Enhanced modulation rates via field modulation in spin torque nano-oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purbawati, A.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.
Spin Transfer Nano-Oscillators (STNOs) are promising candidates for telecommunications applications due to their frequency tuning capabilities via either a dc current or an applied field. This frequency tuning is of interest for Frequency Shift Keying concepts to be used in wireless communication schemes or in read head applications. For these technological applications, one important parameter is the characterization of the maximum achievable rate at which an STNO can respond to a modulating signal, such as current or field. Previous studies of in-plane magnetized STNOs on frequency modulation via an rf current revealed that the maximum achievable rate is limited bymore » the amplitude relaxation rate Γ{sub p}, which gives the time scale over which amplitude fluctuations are damped out. This might be a limitation for applications. Here, we demonstrate via numerical simulation that application of an additional rf field is an alternative way for modulation of the in-plane magnetized STNO configuration, which has the advantage that frequency modulation is not limited by the amplitude relaxation rate, so that higher modulation rates above GHz are achievable. This occurs when the modulating rf field is oriented along the easy axis (longitudinal rf field). Tilting the direction of the modulating rf field in-plane and perpendicularly with respect to the easy axis (transverse rf field), the modulation is again limited by the amplitude relaxation rate similar to the response observed in current modulation.« less
Error compensation of IQ modulator using two-dimensional DFT
NASA Astrophysics Data System (ADS)
Ohshima, Takashi; Maesaka, Hirokazu; Matsubara, Shinichi; Otake, Yuji
2016-06-01
It is important to precisely set and keep the phase and amplitude of an rf signal in the accelerating cavity of modern accelerators, such as an X-ray Free Electron Laser (XFEL) linac. In these accelerators an acceleration rf signal is generated or detected by an In-phase and Quadrature (IQ) modulator, or a demodulator. If there are any deviations of the phase and the amplitude from the ideal values, crosstalk between the phase and the amplitude of the output signal of the IQ modulator or the demodulator arises. This causes instability of the feedback controls that simultaneously stabilize both the rf phase and the amplitude. To compensate for such deviations, we developed a novel compensation method using a two-dimensional Discrete Fourier Transform (DFT). Because the observed deviations of the phase and amplitude of an IQ modulator involve sinusoidal and polynomial behaviors on the phase angle and the amplitude of the rf vector, respectively, the DFT calculation with these basis functions makes a good approximation with a small number of compensation coefficients. Also, we can suppress high-frequency noise components arising when we measure the deviation data. These characteristics have advantages compared to a Look Up Table (LUT) compensation method. The LUT method usually demands many compensation elements, such as about 300, that are not easy to treat. We applied the DFT compensation method to the output rf signal of a C-band IQ modulator at SACLA, which is an XFEL facility in Japan. The amplitude deviation of the IQ modulator after the DFT compensation was reduced from 15.0% at the peak to less than 0.2% at the peak for an amplitude control range of from 0.1 V to 0.9 V (1.0 V full scale) and for a phase control range from 0 degree to 360 degrees. The number of compensation coefficients is 60, which is smaller than that of the LUT method, and is easy to treat and maintain.
Radiofrequency fields in MAS solid state NMR probes
NASA Astrophysics Data System (ADS)
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O.; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J.; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.
Radiofrequency fields in MAS solid state NMR probes.
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B 0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design. Copyright © 2017 Elsevier Inc. All rights reserved.
Direct digital RF synthesis and modulation for MSAT mobile applications
NASA Technical Reports Server (NTRS)
Crozier, Stewart; Datta, Ravi; Sydor, John
1993-01-01
A practical method of performing direct digital RF synthesis using the Hilbert transform single sideband (SSB) technique is described. It is also shown that amplitude and phase modulation can be achieved directly at L-band with frequency stability and spurii performance exceeding stringent MSAT system requirements.
NASA Astrophysics Data System (ADS)
Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao
2018-04-01
We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.
BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator
NASA Astrophysics Data System (ADS)
Wu, Peng; Ma, Jianxin
2016-09-01
In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.
Silicon Micromachining in RF and Photonic Applications
NASA Technical Reports Server (NTRS)
Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen
1995-01-01
Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.
Design and Calibration of an RF Actuator for Low-Level RF Systems
NASA Astrophysics Data System (ADS)
Geng, Zheqiao; Hong, Bo
2016-02-01
X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.
Zhang, Jinjin; Idiyatullin, Djaudat; Corum, Curtis A.; Kobayashi, Naoharu; Garwood, Michael
2017-01-01
Purpose Methods designed to image fast-relaxing spins, such as sweep imaging with Fourier transformation (SWIFT), often utilize high excitation bandwidth and duty cycle, and in some applications the optimal flip angle cannot be used without exceeding safe specific absorption rate (SAR) levels. The aim is to reduce SAR and increase the flexibility of SWIFT by applying time-varying gradient-modulation (GM). The modified sequence is called GM-SWIFT. Theory and Methods The method known as gradient-modulated offset independent adiabaticity was used to modulate the radiofrequency (RF) pulse and gradients. An expanded correlation algorithm was developed for GM-SWIFT to correct the phase and scale effects. Simulations and phantom and in vivo human experiments were performed to verify the correlation algorithm and to evaluate imaging performance. Results GM-SWIFT reduces SAR, RF amplitude, and acquisition time by up to 90%, 70%, and 45%, respectively, while maintaining image quality. The choice of GM parameter influences the lower limit of short T2* sensitivity, which can be exploited to suppress unwanted image haze from unresolvable ultrashort T2* signals originating from plastic materials in the coil housing and fixatives. Conclusions GM-SWIFT reduces peak and total RF power requirements and provides additional flexibility for optimizing SAR, RF amplitude, scan time, and image quality. PMID:25800547
NASA Astrophysics Data System (ADS)
Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo
2007-01-01
Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.
Interrogation, and detection system
Baldwin, Howard A.; Depp, Steven W.; Koelle, Alfred R.; Freyman, Robert W.
1978-02-21
The specification relates to a telemetering apparatus comprising a generator which generates at least a single frequency rf signal, a transponder for receiving that signal and for amplitude modulating it in accordance with information selected for transmission, an antenna on the transponder for reflecting the amplitude modulated signal, and a receiver which is preferably located at the generator. The receiver processes the signal to determine the information carried thereby.
Methods and devices based on brillouin selective sideband amplification
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2003-01-01
Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.
Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.
Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David
2010-09-27
We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.
Broadband Electric-Field Sensor Array Technology
2012-08-05
output voltage modulation on the output RF transmission line (impedance Z0 = 50 Ω) via a transimpedance amplifier connected to the photodiode. The...voltage amplitude is where G is the conversion gain of the photodiode and amplifier . The RF power detected by an RF receiver with a matched impedance...wave (CW) tunable near-infrared laser amplified by an erbium-doped fiber amplifier (EDFA) is guided by single-mode optical fiber and coupled into
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao
2018-01-01
A photonic approach to generate frequency-doubled microwave waveforms using an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator driven by a sinusoidal radio frequency (RF) signal is proposed. By adjusting the dc bias points of the DP-QPSK modulator, the obtained second-order and six-order harmonics are in phase while the fourth-order harmonics are complementary when the orthogonal polarized outputs of the modulator are photodetected. After properly setting the modulation indices of the modulator, the amplitude of the second-order harmonic is 9 times of that of the six-order harmonic, indicating a frequency-doubled triangular waveform is generated. If a broadband 90° microwave phase shifter is attached after the photodetector (PD) to introduce a 90° phase shift, a frequency-doubled square waveform can be obtained after adjusting the amplitude of the second-order harmonic 3 times of that of the six-order harmonic. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal.
An amplitude modulated radio frequency plasma generator
NASA Astrophysics Data System (ADS)
Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo
2017-04-01
A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.
Sabato, Alessandro; Feng, Maria Q.
2014-01-01
Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline. PMID:25198003
Sabato, Alessandro; Feng, Maria Q
2014-09-05
Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.
A 20fs synchronization system for lasers and cavities in accelerators and FELs
NASA Astrophysics Data System (ADS)
Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.
2010-02-01
A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.
Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; ...
2015-10-28
We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 V p-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS
We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 V p-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less
Probing amplitude, phase, and polarization of microwave field distributions in real time
NASA Astrophysics Data System (ADS)
King, R. J.; Yen, Y. H.
1981-11-01
A coherent (homodyne) detection system is used to map field distributions in real time. A key feature is the use of an electrically modulated (10-kHz) dipole scatterer which is also mechanically spun (150 Hz) to create an amplitude- and phase-modulated backscattered field. The system is monostatic. The backscattered field is coherently detected by mixing with the CW reference. A phase-insensitive detector is used, comprised of two balanced mixers which are fed in quadrature phase by one of the RF inputs followed by a phase quadrature combiner. The resulting amplitude and phase of the 10-kHz output are proportional to the square of the RF field component along the instantaneous axis of the spinning dipole. Both are measured simultaneously and independently in real time. From these, the polarization properties can also be found, so the field is uniquely described. The system's application to scanning the E-field transmitted through lossy, nonhomogeneous and anisotropic media (e.g., wood) is demonstrated. Other applications besides nondestructive testing are microwave vector holography, near-field antenna measurements, and inverse scattering.
Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices
Conder, A.D.; Haigh, R.E.; Hugenberg, K.F.
1995-09-26
An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place. 7 figs.
Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices
Conder, Alan D.; Haigh, Ronald E.; Hugenberg, Keith F.
1995-01-01
An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.
NASA Astrophysics Data System (ADS)
Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.
2018-01-01
This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.
A novel injection-locked amplitude-modulated magnetron at 1497 MHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neubauer, Michael; Wang, Haipeng
2015-12-15
Thomas Jefferson National Accelerator Facility (JLab) uses low efficiency klystrons in the CEBAF machine. In the older portion they operate at 30% efficiency with a tube mean time between failure (MTBF) of five to six years. A highly efficient source (>55-60%) must provide a high degree of backwards compatibility, both in size and voltage requirements, to replace the klystron presently used at JLab, while providing energy savings. Muons, Inc. is developing a highly reliable, highly efficient RF source based upon a novel injection-locked amplitude modulated (AM) magnetron with a lower total cost of ownership, >80% efficiency, and MTBF of sixmore » to seven years. The design of the RF source is based upon a single injection-locked magnetron system at 8 kW capable of operating up to 13 kW, using the magnetron magnetic field to achieve the AM required for backwards compatibility to compensate for microphonics and beam loads. A novel injection-locked 1497 MHz 8 kW AM magnetron with a trim magnetic coil was designed and its operation numerically simulated during the Phase I project. The low-level RF system to control the trim field and magnetron anode voltage was designed and modeled for operation at the modulation frequencies of the microphonics. A plan for constructing a prototype magnetron and control system was developed.« less
CALCIUM RELEASE FROM NERVOUS TISSUE - EXPERIMENTAL RESULTS AND POSSIBLE MECHANISMS
The research discussed in this paper was first conceived following a report by Bawin et al (1975) which demonstrated that amplitude-modulated radiofrequency (RF) fields could preferentially cause a biochemical change in isolated brain tissue depending on the specific frequency of...
Chen, Yi-Chuan; Huang, Pi-Chun; Woods, Andy; Spence, Charles
2016-05-27
It has been suggested that the Bouba/Kiki effect, in which meaningless speech sounds are systematically mapped onto rounded or angular shapes, reflects a universal crossmodal correspondence between audition and vision. Here, radial frequency (RF) patterns were adapted in order to compare the Bouba/Kiki effect in Eastern and Western participants demonstrating different perceptual styles. Three attributes of the RF patterns were manipulated: The frequency, amplitude, and spikiness of the sinusoidal modulations along the circumference of a circle. By testing participants in the US and Taiwan, both cultural commonalities and differences in sound-shape correspondence were revealed. RF patterns were more likely to be matched with "Kiki" than with "Bouba" when the frequency, amplitude, and spikiness increased. The responses from both groups of participants had a similar weighting on frequency; nevertheless, the North Americans had a higher weighting on amplitude, but a lower weighting on spikiness, than their Taiwanese counterparts. These novel results regarding cultural differences suggest that the Bouba/Kiki effect is partly tuned by differing perceptual experience. In addition, using the RF patterns in the Bouba/Kiki effect provides a "mid-level" linkage between visual and auditory processing, and a future understanding of sound-shape correspondences based on the mechanism of visual pattern processing.
NASA Astrophysics Data System (ADS)
Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel
2016-10-01
The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.
NASA Astrophysics Data System (ADS)
Ozharar, Sarper
This thesis focuses on the generation and applications of stable optical frequency combs. Optical frequency combs are defined as equally spaced optical frequencies with a fixed phase relation among themselves. The conventional source of optical frequency combs is the optical spectrum of the modelocked lasers. In this work, we investigated alternative methods for optical comb generation, such as dual sine wave phase modulation, which is more practical and cost effective compared to modelocked lasers stabilized to a reference. Incorporating these comblines, we have generated tunable RF tones using the serrodyne technique. The tuning range was +/-1 MHz, limited by the electronic waveform generator, and the RF carrier frequency is limited by the bandwidth of the photodetector. Similarly, using parabolic phase modulation together with time division multiplexing, RF chirp extension has been realized. Another application of the optical frequency combs studied in this thesis is real time data mining in a bit stream. A novel optoelectronic logic gate has been developed for this application and used to detect an 8 bit long target pattern. Also another approach based on orthogonal Hadamard codes have been proposed and explained in detail. Also novel intracavity modulation schemes have been investigated and applied for various applications such as (a) improving rational harmonic modelocking for repetition rate multiplication and pulse to pulse amplitude equalization, (b) frequency skewed pulse generation for ranging and (c) intracavity active phase modulation in amplitude modulated modelocked lasers for supermode noise spur suppression and integrated jitter reduction. The thesis concludes with comments on the future work and next steps to improve some of the results presented in this work.
NASA Astrophysics Data System (ADS)
Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi
2017-11-01
We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.
NASA Astrophysics Data System (ADS)
Lian, Jianyu
In this work, modification of the cosine current distribution rf coil, PCOS, has been introduced and tested. The coil produces a very homogeneous rf magnetic field, and it is inexpensive to build and easy to tune for multiple resonance frequency. The geometrical parameters of the coil are optimized to produce the most homogeneous rf field over a large volume. To avoid rf field distortion when the coil length is comparable to a quarter wavelength, a parallel PCOS coil is proposed and discussed. For testing rf coils and correcting B _1 in NMR experiments, a simple, rugged and accurate NMR rf field mapping technique has been developed. The method has been tested and used in 1D, 2D, 3D and in vivo rf mapping experiments. The method has been proven to be very useful in the design of rf coils. To preserve the linear relation between rf output applied on an rf coil and modulating input for an rf modulating -amplifying system of NMR imaging spectrometer, a quadrature feedback loop is employed in an rf modulator with two orthogonal rf channels to correct the amplitude and phase non-linearities caused by the rf components in the rf system. The modulator is very linear over a large range and it can generate an arbitrary rf shape. A diffusion imaging sequence has been developed for measuring and imaging diffusion in the presence of background gradients. Cross terms between the diffusion sensitizing gradients and background gradients or imaging gradients can complicate diffusion measurement and make the interpretation of NMR diffusion data ambiguous, but these have been eliminated in this method. Further, the background gradients has been measured and imaged. A dipole random distribution model has been established to study background magnetic fields Delta B and background magnetic gradients G_0 produced by small particles in a sample when it is in a B_0 field. From this model, the minimum distance that a spin can approach a particle can be determined by measuring
NASA Technical Reports Server (NTRS)
Rhim, W. K.; Burum, D. P.; Elleman, D. D.
1977-01-01
Adiabatic demagnetization (ADRF) can be achieved in a dipolar coupled nuclear spin system in solids by applying a string of short RF pulses and gradually modulating the pulse amplitudes or pulse angles. This letter reports an adiabatic inverse polarization effect in solids and a rotary spin echo phenomenon observed in liquids when the pulse angle is gradually changed across integral multiples of pi during a string of RF pulses. The RF pulse sequence used is illustrated along with the NMR signal from a CaF2 single crystal as observed between the RF pulses and the rotary spin echo signal observed in liquid C6F6 for n = 2. The observed effects are explained qualitatively on the basis of average Hamiltonian theory.
Bucket shaking stops bunch dancing in Tevatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burov, A.; Tan, C.Y.; /Fermilab
2011-03-01
Bunches in Tevatron are known to be longitudinally unstable: their collective oscillations, also called dancing bunches, persist without any signs of decay. Typically, a damper is used to stop these oscillations, but recently, it was theoretically predicted that the oscillations can be stabilized by means of small bucket shaking. Dedicated measurements in Tevatron have shown that this method does stop the dancing. According to predictions of Refs. [2,3], the flattening of the bunch distribution at low amplitudes should make the bunch more stable against LLD. An experiment has been devised to flatten the distribution by modulating the RF phase atmore » the low-amplitude synchrotron frequency for a few degrees of amplitude. These beam studies show that stabilisation really happens. After several consecutive shakings, the dancing disappears and the resulting bunch profile becomes smoother at the top. Although not shown in this report, sometimes a little divot forms at the centre of the distribution. These experiments confirm that resonant RF shaking flattens the bunch distribution at low amplitudes, and the dancing stops.« less
MULTIPLE POWER DENSITY WINDOWS AND THEIR POSSIBLE ORIGIN
We have previously reported that in vitro exposure of chick forebrain tissue to 50-Mz radiofrequency (RF) radiation, amplitude modulated (AM) at 16 Hz, would enhance the efflux of calcium ions only within two power density ranges: one spanning from 1.44 to 1.67 mW/cm2, and the ot...
Quadrature amplitude modulation (QAM) using binary-driven coupling-modulated rings
NASA Astrophysics Data System (ADS)
Karimelahi, Samira; Sheikholeslami, Ali
2016-05-01
We propose and fully analyze a compact structure for DAC-free pure optical QAM modulation. The proposed structure is the first ring resonator-based DAC-free QAM modulator reported in the literature, to the best of our knowledge. The device consists of two segmented add-drop Mach Zehnder interferometer-assisted ring modulators (MZIARM) in an IQ configuration. The proposed architecture is investigated based on the parameters from SOI technology where various key design considerations are discussed. We have included the loss in the MZI arms in our analysis of phase and amplitude modulation using MZIARM for the first time and show that the imbalanced loss results in a phase error. The output level linearity is also studied for both QAM-16 and QAM-64 not only based on optimizing RF segment lengths but also by optimizing the number of segments. In QAM-16, linearity among levels is achievable with two segments while in QAM-64 an additional segment may be required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten
We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization ({sup RESPIRATION}CP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated frommore » second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the {sup RESPIRATION}CP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous {sup 15}N → {sup 13}CO and {sup 15}N → {sup 13}C{sub α} coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.« less
Cytostatic response of NB69 cells to weak pulse-modulated 2.2 GHz radar-like signals.
Trillo, María A; Cid, María Antonia; Martínez, Maria Antonia; Page, Juan E; Esteban, Jaime; Úbeda, Alejandro
2011-07-01
The present study investigates the response of two human cancer cell lines to a 24-h treatment with a 2.2-GHz, pulse-modulated (5 µs pulse duration, 100 Hz repetition rate) radar-like signal at an average SAR = 0.023 W/kg, using a newly designed setup for in vitro exposure to radiofrequency (RF) fields. A complete discretized model of the setup was created for numerical dosimetry using finite-difference time-domain (FDTD) software, SEMCAD X. The average dose of RF radiation absorbed by the cultures was calculated to be subthermal (ΔT < 0.1 °C). The RF exposure induced a consistent, statistically significant reduction in the cell number (13.5% below controls, P < 0.001) in the neuroblastoma NB69 line. This effect was accompanied with slight but statistically significant increases in the proportions of cells in phases G0/G1 and G2/M of the cell cycle (6% and 9%, respectively; P < 0.05 over controls). By contrast, the hepatocarcinoma cell line HepG2 did not respond to the same RF treatment. These results indicate that a pulse-modulated RF radiation with high instantaneous amplitude and low average power can induce cytostatic responses on specific, sensitive cancer cell lines. The effect would be mediated, at least in part, by alterations in the kinetics of the cell cycle. Copyright © 2011 Wiley-Liss, Inc.
Zhu, Zihang; Zhao, Shanghong; Zheng, Wanze; Wang, Wei; Lin, Baoqin
2015-11-10
A novel frequency 12-tupling optical millimeter-wave (mm-wave) generation using two cascaded dual-parallel Mach-Zehnder modulators (DP-MZMs) without an optical filter is proposed and demonstrated by computer simulation. By properly adjusting the amplitude and phase of radio frequency (RF) driving signal and the direct current (DC) bias points of two DP-MZMs, a 120 GHz mm-wave with an optical sideband suppression ratio (OSSR) of 25.1 dB and a radio frequency spurious suppression ratio (RFSSR) of 19.1 dB is shown to be generated from a 10 GHz RF driving signal, which largely reduces the response frequency of electronic devices. Furthermore, it is also proved to be valid that even if the phase difference of RF driving signals, the RF driving voltage, and the DC bias voltage deviate from the ideal values to a certain degree, the performance is still acceptable. Since no optical filter is employed to suppress the undesired optical sidebands, a high-spectral-purity mm-wave signal tunable from 48 to 216 GHz can be obtained theoretically when a RF driving signal from 4 to 18 GHz is applied to the DP-MZMs, and the system can be readily implemented in wavelength-division-multiplexing upconversion systems to provide high-quality optical local oscillator signal.
NASA Astrophysics Data System (ADS)
Han, Xifeng; Zhou, Wen
2018-03-01
Optical vector radio-frequency (RF) signal generation based on optical carrier suppression (OCS) in one Mach-Zehnder modulator (MZM) can realize frequency-doubling. In order to match the phase or amplitude of the recovered quadrature amplitude modulation (QAM) signal, phase or amplitude pre-coding is necessary in the transmitter side. The detected QAM signals usually have one non-uniform phase distribution after square-law detection at the photodiode because of the imperfect characteristics of the optical and electrical devices. We propose to use optimal threshold of error decision for non-uniform phase contribution to reduce the bit error rate (BER). By employing this scheme, the BER of 16 Gbaud (32 Gbit/s) quadrature-phase-shift-keying (QPSK) millimeter wave signal at 36 GHz is improved from 1 × 10-3 to 1 × 10-4 at - 4 . 6 dBm input power into the photodiode.
Controlling satellite communication system unwanted emissions in congested RF spectrum
NASA Astrophysics Data System (ADS)
Olsen, Donald; Heymann, Roger
2007-09-01
The International Telecommunication Union (ITU), a United Nations (UN) agency, is the agency that, under an international treaty, sets radio spectrum usage regulations among member nations. Within the United States of America (USA), the organization that sets regulations, coordinates an application for use, and provides authorization for federal government/agency use of the radio frequency (RF) spectrum is the National Telecommunications and Information Administration (NTIA). In this regard, the NTIA defines which RF spectrum is available for federal government use in the USA, and how it is to be used. The NTIA is a component of the United States (U.S.) Department of Commerce of the federal government. The significance of ITU regulations is that ITU approval is required for U.S. federal government/agency permission to use the RF spectrum outside of U.S. boundaries. All member nations have signed a treaty to do so. U.S. federal regulations for federal use of the RF spectrum are found in the Manual of Regulations and Procedures for Federal Radio Frequency Management, and extracts of the manual are found in what is known as the Table of Frequency Allocations. Nonfederal government and private sector use of the RF spectrum within the U.S. is regulated by the Federal Communications Commission (FCC). There is a need to control "unwanted emissions" (defined to include out-of-band emissions, which are those immediately adjacent to the necessary and allocated bandwidth, plus spurious emissions) to preclude interference to all other authorized users. This paper discusses the causes, effects, and mitigation of unwanted RF emissions to systems in adjacent spectra. Digital modulations are widely used in today's satellite communications. Commercial communications sector standards are covered for the most part worldwide by Digital Video Broadcast - Satellite (DVB-S) and digital satellite news gathering (DSNG) evolutions and the second generation of DVB-S (DVB-S2) standard, developed by the European Telecommunications Standards Institute (ETSI). In the USA, the Advanced Television Systems Committee (ATSC) has adopted Europe's DVB-S and DVB-S2 standards for satellite digital transmission. With today's digital modulations, RF spectral side lobes can extend out many times the modulating frequency on either side of the carrier at excessive power levels unless filtered. Higher-order digital modulations include quadrature phase shift keying (QPSK), 8 PSK (8-ary phase shift keying), 16 APSK (also called 12-4 APSK (amplitude phase shift keying)), and 16 QAM (quadrature amplitude modulation); they are key for higher spectrum efficiency to enable higher data rate transmissions in limited available bandwidths. Nonlinear high-power amplifiers (HPAs) can regenerate frequency spectral side lobes on input-filtered digital modulations. The paper discusses technologies and techniques for controlling these spectral side lobes, such as the use of square root raised cosine (SRRC) filtering before or during the modulation process, HPA output power back-off (OPBO), and RF filters after the HPA. Spectral mask specifications are a common method of the NTIA and ITU to define spectral occupancy power limits. They are intended to reduce interference among RF spectrum users by limiting excessive radiation at frequencies beyond the regulatory allocated bandwidth.The focus here is on the communication systems of U.S. government satellites used for space research, space operations, Earth exploration satellite services (EESS), meteorological satellite services (METSATS), and other government services. The 8025 to 8400 megahertz (MHz) X band can be used to illustrate the "unwanted emissions" issue. 8025 to 8400 MHz abuts the 8400 to 8450 MHz band allocated by the NTIA and ITU to space research for space-to-Earth transmissions such as receiving very weak Deep Space Network signals. The views and ideas expressed in this paper are those of the authors and do not necessarily reflect those of The Aerospace Corporation or The National Oceanic and Atmospheric Administration (NOAA) and its National Environmental Satellite Service (NESDIS).
NASA Astrophysics Data System (ADS)
Martinez, Luis A.; Castelli, Alessandro R.; Delmas, William; Sharping, Jay E.; Chiao, Raymond
2016-11-01
We present experimental and theoretical results for the excitation of a mechanical oscillator via radiation pressure with a room-temperature system employing a relatively low-(Q) centimeter-size mechanical oscillator coupled to a relatively low-Q standard three-dimensional radio-frequency (RF) cavity resonator. We describe the forces giving rise to optomechanical coupling using the Maxwell stress tensor and show that nanometer-scale displacements are possible and experimentally observable. The experimental system is composed of a 35 mm diameter silicon nitride membrane sputtered with a 300 nm gold conducting film and attached to the end of a RF copper cylindrical cavity. The RF cavity is operated in its {{TE}}011 mode and amplitude modulated on resonance with the fundamental drum modes of the membrane. Membrane motion is monitored using an unbalanced, non-zero optical path difference, optically filtered Michelson interferometer capable of measuring sub-nanometer displacements.
SITE project. Phase 1: Continuous data bit-error-rate testing
NASA Technical Reports Server (NTRS)
Fujikawa, Gene; Kerczewski, Robert J.
1992-01-01
The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.
Synchronous radio-frequency FM signal generator using direct digital synthesizers
NASA Astrophysics Data System (ADS)
Arablu, Masoud; Kafashi, Sajad; Smith, Stuart T.
2018-04-01
A novel Radio-Frequency Frequency-Modulated (RF-FM) signal generation method is introduced and a prototype circuit developed to evaluate its functionality and performance. The RF-FM signal generator uses a modulated, voltage-controlled time delay to correspondingly modulate the phase of a 10 MHz sinusoidal reference signal. This modulated reference signal is, in turn, used to clock a Direct Digital Synthesizer (DDS) circuit resulting in an FM signal at its output. The modulating signal that is input to the voltage-controlled time delay circuit is generated by another DDS that is synchronously clocked by the same 10 MHz sine wave signal before modulation. As a consequence, all of the digital components are timed from a single sine wave oscillator that forms the basis of all timing. The resultant output signal comprises a center, or carrier, frequency plus a series of phase-synchronized sidebands having exact integer harmonic frequency separation. In this study, carrier frequencies ranging from 10 MHz to 70 MHz are generated with modulation frequencies ranging from 10 kHz to 300 kHz. The captured spectra show that the FM signal characteristics, amplitude and phase, of the sidebands and the modulation depth are consistent with the Jacobi-Anger expansion for modulated harmonic signals.
On the Effects of a Spacecraft Subcarrier Unbalanced Modulator
NASA Technical Reports Server (NTRS)
Nguyen, Tien Manh
1993-01-01
This paper presents mathematical models with associated analysis of the deleterious effects which a spacecraft's subcarrier unbalanced modulator has on the performance of a phase-modulated residual carrier communications link. The undesired spectral components produced by the phase and amplitude imbalances in the subcarrier modulator can cause (1) potential interference to the carrier tracking and (2) degradation in the telemetry bit signal-to-noise ratio (SNR). A suitable model for the unbalanced modulator is developed and the threshold levels of undesired components that fall into the carrier tracking loop are determined. The distribution of the carrier phase error caused by the additive White Gaussian noise (AWGN) and undesired component at the residual RF carrier is derived for the limiting cases. Further, this paper analyses the telemetry bit signal-to-noise ratio degradations due to undesirable spectral components as well as the carrier tracking phase error induced by phase and amplitude imbalances. Numerical results which indicate the sensitivity of the carrier tracking loop and the telemetry symbol-error rate (SER) to various parameters of the models are also provided as a tool in the design of the subcarrier balanced modulator.
Development of high-efficiency power amplifiers for PIP2 (Project X), Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, Frederick
The Fermi Lab PIP II (formerly Project X) accelerator will require the generation of over a megawatt of radio-frequency (RF) power at 325 and 650 MHz. This Phase-II SBIR grant developed techniques to generate this RF power efficienly. The basis of this approach is a system comprising high-efficiency RF power amplifiers, high-efficiency class-S modulators to maintain efficiency at all power levels, and low-loss power combiners. A digital signal processor adjusts signal parameters to obtain the maximum efficiency while producing a signal of the desired amplitude and phase. Components of 4-kW prototypes were designed, assembled, and tested. The 500-W modules producemore » signals at 325 MHz with an overall efficiency of 83 percent and signals at 650 MHz with an overall efficiency of 79 percent. This efficiency is nearly double that available from conventional techniques, which makes it possible to cut the power consumption nearly in half. The system is designed to be scalable to the multi-kilowatt level and can be adapted to other DoE applications.« less
Investigating Quantum Data Encrypted Modulation States
2014-11-01
propagation of entangled photon pairs through a hyper spectral filter device originally designed for multi-access laser communications between a hub...and multiple spokes. 15. SUBJECT TERMS Coherent optical detection, Long wavelength infrared, combined optical/RF link, entangled photon pairs , Lyot...Figure 36. Entangled photon pair amplitudes enter one port of a beam splitter (BS). There they split into two paths. They recombine when entering a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, Sumit; Ghosh, Surajit; Seth, Sudeshna
2013-11-15
Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loopmore » consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.« less
NASA Astrophysics Data System (ADS)
Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa
2006-05-01
The feasibility of the Harmonic Motion Imaging (HMI) technique for simultaneous monitoring and generation of focused ultrasound therapy using two separate focused ultrasound transducer elements has previously been shown. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force induced using a single focused ultrasound element. First, wave propagation simulation models were used to compare the use of a single Amplitude-Modulated (AM) focused beam versus two overlapping focused beams as previously implemented for HMI. Simulation results indicated that, unlike in the two-beam configuration, the AM beam produced a consistent, stable focus for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were then performed on gelatin gel phantoms and tissue in vitro bovine liver. The radiation force was generated by a 4.68 MHz focused transducer using a low-frequency Amplitude-Modulated (AM) RF-signal. RF data were acquired at 7.5 MHz with a PRF of 6.5 kHz and displacements were estimated using a 1D cross-correlation algorithm on successive RF signals. Furthermore, taking advantage of the real-time capability of our method, the change in the elastic properties was monitored during focused ultrasound (FUS) ablation of tissue in vitro bovine liver. Based on the harmonic displacements, their temperature-dependence, and the calculated acoustic radiation force, the change in the relative, regional stiffness could be monitored during heating and ablation, both using the displacement amplitude and the resulting phase shift change of the displacement relative to the radiation force temporal profile. In conclusion, the feasibility of using an AM radiation force for HMI for simultaneous monitoring and treatment during ultrasound therapy was demonstrated in phantoms and tissues in vitro. Further study of this method will include, ex vivo and in vivo, stiffness and temperature.
Evaluation of the JPL X-band 32 element active array. [for deep space communication
NASA Technical Reports Server (NTRS)
Boreham, J. F.; Postal, R. B.; Conroy, B. L.
1979-01-01
Tests performed on an X-band 32-element active array are described. Antenna pattern characteristics of the array were tested in its standard operating mode as well as several degraded performance modes, including failures of 1, 2, 3, 4, 8, 16, and 31 elements. Additionally, the array was characterized with the addition of a metallic shroud, and also characterized versus rf drive level and at a single off-axis electronic beamsteered position. Characterization was performed on several of the 3/4-watt, three-stage, X-band solid-state power amplifier modules. The characterization included swept amplitude response, amplitude and phase versus temperature from -20 to +60 C, and intermodulation distortion of selected modules. The array is described and conclusions and recommendations based upon the experience and results achieved are included.
NASA Astrophysics Data System (ADS)
Shihab, Mohammed
2018-06-01
The discharge dynamics in geometrically asymmetric capacitively coupled plasmas are investigated via a lumped model circuit. A realistic reactor configuration is assumed. A single and two separate RF voltage sources are considered. One of the driven frequencies (the higher frequency) has been adjusted to excite a plasma series resonance, while the second frequency (the lower frequency) is in the range of the ion plasma frequency. Increasing the plasma pressure in the low pressure regime (≤ 100mTorr) is found to diminish the amplitude of the self-excited harmonics of the discharge current, however, the net result is enhancing the plasma heating. The modulation of the ion density with the lower driving frequency affect the plasma heating considerably. The net effect depends on the amplitude and the phase of the ion modulation.
Advanced digital modulation: Communication techniques and monolithic GaAs technology
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.
1983-01-01
Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.
RF wave observations in beam-plasma discharge
NASA Technical Reports Server (NTRS)
Bernstein, W.
1986-01-01
The Beam Plasma Discharge (BPD) was produced in the large vacuum chamber at Johnson Space Center (20 x 30 m) using an energetic electron beam of moderately high perveance. A more complete expression of the threshold current I sub c taking into account the pitch angle injection dependence is given. Ambient plasma density inferred from wave measurements under various beam conditions are reported. Maximum frequency of the excited RF band behaves differently than the frequency of the peak amplitude. The latter shows signs of parabolic saturation consistent with the light data. Beam plasma state (pre-BPD or BPD) does not affect the pitch angle dependence. Unexpected strong modulation of the RF spectrum at half odd integer of the electron cyclotron frequency (n + 1/2)f sub ce is reported (5 n 10). Another new feature, the presence of wave emission around 3/2 f sub ce for I sub b is approximate I sub c is reported.
Fast Wave Transmission Measurements on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Reardon, J.; Bonoli, P. T.; Porkolab, M.; Takase, Y.; Wukitch, S. J.
1997-11-01
Data are presented from an array of single-turn loop probes newly installed on the inner wall of C-Mod, directly opposite one of the two fast-wave antennas. The 8-loop array extends 32^circ in the toroidal direction at the midplane and can distinguish electromagnetic from electrostatic modes. Data are acquired by 1GHz digitizer, spectrum analyzer, and RF detector circuit. Phase measurements during different heating scenarios show evidence of both standing and travelling waves. The measurement of toroidal mode number N_tor (conserved under the assumption of axisymmetry) is used to guide the toroidal full-wave code TORIC(Brambilla, M., IPP Report 5/66, February 1996). Amplitude measurements show modulation both by Type III ELMs and sawteeth; the observed sawtooth modulation may be interpreted as due to changes in central absorption. The amplitude of tildeB_tor measured at the inner wall is compared to the prediction of TORIC.
Xu, Dan; King, Kevin F; Liang, Zhi-Pei
2007-10-01
A new class of spiral trajectories called variable slew-rate spirals is proposed. The governing differential equations for a variable slew-rate spiral are derived, and both numeric and analytic solutions to the equations are given. The primary application of variable slew-rate spirals is peak B(1) amplitude reduction in 2D RF pulse design. The reduction of peak B(1) amplitude is achieved by changing the gradient slew-rate profile, and gradient amplitude and slew-rate constraints are inherently satisfied by the design of variable slew-rate spiral gradient waveforms. A design example of 2D RF pulses is given, which shows that under the same hardware constraints the RF pulse using a properly chosen variable slew-rate spiral trajectory can be much shorter than that using a conventional constant slew-rate spiral trajectory, thus having greater immunity to resonance frequency offsets.
Low jitter RF distribution system
Wilcox, Russell; Doolittle, Lawrence; Huang, Gang
2012-09-18
A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.
Influence of modulation frequency in rubidium cell frequency standards
NASA Technical Reports Server (NTRS)
Audoin, C.; Viennet, J.; Cyr, N.; Vanier, J.
1983-01-01
The error signal which is used to control the frequency of the quartz crystal oscillator of a passive rubidium cell frequency standard is considered. The value of the slope of this signal, for an interrogation frequency close to the atomic transition frequency is calculated and measured for various phase (or frequency) modulation waveforms, and for several values of the modulation frequency. A theoretical analysis is made using a model which applies to a system in which the optical pumping rate, the relaxation rates and the RF field are homogeneous. Results are given for sine-wave phase modulation, square-wave frequency modulation and square-wave phase modulation. The influence of the modulation frequency on the slope of the error signal is specified. It is shown that the modulation frequency can be chosen as large as twice the non-saturated full-width at half-maximum without a drastic loss of the sensitivity to an offset of the interrogation frequency from center line, provided that the power saturation factor and the amplitude of modulation are properly adjusted.
Intermodulation components in the transmitter RF output due to high voltage power supply ripple
NASA Technical Reports Server (NTRS)
Finnegan, E. J.
1977-01-01
The economic feasibility of eliminating the 400-Hz motor-generator sets used to provide power to the high-voltage power supplies of the 20-kW transmitters and replace them with a 60-Hz high-voltage power supply was investigated. The efficiency of a power supply that runs from the 60-Hz line directly would pay for itself in about seven years and could be designed so that the transmitter would meet all the incidental phase and amplitude modulation specifications.
BICMOS power detector for pulsed Rf power amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridge, Clayton D.
2016-10-01
A BiCMOS power detector for pulsed radio-frequency power amplifiers is proposed. Given the pulse waveform and a fraction of the power amplifier's input or output signal, the detector utilizes a low-frequency feedback loop to perform a successive approximation of the amplitude of the input signal. Upon completion of the successive approximation, the detector returns 9-bits representing the amplitude of the RF input signal. Using the pulse waveform from the power amplifier, the detector can dynamically adjust the rate of the binary search operation in order to return the updated amplitude information of the RF input signal at least every 1ms.more » The detector can handle pulse waveform frequencies from 50kHz to 10MHz with duty cycles in the range of 5- 50% and peak power levels of -10 to 10dBm. The signal amplitude measurement can be converted to a peak power measurement accurate to within ±0.6dB of the input RF power.« less
Flexible, reconfigurable, power efficient transmitter and method
NASA Technical Reports Server (NTRS)
Bishop, James W. (Inventor); Zaki, Nazrul H. Mohd (Inventor); Newman, David Childress (Inventor); Bundick, Steven N. (Inventor)
2011-01-01
A flexible, reconfigurable, power efficient transmitter device and method is provided. In one embodiment, the method includes receiving outbound data and determining a mode of operation. When operating in a first mode the method may include modulation mapping the outbound data according a modulation scheme to provide first modulation mapped digital data, converting the first modulation mapped digital data to an analog signal that comprises an intermediate frequency (IF) analog signal, upconverting the IF analog signal to produce a first modulated radio frequency (RF) signal based on a local oscillator signal, amplifying the first RF modulated signal to produce a first RF output signal, and outputting the first RF output signal via an isolator. In a second mode of operation method may include modulation mapping the outbound data according a modulation scheme to provide second modulation mapped digital data, converting the second modulation mapped digital data to a first digital baseband signal, conditioning the first digital baseband signal to provide a first analog baseband signal, modulating one or more carriers with the first analog baseband signal to produce a second modulated RF signal based on a local oscillator signal, amplifying the second RF modulated signal to produce a second RF output signal, and outputting the second RF output signal via the isolator. The digital baseband signal may comprise an in-phase (I) digital baseband signal and a quadrature (Q) baseband signal.
Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser.
Quinlan, Franklyn; Gee, Sangyoun; Ozharar, Sarper; Delfyett, Peter J
2006-10-01
We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation (1 Hz to 100 MHz) of the optical pulse train. The keys to obtaining this result were the laser's high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.
Carrender, Curtis Lee; Gilbert, Ronald W.
2007-02-20
A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.
System for Automated Calibration of Vector Modulators
NASA Technical Reports Server (NTRS)
Lux, James; Boas, Amy; Li, Samuel
2009-01-01
Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create correction tables to allow the commanding of the phase shift in each of four channels used as a phased array for beam steering of a Ka-band (32-GHz) signal. The system also was the basis of a breadboard electronic beam steering system. In this breadboard, the goal was not to make systematic measurements of the properties of a vector modulator, but to drive the breadboard with a series of test patterns varying in phase and amplitude. This is essentially the same calibration process, but with the difference that the data collection process is oriented toward collecting breadboard performance, rather than the measurement of output from a network analyzer.
Precision vector control of a superconducting RF cavity driven by an injection locked magnetron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed
The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less
Precision vector control of a superconducting RF cavity driven by an injection locked magnetron
Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; ...
2015-03-01
The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less
Indoor Airborne Ultrasonic Wireless Communication Using OFDM Methods.
Jiang, Wentao; Wright, William M D
2017-09-01
Concerns still exist over the safety of prolonged exposure to radio frequency (RF) wireless transmissions and there are also potential data security issues due to remote signal interception techniques such as Bluesniping. Airborne ultrasound may be used as an alternative to RF for indoor wireless communication systems for securely transmitting data over short ranges, as signals are difficult to intercept from outside the room. Two types of air-coupled capacitive ultrasonic transducer were used in the implementation of an indoor airborne wireless communication system. One was a commercially available SensComp series 600 ultrasonic transducer with a nominal frequency of 50 kHz, and the other was a prototype transducer with a high- k dielectric layer operating at higher frequencies from 200 to 400 kHz. Binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), and quadrature amplitude modulation (QAM)-based orthogonal frequency division multiplexing modulation methods were successfully implemented using multiple orthogonal subchannels. The modulated ultrasonic signal packets were synchronized using a wireless link, and a least-squares channel estimation algorithm was used to compensate the phase and amplitude distortion introduced by the air channel. By sending and receiving the ultrasonic signals using the SensComp transducers, the achieved maximum system data rate was up to 180 kb/s using 16-QAM with ultrasonic channels from 55 to 99 kHz, over a line-of-sight transmission distance of 6 m with no detectable errors. The transmission range could be extended to 9 and 11 m using QPSK and BPSK modulation schemes, respectively. The achieved data rates for the QPSK and BPSK schemes were 90 and 45 kb/s using the same bandwidth. For the high- k ultrasonic transducers, a maximum data rate up to 800 kb/s with no measurable errors was achieved up to a range of 0.7 m. The attainable transmission ranges were increased to 1.1 and 1.2 m with data rates of 400 and 200 kb/s using QPSK and BPSK, respectively.
RF low-level control for the Linac4 H{sup −} source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butterworth, A., E-mail: andrew.butterworth@cern.ch; Grudiev, A.; Lettry, J.
2015-04-08
The H{sup −} source for the Linac4 accelerator at CERN uses an RF driven plasma for the production of H{sup −}. The RF is supplied by a 2 MHz RF tube amplifier with a maximum power output of 100 kW and a pulse duration of up to 2 ms. The low-level RF signal generation and measurement system has been developed using standard CERN controls electronics in the VME form factor. The RF frequency and amplitude reference signals are generated using separate arbitrary waveform generator channels. The frequency and amplitude are both freely programmable over the duration of the RF pulse, which allowsmore » fine-tuning of the excitation. Measurements of the forward and reverse RF power signals are performed via directional couplers using high-speed digitizers, and permit the estimation of the plasma impedance and deposited power via an equivalent circuit model. The low-level RF hardware and software implementations are described, and experimental results obtained with the Linac4 ion sources in the test stand are presented.« less
Chatrath, Jatin; Aziz, Mohsin; Helaoui, Mohamed
2018-01-01
Reconfigurable and multi-standard RF front-ends for wireless communication and sensor networks have gained importance as building blocks for the Internet of Things. Simpler and highly-efficient transmitter architectures, which can transmit better quality signals with reduced impairments, are an important step in this direction. In this regard, mixer-less transmitter architecture, namely, the three-way amplitude modulator-based transmitter, avoids the use of imperfect mixers and frequency up-converters, and their resulting distortions, leading to an improved signal quality. In this work, an augmented memory polynomial-based model for the behavioral modeling of such mixer-less transmitter architecture is proposed. Extensive simulations and measurements have been carried out in order to validate the accuracy of the proposed modeling strategy. The performance of the proposed model is evaluated using normalized mean square error (NMSE) for long-term evolution (LTE) signals. NMSE for a LTE signal of 1.4 MHz bandwidth with 100,000 samples for digital combining and analog combining are recorded as −36.41 dB and −36.9 dB, respectively. Similarly, for a 5 MHz signal the proposed models achieves −31.93 dB and −32.08 dB NMSE using digital and analog combining, respectively. For further validation of the proposed model, amplitude-to-amplitude (AM-AM), amplitude-to-phase (AM-PM), and the spectral response of the modeled and measured data are plotted, reasonably meeting the desired modeling criteria. PMID:29510501
Frequency agile microwave photonic notch filter with anomalously high stopband rejection.
Marpaung, David; Morrison, Blair; Pant, Ravi; Eggleton, Benjamin J
2013-11-01
We report a novel class microwave photonic (MWP) notch filter with a very narrow isolation bandwidth (10 MHz), an ultrahigh stopband rejection (>60 dB), a wide frequency tuning (1-30 GHz), and flexible bandwidth reconfigurability (10-65 MHz). This performance is enabled by a new concept of sideband amplitude and phase controls using an electro-optic modulator and an optical filter. This concept enables energy efficient operation in active MWP notch filters, and opens up a pathway toward enabling low-power nanophotonic devices as high-performance RF filters.
RF to millimeter wave integration and module technologies
NASA Astrophysics Data System (ADS)
Vähä-Heikkilä, T.
2015-04-01
Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.
Estimation of Characteristics of Echo Envelope Using RF Echo Signal from the Liver
NASA Astrophysics Data System (ADS)
Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Ikeda, Kazuki; Moriyasu, Norifumi
2001-05-01
To realize quantitative diagnosis of liver cirrhosis, we have been analyzing the probability density function (PDF) of echo amplitude using B-mode images. However, the B-mode image is affected by the various signal and image processing techniques used in the diagnosis equipment, so a detailed and quantitative analysis is very difficult. In this paper, we analyze the PDF of echo amplitude using RF echo signal and B-mode images of normal and cirrhotic livers, and compare both results to examine the validity of the RF echo signal.
Measured performance of the GTA rf systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, P.M.; Jachim, S.P.
1993-06-01
This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.
Measured performance of the GTA rf systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, P.M.; Jachim, S.P.
1993-01-01
This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.
