was determined at which changes were considered significant and then the exposure was started and stopped when the LHM amplitude dropped below the threshold. The appearance of a lesion was then verified by MRI. The feasibility of LHM measurements to control FUS exposure was validated.

  1. Quasidistribution amplitude of heavy quarkonia

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Xiong, Xiaonu

    2016-11-01

    The recently proposed quasidistributions point out a promising direction for lattice QCD to investigate the light-cone correlators, such as parton distribution functions and distribution amplitudes (DAs), directly in the x space. Owing to its excessive simplicity, heavy quarkonium can serve as an ideal theoretical laboratory to ascertain certain features of quasi-DAs. In the framework of nonrelativistic QCD factorization, we compute the order-αs correction to both light-cone distribution amplitudes (LCDAs) and quasi-DAs associated with the lowest-lying quarkonia, with the transverse-momentum UV cutoff interpreted as the renormalization scale. We confirm analytically that the quasi-DA of a quarkonium does reduce to the respective LCDA in the infinite-momentum limit. We also observe that, provided that the momentum of a charmonium reaches about 2-3 times its mass, the quasi-DAs already converge to the LCDAs to a decent level. These results might provide some useful guidance for the future lattice study of quasidistributions.

  2. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  3. Brownian Motion.

    ERIC Educational Resources Information Center

    Lavenda, Bernard H.

    1985-01-01

    Explains the phenomenon of Brownian motion, which serves as a mathematical model for random processes. Topics addressed include kinetic theory, Einstein's theory, particle displacement, and others. Points out that observations of the random course of a particle suspended in fluid led to the first accurate measurement of atomic mass. (DH)

  4. Motion artifacts of pulse inversion-based tissue harmonic imaging.

    PubMed

    Shen, Che-Chou; Li, Pai-Chi

    2002-09-01

    Motion artifacts of the pulse inversion technique were studied for finite amplitude distortion-based harmonic imaging. Motion in both the axial and the lateral directions was considered. Two performance issues were investigated. One is the harmonic signal intensity relative to the fundamental intensity and the other is the potential image quality degradation resulting from spectral leakage. A one-dimensional (1-D) correlation-based correction scheme also was used to compensate for motion artifacts. Results indicated that the tissue harmonic signal is significantly affected by tissue motion. For axial motion, the tissue harmonic intensity decreases much more rapidly than with lateral motion. The fundamental signal increases for both axial and lateral motion. Thus, filtering is still required to remove the fundamental signal, even if the pulse inversion technique is applied. The motion also potentially decreases contrast resolution because of the uncancelled spectral leakage. Also, it was indicated that 1-D motion correction is not adequate if nonaxial motion is present.

  5. Dependence of kink oscillation damping on the amplitude

    NASA Astrophysics Data System (ADS)

    Goddard, C. R.; Nakariakov, V. M.

    2016-05-01

    Context. Kink oscillations of coronal loops are one of the most intensively studied oscillatory phenomena in the solar corona. In the large-amplitude rapidly damped regime, these oscillations are observed to have a low quality factor with only a few cycles of oscillation detected before they are damped. The specific mechanism responsible for rapid damping is commonly accepted to be associated with the linear coupling between collective kink oscillations and localised torsional oscillations, the phenomenon of resonant absorption of the kink mode. The role of finite amplitude effects, however, is still not clear. Aims: We investigated the empirical dependence of the kink oscillation damping time and its quality factor, which is defined as the ratio of damping time to oscillation period, on the oscillation amplitude. Methods: We analysed decaying kink oscillation events detected previously with TRACE, SDO/AIA and and STEREO/EUVI in the extreme ultraviolet (EUV) 171 Å band. Results: We found that the ratio of the kink oscillation damping time to the oscillation period systematically decreases with the oscillation amplitude. We approximated the quality factor dependence on the oscillation displacement amplitude via the power-law dependence with the exponent of -1/2, however we stress that this is a by-eye estimate, and a more rigorous estimation of the scaling law requires more accurate measurements and increased statistics. We conclude that damping of kink oscillations of coronal loops depends on the oscillation amplitude, indicating the possible role of non-linear mechanisms for damping.

  6. Mapping Pn amplitude spreading and attenuation in Asia

    SciTech Connect

    Yang, Xiaoning; Phillips, William S; Stead, Richard J

    2010-12-06

    Pn travels most of its path in the mantle lid. Mapping the lateral variation of Pn amplitude attenuation sheds light on material properties and dynamics of the uppermost region of the mantle. Pn amplitude variation depends on the wavefront geometric spreading as well as material attenuation. We investigated Pn geometric spreading, which is much more complex than a traditionally assumed power-law spreading model, using both synthetic and observed amplitude data collected in Asia. We derived a new Pn spreading model based on the formulation that was proposed previously to account for the spherical shape of the Earth (Yang et. al., BSSA, 2007). New parameters derived for the spreading model provide much better correction for Pn amplitudes in terms of residual behavior. Because we used observed Pn amplitudes to construct the model, the model incorporates not only the effect of the Earth's spherical shape, but also the effect of potential upper-mantle velocity gradients in the region. Using the new spreading model, we corrected Pn amplitudes measured at 1, 2, 4 and 6 Hz and conducted attenuation tomography. The resulting Pn attenuation model correlates well with the regional geology. We see high attenuation in regions such as northern Tibetan Plateau and the western Pacific subduction zone, and low attenuation for stable blocks such as Sichuan and Tarim basins.

  7. Large amplitude relativistic plasma waves

    SciTech Connect

    Coffey, Timothy

    2010-05-15

    Relativistic, longitudinal plasma oscillations are studied for the case of a simple water bag distribution of electrons having cylindrical symmetry in momentum space with the axis of the cylinder parallel to the velocity of wave propagation. The plasma is required to obey the relativistic Vlasov-Poisson equations, and solutions are sought in the wave frame. An exact solution for the plasma density as a function of the electrostatic field is derived. The maximum electric field is presented in terms of an integral over the known density. It is shown that when the perpendicular momentum is neglected, the maximum electric field approaches infinity as the wave phase velocity approaches the speed of light. It is also shown that for any nonzero perpendicular momentum, the maximum electric field will remain finite as the wave phase velocity approaches the speed of light. The relationship to previously published solutions is discussed as is some recent controversy regarding the proper modeling of large amplitude relativistic plasma waves.

  8. Expansion of Einstein-Yang-Mills amplitude

    NASA Astrophysics Data System (ADS)

    Fu, Chih-Hao; Du, Yi-Jian; Huang, Rijun; Feng, Bo

    2017-09-01

    In this paper, we study from various perspectives the expansion of tree level single trace Einstein-Yang-Mills amplitudes into linear combination of color-ordered Yang-Mills amplitudes. By applying the gauge invariance principle, a programable recursive construction is devised to expand EYM amplitude with arbitrary number of gravitons into EYM amplitudes with fewer gravitons. Based on this recursive technique we write down the complete expansion of any single trace EYM amplitude in the basis of color-order Yang-Mills amplitude. As a byproduct, an algorithm for constructing a polynomial form of the BCJ numerator for Yang-Mills amplitudes is also outlined in this paper. In addition, by applying BCFW recursion relation we show how to arrive at the same EYM amplitude expansion from the on-shell perspective. And we examine the EYM expansion using KLT relations and show how to evaluate the expansion coefficients efficiently.

  9. Constructing amplitudes from their soft limits

    NASA Astrophysics Data System (ADS)

    Boucher-Veronneau, Camille; Larkoski, Andrew J.

    2011-09-01

    The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an ( n - 1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which "soft" particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.

  10. Constructing Amplitudes from Their Soft Limits

    SciTech Connect

    Boucher-Veronneau, Camille; Larkoski, Andrew J.; /SLAC

    2011-12-09

    The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an (n-1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which 'soft' particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.

  11. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    SciTech Connect

    Jaskowiak, J; Ahmad, S; Ali, I; Alsbou, N

    2015-06-15

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were used to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased

  12. Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses

    PubMed Central

    Nickerson, Lisa D.; Smith, Stephen M.; Öngür, Döst; Beckmann, Christian F.

    2017-01-01

    Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or “shape”) as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude

  13. Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses.

    PubMed

    Nickerson, Lisa D; Smith, Stephen M; Öngür, Döst; Beckmann, Christian F

    2017-01-01

    Independent Component Analysis (ICA) is one of the most popular techniques for the analysis of resting state FMRI data because it has several advantageous properties when compared with other techniques. Most notably, in contrast to a conventional seed-based correlation analysis, it is model-free and multivariate, thus switching the focus from evaluating the functional connectivity of single brain regions identified a priori to evaluating brain connectivity in terms of all brain resting state networks (RSNs) that simultaneously engage in oscillatory activity. Furthermore, typical seed-based analysis characterizes RSNs in terms of spatially distributed patterns of correlation (typically by means of simple Pearson's coefficients) and thereby confounds together amplitude information of oscillatory activity and noise. ICA and other regression techniques, on the other hand, retain magnitude information and therefore can be sensitive to both changes in the spatially distributed nature of correlations (differences in the spatial pattern or "shape") as well as the amplitude of the network activity. Furthermore, motion can mimic amplitude effects so it is crucial to use a technique that retains such information to ensure that connectivity differences are accurately localized. In this work, we investigate the dual regression approach that is frequently applied with group ICA to assess group differences in resting state functional connectivity of brain networks. We show how ignoring amplitude effects and how excessive motion corrupts connectivity maps and results in spurious connectivity differences. We also show how to implement the dual regression to retain amplitude information and how to use dual regression outputs to identify potential motion effects. Two key findings are that using a technique that retains magnitude information, e.g., dual regression, and using strict motion criteria are crucial for controlling both network amplitude and motion-related amplitude effects

  14. [Motion sickness].

    PubMed

    Taillemite, J P; Devaulx, P; Bousquet, F

    1997-01-01

    Motion sickness is a general term covering sea-sickness, car-sickness, air-sickness, and space-sickness. Symptoms can occur when a person is exposed to unfamiliar movement whether real or simulated. Despite progress in the technology and comfort of modern transportation (planes, boats, and overland vehicles), a great number of travelers still experience motion sickness. Bouts are characterized by an initial phase of mild discomfort followed by neurologic and gastro-intestinal manifestations. The delay in onset depends on specific circumstances and individual susceptibility. Attacks are precipitated by conflicting sensory, visual, and vestibular signals but the underlying mechanism is unclear. Most medications used for prevention and treatment (e.g. anticholinergics and antihistamines) induce unwanted sedation. Furthermore no one drug is completely effective or preventive under all conditions.

  15. Vibrations of moderately thick shallow spherical shells at large amplitudes

    NASA Astrophysics Data System (ADS)

    Sathyamoorthy, M.

    1994-04-01

    A shallow shell theory is presented for the geometrically nonlinear analysis of moderately thick isotropic spherical shells. Effects of transverse shear deformation and rotatory inertia are included in the governing equations of motion by means of tracing constants. When these effects are ignored, the governing equations readily reduce to those applicable for thin shallow spherical shells. Solutions to the system of thick shell equations are obtained by means of Galerkin's method and the numerical Runge-Kutta procedure. Numerical results are presented for certain cases of shallow spherical shells considering different geometric shell parameters. Transverse shear and rotatory inertia effects are found to be important in linear as well as nonlinear responses of shallow spherical shells. The nonlinear frequency-amplitude behavior is of the softening type for shallow spherical shells and of the hardening type for circular plates. Frequency ratios are lower at any given amplitude when the effects of transverse shear and rotatory inertia are included in the analysis.

  16. A motion algorithm to extract physical and motion parameters of mobile targets from cone-beam computed tomographic images.

    PubMed

    Alsbou, Nesreen; Ahmad, Salahuddin; Ali, Imad

    2016-05-17

    A motion algorithm has been developed to extract length, CT number level and motion amplitude of a mobile target from cone-beam CT (CBCT) images. The algorithm uses three measurable parameters: Apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm are tested with mobile targets having different well-known sizes that are made from tissue-equivalent gel which is inserted into a thorax phantom. The phantom moves sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0-20 mm. Using this motion algorithm, three unknown parameters are extracted that include: Length of the target, CT number level, speed or motion amplitude for the mobile targets from CBCT images. The motion algorithm solves for the three unknown parameters using measured length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agrees with the measured lengths which are dependent on the target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, the target length and motion amplitude. Motion frequency and phase do not affect the elongation and CT number distribution of the mobile target and could not be determined. A motion algorithm has been developed to extract three parameters that include length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement of motion tracking and sorting of the images into different breathing phases. The motion model developed here works well for tumors that have simple shapes, high contrast relative to surrounding tissues and move nearly in regular motion pattern

  17. Effects of rotation amplitude on arm movement when rotating a spherical object.

    PubMed

    Lardy, Julien; Beurier, Georges; Wang, Xuguang

    2012-01-01

    Arm movements when rotating a spherical object were experimentally investigated. Twelve volunteers participated in the experiment and were asked to rotate a sphere for a large range of amplitude. Results showed that subjects anticipated their posture at the beginning of object manipulation even for low rotation amplitudes. The way of anticipation strongly depended on rotation direction. The end-state comfort hypothesis, effects of joint limits and principle of minimum work were examined for explaining motion control. The anticipation would ensure a better end-state comfort while avoiding joint limits in case of higher amplitude of object rotation. Meanwhile, it should not deteriorate the comfort at the beginning of manipulation too much. High postural variability for low rotation amplitude tasks suggested that there might exist a range of postures of similar level of comfort. These findings will be useful in developing human behaviour-based motion simulations for digital human. Arm movement was investigated when rotating a spherical object with a large range of amplitude. The end-state comfort hypothesis, effects of joint limits and principle of minimum work were examined for explaining motion control. Results will be helpful for a better design of rotary controls and for developing motion simulation algorithms.

  18. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT

    SciTech Connect

    Lu Wei; Parikh, Parag J.; Hubenschmidt, James P.; Bradley, Jeffrey D.; Low, Daniel A.

    2006-08-15

    Respiratory motion can cause significant dose delivery errors in conformal radiation therapy for thoracic and upper abdominal tumors. Four-dimensional computed tomography (4D CT) has been proposed to provide the image data necessary to model tumor motion and consequently reduce these errors. The purpose of this work was to compare 4D CT reconstruction methods using amplitude sorting and phase angle sorting. A 16-slice CT scanner was operated in cine mode to acquire 25 scans consecutively at each couch position through the thorax. The patient underwent synchronized external respiratory measurements. The scans were sorted into 12 phases based, respectively, on the amplitude and direction (inhalation or exhalation) or on the phase angle (0-360 deg.) of the external respiratory signal. With the assumption that lung motion is largely proportional to the measured respiratory amplitude, the variation in amplitude corresponds to the variation in motion for each phase. A smaller variation in amplitude would associate with an improved reconstructed image. Air content, defined as the amount of air within the lungs, bronchi, and trachea in a 16-slice CT segment and used by our group as a surrogate for internal motion, was correlated to the respiratory amplitude and phase angle throughout the lungs. For the 35 patients who underwent quiet breathing, images (similar to those used for treatment planning) and animations (used to display respiratory motion) generated using amplitude sorting displayed fewer reconstruction artifacts than those generated using phase angle sorting. The variations in respiratory amplitude were significantly smaller (P<0.001) with amplitude sorting than those with phase angle sorting. The subdivision of the breathing cycle into more (finer) phases improved the consistency in respiratory amplitude for amplitude sorting, but not for phase angle sorting. For 33 of the 35 patients, the air content showed significantly improved (P<0.001) correlation with the

  19. Identification of ground motion features for high-tech facility under far field seismic waves using wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Huang, Shieh-Kung; Loh, Chin-Hsiung; Chen, Chin-Tsun

    2016-04-01

    Seismic records collected from earthquake with large magnitude and far distance may contain long period seismic waves which have small amplitude but with dominant period up to 10 sec. For a general situation, the long period seismic waves will not endanger the safety of the structural system or cause any uncomfortable for human activity. On the contrary, for those far distant earthquakes, this type of seismic waves may cause a glitch or, furthermore, breakdown to some important equipments/facilities (such as the high-precision facilities in high-tech Fab) and eventually damage the interests of company if the amplitude becomes significant. The previous study showed that the ground motion features such as time-variant dominant frequencies extracted using moving window singular spectrum analysis (MWSSA) and amplitude characteristics of long-period waves identified from slope change of ground motion Arias Intensity can efficiently indicate the damage severity to the high-precision facilities. However, embedding a large hankel matrix to extract long period seismic waves make the MWSSA become a time-consumed process. In this study, the seismic ground motion data collected from broadband seismometer network located in Taiwan were used (with epicenter distance over 1000 km). To monitor the significant long-period waves, the low frequency components of these seismic ground motion data are extracted using wavelet packet transform (WPT) to obtain wavelet coefficients and the wavelet entropy of coefficients are used to identify the amplitude characteristics of long-period waves. The proposed method is a timesaving process compared to MWSSA and can be easily implemented for real-time detection. Comparison and discussion on this method among these different seismic events and the damage severity to the high-precision facilities in high-tech Fab is made.

