Science.gov

Sample records for amplitude modulated tones

  1. Beating frequency and amplitude modulation of the piano tone due to coupling of tones

    NASA Astrophysics Data System (ADS)

    Cartling, Bo

    2005-04-01

    The influence on a piano tone from weak coexcitation of damped adjacent tones due to coupling via the bridge is studied. The frequency and amplitude modulation of the sound resulting from coexcitation of one strong and one or two weak tones is analyzed. One weak tone causes frequency and amplitude modulation of the sound, and two weak tones produce beating frequency and amplitude modulation, where the beatings of the two modulations are of opposite phase. By digital recording of the sound of piano tones, the appearance of these phenomena is verified. The audibility of the observed frequency and amplitude modulation is discussed in terms of previously determined detection thresholds. The beating character of both frequency and amplitude modulations, however, distinguishes the phenomena from those previously studied and prompts further psychoacoustic investigations. It is shown that detuning of unison strings may significantly increase the frequency deviation of the frequency modulation in conjunction with affected amplitude modulation. The modulatory effects of coupling to adjacent tones therefore may possibly be utilized in the tuning process. A coupling of tones analogous to the situation in a piano may arise in other stringed musical instruments transferring string vibrations to a soundboard via a bridge. .

  2. Beating frequency and amplitude modulation of the piano tone due to coupling of tones.

    PubMed

    Cartling, Bo

    2005-04-01

    The influence on a piano tone from weak coexcitation of damped adjacent tones due to coupling via the bridge is studied. The frequency and amplitude modulation of the sound resulting from coexcitation of one strong and one or two weak tones is analyzed. One weak tone causes frequency and amplitude modulation of the sound, and two weak tones produce beating frequency and amplitude modulation, where the beatings of the two modulations are of opposite phase. By digital recording of the sound of piano tones, the appearance of these phenomena is verified. The audibility of the observed frequency and amplitude modulation is discussed in terms of previously determined detection thresholds. The beating character of both frequency and amplitude modulations, however, distinguishes the phenomena from those previously studied and prompts further psychoacoustic investigations. It is shown that detuning of unison strings may significantly increase the frequency deviation of the frequency modulation in conjunction with affected amplitude modulation. The modulatory effects of coupling to adjacent tones therefore may possibly be utilized in the tuning process. A coupling of tones analogous to the situation in a piano may arise in other stringed musical instruments transferring string vibrations to a soundboard via a bridge. PMID:15898666

  3. Human Neuromagnetic Steady-State Responses to Amplitude-Modulated Tones, Speech, and Music

    PubMed Central

    Parkkonen, Lauri; Hari, Riitta

    2014-01-01

    Objectives: Auditory steady-state responses that can be elicited by various periodic sounds inform about subcortical and early cortical auditory processing. Steady-state responses to amplitude-modulated pure tones have been used to scrutinize binaural interaction by frequency-tagging the two ears’ inputs at different frequencies. Unlike pure tones, speech and music are physically very complex, as they include many frequency components, pauses, and large temporal variations. To examine the utility of magnetoencephalographic (MEG) steady-state fields (SSFs) in the study of early cortical processing of complex natural sounds, the authors tested the extent to which amplitude-modulated speech and music can elicit reliable SSFs. Design: MEG responses were recorded to 90-s-long binaural tones, speech, and music, amplitude-modulated at 41.1 Hz at four different depths (25, 50, 75, and 100%). The subjects were 11 healthy, normal-hearing adults. MEG signals were averaged in phase with the modulation frequency, and the sources of the resulting SSFs were modeled by current dipoles. After the MEG recording, intelligibility of the speech, musical quality of the music stimuli, naturalness of music and speech stimuli, and the perceived deterioration caused by the modulation were evaluated on visual analog scales. Results: The perceived quality of the stimuli decreased as a function of increasing modulation depth, more strongly for music than speech; yet, all subjects considered the speech intelligible even at the 100% modulation. SSFs were the strongest to tones and the weakest to speech stimuli; the amplitudes increased with increasing modulation depth for all stimuli. SSFs to tones were reliably detectable at all modulation depths (in all subjects in the right hemisphere, in 9 subjects in the left hemisphere) and to music stimuli at 50 to 100% depths, whereas speech usually elicited clear SSFs only at 100% depth. The hemispheric balance of SSFs was toward the right hemisphere