Corum, Curtis A; Idiyatullin, Djaudat; Snyder, Carl J; Garwood, Michael
2015-02-01
SWIFT (SWeep Imaging with Fourier Transformation) is a non-Cartesian MRI method with unique features and capabilities. In SWIFT, radiofrequency (RF) excitation and reception are performed nearly simultaneously, by rapidly switching between transmit and receive during a frequency-swept RF pulse. Because both the transmitted pulse and data acquisition are simultaneously amplitude-modulated in SWIFT (in contrast to continuous RF excitation and uninterrupted data acquisition in more familiar MRI sequences), crosstalk between different frequency bands occurs in the data. This crosstalk leads to a "bulls-eye" artifact in SWIFT images. We present a method to cancel this interband crosstalk by cycling the pulse and receive gap positions relative to the un-gapped pulse shape. We call this strategy "gap cycling." We carry out theoretical analysis, simulation and experiments to characterize the signal chain, resulting artifacts, and their elimination for SWIFT. Theoretical analysis reveals the mechanism for gap-cycling's effectiveness in canceling interband crosstalk in the received data. We show phantom and in vivo results demonstrating bulls-eye artifact free images. Gap cycling is an effective method to remove bulls-eye artifact resulting from interband crosstalk in SWIFT data. © 2014 Wiley Periodicals, Inc.
Wu, Wei; Wang, KaiJun; Ni, Shuang; Ye, PanPan; Yu, YiBo; Ye, Juan; Sun, LiXia
2008-01-01
Purpose The goal of this study was to investigate whether superposing of electromagnetic noise could block or attenuate DNA damage and intracellular reactive oxygen species (ROS) increase of cultured human lens epithelial cells (HLECs) induced by acute exposure to 1.8 GHz radiofrequency field (RF) of the Global System for Mobile Communications (GSM). Methods An sXc-1800 RF exposure system was used to produce a GSM signal at 1.8 GHz (217 Hz amplitude-modulated) with the specific absorption rate (SAR) of 1, 2, 3, and 4 W/kg. After 2 h of intermittent exposure, the ROS level was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DNA damage to HLECs was examined by alkaline comet assay and the phosphorylated form of histone variant H2AX (γH2AX) foci formation assay. Results After exposure to 1.8 GHz RF for 2 h, HLECs exhibited significant intracellular ROS increase in the 2, 3, and 4 W/kg groups. RF radiation at the SAR of 3 W/kg and 4 W/kg could induce significant DNA damage, examined by alkaline comet assay, which was used to detect mainly single strand breaks (SSBs), while no statistical difference in double strand breaks (DSBs), evaluated by γH2AX foci, was found between RF exposure (SAR: 3 and 4 W/kg) and sham exposure groups. When RF was superposed with 2 μT electromagnetic noise could block RF-induced ROS increase and DNA damage. Conclusions DNA damage induced by 1.8 GHz radiofrequency field for 2 h, which was mainly SSBs, may be associated with the increased ROS production. Electromagnetic noise could block RF-induced ROS formation and DNA damage. PMID:18509546
Yao, Ke; Wu, Wei; Wang, KaiJun; Ni, Shuang; Ye, PanPan; Yu, YiBo; Ye, Juan; Sun, LiXia
2008-05-19
The goal of this study was to investigate whether superposing of electromagnetic noise could block or attenuate DNA damage and intracellular reactive oxygen species (ROS) increase of cultured human lens epithelial cells (HLECs) induced by acute exposure to 1.8 GHz radiofrequency field (RF) of the Global System for Mobile Communications (GSM). An sXc-1800 RF exposure system was used to produce a GSM signal at 1.8 GHz (217 Hz amplitude-modulated) with the specific absorption rate (SAR) of 1, 2, 3, and 4 W/kg. After 2 h of intermittent exposure, the ROS level was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DNA damage to HLECs was examined by alkaline comet assay and the phosphorylated form of histone variant H2AX (gammaH2AX) foci formation assay. After exposure to 1.8 GHz RF for 2 h, HLECs exhibited significant intracellular ROS increase in the 2, 3, and 4 W/kg groups. RF radiation at the SAR of 3 W/kg and 4 W/kg could induce significant DNA damage, examined by alkaline comet assay, which was used to detect mainly single strand breaks (SSBs), while no statistical difference in double strand breaks (DSBs), evaluated by gammaH2AX foci, was found between RF exposure (SAR: 3 and 4 W/kg) and sham exposure groups. When RF was superposed with 2 muT electromagnetic noise could block RF-induced ROS increase and DNA damage. DNA damage induced by 1.8 GHz radiofrequency field for 2 h, which was mainly SSBs, may be associated with the increased ROS production. Electromagnetic noise could block RF-induced ROS formation and DNA damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadmack, M. R.; Kowalczyk, J. M. D.; Lienert, B. R.
2013-06-15
An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with themore » results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.« less
Design and Development of Amplitude and phase measurement of RF signal with Digital I-Q Demodulator
NASA Astrophysics Data System (ADS)
Soni, Dipal; Rajnish, Kumar; Verma, Sriprakash; Patel, Hriday; Trivedi, Rajesh; Mukherjee, Aparajita
2017-04-01
ITER-India, working as a nodal agency from India for ITER project [1], is responsible to deliver one of the packages, called Ion Cyclotron Heating & Current Drive (ICH&CD) - Radio Frequency Power Sources (RFPS). RFPS is having two cascaded amplifier chains (10 kW, 130 kW & 1.5 MW) combined to get 2.5 MW RF power output. Directional couplers are inserted at the output of each stage to extract forward power and reflected power as samples for measurement of amplitude and phase. Using passive mixer, forward power and reflected power are down converted to 1MHz Intermediate frequency (IF). This IF signal is used as an input to the Digital IQ Demodulator (DIQDM). DIQDM is realized using National Instruments make PXI hardware & LabVIEW software tool. In this paper, Amplitude and Phase measurement of RF signal with DIQDM technique is described. Also test results with dummy signals and signal generated from low power RF systems is discussed here.
Highly Sensitive Electro-Optic Modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVore, Peter S
2015-10-26
There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestationmore » of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.« less
High-Power, High-Speed Electro-Optic Pockels Cell Modulator
NASA Technical Reports Server (NTRS)
Hawthorne, Justin; Battle, Philip
2013-01-01
Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.
Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout.
Song, Xuefeng; Oksanen, Mika; Sillanpää, Mika A; Craighead, H G; Parpia, J M; Hakonen, Pertti J
2012-01-11
We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f = 5-6 GHz producing modulation sidebands at f ± f(m). A mechanical resonance frequency up to f(m) = 178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of dc bias voltage V(dc) indicates that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large V(dc). © 2011 American Chemical Society
NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Neubauer, M.
A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operationmore » cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.« less
Fast wave experiments in LAPD: RF sheaths, convective cells and density modifications
NASA Astrophysics Data System (ADS)
Carter, T. A.; van Compernolle, B.; Martin, M.; Gekelman, W.; Pribyl, P.; van Eester, D.; Crombe, K.; Perkins, R.; Lau, C.; Martin, E.; Caughman, J.; Tripathi, S. K. P.; Vincena, S.
2017-10-01
An overview is presented of recent work on ICRF physics at the Large Plasma Device (LAPD) at UCLA. The LAPD has typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B 1000 G. A new high-power ( 150 kW) RF system and fast wave antenna have been developed for LAPD. The source runs at a frequency of 2.4 MHz, corresponding to 1 - 7fci , depending on plasma parameters. Evidence of rectified RF sheaths is seen in large increases ( 10Te) in the plasma potential on field lines connected to the antenna. The rectified potential scales linearly with antenna current. The rectified RF sheaths set up convective cells of local E × B flows, measured indirectly by potential measurements, and measured directly with Mach probes. At high antenna powers substantial modifications of the density profile were observed. The plasma density profile initially exhibits transient low frequency oscillations (10 kHz). The amplitude of the fast wave fields in the core plasma is modulated at the same low frequency, suggesting fast wave coupling is affected by the density rearrangement. Work performed at the Basic Plasma Science Facility, supported jointly by the National Science Foundation and the Department of Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Na; Wu, Yu-Ping; Min, Hao
A radio-frequency (RF) source designed for cold atom experiments is presented. The source uses AD9858, a direct digital synthesizer, to generate the sine wave directly, up to 400 MHz, with sub-Hz resolution. An amplitude control circuit consisting of wideband variable gain amplifier and high speed digital to analog converter is integrated into the source, capable of 70 dB off isolation and 4 ns on-off keying. A field programmable gate array is used to implement a versatile frequency and amplitude co-sweep logic. Owing to modular design, the RF sources have been used on many cold atom experiments to generate various complicatedmore » RF sequences, enriching the operation schemes of cold atoms, which cannot be done by standard RF source instruments.« less
Integrated Microphotonic Receiver for Ka-Band
NASA Technical Reports Server (NTRS)
Levi, A. F. J.
2005-01-01
This report consists of four main sections. Part I: LiNbO3 microdisk resonant optical modulator. Brief review of microdisk optical resonator and RF ring resonator. Microwave and photonic design challenges for achieving simultaneous RF-optical resonance are addressed followed by our solutions. Part II: Experimental demonstration of LiNbO3 microdisk modulator performance in wired and wireless RF-optical links. Part III: Microphotonic RF receiver architecture that exploits the nonlinear modulation in the LiNbO3 microdisk modulator to achieve direct photonic down-conversion from RF carrier without using any high-speed electronic elements. Part IV: Ultimate sensitivity of the microdisk photonic receiver and the future road map toward a practical device.
Photon Shot Noise Limited Radio Frequency Electric Field Sensing Using Rydberg Atoms in Vapor Cells
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Jahangiri, Akbar J.; Fan, Haoquan; Kuebler, Harald; Shaffer, James P.
2017-04-01
We report Rydberg atom-based radio frequency (RF) electrometry measurements at a sensitivity limited by probe laser photon shot noise. By utilizing the phenomena of electromagnetically induced transparency (EIT) in room temperature atomic vapor cells, Rydberg atoms can be used for absolute electric field measurements that significantly surpass conventional methods in utility, sensitivity and accuracy. We show that by using a Mach-Zehnder interferometer with homodyne detection or using frequency modulation spectroscopy with active control of residual amplitude modulation we can achieve a RF electric field detection sensitivity of 3 μVcm-1Hz/2. The sensitivity is limited by photon shot noise on the detector used to readout the probe laser of the EIT scheme. We suggest a new multi-photon scheme that can mitigate the effect of photon shot noise. The multi-photon approach allows an increase in probe laser power without decreasing atomic coherence times that result from collisions caused by an increase in Rydberg atom excitation. The multi-photon scheme also reduces Residual Doppler broadening enabling more accurate measurements to be carried out. This work is supported by DARPA, and NRO.
Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth.
Mercante, Andrew J; Shi, Shouyuan; Yao, Peng; Xie, Linli; Weikle, Robert M; Prather, Dennis W
2018-05-28
We present a thin film crystal ion sliced (CIS) LiNbO 3 phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device's broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator's interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm -1 . The design, fabrication, and characterization of our broadband modulator is presented in this work.
NASA Technical Reports Server (NTRS)
Steel, Emily Wilson
2016-01-01
The miniaturized laser heterodyne radiometer (mini-LHR) is a ground-based passive variation of a laser heterodyne radiometer that uses sunlight to measure absorption of CO2 andCH4 in the infrared. Sunlight is collected using collimation optics mounted to an AERONET sun tracker, modulated with a fiber switch and mixed with infrared laser light in a fast photoreciever.The amplitude of the resultant RF (radio frequency) beat signal correlates with the concentration of the gas in the atmospheric column.
Zimmerman, Jacquelyn W.; Jimenez, Hugo; Pennison, Michael J.; Brezovich, Ivan; Morgan, Desiree; Mudry, Albert; Costa, Frederico P.; Barbault, Alexandre; Pasche, Boris
2013-01-01
In the past century, there have been many attempts to treat cancer with low levels of electric and magnetic fields. We have developed noninvasive biofeedback examination devices and techniques and discovered that patients with the same tumor type exhibit biofeedback responses to the same, precise frequencies. Intrabuccal administration of 27.12 MHz radiofrequency (RF) electromagnetic fields (EMF), which are amplitude-modulated at tumor-specific frequencies, results in long-term objective responses in patients with cancer and is not associated with any significant adverse effects. Intrabuccal administration allows for therapeutic delivery of very low and safe levels of EMF throughout the body as exemplified by responses observed in the femur, liver, adrenal glands, and lungs. In vitro studies have demonstrated that tumor-specific frequencies identified in patients with various forms of cancer are capable of blocking the growth of tumor cells in a tissue- and tumor-specific fashion. Current experimental evidence suggests that tumor-specific modulation frequencies regulate the expression of genes involved in migration and invasion and disrupt the mitotic spindle. This novel targeted treatment approach is emerging as an appealing therapeutic option for patients with advanced cancer given its excellent tolerability. Dissection of the molecular mechanisms accounting for the anti-cancer effects of tumor-specific modulation frequencies is likely to lead to the discovery of novel pathways in cancer. PMID:24206915
Zimmerman, Jacquelyn W; Jimenez, Hugo; Pennison, Michael J; Brezovich, Ivan; Morgan, Desiree; Mudry, Albert; Costa, Frederico P; Barbault, Alexandre; Pasche, Boris
2013-11-01
In the past century, there have been many attempts to treat cancer with low levels of electric and magnetic fields. We have developed noninvasive biofeedback examination devices and techniques and discovered that patients with the same tumor type exhibit biofeedback responses to the same, precise frequencies. Intrabuccal administration of 27.12 MHz radiofrequency (RF) electromagnetic fields (EMF), which are amplitude-modulated at tumor-specific frequencies, results in long-term objective responses in patients with cancer and is not associated with any significant adverse effects. Intrabuccal administration allows for therapeutic delivery of very low and safe levels of EMF throughout the body as exemplified by responses observed in the femur, liver, adrenal glands, and lungs. In vitro studies have demonstrated that tumor-specific frequencies identified in patients with various forms of cancer are capable of blocking the growth of tumor cells in a tissue- and tumor-specific fashion. Current experimental evidence suggests that tumor-specific modulation frequencies regulate the expression of genes involved in migration and invasion and disrupt the mitotic spindle. This novel targeted treatment approach is emerging as an appealing therapeutic option for patients with advanced cancer given its excellent tolerability. Dissection of the molecular mechanisms accounting for the anti-cancer effects of tumor-specific modulation frequencies is likely to lead to the discovery of novel pathways in cancer.
NASA Astrophysics Data System (ADS)
Rakvin, B.; Carić, D.; Kveder, M.
2018-02-01
The microwave magnetic field strength, B1, in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ωrf, which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B1, decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed.
Rakvin, B; Carić, D; Kveder, M
2018-02-01
The microwave magnetic field strength, B 1 , in the cavity of a conventional continuous wave electron paramagnetic resonance, CW-EPR, spectrometer was measured by employing modulation sidebands, MS, in the EPR spectrum. MS spectrum in CW-EPR is produced by applying the modulation frequency, ω rf , which exceeds the linewidth, δB, given in frequency units. An amplitude-modulated CW-EPR, AM-CW-EPR, was selected as detection method. Theoretical description of AM-CW-EPR spectrum was modified by adding Bloch-Siegert-like shift obtained by taking into account the cumulative effect of the non-resonant interactions between the driving fields and the spin system. This approach enables to enhance the precision of B 1 measurement. In order to increase the sensitivity of the method when saturation effects, due to higher intensity of B 1 , decrease the resolution of AM-CW-EPR spectrum, detection at the second harmonic of CW-EPR has been employed. Copyright © 2018 Elsevier Inc. All rights reserved.
Artifacts correction for T1rho imaging with constant amplitude spin-lock
NASA Astrophysics Data System (ADS)
Chen, Weitian
2017-01-01
T1rho imaging with constant amplitude spin-lock is prone to artifacts in the presence of B1 RF and B0 field inhomogeneity. Despite significant technological progress, improvements on the robustness of constant amplitude spin-lock are necessary in order to use it for routine clinical practice. This work proposes methods to simultaneously correct for B1 RF and B0 field inhomogeneity in constant amplitude spin-lock. By setting the maximum B1 amplitude of the excitation adiabatic pulses equal to the expected constant amplitude spin-lock frequency, the spins become aligned along the effective field throughout the spin-lock process. This results in T1rho-weighted images free of artifacts, despite the spatial variation of the effective field caused by B1 RF and B0 field inhomogeneity. When the pulse is long, the relaxation effect during the adiabatic half passage may result in a non-negligible error in the mono-exponential relaxation model. A two-acquisition approach is presented to solve this issue. Simulation, phantom, and in-vivo scans demonstrate the proposed methods achieve superior image quality compared to existing methods, and that the two-acquisition method is effective in resolving the relaxation effect during the adiabatic half passage.
MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI.
Thiessen, J D; Shams, E; Stortz, G; Schellenberg, G; Bishop, D; Khan, M S; Kozlowski, P; Retière, F; Sossi, V; Thompson, C J; Goertzen, A L
2016-11-21
A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0 ) and the time-varying excitation field (B 1 ) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.
MR-compatibility of a high-resolution small animal PET insert operating inside a 7 T MRI
NASA Astrophysics Data System (ADS)
Thiessen, J. D.; Shams, E.; Stortz, G.; Schellenberg, G.; Bishop, D.; Khan, M. S.; Kozlowski, P.; Retière, F.; Sossi, V.; Thompson, C. J.; Goertzen, A. L.
2016-11-01
A full-ring PET insert consisting of 16 PET detector modules was designed and constructed to fit within the 114 mm diameter gradient bore of a Bruker 7 T MRI. The individual detector modules contain two silicon photomultiplier (SiPM) arrays, dual-layer offset LYSO crystal arrays, and high-definition multimedia interface (HDMI) cables for both signal and power transmission. Several different RF shielding configurations were assessed prior to construction of a fully assembled PET insert using a combination of carbon fibre and copper foil for RF shielding. MR-compatibility measurements included field mapping of the static magnetic field (B 0) and the time-varying excitation field (B 1) as well as acquisitions with multiple pulse sequences: spin echo (SE), rapid imaging with refocused echoes (RARE), fast low angle shot (FLASH) gradient echo, and echo planar imaging (EPI). B 0 field maps revealed a small degradation in the mean homogeneity (+0.1 ppm) when the PET insert was installed and operating. No significant change was observed in the B 1 field maps or the image homogeneity of various MR images, with a 9% decrease in the signal-to-noise ratio (SNR) observed only in EPI images acquired with the PET insert installed and operating. PET detector flood histograms, photopeak amplitudes, and energy resolutions were unchanged in individual PET detector modules when acquired during MRI operation. There was a small baseline shift on the PET detector signals due to the switching amplifiers used to power MRI gradient pulses. This baseline shift was observable when measured with an oscilloscope and varied as a function of the gradient duty cycle, but had no noticeable effect on the performance of the PET detector modules. Compact front-end electronics and effective RF shielding led to minimal cross-interference between the PET and MRI systems. Both PET detector and MRI performance was excellent, whether operating as a standalone system or a hybrid PET/MRI.
NASA Astrophysics Data System (ADS)
Duckitt, W. D.; Conradie, J. L.; van Niekerk, M. J.; Abraham, J. K.; Niesler, T. R.
2018-07-01
iThemba LABS has successfully designed a new broadband digital low-level RF control system for cyclotrons, that operates over the wide frequency range of 2-100 MHz and can achieve peak-peak amplitude and phase stabilities of 0.01% and 0.01°, respectively. The presented system performs direct digital synthesis (DDS) to directly convert the digital RF signals to analog RF and local-oscillator (LO) signals with 16-bit amplitude accuracy, programmable in steps of 1 μHz and 0.0001°. Down-conversion of the RF pick-up signals to an optimal intermediate frequency (IF) of 1 MHz and sampling of the IF channels by 16-bit, single sample-latency 10 MHz ADCs was implemented to allow digital high-speed low-latency in-phase/quadrature (I/Q) demodulation of the IF channels within the FPGA. This in turn allows efficient real-time digital closed-loop control of the amplitude and phase of the RF drive-signal to be achieved. The systems have been successfully integrated at iThemba LABS into the K = 8 and K = 10 injector cyclotrons (SPC1, and SPC2), the K = 200 separated sector cyclotron (SSC), the SSC flat-topping system, the pulse-selector system and the AX , J, and K-line RF bunchers. The systems have led to a substantial improvement in the beam quality of the SSC at iThemba LABS with a reduction in beam losses by more than 90%. The design, implementation and performance is discussed.
Genetic algorithm optimized triply compensated pulses in NMR spectroscopy
NASA Astrophysics Data System (ADS)
Manu, V. S.; Veglia, Gianluigi
2015-11-01
Sensitivity and resolution in NMR experiments are affected by magnetic field inhomogeneities (of both external and RF), errors in pulse calibration, and offset effects due to finite length of RF pulses. To remedy these problems, built-in compensation mechanisms for these experimental imperfections are often necessary. Here, we propose a new family of phase-modulated constant-amplitude broadband pulses with high compensation for RF inhomogeneity and heteronuclear coupling evolution. These pulses were optimized using a genetic algorithm (GA), which consists in a global optimization method inspired by Nature's evolutionary processes. The newly designed π and π / 2 pulses belong to the 'type A' (or general rotors) symmetric composite pulses. These GA-optimized pulses are relatively short compared to other general rotors and can be used for excitation and inversion, as well as refocusing pulses in spin-echo experiments. The performance of the GA-optimized pulses was assessed in Magic Angle Spinning (MAS) solid-state NMR experiments using a crystalline U-13C, 15N NAVL peptide as well as U-13C, 15N microcrystalline ubiquitin. GA optimization of NMR pulse sequences opens a window for improving current experiments and designing new robust pulse sequences.
Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves
NASA Astrophysics Data System (ADS)
Shinohara, Naoki; Hatano, Ken
2014-11-01
In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.
Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.
Xu, Longtao; Jin, Shilei; Li, Yifei
2016-04-18
We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator.
The Role Of Contact Force In Atrial Fibrillation Ablation.
Nakagawa, Hiroshi; Jackman, Warren M
2014-01-01
During radiofrequency (RF) ablation, low electrode-tissue contact force (CF) is associated with ineffective RF lesion formation, whereas excessive CF may increase the risk of steam pop and perforation. Recently, ablation catheters using two technologies have been developed to measure real-time catheter-tissue CF. One catheter uses three optical fibers to measure microdeformation of a deformable body in the catheter tip. The other catheter uses a small spring connecting the ablation tip electrode to the catheter shaft with a magnetic transmitter and sensors to measure microdeflection of the spring. Pre-clinical experimental studies have shown that 1) at constant RF power and application time, RF lesion size significantly increases with increasing CF; 2) the incidence of steam pop and thrombus also increase with increasing CF; 3) modulating RF power based on CF (i.e, high RF power at low CF and lower RF power at high CF) results in a similar and predictable RF lesion size. In clinical studies in patients undergoing pulmonary vein (PV) isolation, CF during mapping in the left atrium and PVs showed a wide range of CF and transient high CF. The most common high CF site was located at the anterior/rightward left atrial roof, directly beneath the ascending aorta. There was a poor relationship between CF and previously used surrogate parameters for CF (unipolar or bipolar atrial potential amplitude and impedance). Patients who underwent PV isolation with an average CF of <10 g experienced higher AF recurrence, whereas patients with ablation using an average CF of > 20g had lower AF recurrence. AF recurred within 12 months in 6 of 8 patients (75%) who had a mean Force-Time Integral (FTI, area under the curve for contact force vs. time) < 500 gs. In contrast, AF recurred in only 4 of 13 patients (21%) with ablation using a mean FTI >1000 gs. In another study, controlling RF power based on CF prevented steam pop and impedance rise without loss of lesion effectiveness. These studies confirm that CF is a major determinant of RF lesion size and future systems combining CF, RF power and application time may provide real-time assessment of lesion formation.
RF transmission line and drill/pipe string switching technology for down-hole telemetry
Clark, David D [Santa Fe, NM; Coates, Don M [Santa Fe, NM
2007-08-14
A modulated reflectance well telemetry apparatus having an electrically conductive pipe extending from above a surface to a point below the surface inside a casing. An electrical conductor is located at a position a distance from the electrically conductive pipe and extending from above the surface to a point below the surface. Modulated reflectance apparatus is located below the surface for modulating well data into a RF carrier transmitted from the surface and reflecting the modulated carrier back to the surface. A RF transceiver is located at the surface and is connected between the electrically conductive pipe and the electrical conductor for transmitting a RF signal that is confined between the electrically conductive well pipe and the electrical conductor to the modulated reflectance apparatus, and for receiving reflected data on the well from the modulated reflectance apparatus.
Lv, Bin; Chen, Zhiye; Wu, Tongning; Shao, Qing; Yan, Duo; Ma, Lin; Lu, Ke; Xie, Yi
2014-02-01
The motivation of this study is to evaluate the possible alteration of regional resting state brain activity induced by the acute radiofrequency electromagnetic field (RF-EMF) exposure (30min) of Long Term Evolution (LTE) signal. We designed a controllable near-field LTE RF-EMF exposure environment. Eighteen subjects participated in a double-blind, crossover, randomized and counterbalanced experiment including two sessions (real and sham exposure). The radiation source was close to the right ear. Then the resting state fMRI signals of human brain were collected before and after the exposure in both sessions. We measured the amplitude of low frequency fluctuation (ALFF) and fractional ALFF (fALFF) to characterize the spontaneous brain activity. We found the decreased ALFF value around in left superior temporal gyrus, left middle temporal gyrus, right superior temporal gyrus, right medial frontal gyrus and right paracentral lobule after the real exposure. And the decreased fALFF value was also detected in right medial frontal gyrus and right paracentral lobule. The study provided the evidences that 30min LTE RF-EMF exposure modulated the spontaneous low frequency fluctuations in some brain regions. With resting state fMRI, we found the alteration of spontaneous low frequency fluctuations induced by the acute LTE RF-EMF exposure. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Design of an MSAT-X mobile transceiver and related base and gateway stations
NASA Technical Reports Server (NTRS)
Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit
1987-01-01
This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.
Design of an MSAT-X mobile transceiver and related base and gateway stations
NASA Astrophysics Data System (ADS)
Fang, Russell J. F.; Bhaskar, Udaya; Hemmati, Farhad; Mackenthun, Kenneth M.; Shenoy, Ajit
This paper summarizes the results of a design study of the mobile transceiver, base station, and gateway station for NASA's proposed Mobile Satellite Experiment (MSAT-X). Major ground segment system design issues such as frequency stability control, modulation method, linear predictive coding vocoder algorithm, and error control technique are addressed. The modular and flexible transceiver design is described in detail, including the core, RF/IF, modem, vocoder, forward error correction codec, amplitude-companded single sideband, and input/output modules, as well as the flexible interface. Designs for a three-carrier base station and a 10-carrier gateway station are also discussed, including the interface with the controllers and with the public-switched telephone networks at the gateway station. Functional specifications are given for the transceiver, the base station, and the gateway station.
Lipping, Tarmo; Rorarius, Michael; Jäntti, Ville; Annala, Kari; Mennander, Ari; Ferenets, Rain; Toivonen, Tommi; Toivo, Tim; Värri, Alpo; Korpinen, Leena
2009-01-01
Background In this study, investigating the effects of mobile phone radiation on test animals, eleven pigs were anaesthetised to the level where burst-suppression pattern appears in the electroencephalogram (EEG). At this level of anaesthesia both human subjects and animals show high sensitivity to external stimuli which produce EEG bursts during suppression. The burst-suppression phenomenon represents a nonlinear control system, where low-amplitude EEG abruptly switches to very high amplitude bursts. This switching can be triggered by very minor stimuli and the phenomenon has been described as hypersensitivity. To test if also radio frequency (RF) stimulation can trigger this nonlinear control, the animals were exposed to pulse modulated signal of a GSM mobile phone at 890 MHz. In the first phase of the experiment electromagnetic field (EMF) stimulation was randomly switched on and off and the relation between EEG bursts and EMF stimulation onsets and endpoints were studied. In the second phase a continuous RF stimulation at 31 W/kg was applied for 10 minutes. The ECG, the EEG, and the subcutaneous temperature were recorded. Results No correlation between the exposure and the EEG burst occurrences was observed in phase I measurements. No significant changes were observed in the EEG activity of the pigs during phase II measurements although several EEG signal analysis methods were applied. The temperature measured subcutaneously from the pigs' head increased by 1.6°C and the heart rate by 14.2 bpm on the average during the 10 min exposure periods. Conclusion The hypothesis that RF radiation would produce sensory stimulation of somatosensory, auditory or visual system or directly affect the brain so as to produce EEG bursts during suppression was not confirmed. PMID:19615084
NASA Astrophysics Data System (ADS)
Chen, G. K. C.
1981-06-01
A nonlinear macromodel for the bipolar transistor integrated circuit operational amplifier is derived from the macromodel proposed by Boyle. The nonlinear macromodel contains only two nonlinear transistors in the input stage in a differential amplifier configuration. Parasitic capacitance effects are represented by capacitors placed at the collectors and emitters of the input transistors. The nonlinear macromodel is effective in predicting the second order intermodulation effect of operational amplifiers in a unity gain buffer amplifier configuration. The nonlinear analysis computer program NCAP is used for the analysis. Accurate prediction of demodulation of amplitude modulated RF signals with RF carrier frequencies in the 0.05 to 100 MHz range is achieved. The macromodel predicted results, presented in the form of second order nonlinear transfer function, come to within 6 dB of the full model predictions for the 741 type of operational amplifiers for values of the second order transfer function greater than -40 dB.
A review of ionospheric effects on Earth-space propagation
NASA Technical Reports Server (NTRS)
Klobuchar, J. A.
1984-01-01
A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.
Systems and Methods for Ejection of Ions from an Ion Trap
NASA Technical Reports Server (NTRS)
Cooks, Robert Graham (Inventor); Snyder, Dalton (Inventor)
2018-01-01
The invention generally relates to systems and methods for ejection of ions from an ion trap. In certain embodiments, systems and methods of the invention sum two different frequency signals into a single summed signal that is applied to an ion trap. In other embodiments, an amplitude of a single frequency signal is modulated as the single frequency signal is being applied to the ion trap. In other embodiments, a first alternating current (AC) signal is applied to an ion trap that varies as a function of time, while a constant radio frequency (RF) signal is applied to the ion trap.
47 CFR 95.607 - CB transmitter modification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmitting frequencies, increased modulation level, a different form of modulation, or increased TP (RF... modulating frequency, typically 0.1 seconds at maximum power) or peak envelope power (TP averaged during 1 RF cycle at the highest crest of the modulation envelope), as measured at the transmitter output antenna...
Li, Jing; Zhang, Miao; Chen, Lin; Cai, Congbo; Sun, Huijun; Cai, Shuhui
2015-06-01
We employ an amplitude-modulated chirp pulse to selectively excite spins in one or more regions of interest (ROIs) to realize reduced field-of-view (rFOV) imaging based on single-shot spatiotemporally encoded (SPEN) sequence and Fourier transform reconstruction. The proposed rFOV imaging method was theoretically analyzed and illustrated with numerical simulation and tested with phantom experiments and in vivo rat experiments. In addition, point spread function was applied to demonstrate the feasibility of the proposed method. To evaluate the proposed method, the rFOV results were compared with those obtained using the EPI method with orthogonal RF excitation. The simulation and experimental results show that the proposed method can image one or two separated ROIs along the SPEN dimension in a single shot with higher spatial resolution, less sensitive to field inhomogeneity, and practically no aliasing artifacts. In addition, the proposed method may produce rFOV images with comparable signal-to-noise ratio to the rFOV EPI images. The proposed method is promising for the applications under severe susceptibility heterogeneities and for imaging separate ROIs simultaneously. Copyright © 2015 Elsevier Inc. All rights reserved.
Loui, Hung; Brock, Billy C.
2016-10-25
The various embodiments presented herein relate to beam steering an array antenna by modifying intermediate frequency (IF) waveforms prior to conversion to RF signals. For each channel, a direct digital synthesis (DDS) component can be utilized to generate a waveform or modify amplitude, timing and phase of a waveform relative to another waveform, whereby the generation/modification can be performed prior to the IF input port of a mixer on each channel. A local oscillator (LO) signal can be utilized to commonly drive each of the mixers. After conversion at the RF output port of each of the mixers, each RF signal can be transmitted by a respective antenna element in the antenna array. Initiation of transmission of each RF signal can be performed simultaneously at each antenna. The process can be reversed during receive whereby timing, amplitude, and phase of the received can be modified digitally post ADC conversion.
Multi-level RF identification system
Steele, Kerry D.; Anderson, Gordon A.; Gilbert, Ronald W.
2004-07-20
A radio frequency identification system having a radio frequency transceiver for generating a continuous wave RF interrogation signal that impinges upon an RF identification tag. An oscillation circuit in the RF identification tag modulates the interrogation signal with a subcarrier of a predetermined frequency and modulates the frequency-modulated signal back to the transmitting interrogator. The interrogator recovers and analyzes the subcarrier signal and determines its frequency. The interrogator generates an output indicative of the frequency of the subcarrier frequency, thereby identifying the responding RFID tag as one of a "class" of RFID tags configured to respond with a subcarrier signal of a predetermined frequency.
Schmidtmann, Gunnar; Kingdom, Frederick A A
2017-05-01
Radial frequency (RF) patterns, which are sinusoidal modulations of a radius in polar coordinates, are commonly used to study shape perception. Previous studies have argued that the detection of RF patterns is either achieved globally by a specialized global shape mechanism, or locally using as cue the maximum tangent orientation difference between the RF pattern and the circle. Here we challenge both ideas and suggest instead a model that accounts not only for the detection of RF patterns but also for line frequency patterns (LF), i.e. contours sinusoidally modulated around a straight line. The model has two features. The first is that the detection of both RF and LF patterns is based on curvature differences along the contour. The second is that this curvature metric is subject to what we term the Curve Frequency Sensitivity Function, or CFSF, which is characterized by a flat followed by declining response to curvature as a function of modulation frequency, analogous to the modulation transfer function of the eye. The evidence that curvature forms the basis for detection is that at very low modulation frequencies (1-3 cycles for the RF pattern) there is a dramatic difference in thresholds between the RF and LF patterns, a difference however that disappears at medium and high modulation frequencies. The CFSF feature on the other hand explains why thresholds, rather than continuously declining with modulation frequency, asymptote at medium and high modulation frequencies. In summary, our analysis suggests that the detection of shape modulations is processed by a common curvature-sensitive mechanism that is subject to a shape-frequency-dependent transfer function. This mechanism is independent of whether the modulation is applied to a circle or a straight line. Copyright © 2017 Elsevier Ltd. All rights reserved.
System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications
NASA Technical Reports Server (NTRS)
Windyka, John A.; Zablocki, Ed G.
1997-01-01
This report documents the efforts and progress in developing a 'system-level' integrated circuit, or SLIC, for application in advanced phased array antenna systems. The SLIC combines radio-frequency (RF) microelectronics, digital and analog support circuitry, and photonic interfaces into a single micro-hybrid assembly. Together, these technologies provide not only the amplitude and phase control necessary for electronic beam steering in the phased array, but also add thermally-compensated automatic gain control, health and status feedback, bias regulation, and reduced interconnect complexity. All circuitry is integrated into a compact, multilayer structure configured for use as a two-by-four element phased array module, operating at 20 Gigahertz, using a Microwave High-Density Interconnect (MHDI) process. The resultant hardware is constructed without conventional wirebonds, maintains tight inter-element spacing, and leads toward low-cost mass production. The measured performances and development issues associated with both the two-by-four element module and the constituent elements are presented. Additionally, a section of the report describes alternative architectures and applications supported by the SLIC electronics. Test results show excellent yield and performance of RF circuitry and full automatic gain control for multiple, independent channels. Digital control function, while suffering from lower manufacturing yield, also proved successful.
Modulation of V1 Spike Response by Temporal Interval of Spatiotemporal Stimulus Sequence
Kim, Taekjun; Kim, HyungGoo R.; Kim, Kayeon; Lee, Choongkil
2012-01-01
The spike activity of single neurons of the primary visual cortex (V1) becomes more selective and reliable in response to wide-field natural scenes compared to smaller stimuli confined to the classical receptive field (RF). However, it is largely unknown what aspects of natural scenes increase the selectivity of V1 neurons. One hypothesis is that modulation by surround interaction is highly sensitive to small changes in spatiotemporal aspects of RF surround. Such a fine-tuned modulation would enable single neurons to hold information about spatiotemporal sequences of oriented stimuli, which extends the role of V1 neurons as a simple spatiotemporal filter confined to the RF. In the current study, we examined the hypothesis in the V1 of awake behaving monkeys, by testing whether the spike response of single V1 neurons is modulated by temporal interval of spatiotemporal stimulus sequence encompassing inside and outside the RF. We used two identical Gabor stimuli that were sequentially presented with a variable stimulus onset asynchrony (SOA): the preceding one (S1) outside the RF and the following one (S2) in the RF. This stimulus configuration enabled us to examine the spatiotemporal selectivity of response modulation from a focal surround region. Although S1 alone did not evoke spike responses, visual response to S2 was modulated for SOA in the range of tens of milliseconds. These results suggest that V1 neurons participate in processing spatiotemporal sequences of oriented stimuli extending outside the RF. PMID:23091631
DESIGN AND INSTRUMENTATION OF A POUND-WATKINS NUCLEAR MAGNETIC-RESONANCE SPECTROMETER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geiger, F.E. Jr.
Problems of instrumentation of a Pound-Watkins nuclear magnetic- resonance spectrometer were investigated. Experimertal data were collected for the sensitivity of the os cillator to a signal from a Watkins calibrator as a function of modulation frequencies from 30 cps to 5 kc and rf tank voltsges from 0.05 to 0.7v/sub rms/. The results confirm Watkins" oscillator theory. An expression was derived for the amount of frequency modulation of the rf oscillator by the Watkins calibrator. For representative values of rf circuit components, this frequency modulation is roughly 0.5 cps at 10 Mc. The rf sample probes constructed for this projectmore » are almost free of modulation pickup in modulation fields as high as 23.5 oersteds (280 cps) and a steady field of 7000 oersteds. (auth)« less
Ibrahim, Tamer S; Tang, Lin
2007-06-01
To study the dependence of radiofrequency (RF) power deposition on B(0) field strength for different loads and excitation mechanisms. Studies were performed utilizing a finite difference time domain (FDTD) model that treats the transmit array and the load as a single system. Since it was possible to achieve homogenous excitations across the human head model by varying the amplitudes/phases of the voltages driving the transmit array, studies of the RF power/B(0) field strength (frequency) dependence were achievable under well-defined/fixed/homogenous RF excitation. Analysis illustrating the regime in which the RF power is dependent on the square of the operating frequency is presented. Detailed studies focusing on the RF power requirements as a function of number of excitation ports, driving mechanism, and orientations/positioning within the load are presented. With variable phase/amplitude excitation, as a function of frequency, the peak-then-decrease relation observed in the upper axial slices of brain with quadrature excitation becomes more evident in the lower slices as well. Additionally, homogeneity optimization targeted at minimizing the ratio of maximum/minimum B(1) (+) field intensity within the region of interest, typically results in increased RF power requirements (standard deviation was not considered in this study). Increasing the number of excitation ports, however, can result in significant RF power reduction. (c) 2007 Wiley-Liss, Inc.
High efficiency low cost monolithic module for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Petersen, Wendell C.; Siu, Daniel P.
1992-01-01
The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.
Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.
Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J
2015-06-01
A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.
BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients
NASA Astrophysics Data System (ADS)
Xiao, Dan; Balcom, Bruce J.
2017-12-01
MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.
Laser modulator for LISA pathfinder
NASA Astrophysics Data System (ADS)
Voland, C.; Lund, G.; Coppoolse, W.; Crosby, P.; Stadler, M.; Kudielka, K.; Özkan, C.
2017-11-01
LISA Pathfinder is an ESA experiment to demonstrate the key technologies needed for the LISA mission to detect gravitational waves in space. The LISA Pathfinder spacecraft represents one arm of the LISA interferometer, containing an optical metrology system and two proof masses as inertial references for the drag-free control system. The LISA Pathfinder payload consists of two drag-free floating test masses located in the inertial sensors with their control electronics and an optical metrology subsystem. The optical metrology subsystem monitors the movement of both test masses relative to each other and to the spacecraft with very high sensitivity and resolution. This is achieved with a heterodyne Mach- Zehnder interferometer. This interferometer requires as input two coherent laser beams with a heterodyne frequency difference of a few kHz. To generate the two laser beams with a heterodyne frequency difference a Nd:YAG laser is used together with the Laser Modulator. The Nd:YAG laser generates a single coherent laser signal at a wavelength of 1064nm which is fibre coupled to the Laser Modulator. The Laser Modulator then generates the two optical beams with the required heterodyne frequency offset. In addition, the Laser Modulator is required to perform laser amplitude stabilization and optical path difference control for the two optical signals. The Laser Modulator consists of an optical unit - the LMU - and RF synthesiser, power amplification and control electronics. These electronics are all housed in the Laser Modulator Electronics (LME). The LMU has four primary functions: • Splitting of the input laser beam into two paths for later superposition in the interferometer. • Applying different frequency shifts to each of the beams. • Providing amplitude modulation control to each of the beams. • Providing active control of the optical path length difference between the two optical paths. The present paper describes the design and performance of the LMU together with a summary of the results of the Laser Modulator engineering model test campaign.
RF-SABRE: A Way to Continuous Spin Hyperpolarization at High Magnetic Fields.
Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L
2015-10-29
A new technique is developed that allows one to carry out the signal amplification by reversible exchange (SABRE) experiments at high magnetic field. SABRE is a hyperpolarization method, which utilizes transfer of spin order from para-hydrogen to the spins of a substrate in transient iridium complexes. Previously, it has been thought that such a transfer of spin order is only efficient at low magnetic fields, notably, at level anti-crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields under the action of a RF field. The high-field RF-SABRE experiment can be implemented using commercially available nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) machines and does not require technically demanding field-cycling. The achievable NMR enhancements are around 100 for several substrates as compared to their NMR signals at thermal equilibrium conditions at 4.7 T. The frequency dependence of RF-SABRE is comprised of well pronounced peaks and dips, whose position and amplitude are conditioned solely by the magnetic resonance parameters such as chemical shifts and scalar coupling of the spin system involved in the polarization transfer and by the amplitude of the RF field. Thus, the proposed method can serve as a new sensitive tool for probing transient complexes. Simulations of the dependence of magnetization transfer (i.e., NMR signal amplifications) on the frequency and amplitude of the RF field are in good agreement with the developed theoretical approach. Furthermore, the method enables continuous re-hyperpolarization of the SABRE substrate over a long period of time, giving a straightforward way to repetitive NMR experiments.
DETECTOR FOR MODULATED AND UNMODULATED SIGNALS
Patterson, H.H.; Webber, G.H.
1959-08-25
An r-f signal-detecting device is described, which is embodied in a compact coaxial circuit principally comprising a detecting crystal diode and a modulating crystal diode connected in parallel. Incoming modulated r-f signals are demodulated by the detecting crystal diode to furnish an audio input to an audio amplifier. The detecting diode will not, however, produce an audio signal from an unmodulated r-f signal. In order that unmodulated signals may be detected, such incoming signals have a locally produced audio signal superimposed on them at the modulating crystal diode and then the"induced or artificially modulated" signal is reflected toward the detecting diode which in the process of demodulation produces an audio signal for the audio amplifier.
Nonlinear optical modulation in a plasmonic Bi:YIG Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Firby, C. J.; Elezzabi, A. Y.
2017-02-01
In this work, we propose a magnetoplasmonic modulator for nonlinear radio-frequency (RF) modulation of an integrated optical signal. The modulator consists of a plasmonic Mach-Zehnder interferometer (MZI), constructed of the ferrimagnetic garnet, bismuth-substituted yttrium iron garnet (Bi:YIG). The transverse component of the Bi:YIG magnetization induces a nonreciprocal phase shift (NRPS) onto the guided optical mode, which can be actively modulated through external magnetic fields. In an MZI, the modulated phase shift in turn modulates the output optical intensity. Due to the highly nonlinear evolution of the Bi:YIG magnetization, we show that the spectrum of the output modulated intensity signal can contain harmonics of the driving RF field, frequency splitting around the driving frequency, down-conversion, or mixing of multiple RF signals. This device provides a unique mechanism of simultaneously generating a number of modulation frequencies within a single device.
Dalecki, Anna; Loughran, Sarah P; Verrender, Adam; Burdon, Catriona A; Taylor, Nigel A S; Croft, Rodney J
2018-05-01
To use improved methods to address the question of whether acute exposure to radio-frequency (RF) electromagnetic fields (RF-EMF) affects early (80-200 ms) sensory and later (180-600 ms) cognitive processes as indexed by event-related potentials (ERPs). Thirty-six healthy subjects completed a visual discrimination task during concurrent exposure to a Global System for Mobile Communications (GSM)-like, 920 MHz signal with peak-spatial specific absorption rate for 10 g of tissue of 0 W/kg of body mass (Sham), 1 W/kg (Low RF) and 2 W/kg (High RF). A fully randomised, counterbalanced, double-blind design was used. P1 amplitude was reduced (p = .02) and anterior N1 latency was increased (p = .04) during Exposure compared to Sham. There were no effects on any other ERP latencies or amplitudes. RF-EMF exposure may affect early perceptual (P1) and preparatory motor (anterior N1) processes. However, only two ERP indices, out of 56 comparisons, were observed to differ between RF-EMF exposure and Sham, suggesting that these observations may be due to chance. These observations are consistent with previous findings that RF-EMF exposure has no reliable impact on cognition (e.g., accuracy and response speed). Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Prentice, Boone M.; McLuckey, Scott A.
2012-04-01
Applying dipolar DC (DDC) to the end-cap electrodes of a 3-D ion trap operated with a bath gas at roughly 1 mTorr gives rise to `rf-heating' and can result in collision-induced dissociation (CID). This approach to ion trap CID differs from the conventional single-frequency resonance excitation approach in that it does not rely on tuning a supplementary frequency to coincide with the fundamental secular frequeny of the precursor ion of interest. Simulations using the program ITSIM 5.0 indicate that application of DDC physically displaces ions solely in the axial (inter end-cap) dimension whereupon ion acceleration occurs via power absorption from the drive rf. Experimental data shows that the degree of rf-heating in a stretched 3-D ion trap is not dependent solely on the ratio of the dipolar DC voltage/radio frequency (rf) amplitude, as a model based on a pure quadrupole field suggests. Rather, ion temperatures are shown to increase as the absolute values of the dipolar DC and rf amplitude both decrease. Simulations indicate that the presence of higher order multi-pole fields underlies this unexpected behavior. These findings have important implications for the use of DDC as a broad-band activation approach in multi-pole traps.
The 30-GHz monolithic receive module
NASA Technical Reports Server (NTRS)
Sokolov, V.; Geddes, J.; Bauhahn, P.
1983-01-01
Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.
Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation
Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.
2015-12-10
This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and themore » degree of particle dilution can be controlled by the rf parameters. As a result, the method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.« less
RF Photonic Technology in Optical Fiber Links
NASA Astrophysics Data System (ADS)
Chang, William S. C.
2007-06-01
List of contributors; Introduction and preface; 1. Figures of merit and performance analysis of photonic microwave links Charles Cox and William S. C. Chang; 2. RF subcarrier links in local access networks Xiaolin Lu; 3. Analog modulation of semiconductor lasers Joachim Piprek and John E. Bowers; 4. LiNbO3 external modulators and their use in high performance analog links Gary E. Betts; 5. Broadband traveling wave modulators in LiNbO3 Marta M. Howerton and William K. Burns; 6. Multiple quantum well electroabsorption modulators for RF photonic links William S. C. Chang; 7. Polymer modulators for RF photonics Timothy Van Eck; 8. Photodiodes for high performance analog links P. K. L. Yu and Ming C. Wu; 9. Opto-electronic oscillators X. Steve Yao; 10. Photonic link techniques for microwave frequency conversion Stephen A. Pappert, Roger Helkey and Ronald T. Logan Jr; 11. Antenna-coupled millimeter-wave electro-optical modulators William B. Bridges; 12. System design and performance of wideband photonic phased array antennas Greg L. Tangonan, Willie Ng, Daniel Yap and Ron Stephens; Acknowledgements; References; Index.