  20. The Chandler wobble of the poles and its amplitude modulation

    NASA Astrophysics Data System (ADS)

    Sidorenkov, N.

    2015-08-01

    It is shown that the period of the Chandler wobble of the poles (CWP) is a combined oscillation caused by three periodic processes experienced by the Earth: (a) lunisolar tides, (b) the precession of the orbit of the Earth's monthly revolution around the barycenter of the Earth-Moon system, and (c) the motion of the perigee of this orbit. The addition of the 1.20 - year Chandler wobble to sidereal, anomalistic, and synodic lunar yearly forcing gives rise slow periodic variations in the CWP amplitude with periods of 32 to 51 years.

  1. Tilts in strong ground motion

    USGS Publications Warehouse

    Graizer, V.

    2006-01-01

    Most instruments used in seismological practice to record ground motion are pendulum seismographs, velocigraphs, or accelerographs. In most cases it is assumed that seismic instruments are only sensitive to the translational motion of the instrument's base. In this study the full equation of pendulum motion, including the inputs of rotations and tilts, is considered. It is shown that tilting the accelerograph's base can severely impact its response to the ground motion. The method of tilt evaluation using uncorrected strong-motion accelerograms was first suggested by Graizer (1989), and later tested in several laboratory experiments with different strong-motion instruments. The method is based on the difference in the tilt sensitivity of the horizontal and vertical pendulums. The method was applied to many of the strongest records of the Mw 6.7 Northridge earthquake of 1994. Examples are shown when relatively large tilts of up to a few degrees occurred during strong earthquake ground motion. Residual tilt extracted from the strong-motion record at the Pacoima Dam-Upper Left Abutment reached 3.1?? in N45??E direction, and was a result of local earthquake-induced tilting due to high-amplitude shaking. This value is in agreement with the residual tilt measured by using electronic level a few days after the earthquake. The method was applied to the building records from the Northridge earthquake. According to the estimates, residual tilt reached 2.6?? on the ground floor of the 12-story Hotel in Ventura. Processing of most of the strongest records of the Northridge earthquake shows that tilts, if happened, were within the error of the method, or less than about 0.5??.

  2. Tsunami Focusing and Leading Amplitude

    NASA Astrophysics Data System (ADS)

    Kanoglu, U.

    2016-12-01

    Tsunamis transform substantially through spatial and temporal spreading from their source region. This substantial spreading might result unique maximum tsunami wave heights which might be attributed to the source configuration, directivity, the waveguide structures of mid-ocean ridges and continental shelves, focusing and defocusing through submarine seamounts, random focusing due to small changes in bathymetry, dispersion, and, most likely, combination of some of these effects. In terms of the maximum tsunami wave height, after Okal and Synolakis (2016 Geophys. J. Int. 204, 719-735), it is clear that dispersion would be one of the reasons to drive the leading wave amplitude in a tsunami wave train. Okal and Synolakis (2016), referring to this phenomenon as sequencing -later waves in the train becoming higher than the leading one, considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp) formalism, in addition to LeMéhauté and Wang's (1995 Water waves generated by underwater explosion, World Scientific, 367 pp), to evaluate linear dispersive tsunami propagation from a circular plug uplifted on an ocean of constant depth. They identified transition distance, as the second wave being larger, performing parametric study for the radius of the plug and the depth of the ocean. Here, we extend Okal and Synolakis' (2016) analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave (Tadepalli and Synolakis, 1994 Proc. R. Soc. A: Math. Phys. Eng. Sci. 445, 99-112). First, we investigate the focusing feature in the leading-depression side, which enhance tsunami wave height as presented by Kanoglu et al. (2013 Proc. R. Soc. A: Math. Phys. Eng. Sci. 469, 20130015). We then discuss the results in terms of leading wave amplitude presenting a parametric study and identify a simple relation for the transition distance. The solution presented here could be used to better analyze dispersive

  3. Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography

    PubMed Central

    Motaghiannezam, Reza; Fraser, Scott

    2012-01-01

    We formulate a theory to show that the statistics of OCT signal amplitude and intensity are highly dependent on the sample reflectivity strength, motion, and noise power. Our theoretical and experimental results depict the lack of speckle amplitude and intensity contrasts to differentiate regions of motion from static areas. Two logarithmic intensity-based contrasts, logarithmic intensity variance (LOGIV) and differential logarithmic intensity variance (DLOGIV), are proposed for serving as surrogate markers for motion with enhanced sensitivity. Our findings demonstrate a good agreement between the theoretical and experimental results for logarithmic intensity-based contrasts. Logarithmic intensity-based motion and speckle-based contrast methods are validated and compared for in vivo human retinal vasculature visualization using high-speed swept-source optical coherence tomography (SS-OCT) at 1060 nm. The vasculature was identified as regions of motion by creating LOGIV and DLOGIV tomograms: multiple B-scans were collected of individual slices through the retina and the variance of logarithmic intensities and differences of logarithmic intensities were calculated. Both methods captured the small vessels and the meshwork of capillaries associated with the inner retina in en face images over 4 mm2 in a normal subject. PMID:22435098

  4. Reduction of wing rock amplitudes using leading-edge vortex manipulations

    NASA Technical Reports Server (NTRS)

    Walton, James; Katz, Joseph

    1992-01-01

    A mechanically operated leading edge flap system was used to perturb leading edge vortex position on a free-to-roll double-delta wing. The motion of the flaps was synchronized with the wing rolling oscillations and the effect of the phase shift between the oscillations of the wing and the flaps was investigated. Experimental results indicated that this simple approach was effective in reducing the amplitude of the unintended rolling motion and its implementation to actual airplane configurations is rather simple.

  5. Clinical evaluations of an amplitude-based binning algorithm for 4DCT reconstruction in radiation therapy.

    PubMed

    Li, Hua; Noel, Camille; Garcia-Ramirez, Jose; Low, Daniel; Bradley, Jeffrey; Robinson, Clifford; Mutic, Sasa; Parikh, Parag

    2012-02-01

    Phase-binning algorithms are commonly utilized in 4DCT image reconstruction for characterization of tumor or organ shape and respiration motion, but breathing irregularities occurring during 4DCT acquisition can cause considerable image distortions. Recently, amplitude-binning algorithms have been evaluated as a potential improvement to phase-binning algorithms for 4DCT image reconstruction. The purpose of this study was to evaluate the performance of the first commercially available on-line retrospective amplitude-binning algorithm for comparison to the traditional phase-binning algorithm. Both phantom and clinical data were used for evaluation. A phantom of known geometry was mounted on a 4D motion platform programmed with seven respiratory waves (two computer generated and five patient trajectories) and scanned with a Philips Brilliance Big bore 16-slice CT simulator. 4DCT images were reconstructed using commercial amplitude- and phase-binning algorithms. Image quality of the amplitude- and phase-binned image sets was compared by evaluation of shape and volume distortions in reconstructed images. Clinical evaluations were performed on 64 4DCT patient image sets in a blinded review process. The amplitude- and phase-binned 4DCT maximum intensity projection (MIP) images were further evaluated for 28 stereotactic body radiation therapy (SBRT) cases of total 64 cases. A preliminary investigation of the effects of respiratory amplitude and pattern irregularities on motion artifact severity was conducted. The phantom experiments illustrated that, as expected, maximum inhalation occurred at the 0% amplitude and maximum exhalation occurred at the 50% amplitude of the amplitude-binned 4DCT image sets. The phantom shape distortions were more severe in the images reconstructed from the phase-binning algorithm. In the clinical study, compared to the phase-binning algorithm, the amplitude-binning algorithm yielded fewer or less severe motion artifacts in 37.5% of the cases

  6. Clinical evaluations of an amplitude-based binning algorithm for 4DCT reconstruction in radiation therapy

    SciTech Connect

    Li Hua; Noel, Camille; Garcia-Ramirez, Jose; Low, Daniel; Bradley, Jeffrey; Robinson, Clifford; Mutic, Sasa; Parikh, Parag

    2012-02-15

    Purpose: Phase-binning algorithms are commonly utilized in 4DCT image reconstruction for characterization of tumor or organ shape and respiration motion, but breathing irregularities occurring during 4DCT acquisition can cause considerable image distortions. Recently, amplitude-binning algorithms have been evaluated as a potential improvement to phase-binning algorithms for 4DCT image reconstruction. The purpose of this study was to evaluate the performance of the first commercially available on-line retrospective amplitude-binning algorithm for comparison to the traditional phase-binning algorithm. Methods: Both phantom and clinical data were used for evaluation. A phantom of known geometry was mounted on a 4D motion platform programmed with seven respiratory waves (two computer generated and five patient trajectories) and scanned with a Philips Brilliance Big bore 16-slice CT simulator. 4DCT images were reconstructed using commercial amplitude- and phase-binning algorithms. Image quality of the amplitude- and phase-binned image sets was compared by evaluation of shape and volume distortions in reconstructed images. Clinical evaluations were performed on 64 4DCT patient image sets in a blinded review process. The amplitude- and phase-binned 4DCT maximum intensity projection (MIP) images were further evaluated for 28 stereotactic body radiation therapy (SBRT) cases of total 64 cases. A preliminary investigation of the effects of respiratory amplitude and pattern irregularities on motion artifact severity was conducted. Results: The phantom experiments illustrated that, as expected, maximum inhalation occurred at the 0% amplitude and maximum exhalation occurred at the 50% amplitude of the amplitude-binned 4DCT image sets. The phantom shape distortions were more severe in the images reconstructed from the phase-binning algorithm. In the clinical study, compared to the phase-binning algorithm, the amplitude-binning algorithm yielded fewer or less severe motion

  7. Large-Amplitude Deformation and Bond Breakage in Shock-Induced Reactions of Explosive Molecules

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey

    The response of explosive molecules to large-amplitude mechanical deformation plays an important role in shock-induced reactions and the initiation of detonation in explosive materials. In this presentation, the response of a series of explosive molecules (nitromethane, 2,4,6-trinitrotoluene [TNT], and 2,4,6-triamino-1,3,5-trinitrobenzene [TATB]) to a variety of large-amplitude deformations are examined using ab initio quantum chemical calculations. Large-amplitude motions that result in bond breakage are described, and the insights these results provide into both previous experimental observations and previous theoretical predictions of shock-induced reactions are discussed.

  8. Disappearance of Collective Motion in Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.

    2005-12-01

    The evolution of the GDR γ yield as a function of excitation energy has been investigated in nuclei of mass A ≈ 126 - 136 through the reactions 116Sn + 12C at 17 and 23A MeV and the reaction 116Sn + 24Mg at 17A MeV. Hot nuclei produced in incomplete fusion reactions span an excitation energy range between 160 and 290 MeV. Gamma-rays were detected with MEDEA array in coincidence with residues detected in MACISTE. The evolution of the GDR parameters has been investigated as a function of the linear momentum transferred to the fused system. The analysis of the γ spectra and their comparison with CASCADE calculations is presented. A comparison with the gamma spectra measured in the reaction 36Ar + 98Mo at 37A MeV at higher excitation energy is presented. A progressive reduction of γ multiplicity with respect to predictions for 100% of the Energy Weighted Sum Rule is observed above 200 MeV excitation energy.

  9. Collective motion: Disorder in the wild

    NASA Astrophysics Data System (ADS)

    Reichhardt, C. J. Olson; Reichhardt, C.

    2017-01-01

    Simple models have given us surprising insight into how animals flock, but most assume they do so through a homogeneous landscape. Colloidal experiments now suggest that a little disorder can have unexpected -- and spectacular -- effects.

  10. Effect of Fixed Versus Adjusted Transcutaneous Electrical Nerve Stimulation Amplitude on Chronic Mechanical Low Back Pain.

    PubMed

    Elserty, Noha; Kattabei, Omaima; Elhafez, Hytham

    2016-07-01

    This study aimed to investigate the effect of adjusting pulse amplitude of transcutaneous electrical nerve stimulation versus fixed pulse amplitude in treatment of chronic mechanical low back pain. Randomized clinical trial. El-sahel Teaching Hospital, Egypt. Forty-five patients with chronic low back pain assigned to three equal groups. Their ages ranged from 20 to 50 years. The three groups received the same exercise program. Group A received transcutaneous electrical nerve stimulation with fixed pulse amplitude for 40 minutes. Group B received transcutaneous electrical nerve stimulation with adjusted pulse amplitude for 40 minutes, with the pulse amplitude adjusted every 5 minutes. Group C received exercises only. Treatment sessions were applied three times per week for 4 weeks for the three groups. A visual analogue scale was used to assess pain severity, the Oswestry Disability Index was used to assess functional level, and a dual inclinometer was used to measure lumbar range of motion. Evaluations were performed before and after treatment. Visual analogue scale, Oswestry Disability Index, and back range of motion significantly differed between the two groups that received transcutaneous electrical nerve stimulation and the control group and did not significantly differ between fixed and adjusted pulse amplitude of transcutaneous electrical nerve stimulation. Adjusting pulse amplitude of transcutaneous electrical nerve stimulation does not produce a difference in the effect of transcutaneous electrical nerve stimulation used to treat chronic low back pain.

  11. Oculometric indices of simulator and aircraft motion

    NASA Technical Reports Server (NTRS)

    Comstock, J. R.

    1984-01-01

    The effects on eye scan behavior of both simulator and aircraft motion and sensitivity of an oculometric measure to motion effects was demonstrated. It was found that fixation time is sensitive to motion effects. Differences between simulator motion and no motion conditions during a series of simulated ILS approaches were studied. The mean fixation time for the no motion condition was found to be significantly longer than for the motion conditions. Eye scan parameters based on data collected in flight, and in fixed base simulation were investigated. Motion effects were evident when the subject was viewing a display supplying attitude and flight path information. The nature of the information provided by motion was examined. The mean fixation times for the no motion condition were significantly longer than for either motion condition, while the two motion conditions did not differ. It is shown that motion serves an alerting function, providing a cue or clue to the pilot that something happened. It is suggested that simulation without motion cues may represent an understatement of the true capacity of the pilot.

  12. Earthquake mechanisms from linear-programming inversion of seismic-wave amplitude ratios

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.