  4. The Analysis for Activations in the Brain during Hearing the Amplitude-Modulated Tone by fMRI Measurement

    NASA Astrophysics Data System (ADS)

    Fukami, Tadanori; Shimada, Takamasa; Akatsuka, Takao; Saito, Yoichi

    In audiometry, ABR (Auditory Brainstem Response) is widely used. However, it shows low accuracy in low frequency band. Meanwhile, AMFR (Amplitude-Modulation-Following Response), the response during hearing an amplitude-modulated tone, has high frequency specificity and is brought to attention. As the first step to clinical application of AMFR, we investigated the activated areas in a brain when the subjects hear SAM tone (Sinusoidally Amplitude-Modulated tone) with both ears. We measured following two signals. One is the difference of BOLD (Blood Oxygenation Level Dependent) signal between hearing SAM tone vs. silence, the other is the difference of BOLD signal between hearing SAM tone vs. unmodulated tone. As a result, in the case of SAM vs. silence, the bilaterally auditory cortex (Broadmann Area 41, 42), the biratelally BA 10, left superior frontal gyrus and right superior temporal gyrus were activated (p<0.0037, uncorrected). In the case of SAM vs. unmodulated tone, the bilaterally superior frontal gyrus (BA 6) and precuneus (BA 7), neighboring area including the bilaterally inferior parietal lobule (BA 40), the bilaterally medial frontal gyrus and superior frontal gyrus were activated (p<0.021, uncorrected). Activations of visual perception due to eye-opened state were detected in some parts of activations. As a result, we inferred that modulated tone was recognized in the medial frontal gyrus and inferior parietal lobule was the part related to perception of amplitude-modulation.

  5. Detection thresholds for amplitude modulations of tones in budgerigar, rabbit, and human.

    PubMed

    Carney, Laurel H; Ketterer, Angela D; Abrams, Kristina S; Schwarz, Douglas M; Idrobo, Fabio

    2013-01-01

    Envelope fluctuations of complex sounds carry information that is -essential for many types of discrimination and for detection in noise. To study the neural representation of envelope information and mechanisms for processing of this temporal aspect of sounds, it is useful to identify an animal model that can -sensitively detect amplitude modulations (AM). Low modulation frequencies, which dominate speech sounds, are of particular interest. Yet, most animal -models studied previously are relatively insensitive to AM at low modulation -frequencies. Rabbits have high thresholds for low-frequency modulations, -especially for tone carriers. Rhesus macaques are less sensitive than humans to low-frequency -modulations of wideband noise (O'Conner et al. Hear Res 277, 37-43, 2011). Rats and -chinchilla also have higher thresholds than humans for amplitude -modulations of noise (Kelly et al. J Comp Psychol 120, 98-105, 2006; Henderson et al. J Acoust Soc Am 75, -1177-1183, 1984). In contrast, the budgerigar has thresholds for AM detection of wideband noise similar to those of human listeners at low -modulation frequencies (Dooling and Searcy. Percept Psychophys 46, 65-71, 1981). A -one-interval, two-alternative operant conditioning procedure was used to estimate AM -detection thresholds for 4-kHz tone carriers at low modulation -frequencies (4-256 Hz). Budgerigar thresholds are comparable to those of human subjects in a comparable task. Implications of these comparative results for temporal coding of complex sounds are discussed. Comparative results for masked AM detection are also presented. PMID:23716245

  6. Cochlear Gain Control Estimated from Distortion Product Otoacoustic Emissions Evoked by Amplitude Modulated Tones

    NASA Astrophysics Data System (ADS)

    Chen, Shixiong; Bian, Lin

    2011-11-01

    It is known that cochlear outer hair cells (OHCs) can provide dynamic feedback to the basilar membrane vibration. Nonlinearities in OHC activities can generate distortion product otoacoustic emissions (DPOAEs) measurable in the ear canal. If evoked by amplitude modulation (AM) signals, DPOAEs could provide a means to access the dynamic gain control of the cochlea. In this study, one of the primary stimuli was replaced with an AM tone to evoke DPOAEs in human ears. The results showed that the estimated cochlear gain decreased with the increase in stimulus level and the gain functions obtained from different AM tone levels were continuous. However, there was a difference in the gain functions depending on which primary was modulated. The gain showed a stronger compression when f2 was modulated. Considering that DPOAEs are mainly generated at the f2 place, it suggests that the cochlear gain control is more nonlinear for on-frequency signals. Using AM stimulus could provide clues on how dynamic signals are processed in the cochlea.