Phase-sensitive detection of acoustically stimulated electromagnetic response in steel
NASA Astrophysics Data System (ADS)
Yamada, Hisato; Yotsuji, Junichi; Ikushima, Kenji
2018-07-01
The signal amplitude and the phase of acoustically stimulated electromagnetic (ASEM) response have been investigated in steel. In the ASEM method, magnetization is temporally modulated with the radio frequency (rf) of irradiated ultrasonic waves through magnetomechanical coupling. The first-harmonic components of the induced rf dipolar magnetic fields are detected using a resonant loop antenna. The signal amplitude of ASEM waves is determined by the magnitude of local piezomagnetic coefficients on an acoustically excited spot. Here, we divided the ASEM waves into the “in-phase” and “quadrature” components by phase-sensitive detection (PSD). On the basis of the linear response theory, we provided the theoretical formalism of ASEM response by introducing local complex piezomagnetic coefficients, d loc = d‧ + id‧‧. We investigated the magnetic field (H) dependence of the individual components on the different surface conditions of steel plates. The in-phase component [∝ d‧(H)] shows a hysteresis loop on the machined surface of a steel plate, in which d‧(H) switches sign at two finite field values, ±H 0. The inversion of magnetization associated with the applied static fields is thus definitely observed in the PSD measurements. In addition, we measured the hysteresis behaviors on a steel surface with a thin mill scale (iron oxide layers). The hysteresis loop broadens and a significant contribution of the quadrature component [∝ d‧‧(H)] is found. We discuss the origin of the hysteresis behaviors of d‧ and d‧‧ using the Debye relaxation model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, D.; Bowring, D.; DeMello, A.
2012-05-20
Recent progress on the design and fabrication of the RFCC (RF and superconducting Coupling Coil) module for the international MICE (Muon Ionization Cooling Experiment) are reported. The MICE ionization cooling channel has two RFCC modules, each having four 201- MHz normal conducting RF cavities surrounded by one superconducting coupling coil (solenoid) magnet. The magnet is designed to be cooled by three cryocoolers. Fabrication of the RF cavities is complete; preparation for the cavity electro-polishing, low power RF measurements, and tuning are in progress at Lawrence Berkeley National Laboratory (LBNL). Fabrication of the cold mass of the first coupling coil magnetmore » has been completed in China and the cold mass arrived at LBNL in late 2011. Preparations for testing the cold mass are currently under way at Fermilab. Plans for the RFCC module assembly and integration are being developed and are described.« less
Female Drosophila melanogaster respond to song-amplitude modulations.
Brüggemeier, Birgit; Porter, Mason A; Vigoreaux, Jim O; Goodwin, Stephen F
2018-06-11
Males in numerous animal species use mating songs to attract females and intimidate competitors. We demonstrate that modulations in song amplitude are behaviourally relevant in the fruit fly Drosophila We show that D rosophila melanogaster females prefer amplitude modulations that are typical of melanogaster song over other modulations, which suggests that amplitude modulations are processed auditorily by D. melanogaster Our work demonstrates that receivers can decode messages in amplitude modulations, complementing the recent finding that male flies actively control song amplitude. To describe amplitude modulations, we propose the concept of song amplitude structure (SAS) and discuss similarities and differences to amplitude modulation with distance (AMD).This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
Nonlinear system analysis in bipolar integrated circuits
NASA Astrophysics Data System (ADS)
Fang, T. F.; Whalen, J. J.
1980-01-01
Since analog bipolar integrated circuits (IC's) have become important components in modern communication systems, the study of the Radio Frequency Interference (RFI) effects in bipolar IC amplifiers is an important subject for electromagnetic compatibility (EMC) engineering. The investigation has focused on using the nonlinear circuit analysis program (NCAP) to predict RF demodulation effects in broadband bipolar IC amplifiers. The audio frequency (AF) voltage at the IC amplifier output terminal caused by an amplitude modulated (AM) RF signal at the IC amplifier input terminal was calculated and compared to measured values. Two broadband IC amplifiers were investigated: (1) a cascode circuit using a CA3026 dual differential pair; (2) a unity gain voltage follower circuit using a micro A741 operational amplifier (op amp). Before using NCAP for RFI analysis, the model parameters for each bipolar junction transistor (BJT) in the integrated circuit were determined. Probe measurement techniques, manufacturer's data, and other researcher's data were used to obtain the required NCAP BJT model parameter values. An important contribution included in this effort is a complete set of NCAP BJT model parameters for most of the transistor types used in linear IC's.
Measuring particle charge in an rf dusty plasma
NASA Astrophysics Data System (ADS)
Fung, Jerome; Liu, Bin; Goree, John; Nosenko, Vladimir
2004-11-01
A dusty plasma is an ionized gas containing micron-size particles of solid matter. A particle gains a large negative charge by collecting electrons and ions from the plasma. In a gas discharge, particles can be levitated by the sheath electric field above a horizontal planar electrode. Most dusty plasma experiments require a knowledge of the particle charge, which is a key parameter for all interactions with other particles and the plasma electric field. Several methods have been developed in the literature to measure the charge. The vertical resonance method uses Langmuir probe measurements of the ion density and video camera measurements of the amplitude of vertical particle oscillations, which are excited by modulating the rf voltage. Here, we report a new method that is a variation of the vertical resonance method. It uses the plasma potential and particle height, which can be measured more accurately than the ion density. We tested this method and compared the resulting charge to values obtained using the original resonance method as well as sound speed methods. Work supported by an NSF REU grant, NASA and DOE.
NASA Astrophysics Data System (ADS)
Bito, Jo; Bahr, Ryan; Hester, Jimmy; Kimionis, John; Nauroze, Abdullah; Su, Wenjing; Tehrani, Bijan; Tentzeris, Manos M.
2017-05-01
In this paper, numerous inkjet-/3D-/4D-printed wearable flexible antennas, RF electronics, modules and sensors fabricated on paper and other polymer (e.g. LCP) substrates are introduced as a system-level solution for ultra-low-cost mass production of autonomous Biomonitoring, Positioning and Sensing applications. This paper briefly discusses the state-of-the-art area of fully-integrated wearable wireless sensor modules on paper or flexible LCP and show the first ever 4D sensor module integration on paper, as well as numerous 3D and 4D multilayer paper-based and LCP-based RF/microwave, flexible and wearable structures, that could potentially set the foundation for the truly convergent wireless sensor ad-hoc "on-body networks of the future with enhanced cognitive intelligence and "rugged" packaging. Also, some challenges concerning the power sources of "nearperpetual" wearable RF modules, including flexible miniaturized batteries as well as power-scavenging approaches involving electromagnetic and solar energy forms are discuessed. The final step of the paper will involve examples from mmW wearable (e.g. biomonitoring) antennas and RF modules, as well as the first examples of the integration of inkjet-printed nanotechnology-based (e.g.CNT) sensors on paper and organic substrates for Internet of Things (IoT) applications. It has to be noted that the paper will review and present challenges for inkjetprinted organic active and nonlinear devices as well as future directions in the area of environmentally-friendly "green") wearable RF electronics and "smart-skin conformal sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Youngdo, E-mail: Ydjoo77@postech.ac.kr; Yu, Inha; Park, Insoo
After three years of upgrading work, the Pohang Light Source-II (PLS-II) is now successfully operating. The final quantitative goal of PLS-II is a top-up user-service operation with beam current of 400 mA to be completed by the end of 2014. During the beam store test up to 400 mA in the storage ring (SR), it was observed that the vacuum pressure around the radio frequency (RF) window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. Although available beam current is enhanced by setting a higher RF accelerating voltage, it is bettermore » to keep the RF accelerating voltage as low as possible in the long time top-up operation. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. In our simulation, an equivalent physical modeling was developed using a finite-difference time-domain code. The simulation revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window, which comes with the rapid increase of window vacuum pressure. The RF accelerating voltage of PLS-II RF system was set to 4.95 MV, which was estimated using the maximum available beam current that works as a function of RF voltage, and the top-up operation test with the beam current of 400 mA was successfully carried out.« less
47 CFR 73.14 - AM broadcast definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in which the carrier wave is modulated in accordance with the system of amplitude modulation and the characteristics of the modulating wave. Amplitude modulator stage. The last amplifier stage of the modulating wave... amplitude of the carrier wave in an amplitude-modulated transmitter when modulation is applied under...
47 CFR 73.14 - AM broadcast definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in which the carrier wave is modulated in accordance with the system of amplitude modulation and the characteristics of the modulating wave. Amplitude modulator stage. The last amplifier stage of the modulating wave... amplitude of the carrier wave in an amplitude-modulated transmitter when modulation is applied under...
47 CFR 73.14 - AM broadcast definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in which the carrier wave is modulated in accordance with the system of amplitude modulation and the characteristics of the modulating wave. Amplitude modulator stage. The last amplifier stage of the modulating wave... amplitude of the carrier wave in an amplitude-modulated transmitter when modulation is applied under...
Rotating field mass and velocity analyzer
NASA Technical Reports Server (NTRS)
Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)
1998-01-01
A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.
Identification coding schemes for modulated reflectance systems
Coates, Don M [Santa Fe, NM; Briles, Scott D [Los Alamos, NM; Neagley, Daniel L [Albuquerque, NM; Platts, David [Santa Fe, NM; Clark, David D [Santa Fe, NM
2006-08-22
An identifying coding apparatus employing modulated reflectance technology involving a base station emitting a RF signal, with a tag, located remotely from the base station, and containing at least one antenna and predetermined other passive circuit components, receiving the RF signal and reflecting back to the base station a modulated signal indicative of characteristics related to the tag.
Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; College of Science, Donghua University, Shanghai 201620; Guo, Ying
The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant ofmore » pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.« less
Dowla, Farid U; Nekoogar, Faranak
2015-03-03
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications according to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowla, Farid; Nekoogar, Faranak
A method for adaptive Radio Frequency (RF) jamming according to one embodiment includes dynamically monitoring a RF spectrum; detecting any undesired signals in real time from the RF spectrum; and sending a directional countermeasure signal to jam the undesired signals. A method for adaptive Radio Frequency (RF) communications according to another embodiment includes transmitting a data pulse in a RF spectrum; and transmitting a reference pulse separated by a predetermined period of time from the data pulse; wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated. A method for adaptive Radio Frequency (RF) communications accordingmore » to yet another embodiment includes receiving a data pulse in a RF spectrum; and receiving a reference pulse separated in time from the data pulse, wherein the data pulse is modulated with data, wherein the reference pulse is unmodulated; and demodulating the pulses.« less
NASA Astrophysics Data System (ADS)
Harris, J. R.; Miller, R. B.
2018-02-01
The generation and evolution of modulated particle beams and their interactions with resonant radiofrequency (RF) structures are of fundamental interest for both particle accelerator and vacuum electronic systems. When the constraint of propagation in a vacuum is removed, the evolution of such beams can be greatly affected by interactions with matter including scattering, absorption, generation of atmospheric plasma, and the production of multiple generations of secondary particles. Here, we study the propagation of 21 MeV and 25 MeV electron beams produced in S-band and L-band linear accelerators, and their interaction with resonant RF structures, under a number of combinations of geometry, including transmission through both air and metal. Both resonant and nonresonant interactions were observed, with the resonant interactions indicating that the RF modulation on the electron beam is at least partially preserved as the beam propagates through air and metal. When significant thicknesses of metal are placed upstream of a resonant structure, preventing any primary beam electrons from reaching the structure, RF signals could still be induced in the structures. This indicated that the RF modulation present on the electron beam was also impressed onto the x-rays generated when the primary electrons were stopped in the metal, and that this RF modulation was also present on the secondary electrons generated when the x-rays struck the resonant structures. The nature of these interactions and their sensitivities to changes in system configurations will be discussed.
Zhang, Fangzheng; Pan, Shilong
2013-11-04
A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.
Barbaro, V; Bartolini, P; Calcagnini, G; Censi, F; Beard, B; Ruggera, P; Witters, D
2003-06-07
The aim of this study was to investigate the mechanisms by which the radiated radiofrequency (RF) GSM (global system for mobile communication) signal may affect pacemaker (PM) function. We measured the signal at the output of the sensing amplifier of PMs with various configurations of low-pass filters. We used three versions of the same PM model: one with a block capacitor which short circuits high-frequency signals; one with a ceramic feedthrough capacitor, a hermetically sealed mechanism connecting the internal electronics to the external connection block, and one with both. The PMs had been modified to have an electrical shielded connection to the output of the sensing amplifier. For each PM, the output of the sensing amplifier was monitored under exposure to modulated and non-modulated RF signals, and to GSM signals (900 and 1800 MHz). Non-modulated RF signals did not alter the response of the PM sensing amplifier. Modulated RF signals showed that the block capacitor did not succeed in short circuiting the RF signal, which is somehow demodulated by the PM internal non-linear circuit elements. Such a demodulation phenomenon poses a critical problem because digital cellular phones use extremely low-frequency modulation (as low as 2 Hz). which can be mistaken for normal heartbeat.
NASA Astrophysics Data System (ADS)
Hwang, Yuh-Jing; Rao, Ramprasad; Christensen, Rob; Chen, Ming-Tang; Chu, Tah-Hsiung
2007-06-01
A near-field phasor beam measurement system is developed for the characterization of heterodyne receiver optics at submillimeter-wave frequencies. The system synthesizes a pair of submillimeter-wave signals as the RF and local oscillator (LO) sources from common reference sources. The synthesized harmonic numbers of the RF and LO sources are arranged with difference by one, which makes this a new configuration with a unitary harmonic difference. The coherent RF and LO signal are down-converted by the receiver under test, then mixed with the microwave-frequency common reference signal to generate the second-order IF signal around 100 MHz for amplitude and phase comparison. The amplitude and phase fluctuation of the measurement system at 683 GHz is within +-0.2 dB and +-4deg in a 1-h period, respectively. The system dynamic range at 683 and 250 GHz can be as high as 43 and 47 dB, respectively. The system is then used to measure the receiver beam patterns at 683 and 250 GHz with different RF transmitting probe antennas.
Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications
NASA Astrophysics Data System (ADS)
Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira
2017-03-01
This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.
Esmekaya, Meric Arda; Aytekin, Ebru; Ozgur, Elcin; Güler, Göknur; Ergun, Mehmet Ali; Omeroğlu, Suna; Seyhan, Nesrin
2011-12-01
The mutagenic and morphologic effects of 1.8GHz Global System for Mobile Communications (GSM) modulated RF (radiofrequency) radiation alone and in combination with Ginkgo biloba (EGb 761) pre-treatment in human peripheral blood lymphocytes (hPBLs) were investigated in this study using Sister Chromatid Exchange (SCE) and electron microscopy. Cell viability was assessed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction assay. The lymphocyte cultures were exposed to GSM modulated RF radiation at 1.8GHz for 6, 8, 24 and 48h with and without EGb 761. We observed morphological changes in pulse-modulated RF radiated lymphocytes. Longer exposure periods led to destruction of organelle and nucleus structures. Chromatin change and the loss of mitochondrial crista occurred in cells exposed to RF for 8h and 24h and were more pronounced in cells exposed for 48h. Cytoplasmic lysis and destruction of membrane integrity of cells and nuclei were also seen in 48h RF exposed cells. There was a significant increase (p<0.05) in SCE frequency in RF exposed lymphocytes compared to sham controls. EGb 761 pre-treatment significantly decreased SCE from RF radiation. RF radiation also inhibited cell viability in a time dependent manner. The inhibitory effects of RF radiation on the growth of lymphoctes were marked in longer exposure periods. EGb 761 pre-treatment significantly increased cell viability in RF+EGb 761 treated groups at 8 and 24h when compared to RF exposed groups alone. The results of our study showed that RF radiation affects cell morphology, increases SCE and inhibits cell proliferation. However, EGb 761 has a protective role against RF induced mutagenity. We concluded that RF radiation induces chromosomal damage in hPBLs but this damage may be reduced by EGb 761 pre-treatment. Copyright © 2011 Elsevier B.V. All rights reserved.
Hinakura, Yosuke; Terada, Yosuke; Arai, Hiroyuki; Baba, Toshihiko
2018-04-30
We demonstrate a Si photonic crystal waveguide Mach-Zehnder modulator that incorporates meander-line electrodes to compensate for the phase mismatch between slow light and RF signals. We first employed commonized ground electrodes in the modulator to suppress undesired fluctuations in the electro-optic (EO) response due to coupled slot-line modes of RF signals. Then, we theoretically and experimentally investigated the effect of the phase mismatch on the EO response. We confirmed that meander-line electrodes improve the EO response, particularly in the absence of internal reflection of the RF signals. The cut-off frequency of this device can reach 27 GHz, which allows high-speed modulation up to 50 Gbps.
NASA Astrophysics Data System (ADS)
Hughes, Nikki J.
The optimal combination of Whole body vibration (WBV) amplitude and frequency has not been established. Purpose. To determine optimal combination of WBV amplitude and frequency that will enhance acute mean and peak power (MP and PP) output EMG activity in the lower extremity muscles. Methods. Resistance trained males (n = 13) completed the following testing sessions: On day 1, power spectrum testing of bilateral leg press (BLP) movement was performed on the OMNI. Days 2 and 3 consisted of WBV testing with either average (5.8 mm) or high (9.8 mm) amplitude combined with either 0 (sham control), 10, 20, 30, 40 and 50 Hz frequency. Bipolar surface electrodes were placed on the rectus femoris (RF), vastus lateralis (VL), bicep femoris (BF) and gastrocnemius (GA) muscles for EMG analysis. MP and PP output and EMG activity of the lower extremity were assessed pre-, post-WBV treatments and after sham-controls on the OMNI while participants performed one set of five repetitions of BLP at the optimal resistance determined on Day 1. Results. No significant differences were found between pre- and sham-control on MP and PP output and on EMG activity in RF, VL, BF and GA. Completely randomized one-way ANOVA with repeated measures demonstrated no significant interaction of WBV amplitude and frequency on MP and PP output and peak and mean EMGrms amplitude and EMG rms area under the curve. RF and VL EMGrms area under the curve significantly decreased (p < 0.05) with high WBV amplitude, whereas low amplitude significantly decreased GA mean and peak EMGrms amplitude and EMGrms area under the curve. VL mean EMGrms amplitude and BF mean and peak EMGrms amplitudes were significantly decreased (p < 0.05) with high WBV amplitude when compared to sham-control. WBV frequency significantly decreased (p < 0.05) VL mean and peak EMGrms amplitude. WBV frequency at 30 and 40 Hz significantly decreased (p < 0.05) GA mean EMGrms amplitude and 20 and 30 Hz significantly decreased GA peak EMGrms amplitude. MP and PP output was not significantly effected by either treatment. Conclusions. It is concluded that WBV combined with plyometric exercise does not induce alterations in subsequent MP and PP output and EMGrms activity of the lower extremity. Future studies need to address the time of WBV exposure and magnitude of external loads that will maximize strength and/or power output.
NASA Astrophysics Data System (ADS)
Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-11-01
Optical fibre communication technologies are playing important roles in data centre networks (DCNs). Techniques for increasing capacity and flexibility for the inter-rack/pod communications in data centres have drawn remarkable attention in recent years. In this work, we propose a low complexity, reliable, alternative technique for increasing DCN capacity and flexibility through multi-signal modulation onto a single mode VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated on a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by modulating its phase attribute with a 2 GHz reference frequency (RF) clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a phase modulated 2 GHz RF signal using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time a single mode 10 GHz bandwidth VCSEL carrier is reported to simultaneously transmit a directly modulated 4-PAM data signal and a phase modulated RF clock signal. A receiver sensitivity of -10. 52 dBm was attained for a 20 Gbps 4-PAM VCSEL transmission. The 2 GHz phase modulated RF clock signal introduced a power budget penalty of 0.21 dB. Simultaneous distribution of both data and timing signals over shared infrastructure significantly increases the aggregated data rate at different optical network units within the DCN, without expensive optics investment. We further demonstrate on the design of a software-defined digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware.
Precursor and Neutral Loss Scans in an RF Scanning Linear Quadrupole Ion Trap
NASA Astrophysics Data System (ADS)
Snyder, Dalton T.; Szalwinski, Lucas J.; Schrader, Robert L.; Pirro, Valentina; Hilger, Ryan; Cooks, R. Graham
2018-03-01
Methodology for performing precursor and neutral loss scans in an RF scanning linear quadrupole ion trap is described and compared to the unconventional ac frequency scan technique. In the RF scanning variant, precursor ions are mass selectively excited by a fixed frequency resonance excitation signal at low Mathieu q while the RF amplitude is ramped linearly to pass ions through the point of excitation such that the excited ion's m/z varies linearly with time. Ironically, a nonlinear ac frequency scan is still required for ejection of the product ions since their frequencies vary nonlinearly with the linearly varying RF amplitude. In the case of the precursor scan, the ejection frequency must be scanned so that it is fixed on a product ion m/z throughout the RF scan, whereas in the neutral loss scan, it must be scanned to maintain a constant mass offset from the excited precursor ions. Both simultaneous and sequential permutation scans are possible; only the former are demonstrated here. The scans described are performed on a variety of samples using different ionization sources: protonated amphetamine ions generated by nanoelectrospray ionization (nESI), explosives ionized by low-temperature plasma (LTP), and chemical warfare agent simulants sampled from a surface and analyzed with swab touch spray (TS). We lastly conclude that the ac frequency scan variant of these MS/MS scans is preferred due to electronic simplicity. In an accompanying manuscript, we thus describe the implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 using constant RF voltage. [Figure not available: see fulltext.
Feed-forward digital phase and amplitude correction system
Yu, D.U.L.; Conway, P.H.
1994-11-15
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.
Feed-forward digital phase and amplitude correction system
Yu, David U. L.; Conway, Patrick H.
1994-01-01
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.
NASA Astrophysics Data System (ADS)
Kondoh, Takafumi; Kashima, Hiroaki; Yang, Jinfeng; Yoshida, Yoichi; Tagawa, Seiichi
2008-10-01
In intensity-modulated radiation therapy (IMRT), the aim is to deliver reduced doses of radiation to normal tissue. As a step toward IMRT, we examined dynamic optical modulation of an electron beam produced by a photocathode RF gun. Images on photomasks were transferred onto a photocathode by relay imaging. The resulting beam was controlled by a remote mirror. The modulated electron beam maintained its shape on acceleration, had a fine spatial resolution, and could be moved dynamically by optical methods.
A New First-Principles Calculation of Field-Dependent RF Surface Impedance of BCS Superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Binping; Reece, Charles E.
2014-02-01
There is a need to understand the intrinsic limit of radiofrequency (RF) surface impedance that determines the performance of superconducting RF cavities in particle accelerators. Here we present a field-dependent derivation of Mattis-Bardeen theory of the RF surface impedance of BCS superconductors based on the shifted density of states resulting from coherently moving Cooper pairs. Our theoretical prediction of the effective BCS RF surface resistance (Rs) of niobium as a function of peak surface magnetic field amplitude agrees well with recently reported record low loss resonant cavity measurements from JLab and FNAL with carefully, yet differently, prepared niobium material. Themore » surprising reduction in resistance with increasing field is explained to be an intrinsic effect.« less
Magnetoplasmonic RF mixing and nonlinear frequency generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.
2016-07-04
We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less
Wide-band analog frequency modulation of optic signals using indirect techniques
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.
1991-01-01
The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.
Capmany, José; Pastor, Daniel; Martinez, Alfonso; Ortega, Beatriz; Sales, Salvador
2003-08-15
We report on a novel technical approach to the implementation of photonic rf filters that is based on the pi phase inversion that a rf modulating signal suffers in an electro-optic Mach-Zehnder modulator, which depends on whether the positive or the negative linear slope of the signal's modulation transfer function is employed. Experimental evidence is provided of the implementation of filters with negative coefficients that shows excellent agreement with results predicted by the theory.
A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques
NASA Astrophysics Data System (ADS)
Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.
1998-05-01
A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.
Binding and release of brain calcium by low-level electromagnetic fields: A review
NASA Astrophysics Data System (ADS)
Adey, W. R.; Bawin, S. M.
Evidence has accumulated that sensitivity of brain tissue to specific weak oscillating electromagnetic fields occurs in the absence of significant tissue heating (less than 0.1°C). This review focuses on the ‘windowed’ character of sensitivities of calcium binding and electrical activity in brain tissue to low-frequency modulation and intensity characteristics of impressed RF fields. ELF fields decrease calcium efflux from isolated chick and cat cerebral tissue by about 15% only in narrow amplitude and frequency ‘windows,’ between 6 and 20 Hz and between 10 and 100 V/m (approximate tissue gradient, 10-7 V/cm). VHF (147 MHz) and UHF (450 MHz) fields increase calcium efflux from isolated chick brain by about 15% when amplitude modulated between 6 and 20 Hz, but only for incident fields in the vicinity of 1.0 mW/cm2. We have now shown that this increased efflux in response to 16-Hz amplitude-modulated 450-MHz, 0.75-mW/cm2 field exposure is insensitive to variations in calcium concentration from 0 to 4.16 mM in the testing solution but is enhanced by addition of hydrogen ions (0.108 mM 0.1 N HCl) and inhibited in the absence of normal bicarbonate ion levels (2.4 mM). In the presence of lanthanum ions (2.0 mM), which block transmembrane movement of calcium, exposure to these EM fields decreases the 45Ca2 + efflux. Low-frequency gradients may be transduced in a specific class of extracellular binding sites, normally occupied by calcium ions and susceptible to competitive hydrogen ion binding. Transductive coupling may involve coherent charge states between anionic sites on membrane surface glycoproteins, with longrange cooperative interactions triggered by weak extracellular electric fields. Proton ‘tunneling’ may occur at boundaries between coherent and noncoherent charge zones.
Acousto-optic modulation and opto-acoustic gating in piezo-optomechanical circuits
Balram, Krishna C.; Davanço, Marcelo I.; Ilic, B. Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik
2017-01-01
Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modelled through the coupled mode equations of cavity optomechanics. PMID:28580373
Strong Recurrent Networks Compute the Orientation-Tuning of Surround Modulation in Primate V1
Shushruth, S.; Mangapathy, Pradeep; Ichida, Jennifer M.; Bressloff, Paul C.; Schwabe, Lars; Angelucci, Alessandra
2012-01-01
In macaque primary visual cortex (V1) neuronal responses to stimuli inside the receptive field (RF) are modulated by stimuli in the RF surround. This modulation is orientation-specific. Previous studies suggested that for some cells this specificity may not be fixed, but changes with the stimulus orientation presented to the RF. We demonstrate, in recording studies, that this tuning behavior is instead highly prevalent in V1 and, in theoretical work, that it arises only if V1 operates in a regime of strong local recurrence. Strongest surround suppression occurs when the stimuli in the RF and the surround are iso-oriented, and strongest facilitation when the stimuli are cross-oriented. This is the case even when the RF is sub-optimally activated by a stimulus of non-preferred orientation, but only if this stimulus can activate the cell when presented alone. This tuning behavior emerges from the interaction of lateral inhibition (via the surround pathways), which is tuned to the RF’s preferred orientation, with weakly-tuned, but strong, local recurrent connections, causing maximal withdrawal of recurrent excitation at the feedforward input orientation. Thus, horizontal and feedback modulation of strong recurrent circuits allows the tuning of contextual effects to change with changing feedforward inputs. PMID:22219292
Equbal, Asif; Paul, Subhradip; Mithu, Venus Singh; Madhu, P K; Nielsen, Niels Chr
2014-09-01
We present new non-rotor-synchronized variants of the recently introduced refocused continuous wave (rCW) heteronuclear decoupling method significantly improving the performance relative to the original rotor-synchronized variants. Under non-rotor-synchronized conditions the rCW decoupling sequences provide more efficient decoupling, are easier to setup, and prove more robust towards experimental parameters such as radio frequency (rf) field amplitude and spinning frequency. This is demonstrated through numerical simulations substantiated with experimental results under different sample spinning and rf field amplitude conditions for powder samples of U-(13)C-glycine and U-(13)C-L-histidine·HCl·H2O. Copyright © 2014 Elsevier Inc. All rights reserved.
Reticular Formation and Pain: The Past and the Future
Martins, Isabel; Tavares, Isaura
2017-01-01
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the “dynamic pain connectome” with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain. PMID:28725185
Reticular Formation and Pain: The Past and the Future.
Martins, Isabel; Tavares, Isaura
2017-01-01
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the "dynamic pain connectome" with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain.
Baseband pulse shaping techniques for nonlinearly amplified pi/4-QPSK and QAM systems
NASA Technical Reports Server (NTRS)
Feher, Kamilo
1991-01-01
A new generation of multi-stage pi/4-shifted QPSK and of superposed quadrature-amplitude-modulated (SQAM) modulators-coherent demodulators (modems) and of continuous phase modulated (CPM)-gaussian premodulation filtered minimum-shift-keying (MGMSK) systems is proposed and studied. These modems will lead to bandwidth and power efficient satellite communications systems designs. As an illustrative application, a baseband processing technique pi/4-controlled transition PSK (pi/4-CTPSK) is described. To develop a cost and power efficient design strategy, we assume that nonlinear, fully saturated high power amplifiers (HPA) are utilized in the satellite earth station transmitter and in the satellite transponder. Modem structures which could lead to application specific integrated circuit (ASIC) satellite on-board processing universal modem applications are also considered. Multistate GMSK (i.e., MGMSK) signal generation methods by means of two or more RF combined nonlinearly amplified SQAM modems and by one multistate (in-phase and quadrature-baseband premodulation filtered-superposed) SQAM architecture and one RF nonlinear amplifier are studied. During the SQAM modem development phase we investigate the potential system advantages of the pi/4-shifted logic. The bandwidth efficiency of the proposed multistate GMSK and baseband filtered PAM-FM modulator (a new class in the CPM family) will be significantly higher than that of conventional G-MSK systems. To optimize the practical P(sub e) = f((E sub b)/(N sub o)) performance we consider improved coherent demodulation MGMSK structures such as deviated-frequency locking coherent demodulators. For relative low bit rate SATCOM applications, e.g., bit rates less than 300 kb/s, phase noise tracking cancellation (for fixed site earth station) and phase noise cancellation as well as Doppler compensation (for satellite to mobile earth station) applications may be required. We study digital channel sounding methods which could cancel the phase noise-caused degradations of CPM and GMSK modems.
Integrated optical modulator for signal up-conversion over radio-on-fiber link.
Kim, Woo-Kyung; Kwon, Soon-Woo; Jeong, Woo-Jin; Son, Geun-Sik; Lee, Kwang-Hyun; Choi, Woo-Young; Yang, Woo-Seok; Lee, Hyung-Man; Lee, Han-Young
2009-02-16
An integrated optical modulator, which consists of a dual-sideband suppressed carrier (DSB-SC) modulator cascaded with a single-sideband (SSB) modulator, is proposed for signal up-conversion over Radio-on-Fiber. Utilizing a single-drive domain inverted structure in both modulators, balanced modulations were obtained without complicated radio frequency (RF) driving circuits and delicate RF phase adjustments. Intermediate frequency (IF) band signal was up-conversed to 60GHz band by using the fabricated device and was transmitted over optical fiber. Experiment results show that the proposed device enables millimeter wave generation and signal transmission without any power penalty caused by chromatic dispersion.
P-code enhanced method for processing encrypted GPS signals without knowledge of the encryption code
NASA Technical Reports Server (NTRS)
Young, Lawrence E. (Inventor); Meehan, Thomas K. (Inventor); Thomas, Jr., Jess Brooks (Inventor)
2000-01-01
In the preferred embodiment, an encrypted GPS signal is down-converted from RF to baseband to generate two quadrature components for each RF signal (L1 and L2). Separately and independently for each RF signal and each quadrature component, the four down-converted signals are counter-rotated with a respective model phase, correlated with a respective model P code, and then successively summed and dumped over presum intervals substantially coincident with chips of the respective encryption code. Without knowledge of the encryption-code signs, the effect of encryption-code sign flips is then substantially reduced by selected combinations of the resulting presums between associated quadrature components for each RF signal, separately and independently for the L1 and L2 signals. The resulting combined presums are then summed and dumped over longer intervals and further processed to extract amplitude, phase and delay for each RF signal. Precision of the resulting phase and delay values is approximately four times better than that obtained from straight cross-correlation of L1 and L2. This improved method provides the following options: separate and independent tracking of the L1-Y and L2-Y channels; separate and independent measurement of amplitude, phase and delay L1-Y channel; and removal of the half-cycle ambiguity in L1-Y and L2-Y carrier phase.
Involuntary human hand movements due to FM radio waves in a moving van.
Huttunen, P; Savinainen, A; Hänninen, Osmo; Myllylä, R
2011-06-01
Finland TRACT Involuntary movements of hands in a moving van on a public road were studied to clarify the possible role of frequency modulated radio waves on driving. The signals were measured in a direct 2 km test segment of an international road during repeated drives to both directions. Test subjects (n=4) had an ability to sense radio frequency field intensity variations of the environment. They were sitting in a minivan with arm movement detectors in their hands. A potentiometer was used to register the hand movements to a computer which simultaneously collected data on the amplitude of the RF signal of the local FM tower 30 km distance at a frequency of about 100 MHz. Involuntary hand movements of the test subjects correlated with electromagnetic field, i.e. FM radio wave intensity measured. They reacted also on the place of a geomagnetic anomaly crossing the road, which was found on the basis of these recordings and confirmed by the public geological maps of the area.In conclusion, RF irradiation seems to affect the human hand reflexes of sensitive persons in a moving van along a normal public road which may have significance in traffic safety.
A single-channel implantable microstimulator for functional neuromuscular stimulation.
Ziaie, B; Nardin, M D; Coghlan, A R; Najafi, K
1997-10-01
This paper describes a single-channel implantable microstimulator for functional neuromuscular stimulation. This device measures 2 x 2 x 10 mm3 and can be inserted into paralyzed muscle groups by expulsion from a hypodermic needle. Power and data to the device are supplied from outside by RF telemetry using an amplitude-modulated 2-MHz RF carrier generated using a high-efficiency class-E transmitter. The transmitted signal carries a 5-b address which selects one of the 32 possible microstimulators. The selected device then delivers up to 2 microC of charge store in a tantalum chip capacitor for up to 200 microseconds (10 mA) into loads of < 800 omega through a high-current thin-film iridium-oxide (IrOx) electrode (approximately 0.3 mm2 in area). A bi-CMOS receiver circuitry is used to: generate two regulated voltage supplies (4.5 and 9 V), recover a 2-MHz clock from the carrier, demodulate the address code, and activate the output current delivery circuitry upon the reception of an external command. The overall power dissipation of the receiver circuitry is 45-55 mW. The implant is hermetically packaged using a custom-made glass capsule.
The 2D analytic signal for envelope detection and feature extraction on ultrasound images.
Wachinger, Christian; Klein, Tassilo; Navab, Nassir
2012-08-01
The fundamental property of the analytic signal is the split of identity, meaning the separation of qualitative and quantitative information in form of the local phase and the local amplitude, respectively. Especially the structural representation, independent of brightness and contrast, of the local phase is interesting for numerous image processing tasks. Recently, the extension of the analytic signal from 1D to 2D, covering also intrinsic 2D structures, was proposed. We show the advantages of this improved concept on ultrasound RF and B-mode images. Precisely, we use the 2D analytic signal for the envelope detection of RF data. This leads to advantages for the extraction of the information-bearing signal from the modulated carrier wave. We illustrate this, first, by visual assessment of the images, and second, by performing goodness-of-fit tests to a Nakagami distribution, indicating a clear improvement of statistical properties. The evaluation is performed for multiple window sizes and parameter estimation techniques. Finally, we show that the 2D analytic signal allows for an improved estimation of local features on B-mode images. Copyright © 2012 Elsevier B.V. All rights reserved.
Exchange-Induced Relaxation in the Presence of a Fictitious Field
Sorce, Dennis J.; Mangia, Silvia; Liimatainen, Timo; Garwood, Michael; Michaeli, Shalom
2014-01-01
In the present study we derive a solution for two site fast exchange-induced relaxation in the presence of a fictitious magnetic field as generated by amplitude and frequency modulated RF pulses. This solution provides a means to analyze data obtained from relaxation experiments with the method called RAFFn (Relaxation Along a Fictitious Field of rank n), in which a fictitious field is created in a coordinate frame undergoing multi-fold rotation about n axes (rank n). The RAFF2 technique is relevant to MRI relaxation methods that provide good contrast enhancement for tumor detection. The relaxation equations for n = 2 are derived for the fast exchange regime using density matrix formalism. The method of derivation can be further extended to obtain solutions for n > 2. PMID:24911888
Study of RF breakdown and multipacting in accelerator components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pande, Manjiri; Singh, P., E-mail: manjiri@barc.gov.in, E-mail: psingh@barc.gov.in
2014-07-01
Radio frequency (RF) structures that are part of accelerators and energy sources, operate with sinusoidally varying electromagnetic fields under high RF energy. Here, RF breakdown and multipacting take place in RF structures and limit their performance. Electron field emission processes in a RF structure are precursors for breakdown processes. RF breakdown is a major phenomena affecting and causing the irreversible damage to RF structures. Breakdown rate and the damage induced by the breakdowns are its important properties. The damage is related to power absorbed during breakdown, while the breakdown rate is determined by the amplitudes of surface electric and magneticmore » fields, geometry, metal surface preparation and conditioning history. It limits working power and produces irreversible surface damage. The breakdown limit depends on the RF circuit, structure geometry, RF frequency, input RF power, pulse width, materials used, surface processing technique and surface electric and magnetic fields. Multipactor (MP) is a low power, electron multiplication based resonance breakdown phenomenon in vacuum and is often observed in RF structures. A multipactor discharge is undesirable, as it can create a reactive component that detunes the resonant cavities and components, generates noise in communication system and induces gas desorption from the conductor surfaces. In RF structures, certain conditions are required to generate multipacting. (author)« less
Variable Bandwidth Filtering for Improved Sensitivity of Cross-Frequency Coupling Metrics
McDaniel, Jonathan; Liu, Song; Cornew, Lauren; Gaetz, William; Roberts, Timothy P.L.; Edgar, J. Christopher
2012-01-01
Abstract There is an increasing interest in examining cross-frequency coupling (CFC) between groups of oscillating neurons. Most CFC studies examine how the phase of lower-frequency brain activity modulates the amplitude of higher-frequency brain activity. This study focuses on the signal filtering that is required to isolate the higher-frequency neuronal activity which is hypothesized to be amplitude modulated. In particular, previous publications have used a filter bandwidth fixed to a constant for all assessed modulation frequencies. The present article demonstrates that fixed bandwidth filtering can destroy amplitude modulation and create false-negative CFC measures. To overcome this limitation, this study presents a variable bandwidth filter that ensures preservation of the amplitude modulation. Simulated time series data were created with theta-gamma, alpha-gamma, and beta-gamma phase-amplitude coupling. Comparisons between filtering methods indicate that the variable bandwidth approach presented in this article is preferred when examining amplitude modulations above the theta band. The variable bandwidth method of filtering an amplitude modulated signal is proposed to preserve amplitude modulation and enable accurate CFC measurements. PMID:22577870
Neuromuscular fatigue following isometric contractions with similar torque time integral.
Rozand, V; Cattagni, T; Theurel, J; Martin, A; Lepers, R
2015-01-01
Torque time integral (TTI) is the combination of intensity and duration of a contraction. The aim of this study was to compare neuromuscular alterations following different isometric sub-maximal contractions of the knee extensor muscles but with similar TTI. Sixteen participants performed 3 sustained contractions at different intensities (25%, 50%, and 75% of Maximal Voluntary Contraction (MVC) torque) with different durations (68.5±33.4 s, 35.1±16.8 s and 24.8±12.9 s, respectively) but similar TTI value. MVC torque, maximal voluntary activation level (VAL), M-wave characteristics and potentiated doublet amplitude were assessed before and immediately after the sustained contractions. EMG activity of the vastus lateralis (VL) and -rectus femoris (RF) muscles was recorded during the sustained contractions. MVC torque reduction was similar in the 3 conditions after the exercise (-23.4±2.7%). VAL decreased significantly in a similar extent (-3.1±1.3%) after the 3 sustained contractions. Potentiated doublet amplitude was similarly reduced in the 3 conditions (-19.7±1.5%), but VL and RF M-wave amplitudes remained unchanged. EMG activity of VL and RF muscles increased in the same extent during the 3 contractions (VL: 54.5±40.4%; RF: 53.1±48.7%). These results suggest that central and peripheral alterations accounting for muscle fatigue are similar following isometric contractions with similar TTI. TTI should be considered in the exploration of muscle fatigue during sustained isometric contractions. © Georg Thieme Verlag KG Stuttgart · New York.
Amplitude Modulations of Acoustic Communication Signals
NASA Astrophysics Data System (ADS)
Turesson, Hjalmar K.
2011-12-01
In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a coupling between 3 -- 8 Hz oscillations and gamma band amplitude. In a behavioral experiment, we found that 3 -- 8 amplitude modulations improved auditory detection in noise. In conclusion, our results suggest that, as in human speech, 3 -- 8 Hz amplitude modulations have a behaviorally important effect, and that this effect probably is mediated by synaptic dynamics.
Kinzeler, Nicole R; Travers, Susan P
2011-09-01
The neural control of feeding involves many neuromodulators, including the endogenous opioids that bind μ-opioid receptors (MORs). Injections of the MOR agonist, Damgo, into limbic and hypothalamic forebrain sites increase intake, particularly of palatable foods. Indeed, forebrain Damgo injections increase sucrose-elicited licking but reduce aversive responding (gaping) to quinine, suggesting that MOR activation may enhance taste palatability. A μ-opioid influence on taste reactivity has not been assessed in the brain stem. However, MORs are present in the first-order taste relay, the rostral nucleus of the solitary tract (rNST), and in the immediately subjacent reticular formation (RF), a region known to be essential for consummatory responses. Thus, to evaluate the consequences of rNST/dorsal RF Damgo in this region, we implanted rats with intraoral cannulas, electromyographic electrodes, and brain cannulas aimed at the ventral border of the rNST. Licking and gaping elicited with sucrose, water, and quinine were assessed before and after intramedullary Damgo and saline infusions. Damgo slowed the rate, increased the amplitude, and decreased the size of fluid-induced lick and gape bouts. In addition, the neutral stimulus water, which typically elicits licks, began to evoke gapes. Thus, the current results demonstrate that μ-opioid activation in the rNST/dorsal RF exerts complex effects on oromotor responding that contrast with forebrain effects and are more indicative of a suppressive, rather than a facilitatory effect on ingestion.
Applications of Non-linearities in RF MEMS Switches and Resonators
NASA Astrophysics Data System (ADS)
Vummidi Murali, Krishna Prasad
The 21st century is emerging into an era of wireless ubiquity. To support this trend, the RF (Radio Frequency) front end must be capable of processing a range of wireless signals (cellular phone, data connectivity, broadcast TV, GPS positioning, etc.) spanning a total bandwidth of nearly 6 GHz. This warrants the need for multi-band/multi-mode radio architectures. For such architectures to satisfy the constraints on size, battery life, functionality and cost, the radio front-end must be made reconfigurable. RF-MEMS (RF Micro-Electro-Mechanical Systems) are seen as an enabling technology for such reconfigurable radios. RF-MEMS mainly include micromechanical switches (used in phase shifters, switched capacitor banks, impedance tuners etc.) and micromechanical resonators (used in tunable filters, oscillators, reference clocks etc.). MEMS technology also has the potential to be directly integrated into CMOS (Complementary metal-oxide semiconductor) ICs (Integrated Circuits) leading to further potential reductions of cost and size. However, RF-MEMS face challenges that must be addressed before they can gain widespread commercial acceptance. Relatively low switching speed, power handling, and high-voltage drive are some of the key issues in MEMS switches. Phase noise influenced by non-linearities, need for temperature compensation (especially Si based resonators), large start-up times, and aging are the key issues in Si MEMS Resonators. In this work potential solutions are proposed to address some of these key issues, specifically the reduction of high voltage drives in switches and the reduction of phase noise in MEMS resonators for timing applications. MEMS devices that are electrostatically actuated exhibit significant non-linearities. The origins of the non-linearities are both electrical (electrostatic actuation) and mechanical (dimensions and material properties). The influence of spring non-linearities (cubic and quadratic) on the performance of switches and resonators are studied. Gold electroplated fixed-fixed beams were fabricated to test the phenomenon of dynamic (or resonant) pull-in in shunt switches. The dynamic pull-in phenomenon was also tested on commercially fabricated lateral switches. It is shown that the resonant pull-in technique reduces the overall voltage required to actuate the switch. There is an additional reduction of total actuation voltage possible via applying an AC actuation signal at the correct non-linear resonant frequency. The demonstrated best case savings from operating at the non-linear resonance is 50% (for the lateral switch) and 60% (for the vertical switch) as compared to 25% and 40% respectively using a fixed frequency approach. However, the timing response for resonant pull-in has been experimentally shown to be slower than the static actuation. To reduce the switching time, a shifted-frequency method is proposed where the excitation frequency is shifted up or down by a discrete amount deltaO after a brief hold time. It was theoretically shown that the shifted-frequency method enables a minimum realizable switching time comparable to the static switching time for a given set of actuation frequencies. The influence of VDC on the effective non-linearities of a fixed-fixed beam is also studied. Based on the dimensions of the resonator and the type of resonance there is a certain VDC,Lin where the response is near linear (S ≈ 0). In the near-linear domain, the dynamic pull-in is the only upper bound to the amplitude of vibrations, and hence the amplitude of output current, thereby maximizing the power handling capacity of the resonator. Apart from maximizing the output current, it is essential to reduce the amplitude and phase variations of the displacement response which are due to noise mixing into frequency of interest, and are eventually manifested as output phase noise due to capacitive current nonlinearity. Two major aliasing schemes were analyzed and it was shown that the capacitive force non-linearity is the major source of mixing that causes the up-conversion of 1/f frequency into signal sidebands. The resonator's periodic response (displacement) is defined by a set of two first-order nonlinear ordinary differential equations that describe the modulation of amplitude and phase of the response. Frequency response curves of amplitude and frequency are determined from these modulation equations. The zero slope point on the amplitude resonance curve is the peak of the resonance curve where the phase (gammadc) of the response is +/-pi/2. For a strongly non-linear system, the resonance curves are skewed based on the amount of total non-linearity S. For systems that are strongly non-linear, the best region to operate the resonator is the fixed point that correspond to infinite slope (gammadc = +/-2pi/3) in the frequency response of the system. The best case phase noise response was analytically developed for such a fixed point. Theoretically at this fixed point, phase noise will have contributions only from 1/ fnoise and not from 1/f2 and 1/ f3. The resonators phase can be set by controlling the rest of the phase in the loop such that the total phase around the loop is zero or 2pi. In addition, this work has also developed an analytical model for a lateral MEMS switch fabricated in a commercial foundry that has the potential to be processed as MEMS on CMOS. This model accounts for trapezoidal cross sections of the electrodes and springs and also models electrostatic fringing as a function of the moving gap. The analytical model matches closely with the Finite Element (FEA) model.