    1996-01-01

    The amplitudes of radiated seismic waves contain far more information about earthquake source mechanisms than do first-motion polarities, but amplitudes are severely distorted by the effects of heterogeneity in the Earth. This distortion can be reduced greatly by using the ratios of amplitudes of appropriately chosen seismic phases, rather than simple amplitudes, but existing methods for inverting amplitude ratios are severely nonlinear and require computationally intensive searching methods to ensure that solutions are globally optimal. Searching methods are particularly costly if general (moment tensor) mechanisms are allowed. Efficient linear-programming methods, which do not suffer from these problems, have previously been applied to inverting polarities and wave amplitudes. We extend these methods to amplitude ratios, in which formulation on inequality constraint for an amplitude ratio takes the same mathematical form as a polarity observation. Three-component digital data for an earthquake at the Hengill-Grensdalur geothermal area in southwestern Iceland illustrate the power of the method. Polarities of P, SH, and SV waves, unusually well distributed on the focal sphere, cannot distinguish between diverse mechanisms, including a double couple. Amplitude ratios, on the other hand, clearly rule out the double-couple solution and require a large explosive isotropic component.

  13. Bifurcation theory applied to aircraft motions

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1985-01-01

    Bifurcation theory is used to analyze the nonlinear dynamic stability characteristics of single-degree-of-freedom motions of an aircraft or a flap about a trim position. The bifurcation theory analysis reveals that when the bifurcation parameter, e.g., the angle of attack, is increased beyond a critical value at which the aerodynamic damping vanishes, a new solution representing finite-amplitude periodic motion bifurcates from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solution is stable (supercritical) or unstable (subcritical). For the pitching motion of a flap-plate airfoil flying at supersonic/hypersonic speed, and for oscillation of a flap at transonic speed, the bifurcation is subcritical, implying either that exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop. On the other hand, for the rolling oscillation of a slender delta wing in subsonic flight (wing rock), the bifurcation is found to be supercritical. This and the predicted amplitude of the bifurcation periodic motion are in good agreement with experiments.

  14. The relationship between sensory latency and amplitude.

    PubMed

    Bodofsky, Elliot B; Cohen, Stephen J; Kumar, Rohini J; Schindelheim, Adam; Gaughan, John

    2016-12-01

    To prove that the relationship between sensory latencies and amplitudes is useful in determining the severity of neuropathies. This is achieved by deriving a mathematical relationship between sensory distal latency and amplitude. Determine whether sensory amplitudes below predicted correlate with a worse pathology. Patients seen for Nerve Conduction Studies by the Department of Physical Medicine and Rehabilitation at Cooper University Hospital between 12/1/12 and 12/31/14 were invited to participate in a prospective database. The median, ulnar and sural sensory latencies and amplitudes were analyzed with both linear and power regression. Patients with amplitudes above and below the regression curve were compared for latency, amplitude and velocity of other nerves. Carpal Tunnel Patients were analyzed to determine whether Median sensory amplitude below predicted correlated with more severe disease. For the Median nerve, Power Regression Analysis showed a stronger correlation (R(2)=0.54) than linear regression (R(2)=0.34). Patients with Median sensory amplitude below the power correlation curve showed significantly longer ulnar sensory latency, and lower sensory amplitude than those above. Carpal Tunnel Syndrome patients with Median sensory amplitude well below predicted by the power relationship showed more advanced disease. For the ulnar and sural sensory nerve, the difference between power and linear regression was not significant. A power regression curve correlates sensory latency and amplitude better than linear regression. The latency amplitude relationship correlates with other parameters of nerve function and severity of Carpal Tunnel Syndrome. This implies that below predicted sensory amplitude may indicate worse disease, and could be a useful diagnostic tool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A study of longitudinal tumor motion in helical tomotherapy using a cylindrical phantom.

    PubMed

    Klein, Michael; Gaede, Stewart; Yartsev, Slav

    2013-03-04

    Tumor motion during radiation treatment on a helical tomotherapy unit may create problems due to interplay with motion of the multileaf collimator, gantry rotation, and patient couch translation through the gantry. This study evaluated this interplay effect for typical clinical parameters using a cylindrical phantom consisting of 1386 diode detectors placed on a respiratory motion platform. All combinations of radiation field widths (1, 2.5, and 5 cm) and gantry rotation periods (16, 30, and 60 s) were considered for sinusoidal motions with a period of 4 s and amplitudes of 5, 6, 7, 8, 9, and 10 mm, as well as real patient breathing pattern. Gamma comparisons with 2% dose difference and 2 mm distance to agreement and dose profiles were used for evaluation. The required motion margins were determined for each set of parameters. The required margin size increased with decreasing field width and increasing tumor motion amplitude, but was not affected by rotation period. The plans with the smallest field width of 1 cm have required motion margins approximately equal to the amplitude of motion (± 25%), while those with the largest field width of 5 cm had required motion margins approximately equal to 20% of the motion amplitude (± 20%). For tumor motion amplitudes below 6 mm and field widths above 1 cm, the required additional motion margins were very small, at a maximum of 2.5 mm for sinusoidal breathing patterns and 1.2 mm for the real patient breathing pattern.

  16. Amplitude death of coupled hair bundles with stochastic channel noise

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Joong; Ahn, Kang-Hun

    2014-04-01

    Hair cells conduct auditory transduction in vertebrates. In lower vertebrates such as frogs and turtles, due to the active mechanism in hair cells, hair bundles (stereocilia) can be spontaneously oscillating or quiescent. Recently an amplitude death phenomenon has been proposed [K.-H. Ahn, J. R. Soc. Interface, 10, 20130525 (2013)] as a mechanism for auditory transduction in frog hair-cell bundles, where sudden cessation of the oscillations arises due to the coupling between nonidentical hair bundles. The gating of the ion channel is intrinsically stochastic due to the stochastic nature of the configuration change of the channel. The strength of the noise due to the channel gating can be comparable to the thermal Brownian noise of hair bundles. Thus, we perform stochastic simulations of the elastically coupled hair bundles. In spite of stray noisy fluctuations due to its stochastic dynamics, our simulation shows the transition from collective oscillation to amplitude death as interbundle coupling strength increases. In its stochastic dynamics, the formation of the amplitude death state of coupled hair bundles can be seen as a sudden suppression of the displacement fluctuation of the hair bundles as the coupling strength increases. The enhancement of the signal-to-noise ratio through the amplitude death phenomenon is clearly seen in the stochastic dynamics. Our numerical results demonstrate that the multiple number of transduction channels per hair bundle is an important factor to the amplitude death phenomenon, because the phenomenon may disappear for a small number of transduction channels due to strong gating noise.

  17. SU-E-J-62: Breath Hold for Left-Sided Breast Cancer: Visually Monitored Deep Inspiration Breath Hold Amplitude Evaluated Using Real-Time Position Management

    SciTech Connect

    Conroy, L; Quirk, S; Smith, WL; Yeung, R; Phan, T; Hudson, A

    2015-06-15

    Purpose: We used Real-Time Position Management (RPM) to evaluate breath hold amplitude and variability when gating with a visually monitored deep inspiration breath hold technique (VM-DIBH) with retrospective cine image chest wall position verification. Methods: Ten patients with left-sided breast cancer were treated using VM-DIBH. Respiratory motion was passively collected once weekly using RPM with the marker block positioned at the xiphoid process. Cine images on the tangent medial field were acquired on fractions with RPM monitoring for retrospective verification of chest wall position during breath hold. The amplitude and duration of all breath holds on which treatment beams were delivered were extracted from the RPM traces. Breath hold position coverage was evaluated for symmetric RPM gating windows from ± 1 to 5 mm centered on the average breath hold amplitude of the first measured fraction as a baseline. Results: The average (range) breath hold amplitude and duration was 18 mm (3–36 mm) and 19 s (7–34 s). The average (range) of amplitude standard deviation per patient over all breath holds was 2.7 mm (1.2–5.7 mm). With the largest allowable RPM gating window (± 5 mm), 4 of 10 VM-DIBH patients would have had ≥ 10% of their breath hold positions excluded by RPM. Cine verification of the chest wall position during the medial tangent field showed that the chest wall was greater than 5 mm from the baseline in only 1 out of 4 excluded patients. Cine images verify the chest wall/breast position only, whether this variation is acceptable in terms of heart sparing is a subject of future investigation. Conclusion: VM-DIBH allows for greater breath hold amplitude variability than using a 5 mm gating window with RPM, while maintaining chest wall positioning accuracy within 5 mm for the majority of patients.

  18. Motion measurement of acoustically levitated object

    NASA Technical Reports Server (NTRS)

    Watkins, John L. (Inventor); Barmatz, Martin B. (Inventor)

    1993-01-01

    A system is described for determining motion of an object that is acoustically positioned in a standing wave field in a chamber. Sonic energy in the chamber is sensed, and variation in the amplitude of the sonic energy is detected, which is caused by linear motion, rotational motion, or drop shape oscillation of the object. Apparatus for detecting object motion can include a microphone coupled to the chamber and a low pass filter connected to the output of the microphone, which passes only frequencies below the frequency of sound produced by a transducer that maintains the acoustic standing wave field. Knowledge about object motion can be useful by itself, can be useful to determine surface tension, viscosity, and other information about the object, and can be useful to determine the pressure and other characteristics of the acoustic field.

  19. Numerical simulation of fluid resonance in a moonpool by twin rectangular hulls with various configurations and heaving amplitudes

    NASA Astrophysics Data System (ADS)

    Jiang, Shengchao; Tang, Peng; Zou, Li; Liu, Zhen

    2017-06-01

    Fluid resonance in a moonpool formed by two identical rectangular hulls during in-phase heaving motion is investigated by employing a two-dimensional numerical wave flume based on OpenFOAM package with Re-Normalization Group (RNG) turbulent model. The focus of the study is to examine the influence of heaving frequency and amplitude with various moonpool configurations on fluid resonant behavior. It is found that the resonant frequency of wave response in moonpool tends to decrease with the increase of moonpool breadth and hulls draft. The decrease of resonant amplitude can be observed for large moonpool breadth. The influence of hulls draft on resonant amplitude is not remarkable, especially for large heaving amplitude. The increase in heaving amplitude results in the decrease of relative resonant amplitude in an approximate power function, implying a complicated dependence of the resonant amplitude on heaving amplitude. Flow patterns in the vicinity of the moonpool are also analyzed, mainly regarding the dependence on the heaving frequency. The negligible influence of vortices on the wave response in moonpool is expected for low-frequency excitation because it is hard to observe the vortex structures. Intensive vortical flow and vortex structure can be identified under resonant condition, which gives rise to significant dissipation and accounts for the smaller relative resonant amplitude in moonpool. As for high-frequency excitation, the vortex motion is rather weak and dissipates rapidly, leading to insignificant effect on wave response amplitude.

  20. Polar motion of Titan forced by the atmosphere

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya; Van Hoolst, Tim; Karatekin, Özgür

    2011-05-01

    Titan's atmosphere possesses an equatorial component of angular momentum, which can be transferred to the surface and can excite polar motion of Titan. The atmospheric excitation of Titan's polar motion is calculated using the wind and pressure data prediction from a general circulation model. The polar motion equation is solved considering Titan's triaxial shape and different hypothetical interior models. Titan's polar motion basically consists of a superposition of small diurnal wobbles and larger semiannual and annual wobbles caused by seasonal redistribution of wind and pressure pattern. If the entire interior of Titan is solid, the polar motion has total amplitudes of a few meters, but the diurnal and seasonal wobble may be intermingled due to preferential damping of the seasonal wobble by Saturn's gravitational torque. If instead there is a subsurface ocean underneath the crust, the wobble amplitude could be larger by an order of magnitude. If the crust is thin, a resonance between the seasonal and Chandler wobble further increases the polar motion amplitude and makes the polar motion path elliptical. The seasonal wobble of a crust lying on a subsurface ocean experiences damping by either gravitational and pressure torque or elastic torque, but the relative reduction of the polar motion amplitude by these torques is likely to be smaller than that of the length-of-day variations.

  1. On the distribution of seismic reflection coefficients and seismic amplitudes

    SciTech Connect

    Painter, S.; Paterson, L.; Beresford, G.

    1995-07-01

    Reflection coefficient sequences from 14 wells in Australia have a statistical character consistent with a non-Gaussian scaling noise model based on the Levy-stable family of probability distributions. Experimental histograms of reflection coefficients are accurately approximated by symmetric Levy-stable probability density functions with Levy index between 0.99 and 1.43. These distributions have the same canonical role in mathematical statistics as the Gaussian distribution, but they have slowly decaying tails and infinite moments. The distribution of reflection coefficients is independent of the spatial scale (statistically self-similar), and the reflection coefficient sequences have long-range dependence. These results suggest that the logarithm of seismic impedance can be modeled accurately using fractional Levy motion, which is a generalization of fractional Brownian motion. Synthetic seismograms produced from the authors` model for the reflection coefficients also have Levy-stable distributions. These isolations include transmission losses, the effects of reverberations, and the loss of resolution caused by band-limited wavelets, and suggest that actual seismic amplitudes with sufficient signal-to-noise ratio should also have a Levy-stable distribution. This prediction is verified using post-stack seismic data acquired in the Timor Sea and in the continental USA. However, prestack seismic amplitudes from the Timor Sea are nearly Gaussian. They attribute the difference between prestack and poststack data to the high level of measurement noise in the prestack data.

  2. Motion Simulator

    NASA Technical Reports Server (NTRS)

    1993-01-01

    MOOG, Inc. supplies hydraulic actuators for the Space Shuttle. When MOOG learned NASA was interested in electric actuators for possible future use, the company designed them with assistance from Marshall Space Flight Center. They also decided to pursue the system's commercial potential. This led to partnership with InterActive Simulation, Inc. for production of cabin flight simulators for museums, expositions, etc. The resulting products, the Magic Motion Simulator 30 Series, are the first electric powered simulators. Movements are computer-guided, including free fall to heighten the sense of moving through space. A projection system provides visual effects, and the 11 speakers of a digital laser based sound system add to the realism. The electric actuators are easier to install, have lower operating costs, noise, heat and staff requirements. The U.S. Space & Rocket Center and several other organizations have purchased the simulators.

  3. Gravity and Yang-Mills amplitude relations

    SciTech Connect

    Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Soendergaard, Thomas; FengBo

    2010-11-15

    Using only general features of the S matrix and quantum field theory, we prove by induction the Kawai-Lewellen-Tye relations that link products of gauge theory amplitudes to gravity amplitudes at tree level. As a bonus of our analysis, we provide a novel and more symmetric form of these relations. We also establish an infinite tower of new identities between amplitudes in gauge theories.

  4. Minimal Basis for Gauge Theory Amplitudes

    SciTech Connect

    Bjerrum-Bohr, N. E. J.; Damgaard, Poul H.; Vanhove, Pierre

    2009-10-16

    Identities based on monodromy for integrations in string theory are used to derive relations between different color-ordered tree-level amplitudes in both bosonic and supersymmetric string theory. These relations imply that the color-ordered tree-level n-point gauge theory amplitudes can be expanded in a minimal basis of (n-3)exclamation amplitudes. This result holds for any choice of polarizations of the external states and in any number of dimensions.

  5. Discontinuities of multi-Regge amplitudes

    NASA Astrophysics Data System (ADS)

    Fadin, V. S.

    2015-04-01

    In the BFKL approach, discontinuities of multiple production amplitudes in invariant masses of produced particles are discussed. It turns out that they are in evident contradiction with the BDS ansatz for n-gluon amplitudes in the planar N = 4 SYM at n ≥ 6. An explicit expression for the NLO discontinuity of the two-to-four amplitude in the invariant mass of two produced gluons is is presented.

  6. SU-C-210-01: Are Clinically Relevant Dosimetric Endpoints Significantly Better with Gating of Lung SBRT Vs. ITV-Based Treatment?: Results of a Large Cohort Investigation Analyzing Predictive Dosimetric Indicators as a Function of Tumor Volume and Motion Amplitude

    SciTech Connect

    Kim, J; Zhao, B; Ajlouni, M; Movsas, B; Chetty, I.J.