  7. Comparison of discrete multi-tone and pulse amplitude modulation for beyond 100 Gbps short-reach application

    NASA Astrophysics Data System (ADS)

    Nishihara, Masato; Kai, Yutaka; Tanaka, Toshiki; Takahara, Tomoo; Li, Lei; Yan, Weizhen; Liu, Bo; Tao, Zhenning; Rasmussen, Jens C.

    2013-12-01

    Advanced multi-level modulation is an attractive modulation technique for beyond 100 Gbps short reach optical transmission system. Above all, discrete multi-tone (DMT) technique and pulse amplitude modulation (PAM) technique are the strong candidates. We compared the 100 Gbps transmission characteristics of DMT and PAM by simulation and experiment. The comparison was done by using same devices and only the digital signal processing was changed. We studied the transmission distance dependence for 0.5 to 40 km and the impact of the frequency responses of the optical devices. Finally we discuss the features of the both modulation techniques.

  8. Responses of neurons in the rat's ventral nucleus of the lateral lemniscus to amplitude-modulated tones.

    PubMed

    Zhang, Huiming; Kelly, Jack B

    2006-12-01

    Recordings were made from single neurons in the rat's ventral nucleus of the lateral lemniscus (VNLL) to determine responses to amplitude-modulated (AM) tones. The neurons were first characterized on the basis of their response to tone bursts presented to the contralateral ear and a distinction was made between those with transient onset responses and those with sustained responses. Sinusoidal AM tones were then presented to the contralateral ear with a carrier that matched the neuron's characteristic frequency (CF). Modulation transfer functions were generated on the basis of firing rate (MTF(FR)) and vector strength (MTF(VS)). Ninety-two percent of onset neurons that responded continuously to AM tones had band-pass MTF(FR)s with best modulation frequencies from 10 to 300 Hz. Fifty-four percent of sustained neurons had band-pass MTF(FR)s with best modulation frequencies from 10 to 500 Hz; other neurons had band-suppressed, all-pass, low-pass, or high-pass functions. Most neurons showed either band-pass or low-pass MTF(VS). Responses were well synchronized to the modulation cycle with maximum vector strengths ranging from 0.37 to 0.98 for sustained neurons and 0.78 to 0.99 for onset neurons. The upper frequency limit for response synchrony was higher than that reported for inferior colliculus, but lower than that seen in more peripheral structures. Results suggest that VNLL neurons, especially those with onset responses to tone bursts, are sensitive to temporal features of sounds and narrowly tuned to different modulation rates. However, there was no evidence of a topographic relation between dorsoventral position along the length of VNLL and best modulation frequency as determined by either firing rate or vector strength. PMID:16928797

  9. A phenomenological model of peripheral and central neural responses to amplitude-modulated tones

    NASA Astrophysics Data System (ADS)

    Nelson, Paul C.; Carney, Laurel H.

    2004-10-01

    A phenomenological model with time-varying excitation and inhibition was developed to study possible neural mechanisms underlying changes in the representation of temporal envelopes along the auditory pathway. A modified version of an existing auditory-nerve model [Zhang et al., J. Acoust. Soc. Am. 109, 648-670 (2001)] was used to provide inputs to higher hypothetical processing centers. Model responses were compared directly to published physiological data at three levels: the auditory nerve, ventral cochlear nucleus, and inferior colliculus. Trends and absolute values of both average firing rate and synchrony to the modulation period were accurately predicted at each level for a wide range of stimulus modulation depths and modulation frequencies. The diversity of central physiological responses was accounted for with realistic variations of model parameters. Specifically, enhanced synchrony in the cochlear nucleus and rate-tuning to modulation frequency in the inferior colliculus were predicted by choosing appropriate relative strengths and time courses of excitatory and inhibitory inputs to postsynaptic model cells. The proposed model is fundamentally different than others that have been used to explain the representation of envelopes in the mammalian midbrain, and it provides a computational tool for testing hypothesized relationships between physiology and psychophysics. .