Tamburus, Nayara Y; Paula, Roberta F L; Kunz, Vandeni C; César, Marcelo C; Moreno, Marlene A; da Silva, Ester
2015-01-01
Autonomic dysfunction and inflammatory activity are involved in the development and progression of coronary artery disease (CAD), and exercise training has been shown to confer a cardiovascular benefit. To evaluate the effects that interval training (IT) based on ventilatory anaerobic threshold (VAT) has on heart rate variability (HRV) and high-sensitivity C-reactive protein (hs-CRP) levels, as well as the relationship between both levels, in patients with CAD and/or cardiovascular risk factors (RF). Forty-two men (aged 57.88±6.20 years) were divided into two training groups, CAD-T (n= 12) and RF-T (n= 10), and two control groups, CAD-C (n= 10) and RF-C (n=10). Heart rate and RR intervals in the supine position, cardiopulmonary exercise tests, and hs-CRP levels were measured before and after IT. HRV was analyzed by spectral and symbolic analysis. The CAD-T and RF-T underwent a 16-week IT program of three weekly sessions at training intensities based on the VAT. In the RF-T, cardiac sympathetic modulation index and hs-CRP decreased (p<0.02), while cardiac parasympathetic modulation index increased (p<0.02). In the CAD-T, cardiac parasympathetic modulation index increased, while hs-CRP, systolic, and diastolic blood pressures decreased (p<0.02). Both control groups showed increase in hs-CRP parameters (p<0.02). There was a strong and significant association between parasympathetic and sympathetic modulations with hs-CRP. The IT program based on the VAT promoted a decrease in hs-CRP associated with improvement in cardiac autonomic modulation.
Low cost high efficiency GaAs monolithic RF module for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Petersen, W. C.; Siu, D. P.; Cook, H. F.
1991-01-01
Low cost high performance (5 Watts output) 406 MHz beacons are urgently needed to realize the maximum utilization of the Search and Rescue Satellite-Aided Tracking (SARSAT) system spearheaded in the U.S. by NASA. Although current technology can produce beacons meeting the output power requirement, power consumption is high due to the low efficiency of available transmitters. Field performance is currently unsatisfactory due to the lack of safe and reliable high density batteries capable of operation at -40 C. Low cost production is also a crucial but elusive requirement for the ultimate wide scale utilization of this system. Microwave Monolithics Incorporated (MMInc.) has proposed to make both the technical and cost goals for the SARSAT beacon attainable by developing a monolithic GaAs chip set for the RF module. This chip set consists of a high efficiency power amplifier and a bi-phase modulator. In addition to implementing the RF module in Monolithic Microwave Integrated Circuit (MMIC) form to minimize ultimate production costs, the power amplifier has a power-added efficiency nearly twice that attained with current commercial technology. A distress beacon built using this RF module chip set will be significantly smaller in size and lighter in weight due to a smaller battery requirement, since the 406 MHz signal source and the digital controller have far lower power consumption compared to the 5 watt power amplifier. All the program tasks have been successfully completed. The GaAs MMIC RF module chip set has been designed to be compatible with the present 406 MHz signal source and digital controller. A complete high performance low cost SARSAT beacon can be realized with only additional minor iteration and systems integration.
Full-Field Spectroscopy at Megahertz-frame-rates: Application of Coherent Time-Stretch Transform
NASA Astrophysics Data System (ADS)
DeVore, Peter Thomas Setsuda
Outliers or rogue events are found extensively in our world and have incredible effects. Also called rare events, they arise in the distribution of wealth (e.g., Pareto index), finance, network traffic, ocean waves, and e-commerce (selling less of more). Interest in rare optical events exploded after the sighting of optical rogue waves in laboratory experiments at UCLA. Detecting such tail events in fast streams of information necessitates real-time measurements. The Coherent Time-Stretch Transform chirps a pulsed source of radiation so that its temporal envelope matches its spectral profile (analogous to the far field regime of spatial diffraction), and the mapped spectral electric field is slow enough to be captured by a real-time digitizer. Combining this technique with spectral encoding, the time stretch technique has enabled a new class of ultra-high performance spectrometers and cameras (30+ MHz), and analog-to-digital converters that have led to the discovery of optical rogue waves and detection of cancer cells in blood with one in a million sensitivity. Conventionally, the Coherent Time-Stretch Transform maps the spectrum into the temporal electric field, but the time-dilation process along with inherent fiber losses results in reduction of peak power and loss of sensitivity, a problem exacerbated by extremely narrow molecular linewidths. The loss issue notwithstanding, in many cases the requisite dispersive optical device is not available. By extending the Coherent Time-Stretch Transform to the temporal near field, I have demonstrated, for the first time, phase-sensitive absorption spectroscopy of a gaseous sample at millions of frames per second. As the Coherent Time-Stretch Transform may capture both near and far field optical waves, it is a complete spectro-temporal optical characterization tool. This is manifested as an amplitude-dependent chirp, which implies the ability to measure the complex refractive index dispersion at megahertz frame rates. This technique is not only four orders of magnitude faster than even the fastest (kHz) spectrometers, but will also enable capture of real-time complex dielectric function dynamics of plasmas and chemical reactions (e.g. combustion). It also has applications in high-energy physics, biology, and monitoring fast high-throughput industrial processes. Adding an electro-optic modulator to the Time-Stretch Transform yields time-to-time mapping of electrical waveforms. Known as TiSER, it is an analog slow-motion processor that uses light to reduce the bandwidth of broadband RF signals for capture by high-sensitivity analog-to-digital converters (ADC). However, the electro-optic modulator limits the electrical bandwidth of TiSER. To solve this, I introduced Optical Sideband-only Amplification, wherein electro-optically generated modulation (containing the RF information) is amplified at the expense of the carrier, addressing the two most important problems plaguing electro-optic modulators: (1) low RF bandwidth and (2) high required RF drive voltages. I demonstrated drive voltage reductions of 5x at 10 GHz and 10x at 50 GHz, while simultaneously increasing the RF bandwidth.
1995 second modulator-klystron workshop: A modulator-klystron workshop for future linear colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
This second workshop examined the present state of modulator design and attempted an extrapolation for future electron-positron linear colliders. These colliders are currently viewed as multikilometer-long accelerators consisting of a thousand or more RF sources with 500 to 1,000, or more, pulsed power systems. The workshop opened with two introductory talks that presented the current approaches to designing these linear colliders, the anticipated RF sources, and the design constraints for pulse power. The cost of main AC power is a major economic consideration for a future collider, consequently the workshop investigated efficient modulator designs. Techniques that effectively apply the artmore » of power conversion, from the AC mains to the RF output, and specifically, designs that generate output pulses with very fast rise times as compared to the flattop. There were six sessions that involved one or more presentations based on problems specific to the design and production of thousands of modulator-klystron stations, followed by discussion and debate on the material.« less
Advanced optical fiber communication systems
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.
1994-03-01
Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.
FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Troy; Diamond, J. S.; McDowell, D.
2016-10-12
An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of amore » fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.« less
47 CFR 2.201 - Emission, modulation, and transmission characteristics.
Code of Federal Regulations, 2014 CFR
2014-10-01
... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...
47 CFR 2.201 - Emission, modulation, and transmission characteristics.
Code of Federal Regulations, 2013 CFR
2013-10-01
... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...
47 CFR 2.201 - Emission, modulation, and transmission characteristics.
Code of Federal Regulations, 2012 CFR
2012-10-01
... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...
High frequency modulation and injection locking of terahertz quantum cascade lasers
NASA Astrophysics Data System (ADS)
Gu, L.; Wan, W. J.; Zhu, Y. H.; Fu, Z. L.; Li, H.; Cao, J. C.
2017-06-01
Due to intersubband transitions, the quantum cascade laser (QCL) is free of relaxations and able to work under fast modulations. In this work, the authors investigate the fast modulation properties of a continuous wave (cw) terahertz QCL emitting around 3 THz (˜100 μm). Both simulation and experimental results show that the 3 dB modulation bandwidth for the device can reach 11.5 GHz and the modulation response curve is relatively flat upto ˜16 GHz. The radio frequency (RF) injection measurements verify that around the laser threshold the inter-mode beat note interacts strongly with the RF signal and the laser can be modulated at the round trip frequency of 15.5 GHz.
Fiala, Peter; Li, Yunqi; Dorrer, Christophe
2018-01-29
Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiala, Peter; Li, Yunqi; Dorrer, Christophe
Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less
NASA Technical Reports Server (NTRS)
Stocklin, F.
1973-01-01
The equations defining the amplitude of sidebands resulting from either frequency modulation or phase modulation by either square wave, sine wave, sawtooth or triangular modulating functions are presented. Spectral photographs and computer generated tables of modulation index vs. relative sideband amplitudes are also included.
Relativistic theory of radiofrequency current drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.; Metens, T.
1991-05-01
A fully relativistic kinetic theory of rf current drive in a tokamak is developed for both the lower hybrid and the electron cyclotron mechanisms. The problem is treated as a generalization of the classical transport equations, in which the thermodynamic forces are modified by the addition of a rf-source term. In the limit of weak rf amplitude and neglecting toroidal effects (such as particle trapping), explicit analytical expressions are obtained for the rf-generated current, the dissipated power, and the current drive efficiency. These expressions are fully relativistic and are valid over the whole admissible range of frequencies and for allmore » electron temperatures. The relation between efficiency and parallel relativistic transport coefficients is exhibited. The most important relativistic effect is a dramatic broadening of the frequency range over which the rf-generated current is significantly different from zero.« less
Effect of Nanosecond RF Pulses on Mitochondrial Membranes
NASA Astrophysics Data System (ADS)
Zharkova, L. P.; Romanchenko, I. V.; Bol'shakov, M. A.; Rostov, V. V.
2017-12-01
Effect of nanosecond RF pulses on the state of isolated mitochondria and their membranes is investigated. Mitochondrial suspensions are exposed to periodic RF pulses with durations from 4 to 25 ns, frequencies from 0.6 to 1.0 GHz, amplitudes from 0.1 to 36 kV/cm, and pulse repetition frequencies 8-25 Hz. The integrity of the mitochondrial membranes is estimated from their resistance to electric current. The possibility of opening of protein pores with nonspecific permeability is determined from a change in the mitochondrial volume by registration of optical density of organelle suspension.
Spectrum of coherent transition radiation generated by a modulated electron beam
NASA Astrophysics Data System (ADS)
Naumenko, G. A.; Potylitsyn, A. P.; Karataev, P. V.; Shipulya, M. A.; Bleko, V. V.
2017-07-01
The spectrum of coherent transition radiation has been recorded with the use of a Martin-Puplett interferometer. It has been shown that the spectrum includes monochromatic lines that are caused by the modulation of an electron beam with the frequency of an accelerating radio-frequency field νRF and correspond to resonances at ν k = kνRF k ≤ 10. To determine the length of an electron bunch from the measurement of the spectrum from a single bunch, it is necessary to use a spectrometer with the resolution Δνsp > νRF.
Detector power linearity requirements and verification techniques for TMI direct detection receivers
NASA Technical Reports Server (NTRS)
Reinhardt, Victor S. (Inventor); Shih, Yi-Chi (Inventor); Toth, Paul A. (Inventor); Reynolds, Samuel C. (Inventor)
1997-01-01
A system (36, 98) for determining the linearity of an RF detector (46, 106). A first technique involves combining two RF signals from two stable local oscillators (38, 40) to form a modulated RF signal having a beat frequency, and applying the modulated RF signal to a detector (46) being tested. The output of the detector (46) is applied to a low frequency spectrum analyzer (48) such that a relationship between the power levels of the first and second harmonics generated by the detector (46) of the beat frequency of the modulated RF signal are measured by the spectrum analyzer (48) to determine the linearity of the detector (46). In a second technique, an RF signal from a local oscillator (100) is applied to a detector (106) being tested through a first attenuator (102) and a second attenuator (104). The output voltage of the detector (106) is measured when the first attenuator (102) is set to a particular attenuation value and the second attenuator (104) is switched between first and second attenuation values. Further, the output voltage of the detector (106) is measured when the first attenuator (102) is set to another attenuation value, and the second attenuator (104) is again switched between the first and second attenuation values. A relationship between the voltage outputs determines the linearity of the detector (106).
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Hall, Trevor
2016-11-01
In the title paper, Li et al. have presented a scheme for filter-less photonic millimetre-wave (mm-wave) generation based on two polarization multiplexed parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). For frequency octo-tupling, all the harmonics are suppressed except those of order 4l, where l is the integer. The carrier is then suppressed by the polarization multiplexing technique, which is the principal innovative step in their design. Frequency 12-tupling and 16-tupling is also described following a similar method. The two DP-MZM are similarly driven and provide identical outputs for the same RF modulation indices. Consequently, a demerit of their design is the requirement to apply two different RF signal modulation indexes in a particular range and set the polarizer to a precise angle which depends on the pair of modulation indices used in order to suppress the unwanted harmonics (e.g. the carrier) without simultaneously suppressing the wanted harmonics. The aim of this comment is to show that, an adjustment of the RF drive phases with a fixed polarizer angle with the design presented by Li, all harmonics can be suppressed except those of order4l, where l is an odd integer. Hence, a filter-less frequency octo-tupling can be generated whose performance is not limited by the careful adjustment of the RF drive signal, rather it can be operated for a wide range of modulation indexes (m 2.5 → 7.5). If the modulation index is adjusted to suppress 4th harmonics, then the design can be used to perform frequency 24-tupling. Since, the carrier is suppressed by design in the modified architecture, the strict requirement to adjust the RF drive (and polarizer angle) can be avoided without any significant change to the circuit complexity.
Lustenberger, Caroline; Murbach, Manuel; Dürr, Roland; Schmid, Marc Ralph; Kuster, Niels; Achermann, Peter; Huber, Reto
2013-09-01
Sleep-dependent performance improvements seem to be closely related to sleep spindles (12-15 Hz) and sleep slow-wave activity (SWA, 0.75-4.5 Hz). Pulse-modulated radiofrequency electromagnetic fields (RF EMF, carrier frequency 900 MHz) are capable to modulate these electroencephalographic (EEG) characteristics of sleep. The aim of our study was to explore possible mechanisms how RF EMF affect cortical activity during sleep and to test whether such effects on cortical activity during sleep interact with sleep-dependent performance changes. Sixteen male subjects underwent 2 experimental nights, one of them with all-night 0.25-0.8 Hz pulsed RF EMF exposure. All-night EEG was recorded. To investigate RF EMF induced changes in overnight performance improvement, subjects were trained for both nights on a motor task in the evening and the morning. We obtained good sleep quality in all subjects under both conditions (mean sleep efficiency > 90%). After pulsed RF EMF we found increased SWA during exposure to pulse-modulated RF EMF compared to sham exposure (P < 0.05) toward the end of the sleep period. Spindle activity was not affected. Moreover, subjects showed an increased RF EMF burst-related response in the SWA range, indicated by an increase in event-related EEG spectral power and phase changes in the SWA range. Notably, during exposure, sleep-dependent performance improvement in the motor sequence task was reduced compared to the sham condition (-20.1%, P = 0.03). The changes in the time course of SWA during the exposure night may reflect an interaction of RF EMF with the renormalization of cortical excitability during sleep, with a negative impact on sleep-dependent performance improvement. Copyright © 2013 Elsevier Inc. All rights reserved.
Local oscillator induced degradation of medium-term stability in passive atomic frequency standards
NASA Technical Reports Server (NTRS)
Dick, G. John; Prestage, John D.; Greenhall, Charles A.; Maleki, Lute
1990-01-01
As the performance of passive atomic frequency standards improves, a new limitation is encountered due to frequency fluctuations in an ancillary local oscillator (L.O.). The effect is due to time variation in the gain of the feedback which compensates L.O. frequency fluctuations. The high performance promised by new microwave and optical trapped ion standards may be severely compromised by this effect. Researchers present an analysis of this performance limitation for the case of sequentially interrogated standards. The time dependence of the sensitivity of the interrogation process to L.O. frequency fluctuations is evaluated for single-pulse and double-pulse Ramsey RF interrogation and for amplitude modulated pulses. The effect of these various time dependencies on performance of the standard is calculated for an L.O. with frequency fluctuations showing a typical 1/f spectral density. A limiting 1/sq. root gamma dependent deviation of frequency fluctuations is calculated as a function of pulse lengths, dead time, and pulse overlap. Researchers also present conceptual and hardware-oriented solutions to this problem which achieve a much more nearly constant sensitivity to L.O. fluctuations. Solutions involve use of double-pulse interrogation; alternate interrogation of multiple traps so that the dead time of one trap can be covered by operation of the other; and the use of double-pulse interrogation for two traps, so that during the time of the RF pulses, the increasing sensitivity of one trap tends to compensate for the decreasing sensitivity of the other. A solution making use of amplified-modulated pulses is also presented which shows nominally zero time variation.
Nurminen, Lauri; Angelucci, Alessandra
2014-01-01
The responses of neurons in primary visual cortex (V1) to stimulation of their receptive field (RF) are modulated by stimuli in the RF surround. This modulation is suppressive when the stimuli in the RF and surround are of similar orientation, but less suppressive or facilitatory when they are cross-oriented. Similarly, in human vision surround stimuli selectively suppress the perceived contrast of a central stimulus. Although the properties of surround modulation have been thoroughly characterized in many species, cortical areas and sensory modalities, its role in perception remains unknown. Here we argue that surround modulation in V1 consists of multiple components having different spatio-temporal and tuning properties, generated by different neural circuits and serving different visual functions. One component arises from LGN afferents, is fast, untuned for orientation, and spatially restricted to the surround region nearest to the RF (the near-surround); its function is to normalize V1 cell responses to local contrast. Intra-V1 horizontal connections contribute a slower, narrowly orientation-tuned component to near-surround modulation, whose function is to increase the coding efficiency of natural images in manner that leads to the extraction of object boundaries. The third component is generated by topdown feedback connections to V1, is fast, broadly orientation-tuned, and extends into the far-surround; its function is to enhance the salience of behaviorally relevant visual features. Far- and near-surround modulation, thus, act as parallel mechanisms: the former quickly detects and guides saccades/attention to salient visual scene locations, the latter segments object boundaries in the scene. PMID:25204770
Transverse emittance growth due to rf noise in the high-luminosity LHC crab cavities
NASA Astrophysics Data System (ADS)
Baudrenghien, P.; Mastoridis, T.
2015-10-01
The high-luminosity LHC (HiLumi LHC) upgrade with planned operation from 2025 onward has a goal of achieving a tenfold increase in the number of recorded collisions thanks to a doubling of the intensity per bunch (2.2e11 protons) and a reduction of β* to 15 cm. Such an increase would significantly expedite new discoveries and exploration. To avoid detrimental effects from long-range beam-beam interactions, the half crossing angle must be increased to 295 microrad. Without bunch crabbing, this large crossing angle and small transverse beam size would result in a luminosity reduction factor of 0.3 (Piwinski angle). Therefore, crab cavities are an important component of the LHC upgrade, and will contribute strongly to achieving an increase in the number of recorded collisions. The proposed crab cavities are electromagnetic devices with a resonance in the radio frequency (rf) region of the spectrum (400.789 MHz). They cause a kick perpendicular to the direction of motion (transverse kick) to restore an effective head-on collision between the particle beams, thereby restoring the geometric factor to 0.8 [K. Oide and K. Yokoya, Phys. Rev. A 40, 315 (1989).]. Noise injected through the rf/low level rf (llrf) system could cause significant transverse emittance growth and limit luminosity lifetime. In this work, a theoretical relationship between the phase and amplitude rf noise spectrum and the transverse emittance growth rate is derived, for a hadron machine assuming zero synchrotron radiation damping and broadband rf noise, excluding infinitely narrow spectral lines. This derivation is for a single beam. Both amplitude and phase noise are investigated. The potential improvement in the presence of the transverse damper is also investigated.
Ultra-wideband microwave photonic link based on single-sideband modulation
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Yunxin; Wang, Dayong; Zhou, Tao; Zhong, Xin; Xu, Jiahao; Yang, Dengcai; Rong, Lu
2017-10-01
Comparing with the conventional double-sideband (DSB) modulation in communication system, single-sideband (SSB) modulation only demands half bandwidth of DSB in transmission. Two common ways are employed to implement SSB modulation by using optical filter (OF) or electrical 90° phase shift, respectively. However, the bandwidth of above methods is limited by characteristics of current OF and electrical phase shift. To overcome this problem, an ultra-wideband microwave photonic link based on SSB modulation is proposed and demonstrated. The radio frequency (RF) signal modulates a single-drive dual-parallel Mach-Zehnder modulator, and the SSB modulation is realized by combining an electrical 90° hybrid coupler and an optical bandpass filter. The experimental results indicate that the system can achieve SSB modulation for RF signal from 2 to 40 GHz. The proposed microwave photonic link provides an ultra-wideband approach based on SSB modulation for radio-over-fiber system.
Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY
NASA Astrophysics Data System (ADS)
Nie, Y. C.; Assmann, R.; Dorda, U.; Marchetti, B.; Weikum, M.; Zhu, J.; Hüning, M.
2016-09-01
Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.
Sensitivity Limits of Rydberg Atom-Based Radio Frequency Electric Field Sensing
NASA Astrophysics Data System (ADS)
Jahangiri, Akbar J.; Kumar, Santosh; Kuebler, Harald; Fan, Haoquan; Shaffer, James P.
2017-04-01
We present progress on Rydberg atom-based RF electric field sensing using Rydberg state electromagnetically induced transparency (EIT) in room temperature atomic vapor cells. In recent experiments on homodyne detection with a Mach-Zehnder interferometer and frequency modulation spectroscopy with active control of residual amplitude modulation we determined that photon shot noise on the probe laser detector limits the sensitivity. Another factor that limits the accuracy is residual Doppler broadening due to the wave-vector mismatch between the coupling and the probe lasers. The sensor as limited by project noise can be orders of magnitude better. A multi-photon scheme is presented that can eliminate the residual Doppler effect by matching the wave-vectors of three lasers and reduce the photon shot noise limit by correctly choosing the Rabi frequencies of the first two steps of the EIT scheme. Using density matrix calculations, we predict that the three-photon approach can improve the detection sensitivity to below 200 nV cm-1 Hz- 1 / 2 and expand the Autler-Townes regime which improves the accuracy. This work is supported by DARPA and the NRO.
Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation
NASA Astrophysics Data System (ADS)
Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG
2018-01-01
The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signalmore » on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolewski, Mark A.; Wang, Yicheng; Goyette, Amanda
2016-07-11
Simple kinematic considerations indicate that, under certain conditions in radio-frequency (rf) plasmas, the amplitude of the low-energy peak in ion energy distributions (IEDs) measured at an electrode depends sensitively on ion velocities upstream, at the presheath/sheath boundary. By measuring this amplitude, the velocities at which ions exit the presheath can be determined and long-standing controversies regarding presheath transport can be resolved. Here, IEDs measured in rf-biased, inductively coupled plasmas in CF{sub 4} gas determined the presheath exit velocities of all significant positive ions: CF{sub 3}{sup +}, CF{sub 2}{sup +}, CF{sup +}, and F{sup +}. At higher bias voltages, we detectedmore » essentially the same velocity for all four ions. For all ions, measured velocities were significantly lower than the Bohm velocity and the electropositive ion sound speed. Neither is an accurate boundary condition for rf sheaths in electronegative gases: under certain low-frequency, high-voltage criteria defined here, either yields large errors in predicted IEDs. These results indicate that many widely used sheath models will need to be revised.« less
Analog Techniques in CEBAF's RF Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovater, J.; Fugitt, Jock
1988-01-01
Recent developments in high-speed analog technology have progressed into the areas of traditional RF technology.Diode-related devices are being replaced by analog IC's in the CEBAF RF control system.Complex phase modulators and attenuators have been successfully tested at 70 MHz.They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity.RF signal conditioning components and how to implement the new analog IC's will be covered in this paper.
Immune modulation of i.v. immunoglobulin in women with reproductive failure.
Han, Ae R; Lee, Sung K
2018-04-01
The mechanism of maternal immune tolerance of the semi-allogenic fetus has been explored extensively. The immune reaction to defend from invasion by pathogenic microorganisms should be maintained during pregnancy. An imbalance between the immune tolerance to the fetus and immune activation to the pathogenic organisms is associated with poor pregnancy outcomes. This emphasizes that the immune mechanism of successful reproduction is not just immune suppression, but adequate immune modulation. In this review, the action of i.v. immunoglobulin G (IVIg) on the immune system and its efficacy in reproductive failure (RF) was summarized. Also suggested is the indication of IVIg therapy for women with RF. Based on the mechanism of the immune regulation of IVIg and following confirmation of the immune modulation effects of it in various aberrant immune parameters in patients with RF, it is obvious that IVIg is effective in recurrent pregnancy losses and repeated implantation failures with immunologic disturbances. The authors recommend IVIg therapy in patients with RF with aberrant cellular immunologic parameters, including a high natural killer cell proportion and its cytotoxicity or elevated T helper 1 to T helper 2 ratio, based on each clinic's cut-off values. Further clinical studies about the safety of IVIg in the fetus and its efficacy in other immunologic abnormalities of RF are needed.
NASA Astrophysics Data System (ADS)
Aketagawa, Masato; Kimura, Shohei; Yashiki, Takuya; Iwata, Hiroshi; Banh, Tuan Quoc; Hirata, Kenji
2011-02-01
In this paper, we discuss a method to measure the free spectral range (FSR) of a Fabry-Perot cavity (FP-cavity) using frequency modulation with one electric optical modulator (EOM) and the null method. A laser beam modulated by the EOM, to which a sine wave signal is supplied from a radio frequency (RF) oscillator, is incident on the FP-cavity. The transmitted or reflected light from the FP-cavity is observed and converted to an RF signal by a high-speed photodetector, and the RF signal is synchronously demodulated with a lock-in amplifier by referring to a cosine wave signal from the oscillator. We theoretically and experimentally demonstrate that the lock-in amplifier signal for the transmitted or reflected light becomes null with a steep slope when the modulation frequency is equal to the FSR under the condition that the carrier frequency of the laser is slightly detuned from the resonance of the FP-cavity. To reduce the measurement uncertainty for the FSR, we also discuss a selection method for laser power, a modulation index and the detuning shift of the carrier frequency, respectively.
Radio-frequency-modulated Rydberg states in a vapor cell
NASA Astrophysics Data System (ADS)
Miller, S. A.; Anderson, D. A.; Raithel, G.
2016-05-01
We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.
A random forest model based classification scheme for neonatal amplitude-integrated EEG.
Chen, Weiting; Wang, Yu; Cao, Guitao; Chen, Guoqiang; Gu, Qiufang
2014-01-01
Modern medical advances have greatly increased the survival rate of infants, while they remain in the higher risk group for neurological problems later in life. For the infants with encephalopathy or seizures, identification of the extent of brain injury is clinically challenging. Continuous amplitude-integrated electroencephalography (aEEG) monitoring offers a possibility to directly monitor the brain functional state of the newborns over hours, and has seen an increasing application in neonatal intensive care units (NICUs). This paper presents a novel combined feature set of aEEG and applies random forest (RF) method to classify aEEG tracings. To that end, a series of experiments were conducted on 282 aEEG tracing cases (209 normal and 73 abnormal ones). Basic features, statistic features and segmentation features were extracted from both the tracing as a whole and the segmented recordings, and then form a combined feature set. All the features were sent to a classifier afterwards. The significance of feature, the data segmentation, the optimization of RF parameters, and the problem of imbalanced datasets were examined through experiments. Experiments were also done to evaluate the performance of RF on aEEG signal classifying, compared with several other widely used classifiers including SVM-Linear, SVM-RBF, ANN, Decision Tree (DT), Logistic Regression(LR), ML, and LDA. The combined feature set can better characterize aEEG signals, compared with basic features, statistic features and segmentation features respectively. With the combined feature set, the proposed RF-based aEEG classification system achieved a correct rate of 92.52% and a high F1-score of 95.26%. Among all of the seven classifiers examined in our work, the RF method got the highest correct rate, sensitivity, specificity, and F1-score, which means that RF outperforms all of the other classifiers considered here. The results show that the proposed RF-based aEEG classification system with the combined feature set is efficient and helpful to better detect the brain disorders in newborns.
Integrated optic single-ring filter for narrowband phase demodulation
NASA Astrophysics Data System (ADS)
Madsen, C. K.
2017-05-01
Integrated optic notch filters are key building blocks for higher-order spectral filter responses and have been demonstrated in many technology platforms from dielectrics (such as Si3N4) to semiconductors (Si photonics). Photonic-assisted RF processing applications for notch filters include identifying and filtering out high-amplitude, narrowband signals that may be interfering with the desired signal, including undesired frequencies detected in radar and free-space optical links. The fundamental tradeoffs for bandwidth and rejection depth as a function of the roundtrip loss and coupling coefficient are investigated along with the resulting spectral phase response for minimum-phase and maximum-phase responses compared to the critical coupling condition and integration within a Mach Zehnder interferometer. Based on a full width at half maximum criterion, it is shown that maximum-phase responses offer the smallest bandwidths for a given roundtrip loss. Then, a new role for passive notch filters in combination with high-speed electro-optic phase modulation is explored around narrowband phase-to-amplitude demodulation using a single ring operating on one sideband. Applications may include microwave processing and instantaneous frequency measurement (IFM) for radar, space and defense applications.
VLF Radio Field Strength Measurement of power line carrier system in San Diego, California
NASA Technical Reports Server (NTRS)
Mertel, H. K.
1981-01-01
The radio frequency interference (RFI) potential was evaluated for a Powerline Carriet (PLC) installed in San Diego which monitors the performance of an electrical power system. The PLC system generated 30 amperes at 5.79 kHz. The RF radiations were measured to be (typically) 120 dBuV/m at the beginning of the 12 kV powerline and 60 dBuV/m at the end of the powerline. The RF fields varied inversely as the distance squared. Measurements were also performed with a 45 kHz PLC system. The RF fields were of similar amplitude.
Computational Investigation of Helical Traveling Wave Tube Transverse RF Field Forces
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A.
1998-01-01
In a previous study using a fully three-dimensional (3D) helical slow-wave circuit cold- test model it was found, contrary to classical helical circuit analyses, that transverse FF electric fields have significant amplitudes compared with the longitudinal component. The RF fields obtained using this helical cold-test model have been scaled to correspond to those of an actual TWT. At the output of the tube, RF field forces reach 61%, 26% and 132% for radial, azimuthal and longitudinal components, respectively, compared to radial space charge forces indicating the importance of considering them in the design of electron beam focusing.
MEG evidence that the central auditory system simultaneously encodes multiple temporal cues.
Simpson, Michael I G; Barnes, Gareth R; Johnson, Sam R; Hillebrand, Arjan; Singh, Krish D; Green, Gary G R
2009-09-01
Speech contains complex amplitude modulations that have envelopes with multiple temporal cues. The processing of these complex envelopes is not well explained by the classical models of amplitude modulation processing. This may be because the evidence for the models typically comes from the use of simple sinusoidal amplitude modulations. In this study we used magnetoencephalography (MEG) to generate source space current estimates of the steady-state responses to simple one-component amplitude modulations and to a two-component amplitude modulation. A two-component modulation introduces the simplest form of modulation complexity into the waveform; the summation of the two-modulation rates introduces a beat-like modulation at the difference frequency between the two modulation rates. We compared the cortical representations of responses to the one-component and two-component modulations. In particular, we show that the temporal complexity in the two-component amplitude modulation stimuli was preserved at the cortical level. The method of stimulus normalization that we used also allows us to interpret these results as evidence that the important feature in sound modulations is the relative depth of one modulation rate with respect to another, rather than the absolute carrier-to-sideband modulation depth. More generally, this may be interpreted as evidence that modulation detection accurately preserves a representation of the modulation envelope. This is an important observation with respect to models of modulation processing, as it suggests that models may need a dynamic processing step to effectively model non-stationary stimuli. We suggest that the classic modulation filterbank model needs to be modified to take these findings into account.
ICRH antenna S-matrix measurements and plasma coupling characterisation at JET
NASA Astrophysics Data System (ADS)
Monakhov, I.; Jacquet, P.; Blackman, T.; Bobkov, V.; Dumortier, P.; Helou, W.; Lerche, E.; Kirov, K.; Milanesio, D.; Maggiora, R.; Noble, C.; Contributors, JET
2018-04-01
The paper is dedicated to the characterisation of multi-strap ICRH antenna coupling to plasma. Relevance of traditional concept of coupling resistance to antennas with mutually coupled straps is revised and the importance of antenna port excitation consistency for application of the concept is highlighted. A method of antenna S-matrix measurement in presence of plasma is discussed allowing deeper insight into the problem of antenna-plasma coupling. The method is based entirely on the RF plant hardware and control facilities available at JET and it involves application of variable phasing between the antenna straps during the RF plant operations at >100 kW. Unlike traditional techniques relying on low-power (~10 mW) network analysers, the applied antenna voltage amplitudes are relevant to practical conditions of ICRH operations; crucially, they are high enough to minimise possible effects of antenna loading non-linearity due to the RF sheath effects and other phenomena which could affect low-power measurements. The method has been successfully applied at JET to conventional 4-port ICRH antennas energised at frequencies of 33 MHz, 42 MHz and 51 MHz during L-mode plasma discharges while different gas injection modules (GIMs) were used to maintain comparable plasma densities during the pulses. The S-matrix assessment and its subsequent processing yielding ‘global’ antenna coupling resistances in conditions of equalised port maximum voltages allowed consistent description of antenna coupling to plasma at different strap phasing, operational frequencies and applied GIMs. Comprehensive experimental characterisation of mutually coupled antenna straps in presence of plasma also provided a unique opportunity for in-depth verification of TOPICA computer simulations.
Thermally Stabilized Transmit/Receive Modules
NASA Technical Reports Server (NTRS)
Hoffman, James; DelCastillo, Linda; Miller, Jennifer; Birur, Gaj
2011-01-01
RF-hybrid technologies enable smaller packaging and mass reduction in radar instruments, especially for subsystems with dense electronics, such as electronically steered arrays. We are designing thermally stabilized RF-hybrid T/R modules using new materials for improved thermal performance of electronics. We are combining advanced substrate and housing materials with a thermal reservoir material, and develop new packaging techniques to significantly improve thermal-cycling reliability and performance stability over temperature.
Antenna unit and radio base station therewith
Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru
2007-04-10
Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudino, N., E-mail: natalia.gudino@nih.gov; Sonmez, M.; Nielles-Vallespin, S.
2015-01-15
Purpose: To provide a rapid method to reduce the radiofrequency (RF) E-field coupling and consequent heating in long conductors in an interventional MRI (iMRI) setup. Methods: A driving function for device heating (W) was defined as the integration of the E-field along the direction of the wire and calculated through a quasistatic approximation. Based on this function, the phases of four independently controlled transmit channels were dynamically changed in a 1.5 T MRI scanner. During the different excitation configurations, the RF induced heating in a nitinol wire immersed in a saline phantom was measured by fiber-optic temperature sensing. Additionally, amore » minimization of W as a function of phase and amplitude values of the different channels and constrained by the homogeneity of the RF excitation field (B{sub 1}) over a region of interest was proposed and its results tested on the benchtop. To analyze the validity of the proposed method, using a model of the array and phantom setup tested in the scanner, RF fields and SAR maps were calculated through finite-difference time-domain (FDTD) simulations. In addition to phantom experiments, RF induced heating of an active guidewire inserted in a swine was also evaluated. Results: In the phantom experiment, heating at the tip of the device was reduced by 92% when replacing the body coil by an optimized parallel transmit excitation with same nominal flip angle. In the benchtop, up to 90% heating reduction was measured when implementing the constrained minimization algorithm with the additional degree of freedom given by independent amplitude control. The computation of the optimum phase and amplitude values was executed in just 12 s using a standard CPU. The results of the FDTD simulations showed similar trend of the local SAR at the tip of the wire and measured temperature as well as to a quadratic function of W, confirming the validity of the quasistatic approach for the presented problem at 64 MHz. Imaging and heating reduction of the guidewire were successfully performed in vivo with the proposed hardware and phase control. Conclusions: Phantom and in vivo data demonstrated that additional degrees of freedom in a parallel transmission system can be used to control RF induced heating in long conductors. A novel constrained optimization approach to reduce device heating was also presented that can be run in just few seconds and therefore could be added to an iMRI protocol to improve RF safety.« less
Phase control and fast start-up of a magnetron using modulation of an addressable faceted cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browning, J., E-mail: JimBrowning@BoiseState.edu; Fernandez-Gutierrez, S.; Lin, M. C.
The use of an addressable, faceted cathode has been proposed as a method of modulating current injection in a magnetron to improve performance and control phase. To implement the controllable electron emission, five-sided and ten-sided faceted planar cathodes employing gated field emitters are considered as these emitters could be fabricated on flat substrates. For demonstration, the conformal finite-difference time-domain particle-in-cell simulation, as implemented in VORPAL, has been used to model a ten-cavity, rising sun magnetron using the modulated current sources and benchmarked against a typical continuous current source. For the modulated, ten-sided faceted cathode case, the electrons are injected frommore » three emitter elements on each of the ten facets. Each emitter is turned ON and OFF in sequence at the oscillating frequency with five emitters ON at one time to drive the five electron spokes of the π-mode. The emitter duty cycle is then 1/6th the Radio-Frequency (RF) period. Simulations show a fast start-up time as low as 35 ns for the modulated case compared to 100 ns for the continuous current cases. Analysis of the RF phase using the electron spoke locations and the RF magnetic field components shows that the phase is controlled for the modulated case while it is random, as typical, for the continuous current case. Active phase control during oscillation was demonstrated by shifting the phase of the electron injection 180° after oscillations started. The 180° phase shift time was approximately 25 RF cycles.« less
Measurement of short transverse relaxation times by pseudo-echo nutation experiments
NASA Astrophysics Data System (ADS)
Ferrari, Maude; Moyne, Christian; Canet, Daniel
2018-07-01
Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.
Measurement of short transverse relaxation times by pseudo-echo nutation experiments.
Ferrari, Maude; Moyne, Christian; Canet, Daniel
2018-05-03
Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R 1 and R 2 . A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R 1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way. Copyright © 2018 Elsevier Inc. All rights reserved.
Travers, Joseph B; Herman, Kenneth; Travers, Susan P
2010-04-01
The appetitive component of feeding is controlled by forebrain substrates, but the consummatory behaviors of licking, mastication, and swallowing are organized in the brainstem. The target of forebrain appetitive signals is unclear but likely includes regions of the medullary reticular formation (RF). This study was undertaken to determine the necessity of different RF regions for mastication induced by a descending appetitive signal. We measured solid food intake in response to third ventricular (3V) infusions of the orexigenic peptide neuropeptide Y 3-36 in awake, freely moving rats and determined whether focal RF infusions of the GABAA agonist muscimol suppressed eating. RF infusions were centered in either the lateral tegmental field, comprising the intermediate (IRt) and parvocellular (PCRt) RF, or in the nucleus gigantocellularis (Gi). Infusions of NPY 3-36 (5 microg/5 microl) into 3V significantly increased feeding of solid food over a 90-min period compared with the noninfused condition (4.3 g +/- 0.56 vs. 0.57 g +/- 0.57, p < .001). NPY 3-36-induced food intake was suppressed (1.7 g +/- 0.48) by simultaneous infusions of muscimol (0.6 mM/100 nl) into the IRt/PCRt (p < .01). Coincident with the decrease in feeding was a decrease in the amplitude of anterior digastric muscle contractions in response to intraoral sucrose infusions. In contrast, infusions of muscimol into Gi had no discernible effect on food intake or EMG amplitude. These data suggest that the IRt/PCRt is essential for forebrain-initiated mastication, but that the Gi is not a necessary link in this pathway.
NASA Astrophysics Data System (ADS)
Siddiqui, Aleem; Reinke, Charles; Shin, Heedeuk; Jarecki, Robert L.; Starbuck, Andrew L.; Rakich, Peter
2017-05-01
The performance of electronic systems for radio-frequency (RF) spectrum analysis is critical for agile radar and communications systems, ISR (intelligence, surveillance, and reconnaissance) operations in challenging electromagnetic (EM) environments, and EM-environment situational awareness. While considerable progress has been made in size, weight, and power (SWaP) and performance metrics in conventional RF technology platforms, fundamental limits make continued improvements increasingly difficult. Alternatively, we propose employing cascaded transduction processes in a chip-scale nano-optomechanical system (NOMS) to achieve a spectral sensor with exceptional signal-linearity, high dynamic range, narrow spectral resolution and ultra-fast sweep times. By leveraging the optimal capabilities of photons and phonons, the system we pursue in this work has performance metrics scalable well beyond the fundamental limitations inherent to all electronic systems. In our device architecture, information processing is performed on wide-bandwidth RF-modulated optical signals by photon-mediated phononic transduction of the modulation to the acoustical-domain for narrow-band filtering, and then back to the optical-domain by phonon-mediated phase modulation (the reverse process). Here, we rely on photonics to efficiently distribute signals for parallel processing, and on phononics for effective and flexible RF-frequency manipulation. This technology is used to create RF-filters that are insensitive to the optical wavelength, with wide center frequency bandwidth selectivity (1-100GHz), ultra-narrow filter bandwidth (1-100MHz), and high dynamic range (70dB), which we will present. Additionally, using this filter as a building block, we will discuss current results and progress toward demonstrating a multichannel-filter with a bandwidth of < 10MHz per channel, while minimizing cumulative optical/acoustic/optical transduced insertion-loss to ideally < 10dB. These proposed metric represent significant improvements over RF-platforms.
APPARATUS FOR REGULATING HIGH VOLTAGE
Morrison, K.G.
1951-03-20
This patent describes a high-voltage regulator of the r-f type wherein the modulation of the r-f voltage is accomplished at a high level, resulting in good stabilization over a large range of load conditions.
A high performance DAC /DDS daughter module for the RHIC LLRF platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, T.; Harvey, M.; Narayan, G.
The RHIC LLRF upgrade is a flexible, modular system. Output signals are generated by a custom designed XMC card with 4 high speed digital to analog (DAC) converters interfaced to a high performance field programmable gate array (FPGA). This paper discusses the hardware details of the XMC DAC board as well as the implementation of a low noise rf synthesizer with digital IQ modulation. This synthesizer also provides injection phase cogging and frequency hop rebucketing capabilities. A new modular RHIC LLRF system was recently designed and commissioned based on custom designed XMC cards. As part of that effort a highmore » speed, four channel DAC board was designed. The board uses Maxim MAX5891 16 bit DACs with a maximum update rate of 600 Msps. Since this module is intended to be used for many different systems throughout the Collider Accelerator complex, it was designed to be as generic as possible. One major application of this DAC card is to implement digital synthesizers to provide drive signals to the various cavities at RHIC. Since RHIC is a storage ring with stores that typically last many hours, extremely low RF noise is a critical requirement. Synchrotron frequencies at RHIC range from a few hertz to several hundred hertz depending on the species and point in the acceleration cycle so close in phase noise is a major concern. The RHIC LLRF system uses the Update Link, a deterministic, high speed data link that broadcasts the revolution frequency and the synchronous phase angle. The digital synthesizers use this data to generate a properly phased analog drive signal. The synthesizers must also provide smooth phase shifts for cogging and support frequency shift rebucketing. One additional feature implemented in the FPGA is a digital waveform generator (WFG) that generates I and Q data pairs based on a user selected amplitude and phase profile as a function of time.« less
M-wave normalization of EMG signal to investigate heat stress and fatigue.
Girard, Olivier; Bishop, David J; Racinais, Sébastien
2018-05-01
We examined the extent to which peripheral changes affect EMG signal adjustments during repeated sprinting in temperate and hot conditions. Randomised, crossover study. Ten males performed 10×6-s 'all-out' cycling sprints (recovery=30s) in either a temperate (24°C/30%rH) or a hot (35°C/40%rH) environment with concomitant surface EMG recordings of the vastus lateralis (VL) and rectus femoris (RF). In addition, peak-to-peak M-wave amplitudes were obtained for each muscle after each sprint (i.e., 15s into recovery). For both the VL and RF muscles RMS decreased across sprint repetitions (P<0.01), while significantly lower values for the VL (P=0.012), but not the RF (P=0.096), occurred in hot vs. temperate conditions. M-wave-normalised RMS for VL muscle decreased across sprint repetitions (P=0.030), with no condition or interaction effects (both P>0.621). M-wave-normalised RMS for the RF muscle was lower in the heat (P<0.034), with no significant sprint or interaction effects (both P>0.240). Controlling for changes in maximal M-wave amplitude of the quadriceps muscles after each bout of a repeated cycling exercise in hot and temperate conditions allows researchers to account for fatigue- and/or heat-induced neural and peripheral adjustments. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Passive and electro-optic polymer photonics and InP electronics integration
NASA Astrophysics Data System (ADS)
Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.
2015-05-01
Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.
High efficiency RF amplifier development over wide dynamic range for accelerator application
NASA Astrophysics Data System (ADS)
Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber
2017-10-01
Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.
NASA Astrophysics Data System (ADS)
Zong, Kang; Zhu, Jiang
2018-04-01
In this paper, we present a multiband phase-modulated (PM) radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide the transparent transport of multiband radio frequency (RF) signals with higher linearity and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The expressions of RF gain, noise figure (NF) and third-order spurious-free dynamic range (SFDR) are derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. The optimal power of local oscillator (LO) optical signal is also derived theoretically. Numerical results for RF gain, NF and third-order SFDR are given for demonstration. Results indicate that the gain of the optical preamplifier and the power of LO optical signal should be optimized to obtain the satisfactory performance.
Systems, Methods and Apparatus for Position Sensor Digital Conditioning Electronics
NASA Technical Reports Server (NTRS)
Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor)
2012-01-01
Systems, methods and apparatus are provided through which in some implementations determine the amplitude of an amplitude modulated signal, modulated by the position of an object being sensed. In some aspects, the apparatus accepts an excitation signal and the amplitude modulated signal and divides the amplitude modulated by the excitation signal to produce an output signal that is proportional to the position of the object being sensed. In other aspects, the division is performed only when the excitation signal is non-zero, such as close to the peaks in the excitation signal. In other aspects, the excitation signal and amplitude modulated signal are degraded due to an air gap and the degraded signals are used to correct for amplitude fluctuations due to the air gap, and produce an output signal, tolerant of the air gaps, that is proportional to the position of the object being sensed.
NASA Technical Reports Server (NTRS)
Downey, Joseph A.
2004-01-01
The Jupiter Icy Moons Orbiter (JIMO) is set to launch between the years 2012 and 2015. It will possibly utilize a nuclear reactor power source and ion engines as it travels to the moons of Jupiter. The nuclear reactor will produce hundreds of kilowatts of power for propulsion, communication and various scientific instruments. Hence, the RF amplification devices aboard will be able to operate at a higher power level and data rate. The initial plan for the communications system is for an output of 1000 watts of RF power, a data rate of at least 10 megabits a second, and a frequency of 32 GHz. A higher data rate would be ideal to fully utilize the instruments aboard JIMO. At NASA Glenn, one of our roles in the JIMO project is to demonstrate RF power combining using multiple traveling wave tubes (TWT). In order for the power of separate TWT s to be combined, the RF output waves from each must be in-phase and have the same amplitude. Since different tubes act differently, we had to characterize each tube using a Network Analyzer. We took frequency sweeps and power sweeps to characterize each tube to ensure that they will behave similarly under the same conditions. The 200 watt Dornier tubes had been optimized to run at a lower power level (120 watts) for their extensive use in the ACTS program, so we also had to experiment with adjusting the voltage settings on several internal components (helix, anode, collector) of the tubes to reach the full 200 watt potential. from the ACTS program. Phase shifters and power attenuators were placed in the waveguide circuit at the inputs to the tubes so that adjustments could be made individually to match them exactly. A magic tee was used to route and combine the amplified electromagnetic RF waves on the tube output side. The demonstration of 200 watts of combined power was successful with efficiencies greater than 90% over a 500 MHz bandwidth. The next step will be to demonstrate the use of three amplifiers using two magic tees by adding a 200 watt Dornier tube to the Varian and Logimetrics combined setup for a total of 400 watts. After that we will use two 200 watt Dorniers for 400 watts and eventually four 200 watt Dornier tubes to demonstrate 800 watts. After demonstrating the success of power combining, we will need to verify the integrity of a modulated signal sent through the combined tubes. The purpose will be to see what effects separating and recombining will have on the modulated signal and also what effect it will have on combining efficiency. A Bit Error Rate (BER) will be determined by a Bit Error Rate Tester (BERT) by comparing the random information it transmits to what it receives back. The process began with two 100 watt tubes, a Varian and a Logimetrics, salvaged
Perera, Reshani H.; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M.; Broome, Ann-Marie
2013-01-01
Purpose Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Methods Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. Results The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43°C) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Conclusion Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation. PMID:23943542
Perera, Reshani H; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M; Broome, Ann-Marie; Exner, Agata A
2014-06-01
Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43 ºC) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation.