    2015-06-15

    Purpose: To quantitatively compare patient internal target volume (ITV)-based plans with retrospectively generated gated plans to evaluate potential dosimetric improvements in lung toxicity from gated radiotherapy. Methods: Evaluation was conducted for 150 stereotactic body radiation therapy (SBRT) treatment plans for 128 early-stage (T1–T3, <5cm) NSCLC patients. PTV margins were: ITV+5 mm (ITV-plan) and GTV+5 mm (Gated-plan). ITV-based and gated treatment plans were compared on the same free-breathing CT. ITV-based plan constraints were used to re-optimize and recalculate new gated plans. Plans were generated for 3 fractionation regimens: 3×18Gy, 4×12Gy (original), and 5×10Gy. Physical dose was converted to equivalent dose in 2Gy fractions (EQD2), which was used to determine mean lung dose (MLD) and percent volume of lung receiving ≥20Gy (V20). MLD and V20 differences between gating and ITV-based plans were analyzed as a function of both three-dimensional (3D) motion and tumor volume. The low dose region, V5, was also evaluated. Results: MLD and V20 differences between gated and ITV-based plans were larger for lower (1.48±1.32Gy and 1.44±1.29%) than for upper lobe tumors (0.89±0.74Gy and 0.92±0.71%) due to smaller tumor motion (2.9±3.4mm) compared to lower lobe tumors (8.1±6.1mm). Average differences of <1–2% were noted in V5 between ITV and gated plans. Dosimetric differences between gating and ITV-based methods increased with increasing tumor motion and decreasing tumor volume. Overall, average MLD (8.04±3.92Gy) and V20 (8.29±4.33%) values for ITV-based plans were already well below clinical guidelines, even for the 3×18Gy dose scheme, for which largest differences were noted relative to gated plans. Similar results were obtained for 5×10Gy and 4×12Gy regimens. Conclusion: Clinically relevant improvement in pulmonary toxicity, based on predictors of radiation pneumonitis (MLD and V20) was not generally observed, though improvement for tumors

  7. DVCS amplitude with kinematical twist-3 terms

    SciTech Connect

    Radyushkin, A.V.; Weiss, C.

    2000-08-01

    The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term.

  8. Motion Magnification in Coronal Seismology

    NASA Astrophysics Data System (ADS)

    Anfinogentov, Sergey; Nakariakov, Valery M.

    2016-11-01

    We introduce a new method for the investigation of low-amplitude transverse oscillations of solar plasma non-uniformities, such as coronal loops, individual strands in coronal arcades, jets, prominence fibrils, polar plumes, and other contrast features that have been observed with imaging instruments. The method is based on the two-dimensional dual-tree complex wavelet transform (DTℂWT). It allows us to magnify transverse, in the plane-of-the-sky, quasi-periodic motions of contrast features in image sequences. The tests performed on the artificial data cubes that imitated exponentially decaying, multi-periodic and frequency-modulated kink oscillations of coronal loops showed the effectiveness, reliability, and robustness of this technique. The algorithm was found to give linear scaling of the magnified amplitudes with the original amplitudes, provided these are sufficiently small. In addition, the magnification is independent of the oscillation period in a broad range of the periods. The application of this technique to SDO/AIA EUV data cubes of a non-flaring active region allowed for the improved detection of low-amplitude decay-less oscillations in the majority of loops.

  9. Local Nanomechanical Motion In Single Cells.

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew; Gimzewski, James

    2004-03-01

    We present new evidence that the nanoscale motion of the cell wall of Saccharomyces cerevisiae exhibits local bionanomechanical motion at characteristic frequencies and which is not caused by random or Brownian processes. This motion is measured with the AFM tip which acts as a nanomechanical sensor, permitting the motion of the cell wall to be recorded as a function of time, applied force, etc. We present persuasive evidence which shows that the local nanomechanical motion is characteristic of metabolic processes taking place inside the cell. This is demonstrated by clear differences between living cells and living cells treated with a metabolic inhibitor. This inhibitor specifically targets cytochrome oxidase inside the mitochondria and inhibits ATP production. The cells observed in this study display characteristic local cell wall motion with amplitudes between 1 and 3 nm and frequencies between 500 and 1700 Hz. The motion is temperature dependant which also suggests the mechanism for the observed motion has biological origins. In addition to a stringent series of control experiments we also discuss local measurements of the cell's mechanical properties and their influence on the observed bionanomechanical motion.

  10. Thread amplitudes and frequencies in a fluid mechanical `sewing machine'

    NASA Astrophysics Data System (ADS)

    Morris, Stephen W.; Dawes, J. H. P.; Lister, John; Dalziel, Stuart

    2006-11-01

    A viscous thread falling on a surface exhibits the famous rope- coiling effect, in which the thread buckles to form loops. If the surface is replaced by a belt moving at speed U, the rotational symmetry of the buckling instability is broken and a wealth of interesting states are observed (1). We experimentally studied this fluid mechanical `sewing machine' in a new, more precise apparatus. As U is reduced, the stretched thread bifurcates into a meandering state in which the thread displacements are only transverse to the motion of the belt. We measured the amplitudes A and frequency φ of the meandering close to the bifurcation. For small U, single- frequency meandering bifurcates to a two-frequency `figure 8' state, which contains a significant 2φ component and parallel as well as transverse displacements. This eventually reverts to single-frequency coiling at smaller U. More complex, highly hysteretic states with additional harmonics are observed for larger nozzle heights. We propose to understand this zoology in terms of the generic amplitude equations appropriate for resonant interactions between three oscillatory modes with frequencies φ, 2φ and 3φ. The form of the amplitude equations captures both the axisymmetry of the U=0 coiling state and the symmetry-breaking effects induced by the moving belt.(1) Chiu-Webster and Lister, J. Fluid Mech., in press.

  11. SU-E-T-133: Dosimetric Impact of Scan Orientation Relative to Target Motion During Spot Scanning Proton Therapy

    SciTech Connect

    Stoker, J; Summers, P; Li, X; Gomez, D; Sahoo, N; Zhu, X; Gillin, M

    2014-06-01

    Purpose: This study seeks to evaluate the dosimetric effects of intra-fraction motion during spot scanning proton beam therapy as a function of beam-scan orientation and target motion amplitude. Method: Multiple 4DCT scans were collected of a dynamic anthropomorphic phantom mimicking respiration amplitudes of 0 (static), 0.5, 1.0, and 1.5 cm. A spot-scanning treatment plan was developed on the maximum intensity projection image set, using an inverse-planning approach. Dynamic phantom motion was continuous throughout treatment plan delivery.The target nodule was designed to accommodate film and thermoluminescent dosimeters (TLD). Film and TLDs were uniquely labeled by location within the target. The phantom was localized on the treatment table using the clinically available orthogonal kV on-board imaging device. Film inserts provided data for dose uniformity; TLDs provided a 3% precision estimate of absolute dose. An inhouse script was developed to modify the delivery order of the beam spots, to orient the scanning direction parallel or perpendicular to target motion.TLD detector characterization and analysis was performed by the Imaging and Radiation Oncology Core group (IROC)-Houston. Film inserts, exhibiting a spatial resolution of 1mm, were analyzed to determine dose homogeneity within the radiation target. Results: Parallel scanning and target motions exhibited reduced target dose heterogeneity, relative to perpendicular scanning orientation. The average percent deviation in absolute dose for the motion deliveries relative to the static delivery was 4.9±1.1% for parallel scanning, and 11.7±3.5% (p<<0.05) for perpendicularly oriented scanning. Individual delivery dose deviations were not necessarily correlated to amplitude of motion for either scan orientation. Conclusions: Results demonstrate a quantifiable difference in dose heterogeneity as a function of scan orientation, more so than target amplitude. Comparison to the analyzed planar dose of a single

  12. Secondary threshold amplitudes for sinuous streak breakdown

    NASA Astrophysics Data System (ADS)

    Cossu, Carlo; Brandt, Luca; Bagheri, Shervin; Henningson, Dan S.

    2011-07-01

    The nonlinear stability of laminar sinuously bent streaks is studied for the plane Couette flow at Re = 500 in a nearly minimal box and for the Blasius boundary layer at Reδ*=700. The initial perturbations are nonlinearly saturated streamwise streaks of amplitude AU perturbed with sinuous perturbations of amplitude AW. The local boundary of the basin of attraction of the linearly stable laminar flow is computed by bisection and projected in the AU - AW plane providing a well defined critical curve. Different streak transition scenarios are seen to correspond to different regions of the critical curve. The modal instability of the streaks is responsible for transition for AU = 25%-27% for the considered flows, where sinuous perturbations of amplitude below AW ≈ 1%-2% are sufficient to counteract the streak viscous dissipation and induce breakdown. The critical amplitude of the sinuous perturbations increases when the streamwise streak amplitude is decreased. With secondary perturbations amplitude AW ≈ 4%, breakdown is induced on stable streamwise streaks with AU ≈ 13%, following the secondary transient growth scenario first examined by Schoppa and Hussain [J. Fluid Mech. 453, 57 (2002)]. A cross-over, where the critical amplitude of the sinuous perturbation becomes larger than the amplitude of streamwise streaks, is observed for streaks of small amplitude AU < 5%-6%. In this case, the transition is induced by an initial transient amplification of streamwise vortices, forced by the decaying sinuous mode. This is followed by the growth of the streaks and final breakdown. The shape of the critical AU - AW curve is very similar for Couette and boundary layer flows and seems to be relatively insensitive to the nature of the edge states on the basin boundary. The shape of this critical curve indicates that the stability of streamwise streaks should always be assessed in terms of both the streak amplitude and the amplitude of spanwise velocity perturbations.

  13. Auditory Motion Elicits a Visual Motion Aftereffect

    PubMed Central

    Berger, Christopher C.; Ehrsson, H. Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates. PMID:27994538

  14. Human motion analysis and characterization

    NASA Astrophysics Data System (ADS)

    Cathcart, J. Michael; Prussing, Keith; Kocher, Brian

    2011-06-01

    Georgia Tech has investigated methods for the detection and tracking of personnel in a variety of acquisition environments. This research effort focused on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. As a fundamental part of this research effort, Georgia Tech collected motion capture data on an individual for a variety of walking speeds, carrying loads, and load distributions. These data formed the basis for deriving fundamental properties of the individual's motion and the derivation of motionbased observables, and changes in these fundamental properties arising from load variations. Analyses were conducted to characterize the motion properties of various body components such as leg swing, arm swing, head motion, and full body motion. This paper will describe the data acquisition process, extraction of motion characteristics, and analysis of these data. Video sequences illustrating the motion data and analysis results will also be presented.

  15. Off-shell amplitudes and Grassmannians

    NASA Astrophysics Data System (ADS)

    Bork, L. V.; Onishchenko, A. I.

    2017-09-01

    The Grassmannian representation for gauge-invariant amplitudes for arbitrary number of legs with one of them being off-shell is derived for the case of N = 4 SYM. The obtained formula are successfully checked against known BCFW results for MHV n , NMHV4 and NMHV5 amplitudes.

  16. BCFW construction of the Veneziano amplitude

    NASA Astrophysics Data System (ADS)

    Fotopoulos, Angelos

    2011-06-01

    In this paper we demonstrate how one can compute the Veneziano amplitude for bosonic string theory using the Britto-Cachazo-Feng-Witten method. We use an educated ansatz for the cubic amplitude of two tachyons and an arbitrary level string state.

  17. Formant Amplitude of Children with Down's Syndrome.

    ERIC Educational Resources Information Center

    Pentz, Arthur L., Jr.

    1987-01-01

    The sustained vowel sounds of 14 noninstitutionalized 7- to 10-year-old children with Down's syndrome were analyzed acoustically for vowel formant amplitude levels. The subjects with Down's syndrome had formant amplitude intensity levels significantly lower than those of a similar group of speakers without Down's syndrome. (Author/DB)

  18. Amplitude image processing by diffractive optics.

    PubMed

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F

    2016-02-22

    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  19. Magnetospheric chorus - Amplitude and growth rate

    NASA Technical Reports Server (NTRS)

    Burtis, W. J.; Helliwell, R. A.

    1975-01-01

    A new study of the amplitude of magnetospheric chorus with 1966-1967 data from the Stanford University/Stanford Research Institute VLF receivers on Ogo 1 and Ogo 3 has confirmed the band-limited character of magnetospheric chorus in general and the double-banding of near-equatorial chorus. Chorus amplitude tended to be inversely correlated with frequency, implying lower intensities at lower L values. Individual chorus emissions often showed a characteristic amplitude variation, with rise times of 10 to 300 ms, a short duration at peak amplitude, and decay times of 100 to 3000 msec. Growth was often approximately exponential, with rates from 200 to nearly 2000 dB/sec. Rate of change of frequency was found in many cases to be independent of emission amplitude, in agreement with the cyclotron feedback theory of chorus (Helliwell, 1967, 1970).

  20. Multidimensional Large Amplitude Dynamics in the Pyridine-Water Complex.

    PubMed

    Mackenzie, Rebecca B; Dewberry, Christopher T; Cornelius, Ryan D; Smith, C J; Leopold, Kenneth R

    2017-02-02

    Aqueous pyridine plays an important role in a variety of catalytic processes aimed at harnessing solar energy. In this work, the pyridine-water interaction is studied by microwave spectroscopy and density functional theory calculations. Water forms a hydrogen bond to the nitrogen with the oxygen tilted slightly toward either of the ortho-hydrogens of the pyridine, and a tunneling motion involving in-plane rocking of the water interconverts the resulting equivalent structures. A pair of tunneling states with severely perturbed rotational spectra is identified and their energy separation, ΔE, is inferred from the perturbations and confirmed by direct measurement. Curiously, values of ΔE are 10404.45 and 13566.94 MHz for the H2O and D2O complexes, respectively, revealing an inverted isotope effect upon deuteration. Small splittings in some transitions suggest an additional internal motion making this complex an interesting challenge for theoretical treatments of large amplitude motion. The results underscore the significant effect of the ortho-hydrogens on the intermolecular interaction of pyridine.

  1. The Validity and Reliability of Motion Analysis in Patellar Tendon Reflex Assessment

    PubMed Central

    Tham, Lai Kuan; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar; Lim, Kheng Seang

    2013-01-01

    Background The deep tendon reflex assessments that are essential to the accurate diagnosis of neurological or neuromuscular disorders are conducted subjectively in clinical neurology. Our aim was to assess deep tendon reflexes objectively with a new reflex quantification method. Methodology/Principal Findings The present study used a motion analysis technique to collect quantitative measurements for both the input and output of normal patellar tendon reflex. Reflex responses were measured as knee angles. The patellar tendon reflexes of 100 healthy subjects were examined using 6 levels of tendon taps, where all the assessments were captured using motion capture system. A linear relationship was found between the experimental maximum tapping velocity and tapping angle (coefficient of determination = 0.989), which was consistent with the theoretical values. Tapping velocities were predictable according to tapping angles. The findings proved the reproducibility of tapping method in producing consistent input. The reflex amplitude was consistent between two randomly assigned groups, and linearly proportionate to the tapping velocity. Conclusions/Significance The findings on reflex amplitude indicate that motion analysis is a valid and reliable method of assessing and measuring deep tendon reflexes. PMID:23409022

  2. The validity and reliability of motion analysis in patellar tendon reflex assessment.

    PubMed

    Tham, Lai Kuan; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar; Lim, Kheng Seang

    2013-01-01

    The deep tendon reflex assessments that are essential to the accurate diagnosis of neurological or neuromuscular disorders are conducted subjectively in clinical neurology. Our aim was to assess deep tendon reflexes objectively with a new reflex quantification method. The present study used a motion analysis technique to collect quantitative measurements for both the input and output of normal patellar tendon reflex. Reflex responses were measured as knee angles. The patellar tendon reflexes of 100 healthy subjects were examined using 6 levels of tendon taps, where all the assessments were captured using motion capture system. A linear relationship was found between the experimental maximum tapping velocity and tapping angle (coefficient of determination = 0.989), which was consistent with the theoretical values. Tapping velocities were predictable according to tapping angles. The findings proved the reproducibility of tapping method in producing consistent input. The reflex amplitude was consistent between two randomly assigned groups, and linearly proportionate to the tapping velocity. The findings on reflex amplitude indicate that motion analysis is a valid and reliable method of assessing and measuring deep tendon reflexes.