  10. Neuromagnetic responses to frequency modulation of a continuous tone.

    PubMed

    Hari, R; Mäkelä, J P

    1986-01-01

    Neuromagnetic responses to frequency modulation of a continuous tone were studied in nine subjects. The latencies of the transient responses increased and the amplitudes decreased with decreasing speed of modulation. The equivalent dipoles for modulation of a 1,000 Hz tone were slightly but statistically significantly anterior to the dipoles activated by modulation of a 500 Hz tone. The generation mechanisms of N100m are discussed.

  11. The Role of Amplitude Envelope in Lexical Tone Perception: Evidence from Cantonese Lexical Tone Discrimination in Adults with Normal Hearing

    ERIC Educational Resources Information Center

    Zhou, Yining Victor

    2012-01-01

    Previously published studies on the role of amplitude envelope in lexical tone perception focused on Mandarin only. Amplitude envelope was found to co-vary with fundamental frequency in Mandarin lexical tones, and amplitude envelope alone could cue tone perception in Mandarin which uses primarily tone contour for phonemic tonal contrasts. The…

  12. Amplitude Modulator Chassis

    SciTech Connect

    Erbert, G

    2009-09-01

    The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 ps apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.

  13. Modulator for tone and binary signals. [phase of modulation of tone and binary signals on carrier waves in communication systems

    NASA Technical Reports Server (NTRS)

    Mcchesney, J. R.; Lerner, T.; Fitch, E. J. (Inventor)

    1975-01-01

    Tones and binary information are transmitted as phase variations on a carrier wave of constant amplitude and frequency. The carrier and tones are applied to a balanced modulator for deriving an output signal including a pair of sidebands relative to the carrier. The carrier is phase modulated by a digital signal so that it is + or - 90 deg out of phase with the predetermined phase of the carrier. The carrier is combined in an algebraic summing device with the phase modulated signal and the balanced modulator output signal. The output of the algebraic summing device is hard limited to derive a constant amplitude and frequency signal having very narrow bandwidth requirements. At a receiver, the tones and binary data are detected with a phase locked loop having a voltage controlled oscillator driving a pair of orthogonal detection channels.

  14. Amplitude and Frequency Modulations of Spontaneous Otoacoustic Emissions

    NASA Astrophysics Data System (ADS)

    Bian, Lin

    2009-02-01

    It has been speculated that the spontaneous otoacoustic emissions (SOAEs) are associated with the mechanical feedback from the cochlear outer hair cells. In humans, the amplitudes and frequencies of SOAEs could be modulated by a low-frequency bias tone. The effects on the SOAE magnitudes were an amplitude modulation and a suppression. In the spectral domain, there was an upward shift of the SOAE frequencies with the bias tone level. In the time domain, variations of the SOAE amplitudes and frequencies followed the bias tone phase. Increasing the biasing pressure in either direction reduced the SOAE amplitudes and elevated the frequencies. The amplitude modulation pattern was consistent with the first derivative of a sigmoid-shaped nonlinear function representing hair cell transduction. Both amplitude and frequency modulations of SOAEs indicate that the nonlinear transducer characteristics and mechanical properties of the cochlear hair cells can influence the SOAE generation.

  15. Speech recognition with amplitude and frequency modulations

    NASA Astrophysics Data System (ADS)

    Zeng, Fan-Gang; Nie, Kaibao; Stickney, Ginger S.; Kong, Ying-Yee; Vongphoe, Michael; Bhargave, Ashish; Wei, Chaogang; Cao, Keli

    2005-02-01

    Amplitude modulation (AM) and frequency modulation (FM) are commonly used in communication, but their relative contributions to speech recognition have not been fully explored. To bridge this gap, we derived slowly varying AM and FM from speech sounds and conducted listening tests using stimuli with different modulations in normal-hearing and cochlear-implant subjects. We found that although AM from a limited number of spectral bands may be sufficient for speech recognition in quiet, FM significantly enhances speech recognition in noise, as well as speaker and tone recognition. Additional speech reception threshold measures revealed that FM is particularly critical for speech recognition with a competing voice and is independent of spectral resolution and similarity. These results suggest that AM and FM provide independent yet complementary contributions to support robust speech recognition under realistic listening situations. Encoding FM may improve auditory scene analysis, cochlear-implant, and audiocoding performance. auditory analysis | cochlear implant | neural code | phase | scene analysis

  16. Infant Auditory Sensitivity to Pure Tones and Frequency-Modulated Tones

    ERIC Educational Resources Information Center

    Leibold, Lori J.; Werner, Lynne A.