Stepp, Cara E; Matsuoka, Yoky
2012-01-01
Incorporating sensory feedback with prosthetic devices is now possible, but the optimal methods of providing such feedback are still unknown. The relative utility of amplitude and pulse train frequency modulated stimulation paradigms for providing vibrotactile feedback for object manipulation was assessed in 10 participants. The two approaches were studied during virtual object manipulation using a robotic interface as a function of presentation order and a simultaneous cognitive load. Despite the potential pragmatic benefits associated with pulse train frequency modulated vibrotactile stimulation, comparison of the approach with amplitude modulation indicates that amplitude modulation vibrotactile stimulation provides superior feedback for object manipulation.
Phase-synchroniser based on gm-C all-pass filter chain with sliding mode control
NASA Astrophysics Data System (ADS)
Mitić, Darko B.; Jovanović, Goran S.; Stojčev, Mile K.; Antić, Dragan S.
2015-03-01
Phase-synchronisers have many applications in VLSI circuit designs. They are used in CMOS RF circuits including phase (de)modulators, phase recovery circuits, multiphase synthesis, etc. In this article, a phase-synchroniser based on gm-C all-pass filter chain with sliding mode control is presented. The filter chain provides good controllable delay characteristics over the full range of phase and frequency regulation, without deterioration of input signal amplitude and waveform, while the sliding mode control enables us to achieve fast and predetermined finite locking time. IHP 0.25 µm SiGe BiCMOS technology has been used in design and verification processes. The circuit operates in the frequency range from 33 MHz up to 150 MHz. Simulation results indicate that it is possible to achieve very fast synchronisation time period, which is approximately four time intervals of the input signal during normal operation, and 20 time intervals during power-on.
Illumination, data transmission, and energy harvesting: the threefold advantage of VLC.
Sandalidis, Harilaos G; Vavoulas, Alexander; Tsiftsis, Theodoros A; Vaiopoulos, Nicholas
2017-04-20
Visible light communication (VLC) is a promising technology that meets illumination and information transmission requirements in an indoor environment. Because light waves convey energy, a VLC link may exploit that fact for energy harvesting purposes. In this context, a single light emitting diode lamp located at a close distance over a tablet or laptop PC can potentially offer simultaneous lighting, Internet access, and battery recharging without cables. The present study introduces this threefold role of VLC systems by properly adapting some energy harvesting receiver architectures recently launched for usage in RF communications. The rate-energy trade-off for these architectures is revealed in order to maximize the efficiency of simultaneous energy and information reception, by elaborating on indicative numerical results. Furthermore, the performance in terms of the bit-error rate for pulse amplitude modulated signals is investigated. The results obtained offer some useful insights into the effective optical receiver implementation from the aspect of information theory.
Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan
2018-05-21
In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Amplitude-modulation detection by gerbils in reverberant sound fields.
Lingner, Andrea; Kugler, Kathrin; Grothe, Benedikt; Wiegrebe, Lutz
2013-08-01
Reverberation can dramatically reduce the depth of amplitude modulations which are critical for speech intelligibility. Psychophysical experiments indicate that humans' sensitivity to amplitude modulation in reverberation is better than predicted from the acoustic modulation depth at the receiver position. Electrophysiological studies on reverberation in rabbits highlight the contribution of neurons sensitive to interaural correlation. Here, we use a prepulse-inhibition paradigm to quantify the gerbils' amplitude modulation threshold in both anechoic and reverberant virtual environments. Data show that prepulse inhibition provides a reliable method for determining the gerbils' AM sensitivity. However, we find no evidence for perceptual restoration of amplitude modulation in reverberation. Instead, the deterioration of AM sensitivity in reverberant conditions can be quantitatively explained by the reduced modulation depth at the receiver position. We suggest that the lack of perceptual restoration is related to physical properties of the gerbil's ear input signals and inner-ear processing as opposed to shortcomings of their binaural neural processing. Copyright © 2013 Elsevier B.V. All rights reserved.
500 MHz narrowband beam position monitor electronics for electron synchrotrons
NASA Astrophysics Data System (ADS)
Mohos, I.; Dietrich, J.
1998-12-01
Narrowband beam position monitor electronics were developed in the Forschungszentrum Jülich-IKP for the orbit measurement equipment used at ELSA Bonn. The equipment uses 32 monitor chambers, each with four capacitive button electrodes. The monitor electronics, consisting of an rf signal processing module (BPM-RF) and a data acquisition and control module (BPM-DAQ), sequentially process and measure the monitor signals and deliver calculated horizontal and vertical beam position data via a serial network.
Transport of ions using RF Carpets in Helium Gas
NASA Astrophysics Data System (ADS)
Lambert, Keenan; Kelly, James; Brodeur, Maxime
2017-09-01
Radio-Frequency (RF) carpet are critical components of large volume gas cells used to thermalize radioactive ion beams produced at in-flight facilities. RF carpets are formed by a series of co-centric conductive rings on which an alternating potential (in the radio-frequency range) is applied with opposite polarity on adjacent rings. This results in a strong repelling force that keep the ions a certain distance from the carpet. The transport of ions using RF carpet is accomplished using either a potential gradient applied on the individual all strips or traveling wave (using the so-called `ion surfing method'). A test setup has been constructed at the University of Notre Dame to perform studies on the repelling of ions using RF carpets. This test setup has recently been improved by the addiction of circuitry elements allowing the transport of ions using the ion surfing method. The developed circuitry, together with transport results for various ion beam currents, electric force applied on the ions, and traveling wave amplitude and speed will be presented
NASA Astrophysics Data System (ADS)
Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.
2017-06-01
A large performance improvement of polymer phase modulators is reported by using buried in-plane coupled microstrip (CMS) driving electrodes, instead of standard vertical Micro-Strip electrodes. The in-plane CMS driving electrodes have both low radio frequency (RF) losses and high overlap integral between optical and RF waves compared to the vertical designs. Since the optical waveguide and CMS electrodes are located in the same plane, optical injection and microwave driving access cannot be separated perpendicularly without intersection between them. A via-less transition between grounded coplanar waveguide access and CMS driving electrodes is introduced in order to provide broadband excitation of optical phase modulators and avoid the intersection of the optical core and the electrical probe. Simulation and measurement results of the benzocyclobutene polymer as a cladding material and the PMMI-CPO1 polymer as an optical core with an electro-optic coefficient of 70 pm/V demonstrate a broadband operation of 67 GHz using travelling-wave driving electrodes with a half-wave voltage of 4.5 V, while satisfying its low RF losses and high overlap integral between optical and RF waves of in-plane CMS electrodes.
NASA Astrophysics Data System (ADS)
Zhang, S.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P. J.
2015-08-01
The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon +2% O2. The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent.
Range gated strip proximity sensor
McEwan, T.E.
1996-12-03
A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.
Range gated strip proximity sensor
McEwan, Thomas E.
1996-01-01
A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.
Near wall effects on flexible splitter plate behind a cylinder
NASA Astrophysics Data System (ADS)
Venkat Narayanan, K.; Vengadesan, S.; Murali, K.
2017-11-01
Vortex induced vibrations(VIV) of a rigid circular cylinder with a flexible plate attached to its rear end, close to the plane wall is numerically studied for Re = 200. Amplitude modulations were observed in the response of the flexible plate at the ground distance of G/D=0.5. Numerical simulations were conducted for a range of reduced velocities Ur(3,4,5 and 6), which appropriately captures the synchronization range of VIV of the structure. At Ur=3 there is no significant amplitude modulation. As Ur is increased further, the modulation appears. The modulation appears symmetric about the peak amplitude for successive cycles at Ur=4. The phase plots of lift coefficient CL and plate tip displacement revealed the change in sign of energy transfer between the plate and the wake. Amplitude modulation is reflected in the interaction of shed vortices and the plane wall. Shed vortices are convected parallel to the wall when the amplitude of the plate rises to its local maximum during modulation. During the growth and damping phase of the amplitudes in each modulation cycle, the vortex shedding is observed to be oblique towards the wall.
Multidimensional signal modulation and/or demodulation for data communications
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2008-03-04
Systems and methods are described for multidimensional signal modulation and/or demodulation for data communications. A method includes modulating a carrier signal in a first domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; modulating the carrier signal in a second domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; and modulating the carrier signal in a third domain selected from the group consisting of phase, frequency, amplitude, polarization and spread.
Lin, Han; Jia, Baohua; Gu, Min
2011-07-01
An axially super-resolved quasi-spherical focal spot can be generated by focusing an amplitude-modulated radially polarized beam through a high numerical aperture objective. A method based on the unique depolarization properties of a circular focus is proposed to design the amplitude modulation. The generated focal spot shows a ratio of x:y:z=1:1:1.48 for the normalized FWHM in three dimensions, compared to that of x:y:z=1:0.74:1.72 under linear polarization (in the x direction) illumination. Moreover, the focusable light efficiency of the designed amplitude-modulated beam is 65%, which is more than 3 times higher than the optimized case under linear polarization and thus make the amplitude-modulated radial polarization beam more suitable for a wide range of applications.
Synchrotron oscillation effects on an rf-solenoid spin resonance
NASA Astrophysics Data System (ADS)
Benati, P.; Chiladze, D.; Dietrich, J.; Gaisser, M.; Gebel, R.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Kulessa, P.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Öllers, D.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Valdau, Yu.; Weidemann, Ch.; Wüstner, P.
2012-12-01
New measurements are reported for the time dependence of the vertical polarization of a 0.97GeV/c deuteron beam circulating in a storage ring and perturbed by an rf solenoid. The storage ring is the cooler synchrotron (COSY) located at the Forschungszentrum Jülich. The beam polarization was measured continuously using a 1.5 cm thick carbon target located at the edge of the circulating deuteron beam and the scintillators of the EDDA detector. An rf solenoid mounted on the ring was used to generate fields at and near the frequency of the 1-Gγ spin resonance. Measurements were made of the vertical beam polarization as a function of time with the operation of the rf solenoid in either fixed or continuously variable frequency mode. Using rf-solenoid strengths as large as 2.66×10-5revolutions/turn, slow oscillations (˜1Hz) were observed in the vertical beam polarization. When the circulating beam was continuously electron cooled, these oscillations completely reversed the polarization and showed no sign of diminishing in amplitude. But for the uncooled beam, the oscillation amplitude was damped to nearly zero within a few seconds. A simple spin-tracking model without the details of the COSY ring lattice was successful in reproducing these oscillations and demonstrating the sensitivity of the damping to the magnitude of the synchrotron motion of the beam particles. The model demonstrates that the characteristic features of measurements made in the presence of large synchrotron oscillations are distinct from the features of such measurements when made off resonance. These data were collected in preparation for a study of the spin coherence time, a beam property that needs to become long to enable a search for an electric dipole moment using a storage ring.
NASA Astrophysics Data System (ADS)
Shinohara, N.; Matsumoto, H.
2004-12-01
We need a microwave power transmitter with light weight and high DC-RF conversion efficiency for an economical SSPS (Space Solar Power System). We need a several g/W for a microwave power transmission (MPT) system with a phased array with 0.0001 degree of beam control accuracy (=tan-1 (100m/36,000km)) and over 80 % of DC-RF conversion efficiency when the weight of the 1GW-class SPS is below a several thousand ton - a several tens of thousand ton. We focus a microwave tube, especially magnetron by economical reason and by the amount of mass-production because it is commonly used for microwave oven in the world. At first, we have developed a phase controlled magnetron (PCM) with different technologies from what Dr. Brown developed. Next we have developed a phase and amplitude controlled magnetron (PACM). For the PACM, we add a feedback to magnetic field of the PCM with an external coil to control and stabilize amplitude of the microwave. We succeed to develop the PACM with below 10-6 of frequency stability and within 1 degree of an error in phase and within 1% of amplitude. We can control a phase and amplitude of the PACM and we have developed a phased array the PCMs. With the PCM technology, we have developed a small light weight MPT transmitter COMET (Compact Microwave Energy Transmitter) with consideration of heat radiation for space use and with consideration of mobility to space.
Phase coded, micro-power impulse radar motion sensor
McEwan, Thomas E.
1996-01-01
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.
Phase coded, micro-power impulse radar motion sensor
McEwan, T.E.
1996-05-21
A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.
Phase-locking dynamics in optoelectronic oscillator
NASA Astrophysics Data System (ADS)
Banerjee, Abhijit; Sarkar, Jayjeet; Das, NikhilRanjan; Biswas, Baidyanath
2018-05-01
This paper analyzes the phase-locking phenomenon in single-loop optoelectronic microwave oscillators considering weak and strong radio frequency (RF) signal injection. The analyses are made in terms of the lock-range, beat frequency and the spectral components of the unlocked-driven oscillator. The influence of RF injection signal on the frequency pulling of the unlocked-driven optoelectronic oscillator (OEO) is also studied. An approximate expression for the amplitude perturbation of the oscillator is derived and the influence of amplitude perturbation on the phase-locking dynamics is studied. It is shown that the analysis clearly reveals the phase-locking phenomenon and the associated frequency pulling mechanism starting from the fast-beat state through the quasi-locked state to the locked state of the pulled OEO. It is found that the unlocked-driven OEO output signal has a very non-symmetrical sideband distribution about the carrier. The simulation results are also given in partial support to the conclusions of the analysis.
Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser
NASA Astrophysics Data System (ADS)
Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.
2017-12-01
A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.
Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles
Meyer, Arne F.; Diepenbrock, Jan-Philipp; Happel, Max F. K.; Ohl, Frank W.; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design. PMID:24699631
Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design.
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Golubyatnikov, G.
1993-10-01
Radio frequency (rf) magnetic fluctuations B˜ have been measured with loop antennas in a large pulsed discharge plasma column (ne≲1012 cm-3, kTe≲3 eV, B0≂20 G, Ar, 2×10-4 Torr, 1 m diam×2.5 m length). A 1/f-like noise spectrum is observed in the whistler wave regime (ωce1/2ωci1/2<ω<ωce) both in the Maxwellian afterglow plasma and in the active discharge which contains energetic (45 eV) electrons. Discrete emission lines at the electron cyclotron frequency and its harmonics are found only in the presence of spiraling energetic electrons. These are naturally present in the active discharge but have also been injected as a controlled oblique electron beam into the Maxwellian afterglow plasma. In the latter case up to 15 cyclotron harmonic lines with weak amplitude decay B˜z(ω) are generated in the beam flux tube. From two-point correlation measurements it is shown that the line spectrum is due to ballistic beam modes rather than plasma eigenmodes driven unstable by the beam. The lines evolve from broadband thermal current fluctuations of the beam through a filtering effect. Those fluctuations which rotate synchronously with the ordered cyclotron motion (ω=nωc) constructively interfere (k∥=0) and produce coherent solenoidal rf fields, while others interfere destructively. Axial and azimuthal phase velocity measurements for rf-modulated beams clearly demonstrate the filtering effect. In the present parameter regime (ωp≫ωc) the fluctuations are evanescent and localized near the electron flux tube (rc≳c/ωp). In low density plasmas the fluctuations may couple to propagating electromagnetic waves and be observable externally as in earlier observations by Landauer or Ikegami.
NASA Astrophysics Data System (ADS)
Przygoda, K.; Piotrowski, A.; Jablonski, G.; Makowski, D.; Pozniak, T.; Napieralski, A.
2009-08-01
Pulsed operation of high gradient superconducting radio frequency (SCRF) cavities results in dynamic Lorentz force detuning (LFD) approaching or exceeding the bandwidth of the cavity of order of a few hundreds of Hz. The resulting modulation of the resonance frequency of the cavity is leading to a perturbation of the amplitude and phase of the accelerating field, which can be controlled only at the expense of RF power. Presently, at various labs, a piezoelectric fast tuner based on an active compensation scheme for the resonance frequency control of the cavity is under study. The tests already performed in the Free Electron Laser in Hamburg (FLASH), proved the possibility of Lorentz force detuning compensation by the means of the piezo element excited with the single period of sine wave prior to the RF pulse. The X-Ray Free Electron Laser (X-FEL) accelerator, which is now under development in Deutsche Elektronen-Synchrotron (DESY), will consists of around 800 cavities with a fast tuner fixture including the actuator/sensor configuration. Therefore, it is necessary to design a distributed control system which would be able to supervise around 25 RF stations, each one comprised of 32 cavities. The Advanced Telecomunications Computing Architecture (ATCA) was chosen to design, develop, and build a Low Level Radio Frequency (LLRF) controller for X-FEL. The prototype control system for Lorentz force detuning compensation was designed and developed. The control applications applied in the system were fitted to the main framework of interfaces and communication protocols proposed for the ATCA-based LLRF control system. The paper presents the general view of a designed control system and shows the first experimental results from the tests carried out in FLASH facility. Moreover, the possibilities for integration of the piezo control system to the ATCA standards are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, Sumit; Seth, Sudeshna; Mandal, Aditya
2013-02-15
Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTemore » X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.« less
Wang, D.; Antipov, S.; Jing, C.; ...
2016-02-05
Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less
NASA Astrophysics Data System (ADS)
Sinder, M.; Pelleg, J.; Meerovich, V.; Sokolovsky, V.
2018-03-01
RF heating kinetics of a nano-graphene layer/silicon substrate structure is analyzed theoretically as a function of the thickness and sheet resistance of the graphene layer, the dimensions and thermal parameters of the structure, as well as of cooling conditions and of the amplitude and frequency of the applied RF magnetic field. It is shown that two regimes of the heating can be realized. The first one is characterized by heating of the structure up to a finite temperature determined by equilibrium between the dissipated loss power caused by induced eddy-currents and the heat transfer to environment. The second regime corresponds to a fast unlimited temperature increase (heat explosion). The criterions of realization of these regimes are presented in the analytical form. Using the criterions and literature data, it is shown the possibility of the heat explosion regime for a graphene layer/silicon substrate structure at RF heating.
Responses to amplitude modulated infrared stimuli in the guinea pig inferior colliculus
NASA Astrophysics Data System (ADS)
Richter, Claus-Peter; Young, Hunter
2013-03-01
Responses of units in the central nucleus of the inferior colliculus of the guinea pig were recorded with tungsten electrodes. The set of data presented here is limited to high stimulus levels. The effect of changing the modulation frequency and the modulation depth was explored for acoustic and laser stimuli. The selected units responded to sinusoidal amplitude modulated (AM) tones, AM trains of clicks, and AM trains of laser pulses with a modulation of their spike discharge. At modulation frequencies of 20 Hz, some units tended to respond with 40 Hz to the acoustic stimuli, but only at 20 Hz for the trains of laser pulses. For all modes of stimulation the responses revealed a dominant response to the first cycle of the modulation, with decreasing number of action potential during successive cycles. While amplitude modulated tone bursts and amplitude modulated trains of acoustic clicks showed similar patterns, the response to trains of laser pulses was different.
Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.
Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo
2016-11-14
We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazinette, R.; SIAME, Université de Pau et des Pays de l'Adour, Pau; Paillol, J.
The aim of this paper is to better understand the transition from Townsend to radio-frequency homogeneous dielectric barrier discharge (DBD) at atmospheric pressure. The study is done in an Ar/NH{sub 3} Penning mixture for an electrode configuration adapted to roll-to-roll plasma surface treatment. The study was led in a frequency range running from 50 kHz up to 8.3 MHz leading to different DBD modes with a 1 mm gas gap: Glow (GDBD), Townsend (TDBD), and Radio-frequency (RF-DBD). In the frequency range between TDBD and RF-DBD, from 250 kHz to 2.3 MHz, additional discharges are observed outside the inter-electrode gas gap. Because each high voltagemore » electrode are inside a dielectric barrel, these additional discharges occur on the side of the barrel where the gap is larger. They disappear when the RF-DBD mode is attained in the 1 mm inter-electrode gas gap, i.e., for frequencies equal or higher than 3 MHz. Fast imaging and optical emission spectroscopy show that the additional discharges are radio-frequency DBDs while the inter-electrode discharge is a TDBD. The RF-DBD discharge mode is attained when electrons drift becomes low enough compared to the voltage oscillation frequency to limit electron loss at the anode. To check that the additional discharges are due to a larger gas gap and a lower voltage amplitude, the TDBD/RF-DBD transition is investigated as a function of the gas gap and the applied voltage frequency and amplitude. Results show that the increase in the frequency at constant gas gap or in the gas gap at constant frequency allows to obtain RF-DBD instead of TDBD. At low frequency and large gap, the increase in the applied voltage allows RF-DBD/TDBD transition. As a consequence, an electrode configuration allowing different gap values is a solution to successively have different discharge modes with the same applied voltage.« less
NASA Astrophysics Data System (ADS)
Ito, Kazuhito; Nakagawa, Seiji
2015-07-01
A novel hearing aid system utilizing amplitude-modulated bone-conducted ultrasound (AM-BCU) is being developed for use by profoundly deaf people. However, there is a lack of research on the acoustic aspects of AM-BCU hearing. In this study, acoustic fields in the ear canal under AM-BCU stimulation were examined with respect to the self-demodulation effect of amplitude-modulated signal components generated in the ear canal. We found self-demodulated signals with an audible sound pressure level related to the amplitude-modulated signal components of bone-conducted ultrasonic stimulation. In addition, the increases in the self-demodulated signal levels at low frequencies in the ear canal after occluding the ear canal opening, i.e., the positive occlusion effect, indicate the existence of a pathway by which the self-demodulated signals pass through the aural cartilage and soft tissue, and radiate into the ear canal.
NASA Astrophysics Data System (ADS)
Teymoori, Gholamhasan; Pahari, Bholanath; Viswanathan, Elumalai; Edén, Mattias
2013-11-01
By using a symmetry-based R281R28-1 double-quantum (2Q) dipolar recoupling sequence, we demonstrate high-order multiple-quantum coherence (MQC) excitation at fast magic-angle spinning (MAS) frequencies up to 34 kHz. This scheme combines several attractive features, such as a relatively high dipolar scaling factor, good compensation to rf-errors, isotropic and anisotropic chemical shifts, as well as an ultra-low radio-frequency (rf) power requirement. The latter translates into nutation frequencies below 30 kHz for MAS rates up to 60 kHz, thereby permitting rf application for very long excitation periods without risk of damaging the NMR probehead or sample, while the compensation to chemical shifts improves as the MAS rate increases. 31P MQC spin counting is demonstrated on powders of calcium hydroxyapatite (Ca5(PO4)3OH) and anhydrous sodium diphosphate (Na4P2O7), from which all even coherence orders up to 30 and 14 were detected, respectively, over the respective MAS ranges of 15-24 kHz and 20-34 kHz. The amplitude distributions among the 31P MQC orders depend on the precise nutation frequency during recoupling, despite that the highest detected order was relatively insensitive to this parameter. An observed gradual transition from a Gaussian to exponential functionality of the MQC amplitude-profile is discussed in relation to the prevailing approach to derive spin-cluster sizes by fitting the MQC amplitude-distribution to a Gaussian decay, where minor systematic deviations between the model and experimental data are frequently reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saat, N. K.; Dean, P.; Khanna, S. P.
2015-04-24
We demonstrate new switching circuit for difference-intensity THz quantum cascade laser (QCL) imaging by amplitude modulation and lock in detection. The switching circuit is designed to improve the frequency modulation so that it can stably lock the amplitude modulation of the QCL and the detector output. The combination of a voltage divider and a buffer in switching circuit to quickly switch the amplitude of the QCL biases of 15.8 V and 17.2 V is successfully to increase the frequency modulation up to ∼100 Hz.
Dawadi, Bishnu; Wang, Xinghong; Xiao, Rong; Muhammad, Abrar; Hou, Youming; Shi, Zhanghong
2018-09-01
Many notorious insect pests live in the symbiotic associations with gut microbiota. However, the mechanisms underlying how they host their gut microbiota are unknown. Most gut bacteria can release peptidoglycan (PGN) which is an important antigen to activate the immune response. Therefore, how to keep the appropriate gut immune intensity to host commensals while to efficiently remove enteropathogens is vital for insect health. This study is aimed at elucidating the roles of an amidase PGRP, Rf PGRP-LB, in maintaining the gut-microbe symbiosis of Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier. RfPGRP-LB is a secreted protein containing a typical PGRP domain. The existence of five conservative amino acid residues, being required for amidase activity, showed that RfPGRP-LB is a catalytic protein. Expression analysis revealed abundance of RfPGRP-LB transcripts in gut was dramatically higher than those in other tissues. RfPGRP-LB could be significantly induced against the infection of Escherichia coli. In vitro assays revealed that rRfPGRP-LB impaired the growth of E. coli and agglutinated bacteria cells obviously, suggesting RfPGRP-LB is a pathogen recognition receptor and bactericidal molecule. RfPGRP-LB knockdown reduced the persistence of E. coli in gut and load of indigenous gut microbiota significantly. Furthermore, the community structure of indigenous gut microbiota was also intensively altered by RfPGRP-LB silence. Higher levels of the antimicrobial peptide, attacin, were detected in guts of RfPGRP-LB silenced larvae than controls. Collectively, RfPGRP-LB plays multiple roles in modulating the homeostasis of RPW gut microbiota not only by acting as a negative regulator of mucosal immunity through PGN degradation but also as a bactericidal effector to prevent overgrowth of commensals and persistence of noncommensals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Broadband metasurface holograms: toward complete phase and amplitude engineering
Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2016-01-01
As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519
Broadband metasurface holograms: toward complete phase and amplitude engineering.
Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2016-09-12
As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.
Plasma based optical guiding of an amplitude-modulated electromagnetic beam
NASA Astrophysics Data System (ADS)
Singh, Mamta; Gupta, D. N.
2015-06-01
We propose the stronger optical guiding of an electromagnetic beam in a plasma by considering the amplitude modulation of the fundamental beam. With the advent of high power source of electromagnetic radiation, the electron velocity in a plasma may become quite large (comparable to the light velocity in free space). Thus, the effect of relativistic mass variation must be taken into account. The relativistic effect of the laser propagation in a plasma leads to self-focusing because of the dielectric constant of a plasma being an increasing function of the intensity. The ponderomotive force of the laser beam pushes the electrons out of the region of high intensity, which reduces the local electron density and increases the plasma dielectric function further, leading to even more selffocusing of the laser. In this work, we consider a short pulse laser of finite spot size as an amplitude modulation in time. Our findings show an efficient optical guiding mechanism based on amplitude modulation signal propagation in plasmas. Medium nonlinearity becomes stronger if an amplitude modulated beam is introduced, which contributes significantly in laser guiding in plasmas. Furthermore, the rate of laser self-focusing is increased with modulation index due the fact of stronger Kerr effect. The study related to amplitude modulated optical signal may be useful for communication technology.
Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo
2011-04-01
In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.
Henry, Molly J; Obleser, Jonas
2013-01-01
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.
Henry, Molly J.; Obleser, Jonas
2013-01-01
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals. PMID:24205309
Design and Analysis of an Electron Gun/Booster and Free Electron Laser Optical Theory
2010-09-01
42 23. Simplified cathode assembly model . . . . . . . . . . . . . . . . . . . . 45 24. Rossendorf and BNL RF chokes...225 123. Cross-correlation maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 124. BNL SDL optical field...amplitude . . . . . . . . . . . . . . . . . . . . . 230 125. BNL SDL Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 xiii THIS
Rise time analysis of pulsed klystron-modulator for efficiency improvement of linear colliders
NASA Astrophysics Data System (ADS)
Oh, J. S.; Cho, M. H.; Namkung, W.; Chung, K. H.; Shintake, T.; Matsumoto, H.
2000-04-01
In linear accelerators, the periods during the rise and fall of a klystron-modulator pulse cannot be used to generate RF power. Thus, these periods need to be minimized to get high efficiency, especially in large-scale machines. In this paper, we present a simplified and generalized voltage rise time function of a pulsed modulator with a high-power klystron load using the equivalent circuit analysis method. The optimum pulse waveform is generated when this pulsed power system is tuned with a damping factor of ˜0.85. The normalized rise time chart presented in this paper allows one to predict the rise time and pulse shape of the pulsed power system in general. The results can be summarized as follows: The large distributed capacitance in the pulse tank and operating parameters, Vs× Tp , where Vs is load voltage and Tp is the pulse width, are the main factors determining the pulse rise time in the high-power RF system. With an RF pulse compression scheme, up to ±3% ripple of the modulator voltage is allowed without serious loss of compressor efficiency, which allows the modulator efficiency to be improved as well. The wiring inductance should be minimized to get the fastest rise time.
Amplitude Control of Solid-State Modulators for Precision Fast Kicker Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Anaya, R M; Caporaso, G C
2002-11-15
A solid-state modulator with very fast rise and fall times, pulse width agility, and multi-pulse burst and intra-pulse amplitude adjustment capability for use with high speed electron beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. Amplitude adjustment is provided by controlling individual modules in the adder, and is used to compensate for transverse e-beam motion as well as the dynamic response and beam-induced steering effects associated with the kicker structure. A control algorithm calculates a voltage based on measured e-beam displacement and adjusts the modulator to regulate beammore » centroid position. This paper presents design details of amplitude control along with measured performance data from kicker operation on the ETA-II accelerator at LLNL.« less
Self-referenced locking of optical coherence by single-detector electronic-frequency tagging
NASA Astrophysics Data System (ADS)
Shay, T. M.; Benham, Vincent; Spring, Justin; Ward, Benjamin; Ghebremichael, F.; Culpepper, Mark A.; Sanchez, Anthony D.; Baker, J. T.; Pilkington, D.; Berdine, Richard
2006-02-01
We report a novel coherent beam combining technique. This is the first actively phase locked optical fiber array that eliminates the need for a separate reference beam. In addition, only a single photodetector is required. The far-field central spot of the array is imaged onto the photodetector to produce the phase control loop signals. Each leg of the fiber array is phase modulated with a separate RF frequency, thus tagging the optical phase shift for each leg by a separate RF frequency. The optical phase errors for the individual array legs are separated in the electronic domain. In contrast with the previous active phase locking techniques, in our system the reference beam is spatially overlapped with all the RF modulated fiber leg beams onto a single detector. The phase shift between the optical wave in the reference leg and in the RF modulated legs is measured separately in the electronic domain and the phase error signal is feedback to the LiNbO 3 phase modulator for that leg to minimize the phase error for that leg relative to the reference leg. The advantages of this technique are 1) the elimination of the reference beam and beam combination optics and 2) the electronic separation of the phase error signals without any degradation of the phase locking accuracy. We will present the first theoretical model for self-referenced LOCSET and describe experimental results for a 3 x 3 array.
Power-Stepped HF Cross Modulation Experiments at HAARP
NASA Astrophysics Data System (ADS)
Greene, S.; Moore, R. C.; Langston, J. S.
2013-12-01
High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. In this paper, we apply experimental observations of HF cross-modulation to the related problem of ELF/VLF wave generation. HF cross-modulation measurements are used to evaluate the efficiency of ionospheric conductivity modulation during power-stepped modulated HF heating experiments. The results are compared to previously published dependencies of ELF/VLF wave amplitude on HF peak power. The experiments were performed during the March 2013 campaign at the High Frequency Active Auroral Research Program (HAARP) Observatory. HAARP was operated in a dual-beam transmission format: the first beam heated the ionosphere using sinusoidal amplitude modulation while the second beam broadcast a series of low-power probe pulses. The peak power of the modulating beam was incremented in 1-dB steps. We compare the minimum and maximum cross-modulation effect and the amplitude of the resulting cross-modulation waveform to the expected power-law dependence of ELF/VLF wave amplitude on HF power.
NASA Astrophysics Data System (ADS)
Binh, Le Nguyen
2009-04-01
A geometrical and phasor representation technique is presented to illustrate the modulation of the lightwave carrier to generate quadrature amplitude modulated (QAM) signals. The modulation of the amplitude and phase of the lightwave carrier is implemented using only one dual-drive Mach-Zehnder interferometric modulator (MZIM) with the assistance of phasor techniques. Any multilevel modulation scheme can be generated, but we illustrate specifically, the multilevel amplitude and differential phase shift keying (MADPSK) signals. The driving voltage levels are estimated for driving the traveling wave electrodes of the modulator. Phasor diagrams are extensively used to demonstrate the effectiveness of modulation schemes. MATLAB Simulink models are formed to generate the multilevel modulation formats, transmission, and detection in optically amplified fiber communication systems. Transmission performance is obtained for the multilevel optical signals and proven to be equivalent or better than those of binary level with equivalent bit rate. Further, the resilience to nonlinear effects is much higher for MADPSK of 50% and 33% pulse width as compared to non-return-to-zero (NRZ) pulse shaping.
A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.
Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin
2018-07-01
Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Amplitude modulation reduces loudness adaptation to high-frequency tones.
Wynne, Dwight P; George, Sahara E; Zeng, Fan-Gang
2015-07-01
Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.
Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.
2014-01-01
The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2 •−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2 •− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2 •− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2 •− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2 •− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J.
2015-04-01
Yin et al. have described an innovative filter-less optical millimeter-wave generation scheme for octotupling of a 10 GHz RF oscillator, or sedecimtupling of a 5 GHz RF oscillator using two parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). The great merit of their design is the suppression of all harmonics except those of order ? (octotupling) or all harmonics except those of order ? (sedecimtupling), where ? is an integer. A demerit of their scheme is the requirement to set a precise RF signal modulation index in order to suppress the zeroth order optical carrier. The purpose of this comment is to show that, in the case of the octotupling function, all harmonics may be suppressed except those of order ?, where ? is an odd integer, by the simple addition of an optical ? phase shift between the two DP-MZMs and an adjustment of the RF drive phases. Since the carrier is suppressed in the modified architecture, the octotupling circuit is thereby released of the strict requirement to set the drive level to a precise value without any significant increase in circuit complexity.
Hybrid Modeling of SiH4/Ar Discharge in a Pulse Modulated RF Capacitively Coupled Plasma
NASA Astrophysics Data System (ADS)
Xi-Feng, Wang; Yuan-Hong, Song; You-Nian, Wang; PSEG Team
2015-09-01
Pulsed plasmas have offered important advantages in future micro-devices, especially for electronegative gas plasmas. In this work, a one-dimensional fluid and Monte-Carlo (MC) hybrid model is developed to simulate SiH4/Ar discharge in a pulse modulated radio-frequency (RF) capacitively coupled plasma (CCP). Time evolution densities of different species, such as electrons, ions, radicals, are calculated, as well as the electron energy probability function (EEPF) which is obtained by a MC simulation. By pulsing the RF source, the electron energy distributions and plasma properties can be modulated by pulse frequency and duty cycle. High electron energy tails are obtained during power-on period, with the SiHx densities increasing rapidly mainly by SiH4 dissociation. As the RF power is off, the densities in the bulk region decrease rapidly owing to high energy electrons disappear, but increase near electrodes since diffusion without the confinement of high electric field, which can prolong the time of radials deposition on the plate. Especially, in the afterglow, the increase of negative ions near the electrodes results from cool electron attachment, which are good for film deposition. This work was supported by the National Natural Science Foundation of China (Grant No. 11275038).
High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders
NASA Astrophysics Data System (ADS)
Tantawi, Sami G.; Tamura, Fumihiko
2000-04-01
We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.
NASA Astrophysics Data System (ADS)
Süveges, Maria; Anderson, Richard I.
2018-03-01
Context. Recent studies have revealed a hitherto unknown complexity of Cepheid pulsations by discovering irregular modulated variability using photometry, radial velocities, and interferometry. Aim. We aim to perform a statistically rigorous search and characterization of such phenomena in continuous time, applying it to 53 classical Cepheids from the OGLE-III catalog. Methods: We have used local kernel regression to search for both period and amplitude modulations simultaneously in continuous time and to investigate their detectability. We determined confidence intervals using parametric and non-parametric bootstrap sampling to estimate significance, and investigated multi-periodicity using a modified pre-whitening approach that relies on time-dependent light curve parameters. Results: We find a wide variety of period and amplitude modulations and confirm that first overtone pulsators are less stable than fundamental mode Cepheids. Significant temporal variations in period are more frequently detected than those in amplitude. We find a range of modulation intensities, suggesting that both amplitude and period modulations are ubiquitous among Cepheids. Over the 12-year baseline offered by OGLE-III, we find that period changes are often nonlinear, sometimes cyclic, suggesting physical origins beyond secular evolution. Our method detects modulations (period and amplitude) more efficiently than conventional methods that are reliant on certain features in the Fourier spectrum, and pre-whitens time series more accurately than using constant light curve parameters, removing spurious secondary peaks effectively. Conclusions: Period and amplitude modulations appear to be ubiquitous among Cepheids. Current detectability is limited by observational cadence and photometric precision: detection of amplitude modulation below 3 mmag requires space-based facilities. Recent and ongoing space missions (K2, BRITE, MOST, CoRoT) as well as upcoming ones (TESS, PLATO) will significantly improve detectability of fast modulations, such as cycle-to-cycle variations, by providing high-cadence high-precision photometry. High-quality long-term ground-based photometric time series will remain crucial to study longer-term modulations and to disentangle random fluctuations from secular evolution.
Transmission of RF Signals Over Optical Fiber for Avionics Applications
NASA Technical Reports Server (NTRS)
Slaveski, Filip; Sluss, James, Jr.; Atiquzzaman, Mohammed; Hung, Nguyen; Ngo, Duc
2002-01-01
During flight, aircraft avionics transmit and receive RF signals to/from antennas over coaxial cables. As the density and complexity of onboard avionics increases, the electromagnetic interference (EM) environment degrades proportionately, leading to decreasing signal-to-noise ratios (SNRs) and potential safety concerns. The coaxial cables are inherently lossy, limiting the RF signal bandwidth while adding considerable weight. To overcome these limitations, we have investigated a fiber optic communications link for aircraft that utilizes wavelength division multiplexing (WDM) to support the simultaneous transmission of multiple signals (including RF) over a single optical fiber. Optical fiber has many advantages over coaxial cable, particularly lower loss, greater bandwidth, and immunity to EM. In this paper, we demonstrate that WDM can be successfully used to transmit multiple RF signals over a single optical fiber with no appreciable signal degradation. We investigate the transmission of FM and AM analog modulated signals, as well as FSK digital modulated signals, over a fiber optic link (FOL) employing WDM. We present measurements of power loss, delay, SNR, carrier-to-noise ratio (CNR), total harmonic distortion (THD), and bit error rate (BER). Our experimental results indicate that WDM is a fiber optic technology suitable for avionics applications.
Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In
2014-01-13
A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).
NASA Technical Reports Server (NTRS)
Leung, P. L.
1984-01-01
This paper discusses the measurements of the electromagnetic interference (EMI) generated during discharges of Mylar samples. The two components of EMI, the conducted emission and the radiated emission, are characterized by the replacement current and the radiated RF spectrum respectively. The measured radiated RF spectra reveal important information on the source of the electromagnetic radiation. The possible sources are the replacement current pulse and the discharged generated plasma. The scaling of the amplitudes of the EMI, as a function of the area of the test sample, is also discussed.
High speed cross-amplitude modulation in concatenated SOA-EAM-SOA.
Cleary, Ciaran S; Manning, Robert J
2012-06-18
We observe a near-ideal high speed amplitude impulse response in an SOA-EAM-SOA configuration under optimum conditions. Full amplitude recovery times as low as 10 ps with modulation depths of 70% were observed in pump-probe measurements. System behavior could be controlled by the choice of signal wavelength, SOA current biases and EAM reverse bias voltages. Experimental data and impulse response modelling indicated that the slow tail in the gain response of first SOA was negated by a combination of cross-absorption modulation between pump and modulated CW probe, and self-gain modulation of the modulated CW probe in both the EAM and second SOA.
NASA Astrophysics Data System (ADS)
Song, Ickhyun; Cho, Moon-Kyu; Oakley, Michael A.; Ildefonso, Adrian; Ju, Inchan; Buchner, Stephen P.; McMorrow, Dale; Paki, Pauline; Cressler, John. D.
2017-05-01
Best practice in mitigation strategies for single-event transients (SETs) in radio-frequency (RF) receiver modules is investigated using a variety of integrated receivers utilizing inverse-mode silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The receivers were designed and implemented in a 130-nm SiGe BiCMOS technology platform. In general, RF switches, low-noise amplifiers (LNAs), and downconversion mixers utilizing inverse-mode SiGe HBTs exhibit less susceptibility to SETs than conventional RF designs, in terms of transient peaks and duration, at the cost of RF performance. Under normal RF operation, the SET-hardened switch is mainly effective in peak reduction, while the LNA and the mixer exhibit reductions in transient peaks as well as transient duration.
FPGA-based RF interference reduction techniques for simultaneous PET–MRI
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-01-01
Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898
FPGA-based RF interference reduction techniques for simultaneous PET-MRI.
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-05-07
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI
NASA Astrophysics Data System (ADS)
Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.
2016-05-01
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
Venditto, Immacolata; Goyal, Arun; Thompson, Andrew; Ferreira, Luis M A; Fontes, Carlos M G A; Najmudin, Shabir
2015-01-01
Microbial degradation of the plant cell wall is a fundamental biological process with considerable industrial importance. Hydrolysis of recalcitrant polysaccharides is orchestrated by a large repertoire of carbohydrate-active enzymes that display a modular architecture in which a catalytic domain is connected via linker sequences to one or more noncatalytic carbohydrate-binding modules (CBMs). CBMs direct the appended catalytic modules to their target substrates, thus potentiating catalysis. The genome of the most abundant ruminal cellulolytic bacterium, Ruminococcus flavefaciens strain FD-1, provides an opportunity to discover novel cellulosomal proteins involved in plant cell-wall deconstruction. It encodes a modular protein comprising a glycoside hydrolase family 9 catalytic module (GH9) linked to two unclassified tandemly repeated CBMs (termed CBM-Rf6A and CBM-Rf6B) and a C-terminal dockerin. The novel CBM-Rf6A from this protein has been crystallized and data were processed for the native and a selenomethionine derivative to 1.75 and 1.5 Å resolution, respectively. The crystals belonged to orthorhombic and cubic space groups, respectively. The structure was solved by a single-wavelength anomalous dispersion experiment using the CCP4 program suite and SHELXC/D/E.
NASA Astrophysics Data System (ADS)
Wang, Zhao; Knights, Andrew P.
2017-02-01
We describe a direct experimental method to determine the effective driving voltage (Vpp) applied to a silicon photonic modulator possessing an impedance mismatch between the unterminated capacitive load and input source. This method thus permits subsequent estimation of the power consumption of an imperfectly terminated device as well as a deduction of load impedance for optimization of termination design. The capacitive load in this paper is a silicon micro-ring modulator with an integrated p-n junction acting as a phase shifter. The RF reflection under high-speed drive is directly determined from observation of the eye-diagram following measurement of the power transfer function for various junction bias.
Amplitude modulation detection with concurrent frequency modulation.
Nagaraj, Naveen K
2016-09-01
Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.
CEBAF Superconducting Cavity RF Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugitt, Jock; Moore, Thomas
1987-03-01
The CEBAR RF system consists of 418 individual RF amplifier chains. Each superconducting cavity is phase locked to the master drive reference line to within 1 degree, and the cavity field gradient is regulated to within 1 part in 10 by a state-of-the-art RF control module. Precision, continuously adjustable, modulo 360 phase shifters are used to generate the individual phase references, and a compensated RF detector is used for level feedback. The close coupled digital system enhances system accuracy, provides self-calibration, and continuously checks the system for malfunction. Calibration curves, the operating program, and system history are stored in anmore » on board EEPROM. The RF power is generated by a 5Kw, water cooled, permanent magnet focused klystorn. The klystons are clustered in groups of 8 and powered from a common supply. RF power is transmitted to the accelerator sections by semiflexible waveguide.« less
RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG.
Shao, Yuchen; Han, Xiuyou; Li, Ming; Zhao, Mingshan
2018-03-15
Low-power radio frequency (RF) signal detection is highly desirable for many applications, ranging from wireless communication to radar systems. A tunable optoelectronic oscillator (OEO) based on a phase-shifted fiber Bragg grating for detecting low-power RF signals is proposed and experimentally demonstrated. When the frequency of the input RF signal is matched with the potential oscillation mode of the OEO, it is detected and amplified. The frequency of the RF signal under detection can be estimated simultaneously by scanning the wavelength of the laser source. The RF signals from 1.5 to 5 GHz as low as -91 dBm are detected with a gain of about 10 dB, and the frequency is estimated with an error of ±100 MHz. The performance of the OEO system for detecting an RF signal with different modulation rates is also investigated.
Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.
Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias
2015-06-01
To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.
The report describes in a historical context the experiments that have been performed to examine the biological responses caused by exposure to low frequency electromagnetic radiation directly or as modulation of RF carrier waves. A detailed review is provided of the independentl...
Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart
2018-04-25
To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Phase and Pupil Amplitude Recovery for JWST Space-Optics Control
NASA Technical Reports Server (NTRS)
Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.
2010-01-01
This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.
NASA Astrophysics Data System (ADS)
Goad, Pamela Joy
The fusion of musical voices is an important aspect of musical blend, or the mixing of individual sounds. Yet, little research has been done to explicitly determine the factors involved in fusion. In this study, the similarity of timbre and modulation were examined for their contribution to the fusion of sounds. It is hypothesized that similar timbres will fuse better than dissimilar timbres, and, voices with the same kind of modulation will fuse better than voices of different modulations. A perceptually-based measure, known as sharpness was investigated as a measure of timbre. The advantages of using sharpness are that it is based on hearing sensitivities and masking phenomena of inner ear processing. Five musical instrument families were digitally recorded in performances across a typical playing range at two extreme dynamic levels. Analyses reveal that sharpness is capable of uncovering subtle changes in timbre including those found in musical dynamics, instrument design, and performer-specific variations. While these analyses alone are insufficient to address fusion, preliminary calculations of timbral combinations indicate that sharpness has the potential to predict the fusion of sounds used in musical composition. Three experiments investigated the effects of modulation on the fusion of a harmonic major sixth interval. In the first experiment using frequency modulation, stimuli varied in deviation about a mean fundamental frequency and relative modulation phase between the two tones. Results showed smaller frequency deviations promoted fusion and relative phase differences had a minimal effect. In a second experiment using amplitude modulation, stimuli varied in deviation about a mean amplitude level and relative phase of modulation. Results showed smaller amplitude deviations promoted better fusion, but unlike frequency modulation, relative phase differences were also important. In a third experiment, frequency modulation, amplitude modulation and mixed modulation were arranged in all possible voicings. Results showed frequency modulation in the lower voice and less variance in amplitude envelopes contributed to an increase in fusion. The theory that similar modulations would promote better fusion was only marginally supported. For these experiments, results revealed differences depending on modulation type and that a lesser amount of modulation fosters greater fusion.
RF pulse compression for future linear colliders
NASA Astrophysics Data System (ADS)
Wilson, Perry B.
1995-07-01
Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0-1.5 TeV, 5 TeV, and 25 TeV. In order to keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0-1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150-200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30-40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-II system) can be used to reduce the klystron peak power by about a factor of two, or alternatively, to cut the number of klystrons in half for a 1.0-1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.
Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields
NASA Astrophysics Data System (ADS)
Gelfer, E. G.; Fedotov, A. M.; Weber, S.
2018-06-01
We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.
Method for the substantial reduction of quenching effects in luminescence spectrometry
Demas, James N.; Jones, Wesley M.; Keller, Richard A.
1989-01-01
Method for reducing quenching effects in analytical luminescence measurements. Two embodiments of the present invention are described which relate to a form of time resolution based on the amplitudes and phase shifts of modulated emission signals. In the first embodiment, the measured modulated emission signal is substantially independent of sample quenching at sufficiently high frequenices. In the second embodiment, the modulated amplitude and the phase shift between the emission signal and the excitation source are simultaneously measured. Using either method, the observed modulated amplitude may reduced to tis unquenched value.
NASA Astrophysics Data System (ADS)
Wang, Chaoen; Chang, Lung-Hai; Chang, Mei-Hsia; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Liu, Zong-Kai; Lo, Chih-Hung; Tsai, Chi-Lin; Yeh, Meng-Shu; Yu, Tsung-Chi
2017-11-01
Excitation of multipacting, enhanced by gas condensation on cold surfaces of the high power input coupler in a SRF module poses the highest challenge for reliable SRF operation under high average RF power. This could prevent the light source SRF module from being operated with a desired high beam current. Off-line long-term reliability tests have been conducted for the newly constructed 500-MHz SRF KEKB type modules at an accelerating RF voltage of 1.6-MV to enable prediction of their operational reliability in the 3-GeV Taiwan Photon Source (TPS), since prediction from mere production performance by conventional horizontal test is presently unreliable. As expected, operational difficulties resulting from multipacting, enhanced by gas condensation, have been identified in the course of long-term reliability test. Our present hypothesis is that gas condensation can be slowed down by preserving the vacuum pressure at the power coupler close to that reached just after its cool down to liquid helium temperatures. This is achievable by reduction of the power coupler out-gassing rate through comprehensive warm aging. Its feasibility and effectiveness has been experimentally verified in a second long term reliability test. Our success opens the possibility to operate the SRF module free of multipacting trouble and opens a new direction to improve the operational performance of next generation SRF modules in light sources with high beam currents.
Real-time digital signal processing for live electro-optic imaging.
Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro
2009-08-31
We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.
Relaxation dispersion in MRI induced by fictitious magnetic fields.
Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom
2011-04-01
A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.
Estimating radiofrequency power deposition in body NMR imaging.
Bottomley, P A; Redington, R W; Edelstein, W A; Schenck, J F
1985-08-01
Simple theoretical estimates of the average, maximum, and spatial variation of the radiofrequency power deposition (specific absorption rate) during hydrogen nuclear magnetic resonance imaging are deduced for homogeneous spheres and for cylinders of biological tissue with a uniformly penetrating linear rf field directed axially and transverse to the cylindrical axis. These are all simple scalar multiples of the expression for the cylinder in an axial field published earlier (Med. Phys. 8, 510 (1981]. Exact solutions for the power deposition in the cylinder with axial (Phys. Med. Biol. 23, 630 (1978] and transversely directed rf field are also presented, and the spatial variation of power deposition in head and body models is examined. In the exact models, the specific absorption rates decrease rapidly and monotonically with decreasing radius despite local increases in rf field amplitude. Conversion factors are provided for calculating the power deposited by Gaussian and sinc-modulated rf pulses used for slice selection in NMR imaging, relative to rectangular profiled pulses. Theoretical estimates are compared with direct measurements of the total power deposited in the bodies of nine adult males by a 63-MHz body-imaging system with transversely directed field, taking account of cable and NMR coil losses. The results for the average power deposition agree within about 20% for the exact model of the cylinder with axial field, when applied to the exposed torso volume enclosed by the rf coil. The average values predicted by the simple spherical and cylindrical models with axial fields, the exact cylindrical model with transverse field, and the simple truncated cylinder model with transverse field were about two to three times that measured, while the simple model consisting of an infinitely long cylinder with transverse field gave results about six times that measured. The surface power deposition measured by observing the incremental power as a function of external torso radius was comparable to the average value. This is consistent with the presence of a variable thickness peripheral adipose layer which does not substantially increase surface power deposition with increasing torso radius. The absence of highly localized intensity artifacts in 63-MHz body images does not suggest anomalously intense power deposition at localized internal sites, although peak power is difficult to measure.
Snyder, Dalton T; Kaplan, Desmond A; Danell, Ryan M; van Amerom, Friso H W; Pinnick, Veronica T; Brinckerhoff, William B; Mahaffy, Paul R; Cooks, R Graham
2017-06-21
A limitation of conventional quadrupole ion trap scan modes which use rf amplitude control for mass scanning is that, in order to detect a subset of an ion population, the rest of the ion population must also be interrogated. That is, ions cannot be detected out of order; they must be detected in order of either increasing or decreasing mass-to-charge (m/z). However, an ion trap operated in the ac frequency scan mode, where the rf amplitude is kept constant and instead the ac frequency is used for mass-selective operations, has no such limitation because any variation in the ac frequency affects only the subset of ions whose secular frequencies match the perturbation frequency. Hence, an ion trap operated in the ac frequency scan mode can perform any arbitrary mass scan, as well as a sequence of scans, using a single ion injection; we demonstrate both capabilities here. Combining these two capabilities, we demonstrate the acquisition of a full mass spectrum, a product ion spectrum, and a second generation product ion spectrum using a single ion injection event. We further demonstrate a "segmented scan" in which different mass ranges are interrogated at different rf amplitudes in order to improve resolution over a portion of the mass range, and a "periodic scan" in which ions are continuously introduced into the ion trap to achieve a nearly 100% duty cycle. These unique scan modes, along with other characteristics of ac frequency scanning, are particularly appropriate for miniature ion trap mass spectrometers. Hence, implementation of ac frequency scanning on a prototype of the Mars Organic Molecule Analyzer mass spectrometer is also described.
Modulation of neuronal responses during covert search for visual feature conjunctions
Buracas, Giedrius T.; Albright, Thomas D.
2009-01-01
While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions. PMID:19805385
Modulation of neuronal responses during covert search for visual feature conjunctions.
Buracas, Giedrius T; Albright, Thomas D
2009-09-29
While searching for an object in a visual scene, an observer's attentional focus and eye movements are often guided by information about object features and spatial locations. Both spatial and feature-specific attention are known to modulate neuronal responses in visual cortex, but little is known of the dynamics and interplay of these mechanisms as visual search progresses. To address this issue, we recorded from directionally selective cells in visual area MT of monkeys trained to covertly search for targets defined by a unique conjunction of color and motion features and to signal target detection with an eye movement to the putative target. Two patterns of response modulation were observed. One pattern consisted of enhanced responses to targets presented in the receptive field (RF). These modulations occurred at the end-stage of search and were more potent during correct target identification than during erroneous saccades to a distractor in RF, thus suggesting that this modulation is not a mere presaccadic enhancement. A second pattern of modulation was observed when RF stimuli were nontargets that shared a feature with the target. The latter effect was observed during early stages of search and is consistent with a global feature-specific mechanism. This effect often terminated before target identification, thus suggesting that it interacts with spatial attention. This modulation was exhibited not only for motion but also for color cue, although MT neurons are known to be insensitive to color. Such cue-invariant attentional effects may contribute to a feature binding mechanism acting across visual dimensions.
Plewan, Thorsten; Rinkenauer, Gerhard
2016-01-01
Reaction time (RT) can strongly be influenced by a number of stimulus properties. For instance, there was converging evidence that perceived size rather than physical (i.e., retinal) size constitutes a major determinant of RT. However, this view has recently been challenged since within a virtual three-dimensional (3D) environment retinal size modulation failed to influence RT. In order to further investigate this issue in the present experiments response force (RF) was recorded as a supplemental measure of response activation in simple reaction tasks. In two separate experiments participants’ task was to react as fast as possible to the occurrence of a target located close to the observer or farther away while the offset between target locations was increased from Experiment 1 to Experiment 2. At the same time perceived target size (by varying the retinal size across depth planes) and target type (sphere vs. soccer ball) were modulated. Both experiments revealed faster and more forceful reactions when targets were presented closer to the observers. Perceived size and target type barely affected RT and RF in Experiment 1 but differentially affected both variables in Experiment 2. Thus, the present findings emphasize the usefulness of RF as a supplement to conventional RT measurement. On a behavioral level the results confirm that (at least) within virtual 3D space perceived object size neither strongly influences RT nor RF. Rather the relative position within egocentric (body-centered) space presumably indicates an object’s behavioral relevance and consequently constitutes an important modulator of visual processing. PMID:28018273
An extraordinary tabletop speed of light apparatus
NASA Astrophysics Data System (ADS)
Pegna, Guido
2017-09-01
A compact, low-cost, pre-aligned apparatus of the modulation type is described. The apparatus allows accurate determination of the speed of light in free propagation with an accuracy on the order of one part in 104. Due to the 433.92 MHz radio frequency (rf) modulation of its laser diode, determination of the speed of light is possible within a sub-meter measuring base and in small volumes (some cm3) of transparent solids or liquids. No oscilloscope is necessary, while the required function generators, power supplies, and optical components are incorporated into the design of the apparatus and its receiver can slide along the optical bench while maintaining alignment with the laser beam. Measurement of the velocity factor of coaxial cables is also easily performed. The apparatus detects the phase difference between the rf modulation of the laser diode by further modulating the rf signal with an audio frequency signal; the phase difference between these signals is then observed as the loudness of the audio signal. In this way, the positions at which the minima of the audio signal are found determine where the rf signals are completely out of phase. This phase detection method yields a much increased sensitivity with respect to the display of coincidence of two signals of questionable arrival time and somewhat distorted shape on an oscilloscope. The displaying technique is also particularly suitable for large audiences as well as in unattended exhibits in museums and science centers. In addition, the apparatus can be set up in less than one minute.
Modulated Source Interferometry with Combined Amplitude and Frequency Modulation
NASA Technical Reports Server (NTRS)
Gutierrez, Roman C. (Inventor)
1998-01-01
An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.
NASA Astrophysics Data System (ADS)
Tokuchi, Akira; Kamitsukasa, Fumiyoshi; Furukawa, Kazuya; Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Fujimoto, Masaki; Osumi, Hiroki; Funakoshi, Sousuke; Tsutsumi, Ryouta; Suemine, Shoji; Honda, Yoshihide; Isoyama, Goro
2015-01-01
We developed a solid-state switch with static induction thyristors for the klystron modulator of the L-band electron linear accelerator (linac) at the Institute of Scientific and Industrial Research, Osaka University. This switch is designed to have maximum specifications of a holding voltage of 25 kV and a current of 6 kA at the repetition frequency of 10 Hz for forced air cooling. The turn-on time of the switch was measured with a matched resistor to be 270 ns, which is sufficiently fast for the klystron modulator. The switch is retrofitted in the modulator to generate 1.3 GHz RF pulses with durations of either 4 or 8 μs using a 30 MW klystron, and the linac is successfully operated under maximum conditions. This finding demonstrates that the switch can be used as a high-power switch for the modulator. Pulse-to-pulse variations of the klystron voltage are measured to be less than 0.015%, and those of RF power and phase are lower than 0.15% and 0.1°, respectively. These values are significantly smaller than those obtained with a thyratron; hence, the stability of the main RF system is improved. The solid-state switch has been used in normal operation of the linac for more than a year without any serious trouble. Thus, we confirmed the switch's robustness and long-term reliability.
Development of sub-100 femtosecond timing and synchronization system
NASA Astrophysics Data System (ADS)
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (˜0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
Development of sub-100 femtosecond timing and synchronization system.
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (∼0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
NASA Astrophysics Data System (ADS)
Faudot, E.; Heuraux, S.; Colas, L.
2005-09-01
Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a `test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude φ0 (normalized to a characteristic length for transverse transport and to the local temperature). A `peaking factor' is built from the DC peak potential normalized to φ0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the `peaking factor' for ITER will be presented for a given configuration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faudot, E.; Heuraux, S.; Colas, L.
2005-09-26
Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially amore » Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.« less
Lorentz Force Detuning Analysis of the SNS Accelerating Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Mitchell; K. Matsumoto; G. Ciovati
2001-09-01
The Spallation Neutron Source (SNS) project incorporates a superconducting radio-frequency (SRF) accelerator for the final section of the pulsed mode linac Cavities with geometrical {beta} values of {beta} = 0.61 and {beta} = 0.81 are utilized in the SRF section, and are constructed out of thin-walled niobium with stiffener rings welded between the cells near the iris. The welded titanium helium vessel and tuner assembly restrains the cavity beam tubes Cavities with {beta} values less than one have relatively steep and flat side-walls making the cavities susceptible to Ised RF induces cyclic Lorentz pressures that mechanically excite the cavities, producingmore » a dynamic Lorentz force detuning different from a continuous RF system. The amplitude of the dynamic detuning for a given cavity design is a function of the mechanical damping, stiffness of the tuner/helium vessel assembly, RF pulse profile, and the RF pulse rate. This paper presents analysis and testing results to date, and indicates areas where more investigation is required.« less
A low-level rf control system for a quarter-wave resonator
NASA Astrophysics Data System (ADS)
Kim, Jongwon; Hwang, Churlkew
2012-06-01
A low-level rf control system was designed and built for an rf deflector, which is a quarter wave resonator, and was designed to deflect a secondary electron beam to measure the bunch length of an ion beam. The deflector has a resonance frequency near 88 MHz, its required phase stability is approximately ±1° and its amplitude stability is less than ±1%. The control system consists of analog input and output components and a digital system based on a field-programmable gate array for signal processing. The system is cost effective, while meeting the stability requirements. Some basic properties of the control system were measured. Then, the capability of the rf control was tested using a mechanical vibrator made of a dielectric rod attached to an audio speaker system, which could induce regulated perturbations in the electric fields of the resonator. The control system was flexible so that its parameters could be easily configured to compensate for the disturbance induced in the resonator.
RF MEMS and Their Applications in NASA's Space Communication Systems
NASA Technical Reports Server (NTRS)
Williams, W. Daniel; Ponchak, George E.; Simons, Rainee N.; Zaman, Afroz; Kory, Carol; Wintucky, Edwin; Wilson, Jeffrey D.; Scardelletti, Maximilian; Lee, Richard; Nguyen, Hung
2001-01-01
Radio frequency (RF) and microwave communication systems rely on frequency, amplitude, and phase control circuits to efficiently use the available spectrum. Phase control circuits are required for electronically scanning phase array antennas that enable radiation pattern shaping, scanning, and hopping. Two types of phase shifters, which are the phase control circuits, are most often used. The first is comprised of two circuits with different phase characteristics such as two transmission lines of different lengths or a high pass and low pass filter and a switch that directs the RF power through one of the two circuits. Alternatively, a variable capacitor, or varactor, is used to change the effective electrical path length of a transmission line, which changes the phase characteristics. Filter banks are required for the diplexer at the front end of wide band communication satellites. These filters greatly increase the size and mass of the RF/microwave systems, but smaller diplexers may be made with a low loss varactor or a group of capacitors, a switch and an inductor.
Center conductor diagnostic for multipactor detection in inaccessible geometries.
Chaplin, Vernon H; Hubble, Aimee A; Clements, Kathryn A; Graves, Timothy P
2017-01-01
Electron collecting current probes are the most reliable diagnostic of multipactor and radiofrequency (RF) ionization breakdown; however, stand-alone probes can only be used in test setups where the breakdown region is physically accessible. This paper describes techniques for measuring multipactor current directly on the center conductor of a coaxial RF device (or more generally, on the signal line in any two-conductor RF system) enabling global multipactor detection with improved sensitivity compared to other common diagnostics such as phase null, third harmonic, and reflected power. The center conductor diagnostic may be AC coupled for use in systems with a low DC impedance between the center conductor and ground. The effect of DC bias on the breakdown threshold was studied: in coaxial geometry, the change in threshold was <1 dB for positive biases satisfying V DC /V RF0 <0.8, where V RF0 is the RF voltage amplitude at the unperturbed breakdown threshold. In parallel plate geometry, setting V DC /V RF0 <0.2 was necessary to avoid altering the threshold by more than 1 dB. In most cases, the center conductor diagnostic functions effectively with no bias at all-this is the preferred implementation, but biases in the range V DC =0-10V may be applied if necessary. The polarity of the detected current signal may be positive or negative depending on whether there is net electron collection or emission globally.
Task-induced frequency modulation features for brain-computer interfacing.
Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2017-10-01
Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.
Masking release for words in amplitude-modulated noise as a function of modulation rate and task
Buss, Emily; Whittle, Lisa N.; Grose, John H.; Hall, Joseph W.
2009-01-01
For normal-hearing listeners, masked speech recognition can improve with the introduction of masker amplitude modulation. The present experiments tested the hypothesis that this masking release is due in part to an interaction between the temporal distribution of cues necessary to perform the task and the probability of those cues temporally coinciding with masker modulation minima. Stimuli were monosyllabic words masked by speech-shaped noise, and masker modulation was introduced via multiplication with a raised sinusoid of 2.5–40 Hz. Tasks included detection, three-alternative forced-choice identification, and open-set identification. Overall, there was more masking release associated with the closed than the open-set tasks. The best rate of modulation also differed as a function of task; whereas low modulation rates were associated with best performance for the detection and three-alternative identification tasks, performance improved with modulation rate in the open-set task. This task-by-rate interaction was also observed when amplitude-modulated speech was presented in a steady masker, and for low- and high-pass filtered speech presented in modulated noise. These results were interpreted as showing that the optimal rate of amplitude modulation depends on the temporal distribution of speech cues and the information required to perform a particular task. PMID:19603883
Measurement Techniques for Transmit Source Clock Jitter for Weak Serial RF Links
NASA Technical Reports Server (NTRS)
Lansdowne, Chatwin A.; Schlesinger, Adam M.
2010-01-01
Techniques for filtering clock jitter measurements are developed, in the context of controlling data modulation jitter on an RF carrier to accommodate low signal-to-noise ratio thresholds of high-performance error correction codes. Measurement artifacts from sampling are considered, and a tutorial on interpretation of direct readings is included.
RF pulse shape control in the compact linear collider test facility
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Corsini, Roberto
2018-07-01
The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.
Space evaluation of optical modulators for microwave photonic on-board applications
NASA Astrophysics Data System (ADS)
Le Kernec, A.; Sotom, M.; Bénazet, B.; Barbero, J.; Peñate, L.; Maignan, M.; Esquivias, I.; Lopez, F.; Karafolas, N.
2017-11-01
Since several years, perspectives and assets offered by photonic technologies compared with their traditional RF counterparts (mass and volume reduction, transparency to RF frequency, RF isolation), make them particularly attractive for space applications [1] and, in particular, telecommunication satellites [2]. However, the development of photonic payload concepts have concurrently risen and made the problem of the ability of optoelectronic components to withstand space environment more and more pressing. Indeed, photonic components used in such photonic payloads architectures come from terrestrial networks applications in order to benefit from research and development in this field. This paper presents some results obtained in the frame of an ESA-funded project, carried out by Thales Alenia Space France, as prime contractor, and Alter Technology Group Spain (ATG) and Universidad Politecnica de Madrid (UPM), as subcontractors, one objective of which was to assess commercial high frequency optical intensity modulators for space use through a functional and environmental test campaign. Their potential applications in microwave photonic sub-systems of telecom satellite payloads are identified and related requirements are presented. Optical modulator technologies are reviewed and compared through, but not limited to, a specific figure of merit, taking into account two key features of these components : optical insertion loss and RF half-wave voltage. Some conclusions on these different technologies are given, on the basis of the test results, and their suitability for the targeted applications and environment is highlighted.
NASA Astrophysics Data System (ADS)
Ba, Seydou N.; Waheed, Khurram; Zhou, G. Tong
2010-12-01
Digital predistortion is an effective means to compensate for the nonlinear effects of a memoryless system. In case of a cellular transmitter, a digital baseband predistorter can mitigate the undesirable nonlinear effects along the signal chain, particularly the nonlinear impairments in the radiofrequency (RF) amplifiers. To be practically feasible, the implementation complexity of the predistorter must be minimized so that it becomes a cost-effective solution for the resource-limited wireless handset. This paper proposes optimizations that facilitate the design of a low-cost high-performance adaptive digital baseband predistorter for memoryless systems. A comparative performance analysis of the amplitude and power lookup table (LUT) indexing schemes is presented. An optimized low-complexity amplitude approximation and its hardware synthesis results are also studied. An efficient LUT predistorter training algorithm that combines the fast convergence speed of the normalized least mean squares (NLMSs) with a small hardware footprint is proposed. Results of fixed-point simulations based on the measured nonlinear characteristics of an RF amplifier are presented.
Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong
2017-10-01
When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.
Cell oxidation-reduction imbalance after modulated radiofrequency radiation.
Marjanovic, Ana Marija; Pavicic, Ivan; Trosic, Ivancica
2015-01-01
Aim of this study was to evaluate an influence of modulated radiofrequency field (RF) of 1800 MHz, strength of 30 V/m on oxidation-reduction processes within the cell. The assigned RF field was generated within Gigahertz Transversal Electromagnetic Mode cell equipped by signal generator, modulator, and amplifier. Cell line V79, was irradiated for 10, 30, and 60 min, specific absorption rate was calculated to be 1.6 W/kg. Cell metabolic activity and viability was determined by MTT assay. In order to define total protein content, colorimetric method was used. Concentration of oxidised proteins was evaluated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) marked with fluorescent probe 2',7'-dichlorofluorescin diacetate were measured by means of plate reader device. In comparison with control cell samples, metabolic activity and total protein content in exposed cells did not differ significantly. Concentrations of carbonyl derivates, a product of protein oxidation, insignificantly but continuously increase with duration of exposure. In exposed samples, ROS level significantly (p < 0.05) increased after 10 min of exposure. Decrease in ROS level was observed after 30-min treatment indicating antioxidant defence mechanism activation. In conclusion, under the given laboratory conditions, modulated RF radiation might cause impairment in cell oxidation-reduction equilibrium within the growing cells.
Modulation bandwidth of spin torque oscillators under current modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinsat, M.; CEA, INAC-SPINTEC, F-38054 Grenoble; CNRS, SPINTEC, F-38054 Grenoble
2014-10-13
For practical applications of spin torque nano-oscillators (STNO), one of the most critical characteristics is the speed at which an STNO responds to variations of external control parameters, such as current or/and field. Theory predicts that this speed is limited by the amplitude relaxation rate Γ{sub p} that determines the timescale over which the amplitude fluctuations are damped out. In this study, this limit is verified experimentally by analyzing the amplitude and frequency noise spectra of the output voltage signal when modulating an STNO by a microwave current. In particular, it is shown that due to the non-isochronous nature ofmore » the STNO the amplitude relaxation rate Γ{sub p} determines not only the bandwidth of an amplitude modulation, but also the bandwidth of a frequency modulation. The presented experimental technique will be important for the optimisation of the STNO characteristics for applications in telecommunications or/and data storage and is applicable even in the case when the STNO output signal is only several times higher than noise.« less
Design and characterization of a W-band system for modulated DNP experiments.
Guy, Mallory L; Zhu, Lihuang; Ramanathan, Chandrasekhar
2015-12-01
Magnetic-field and microwave-frequency modulated DNP experiments have been shown to yield improved enhancements over conventional DNP techniques, and even to shorten polarization build-up times. The resulting increase in signal-to-noise ratios can lead to significantly shorter acquisition times in signal-limited multi-dimensional NMR experiments and pave the way to the study of even smaller sample volumes. In this paper we describe the design and performance of a broadband system for microwave frequency- and amplitude-modulated DNP that has been engineered to minimize both microwave and thermal losses during operation at liquid helium temperatures. The system incorporates a flexible source that can generate arbitrary waveforms at 94GHz with a bandwidth greater than 1GHz, as well as a probe that efficiently transmits the millimeter waves from room temperature outside the magnet to a cryogenic environment inside the magnet. Using a thin-walled brass tube as an overmoded waveguide to transmit a hybrid HE11 mode, it is possible to limit the losses to 1dB across a 2GHz bandwidth. The loss is dominated by the presence of a quartz window used to isolate the waveguide pipe. This performance is comparable to systems with corrugated waveguide or quasi-optical components. The overall excitation bandwidth of the probe is seen to be primarily determined by the final antenna or resonator used to excite the sample and its coupling to the NMR RF coil. Understanding the instrumental limitations imposed on any modulation scheme is key to understanding the observed DNP results and potentially identifying the underlying mechanisms. We demonstrate the utility of our design with a set of triangular frequency-modulated DNP experiments. Copyright © 2015 Elsevier Inc. All rights reserved.
Method for the substantial reduction of quenching effects in luminescence spectrometry
Demas, J.N.; Jones, W.M.; Keller, R.A.
1987-06-26
Method for reducing quenching effects in analytical luminescence measurements. Two embodiments of the present invention are described which relate to a form of time resolution based on the amplitudes and phase shifts of modulated emission signals. In the first embodiment, the measured modulated emission signal is substantially independent of sample quenching at sufficiently high frequencies. In the second embodiment, the modulated amplitude and the phase shift between the emission signal and the excitation source are simultaneously measured. Using either method, the observed modulated amplitude may be reduced to its unquenched value. 3 figs.
Study of Linear and Nonlinear Wave Excitation
NASA Astrophysics Data System (ADS)
Chu, Feng; Berumen, Jorge; Hood, Ryan; Mattingly, Sean; Skiff, Frederick
2013-10-01
We report an experimental study of externally excited low-frequency waves in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional. Wave excitation in the drift wave frequency range is accomplished by low-percentage amplitude modulation of the RF plasma source. Laser-induced fluorescence is adopted to study ion-density fluctuations in phase space. The laser is chopped to separate LIF from collisional fluorescence. A single negatively-biased Langmuir probe is used to detect ion-density fluctuations in the plasma. A ring array of Langmuir probes is also used to analyze the spatial and spectral structure of the excited waves. We apply coherent detection with respect to the wave frequency to obtain the ion distribution function associated with externally generated waves. Higher-order spectra are computed to evaluate the nonlinear coupling between fluctuations at various frequencies produced by the externally generated waves. Parametric decay of the waves is observed. This work is supported by U.S. DOE Grant No. DE-FG02-99ER54543.
Demodulation RFI statistics for a 3-stage op amp LED circuit
NASA Astrophysics Data System (ADS)
Whalen, James J.
An experiment has been performed to demonstrate the feasibility of combining several methods of electromagnetic-compatibility analysis. The part of the experiment that demonstrates how RF signals cause interference in an audio-frequency (AF) circuit and how the interference can be suppressed is described. The circuit includes three operational amplifiers (op amps) and a light-emitting diode (LED). A 50 percent amplitude-modulated (AM) radio-frequency-interference (RFI) signal is used, varied over the range from 0.1 to 400 MHz. The AM frequency is 1 kHz. The RFI is injected into the inverting input of the first op amp, and the 1-kHz demodulation response of the amplifier is amplified by the second and third op amps and lights the LED to provide a visual display of the existence of RFI. An RFI suppression capacitor was added to reduce the RFI. The demodulation RFI results are presented as scatter plots for 35 741 op amps. Mean values and standard deviations are also shown.
Joint Channel and Phase Noise Estimation in MIMO-OFDM Systems
NASA Astrophysics Data System (ADS)
Ngebani, I. M.; Chuma, J. M.; Zibani, I.; Matlotse, E.; Tsamaase, K.
2017-05-01
The combination of multiple-input multiple-output (MIMO) techniques with orthogonal frequency division multiplexing (OFDM), MIMO-OFDM, is a promising way of achieving high spectral efficiency in wireless communication systems. However, the performance of MIMO-ODFM systems is highly degraded by radio frequency (RF) impairments such as phase noise. Similar to the single-input single-output (SISO) case, phase noise in MIMO-OFDM systems results in a common phase error (CPE) and inter carrier interference (ICI). In this paper the problem of joint channel and phase noise estimation in a system with multiple transmit and receive antennas where each antenna is equipped with its own independent oscillator is tackled. The technique employed makes use of a novel placement of pilot carriers in the preamble and data portion of the MIMO-OFDM frame. Numerical results using a 16 and 64 quadrature amplitude modulation QAM schemes are provided to illustrate the effectiveness of the proposed scheme for MIMO-OFDM systems.
Using NCAP to predict RFI effects in linear bipolar integrated circuits
NASA Astrophysics Data System (ADS)
Fang, T.-F.; Whalen, J. J.; Chen, G. K. C.
1980-11-01
Applications of the Nonlinear Circuit Analysis Program (NCAP) to calculate RFI effects in electronic circuits containing discrete semiconductor devices have been reported upon previously. The objective of this paper is to demonstrate that the computer program NCAP also can be used to calcuate RFI effects in linear bipolar integrated circuits (IC's). The IC's reported upon are the microA741 operational amplifier (op amp) which is one of the most widely used IC's, and a differential pair which is a basic building block in many linear IC's. The microA741 op amp was used as the active component in a unity-gain buffer amplifier. The differential pair was used in a broad-band cascode amplifier circuit. The computer program NCAP was used to predict how amplitude-modulated RF signals are demodulated in the IC's to cause undesired low-frequency responses. The predicted and measured results for radio frequencies in the 0.050-60-MHz range are in good agreement.
Development and performance test of a new high power RF window in S-band PLS-II LINAC
NASA Astrophysics Data System (ADS)
Hwang, Woon-Ha; Joo, Young-Do; Kim, Seung-Hwan; Choi, Jae-Young; Noh, Sung-Ju; Ryu, Ji-Wan; Cho, Young-Ki
2017-12-01
A prototype of RF window was developed in collaboration with the Pohang Accelerator Laboratory (PAL) and domestic companies. High power performance tests of the single RF window were conducted at PAL to verify the operational characteristics for its application in the Pohang Light Source-II (PLS-II) linear accelerator (Linac). The tests were performed in the in-situ facility consisting of a modulator, klystron, waveguide network, vacuum system, cooling system, and RF analyzing equipment. The test results with Stanford linear accelerator energy doubler (SLED) have shown no breakdown up to 75 MW peak power with 4.5 μs RF pulse width at a repetition rate of 10 Hz. The test results with the current operation level of PLS-II Linac confirm that the RF window well satisfies the criteria for PLS-II Linac operation.
Tejani, Viral D; Abbas, Paul J; Brown, Carolyn J
This study investigates the relationship between electrophysiological and psychophysical measures of amplitude modulation (AM) detection. Prior studies have reported both measures of AM detection recorded separately from cochlear implant (CI) users and acutely deafened animals, but no study has made both measures in the same CI users. Animal studies suggest a progressive loss of high-frequency encoding as one ascends the auditory pathway from the auditory nerve to the cortex. Because the CI speech processor uses the envelope of an ongoing acoustic signal to modulate pulse trains that are subsequently delivered to the intracochlear electrodes, it is of interest to explore auditory nerve responses to modulated stimuli. In addition, psychophysical AM detection abilities have been correlated with speech perception outcomes. Thus, the goal was to explore how the auditory nerve responds to AM stimuli and to relate those physiologic measures to perception. Eight patients using Cochlear Ltd. Implants participated in this study. Electrically evoked compound action potentials (ECAPs) were recorded using a 4000 pps pulse train that was sinusoidally amplitude modulated at 125, 250, 500, and 1000 Hz rates. Responses were measured for each pulse over at least one modulation cycle for an apical, medial, and basal electrode. Psychophysical modulation detection thresholds (MDTs) were also measured via a three-alternative forced choice, two-down, one-up adaptive procedure using the same modulation frequencies and electrodes. ECAPs were recorded from individual pulses in the AM pulse train. ECAP amplitudes varied sinusoidally, reflecting the sinusoidal variation in the stimulus. A modulated response amplitude (MRA) metric was calculated as the difference in the maximal and minimum ECAP amplitudes over the modulation cycles. MRA increased as modulation frequency increased, with no apparent cutoff (up to 1000 Hz). In contrast, MDTs increased as the modulation frequency increased. This trend is inconsistent with the physiologic measures. For a fixed modulation frequency, correlations were observed between MDTs and MRAs; this trend was evident at all frequencies except 1000 Hz (although only statistically significant for 250 and 500 Hz AM rates), possibly an indication of central limitations in processing of high modulation frequencies. Finally, peripheral responses were larger and psychophysical thresholds were lower in the apical electrodes relative to basal and medial electrodes, which may reflect better cochlear health and neural survival evidenced by lower preoperative low-frequency audiometric thresholds and steeper growth of neural responses in ECAP amplitude growth functions for apical electrodes. Robust ECAPs were recorded for all modulation frequencies tested. ECAP amplitudes varied sinusoidally, reflecting the periodicity of the modulated stimuli. MRAs increased as the modulation frequency increased, a trend we attribute to neural adaptation. For low modulation frequencies, there are multiple current steps between the peak and valley of the modulation cycle, which means successive stimuli are more similar to one another and neural responses are more likely to adapt. Higher MRAs were correlated with lower psychophysical thresholds at low modulation frequencies but not at 1000 Hz, implying a central limitation to processing of modulated stimuli.
A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...
Shading of a computer-generated hologram by zone plate modulation.
Kurihara, Takayuki; Takaki, Yasuhiro
2012-02-13
We propose a hologram calculation technique that enables reconstructing a shaded three-dimensional (3D) image. The amplitude distributions of zone plates, which generate the object points that constitute a 3D object, were two-dimensionally modulated. Two-dimensional (2D) amplitude modulation was determined on the basis of the Phong reflection model developed for computer graphics, which considers the specular, diffuse, and ambient reflection light components. The 2D amplitude modulation added variable and constant modulations: the former controlled the specular light component and the latter controlled the diffuse and ambient components. The proposed calculation technique was experimentally verified. The reconstructed image showed specular reflection that varied depending on the viewing position.
Optimization Of Shear Modes To Produce Enhanced Bandwidth In Ghz GaP Bragg Cells
NASA Astrophysics Data System (ADS)
Soos, J., I.; Rosemeier, R. G.; Rosenbaum, J.
1988-02-01
Applications of Gallium Phosphide (GaP) acousto-optic devices, at wavelengths from 570nm - 1.06um seem to be ideal for fiber optic modulators, scanners, deflectors, frequency shifters, Q-switches and mode lockers. One of the major applications are for RF spectrometers in early warning radar receivers and auto-correlators. Longitudinal GaP acousto-optic Bragg cells which have respectively operational frequencies in the range of 200 MHz - 3 GHz and diffraction efficiencies in the range of 120%/RF watt to 1%/RF watt have recently been fabricated. Comparatively, shear GaP devices which have operational frequencies in the range of 200 MHz to 2 GHz and diffraction efficiencies from 80%/RF watt to 7%/RF watt have also been constructed.
Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung
2013-01-01
We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744
Space Shuttle communications RF switch matrix
NASA Technical Reports Server (NTRS)
Winch, R.
1979-01-01
The Shuttle Orbiter communications equipment includes phase modulation (PM) and frequency modulation (FM) channels. The PM section has the capability of routing high levels of energy (175 W) from any one of four transmitters to any one of four antennas, mutually exclusive. The FM channel uses a maximum of 15-W power routed from either of two transmitters to one of two antennas, mutually exclusive. The paper describes the design and the theory of a logic-controlled RF switch matrix devised for the purposes cited. Both PM and FM channels are computer-controlled with manual overrides. The logic interface is realized with CMOS logic for low power consumption and high noise immunity. The interior of the switch matrix is maintained at a pressure of 15 psi (90% nitrogen, 10% helium) by an electron beam-welded encapsulation. The computational results confirm the viability of the RF switch matrix concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, W. G.; Li, R. M.; Shi, J. J.
The overshoot and undershoot of the applied voltage on the electrodes, the discharge current, and radio frequency (RF) power were observed at the initial phase of pulse-modulated (PM) RF atmospheric pressure discharges, but factors influencing the overshoot and undershoot have not been fully elucidated. In this paper, the experimental studies were performed to seek the reasons for the overshoot and undershoot. The experimental results show that the overshoot and undershoot are associated with the pulse frequency, the rise time of pulse signal, and the series capacitor C{sub s} in the inversely L-shaped matching network. In the case of a highmore » RF power discharge, these overshoot and undershoot become serious when shortening the rise time of a pulse signal (5 ns) or operating at a moderate pulse frequency (500 Hz or 1 kHz).« less
Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation.
Li, Hua; Laffaille, Pierre; Gacemi, Djamal; Apfel, Marc; Sirtori, Carlo; Leonardon, Jeremie; Santarelli, Giorgio; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jerome; Hänsel, Wolfgang; Holzwarth, Ronald; Barbieri, Stefano
2015-12-28
We present an experimental investigation of the multimode dynamics and the coherence of terahertz quantum cascade lasers emitting over a spectral bandwidth of ~1THz. The devices are studied in free-running and under direct RF modulation. Depending on the pump current we observe different regimes of operation, where RF spectra displaying single and multiple narrow beat-note signals alternate with spectra showing a single beat-note characterized by an intense phase-noise, extending over a bandwidth up to a few GHz. We investigate the relation between this phase-noise and the dynamics of the THz modes through the electro-optic sampling of the laser emission. We find that when the phase-noise is large, the laser operates in an unstable regime where the lasing modes are incoherent. Under RF modulation of the laser current such instability can be suppressed and the modes coherence recovered, while, simultaneously, generating a strong broadening of the THz emission spectrum.
Analog and digital transport of RF channels over converged 5G wireless-optical networks
NASA Astrophysics Data System (ADS)
Binh, Le Nguyen
2016-02-01
Under the exponential increase demand by the emerging 5G wireless access networking and thus data-center based Internet, novel and economical transport of RF channels to and from wireless access systems. This paper presents the transport technologies of RF channels over the analog and digital domain so as to meet the demands of the transport capacity reaching multi-Tbps, in the followings: (i) The convergence of 5G broadband wireless and optical networks and its demands on capacity delivery and network structures; (ii) Analog optical technologies for delivery of both the information and RF carriers to and from multiple-input multiple-output (MIMO) antenna sites so as to control the beam steering of MIMO antenna in the mmW at either 28.6 GHz and 56.8 GHz RF carrier and delivery of channels of aggregate capacity reaching several Tbps; (ii) Transceiver employing advanced digital modulation formats and digital signal processing (DSP) so as to provide 100G and beyond transmission rate to meet the ultra-high capacity demands with flexible spectral grids, hence pay-on-demand services. The interplay between DSP-based and analog transport techniques is examined; (iii) Transport technologies for 5G cloud access networks and associate modulation and digital processing techniques for capacity efficiency; and (iv) Finally the integrated optic technologies with novel lasers, comb generators and simultaneous dual function photonic devices for both demultiplexing/multiplexing and modulation are proposed, hence a system on chip structure can be structured. Quantum dot lasers and matrixes of micro ring resonators are integrated on the same Si-on-Silica substrate are proposed and described.
A High Power Helicon Antenna Design for DIII-D
Nagy, A.; deGrassie, J.; Moeller, C.; ...
2017-08-02
A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less
A High Power Helicon Antenna Design for DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagy, A.; deGrassie, J.; Moeller, C.
A new antenna design for driving current in high beta tokamaks using electromagnetic waves, called Helicons, will be experimentally tested for the first time at power approaching 1 megawatt (MW) in the DIII-D Tokamak. This method is expected to be more efficient than current drive using electron cyclotron waves or neutral beam injection, and may be well suited to reactor-like configurations. A low power (100 watt (W)) 476 megahertz (MHz) “comb-line” antenna, consisting of 12 inductively coupled electrostatically shielded, modular resonators, was tested in DIII-D and showed strong coupling to the plasma without disturbing its characteristics or introducing metal impurities.more » The high power antenna consists of 30 modules affixed to back-plates and mounted on the outer wall of the vacuum vessel above the mid-plane. The antenna design follows a similar low power antenna design modified to minimize RF loss. Heat removal is provided by water cooling and a novel heat conducting path using pyrolytic graphite sheet. The CuCrZr antenna modules are designed to handle high eddy current forces. The modules use molybdenum Faraday shields that have the plasma side coated with boron carbide to enhance thermal resistance and minimize high Z impurities. A RF strip-line feed routes the RF power from coaxial vacuum feed-throughs to the antenna. Multipactor analysis of the antenna, strip line, and feedthrough will be performed. A 1.2 MW, 476 MHz klystron system, provided by the Stanford Linear Accelerator (SLAC) will provide RF power to the new antenna. Lastly, a description of the design of the high power antenna, the RF strip-line feeds, and the vessel installation will be presented.« less
Chauhan, Vinita; Mariampillai, Anusiyanthan; Gajda, Greg B; Thansandote, Artnarong; McNamee, James P
2006-05-01
Several studies have reported that radiofrequency (RF) fields, as emitted by mobile phones, may cause changes in gene expression in cultured human cell-lines. The current study was undertaken to evaluate this possibility in two human-derived immune cell-lines. HL-60 and Mono-Mac-6 (MM6) cells were individually exposed to intermittent (5 min on, 10 min off) 1.9 GHz pulse-modulated RF fields at a average specific absorption rate (SAR) of 1 and 10 W/kg at 37 +/- 0.5 degrees C for 6 h. Concurrent negative and positive (heat-shock for 1 h at 43 degrees C) controls were conducted with each experiment. Immediately following RF field exposure (T = 6 h) and 18 h post-exposure (T = 24 h), cell pellets were collected from each of the culture dishes and analyzed for transcript levels of proto-oncogenes (c-jun, c-myc and c-fos) and the stress-related genes (heat shock proteins (HSP) HSP27 and HSP70B) by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). No significant effects were observed in mRNA expression of HSP27, HSP70, c-jun, c-myc or c-fos between the sham and RF-exposed groups, in either of the two cell-lines. However, the positive (heat-shock) control group displayed a significant elevation in the expression of HSP27, HSP70, c-fos and c-jun in both cell-lines at T = 6 and 24 h, relative to the sham and negative control groups. This study found no evidence that exposure of cells to non-thermalizing levels of 1.9 GHz pulse-modulated RF fields can cause any detectable change in stress-related gene expression.
Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E
2013-10-22
A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.
The LLRF System for the S-Band RF Plants of the FERMI Linac
NASA Astrophysics Data System (ADS)
Fabris, A.; Byrd, J.; D'Auria, G.; Doolittle, L.; Gelmetti, F.; Huang, G.; Jones, J.; Milloch, M.; Predonzani, M.; Ratti, A.; Rohlev, T.; Salom, A.; Serrano, C.; Stettler, M.
2016-04-01
Specifications on electron beam quality for the operation of a linac-based free-electron laser (FEL), as FERMI in Trieste (Italy), impose stringent requirements on the stability of the electromagnetic fields of the accelerating sections. These specifications can be met only with state-of-the-art low-level RF (LLRF) systems based on advanced digital technologies. Design considerations, construction, and performance results of the FERMI digital LLRF are presented in this paper. The stability requirements derived by simulations are better than 0.1% in amplitude and 0.1° S-band in phase. The system installed in the FERMI Linac S-band RF plants has met these specifications and is in operation on a 24-h basis as a user facility. Capabilities of the system allow planning for new developments that are also described here.
Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control
Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen
2016-01-01
The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz; the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5–10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices. PMID:27558516
Zhang, Ruihua; Ren, Ye; Liu, Chunyan; Xu, Na; Li, Xiaoli; Cong, Fengyu; Ristaniemi, Tapani; Wang, YuPing
2017-09-01
Neural activity of the epileptic human brain contains low- and high-frequency oscillations in different frequency bands, some of which have been used as reliable biomarkers of the epileptogenic brain areas. However, the relationship between the low- and high-frequency oscillations in different cortical areas during the period from pre-seizure to post-seizure has not been completely clarified. We recorded electrocorticogram data from the temporal lobe and hippocampus of seven patients with temporal lobe epilepsy. The modulation index based on the Kullback-Leibler distance and the phase-amplitude coupling co-modulogram were adopted to quantify the coupling strength between the phase of low-frequency oscillations (0.2-10Hz) and the amplitude of high-frequency oscillations (11-400Hz) in different seizure epochs. The time-varying phase-amplitude modulogram was used to analyze the phase-amplitude coupling pattern during the entire period from pre-seizure to post-seizure in both the left and right temporal lobe and hippocampus. Channels with strong modulation index were compared with the seizure onset channels identified by the neurosurgeons and the resection channels in the clinical surgery. The phase-amplitude coupling strength (modulation index) increased significantly in the mid-seizure epoch and decrease significantly in seizure termination and post-seizure epochs (p<0.001). The strong phase-amplitude-modulating low- and high-frequency oscillations in the mid-seizure epoch were mainly δ, θ, and α oscillations and γ and ripple oscillations, respectively. The phase-amplitude modulation and strength varied among channels and was asymmetrical in the left and right temporal cortex and hippocampus. The "fall-max" phase-amplitude modulation pattern, i.e., high-frequency amplitudes were largest in the low-frequency phase range [-π, 0], which corresponded to the falling edges of low-frequency oscillations, appeared in the middle period of the seizures at epileptic focus channels. Channels with strong modulation index appeared on the corresponding left or right temporal cortex of surgical resection and overlapped with the clinical resection zones in all patients. The "fall-max" pattern between the phase of low-frequency oscillation and amplitude of high-frequency oscillation that appeared in the middle period of the seizures is a reliable biomarker in epileptogenic cortical areas. The modulation index can be used as a good tool for lateralization and localization for the epileptic focus in patients with epilepsy. Phase-amplitude coupling can provide meaningful reference for accurate resection of epileptogenic focus and provide insight into the underlying neural dynamics of the epileptic seizure in patients with temporal lobe epilepsy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Advanced space system analysis software. Technical, user, and programmer guide
NASA Technical Reports Server (NTRS)
Farrell, C. E.; Zimbelman, H. F.
1981-01-01
The LASS computer program provides a tool for interactive preliminary and conceptual design of LSS. Eight program modules were developed, including four automated model geometry generators, an associated mass properties module, an appendage synthesizer module, an rf analysis module, and an orbital transfer analysis module. The existing rigid body controls analysis module was modified to permit analysis of effects of solar pressure on orbital performance. A description of each module, user instructions, and programmer information are included.
Task-induced frequency modulation features for brain-computer interfacing
NASA Astrophysics Data System (ADS)
Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2017-10-01
Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.
Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan
2010-12-01
Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.
Modular compact solid-state modulators for particle accelerators
NASA Astrophysics Data System (ADS)
Zavadtsev, A. A.; Zavadtsev, D. A.; Churanov, D. V.
2017-12-01
The building of the radio frequency (RF) particle accelerator needs high-voltage pulsed modulator as a power supply for klystron or magnetron to feed the RF accelerating system. The development of a number of solid-state modulators for use in linear accelerators has allowed to develop a series of modular IGBT based compact solid-state modulators with different parameters. This series covers a wide range of needs in accelerator technology to feed a wide range of loads from the low power magnetrons to powerful klystrons. Each modulator of the series is built on base of a number of unified solid-state modules connected to the pulse transformer, and covers a wide range of modulators: voltage up to 250 kV, a peak current up to 250 A, average power up to 100 kW and the pulse duration up to 20 μsec. The parameters of the block with an overall dimensions 880×540×250 mm are: voltage 12 kV, peak current 1600 A, pulse duration 20 μsec, average power 10 kW with air-cooling and 40 kW with liquidcooling. These parameters do not represent a physical limit, and modulators to parameters outside these ranges can be created on request.