  3. Thermal cracking and amplitude dependent attenuation

    SciTech Connect

    Johnston, D.H.; Toksoez, M.N.

    1980-02-10

    The role of crack and grain boundary contacts in determining seismic wave attenuation in rock is investigated by examining Q as a function of thermal cycling (cracking) and wave strain amplitude. Q values are obtained using a longitudinal resonant bar technique in the 10- to 20-kHz range for maximum strain amplitudes varying from roughly 10/sup -8/ to 10/sup -5/. The samples studied include the Berea and Navajo sandstones, Plexiglas, Westerly granite, Solenhofen limestone, and Frederick diabase, the latter two relatively crack free in their virgin state. Measurements were made at room temperature and pressure in air. Q values for both sandstones are constant at low strains (<10/sup -6/) but decrease rapidly with amplitude at higher strains. There is no hysteresis of Q with amplitude. Q values for Plexiglas show no indication of amplitude dependent behavior. The granite, limestone, and diabase are thermally cycled at both fast and slow heating rates in order to induce cracking. Samples slowly cycled at 400/sup 0/C show a marked increase in Q that cannot be entirely explained by outgassing of volatiles. Cycling may also widen thin cracks and grain boundaries, reducing contact areas. Samples heated beyond 400/sup 0/C, or rapidly heated, result in generally decreasing Q values. The amplitude dependence of Q is found to be coupled to the effects of thermal cycling. For rock slowly cycled 400)C or less, the transition from low-amplitude contant Q to high-amplitude variable Q behavior decreases to lower amplitudes as a function of maximum temperature. Above 400/sup 0/C, and possibly in th rapidly heated samples also, the transition moves to higher amplitudes.

  4. Visual motion aftereffect from understanding motion language.

    PubMed

    Dils, Alexia Toskos; Boroditsky, Lera

    2010-09-14

    Do people spontaneously form visual mental images when understanding language, and if so, how truly visual are these representations? We test whether processing linguistic descriptions of motion produces sufficiently vivid mental images to cause direction-selective motion adaptation in the visual system (i.e., cause a motion aftereffect illusion). We tested for motion aftereffects (MAEs) following explicit motion imagery, and after processing literal or metaphorical motion language (without instructions to imagine). Intentionally imagining motion produced reliable MAEs. The aftereffect from processing motion language gained strength as people heard more and more of a story (participants heard motion stories in four installments, with a test after each). For the last two story installments, motion language produced reliable MAEs across participants. Individuals differed in how early in the story this effect appeared, and this difference was predicted by the strength of an individual's MAE from imagining motion. Strong imagers (participants who showed the largest MAEs from imagining motion) were more likely to show an MAE in the course of understanding motion language than were weak imagers. The results demonstrate that processing language can spontaneously create sufficiently vivid mental images to produce direction-selective adaptation in the visual system. The timecourse of adaptation suggests that individuals may differ in how efficiently they recruit visual mechanisms in the service of language understanding. Further, the results reveal an intriguing link between the vividness of mental imagery and the nature of the processes and representations involved in language understanding.

  5. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    PubMed

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  6. Theoretical analysis of the Ca2+ spark amplitude distribution.

    PubMed Central

    Izu, L T; Wier, W G; Balke, C W

    1998-01-01

    A difficulty of using confocal microscopy to study Ca2+ sparks is the uncertainty of the linescan position with respect to the source of Ca2+ release. Random placement of the linescan is expected to result in a broad distribution of measured Ca2+ spark amplitudes (a) even if all Ca2+ sparks were generated identically. Thus variations in Ca2+ spark amplitude due to positional differences between confocal linescans and Ca2+ release site are intertwined with variations due to intrinsic differences in Ca2+ release properties. To separate these two sources of variations on the Ca2+ spark amplitude, we determined the effect changes of channel current or channel open time--collectively called the source strength, alpha--had on the measured Ca2+ spark amplitude histogram, N(a). This was done by 1) simulating Ca2+ release, Ca2+ and fluo-3 diffusion, and Ca2+ binding reactions; 2) simulation of image formation of the Ca2+ spark by a confocal microscope; and 3) using a novel automatic Ca2+ spark detector. From these results we derived an integral equation relating the probability density function of source strengths, f alpha (alpha), to N(a), which takes into account random positional variations between the source and linescan. In the special, but important, case that the spatial distribution of Ca(2+)-bound fluo-3 is Gaussian, we show the following: 1) variations of Ca2+ spark amplitude due to positional or intrinsic differences can be separated, and 2) f alpha (alpha) can, in principle, be calculated from the Ca2+ spark amplitude histogram since N(a) is the sum of shifted hyperbolas, where the magnitudes of the shifts and weights depend on f alpha (alpha). In particular, if all Ca2+ sparks were generated identically, then the plot of 1/N(a) against a will be a straight line. Multiple populations of channels carrying distinct currents are revealed by discontinuities in the 1/N(a) plot. 3) Although the inverse relationship between Ca2+ spark amplitude and decay time might be

  7. Color-kinematics duality for QCD amplitudes

    NASA Astrophysics Data System (ADS)

    Johansson, Henrik; Ochirov, Alexander

    2016-01-01

    We show that color-kinematics duality is present in tree-level amplitudes of quantum chromodynamics with massive flavored quarks. Starting with the color structure of QCD, we work out a new color decomposition for n-point tree amplitudes in a reduced basis of primitive amplitudes. These primitives, with k quark-antiquark pairs and ( n - 2 k) gluons, are taken in the ( n - 2)! /k! Melia basis, and are independent under the color-algebra Kleiss-Kuijf relations. This generalizes the color decomposition of Del Duca, Dixon, and Maltoni to an arbitrary number of quarks. The color coefficients in the new decomposition are given by compact expressions valid for arbitrary gauge group and representation. Considering the kinematic structure, we show through explicit calculations that color-kinematics duality holds for amplitudes with general configurations of gluons and massive quarks. The new (massive) amplitude relations that follow from the duality can be mapped to a well-defined subset of the familiar BCJ relations for gluons. They restrict the amplitude basis further down to ( n - 3)!(2 k - 2) /k! primitives, for two or more quark lines. We give a decomposition of the full amplitude in that basis. The presented results provide strong evidence that QCD obeys the color-kinematics duality, at least at tree level. The results are also applicable to supersymmetric and D-dimensional extensions of QCD.

  8. Motion analysis of normal patellar tendon reflex.

    PubMed

    Tham, Lai Kuan; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar; Lim, Kheng Seang

    2013-11-01

    Reflex assessment, an essential element in the investigation of the motor system, is currently assessed through qualitative description, which lacks of normal values in the healthy population. This study quantified the amplitude and latency of patellar tendon reflex in normal subjects using motion analysis to determine the factors affecting the reflex amplitude. 100 healthy volunteers were recruited for patellar tendon reflex assessments which were recorded using a motion analysis system. Different levels of input strength were exerted during the experiments. A linear relationship was found between reflex input and reflex amplitude (r = 0.50, P <0.001). The left knee was found to exhibit 26.3% higher reflex amplitude than the right (P <0.001). The Jendrassik manoeuvre significantly increased reflex amplitude by 34.3% (P = 0.001); the effect was especially prominent in subjects with weak reflex response. Reflex latency normality data were established, which showed a gradual reduction with increasing input strength. The quantitative normality data and findings showed that the present method has great potential to objectively quantify deep tendon reflexes. Analyse du mouvement du réflexe rotulien normal.

  9. Relations of latitudinal characteristics of sunspot groups to the 11-year cycle amplitude at different phases

    NASA Astrophysics Data System (ADS)

    Miletskii, E. V.; Ivanov, V. G.

    2016-12-01

    Using sunspot data for cycles 12 to 23, we have investigated relations of some latitude characteristics of sunspot groups to the 11-year cycle amplitude at different phases. We have revealed a high correlation (with correlation coefficients >0.9) between the middle latitude of sunspot groups at phases of rise, maximum, and decay, on the one hand, and the amplitude of the corresponding cycle, on the other hand. We have shown that the maxima of the velocity of the motion of the sunspot formation zone to the equator have a special physical meaning: the rise phase of the 11-year cycle is characterized by significant correlations between the cycle amplitude and the maximum for the lowest boundary, and the cycle decay phase is characterized by the same maximum for the highest boundary. We have built equations allowing one to determine the amplitude of the 11-year cycle on the basis of data on the given latitudinal characteristics of sunspots groups.

  10. Self Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1991-01-01

    The studies conducted in this research project examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  11. Amplitude- and rise-time-compensated filters

    DOEpatents

    Nowlin, Charles H.

    1984-01-01

    An amplitude-compensated rise-time-compensated filter for a pulse time-of-occurrence (TOOC) measurement system is disclosed. The filter converts an input pulse, having the characteristics of random amplitudes and random, non-zero rise times, to a bipolar output pulse wherein the output pulse has a zero-crossing time that is independent of the rise time and amplitude of the input pulse. The filter differentiates the input pulse, along the linear leading edge of the input pulse, and subtracts therefrom a pulse fractionally proportional to the input pulse. The filter of the present invention can use discrete circuit components and avoids the use of delay lines.

  12. Hidden simplicity of gauge theory amplitudes

    NASA Astrophysics Data System (ADS)

    Drummond, J. M.

    2010-11-01

    These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in \\ {N}=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.

  13. A recursion relation for gravity amplitudes

    NASA Astrophysics Data System (ADS)

    Bedford, James; Brandhuber, Andreas; Spence, Bill; Travaglini, Gabriele

    2005-08-01

    Britto, Cachazo and Feng have recently derived a recursion relation for tree-level scattering amplitudes in Yang-Mills. This relation has a bilinear structure inherited from factorisation on multi-particle poles of the scattering amplitudes—a rather generic feature of field theory. Motivated by this, we propose a new recursion relation for scattering amplitudes of gravitons at tree level. Using this, we derive a new general formula for the MHV tree-level scattering amplitude for n gravitons. Finally, we comment on the existence of recursion relations in general field theories.

  14. Phase and amplitude errors in FM radars

    NASA Astrophysics Data System (ADS)

    Griffiths, Hugh D.

    The constraints on phase and amplitude errors are determined for various types of FM radar by calculating the range sidelobe levels on the point target response due to the phase and amplitude modulation of the target echo. It is shown that under certain circumstances the constraints on phase linearity appropriate for conventional pulse compression radars are unnecessarily stringent, and quite large phase errors can be tolerated provided the relative delay of the local oscillator with respect to the target echo is small compared with the periodicity of the phase error characteristic. The constraints on amplitude flatness, however, are severe under almost all circumstances.

  15. A link representation for gravity amplitudes

    NASA Astrophysics Data System (ADS)

    He, Song

    2013-10-01

    We derive a link representation for all tree amplitudes in supergravity, from a recent conjecture by Cachazo and Skinner. The new formula explicitly writes amplitudes as contour integrals over constrained link variables, with an integrand naturally expressed in terms of determinants, or equivalently tree diagrams. Important symmetries of the amplitude, such as supersymmetry, parity and (partial) permutation invariance, are kept manifest in the formulation. We also comment on rewriting the formula in a GL( k)-invariant manner, which may serve as a starting point for the generalization to possible Grassmannian contour integrals.

  16. Scattering amplitudes in gauge theories: progress and outlook Scattering amplitudes in gauge theories: progress and outlook

    NASA Astrophysics Data System (ADS)

    Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia

    2011-11-01

    oscillator. In the much more complicated realm of four-dimensional quantum field theories, developments over the past several years have led to the extremely exciting, and already partially realized, prospect of completely solving SYM theory (at least in the planar approximation). This alone is a thrilling prospect for theorists, but the great interest in this subject stems in particular from the fact that this is not some obscure field theory but rather a gauge theory, and hence a close cousin of QCD. As reviewed in several of the articles in this issue, many of the insights and methods developed for SYM theory can be applied, with suitable care, to arbitrary gauge theories. It has occasionally been noted that the study of amplitudes is an experimental science in which expressions for, or empirically observed properties of, various scattering amplitudes serve as the 'data' to be collected and analyzed. The rapid pace of progress is made possible in part by the fact that new data is often available at the click of a mouse. The articles in this issue offer testament to the riches which have been discovered hiding in these data, and there is no doubt that more rewards await theorists with the ambition to seek them out.

  17. Effects of ion motion on linear Landau damping

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Sheng, Zheng-Ming; Kong, Xiang-Mu; Su, Fu-Fang

    2017-02-01

    The effects of ion motion on Landau damping has been studied by the use of one-dimensional Vlasov-Poisson simulation. It is shown that the ion motion may significantly change the development of the linear Landau damping. When the ion mass is multiple of proton mass, its motion will halt the linear Landau damping at some time due to the excitation of ion acoustic waves. The latter will dominate the system evolution at the later stage and hold a considerable fraction of the total energy in the system. With very small ion mass, such as in electron-positron plasma, the ion motion can suppress the linear Landau damping very quickly. When the initial field amplitude is relatively high such as with the density perturbation amplitude δn/n0 > 0.1, the effect of ion motion on Landau damping is found to be weak or even ignorable.

  18. One-degree-of-freedom motion induced by modeled vortex shedding

    NASA Technical Reports Server (NTRS)

    Yates, L. A.; Unal, A.; Szady, M.; Chapman, G. T.

    1989-01-01

    The motion of an elastically supported cylinder forced by a nonlinear, quasi-static, aerodynamic model with the unusual feature of a motion-dependent forcing frequency was studied. Numerical solutions for the motion and the Lyapunov exponents are presented for three forcing amplitudes and two frequencies (1.0 and 1.1 times the Strouhal frequency). Initially, positive Lyapunov exponents occur and the motion can appear chaotic. After thousands of characteristic times, the motion changes to a motion (verified analytically) that is periodic and damped. This periodic, damped motion was not observed experimentally, thus raising questions concerning the modeling.

  19. Self-Motion Perception and Motion Sickness

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.

    1991-01-01

    Motion sickness typically is considered a bothersome artifact of exposure to passive motion in vehicles of conveyance. This condition seldom has significant impact on the health of individuals because it is of brief duration, it usually can be prevented by simply avoiding the eliciting condition and, when the conditions that produce it are unavoidable, sickness dissipates with continued exposure. The studies conducted examined several aspects of motion sickness in animal models. A principle objective of these studies was to investigate the neuroanatomy that is important in motion sickness with the objectives of examining both the utility of putative models and defining neural mechanisms that are important in motion sickness.

  20. The SCEC Broadband Platform: Open-Source Software for Strong Ground Motion Simulation and Validation

    NASA Astrophysics Data System (ADS)

    Goulet, C.; Silva, F.; Maechling, P. J.; Callaghan, S.; Jordan, T. H.

    2015-12-01

    The Southern California Earthquake Center (SCEC) Broadband Platform (BBP) is a carefully integrated collection of open-source scientific software programs that can simulate broadband (0-100Hz) ground motions for earthquakes at regional scales. The BBP scientific software modules implement kinematic rupture generation, low and high-frequency seismogram synthesis using wave propagation through 1D layered velocity structures, seismogram ground motion amplitude calculations, and goodness of fit measurements. These modules are integrated into a software system that provides user-defined, repeatable, calculation of ground motion seismograms, using multiple alternative ground motion simulation methods, and software utilities that can generate plots, charts, and maps. The BBP has been developed over the last five years in a collaborative scientific, engineering, and software development project involving geoscientists, earthquake engineers, graduate students, and SCEC scientific software developers. The BBP can run earthquake rupture and wave propagation modeling software to simulate ground motions for well-observed historical earthquakes and to quantify how well the simulated broadband seismograms match the observed seismograms. The BBP can also run simulations for hypothetical earthquakes. In this case, users input an earthquake location and magnitude description, a list of station locations, and a 1D velocity model for the region of interest, and the BBP software then calculates ground motions for the specified stations. The SCEC BBP software released in 2015 can be compiled and run on recent Linux systems with GNU compilers. It includes 5 simulation methods, 7 simulation regions covering California, Japan, and Eastern North America, the ability to compare simulation results against GMPEs, updated ground motion simulation methods, and a simplified command line user interface.

  1. Development and clinical evaluation of a simple optical method to detect and measure patient external motion.

    PubMed

    Barbés, Benigno; Azcona, Juan Diego; Prieto, Elena; de Foronda, José Manuel; García, Marina; Burguete, Javier

    2015-09-08

    A simple and independent system to detect and measure the position of a number of points in space was devised and implemented. Its application aimed to detect patient motion during radiotherapy treatments, alert of out-of-tolerances motion, and record the trajectories for subsequent studies. The system obtains the 3D position of points in space, through its projections in 2D images recorded by two cameras. It tracks black dots on a white sticker placed on the surface of the moving object. The system was tested with linear displacements of a phantom, circular trajectories of a rotating disk, oscillations of an in-house phantom, and oscillations of a 4D phantom. It was also used to track 461 trajectories of points on the surface of patients during their radiotherapy treatments. Trajectories of several points were reproduced with accuracy better than 0.3 mm in the three spatial directions. The system was able to follow periodic motion with amplitudes lower than 0.5 mm, to follow trajectories of rotating points at speeds up to 11.5 cm/s, and to track accurately the motion of a respiratory phantom. The technique has been used to track the motion of patients during radiotherapy and to analyze that motion. The method is flexible. Its installation and calibration are simple and quick. It is easy to use and can be implemented at a very affordable price. Data collection does not involve any discomfort to the patient and does not delay the treatment, so the system can be used routinely in all treatments. It has an accuracy similar to that of other, more sophisticated, commercially available systems. It is suitable to implement a gating system or any other application requiring motion detection, such as 4D CT, MRI or PET.

  2. Amplitude dynamics favors synchronization in complex networks

    PubMed Central

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-01-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics. PMID:27108847

  3. Stable ac phase and amplitude comparator

    NASA Technical Reports Server (NTRS)

    Bruce, H. P.

    1967-01-01

    Stable ac phase and amplitude comparator detects excessive vehicle maneuvering or vibration. It has phase demodulation, low-pass filter, and multiple threshold-setting capability designed specifically for low drifts over a wide range of temperatures.

  4. Pion distribution amplitude from lattice QCD

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Hui; Chen, Jiunn-Wei; Ji, Xiangdong; Jin, Luchang; Lin, Huey-Wen

    2017-05-01

    We present the first lattice-QCD calculation of the pion distribution amplitude using the large-momentum effective field theory (LaMET) approach, which allows us to extract light cone parton observables from a Euclidean lattice. The mass corrections needed to extract the pion distribution amplitude from this approach are calculated to all orders in mπ2/Pz2 . We also implement the Wilson-line renormalization which is crucial to remove the power divergences in this approach, and find that it reduces the oscillation at the end points of the distribution amplitude. Our exploratory result at 310-MeV pion mass favors a single-hump form broader than the asymptotic form of the pion distribution amplitude.

  5. The periods and amplitudes of TU Cas

    NASA Technical Reports Server (NTRS)

    Hodson, S. W.; Cox, A. N.

    1980-01-01

    Light curve observations of the double-mode Cepheid TU Cas obtained by 10 different sets of observers on several photometric systems over a time span of 67 years were carefully studied to determine the fundamental and first overtone periods and their amplitudes on the V magnitude scale. The presence of a second overtone radial pulsation is discussed, and it is concluded that a previous detection of this mode was spurious due to the lack of a proper zero point correction for two groups of observations. The amplitudes of the two modes are shown to possibly vary during the entire observing period with the fundamental mode amplitude of 0.69 + or - 0.03 and the overtone amplitude decreasing about 0.2 or 0.3 magnitude. If this Cepheid displays the two pulsation modes because it is mode switching, this switching time scale might be less than a hundred years.

  6. Amplitude dynamics favors synchronization in complex networks

    NASA Astrophysics Data System (ADS)

    Gambuzza, Lucia Valentina; Gómez-Gardeñes, Jesus; Frasca, Mattia

    2016-04-01

    In this paper we study phase synchronization in random complex networks of coupled periodic oscillators. In particular, we show that, when amplitude dynamics is not negligible, phase synchronization may be enhanced. To illustrate this, we compare the behavior of heterogeneous units with both amplitude and phase dynamics and pure (Kuramoto) phase oscillators. We find that in small network motifs the behavior crucially depends on the topology and on the node frequency distribution. Surprisingly, the microscopic structures for which the amplitude dynamics improves synchronization are those that are statistically more abundant in random complex networks. Thus, amplitude dynamics leads to a general lowering of the synchronization threshold in arbitrary random topologies. Finally, we show that this synchronization enhancement is generic of oscillators close to Hopf bifurcations. To this aim we consider coupled FitzHugh-Nagumo units modeling neuron dynamics.

  7. Quartic Amplitudes for Minkowski Higher Spin

    NASA Astrophysics Data System (ADS)

    Bengtsson, Anders K. H.

    The old problem of finding general quartic interaction terms between fields of higher helicities on the light-front is discussed from the point of view of calculating the corresponding amplitudes directly from the cubic vertices using BCFW recursion. Amplitude based no-go results that has appeared in the literature are reviewed and discussed and it is pointed out how they may perhaps be circumvented.

  8. Amplitude metrics for cellular circadian bioluminescence reporters.

    PubMed

    St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J

    2014-12-02

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  9. Seismic directional beamforming using cosine amplitude distribution

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Xu, X.; Song, J.; Jia, H.; Ge, L.

    2013-12-01

    o improve the signal-to-noise ratio in seismic exploration, we studied the method of time domain seismic beam-forming based on receiver array (TSBBRA). TSBBRA is useful to extract reflected waves from some target layers and decrease noise from other direction. When noise is strong enough, the control parameter of the method of TSBBRA need to be increased. It means that we have to use more raw records to form a directional seismic record. Therefore, the signal energy in beam is much denser, and the beam becomes narrower accordingly. When the beam can not cover the receiver array, the signal-to-noise ratios in different traces are quite unbalanced and average quality of data probably is still quite low. Therefore, this paper proposes seismic directional beamforming using the cosine amplitude distribution (SDBCAD). SDBCAD can adjust seismic beam shape by introducing cosine amplitude distribution, an amplitude weighting method, in the procedure of beamforming. We studied cosine amplitude weighting function, analyzed the characteristics of uniform and cosine amplitude distribution in beamforming, and compared directivity of beams from the two kind of amplitude pattern. It shows that the main beam of cosine-weighted amplitude is different from uniform distribution. The coverage of main beam from SDBCAD is wider than uniform amplitude, and the width of beam is varied with different number of cosine order. So we simulated the seismic raw record, and used TSBBRA and SDBCAD to process simulated data at the receiving array. The results show that SDBCAD can broaden directional beam, and the main beam from SDBCAD can cover the entire traces instead of partial coverage in TSBBRA. The average signal-to-noise ratio increased 0.2~4.5dB. It concludes that SDBCAD is competent to stretch beam reasonable, and it is useful to boost signal-to-noise ratio when beam from TSBBRA is too narrow to illuminate receiver array properly. Updated results will be presented at the meeting.

  10. Nucleon Distribution Amplitudes from Lattice QCD

    SciTech Connect

    Goeckeler, Meinulf; Kaltenbrunner, Thomas; Warkentin, Nikolaus; Horsley, Roger; Zanotti, James M.; Nakamura, Yoshifumi; Pleiter, Dirk; Schierholz, Gerrit; Rakow, Paul E. L.; Schaefer, Andreas; Stueben, Hinnerk

    2008-09-12

    We calculate low moments of the leading-twist and next-to-leading-twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MS scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature.

  11. Amplitude Metrics for Cellular Circadian Bioluminescence Reporters

    PubMed Central

    St. John, Peter C.; Taylor, Stephanie R.; Abel, John H.; Doyle, Francis J.

    2014-01-01

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  12. Bootstrapping One-Loop QCD Amplitudes

    SciTech Connect

    Berger, Carola F.; /SLAC

    2006-09-08

    We review the recently developed bootstrap method for the computation of high-multiplicity QCD amplitudes at one loop. We illustrate the general algorithm step by step with a six-point example. The method combines (generalized) unitarity with on-shell recursion relations to determine the not cut-constructible, rational terms of these amplitudes. Our bootstrap approach works for arbitrary configurations of gluon helicities and arbitrary numbers of external legs.

  13. Feynman amplitudes and limits of heights

    NASA Astrophysics Data System (ADS)

    Amini, O.; Bloch, S. J.; Burgos Gil, J. I.; Fresán, J.

    2016-10-01

    We investigate from a mathematical perspective how Feynman amplitudes appear in the low-energy limit of string amplitudes. In this paper, we prove the convergence of the integrands. We derive this from results describing the asymptotic behaviour of the height pairing between degree-zero divisors, as a family of curves degenerates. These are obtained by means of the nilpotent orbit theorem in Hodge theory.

  14. Vowel identification by amplitude and phase contrast.

    PubMed

    Molis, Michelle R; Diedesch, Anna; Gallun, Frederick; Leek, Marjorie R

    2013-02-01

    Vowel identification is largely dependent on listeners' access to the frequency of two or three peaks in the amplitude spectrum. Earlier work has demonstrated that, whereas normal-hearing listeners can identify harmonic complexes with vowel-like spectral shapes even with very little amplitude contrast between "formant" components and remaining harmonic components, listeners with hearing loss require greater amplitude differences. This is likely the result of the poor frequency resolution that often accompanies hearing loss. Here, we describe an additional acoustic dimension for emphasizing formant versus non-formant harmonics that may supplement amplitude contrast information. The purpose of this study was to determine whether listeners were able to identify "vowel-like" sounds using temporal (component phase) contrast, which may be less affected by cochlear loss than spectral cues, and whether overall identification improves when congruent temporal and spectral information are provided together. Five normal-hearing and five hearing-impaired listeners identified three vowels over many presentations. Harmonics representing formant peaks were varied in amplitude, phase, or a combination of both. In addition to requiring less amplitude contrast, normal-hearing listeners could accurately identify the sounds with less phase contrast than required by people with hearing loss. However, both normal-hearing and hearing-impaired groups demonstrated the ability to identify vowel-like sounds based solely on component phase shifts, with no amplitude contrast information, and they also showed improved performance when congruent phase and amplitude cues were combined. For nearly all listeners, the combination of spectral and temporal information improved identification in comparison to either dimension alone.

  15. Twistor-strings and gravity tree amplitudes

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Mason, Lionel

    2013-04-01

    Recently we discussed how Einstein supergravity tree amplitudes might be obtained from the original Witten and Berkovits twistor-string theory when external conformal gravitons are restricted to be Einstein gravitons. Here we obtain a more systematic understanding of the relationship between conformal and Einstein gravity amplitudes in that twistor-string theory. We show that although it does not in general yield Einstein amplitudes, we can nevertheless obtain some partial twistor-string interpretation of the remarkable formulae recently been found by Hodges and generalized to all tree amplitudes by Cachazo and Skinner. The Hodges matrix and its higher degree generalizations encode the world sheet correlators of the twistor string. These matrices control both Einstein amplitudes and those of the conformal gravity arising from the Witten and Berkovits twistor-string. Amplitudes in the latter case arise from products of the diagonal elements of the generalized Hodges matrices and reduced determinants give the former. The reduced determinants arise if the contractions in the worldsheet correlator are restricted to form connected trees at MHV. The (generalized) Hodges matrices arise as weighted Laplacian matrices for the graph of possible contractions in the correlators and the reduced determinants of these weighted Laplacian matrices give the sum of the connected tree contributions by an extension of the matrix-tree theorem.

  16. Modeling and Analysis of Large Amplitude Flight Maneuvers

    NASA Technical Reports Server (NTRS)

    Anderson, Mark R.

    2004-01-01

    Analytical methods for stability analysis of large amplitude aircraft motion have been slow to develop because many nonlinear system stability assessment methods are restricted to a state-space dimension of less than three. The proffered approach is to create regional cell-to-cell maps for strategically located two-dimensional subspaces within the higher-dimensional model statespace. These regional solutions capture nonlinear behavior better than linearized point solutions. They also avoid the computational difficulties that emerge when attempting to create a cell map for the entire state-space. Example stability results are presented for a general aviation aircraft and a micro-aerial vehicle configuration. The analytical results are consistent with characteristics that were discovered during previous flight-testing.

  17. Amplitude suppression and chaos control in epileptic EEG signals.

    PubMed

    Majumdar, Kaushik; Myers, Mark H

    2006-03-01

    In this paper we have proposed a novel amplitude suppression algorithm for EEG signals collected during epileptic seizure. Then we have proposed a measure of chaoticity for a chaotic signal, which is somewhat similar to measuring sensitive dependence on initial conditions by measuring Lyapunov exponent in a chaotic dynamical system. We have shown that with respect to this measure the amplitude suppression algorithm reduces chaoticity in a chaotic signal (EEG signal is chaotic). We have compared our measure with the estimated largest Lyapunov exponent measure by the largelyap function, which is similar to Wolf's algorithm. They fit closely for all but one of the cases. How the algorithm can help to improve patient specific dosage titration during vagus nerve stimulation therapy has been outlined.

  18. Inverse synthetic aperture radar imaging of maneuvering target based on cubic chirps model with time-varying amplitudes

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zhang, Qingxiang; Zhao, Bin

    2016-01-01

    Inverse synthetic aperture radar (ISAR) imaging of maneuvering target is a main topic in the field of radar signal processing, and the received signal in a range bin can usually be characterized as multicomponent cubic chirps with constant amplitudes after motion compensation. In fact, the phenomenon of migration through resolution cell (MTRC) often occurs for the target's complex motion, and this will induce the time-varying character for the amplitudes of cubic chirps. An algorithm for the parameters estimation of multicomponent cubic chirps with time-varying amplitudes based on the extension form of match Fourier transform is proposed, and by using it in ISAR imaging of maneuvering target, the quality of images can be improved significantly compared with the constant amplitudes model. Results of simulated and real data validate the effectiveness of the algorithm in this paper.

  19. Design and performance of a respiratory amplitude gating device for PET/CT imaging

    SciTech Connect

    Chang Guoping; Chang Tingting; Clark, John W. Jr.; Mawlawi, Osama R.