Spectral Domain RF Fingerprinting for 802.11 Wireless Devices
2010-03-01
induce unintentional modulation effects . If these effects (features) are sufficiently unique, it becomes possible to identify a device us- ing its...Previous AFIT research has demonstrated the effectiveness of RF Fin- gerprinting using 802.11A signals with 1) spectral correlation on Power Spectral...32 4.5. SD Intra-manufacturer Classification: Effects of Burst Location Error
Detection of Metallic and Electronic Radar Targets by Acoustic Modulation of Electromagnetic Waves
2017-07-01
reradiated wave is captured by the radar’s receive antenna. The presence of measurable EM energy at any discrete multiple of the audio frequency away...the radar receiver (Rx). The presence of measurable EM energy at any discrete multiple of faudio away from the original RF carrier fRF (i.e., at any n
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.
2012-03-01
We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.
Frequency modulation spectroscopy with a THz quantum-cascade laser.
Eichholz, R; Richter, H; Wienold, M; Schrottke, L; Hey, R; Grahn, H T; Hübers, H-W
2013-12-30
We report on a terahertz spectrometer for high-resolution molecular spectroscopy based on a quantum-cascade laser. High-frequency modulation (up to 50 MHz) of the laser driving current produces a simultaneous modulation of the frequency and amplitude of the laser output. The modulation generates sidebands, which are symmetrically positioned with respect to the laser carrier frequency. The molecular transition is probed by scanning the sidebands across it. In this way, the absorption and the dispersion caused by the molecular transition are measured. The signals are modeled by taking into account the simultaneous modulation of the frequency and amplitude of the laser emission. This allows for the determination of the strength of the frequency as well as amplitude modulation of the laser and of molecular parameters such as pressure broadening.
Encoding and decoding amplitude-modulated cochlear implant stimuli—a point process analysis
Shea-Brown, Eric; Rubinstein, Jay T.
2010-01-01
Cochlear implant speech processors stimulate the auditory nerve by delivering amplitude-modulated electrical pulse trains to intracochlear electrodes. Studying how auditory nerve cells encode modulation information is of fundamental importance, therefore, to understanding cochlear implant function and improving speech perception in cochlear implant users. In this paper, we analyze simulated responses of the auditory nerve to amplitude-modulated cochlear implant stimuli using a point process model. First, we quantify the information encoded in the spike trains by testing an ideal observer’s ability to detect amplitude modulation in a two-alternative forced-choice task. We vary the amount of information available to the observer to probe how spike timing and averaged firing rate encode modulation. Second, we construct a neural decoding method that predicts several qualitative trends observed in psychophysical tests of amplitude modulation detection in cochlear implant listeners. We find that modulation information is primarily available in the sequence of spike times. The performance of an ideal observer, however, is inconsistent with observed trends in psychophysical data. Using a neural decoding method that jitters spike times to degrade its temporal resolution and then computes a common measure of phase locking from spike trains of a heterogeneous population of model nerve cells, we predict the correct qualitative dependence of modulation detection thresholds on modulation frequency and stimulus level. The decoder does not predict the observed loss of modulation sensitivity at high carrier pulse rates, but this framework can be applied to future models that better represent auditory nerve responses to high carrier pulse rate stimuli. The supplemental material of this article contains the article’s data in an active, re-usable format. PMID:20177761
Developments in photonic and mm-wave component technology for fiber radio
NASA Astrophysics Data System (ADS)
Iezekiel, Stavros
2013-01-01
A review of photonic component technology for fiber radio applications at 60 GHz will be given. We will focus on two architectures: (i) baseband-over-fiber and (ii) RF-over-fiber. In the first approach, up-conversion to 60 GHz is performed at the picocell base stations, with data being transported over fiber, while in the second both the data and rum wave carrier are transported over fiber. For the baseband-over-fiber scheme, we examine techniques to improve the modulation efficiency of directly modulated fiber links. These are based on traveling-wave structures applied to series cascades of lasers. This approach combines the improvement in differential quantum efficiency with the ability to tailor impedance matching as required. In addition, we report on various base station transceiver architectures based on optically-controlled :tvfMIC self oscillating mixers, and their application to 60 GHz fiber radio. This approach allows low cost optoelectronic transceivers to be used for the baseband fiber link, whilst minimizing the impact of dispersion. For the RF-over-fiber scheme, we report on schemes for optical generation of 100 GHz. These use modulation of a Mach-Zehnder modulator at Vπ bias in cascade with a Mach-Zehnder driven by 1.25 Gb/s data. One of the issues in RF-over-fiber is dispersion, while reduced modulation efficiency due to the presence of the optical carrier is also problematic. We examine the use of silicon nitride micro-ring resonators for the production of optical single sideband modulation in order to combat dispersion, and for the reduction of optical carrier power in order to improve link modulation efficiency.
A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events
NASA Astrophysics Data System (ADS)
Xu, Dacheng; Li, Suiqiong; Li, Mengyang; Xie, Danpeng; Dong, Chuan; Li, Xinxin
2017-09-01
This paper presents a self-powered wireless alarming sensor node (SWASN), which was designed to monitor the occurrence of concerning vibratory events. The major components of the sensor node include a vibration-threshold-triggered energy harvester (VTTEH) that powers the sensor node, a dual threshold voltage control circuit (DTVCC) for power management and a radio frequency (RF) signal transmitting module. The VTTEH generates significant electric energy only when the input vibration reaches certain amplitude. Thus, the VTTEH serves as both the power source and the vibration-event-sensing element for the sensor node. The DTVCC was specifically designed to utilize the limited power supply from the VTTEH to operate the sensor node. Constructed with only voltage detectors and MOSFETs, the DTVCC achieved low power consumption, which was 65% lower compared with the power management circuit designed in our previous work. Meanwhile, a RF transmit circuit was constructed based on the commercially available CC1110-F32 wireless transceiver chip and a compact planar antenna was designed to improve the signal transmission distance. The sensor node was fabricated and was characterized both in the laboratory and in the field. Experimental results showed that the SWASN could automatically send out alarming signals when the simulated concerning event occurred. The waiting time between two consecutive transmission periods is less than 125 s and the transmission distance can reach 1.31 km. The SWASN will have broad applications in field surveillances.
Cognitive reappraisal of snake and spider pictures: An event-related potentials study.
Langeslag, Sandra J E; van Strien, Jan W
2018-05-30
Fear of snakes and spiders are common animal phobias. Emotion regulation can change the response to emotional stimuli, including snakes and spiders. It is well known that emotion regulation modulates the late positive potential (LPP), which reflects sustained motivated attention. However, research concerning the effect of emotion regulation on the early posterior negativity (EPN), which reflects early selective attention, is scarce. The present research question was whether the EPN and LPP amplitudes are modulated by regulation of emotional responses to snake and spider stimuli. Emotion up- and down-regulation were expected to enhance and reduce the LPP amplitude, respectively, but emotion regulation was not expected to modulate the EPN amplitude. Female participants passively viewed snake, spider, and bird pictures, and up- and down-regulated their emotional responses to the snake and spider pictures using self-focused reappraisal, while their electroencephalogram was recorded. There were EPNs for snakes and spiders vs. birds, as well as for snakes vs. spiders. The LPP amplitude tended to be enhanced for snakes and spiders compared to birds. Most importantly, the LPP amplitude was larger in the up-regulate than in the down-regulate condition for both snakes and spiders, but there was no evidence that the EPN amplitude was modulated by emotion regulation. This suggests that emotion regulation modulated sustained motivated attention, but not early selective attention, to snakes and spiders. The findings are in line with the notion that the emotional modulation of the EPN is more automatic than the emotional modulation of the LPP. Copyright © 2018 Elsevier B.V. All rights reserved.
Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershman, D. J.; Block, B. P.; Rubin, M.
This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and themore » ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.« less
L-Band High Power Amplifiers for CEBAF Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugitt, Jock; Killion, Richard; Nelson, Richard
1990-09-01
The high power portion of the CEBAF RF system utilizes 340 5kW klystrons providing 339 separately controlled outputs. Modulating anodes have been included in the klystron design to provide for economically efficient operation. The design includes shunt regulator-type modulating anode power supplies running from the cathode power supply, and switching filament power supplies. Remotely programmable filament voltage allows maximum cathode life to be realized. Klystron operating setpoint and fast klystron protection logic are provided by individual external CEBAF RF control modules. A single cathode power supply powers a block of eight klystrons. The design includes circulators and custom extrusion andmore » hybrid waveguide components which have allowed reduced physical size and lower cost in the design of the WR-650 waveguide transmission system.« less
A direct modulated optical link for MRI RF receive coil interconnection.
Yuan, Jing; Wei, Juan; Shen, G X
2007-11-01
Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T.
A software control system for the ACTS high-burst-rate link evaluation terminal
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Daugherty, Elaine S.
1991-01-01
Control and performance monitoring of NASA's High Burst Rate Link Evaluation Terminal (HBR-LET) is accomplished by using several software control modules. Different software modules are responsible for controlling remote radio frequency (RF) instrumentation, supporting communication between a host and a remote computer, controlling the output power of the Link Evaluation Terminal and data display. Remote commanding of microwave RF instrumentation and the LET digital ground terminal allows computer control of various experiments, including bit error rate measurements. Computer communication allows system operators to transmit and receive from the Advanced Communications Technology Satellite (ACTS). Finally, the output power control software dynamically controls the uplink output power of the terminal to compensate for signal loss due to rain fade. Included is a discussion of each software module and its applications.
GaAs monolithic R.F. modules for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Cauley, Michael A.
1991-01-01
Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.
GaAs monolithic RF modules for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Cauley, Michael A.
1991-01-01
Monolithic GaAs UHF components for use in SARSAT Emergency Distress beacons are under development by Microwave Monolithics, Inc., Simi Valley, CA. The components include a bi-phase modulator, driver amplifier, and a 5 watt power amplifier.
Fogerty, Daniel
2014-01-01
The present study investigated the importance of overall segment amplitude and intrinsic segment amplitude modulation of consonants and vowels to sentence intelligibility. Sentences were processed according to three conditions that replaced consonant or vowel segments with noise matched to the long-term average speech spectrum. Segments were replaced with (1) low-level noise that distorted the overall sentence envelope, (2) segment-level noise that restored the overall syllabic amplitude modulation of the sentence, and (3) segment-modulated noise that further restored faster temporal envelope modulations during the vowel. Results from the first experiment demonstrated an incremental benefit with increasing resolution of the vowel temporal envelope. However, amplitude modulations of replaced consonant segments had a comparatively minimal effect on overall sentence intelligibility scores. A second experiment selectively noise-masked preserved vowel segments in order to equate overall performance of consonant-replaced sentences to that of the vowel-replaced sentences. Results demonstrated no significant effect of restoring consonant modulations during the interrupting noise when existing vowel cues were degraded. A third experiment demonstrated greater perceived sentence continuity with the preservation or addition of vowel envelope modulations. Overall, results support previous investigations demonstrating the importance of vowel envelope modulations to the intelligibility of interrupted sentences. PMID:24606291
Shaping non-diffracting beams with a digital micromirror device
NASA Astrophysics Data System (ADS)
Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De
2016-02-01
The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.
Linearization of microwave photonic link based on nonlinearity of distributed feedback laser
NASA Astrophysics Data System (ADS)
Kang, Zi-jian; Gu, Yi-ying; Zhu, Wen-wu; Fan, Feng; Hu, Jing-jing; Zhao, Ming-shan
2016-02-01
A microwave photonic link (MPL) with spurious-free dynamic range (SFDR) improvement utilizing the nonlinearity of a distributed feedback (DFB) laser is proposed and demonstrated. First, the relationship between the bias current and nonlinearity of a semiconductor DFB laser is experimentally studied. On this basis, the proposed linear optimization of MPL is realized by the combination of the external intensity Mach-Zehnder modulator (MZM) modulation MPL and the direct modulation MPL with the nonlinear operation of the DFB laser. In the external modulation MPL, the MZM is biased at the linear point to achieve the radio frequency (RF) signal transmission. In the direct modulation MPL, the third-order intermodulation (IMD3) components are generated for enhancing the SFDR of the external modulation MPL. When the center frequency of the input RF signal is 5 GHz and the two-tone signal interval is 10 kHz, the experimental results show that IMD3 of the system is effectively suppressed by 29.3 dB and the SFDR is increased by 7.7 dB.
Effect of RF Gradient upon the Performance of the Wisconsin SRF Electron Gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosch, Robert; Legg, Robert A.
2013-12-01
The performance of the Wisconsin 200-MHz SRF electron gun is simulated for several values of the RF gradient. Bunches with charge of 200 pC are modeled for the case where emittance compensation is completed during post-acceleration to 85 MeV in a TESLA module. We first perform simulations in which the initial bunch radius is optimal for the design gradient of 41 MV/m. We then optimize the radius as a function of RF gradient to improve the performance for low gradients.
NASA Astrophysics Data System (ADS)
Rahman, Ata-ur-; Kerr, Michael Mc; El-Taibany, Wael F.; Kourakis, Ioannis; Qamar, A.
2015-02-01
A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.
Engineering the Ideal Array (BRIEFING CHARTS)
2007-03-05
48 V, f = 10 GHz GaN HEMT Transistor i t Dramatically higher: • Output power • Efficiency • Bandwidth GaN HEMT Power Amplifier lifi ...functions – RF amplifiers – 4-bit phase shifters – Amplitude controllers – Summing network – Power control – Latches for phase state – Address
Quantum model for electro-optical amplitude modulation.
Capmany, José; Fernández-Pousa, Carlos R
2010-11-22
We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.
Spectro-temporal modulation masking patterns reveal frequency selectivity.
Oetjen, Arne; Verhey, Jesko L
2015-02-01
The present study investigated the possibility that the human auditory system demonstrates frequency selectivity to spectro-temporal amplitude modulations. Threshold modulation depth for detecting sinusoidal spectro-temporal modulations was measured using a generalized masked threshold pattern paradigm with narrowband masker modulations. Four target spectro-temporal modulations were examined, differing in their temporal and spectral modulation frequencies: a temporal modulation of -8, 8, or 16 Hz combined with a spectral modulation of 1 cycle/octave and a temporal modulation of 4 Hz combined with a spectral modulation of 0.5 cycles/octave. The temporal center frequencies of the masker modulation ranged from 0.25 to 4 times the target temporal modulation. The spectral masker-modulation center-frequencies were 0, 0.5, 1, 1.5, and 2 times the target spectral modulation. For all target modulations, the pattern of average thresholds for the eight normal-hearing listeners was consistent with the hypothesis of a spectro-temporal modulation filter. Such a pattern of modulation-frequency sensitivity was predicted on the basis of psychoacoustical data for purely temporal amplitude modulations and purely spectral amplitude modulations. An analysis of separability indicates that, for the present data set, selectivity in the spectro-temporal modulation domain can be described by a combination of a purely spectral and a purely temporal modulation filter function.
Amplitude modulation of sound from wind turbines under various meteorological conditions.
Larsson, Conny; Öhlund, Olof
2014-01-01
Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.
Inspection system calibration methods
Deason, Vance A.; Telschow, Kenneth L.
2004-12-28
An inspection system calibration method includes producing two sideband signals of a first wavefront; interfering the two sideband signals in a photorefractive material, producing an output signal therefrom having a frequency and a magnitude; and producing a phase modulated operational signal having a frequency different from the output signal frequency, a magnitude, and a phase modulation amplitude. The method includes determining a ratio of the operational signal magnitude to the output signal magnitude, determining a ratio of a 1st order Bessel function of the operational signal phase modulation amplitude to a 0th order Bessel function of the operational signal phase modulation amplitude, and comparing the magnitude ratio to the Bessel function ratio.
NASA Astrophysics Data System (ADS)
Cowley, S. W. H.; Provan, G.
2017-06-01
We study Cassini magnetic field observations at Saturn on a sequence of passes through the near-equatorial magnetotail during 2015, focusing on dual modulation of the plasma/current sheet associated with northern and southern planetary period oscillations (PPOs). Previous study of inner magnetosphere PPOs during this northern spring interval showed that the southern system amplitude was generally half that of the northern during the first part of the year to late August, after which the southern amplitude weakened to less than one-fifth that of the northern. We examine four sequential tail passes in the earlier interval, during which prominent PPO-related tail field modulations were observed, with relative (beat) phases of the two PPO systems being near in phase, antiphase, and two opposite near-quadrature conditions. We find that the radial field displayed opposite "sawtooth" asymmetry modulations under opposite near-quadrature conditions, related to previous findings under equinoctial conditions with near-equal northern and southern PPO amplitudes, while modulations were near symmetric for in-phase and antiphase conditions, but with larger radial field modulations for in-phase and larger colatitudinal field modulations for antiphase. A simple physical mathematical model of dual modulation is developed, which provides reasonable correspondence with these data using one set of current sheet parameters while varying only the relative PPO phases, thus demonstrating that dual modulation can be discerned and modeled even when the northern and southern amplitudes differ by a factor of 2. No such effects were consistently discerned during the later interval when the amplitude ratio was >5.
Suomi, Visa; Edwards, David; Cleveland, Robin
2015-12-01
Optical tracking was used to characterize acoustic radiation force-induced displacements in a tissue-mimicking phantom. Amplitude-modulated 3.3-MHz ultrasound was used to induce acoustic radiation force in the phantom, which was embedded with 10-μm microspheres that were tracked using a microscope objective and high-speed camera. For sine and square amplitude modulation, the harmonic components of the fundamental and second and third harmonic frequencies were measured. The displacement amplitudes were found to increase linearly with acoustic radiation force up to 10 μm, with sine modulation having 19.5% lower peak-to-peak amplitude values than square modulation. Square modulation produced almost no second harmonic, but energy was present in the third harmonic. For the sine modulation, energy was present in the second harmonic and low energy in the third harmonic. A finite-element model was used to simulate the deformation and was both qualitatively and quantitatively in agreement with the measurements. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Single frequency RF powered ECG telemetry system
NASA Technical Reports Server (NTRS)
Ko, W. H.; Hynecek, J.; Homa, J.
1979-01-01
It has been demonstrated that a radio frequency magnetic field can be used to power implanted electronic circuitry for short range telemetry to replace batteries. A substantial reduction in implanted volume can be achieved by using only one RF tank circuit for receiving the RF power and transmitting the telemetered information. A single channel telemetry system of this type, using time sharing techniques, was developed and employed to transmit the ECG signal from Rhesus monkeys in primate chairs. The signal from the implant is received during the period when the RF powering radiation is interrupted. The ECG signal is carried by 20-microsec pulse position modulated pulses, referred to the trailing edge of the RF powering pulse. Satisfactory results have been obtained with this single frequency system. The concept and the design presented may be useful for short-range long-term implant telemetry systems.
Spatial Light Modulators and Applications. 1988 Technical Digest Series, Volume 8
1988-06-01
presence of an applied field but without run- ning gratings; then the fringes are allowed to move, with a velocity that optimizes self- in which F0...Laboratories. The optimization of an MQW modulator for both phase and amplitude modulation is reported, along with preliminary structural N.J design for a...Canyon Road Malibu, California 90265 ABSTRACT The optimization of an MOW modulator for both phase and amplitude modulation is reported,along with
Cascaded Amplitude Modulations in Sound Texture Perception
McWalter, Richard; Dau, Torsten
2017-01-01
Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches. PMID:28955191
Cascaded Amplitude Modulations in Sound Texture Perception.
McWalter, Richard; Dau, Torsten
2017-01-01
Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.
Obliquity Modulation of the Incoming Solar Radiation
NASA Technical Reports Server (NTRS)
Liu, Han-Shou; Smith, David E. (Technical Monitor)
2001-01-01
Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.
Hemisphere-Dependent Attentional Modulation of Human Parietal Visual Field Representations
Silver, Michael A.
2015-01-01
Posterior parietal cortex contains several areas defined by topographically organized maps of the contralateral visual field. However, recent studies suggest that ipsilateral stimuli can elicit larger responses in the right than left hemisphere within these areas, depending on task demands. Here we determined the effects of spatial attention on the set of visual field locations (the population receptive field [pRF]) that evoked a response for each voxel in human topographic parietal cortex. A two-dimensional Gaussian was used to model the pRF in each voxel, and we measured the effects of attention on not only the center (preferred visual field location) but also the size (visual field extent) of the pRF. In both hemispheres, larger pRFs were associated with attending to the mapping stimulus compared with attending to a central fixation point. In the left hemisphere, attending to the stimulus also resulted in more peripheral preferred locations of contralateral representations, compared with attending fixation. These effects of attention on both pRF size and preferred location preserved contralateral representations in the left hemisphere. In contrast, attentional modulation of pRF size but not preferred location significantly increased representation of the ipsilateral (right) visual hemifield in right parietal cortex. Thus, attention effects in topographic parietal cortex exhibit hemispheric asymmetries similar to those seen in hemispatial neglect. Our findings suggest potential mechanisms underlying the behavioral deficits associated with this disorder. PMID:25589746
Vijayalaxmi; Reddy, Abhishek B; McKenzie, Raymond J; McIntosh, Robert L; Prihoda, Thomas J; Wood, Andrew W
2013-10-01
Peripheral blood samples from four healthy volunteers were collected and aliquots were exposed in vitro for 2 h to either (i) modulated (wideband code division multiple access, WCDMA) or unmodulated continuous wave (CW) 2450 MHz radiofrequency (RF) fields at an average specific absorption rate of 10.9 W/kg or (ii) sham-exposed. Aliquots of the same samples that were exposed in vitro to an acute dose of 1.5 Gy ionizing gamma-radiation (GR) were used as positive controls. Half of the aliquots were treated with melatonin (Mel) to investigate if such treatment offers protection to the cells from the genetic damage, if any, induced by RF and GR. The cells in all samples were cultured for 72 h and the lymphocytes were examined to determine the extent of genetic damage assessed from the incidence of micronuclei (MN). The results indicated the following: (i) the incidence of MN was similar in incubator controls, and those exposed to RF/sham and Mel alone; (ii) there were no significant differences between WCDMA and CW RF exposures; (iii) positive control cells exposed to GR alone exhibited significantly increased MN; and (iv) Mel treatment had no effect on cells exposed to RF and sham, while such treatment significantly reduced the frequency of MN in GR-exposed cells. Copyright © 2013 Wiley Periodicals, Inc.
El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed; Deen, M Jamal
2013-08-02
Ultra-low power radio frequency (RF) transceivers used in short-range application such as wireless sensor networks (WSNs) require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs) in addition to a 2.0 GHz phase-locked loop (PLL) based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of -122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of -120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.
Stroop proactive control and task conflict are modulated by concurrent working memory load.
Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai; Davelaar, Eddy J; Usher, Marius
2015-06-01
Performance on the Stroop task reflects two types of conflict-informational (between the incongruent word and font color) and task (between the contextually relevant color-naming task and the irrelevant, but automatic, word-reading task). According to the dual mechanisms of control theory (DMC; Braver, 2012), variability in Stroop performance can result from variability in the deployment of a proactive task-demand control mechanism. Previous research has shown that when proactive control (PC) is diminished, both increased Stroop interference and a reversed Stroop facilitation (RF) are observed. Although the current DMC model accounts for the former effect, it does not predict the observed RF, which is considered to be behavioral evidence for task conflict in the Stroop task. Here we expanded the DMC model to account for Stroop RF. Assuming that a concurrent working memory (WM) task reduces PC, we predicted both increased interference and an RF. Nineteen participants performed a standard Stroop task combined with a concurrent n-back task, which was aimed at reducing available WM resources, and thus overloading PC. Although the results indicated common Stroop interference and facilitation in the low-load condition (zero-back), in the high-load condition (two-back), both increased Stroop interference and RF were observed, consistent with the model's prediction. These findings indicate that PC is modulated by concurrent WM load and serves as a common control mechanism for both informational and task Stroop conflicts.
NASA Astrophysics Data System (ADS)
Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.
2012-01-01
We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.
Constant envelope OFDM scheme for 6PolSK-QPSK
NASA Astrophysics Data System (ADS)
Li, Yupeng; Ding, Ding
2018-03-01
A constant envelope OFDM scheme with phase modulator (PM-CE-OFDM) for 6PolSK-QPSK modulation was demonstrated. Performance under large fiber launch power is measured to check its advantages in counteracting fiber nonlinear impairments. In our simulation, PM-CE-OFDM, RF-assisted constant envelope OFDM (RF-CE-OFDM) and conventional OFDM (Con-OFDM) are transmitted through 80 km standard single mode fiber (SSMF) single channel and WDM system. Simulation results confirm that PM-CE-OFDM has best performance in resisting fiber nonlinearity. In addition, benefiting from the simple system structure, the complexity and cost of PM-CE-OFDM system could be reduced effectively.
2017-01-01
Selective visual attention enables organisms to enhance the representation of behaviorally relevant stimuli by altering the encoding properties of single receptive fields (RFs). Yet we know little about how the attentional modulations of single RFs contribute to the encoding of an entire visual scene. Addressing this issue requires (1) measuring a group of RFs that tile a continuous portion of visual space, (2) constructing a population-level measurement of spatial representations based on these RFs, and (3) linking how different types of RF attentional modulations change the population-level representation. To accomplish these aims, we used fMRI to characterize the responses of thousands of voxels in retinotopically organized human cortex. First, we found that the response modulations of voxel RFs (vRFs) depend on the spatial relationship between the RF center and the visual location of the attended target. Second, we used two analyses to assess the spatial encoding quality of a population of voxels. We found that attention increased fine spatial discriminability and representational fidelity near the attended target. Third, we linked these findings by manipulating the observed vRF attentional modulations and recomputing our measures of the fidelity of population codes. Surprisingly, we discovered that attentional enhancements of population-level representations largely depend on position shifts of vRFs, rather than changes in size or gain. Our data suggest that position shifts of single RFs are a principal mechanism by which attention enhances population-level representations in visual cortex. SIGNIFICANCE STATEMENT Although changes in the gain and size of RFs have dominated our view of how attention modulates visual information codes, such hypotheses have largely relied on the extrapolation of single-cell responses to population responses. Here we use fMRI to relate changes in single voxel receptive fields (vRFs) to changes in population-level representations. We find that vRF position shifts contribute more to population-level enhancements of visual information than changes in vRF size or gain. This finding suggests that position shifts are a principal mechanism by which spatial attention enhances population codes for relevant visual information. This poses challenges for labeled line theories of information processing, suggesting that downstream regions likely rely on distributed inputs rather than single neuron-to-neuron mappings. PMID:28242794
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Ren, S. L.; Zhang, Yao; Gaspe, C. K.; Vijeyaragunathan, S.; Mishima, T. D.; Santos, M. B.
2014-03-01
Aharonov-Bohm oscillations in the low-temperature magnetoresistance of mesoscopic interferometric rings are investigated for their dependence on bias current and temperature, and to explore origins of the observed amplitude modulation in magnetic field. Single-ring interferometers of radius 650 nm and lithographic arm width 300 nm were fabricated on a high-mobility high-density InGaAs/InAlAs heterostructure. The rings show interference oscillations over a wide range of magnetic fields, with amplitudes subject to modulation with applied magnetic field. The quantum phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by comparative study of the amplitude. The variation of the amplitude with bias current and temperature shows the existence of a critical excitation energy consistent with the Thouless energy for quantum phase smearing. Autocorrelation and Fourier analysis are used to determine the quasi-period of the amplitude modulation, which is found to be consistent with an origin in the magnetic flux threading the finite width of the interferometer arms, changing the mesoscopic realization of the system. Supported by DOE DE-FG02-08ER46532 (VT) and NSF DMR-0520550 (UoO).
A New Look at the Blazhko Effect in RR Lyrae Stars with High-Quality Data from the MACHO Project
NASA Astrophysics Data System (ADS)
Kurtz, D. W.; Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Griest, K.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Welch, D. L.; MACHO Collaboration
We present the first results of the analysis of 22 Blazhko stars. We find: 1) Blazhko RRab stars that are nearly pure amplitude modulators; 2) Blazhko RRab stars that have both amplitude and phase modulation; 3) A Blazhko RRab star that has an abrupt period change; 4) Proof of the Blazhko effect in RRc stars. Our data show the character of the amplitude and phase modulations of the light curves over the Blazhko cycles far better than has been previously possible.
Pruttivarasin, Thaned; Katori, Hidetoshi
2015-11-01
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruttivarasin, Thaned, E-mail: thaned.pruttivarasin@riken.jp; Katori, Hidetoshi; Innovative Space-Time Project, ERATO, JST, Bunkyo-ku, Tokyo 113-8656
We present a compact field-programmable gate array (FPGA) based pulse sequencer and radio-frequency (RF) generator suitable for experiments with cold trapped ions and atoms. The unit is capable of outputting a pulse sequence with at least 32 transistor-transistor logic (TTL) channels with a timing resolution of 40 ns and contains a built-in 100 MHz frequency counter for counting electrical pulses from a photo-multiplier tube. There are 16 independent direct-digital-synthesizers RF sources with fast (rise-time of ∼60 ns) amplitude switching and sub-mHz frequency tuning from 0 to 800 MHz.
Results of adaptive feedforward on GTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziomek, C.D.; Denney, P.M.; Regan, A.H.
1993-01-01
This paper presents the results of the adaptive feedforward system in use on the Ground Test Accelerator (GTA). The adaptive feedforward system was shown to correct repetitive, high-frequency errors in the amplitude and phase of the RF field of the pulsed accelerator. The adaptive feedforward system was designed as an augmentation to the RF field feedback control system and was able to extend the closed-loop bandwidth and disturbance rejection by a factor of ten. Within a second implementation, the adaptive feedforward hardware was implemented in place of the feedback control system and was shown to negate both beam transients andmore » phase droop in the klystron amplifier.« less
Results of adaptive feedforward on GTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziomek, C.D.; Denney, P.M.; Regan, A.H.
1993-06-01
This paper presents the results of the adaptive feedforward system in use on the Ground Test Accelerator (GTA). The adaptive feedforward system was shown to correct repetitive, high-frequency errors in the amplitude and phase of the RF field of the pulsed accelerator. The adaptive feedforward system was designed as an augmentation to the RF field feedback control system and was able to extend the closed-loop bandwidth and disturbance rejection by a factor of ten. Within a second implementation, the adaptive feedforward hardware was implemented in place of the feedback control system and was shown to negate both beam transients andmore » phase droop in the klystron amplifier.« less
Ueda, Masanori; Iwaki, Masafumi; Nishihara, Tokihiro; Satoh, Yoshio; Hashimoto, Ken-ya
2008-04-01
This paper describes a circuit model for the analysis of nonlinearity in the filters based on radiofrequency (RF) bulk acoustic wave (BAW) resonators. The nonlinear output is expressed by a current source connected parallel to the linear resonator. Amplitude of the nonlinear current source is programmed proportional to the product of linear currents flowing in the resonator. Thus, the nonlinear analysis is performed by the common linear analysis, even for complex device structures. The analysis is applied to a ladder-type RF BAW filter, and frequency dependence of the nonlinear output is discussed. Furthermore, this analysis is verified through comparison with experiments.
The influence of pitch and loudness changes on the acoustics of vocal tremor.
Dromey, Christopher; Warrick, Paul; Irish, Jonathan
2002-10-01
The effect of tremor on phonation is to modulate an otherwise steady sound source in its amplitude, fundamental frequency, or both. The severity of untreated vocal tremor has been reported to change under certain conditions that may be related to muscle tension. In order to better understand the phenomenon of vocal tremor, its acoustic properties were examined as individuals volitionally altered their pitch and loudness. These voice conditions were anticipated to alter the tension of the intrinsic laryngeal muscles. The voices of 10 individuals with a diagnosis of vocal tremor were recorded before participating in a longitudinal treatment study. They produced vowels at low and high pitch and loudness levels as well as in a comfortable voice condition. Acoustic analyses quantified the amplitude and frequency modulations of the speakers' voices across the various conditions. Individual speakers varied in the way the pitch and loudness changes affected their tremor, but the following statistically significant effects for the speakers as a group were observed: Higher pitch phonation was associated with a more rapid rate for both amplitude and frequency modulations. Amplitude modulation become faster for louder phonation. Low-pitched phonotion led to decreases in the extent of amplitude tremor. Varying pitch led to dramatic changes in the phase relationship between amplitude and frequency modulation in some of the speakers, whereas this effect was not apparent in other speakers.
An RF-induced voltage sensor for investigating pacemaker safety in MRI.
Barbier, Thérèse; Piumatti, Roberto; Hecker, Bertrand; Odille, Freddy; Felblinger, Jacques; Pasquier, Cédric
2014-12-01
Magnetic resonance imaging (MRI) is inadvisable for patients with pacemakers, as radiofrequency (RF) voltages induced in the pacemaker leads may cause the device to malfunction. Our goal is to develop a sensor to measure such RF-induced voltages during MRI safety tests. A sensor was designed (16.6 cm(2)) for measuring voltages at the connection between the pacemaker lead and its case. The induced voltage is demodulated, digitized, and transferred by optical fibres. The sensor was calibrated on the bench using RF pulses of known amplitude and duration. Then the sensor was tested during MRI scanning at 1.5 T in a saline gel filled phantom. Bench tests showed measurement errors below 5% with a (-40 V; +40 V) range, a precision of 0.06 V, and a temporal resolution of 24.2 μs. In MRI tests, variability in the measured voltages was below 3.7% for 996 measurements with different sensors and RF exposure. Coupling between the sensor and the MRI electromagnetic environment was estimated with a second sensor connected and was below 6.2%. For a typical clinical MRI sequence, voltages around ten Vp were detected. We have built an accurate and reproducible tool for measuring RF-induced voltages in pacemaker leads during MR safety investigations. The sensor might also be used with other conducting cables including those used for electrocardiography and neurostimulation.
NASA Astrophysics Data System (ADS)
Kachejian, Kerry C.; Vujcic, Doug
1998-08-01
The combat cueing (CBT-Q) research effort will develop and demonstrate a portable tactical information system that will enhance the effectiveness of small unit military operations by providing real-time target cueing information to individual warfighters and teams. CBT-Q consists of a network of portable radio frequency (RF) 'modules' and is controlled by a body-worn 'user station' utilizing a head mounted display . On the battlefield, CBT-Q modules will detect an enemy transmitter and instantly provide the warfighter with an emitter's location. During the 'fog of battle', CBT-Q would tell the warfighter, 'Look here, right now individuals into the RF spectrum, resulting in faster target engagement times, increased survivability, and reduce the potential for fratricide. CBT-Q technology can support both mounted and dismounted tactical forces involved in land, sea and air warfighting operations. The CBT-Q system combines robust geolocation and signal sorting algorithms with hardware and software modularity to offer maximum utility to the warfighter. A single CBT-Q module can provide threat RF detection. Three networked CBT-Q modules can provide emitter positions using a time difference of arrival (TDOA) technique. The TDOA approach relies on timing and positioning data derived from a global positioning systems. The information will be displayed on a variety of displays, including a flat-panel head mounted display. The end results of the program will be the demonstration of the system with US Army Scouts in an operational environment.
Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E
2015-11-03
Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.
Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E.
2015-01-01
Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging. PMID:26556647
Phase incremented echo train acquisition applied to magnetic resonance pore imaging
NASA Astrophysics Data System (ADS)
Hertel, S. A.; Galvosas, P.
2017-02-01
Efficient phase cycling schemes remain a challenge for NMR techniques if the pulse sequences involve a large number of rf-pulses. Especially complex is the Carr Purcell Meiboom Gill (CPMG) pulse sequence where the number of rf-pulses can range from hundreds to several thousands. Our recent implementation of Magnetic Resonance Pore Imaging (MRPI) is based on a CPMG rf-pulse sequence in order to refocus the effect of internal gradients inherent in porous media. While the spin dynamics for spin- 1 / 2 systems in CPMG like experiments are well understood it is still not straight forward to separate the desired pathway from the spectrum of unwanted coherence pathways. In this contribution we apply Phase Incremented Echo Train Acquisition (PIETA) to MRPI. We show how PIETA offers a convenient way to implement a working phase cycling scheme and how it allows one to gain deeper insights into the amplitudes of undesired pathways.
Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme.
Jenkins, A S; Lebrun, R; Grimaldi, E; Tsunegi, S; Bortolotti, P; Kubota, H; Yakushiji, K; Fukushima, A; de Loubens, G; Klein, O; Yuasa, S; Cros, V
2016-04-01
It has been proposed that high-frequency detectors based on the so-called spin-torque diode effect in spin transfer oscillators could eventually replace conventional Schottky diodes due to their nanoscale size, frequency tunability and large output sensitivity. Although a promising candidate for information and communications technology applications, the output voltage generated from this effect has still to be improved and, more pertinently, reduces drastically with decreasing radiofrequency (RF) current. Here we present a scheme for a new type of spintronics-based high-frequency detector based on the expulsion of the vortex core in a magnetic tunnel junction (MTJ). The resonant expulsion of the core leads to a large and sharp change in resistance associated with the difference in magnetoresistance between the vortex ground state and the final C-state configuration. Interestingly, this reversible effect is independent of the incoming RF current amplitude, offering a fast real-time RF threshold detector.
Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging
Kupinski, Matthew A.
2012-01-01
Abstract. We theoretically investigate the effect of noise on frequency-domain heterodyne and/or homodyne measurements of intensity-modulated beams propagating through diffusive media, such as a photon density wave. We assumed that the attenuated amplitude and delayed phase are estimated by taking the Fourier transform of the noisy, modulated output data. We show that the estimated amplitude and phase are biased when the number of output photons is small. We also show that the use of image intensifiers for photon amplification in heterodyne or homodyne measurements increases the amount of biases. Especially, it turns out that the biased estimation is independent of AC-dependent noise in sinusoidal heterodyne or homodyne outputs. Finally, the developed theory indicates that the previously known variance model of modulation amplitude and phase is not valid in low light situations. Monte-Carlo simulations with varied numbers of input photons verify our theoretical trends of the bias. PMID:22352660
Ebeling, Daniel; Solares, Santiago D
2013-01-01
We present an overview of the bimodal amplitude-frequency-modulation (AM-FM) imaging mode of atomic force microscopy (AFM), whereby the fundamental eigenmode is driven by using the amplitude-modulation technique (AM-AFM) while a higher eigenmode is driven by using either the constant-excitation or the constant-amplitude variant of the frequency-modulation (FM-AFM) technique. We also offer a comparison to the original bimodal AFM method, in which the higher eigenmode is driven with constant frequency and constant excitation amplitude. General as well as particular characteristics of the different driving schemes are highlighted from theoretical and experimental points of view, revealing the advantages and disadvantages of each. This study provides information and guidelines that can be useful in selecting the most appropriate operation mode to characterize different samples in the most efficient and reliable way.
A Solid-State Modulator for High Speed Kickers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Cook, E G; Chen, Y J
2001-06-11
An all solid-state modulator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high-speed beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. It provides a nominal 18kV pulse with {+-} 10% amplitude modulation on the order of several MHz, rise times on the order of 10nS, and can be configured for either positive or negative polarity. The presentation will include measured performance data.
Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser.
Shehzad, Atif; Brochard, Pierre; Matthey, Renaud; Blaser, Stéphane; Gresch, Tobias; Maulini, Richard; Muller, Antoine; Südmeyer, Thomas; Schilt, Stéphane
2018-04-30
We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only.
Lorentz force detuning analysis of the Spallation Neutron Source (SNS) accelerating cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, R.R.; Matsumoto, K. Y.; Ciovati, G.
2001-01-01
The Spallation Neutron Source (SNS) project incorporates a superconducting radio-frequency (SRF) accelerator for the final section of the pulsed mode linac. Cavities with geometrical {beta} values of {beta}=0.61 and {beta}=0.81 are utilized in the SRF section, and are constructed out of thin-walled niobium with stiffener rings welded between the cells near the iris. The welded titanium helium vessel and tuner assembly restrains the cavity beam tubes. Cavities with {beta} values less than one have relatively steep and flat side-walls making the cavities susceptible to Lorentz force detuning. In addition, the pulsed RF induces cyclic Lorentz pressures that mechanically excite themore » cavities, producing a dynamic Lorentz force detuning different from a continuous RF system. The amplitude of the dynamic detuning for a given cavity design is a function of the mechanical damping, stiffness of the tuner/helium vessel assembly, RF pulse profile, and the RF pulse rate. This paper presents analysis and testing results to date, and indicates areas where more investigation is required.« less
Dielectric Heaters for Testing Spacecraft Nuclear Reactors
NASA Technical Reports Server (NTRS)
Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas
2006-01-01
A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.
Ultra High-Speed Radio Frequency Switch Based on Photonics.
Ge, Jia; Fok, Mable P
2015-11-26
Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.
Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei
2013-05-06
A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.
Microwave fiber optics delay line
NASA Astrophysics Data System (ADS)
Slayman, C.; Yen, H. W.
1980-01-01
A microwave delay line is one of the devices used in EW systems for preserving the frequency and phase contents of RF signals. For such applications, delay lines are required to have large dynamic range, wide bandwidth, low insertion loss, and a linear response. The basic components of a fiber-optics delay line are: an optical source, a wideband optical modulator, a spool of single-mode fiber with appropriate length to provide a given microwave signal delay, and a high-speed photodetector with an RF amplifier. This contract program is to study the feasibility of such a fiber-optic delay line in the frequency range of 4.0 to 6.5 GHz. The modulation scheme studied is the direct modulation of injection lasers. The most important issue identified is the frequency response of the injection laser and the photodetector.
NASA Astrophysics Data System (ADS)
Grimminck, Dennis L. A. G.; Vasa, Suresh K.; Meerts, W. Leo; Kentgens, P. M.
2011-06-01
A global optimisation scheme for phase modulated proton homonuclear decoupling sequences in solid-state NMR is presented. Phase modulations, parameterised by DUMBO Fourier coefficients, were optimized using a Covariance Matrix Adaptation Evolution Strategies algorithm. Our method, denoted EASY-GOING homonuclear decoupling, starts with featureless spectra and optimises proton-proton decoupling, during either proton or carbon signal detection. On the one hand, our solutions closely resemble (e)DUMBO for moderate sample spinning frequencies and medium radio-frequency (rf) field strengths. On the other hand, the EASY-GOING approach resulted in a superior solution, achieving significantly better resolved proton spectra at very high 680 kHz rf field strength. N. Hansen, and A. Ostermeier. Evol. Comput. 9 (2001) 159-195 B. Elena, G. de Paepe, L. Emsley. Chem. Phys. Lett. 398 (2004) 532-538
Digital Low Level RF Systems for Fermilab Main Ring and Tevatron
NASA Astrophysics Data System (ADS)
Chase, B.; Barnes, B.; Meisner, K.
1997-05-01
At Fermilab, a new Low Level RF system is successfully installed and operating in the Main Ring. Installation is proceeding for a Tevatron system. This upgrade replaces aging CAMAC/NIM components for an increase in accuracy, reliability, and flexibility. These VXI systems are based on a custom three channel direct digital synthesizer(DDS) module. Each synthesizer channel is capable of independent or ganged operation for both frequency and phase modulation. New frequency and phase values are computed at a 100kHz rate on the module's Analog Devices ADSP21062 (SHARC) digital signal processor. The DSP concurrently handles feedforward, feedback, and beam manipulations. Higher level state machines and the control system interface are handled at the crate level using the VxWorks operating system. This paper discusses the hardware, software and operational aspects of these LLRF systems.
Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.
Lockmann, André Luiz Vieira; Mourão, Flávio Afonso Gonçalves; Moraes, Marcio Flávio Dutra
2017-08-01
The rat inferior colliculus (IC) is a major midbrain relay for ascending inputs from the auditory brain stem and has been suggested to play a key role in the processing of aversive sounds. Previous studies have demonstrated that auditory fear conditioning (AFC) potentiates transient responses to brief tones in the IC, but it remains unexplored whether AFC modifies responses to sustained periodic acoustic stimulation-a type of response called the steady-state evoked potential (SSEP). Here we used an amplitude-modulated tone-a 10-kHz tone with a sinusoidal amplitude modulation of 53.7 Hz-as the conditioning stimulus (CS) in an AFC protocol (5 CSs per day in 3 consecutive days) while recording local field potentials (LFPs) from the IC. In the preconditioning session ( day 1 ), the CS elicited prominent 53.7-Hz SSEPs. In the training session ( day 2 ), foot shocks occurred at the end of each CS (paired group) or randomized in the inter-CS interval (unpaired group). In the test session ( day 3 ), SSEPs markedly differed from preconditioning in the paired group: in the first two trials the phase to which the SSEP coupled to the CS amplitude envelope shifted ~90°; in the last two trials the SSEP power and the coherence of SSEP with the CS amplitude envelope increased. LFP power decreased in frequency bands other than 53.7 Hz. In the unpaired group, SSEPs did not change in the test compared with preconditioning. Our results show that AFC causes dissociated changes in the phase and power of SSEP in the IC. NEW & NOTEWORTHY Local field potential oscillations in the inferior colliculus follow the amplitude envelope of an amplitude-modulated tone, originating a neural response called the steady-state evoked potential. We show that auditory fear conditioning of an amplitude-modulated tone modifies two parameters of the steady-state evoked potentials in the inferior colliculus: first the phase to which the evoked oscillation couples to the amplitude-modulated tone shifts; subsequently, the evoked oscillation power increases along with its coherence with the amplitude-modulated tone. Copyright © 2017 the American Physiological Society.
Antisocial behaviour and psychopathy: Uncovering the externalizing link in the P3 modulation.
Pasion, Rita; Fernandes, Carina; Pereira, Mariana R; Barbosa, Fernando
2017-03-22
In 2009, Gao and Raine's meta-analysis analysed P3 modulation over the antisocial spectrum. However, some questions remained open regarding the P3 modulation patterns across impulsive and violent manifestations of antisocial behaviour, phenotypic components of psychopathy, and P3 components. A systematic review of 36 studies was conducted (N=3514) to extend previous results and to address these unresolved questions. A clear link between decreased P3 amplitude and antisocial behaviour was found. In psychopathy, dimensional approaches become more informative than taxonomic models. Distinct etiological pathways of psychopathy were evidenced in cognitive tasks: impulsive-antisocial psychopathic traits mainly predicted blunted P3 amplitude, while interpersonal-affective psychopathic traits explained enhanced P3 amplitude. Supporting the low fear hypothesis, the interpersonal-affective traits were associated with reduced P3 amplitude in emotional-affective learning tasks. From the accumulated knowledge we propose a framework of P3 amplitude modulation that uncovers the externalizing link between psychopathy and antisocial behaviour. However, the main hypotheses are exploratory and call for more data before stablishing robust conclusions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Extending single molecule fluorescence observation time by amplitude-modulated excitation
Kisley, Lydia; Chang, Wei-Shun; Cooper, David; Mansur, Andrea P; Landes, Christy F
2014-01-01
We present a hardware-based method that can improve single molecule fluorophore observation time by up to 1500% and super-localization by 47% for the experimental conditions used. The excitation was modulated using an acousto-optic modulator (AOM) synchronized to the data acquisition and inherent data conversion time of the detector. The observation time and precision in super-localization of four commonly used fluorophores were compared under modulated and traditional continuous excitation, including direct total internal reflectance excitation of Alexa 555 and Cy3, non-radiative Förster resonance energy transfer (FRET) excited Cy5, and direct epi-fluorescence wide field excitation of Rhodamine 6G. The proposed amplitude-modulated excitation does not perturb the chemical makeup of the system or sacrifice signal and is compatible with multiple types of fluorophores. Amplitude-modulated excitation has practical applications for any fluorescent study utilizing an instrumental setup with time-delayed detectors. PMID:24587894
Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus
NASA Astrophysics Data System (ADS)
Sader, John E.; Jarvis, Suzanne P.
2004-07-01
It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative/integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.
R.F Microphotonics for NASA Space Communications Applications
NASA Technical Reports Server (NTRS)
Pouch, John; Nguyen, Hung; Lee, Richard; Miranda, Felix; Hossein-Zadeh, Mani; Cohen, David; Levi, A. F. J.