    2010-04-15

    Purpose: Recently, the authors proposed a free-breathing amplitude gating (FBAG) technique for PET/CT scanners. The implementation of this technique required specialized hardware and software components that were specifically designed to interface with commercial respiratory gating devices to generate the necessary triggers required for the FBAG technique. The objective of this technical note is to introduce an in-house device that integrates all the necessary hardware and software components as well as tracks the patient's respiratory motion to realize amplitude gating on PET/CT scanners. Methods: The in-house device is composed of a piezoelectric transducer coupled to a data-acquisition system in order to monitor the respiratory waveform. A LABVIEW program was designed to control the data-acquisition device and inject triggers into the PET list stream whenever the detected respiratory amplitude crossed a predetermined amplitude range. A timer was also programmed to stop the scan when the accumulated time within the selected amplitude range reached a user-set interval. This device was tested using a volunteer and a phantom study. Results: The results from the volunteer and phantom studies showed that the in-house device can detect similar respiratory signals as commercially available respiratory gating systems and is able to generate the necessary triggers to suppress respiratory motion artifacts. Conclusions: The proposed in-house device can be used to implement the FBAG technique in current PET/CT scanners.

  20. Amplitude Modulations of Acoustic Communication Signals

    NASA Astrophysics Data System (ADS)

    Turesson, Hjalmar K.

    2011-12-01

    In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a

  1. Quantitative assessment of human motion using video motion analysis

    NASA Technical Reports Server (NTRS)

    Probe, John D.

    1990-01-01

    In the study of the dynamics and kinematics of the human body, a wide variety of technologies was developed. Photogrammetric techniques are well documented and are known to provide reliable positional data from recorded images. Often these techniques are used in conjunction with cinematography and videography for analysis of planar motion, and to a lesser degree three-dimensional motion. Cinematography has been the most widely used medium for movement analysis. Excessive operating costs and the lag time required for film development coupled with recent advances in video technology have allowed video based motion analysis systems to emerge as a cost effective method of collecting and analyzing human movement. The Anthropometric and Biomechanics Lab at Johnson Space Center utilizes the video based Ariel Performance Analysis System to develop data on shirt-sleeved and space-suited human performance in order to plan efficient on orbit intravehicular and extravehicular activities. The system is described.

  2. Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Raymond, J. L.; Lisberger, S. G.

    1996-01-01

    We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.

  3. Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Raymond, J. L.; Lisberger, S. G.

    1996-01-01

    We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.

  4. Nonlinear Wave-particle Interaction and Particle Trapping in Large Amplitude Dust Acoustic Waves

    SciTech Connect

    Chang, Mei-Chu; Teng, Lee-Wen; Lin, I.

    2011-11-29

    Large amplitude dust acoustic wave can be self-excited by the strong downward ion flow in a dusty plasma liquid formed by negatively charged dusts suspended in a weakly ionized low pressure discharge. In this work, we investigate experimentally the wave-particle phase space dynamics of the large amplitude dust acoustic wave by connecting the Lagrangian and Eulerian views, through directly tracking particle motion and measuring local dust density fluctuations. The microscopic pictures of wave steepening and breaking, resonant particle-wave crest trapping, and the absence of trough trapping observed in our experiment are constructed.

  5. LARGE-AMPLITUDE LONGITUDINAL OSCILLATIONS IN A SOLAR FILAMENT

    SciTech Connect

    Luna, M.

    2012-05-01

    We have developed the first self-consistent model for the observed large-amplitude oscillations along filament axes that explains the restoring force and damping mechanism. We have investigated the oscillations of multiple threads formed in long, dipped flux tubes through the thermal nonequilibrium process, and found that the oscillation properties predicted by our simulations agree with the observed behavior. We then constructed a model for the large-amplitude longitudinal oscillations that demonstrates that the restoring force is the projected gravity in the tube where the threads oscillate. Although the period is independent of the tube length and the constantly growing mass, the motions are strongly damped by the steady accretion of mass onto the threads by thermal nonequilibrium. The observations and our model suggest that a nearby impulsive event drives the existing prominence threads along their supporting tubes, away from the heating deposition site, without destroying them. The subsequent oscillations occur because the displaced threads reside in magnetic concavities with large radii of curvature. Our model yields a powerful seismological method for constraining the coronal magnetic field and radius of curvature of dips. Furthermore, these results indicate that the magnetic structure is most consistent with the sheared-arcade model for filament channels.

  6. Excitation and evolution of finite-amplitude plasma wave

    SciTech Connect

    Hou, Y. W.; Wu, Y. C.; Chen, M. X.; Yu, M. Y.; Wu, B.

    2015-12-15

    The evolution of a small spatially periodic perturbation in the electron velocity distribution function in collisionless plasma is reconsidered by numerically solving the Vlasov and Poisson equations. The short as well as long time behaviors of the excited oscillations and damping/modulation are followed. In the small but finite-amplitude excited plasma wave, resonant electrons become trapped in the wave potential wells and their motion affects the low-velocity electrons participating in the plasma oscillations, leading to modulation of the latter at an effective trapping frequency. It is found that the phase space of the resonant and low-velocity electrons becomes chaotic, but then self-organization takes place but remains fine-scale chaotic. It is also found that as long as particles are trapped, there is only modulation and no monotonic damping of the excited plasma wave. The modulation period/amplitude increases/decreases as the magnitude of the initial disturbance is reduced. For the initial and boundary conditions used here, linear Landau damping corresponds to the asymptotic limit of the modulation period becoming infinite, or no trapping of the resonant electrons.

  7. Large-Amplitude Longitudinal Oscillations in a Solar Filament

    NASA Technical Reports Server (NTRS)

    Luna, M.; Karpen, J.

    2012-01-01

    We have developed the first self-consistent model for the observed large-amplitude oscillations along filament axes that explains the restoring force and damping mechanism. We have investigated the oscillations of multiple threads formed in long, dipped flux tubes through the thermal nonequilibrium process, and found that the oscillation properties predicted by our simulations agree with the observed behavior. We then constructed a model for the large-amplitude longitudinal oscillations that demonstrates that the restoring force is the projected gravity in the tube where the threads oscillate. Although the period is independent of the tube length and the constantly growing mass, the motions are strongly damped by the steady accretion of mass onto the threads by thermal nonequilibrium. The observations and our model suggest that a nearby impulsive event drives the existing prominence threads along their supporting tubes, away from the heating deposition site, without destroying them. The subsequent oscillations occur because the displaced threads reside in magnetic concavities with large radii of curvature. Our model yields a powerful seismological method for constraining the coronal magnetic field and radius of curvature of dips. Furthermore, these results indicate that the magnetic structure is most consistent with the sheared-arcade model for filament channels.

  8. Abdominal muscle activation changes if the purpose is to control pelvis motion or thorax motion.

    PubMed

    Vera-Garcia, Francisco J; Moreside, Janice M; McGill, Stuart M

    2011-12-01

    The aim of this study was to compare trunk muscular recruitment and lumbar spine kinematics when motion was constrained to either the thorax or the pelvis. Nine healthy women performed four upright standing planar movements (rotations, anterior-posterior translations, medial-lateral translations, and horizontal circles) while constraining pelvis motion and moving the thorax or moving the pelvis while minimizing thorax motion, and four isometric trunk exercises (conventional curl-up, reverse curl-up, cross curl-up, and reverse cross curl-up). Surface EMG (upper and lower rectus abdominis, lateral and medial aspects of external oblique, internal oblique, and latissimus dorsi) and 3D lumbar displacements were recorded. Pelvis movements produced higher EMG amplitudes of the oblique abdominals than thorax motions in most trials, and larger lumbar displacements in the medial-lateral translations and horizontal circles. Conversely, thorax movements produced larger rotational lumbar displacement than pelvis motions during rotations and higher EMG amplitudes for latissimus dorsi during rotations and anterior-posterior translations and for lower rectus abdominis during the crossed curl-ups. Thus, different neuromuscular compartments appear when the objective changes from pelvis to thorax motion. This would suggest that both movement patterns should be considered when planning spine stabilization programs, to optimize exercises for the movement and muscle activations desired. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Can mobile phones used in strong motion seismology?

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; D'Anna, Giuseppe

    2013-04-01

    Micro Electro-Mechanical Systems (MEMS) accelerometers are electromechanical devices able to measure static or dynamic accelerations. In the 1990s MEMS accelerometers revolutionized the automotive-airbag system industry and are currently widely used in laptops, game controllers and mobile phones. Nowadays MEMS accelerometers seems provide adequate sensitivity, noise level and dynamic range to be applicable to earthquake strong motion acquisition. The current use of 3 axes MEMS accelerometers in mobile phone maybe provide a new means to easy increase the number of observations when a strong earthquake occurs. However, before utilize the signals recorded by a mobile phone equipped with a 3 axes MEMS accelerometer for any scientific porpoise, it is fundamental to verify that the signal collected provide reliable records of ground motion. For this reason we have investigated the suitability of the iPhone 5 mobile phone (one of the most popular mobile phone in the world) for strong motion acquisition. It is provided by several MEMS devise like a three-axis gyroscope, a three-axis electronic compass and a the LIS331DLH three-axis accelerometer. The LIS331DLH sensor is a low-cost high performance three axes linear accelerometer, with 16 bit digital output, produced by STMicroelectronics Inc. We have tested the LIS331DLH MEMS accelerometer using a vibrating table and the EpiSensor FBA ES-T as reference sensor. In our experiments the reference sensor was rigidly co-mounted with the LIS331DHL MEMS sensor on the vibrating table. We assessment the MEMS accelerometer in the frequency range 0.2-20 Hz, typical range of interesting in strong motion seismology and earthquake engineering. We generate both constant and damped sine waves with central frequency starting from 0.2 Hz until 20 Hz with step of 0.2 Hz. For each frequency analyzed we generate sine waves with mean amplitude 50, 100, 200, 400, 800 and 1600 mg0. For damped sine waves we generate waveforms with initial amplitude

  10. MOTION CORRECTION OPTIONS IN PET/MRI

    PubMed Central

    Catana, Ciprian

    2015-01-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body positron emission tomography (PET) and magnetic resonance imaging (MRI) studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (e.g. by acquiring the data when the organ of interest is relatively at rest). Additionally, non-periodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (e.g. respiratory bellows or the ECG signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained either using the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion free/corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during or after the image reconstruction. Integrating all these methods for motion control, characterization and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. PMID:25841276

  11. Motion correction options in PET/MRI.

    PubMed

    Catana, Ciprian

    2015-05-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Infrasound Signals from Ground-Motion Sources

    DTIC Science & Technology

    2008-09-01

    piston. Let the piston displacement be given by z = Asin(2π ft) , (11) where A is the amplitude of the motion, f is frequency, and t is time...13) can be rewritten as (for the maximum value) p(h) = ρcAa2y = 2π 2Aρ f 2R2 h . (17) Evaluation then requires only the displacement...nuclear explosion, Amparo Corporation report (unpublished). 2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies 920

  13. Comparison of Flight Simulators Based on Human Motion Perception Metrics

    NASA Technical Reports Server (NTRS)

    Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.

    2015-01-01

    In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.

  14. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    SciTech Connect

    Gulshani, P.

    2016-07-07

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  15. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    NASA Astrophysics Data System (ADS)

    Gulshani, P.

    2016-07-01

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  16. Probabilistic Relationships between Ground‐Motion Parameters and Modified Mercalli Intensity in California

    USGS Publications Warehouse

    Worden, C.B.; Wald, David J.; Rhoades, D.A.

    2012-01-01

    We use a database of approximately 200,000 modified Mercalli intensity (MMI) observations of California earthquakes collected from USGS "Did You Feel It?" (DYFI) reports, along with a comparable number of peak ground-motion amplitudes from California seismic networks, to develop probabilistic relationships between MMI and peak ground velocity (PGV), peak ground acceleration (PGA), and 0.3-s, 1-s, and 3-s 5% damped pseudospectral acceleration (PSA). After associating each ground-motion observation with an MMI computed from all the DYFI responses within 2 km of the observation, we derived a joint probability distribution between MMI and ground motion. We then derived reversible relationships between MMI and each ground-motion parameter by using a total least squares regression to fit a bilinear function to the median of the stacked probability distributions. Among the relationships, the fit to peak ground velocity has the smallest errors, though linear combinations of PGA and PGV give nominally better results. We also find that magnitude and distance terms reduce the overall residuals and are justifiable on an information theoretic basis. For intensities MMI≥5, our results are in close agreement with the relations of Wald, Quitoriano, Heaton, and Kanamori (1999); for lower intensities, our results fall midway between Wald, Quitoriano, Heaton, and Kanamori (1999) and those of Atkinson and Kaka (2007). The earthquakes in the study ranged in magnitude from 3.0 to 7.3, and the distances ranged from less than a kilometer to about 400 km from the source.

  17. Tiling motion patches.

    PubMed

    Hyun, Kyunglyul; Kim, Manmyung; Hwang, Youngseok; Lee, Jehee

    2013-11-01

    Simulating multiple character interaction is challenging because character actions must be carefully coordinated to align their spatial locations and synchronized with each other. We present an algorithm to create a dense crowd of virtual characters interacting with each other. The interaction may involve physical contacts, such as hand shaking, hugging, and carrying a heavy object collaboratively. We address the problem by collecting deformable motion patches, each of which describes an episode of multiple interacting characters, and tiling them spatially and temporally. The tiling of motion patches generates a seamless simulation of virtual characters interacting with each other in a nontrivial manner. Our tiling algorithm uses a combination of stochastic sampling and deterministic search to address the discrete and continuous aspects of the tiling problem. Our tiling algorithm made it possible to automatically generate highly complex animation of multiple interacting characters. We achieve the level of interaction complexity far beyond the current state of the art that animation techniques could generate, in terms of the diversity of human behaviors and the spatial/temporal density of interpersonal interactions.

  18. Tiling Motion Patches.

    PubMed

    Hyun, Kyunglyul; Kim, Manmyung; Hwang, Youngseok; Lee, Jehee

    2013-05-08

    Simulating multiple character interaction is challenging because character actions must be carefully coordinated to align their spatial locations and synchronized with each other. We present an algorithm to create a dense crowd of virtual characters interacting with each other. The interaction may involve physical contacts, such as hand shaking, hugging, and carrying a heavy object collaboratively. We address the problem by collecting deformable motion patches, each of which describes an episode of multiple interacting characters, and tiling them spatially and temporally. The tiling of motion patches generates a seamless simulation of virtual characters interacting with each other in a non-trivial manner. Our tiling algorithm uses a combination of stochastic sampling and deterministic search to address the discrete and continuous aspects of the tiling problem. Our tiling algorithm made it possible to automatically generate highly-complex animation of multiple interacting characters. We achieved the level of complexity far beyond the current state-of-the-art animation techniques could generate, in terms of the diversity of human behaviors and the spatial/temporal density of interpersonal interactions.

  19. Visual-Motion Cueing in Altitude and Yaw Control

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Schroeder, Jeffery; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Research conducted using the Vertical Motion Simulator at the NASA Ames Research Center examined the contributions of platform motion and visual level-of-detail (LOD) cueing to tasks that required altitude and/or yaw control in a simulated AH-64 Apache helicopter. Within the altitude control tasks the LOD manipulation caused optical density to change across altitudes by a small, moderate, or large amount; while platform motion was either present or absent. The results from these tasks showed that both constant optical density and platform motion improved altitude awareness in an altitude repositioning task, while the presence of platform motion also led to improved performance in a vertical rate control task. The yaw control tasks had pilots'sit 4.5 ft in front of the center of rotation, thus subjecting them to both rotational and lateral motions during a yaw. The pilots were required to regulate their yaw, while the platform motion was manipulated in order to present all combinations of the resulting rotational and lateral motion components. Ratings of simulation fidelity and sensed platform motion showed that the pilots were relatively insensitive to the rotational component, but highly aware of the lateral component. Together these findings show that: 1) platform motion cues are important when speed regulation is required during altitude change; 2) platform motion contributes to the perception of movement amplitude; 3) lateral, but not rotational, motion cues are essential to the perception of vehicle yaw; and 4) LOD management yielding constant optical density across altitudes improves altitude awareness.

  20. SU-E-J-150: Four-Dimensional Cone-Beam CT Algorithm by Extraction of Physical and Motion Parameter of Mobile Targets Retrospective to Image Reconstruction with Motion Modeling

    SciTech Connect

    Ali, I; Ahmad, S; Alsbou, N

    2015-06-15

    Purpose: To develop 4D-cone-beam CT (CBCT) algorithm by motion modeling that extracts actual length, CT numbers level and motion amplitude of a mobile target retrospective to image reconstruction by motion modeling. Methods: The algorithm used three measurable parameters: apparent length and blurred CT number distribution of a mobile target obtained from CBCT images to determine actual length, CT-number value of the stationary target, and motion amplitude. The predictions of this algorithm were tested with mobile targets that with different well-known sizes made from tissue-equivalent gel which was inserted into a thorax phantom. The phantom moved sinusoidally in one-direction to simulate respiratory motion using eight amplitudes ranging 0–20mm. Results: Using this 4D-CBCT algorithm, three unknown parameters were extracted that include: length of the target, CT number level, speed or motion amplitude for the mobile targets retrospective to image reconstruction. The motion algorithms solved for the three unknown parameters using measurable apparent length, CT number level and gradient for a well-defined mobile target obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on the actual target length and motion amplitude. The gradient of the CT number distribution of the mobile target is dependent on the stationary CT number level, actual target length and motion amplitude. Motion frequency and phase did not affect the elongation and CT number distribution of the mobile target and could not be determined. Conclusion: A 4D-CBCT motion algorithm was developed to extract three parameters that include actual length, CT number level and motion amplitude or speed of mobile targets directly from reconstructed CBCT images without prior knowledge of the stationary target parameters. This algorithm provides alternative to 4D-CBCT without requirement to motion tracking and sorting of the images into different breathing phases

  1. Navier-Stokes prediction of large-amplitude forced and free-to-roll delta-wing oscillations

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1994-01-01

    The three-dimensional Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate nonsteady vortical flow about a 65 degree sweep delta wing at 30 degrees angle of attack. Two large-amplitude, high-rate, forced-roll motions and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are compared with experimental forces, moments, and roll-angle time histories. The overall agreement is good. Vortex breakdown is present in each case, which causes significant time lags in the vortex breakdown motions relative to the body motions. This behavior strongly influences the dynamic forces and moments.

  2. Chimera distribution amplitudes for the pion and the longitudinally polarized ρ-meson

    NASA Astrophysics Data System (ADS)

    Stefanis, N. G.; Pimikov, A. V.

    2016-01-01

    Using QCD sum rules with nonlocal condensates, we show that the distribution amplitude of the longitudinally polarized ρ-meson may have a shorttailed platykurtic profile in close analogy to our recently proposed platykurtic distribution amplitude for the pion. Such a chimera distribution de facto amalgamates the broad unimodal profile of the distribution amplitude, obtained with a Dyson-Schwinger equations-based computational scheme, with the suppressed tails characterizing the bimodal distribution amplitudes derived from QCD sum rules with nonlocal condensates. We argue that pattern formation, emerging from the collective synchronization of coupled oscillators, can provide a single theoretical scaffolding to study unimodal and bimodal distribution amplitudes of light mesons without recourse to particular computational schemes and the reasons for them.

  3. Periodic amplitude variations in Jovian continuum radiation

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.

    1986-01-01

    An analysis of periodic variations in the amplitude of continuum radiation near 3 kHz trapped in the Jovian magnetosphere shows structure with periods near both five and ten hours. Contrary to a plausible initial idea, the continuum amplitudes are not organized by position of the observer relative to the dense plasma sheet. Instead, there seem to be preferred orientations of system III longitude with respect to the direction to the sun which account for the peaks. This implies a clock-like modulation of the continuum radiation intensity as opposed to a searchlight effect. The importance of the dipole longitude-solar wind alignment to the amplitude of the continuum radiation implies the source region of the radiation is near the magnetopause and may indirectly tie the generation of the radio waves to the clocklike modulation of energetic electron fluxes from Jupiter.

  4. Analytic representations of Yang-Mills amplitudes

    NASA Astrophysics Data System (ADS)

    Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.; Feng, Bo

    2016-12-01

    Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space-fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Möbius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is the foundations of a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.

  5. Cut-constructible part of QCD amplitudes

    SciTech Connect

    Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo

    2006-05-15

    Unitarity cuts are widely used in analytic computation of loop amplitudes in gauge theories such as QCD. We expand upon the technique introduced in hep-ph/0503132 to carry out any finite unitarity cut integral. This technique naturally separates the contributions of bubble, triangle and box integrals in one-loop amplitudes and is not constrained to any particular helicity configurations. Loop momentum integration is reduced to a sequence of algebraic operations. We discuss the extraction of the residues at higher-order poles. Additionally, we offer concise algebraic formulas for expressing coefficients of three-mass triangle integrals. As an application, we compute all remaining coefficients of bubble and triangle integrals for nonsupersymmetric six-gluon amplitudes.

  6. Amplitude-coded color doppler: clinical applications.

    PubMed

    Turetschek, K; Kollmann, C; Dorffner, R; Wunderbaldinger, P; Mostbeck, G

    1999-01-01

    Amplitude-coded color Doppler sonography (ACD) has become an useful adjunct to gray-scale US and conventional color Doppler sonography (CD) for the assessment of vascular diseases and pathologic conditions that might affect or alter tissue vascularization or perfusion. Basically, all US units that generate conventional color Doppler information through autocorrelation technique are capable of displaying ACD. This technique is also referred to as power Doppler, amplitude-mode color Doppler US, color Doppler energy (CDE), or US angiography. Amplitude-coded color Doppler sonography has already emerged as a valuable adjunct to conventional CD, particularly for evaluating flow in parts of the body where CD signal is weak because of slow flow, small blood vessels, or both.

  7. A description of seismic amplitude techniques

    NASA Astrophysics Data System (ADS)

    Shadlow, James

    2014-02-01

    The acquisition of seismic data is a non-invasive technique used for determining the sub surface geology. Changes in lithology and fluid fill affect the seismic wavelet. Analysing seismic data for direct hydrocarbon indicators (DHIs), such as full stack amplitude anomalies, or amplitude variation with offset (AVO), can help a seismic interpreter relate the geophysical response to real geology and, more importantly, to distinguish the presence of hydrocarbons. Inversion is another commonly used technique that attempts to tie the seismic data back to the geology. Much has been written about these techniques, and attempting to gain an understanding on the theory and application of them by reading through various journals can be quite daunting. The purpose of this paper is to briefly outline DHI analysis, including full stack amplitude anomalies, AVO and inversion and show the relationship between all three. The equations presented have been included for completeness, but the reader can pass over the mathematical detail.

  8. Modified π π amplitude with σ pole

    NASA Astrophysics Data System (ADS)

    Bydžovský, P.; Kamiński, R.; Nazari, V.

    2014-12-01

    A set of well-known once subtracted dispersion relations with imposed crossing symmetry condition is used to modify unitary multichannel S (π π , K K ¯, and η η ) and P (π π , ρ 2 π , and ρ σ ) wave amplitudes mostly below 1 GeV. Before the modifications, these amplitudes significantly did not satisfy the crossing symmetry condition and did not describe the π π threshold region. Moreover, the pole of the S wave amplitude related with the f0(500 ) meson (former f0(600 ) or σ ) had much smaller imaginary part and bigger real one in comparison with those in the newest Particle Data Group Tables. Here, these amplitudes are supplemented by near threshold expansion polynomials and refitted to the experimental data in the effective two pion mass from the threshold to 1.8 GeV and to the dispersion relations up to 1.1 GeV. In result the self consistent, i.e., unitary and fulfilling the crossing symmetry condition, S and P wave amplitudes are formed and the σ pole becomes much narrower and lighter. To eliminate doubts about the uniqueness of the so obtained sigma pole position short and purely mathematical proof of the uniqueness of the results is also presented. This analysis is addressed to a wide group of physicists and aims at providing a very effective and easy method of modification of, many presently used, π π amplitudes with a heavy and broad σ meson without changing of their original mathematical structure.

  9. Nonlinear (super)symmetries and amplitudes

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata

    2017-03-01

    There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E 7(7) scalar sector symmetries as well as the fermionic goldstino symmetries.

  10. Constructing Chaotic Systems with Total Amplitude Control

    NASA Astrophysics Data System (ADS)

    Li, Chunbiao; Sprott, Julien Clinton; Yuan, Zeshi; Li, Hongtao

    A general method is introduced for controlling the amplitude of the variables in chaotic systems by modifying the degree of one or more of the terms in the governing equations. The method is applied to the Sprott B system as an example to show its flexibility and generality. The method may introduce infinite lines of equilibrium points, which influence the dynamics in the neighborhood of the equilibria and reorganize the basins of attraction, altering the multistability. However, the isolated equilibrium points of the original system and their stability are retained with their basic properties. Electrical circuit implementation shows the convenience of amplitude control, and the resulting oscillations agree well with results from simulation.

  11. Topographic quantitative EEG amplitude in recovered alcoholics.

    PubMed

    Pollock, V E; Schneider, L S; Zemansky, M F; Gleason, R P; Pawluczyk, S

    1992-05-01

    Topographic measures of electroencephalographic (EEG) amplitude were used to compare recovered alcoholics (n = 14) with sex- and age-matched control subjects. Delta, alpha, and beta activity did not distinguish the groups, but regional differences in theta distribution did. Recovered alcoholics showed more uniform distributions of theta amplitudes in bilateral anterior and posterior regions compared with controls. Because a minimum of 5 years had elapsed since the recovered alcoholic subjects fulfilled DSM-III-R criteria for alcohol abuse or dependence, it is unlikely these EEG theta differences reflect the effects of withdrawal.

  12. Amplitude Models for Discrimination and Yield Estimation

    SciTech Connect

    Phillips, William Scott

    2016-09-01

    This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.

  13. Dual amplitude pulse generator for radiation detectors

    DOEpatents

    Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  14. Singularity structure of maximally supersymmetric scattering amplitudes.

    PubMed

    Arkani-Hamed, Nima; Bourjaily, Jacob L; Cachazo, Freddy; Trnka, Jaroslav

    2014-12-31

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic singularities and is free of any poles at infinity--properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA).

  15. Amplitude for N-Gluon Superstring Scattering

    SciTech Connect

    Stieberger, Stephan; Taylor, Tomasz R.

    2006-11-24

    We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope {alpha}{sup '}. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in {alpha}{sup '}, for the so-called maximally helicity violating configurations, with N=4, 5 and N=6. We also obtain the leading O({alpha}{sup '2}) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.

  16. Amplitude for N-gluon superstring scattering.

    PubMed

    Stieberger, Stephan; Taylor, Tomasz R

    2006-11-24

    We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope alpha'. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in alpha', for the so-called maximally helicity violating configurations, with N = 4, 5 and N = 6. We also obtain the leading O(alpha '2) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.

  17. A motion phantom study on helical tomotherapy: the dosimetric impacts of delivery technique and motion

    NASA Astrophysics Data System (ADS)

    Kanagaki, Brian; Read, Paul W.; Molloy, Janelle A.; Larner, James M.; Sheng, Ke

    2007-01-01

    Helical tomotherapy (HT) can potentially be used for lung cancer treatment including stereotactic radiosurgery because of its advanced image guidance and its ability to deliver highly conformal dose distributions. However, previous theoretical and simulation studies reported that the effect of respiratory motion on statically planned tomotherapy treatments may cause substantial differences between the calculated and actual delivered radiation isodose distribution, particularly when the treatment is hypofractionated. In order to determine the dosimetric effects of motion upon actual HT treatment delivery, phantom film dosimetry measurements were performed under static and moving conditions using a clinical HT treatment unit. The motion phantom system was constructed using a programmable motor, a base, a moving platform and a life size lung heterogeneity phantom with wood inserts representing lung tissue with a 3.0 cm diameter spherical tumour density equivalent insert. In order to determine the effects of different motion and tomotherapy delivery parameters, treatment plans were created using jaw sizes of 1.04 cm and 2.47 cm, with incremental gantry rotation periods between the minimum allowed (10 s) and the maximum allowed (60 s). The couch speed varied from 0.009 cm s-1 to 0.049 cm s-1, and delivered to a phantom under static and dynamic conditions with peak-to-peak motion amplitudes of 1.2 cm and 2 cm and periods of 3 and 5 s to simulate human respiratory motion of lung tumours. A cylindrical clinical target volume (CTV) was contoured to tightly enclose the tumour insert. 2.0 Gy was prescribed to 95% of the CTV. Two-dimensional dose was measured by a Kodak EDR2 film. Dynamic phantom doses were then quantitatively compared to static phantom doses in terms of axial dose profiles, cumulative dose volume histograms (DVH), percentage of CTV receiving the prescription dose and the minimum dose received by 95% of the CTV. The larger motion amplitude resulted in more

  18. Demodulation techniques for the amplitude modulated laser imager.

    PubMed

    Mullen, Linda; Laux, Alan; Cochenour, Brandon; Zege, Eleonora P; Katsev, Iosif L; Prikhach, Alexander S

    2007-10-20

    A new technique has been found that uses in-phase and quadrature phase (I/Q) demodulation to optimize the images produced with an amplitude-modulated laser imaging system. An I/Q demodulator was used to collect the I/Q components of the received modulation envelope. It was discovered that by adjusting the local oscillator phase and the modulation frequency, the backscatter and target signals can be analyzed separately via the I/Q components. This new approach enhances image contrast beyond what was achieved with a previous design that processed only the composite magnitude information.

  19. Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight.

    PubMed

    Altshuler, Douglas L; Dickson, William B; Vance, Jason T; Roberts, Stephen P; Dickinson, Michael H

    2005-12-13

    Most insects are thought to fly by creating a leading-edge vortex that remains attached to the wing as it translates through a stroke. In the species examined so far, stroke amplitude is large, and most of the aerodynamic force is produced halfway through a stroke when translation velocities are highest. Here we demonstrate that honeybees use an alternative strategy, hovering with relatively low stroke amplitude (approximately 90 degrees) and high wingbeat frequency (approximately 230 Hz). When measured on a dynamically scaled robot, the kinematics of honeybee wings generate prominent force peaks during the beginning, middle, and end of each stroke, indicating the importance of additional unsteady mechanisms at stroke reversal. When challenged to fly in low-density heliox, bees responded by maintaining nearly constant wingbeat frequency while increasing stroke amplitude by nearly 50%. We examined the aerodynamic consequences of this change in wing motion by using artificial kinematic patterns in which amplitude was systematically increased in 5 degrees increments. To separate the aerodynamic effects of stroke velocity from those due to amplitude, we performed this analysis under both constant frequency and constant velocity conditions. The results indicate that unsteady forces during stroke reversal make a large contribution to net upward force during hovering but play a diminished role as the animal increases stroke amplitude and flight power. We suggest that the peculiar kinematics of bees may reflect either a specialization for increasing load capacity or a physiological limitation of their flight muscles.

  20. A short review on the nonlinear motion in DNA

    NASA Astrophysics Data System (ADS)

    Zhou, Gen-fa; Zhang, Chun-Ting

    1991-03-01

    Guided by the idea of the order parameter of Landau, we have analysed the structure and various nonlinear motions in DNA. We argue for the use of four significant variables, i.e., the conformational, rotational, longitudinal and transverse motions. Several sets of nonlinear discrete equations with more reasonable Hamiltonian have been established, the solutions of small amplitude (phonons) and large amplitude (soliton or solitary waves) have been given. The results have been discussed and compared with several experimental data. We comment speculatively on the possible significant implications in duplication, transcription and drug intercalation in DNA, etc..