2007-01-01
An RF microphotonic receiver has-been developed at Ka-band. The receiver consists of a lithium niobate micro-disk that enables RF-optical coupling to occur. The modulated optical signal (- 200 THz) is detected by the high-speed photonic signal processing electronics. When compared with an electronic approach, the microphotonic receiver technology offers 10 times smaller volume, smaller weight, and smaller power consumption; greater sensitivity; and optical isolation for use in extreme environments. The status of the technology development will be summarized, and the potential application of the receiver to NASA space communications systems will be described.
NASA Astrophysics Data System (ADS)
Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric
2017-02-01
We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF + DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.
NASA Astrophysics Data System (ADS)
Li, Xinying; Xiao, Jiangnan
2015-06-01
We propose a novel scheme for optical frequency-locked multi-carrier generation based on one electro-absorption modulated laser (EML) and one phase modulator (PM) in cascade driven by different sinusoidal radio-frequency (RF) clocks. The optimal operating zone for the cascaded EML and PM is found out based on theoretical analysis and numerical simulation. We experimentally demonstrate 25 optical subcarriers with frequency spacing of 12.5 GHz and power difference less than 5 dB can be generated based on the cascaded EML and PM operating in the optimal zone, which agrees well with the numerical simulation. We also experimentally demonstrate 28-Gbaud polarization division multiplexing quadrature phase shift keying (PDM-QPSK) modulated coherent optical transmission based on the cascaded EML and PM. The bit error ratio (BER) can be below the pre-forward-error-correction (pre-FEC) threshold of 3.8 × 10-3 after 80-km single-mode fiber-28 (SMF-28) transmission.
Hirose, H; Sakuma, N; Kaji, N; Suhara, T; Sekijima, M; Nojima, T; Miyakoshi, J
2006-09-01
A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields induce apoptosis or other cellular stress response that activate p53 or the p53-signaling pathway. First, we evaluated the response of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and wideband code division multiple access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced apoptosis or any signs of stress. Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg, and CW radiation at 80 mW/kg for 24 or 48 h. Human IMR-90 fibroblasts from fetal lungs were exposed to both W-CDMA and CW radiation at a SAR of 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the percentage of apoptotic cells were observed between the test groups exposed to RF signals and the sham-exposed negative controls, as evaluated by the Annexin V affinity assay. No significant differences in expression levels of phosphorylated p53 at serine 15 or total p53 were observed between the test groups and the negative controls by the bead-based multiplex assay. Moreover, microarray hybridization and real-time RT-PCR analysis showed no noticeable differences in gene expression of the subsequent downstream targets of p53 signaling involved in apoptosis between the test groups and the negative controls. Our results confirm that exposure to low-level RF signals up to 800 mW/kg does not induce p53-dependent apoptosis, DNA damage, or other stress response in human cells.
A simple 5-DoF MR-compatible motion signal measurement system.
Chung, Soon-Cheol; Kim, Hyung-Sik; Yang, Jae-Woong; Lee, Su-Jeong; Choi, Mi-Hyun; Kim, Ji-Hye; Yeon, Hong-Won; Park, Jang-Yeon; Yi, Jeong-Han; Tack, Gye-Rae
2011-09-01
The purpose of this study was to develop a simple motion measurement system with magnetic resonance (MR) compatibility and safety. The motion measurement system proposed here can measure 5-DoF motion signals without deteriorating the MR images, and it has no effect on the intense and homogeneous main magnetic field, the temporal-gradient magnetic field (which varies rapidly with time), the transceiver radio frequency (RF) coil, and the RF pulse during MR data acquisition. A three-axis accelerometer and a two-axis gyroscope were used to measure 5-DoF motion signals, and Velcro was used to attach a sensor module to a finger or wrist. To minimize the interference between the MR imaging system and the motion measurement system, nonmagnetic materials were used for all electric circuit components in an MR shield room. To remove the effect of RF pulse, an amplifier, modulation circuit, and power supply were located in a shielded case, which was made of copper and aluminum. The motion signal was modulated to an optic signal using pulse width modulation, and the modulated optic signal was transmitted outside the MR shield room using a high-intensity light-emitting diode and an optic cable. The motion signal was recorded on a PC by demodulating the transmitted optic signal into an electric signal. Various kinematic variables, such as angle, acceleration, velocity, and jerk, can be measured or calculated by using the motion measurement system developed here. This system also enables motion tracking by extracting the position information from the motion signals. It was verified that MR images and motion signals could reliably be measured simultaneously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limborg-Deprey, C
Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun [1], referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell,more » and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee [2]. Files and reference documents are compiled in Section IV.« less
Sugama, Nozomi; Park, Ji-Gweon; Park, Yong-Ju; Takeuchi, Yuki; Kim, Se-Jae; Takemura, Akihiro
2008-09-01
The golden rabbitfish Siganus guttatus is a reef fish with a restricted lunar-synchronized spawning cycle. It is not known how the fish recognizes cues from the moon and exerts moon-related activities. In order to evaluate the perception and utilization of moonlight by the fish, the present study aimed to clone and characterize Period2 (Per2), a light-inducible clock gene in lower vertebrates, and to examine daily variations in rabbitfish Per2 (rfPer2) expression as well as the effect of light and moonlight on its expression in the pineal gland. The partially-cloned rfPer2 cDNA (2933 bp) was highly homologous (72%) to zebrafish Per2. The rfPer2 levels increased at ZT6 and decreased at ZT18 in the whole brain and several peripheral organs. The rfPer2 expression in the pineal gland exhibited a daily variation with an increase during daytime. Exposing the fish to light during nighttime resulted in a rapid increase of its expression in the pineal gland, while the level was decreased by intercepting light during daytime. Two hours after exposing the fish to moonlight at the full moon period, the rfPer2 expression was upregulated. These results suggest that rfPer2 is a light-inducible clock gene and that its expression is affected not only by daylight but also by moonlight. Since the rfPer2 expression level during the full moon period was higher than that during the new moon period, the monthly variation in the rfPer2 expression is likely to occur with the change in amplitude between the full and new moon periods.
Nobukawa, Teruyoshi; Nomura, Takanori
2016-09-05
A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.
10 GHz dual loop opto-electronic oscillator without RF-amplifiers
NASA Astrophysics Data System (ADS)
Zhou, Weimin; Okusaga, Olukayode; Nelson, Craig; Howe, David; Carter, Gary
2008-02-01
We report the first demonstration of a 10 GHz dual-fiber-loop Opto-Electronic Oscillator (OEO) without RF-amplifiers. Using a recently developed highly efficient RF-Photonic link with RF-to-RF gain facilitated by a high power laser, highly efficient optical modulator and high power phototectectors, we have built an amplifier-less OEO that eliminates the phase noise produced by the electronic amplifier. The dual-loop approach can provide additional gain and reduce unwanted multi-mode spurs. However, we have observed RF phase noise produced by the high power laser include relative intensity noise (RIN) and noise related to the laser's electronic control system. In addition, stimulated Brillouin scattering limits the fiber loop's length to ~2km at the 40mW laser power needed to provide the RF gain which limits the system's quality factor, Q. We have investigated several different methods for solving these problems. One promising technique is the use of a multi-longitudinal-mode laser to carry the RF signal, maintaining the total optical power but reducing the optical power of each mode to eliminate the Brillouin scattering in a longer fiber thereby reducing the phase noise of the RF signal produced by the OEO. This work shows that improvement in photonic components increases the potential for more RF system applications such as an OEO's with higher performance and new capabilities.
Devgan, Preetpaul S; Diehl, John F; Urick, Vincent J; Sunderman, Christopher E; Williams, Keith J
2009-05-25
We present a technique using a dual-output Mach-Zehnder modulator (MZM) with two wavelength inputs, one operating at low-bias and the other operating at high-bias, in order to cancel unwanted even-order harmonics in analog optical links. By using a dual-output MZM, this technique allows for two suppressed optical carriers to be transmitted to the receiver. Combined with optical amplification and balanced differential detection, the RF power of the fundamental is increased by 2 dB while the even-order harmonic is reduced by 47 dB, simultaneously. The RF noise figure and third-order spurious-free dynamic range (SFDR(3)) are improved by 5.4 dB and 3.6 dB, respectively. Using a wavelength sensitive, low V(pi) MZM allows the two wavelengths to be within 5.5 nm of each other for a frequency band from 10 MHz to 100 MHz and 10 nm for 1 GHz.
Low-current traveling wave tube for use in the microwave power module
NASA Technical Reports Server (NTRS)
Palmer, Raymond W.; Ramins, Peter; Force, Dale A.; Dayton, James A.; Ebihara, Ben T.; Gruber, Robert P.
1993-01-01
The results of a traveling-wave-tube/multistage depressed-collector (TWT-MDC) design study in support of the Advanced Research Projects Agency/Department of Defense (ARPA/DOD) Microwave Power Module (MPM) Program are described. The study stressed the possible application of dynamic and other tapers to the RF output circuit of the MPM traveling wave tube as a means of increasing the RF and overall efficiencies and reducing the required beam current (perveance). The results indicate that a highly efficient, modified dynamic velocity taper (DVT) circuit can be designed for the broadband MPM application. The combination of reduced cathode current (lower perveance) and increased RF efficiency leads to (1) a substantially higher overall efficiency and reduction in the prime power to the MPM, and (2) substantially reduced levels of MDC and MPM heat dissipation, which simplify the cooling problems. However, the selected TWT circuit parameters need to be validated by cold test measurements on actual circuits.
ERIC Educational Resources Information Center
Fogerty, Daniel; Ahlstrom, Jayne B.; Bologna, William J.; Dubno, Judy R.
2016-01-01
Purpose: This study investigated how listeners process acoustic cues preserved during sentences interrupted by nonsimultaneous noise that was amplitude modulated by a competing talker. Method: Younger adults with normal hearing and older adults with normal or impaired hearing listened to sentences with consonants or vowels replaced with noise…
Maleke, Caroline; Luo, Jianwen; Gamarnik, Viktor; Lu, Xin L; Konofagou, Elisa E
2010-07-01
The objective of this study is to show that Harmonic Motion Imaging (HMI) can be used as a reliable tumor-mapping technique based on the tumor's distinct stiffness at the early onset of disease. HMI is a radiation-force-based imaging method that generates a localized vibration deep inside the tissue to estimate the relative tissue stiffness based on the resulting displacement amplitude. In this paper, a finite-element model (FEM) study is presented, followed by an experimental validation in tissue-mimicking polyacrylamide gels and excised human breast tumors ex vivo. This study compares the resulting tissue motion in simulations and experiments at four different gel stiffnesses and three distinct spherical inclusion diameters. The elastic moduli of the gels were separately measured using mechanical testing. Identical transducer parameters were used in both the FEM and experimental studies, i.e., a 4.5-MHz single-element focused ultrasound (FUS) and a 7.5-MHz diagnostic (pulse-echo) transducer. In the simulation, an acoustic pressure field was used as the input stimulus to generate a localized vibration inside the target. Radiofrequency (rf) signals were then simulated using a 2D convolution model. A one-dimensional cross-correlation technique was performed on the simulated and experimental rf signals to estimate the axial displacement resulting from the harmonic radiation force. In order to measure the reliability of the displacement profiles in estimating the tissue stiffness distribution, the contrast-transfer efficiency (CTE) was calculated. For tumor mapping ex vivo, a harmonic radiation force was applied using a 2D raster-scan technique. The 2D HMI images of the breast tumor ex vivo could detect a malignant tumor (20 x 10 mm2) surrounded by glandular and fat tissues. The FEM and experimental results from both gels and breast tumors ex vivo demonstrated that HMI was capable of detecting and mapping the tumor or stiff inclusion with various diameters or stiffnesses. HMI may thus constitute a promising technique in tumor detection (>3 mm in diameter) and mapping based on its distinct stiffness.
A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland
2016-07-15
Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signalsmore » with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.« less
Functional significance of the emotion-related late positive potential
Brown, Stephen B. R. E.; van Steenbergen, Henk; Band, Guido P. H.; de Rover, Mischa; Nieuwenhuis, Sander
2012-01-01
The late positive potential (LPP) is an event-related potential (ERP) component over visual cortical areas that is modulated by the emotional intensity of a stimulus. However, the functional significance of this neural modulation remains elusive. We conducted two experiments in which we studied the relation between LPP amplitude, subsequent perceptual sensitivity to a non-emotional stimulus (Experiment 1) and visual cortical excitability, as reflected by P1/N1 components evoked by this stimulus (Experiment 2). During the LPP modulation elicited by unpleasant stimuli, perceptual sensitivity was not affected. In contrast, we found some evidence for a decreased N1 amplitude during the LPP modulation, a decreased P1 amplitude on trials with a relatively large LPP, and consistent negative (but non-significant) across-subject correlations between the magnitudes of the LPP modulation and corresponding changes in d-prime or P1/N1 amplitude. The results provide preliminary evidence that the LPP reflects a global inhibition of activity in visual cortex, resulting in the selective survival of activity associated with the processing of the emotional stimulus. PMID:22375117
NASA Astrophysics Data System (ADS)
Veselovskaya, T. V.; Klochan, E. L.; Lariontsev, E. G.; Parfenov, S. V.; Shelaev, A. N.
1990-07-01
Theoretical and experimental investigations demonstrated that in real acoustooptic modulators the diffraction of light by a standing ultrasonic wave may give rise to both phase and amplitude nonreciprocities of counterpropagating light waves. Analytic expressions are derived for the dependences of these nonreciprocities on the parameters of the traveling component of an ultrasonic wave in a modulator. It is shown that when the angle of incidence of light on a modulator deviates from the Bragg angle, the phase nonreciprocity may be suppressed, but the amplitude nonreciprocity becomes maximal and its sign is governed by the law of deviation of the angle of incidence from the Bragg angle. A diffraction acoustooptic feedback makes it possible not only to achieve mode locking with an acoustooptic modulator utilizing a traveling ultrasonic wave, but also to control the magnitude and sign of amplitude-frequency nonreciprocities. It is reported that an acoustooptic feedback can be used to generate self-pumping waves in a solid-state mode-locked ring laser and thus stabilize bidirectional lasing in a wide range of the frequency offset between the counterpropagating waves.
Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids
Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind
2012-01-01
Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531
Noncoherent sampling technique for communications parameter estimations
NASA Technical Reports Server (NTRS)
Su, Y. T.; Choi, H. J.
1985-01-01
This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.
Tang, W W; Shu, C
2005-02-21
We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.
Valberg, Peter A; van Deventer, T Emilie; Repacholi, Michael H
2007-03-01
Radiofrequency (RF) waves have long been used for different types of information exchange via the air waves--wireless Morse code, radio, television, and wireless telephone (i.e., construction and operation of telephones or telephone systems). Increasingly larger numbers of people rely on mobile telephone technology, and health concerns about the associated RF exposure have been raised, particularly because the mobile phone handset operates in close proximity to the human body, and also because large numbers of base station antennas are required to provide widespread availability of service to large populations. The World Health Organization convened an expert workshop to discuss the current state of cellular-telephone health issues, and this article brings together several of the key points that were addressed. The possibility of RF health effects has been investigated in epidemiology studies of cellular telephone users and workers in RF occupations, in experiments with animals exposed to cell-phone RF, and via biophysical consideration of cell-phone RF electric-field intensity and the effect of RF modulation schemes. As summarized here, these separate avenues of scientific investigation provide little support for adverse health effects arising from RF exposure at levels below current international standards. Moreover, radio and television broadcast waves have exposed populations to RF for > 50 years with little evidence of deleterious health consequences. Despite unavoidable uncertainty, current scientific data are consistent with the conclusion that public exposures to permissible RF levels from mobile telephone and base stations are not likely to adversely affect human health.
Valberg, Peter A.; van Deventer, T. Emilie; Repacholi, Michael H.
2007-01-01
Radiofrequency (RF) waves have long been used for different types of information exchange via the airwaves—wireless Morse code, radio, television, and wireless telephony (i.e., construction and operation of telephones or telephonic systems). Increasingly larger numbers of people rely on mobile telephone technology, and health concerns about the associated RF exposure have been raised, particularly because the mobile phone handset operates in close proximity to the human body, and also because large numbers of base station antennas are required to provide widespread availability of service to large populations. The World Health Organization convened an expert workshop to discuss the current state of cellular-telephone health issues, and this article brings together several of the key points that were addressed. The possibility of RF health effects has been investigated in epidemiology studies of cellular telephone users and workers in RF occupations, in experiments with animals exposed to cell-phone RF, and via biophysical consideration of cell-phone RF electric-field intensity and the effect of RF modulation schemes. As summarized here, these separate avenues of scientific investigation provide little support for adverse health effects arising from RF exposure at levels below current international standards. Moreover, radio and television broadcast waves have exposed populations to RF for > 50 years with little evidence of deleterious health consequences. Despite unavoidable uncertainty, current scientific data are consistent with the conclusion that public exposures to permissible RF levels from mobile telephony and base stations are not likely to adversely affect human health. PMID:17431492
Integrated optic vector-matrix multiplier
Watts, Michael R [Albuquerque, NM
2011-09-27
A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.
Systematic Morphometry of Catecholamine Nuclei in the Brainstem.
Bucci, Domenico; Busceti, Carla L; Calierno, Maria T; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco
2017-01-01
Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.
Systematic Morphometry of Catecholamine Nuclei in the Brainstem
Bucci, Domenico; Busceti, Carla L.; Calierno, Maria T.; Di Pietro, Paola; Madonna, Michele; Biagioni, Francesca; Ryskalin, Larisa; Limanaqi, Fiona; Nicoletti, Ferdinando; Fornai, Francesco
2017-01-01
Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology. PMID:29163071
Human neuromagnetic steady-state responses to amplitude-modulated tones, speech, and music.
Lamminmäki, Satu; Parkkonen, Lauri; Hari, Riitta
2014-01-01
Auditory steady-state responses that can be elicited by various periodic sounds inform about subcortical and early cortical auditory processing. Steady-state responses to amplitude-modulated pure tones have been used to scrutinize binaural interaction by frequency-tagging the two ears' inputs at different frequencies. Unlike pure tones, speech and music are physically very complex, as they include many frequency components, pauses, and large temporal variations. To examine the utility of magnetoencephalographic (MEG) steady-state fields (SSFs) in the study of early cortical processing of complex natural sounds, the authors tested the extent to which amplitude-modulated speech and music can elicit reliable SSFs. MEG responses were recorded to 90-s-long binaural tones, speech, and music, amplitude-modulated at 41.1 Hz at four different depths (25, 50, 75, and 100%). The subjects were 11 healthy, normal-hearing adults. MEG signals were averaged in phase with the modulation frequency, and the sources of the resulting SSFs were modeled by current dipoles. After the MEG recording, intelligibility of the speech, musical quality of the music stimuli, naturalness of music and speech stimuli, and the perceived deterioration caused by the modulation were evaluated on visual analog scales. The perceived quality of the stimuli decreased as a function of increasing modulation depth, more strongly for music than speech; yet, all subjects considered the speech intelligible even at the 100% modulation. SSFs were the strongest to tones and the weakest to speech stimuli; the amplitudes increased with increasing modulation depth for all stimuli. SSFs to tones were reliably detectable at all modulation depths (in all subjects in the right hemisphere, in 9 subjects in the left hemisphere) and to music stimuli at 50 to 100% depths, whereas speech usually elicited clear SSFs only at 100% depth.The hemispheric balance of SSFs was toward the right hemisphere for tones and speech, whereas SSFs to music showed no lateralization. In addition, the right lateralization of SSFs to the speech stimuli decreased with decreasing modulation depth. The results showed that SSFs can be reliably measured to amplitude-modulated natural sounds, with slightly different hemispheric lateralization for different carrier sounds. With speech stimuli, modulation at 100% depth is required, whereas for music the 75% or even 50% modulation depths provide a reasonable compromise between the signal-to-noise ratio of SSFs and sound quality or perceptual requirements. SSF recordings thus seem feasible for assessing the early cortical processing of natural sounds.
Phasic action of the tensor muscle modulates the calling song in cicadas
Fonseca; Hennig
1996-01-01
The effect of tensor muscle contraction on sound production by the tymbal was investigated in three species of cicadas (Tettigetta josei, Tettigetta argentata and Tympanistalna gastrica). All species showed a strict time correlation between the activity of the tymbal motoneurone and the discharge of motor units in the tensor nerve during the calling song. Lesion of the tensor nerve abolished the amplitude modulation of the calling song, but this modulation was restored by electrical stimulation of the tensor nerve or by mechanically pushing the tensor sclerite. Electrical stimulation of the tensor nerve at frequencies higher than 3040 Hz changed the sound amplitude. In Tett. josei and Tett. argentata there was a gradual increase in sound amplitude with increasing frequency of tensor nerve stimulation, while in Tymp. gastrica there was a sudden reduction in sound amplitude at stimulation frequencies higher than 30 Hz. This contrasting effect in Tymp. gastrica was due to a bistable tymbal frame. Changes in sound pulse amplitude were positively correlated with changes in the time lag measured from tymbal motoneurone stimulation to the sound pulse. The tensor muscle acted phasically because electrical stimulation of the tensor nerve during a time window (010 ms) before electrical stimulation of the tymbal motoneurone was most effective in eliciting amplitude modulations. In all species, the tensor muscle action visibly changed the shape of the tymbal. Despite the opposite effects of the tensor muscle on sound pulse amplitude observed between Tettigetta and Tympanistalna species, the tensor muscle of both acts by modulating the shape of the tymbal, which changes the force required for the tymbal muscle to buckle the tymbal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erbert, G
2009-09-01
The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 psmore » apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.« less
Discriminating Simulated Vocal Tremor Source Using Amplitude Modulation Spectra
Carbonell, Kathy M.; Lester, Rosemary A.; Story, Brad H.; Lotto, Andrew J.
2014-01-01
Objectives/Hypothesis Sources of vocal tremor are difficult to categorize perceptually and acoustically. This paper describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Study Design Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Methods Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor) and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. Results The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. Conclusions These results supply initial support for an amplitude-envelope based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. PMID:25532813
A transceiver module of the Mu radar
NASA Technical Reports Server (NTRS)
Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S.
1983-01-01
The transceiver (TR) module of a middle and upper atmospheric radar is described. The TR module used in the radar is mainly composed of two units: a mixer (MIX unit) and a power amplifier (PA unit). The former generates the RF wave for transmission and converts the received echo to the IF signal. A 41.5-MHz local signal fed to mixers passes through a digitally controlled 8-bit phase shifter which can change its value up to 1,000 times in a second, so that the MU radar has the ability to steer its antenna direction quickly and flexibly. The MIX unit also contains a buffer amplifier and a gate for the transmitting signal and preamplifier for the received one whose noise figure is less than 5 dB. The PA unit amplifies the RF signal supplied from the MIX unit up to 63.7 dBm (2350 W), and feeds it to the crossed Yagi antenna.
A 30 GHz monolithic receive module technology assessment
NASA Technical Reports Server (NTRS)
Geddes, J.; Sokolov, V.; Bauhahn, P.; Contolatis, T.
1988-01-01
This report is a technology assessment relevant to the 30 GHz Monolithic Receive Module development. It is based on results obtained on the present NASA Contract (NAS3-23356) as well as on information gathered from literature and other industry sources. To date the on-going Honeywell program has concentrated on demonstrating the so-called interconnected receive module which consists of four monolithic chips - the low noise front-end amplifier (LNA), the five bit phase shifter (PS), the gain control amplifier (GC), and the RF to IF downconverter (RF/IF). Results on all four individual chips have been obtained and interconnection of the first three functions has been accomplished. Future work on this contract is aimed at a higher level of integration, i.e., integration of the first three functions (LNA + PS + GC) on a single GaAs chip. The report presents the status of this technology and projections of its future directions.
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Lin, Tao; Hu, Dapeng
2018-03-01
Photonic microwave frequency down-conversion with independent multichannel phase shifting and zero-intermediate frequency (IF) receiving is proposed and demonstrated by simulation. By combined use of a phase modulator (PM) in a sagnac loop and an optical bandpass filter (OBPF), orthogonal polarized carrier suppression single sideband (CS-SSB) signals are obtained. By adjusting the polarization controllers (PCs) to introduce the phase difference in the optical domain and using balanced detection to eliminate the direct current components, the phase of the generated IF signal can be arbitrarily tuned. Besides, the radio frequency (RF) vector signal can be also frequency down-converted to baseband directly by choosing two quadrature channels. In the simulation, high gain and continuously tunable phase shifts over the 360 degree range are verified. Furthermore, 2.5 Gbit/s RF vector signals centered at 10 GHz with different modulation formats are successfully demodulated.
NASA Astrophysics Data System (ADS)
Awasthi, Ankit; Anderson, William
2018-04-01
We have studied the effects of topographically driven secondary flows on inner-outer interaction in turbulent channel flow. Recent studies have revealed that large-scale motions in the logarithmic region impose an amplitude and frequency modulation on the dynamics of small-scale structures near the wall. This led to development of a predictive model for near-wall dynamics, which has practical relevance for large-eddy simulations. Existing work on amplitude modulation has focused on smooth-wall flows; however, Anderson [J. Fluid Mech. 789, 567 (2016), 10.1017/jfm.2015.744] addressed the problem of rough-wall turbulent channel flow in which the correlation profiles for amplitude modulation showed trends similar to those reported by Mathis et al. [Phys. Fluids 21, 111703 (2009), 10.1063/1.3267726]. For the present study, we considered flow over surfaces with a prominent spanwise heterogeneity, such that domain-scale turbulent secondary flows in the form of counter-rotating vortices are sustained within the flow. (We also show results for flow over a homogeneous roughness, which serves as a benchmark against the spanwise-perturbed cases.) The vortices are anchored to the topography such that prominent upwelling and downwelling occur above the low and high roughness, respectively. We have quantified the extent to which such secondary flows disrupt the distribution of spectral density across constituent wavelengths throughout the depth of the flow, which has direct implications for the existence of amplitude and frequency modulation. We find that the distinct outer peak associated with large-scale motions—the "modulators"—is preserved within the upwelling zone but vanishes in the downwelling zone. Within the downwelling zones, structures are steeper and shorter. Single- and two-point correlations for inner-outer amplitude and frequency modulation demonstrate insensitivity to resolution across cases. We also show a pronounced crossover between the single- and two-point correlations, a product of modulation quantification based upon Parseval's theorem (i.e., spectral density, but not the wavelength at which energy resides, defines the strength of modulation).
NASA Astrophysics Data System (ADS)
Fukami, Tadanori; Shimada, Takamasa; Akatsuka, Takao; Saito, Yoichi
In audiometry, ABR (Auditory Brainstem Response) is widely used. However, it shows low accuracy in low frequency band. Meanwhile, AMFR (Amplitude-Modulation-Following Response), the response during hearing an amplitude-modulated tone, has high frequency specificity and is brought to attention. As the first step to clinical application of AMFR, we investigated the activated areas in a brain when the subjects hear SAM tone (Sinusoidally Amplitude-Modulated tone) with both ears. We measured following two signals. One is the difference of BOLD (Blood Oxygenation Level Dependent) signal between hearing SAM tone vs. silence, the other is the difference of BOLD signal between hearing SAM tone vs. unmodulated tone. As a result, in the case of SAM vs. silence, the bilaterally auditory cortex (Broadmann Area 41, 42), the biratelally BA 10, left superior frontal gyrus and right superior temporal gyrus were activated (p<0.0037, uncorrected). In the case of SAM vs. unmodulated tone, the bilaterally superior frontal gyrus (BA 6) and precuneus (BA 7), neighboring area including the bilaterally inferior parietal lobule (BA 40), the bilaterally medial frontal gyrus and superior frontal gyrus were activated (p<0.021, uncorrected). Activations of visual perception due to eye-opened state were detected in some parts of activations. As a result, we inferred that modulated tone was recognized in the medial frontal gyrus and inferior parietal lobule was the part related to perception of amplitude-modulation.
Smith, Richard D.; Shaffer, Scott A.
2000-01-01
A method and apparatus for focusing dispersed charged particles. More specifically, a series of elements within a region maintained at a pressure between 10.sup.-1 millibar and 1 bar, each having successively larger apertures forming an ion funnel, wherein RF voltages are applied to the elements so that the RF voltage on any element has phase, amplitude and frequency necessary to define a confinement zone for charged particles of appropriate charge and mass in the interior of the ion funnel, wherein the confinement zone has an acceptance region and an emmitance region and where the acceptance region area is larger than the emmitance region area.
Avionics electromagnetic interference immunity and environment
NASA Technical Reports Server (NTRS)
Clarke, C. A.
1986-01-01
Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.
Influence of movement parameters on area 18 neurones in the cat.
Orban, G A; Callens, M
1977-10-24
In cats, 107 area 18 neurones with identified FR type, 10-50 degrees from the visual axis, were tested for the influence of direction, velocity and amplitude of movement. These three parameters are believed to be the primary parameters of a movement analysing system. 94% of the neurones were influenced by the direction of movement, all of them by the angular velocity and 16% by the amplitude of movement. For each of the primary parameters, tuning curves were established. Angular velocity influenced not only the response magnitude but also the response latency and the direction bias. By preparing response amplitude functions at different velocities the influence of movement duration was ruled out. The association of functional properties and RF organization suggests a model of information processing in area 18 of the cat.
Segmented surface coil resonator for in vivo EPR applications at 1.1GHz.
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L
2009-05-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20mm.
Ground Isolation Circuit for Isolating a Transmission Line from Ground Interference
NASA Technical Reports Server (NTRS)
Davidson, Craig A. (Inventor)
1996-01-01
This invention relates generally to a system for isolating ground interference from a transmission line, e.g., a ground isolation circuit for isolating a wideband transmission signal (such as a video signal) from ground by modulating the base signal on a carrier signal to permit the transmission signal to be isolated. In one embodiment, the circuit includes a pair of matched mixer circuits, each of which receives a carrier signal from the same oscillator circuit. The first mixer circuit also receives the baseband signal input, after appropriate conditioning, and modulates the baseband signal onto the carrier signal. In a preferred embodiment the carrier signal has a predetermined frequency which is at least two times the frequency of the baseband signal. The modulated signal (which can comprise an rf signal) is transmitted via an rf transmission line to the second mixer, which demodulates the rf signal to recover the baseband signal. Each port of the mixer connects to an isolation transformer to ensure isolation from ground interference. The circuit is considered to be of commercial value in that it can provide isolation between transmitting and receiving circuits, e.g., ground isolation for television circuits or high frequency transmitters, without the need for video transformers or optical isolators, thereby reducing the complexity, power consumption, and weight of the system.
Segmented surface coil resonator for in vivo EPR applications at 1.1 GHz
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L.
2010-01-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18 mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20 mm. PMID:19268615
NASA Astrophysics Data System (ADS)
Pan, Zeyu; Subbaraman, Harish; Zhang, Cheng; Li, Qiaochu; Xu, Xiaochuan; Chen, Xiangning; Zhang, Xingyu; Zou, Yi; Panday, Ashwin; Guo, L. Jay; Chen, Ray T.
2016-02-01
Phased-array antenna (PAA) technology plays a significant role in modern day radar and communication networks. Truetime- delay (TTD) enabled beam steering networks provide several advantages over their electronic counterparts, including squint-free beam steering, low RF loss, immunity to electromagnetic interference (EMI), and large bandwidth control of PAAs. Chip-scale and integrated TTD modules promise a miniaturized, light-weight system; however, the modules are still rigid and they require complex packaging solutions. Moreover, the total achievable time delay is still restricted by the wafer size. In this work, we propose a light-weight and large-area, true-time-delay beamforming network that can be fabricated on light-weight and flexible/rigid surfaces utilizing low-cost "printing" techniques. In order to prove the feasibility of the approach, a 2-bit thermo-optic polymer TTD network is developed using a combination of imprinting and ink-jet printing. RF beam steering of a 1×4 X-band PAA up to 60° is demonstrated. The development of such active components on large area, light-weight, and low-cost substrates promises significant improvement in size, weight, and power (SWaP) requirements over the state-of-the-art.
Design and Development of a Package for a Diluted Waveguide Electro-Absorption Modulator
2008-11-01
the coupling efficiency. A design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for...results, a design including mechanical, optical and RF elements was developed. A Newport Laser Welding system was utilized for fiber placement and...fixation. The laser welding techniques were customized in order to meet the needs of the EAM package design. Keywords: Electroabsorption
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2010 CFR
2010-10-01
... modulation Maximum rated carrier power Class of amplifier 0.70 Plate 1 kW or less .80 Plate 2.5 kW and over .35 Low level 0.25 kW and over B .65 Low level 0.25 kW and over BC1 .35 Grid 0.25 kW and over 1 All...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the...
Development of a Self Powered Vehicle Detector
1978-10-01
Low Power RFTelemetry Link, Audio Tone kncoder/Decoder, 9mn’dlrectional Microstrip Antenna, RF Oscillator , RF Transmitter, Battery/ Solar Cell Tests...tuned Colpitts oscillator using a fundamental mode crystal, a reactance modulator (varactor diode), and a collector tank circuit tuned to the second...papers discussing this type of VCXO. The basic Colpitts oscillator equivalent circuit is shown in Figure 29 having a collector tank tuned to the 2nd
Modeling of Pulses Having Arbitrary Amplitude and Frequency Modulation.
1980-03-01
function, fi(t), has been discussed in great detail in Section II. The linearized amplitude modulation, 1(t), is given by: (IV-6) vo A +h( -) TO’ # where "A...10. LCDR Francis Martin Lunney, USN 6143 Gatsby Green Columbia, Maryland 21045 149
Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J
2008-09-01
Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.
NASA Astrophysics Data System (ADS)
Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg
2017-06-01
We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.
Effects of auditory selective attention on chirp evoked auditory steady state responses.
Bohr, Andreas; Bernarding, Corinna; Strauss, Daniel J; Corona-Strauss, Farah I
2011-01-01
Auditory steady state responses (ASSRs) are frequently used to assess auditory function. Recently, the interest in effects of attention on ASSRs has increased. In this paper, we investigated for the first time possible effects of attention on AS-SRs evoked by amplitude modulated and frequency modulated chirps paradigms. Different paradigms were designed using chirps with low and high frequency content, and the stimulation was presented in a monaural and dichotic modality. A total of 10 young subjects participated in the study, they were instructed to ignore the stimuli and after a second repetition they had to detect a deviant stimulus. In the time domain analysis, we found enhanced amplitudes for the attended conditions. Furthermore, we noticed higher amplitudes values for the condition using frequency modulated low frequency chirps evoked by a monaural stimulation. The most difference between attended and unattended modality was exhibited at the dichotic case of the amplitude modulated condition using chirps with low frequency content.
NASA Astrophysics Data System (ADS)
Wu, Peng; Ma, Jianxin
2017-03-01
We have proposed and demonstrated a scheme to generate a frequency-sextupling amplitude shift keying (ASK)-single sideband optical millimeter (mm)-wave signal with high dispersion tolerance based on an optical phase modulator (PM) by ably using the-4th-order and +2nd-order sidebands of the optical modulation. The ASK radio frequency signal, superposed by a local oscillator with the same frequency, modulates the lightwave via an optical PM with proper voltage amplitudes, the +2nd-order sideband carries the ASK signal with a constant slope while the -4th-order sideband maintains constant amplitude. These two sidebands can be abstracted by a wavelength selective switch to form a dual-tone optical mm-wave with only one tone carrying the ASK signal. As only one tone bears the ASK signal while the other tone is unmodulated, the generated dual-tone optical mm-wave signal has high dispersion tolerance.
NASA Astrophysics Data System (ADS)
Santos, Sergio; Barcons, Victor; Christenson, Hugo K.; Billingsley, Daniel J.; Bonass, William A.; Font, Josep; Thomson, Neil H.
2013-08-01
A way to operate fundamental mode amplitude modulation atomic force microscopy is introduced which optimizes stability and resolution for a given tip size and shows negligible tip wear over extended time periods (˜24 h). In small amplitude small set-point (SASS) imaging, the cantilever oscillates with sub-nanometer amplitudes in the proximity of the sample, without the requirement of using large drive forces, as the dynamics smoothly lead the tip to the surface through the water layer. SASS is demonstrated on single molecules of double-stranded DNA in ambient conditions where sharp silicon tips (R ˜ 2-5 nm) can resolve the right-handed double helix.
The effects of an ion-thruster exhaust plume on S-band carrier transmission
NASA Technical Reports Server (NTRS)
Ackerknecht, W. E., III; Stanton, P. H.
1976-01-01
The magnitude of the effects of an ion thruster plume on S-band signals is measured. Modeling techniques are developed to predict the effects. Results show that the RF signal transmitted through an ion thruster plume is reduced in amplitude and shifted in phase. An increase in noise is also experienced.
Optical mixing of microwave signals in a nonlinear semiconductor laser amplifier modulator.
Capmany, José; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz
2002-02-11
In this paper we propose and evaluate the optical mixing of RF signals by means of exploiting the nonlinearity of a SLA modulator. The results show the potential for devices with low conversion losses (and even gain) and polarization insensitivity and reduced insertion losses.
Learning and Visualizing Modulation Discriminative Radio Signal Features
2016-09-01
implemented as a mapping of a sequence of in-phase quadrature ( IQ ) measurements generated by a software-defined radio to a probability distri- bution...over modulation classes. 3.1 TRAINING SNR EVALUATION Training CNNs on RF data raises the unique question of determining an optimal training SNR, that
Microfluidic stretchable RF electronics.
Cheng, Shi; Wu, Zhigang
2010-12-07
Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.
Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi
2017-09-01
Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.
A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive
NASA Astrophysics Data System (ADS)
Kang, S.; Kim, H. C.; Chun, K.
2009-03-01
Our goal was to develop a single-pole four-throw (SP4T) radio frequency microelectromechanical system (RF MEMS) switch for band selection in a multi-band, multi-mode, front-end module of a wireless transceiver system. The SP4T RF MEMS switch was based on an arrangement of four single-pole single-throw (SPST) RF MEMS switches. The SP4T RF MEMS switch was driven by a double stop (DS) comb drive, with a lateral resistive contact, and composed of single crystalline silicon (SCS) on glass. A large contact force at a low-drive voltage was achieved by electrostatic actuation of the DS comb drive. Good RF characteristics were achieved by the large contact force and the lateral resistive Au-to-Au contact. Mechanical reliability was achieved by using SCS which has no residual stress as a structure material. The developed SP4T RF MEMS switch has a drive voltage of 15 V, an insertion loss below 0.31 dB at 6 GHz after more than one million cycles under a 10 mW signal, a return loss above 20 dB and an isolation value above 36 dB.
Development of ROACH firmware for microwave multiplexed X-ray TES microcalorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, T. J.; Cecil, T. W.; Gades, L. M.
We are developing room temperature electronics based upon the ROACH platform for reading out microwave multiplexed X-ray TES. ROACH is an open-source hardware and software platform featuring a large Xilinx Field Programmable Gate Array (FPGA), Power PC processor, several 10GB Ethernet SFP+ interfaces, and a collection of daughter boards for analog signal generation and acquisition. The combination of a ROACH board, ADC/DAC conversion daughter boards, and hardware for RF mixing allows for the generation and capture of multiple RF tones for reading out microwave multiplexed x-ray TES microcalorimeters. The FPGA is used to generate multiple tones in base band, frommore » 10MHz to 250MHz, which are subsequently mixed to RF in the multiple GHz range and sent through the microwave multiplexer. The tones are generated in the FPGA by storing a large lookup table in Quad Data Rate (QDR) SRAM modules and playing out the waveform to a DAC board. Once the signal has been modulated to RF, passed through the microwave multiplexer, and has been modulated back to base band, the signal is digitized by an ADC board. The tones are modulated to 0Hz by using a FPGA circuit consisting of a polyphase filter bank, several Xilinx FFT blocks, Xilinx CORDIC blocks (for converting to magnitude and phase), and special phase accumulator circuit for mixing to exactly 0Hz. Upwards of 256 channels can be simultaneously captured and written into a bank of 256 First-In-First-Out (FIFO) memories, with each FIFO corresponding to a channel. Individual channel data can be further processed in the FPGA before being streamed through a 10GB Ethernet fiber-optic interface to a Linux system. The Linux system runs software written in Python and QT C++ for controlling the ROACH system, capturing data, and processing data.« less
EMG normalization to study muscle activation in cycling.
Rouffet, David M; Hautier, Christophe A
2008-10-01
The value of electromyography (EMG) is sensitive to many physiological and non-physiological factors. The purpose of the present study was to determine if the torque-velocity test (T-V) can be used to normalize EMG signals into a framework of biological significance. Peak EMG amplitude of gluteus maximus (GMAX), vastus lateralis (VL), rectus femoris (RF), biceps femoris long head (BF), gastrocnemius medialis (GAS) and soleus (SOL) was calculated for nine subjects during isometric maximal voluntary contractions (IMVC) and torque-velocity bicycling tests (T-V). Then, the reference EMG signals obtained from IMVC and T-V bicycling tests were used to normalize the amplitude of the EMG signals collected for 15 different submaximal pedaling conditions. The results of this study showed that the repeatability of the measurements between IMVC (from 10% to 23%) and T-V (from 8% to 20%) was comparable. The amplitude of the peak EMG of VL was 99+/-43% higher (p<0.001) when measured during T-V. Moreover, the inter-individual variability of the EMG patterns calculated for submaximal cycling exercises differed significantly when using T-V bicycling normalization method (GMAX: 0.33+/-0.16 vs. 1.09+/-0.04, VL: 0.07+/-0.02 vs. 0.64+/-0.14, SOL: 0.07+/-0.03 vs. 1.00+/-0.07, RF: 1.21+/-0.20 vs. 0.92+/-0.13, BF: 1.47+/-0.47 vs. 0.84+/-0.11). It was concluded that T-V bicycling test offers the advantage to be less time and energy-consuming and to be as repeatable as IMVC tests to measure peak EMG amplitude. Furthermore, this normalization method avoids the impact of non-physiological factors on the amplitude of the EMG signals so that it allows quantifying better the activation level of lower limb muscles and the variability of the EMG patterns during submaximal bicycling exercises.
Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad
2016-04-01
The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.
Advanced Digital Signal Processing for Hybrid Lidar
2014-10-30
obtain range measurements . A MATLAB- based system developed at Clarkson University in FY14 has been used to perform real-time FDR ranging... measurement accuracy. There have been various methods that attempt to reduce the backscatter. One method is to increase the modulation frequency beyond...an unambiguous range measurement . In general, it is desired to determine which combination of Radio Frequency (RF) modulation frequencies, modulation
Maleke, Caroline; Konofagou, Elisa E
2010-01-01
In this study, the Harmonic Motion Imaging for Focused Ultrasound (HMIFU) technique is applied to monitor changes in mechanical properties of tissues during thermal therapy in a transgenic breast cancer mouse model in vivo. An HMIFU system, composed of a 4.5-MHz focused ultrasound (FUS) and a 3.3-MHz phased-array imaging transducer, was mechanically moved to image and ablate the entire tumor. The FUS transducer was driven by an amplitude-modulated (AM) signal at 15 Hz. The acoustic intensity ( I(spta)) was equal to 1050 W/cm(2) at the focus. A digital low-pass filter was used to filter out the spectrum of the FUS beam and its harmonics prior to displacement estimation. The resulting axial displacement was estimated using 1-D cross-correlation on the acquired RF signals. Results from two mice with eight lesions formed in each mouse (16 lesions total) showed that the average peak-to-peak displacement amplitude before and after lesion formation was respectively equal to 17.34 +/- 1.34 microm and 10.98 +/- 1.82 microm ( p < 0.001). Cell death was also confirmed by hematoxylin and eosin histology. HMI displacement can be used to monitor the relative tissue stiffness changes in real time during heating so that the treatment procedure can be performed in a time-efficient manner. The HMIFU system may, therefore, constitute a cost-efficient and reliable alternative for real-time monitoring of thermal ablation.
RF-photonic chirp encoder and compressor for seamless analysis of information flow.
Zalevsky, Zeev; Shemer, Amir; Zach, Shlomo
2008-05-26
In this paper we realize an RF photonic chirp compression system that compresses a continuous stream of incoming RF data (modulated on top of an optical carrier) into a train of temporal short pulses. Each pulse in the train can be separated and treated individually while being sampled by low rate optical switch and without temporal loses of the incoming flow of information. Each such pulse can be filtered and analyzed differently. The main advantage of the proposed system is its capability of being able to handle, seamlessly, high rate information flow with all-optical means and with low rate optical switches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggers, P.E.
1975-03-01
An analytical study has been performed to assess the feasibility of using aerodynamically heated thermoelectric convertors to power RF proximity fuzes. The collective results of this study indicate that such a thermoelectric power supply is feasible for use with 20 mm projectiles and is compatible with the existing RF fuze circuit and safe arming distance requirements. A disc module concept has evolved from this study involving thin-film bismuth telluride as the basic thermoelectric element. Preliminary experimental studies were completed in order to identify principal parameters for the bismuth telluride.
Gong, Chunzhi; Tian, Xiubo; Yang, Shiqin; Fu, Ricky K Y; Chu, Paul K
2008-04-01
A novel power supply system that directly couples pulsed high voltage (HV) pulses and pulsed 13.56 MHz radio frequency (rf) has been developed for plasma processes. In this system, the sample holder is connected to both the rf generator and HV modulator. The coupling circuit in the hybrid system is composed of individual matching units, low pass filters, and voltage clamping units. This ensures the safe operation of the rf system even when the HV is on. The PSPICE software is utilized to optimize the design of circuits. The system can be operated in two modes. The pulsed rf discharge may serve as either the seed plasma source for glow discharge or high-density plasma source for plasma immersion ion implantation (PIII). The pulsed high-voltage glow discharge is induced when a rf pulse with a short duration or a larger time interval between the rf and HV pulses is used. Conventional PIII can also be achieved. Experiments conducted on the new system confirm steady and safe operation.
Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon
2013-01-01
As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.
Modeling of RF/MHD coupling using NIMROD and GENRAY
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.
2008-11-01
We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations, specifically considering the stabilization of resistive tearing modes in tokamak (DIII--D--like) geometry by electron cyclotron current drive. Previous investigations [T. G. Jenkins et al., Bull. APS 52, 131 (2007)] have demonstrated that relatively simple (though non--self--consistent) models for the RF--induced currents can be incorporated into the fluid equations, and that these currents can markedly reduce the width of the nonlinearly saturated magnetic islands generated by tearing modes. We report our progress toward the self--consistent modeling of these RF--induced currents. The initial interfacing of the NIMROD* code with the GENRAY/CQL3D** codes (which calculate RF propagation and energy/momentum deposition) is explained, equilibration of RF--induced currents over the plasma flux surfaces is investigated, and initial studies exploring the efficient reduction of saturated island widths through time modulation of the ECCD are presented. Conducted as part of the SWIM*** project; funded by U. S. DoE. *www.nimrodteam.org **www.compxco.com ***www.cswim.org
Modeling of RF/MHD coupling using NIMROD, GENRAY, and the Integrated Plasma Simulator
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.
2009-05-01
We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations; specifically considering resistive tearing mode stabilization in tokamak (DIII--D--like) geometry via ECCD. Relatively simple (though non--self--consistent) models for the RF--induced currents are incorporated into the fluid equations, markedly reducing the width of the nonlinearly saturated magnetic islands generated by tearing modes. We report our progress toward the self--consistent modeling of these RF--induced currents. The initial interfacing of the NIMROD* code with the GENRAY/CQL3D** codes (calculating RF propagation and energy/momentum deposition) via the Integrated Plasma Simulator (IPS) framework*** is explained, equilibration of RF--induced currents over the plasma flux surfaces is investigated, and studies exploring the efficient reduction of saturated island widths through time modulation and spatial localization of the ECCD are presented. *[Sovinec et al., JCP 195, 355 (2004)] **[www.compxco.com] ***[This research and the IPS development are both part of the SWIM project. Funded by U.S. DoE.