    2007-01-01

    It has been suggested that infants respond preferentially to infant-directed speech because their auditory sensitivity to sounds with extensive frequency modulation (FM) is better than their sensitivity to less modulated sounds. In this experiment, auditory thresholds for FM tones and for unmodulated, or pure, tones in a background of noise were…

  17. Pulse amplitude modulated chlorophyll fluorometer

    SciTech Connect

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  18. Suprathreshold effects of adaptation produced by amplitude modulation

    NASA Astrophysics Data System (ADS)

    Wojtczak, Magdalena; Viemeister, Neal F.

    2003-08-01

    This work extends the study of adaptation to amplitude modulation (AM) to the perception of highly detectable modulation. A fixed-level matching procedure was used to find perceptually equivalent modulation depths for 16-Hz modulation imposed on a 1-kHz standard and a 4-kHz comparison. The modulation depths in the two stimuli were compared before and after a 10-min exposure to a 1-kHz tone (adaptor) 100% modulated in amplitude at different rates. For modulation depths of 63% (20 log m=-4) and smaller, the perceived modulation depth was reduced after exposure to the adaptor that was modulated at the same rate as the standard. The size of this reduction expressed as a difference between the post- and pre-exposure AM depths was similar to the increase in AM-detection threshold observed after adaptation. Postexposure suprathreshold modulation depth was not appreciably reduced when the modulation depth of the standard was large (approached 100%). A much smaller or no reduction in the perceived modulation depth was also observed when the modulation rates of the adaptor and the standard tone were different. The tuning of the observed effect of the adaptor appears to be much sharper than the tuning shown by modulation-masking results.

  19. Pocket-sized tone-modulated FM transmitter

    NASA Technical Reports Server (NTRS)

    Couvillon, L. A.

    1969-01-01

    Pressure of a button on a crystal-controlled transmitter causes generation of a tone. The tone modulates the FM transmitter which in turn radiates by way of the enclosed loop antenna, through the radio-frequency-transparent wall of the transmitters case to the receiver.

  20. Effects of frequency-modulated auditory tones on the voice fundamental frequency in humans.

    PubMed

    Sapir, S; McClean, M D; Luschei, E S

    1983-03-01

    The sensitivity of audio-laryngeal reflex pathways to sinusoidal changes in the fundamental frequency of complex auditory tones (AF0) was assessed indirectly in three young adult human subjects. The subjects sustained phonation at constant voice fundamental frequency (VF0) and voice intensity while listening to a sawtooth tone whose AF0 varied over time in a sinusoidal fashion (rates = 5-13 Hz). The subjects phonated at a low voice intensity so that the intensity of the auditory tone (80-85 dB SL) completely masked their voice. Using computer signal averaging and Fourier analysis techniques it was found that the sinusoidally modulated AF0 induced similar modulations in the VF0 signal. The VF0 modulations were extremely small in amplitude and showed large phase shifts relative to the auditory input. These findings are discussed in relation to the role of auditory feedback in phonatory control. PMID:6841812

  1. Amplitude Modulations of Acoustic Communication Signals

    NASA Astrophysics Data System (ADS)

    Turesson, Hjalmar K.

    2011-12-01

    In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a

  2. Coding of amplitude-modulated signals in the cochlear nucleus of a grass frog

    NASA Astrophysics Data System (ADS)

    Bibikov, N. G.

    2002-07-01

    To study the mechanisms that govern the coding of temporal features of complex sound signals, responses of single neurons located in the dorsal nucleus of the medulla oblongata (the cochlear nucleus) of a curarized grass frog ( Rana temporaria) to pure tone bursts and amplitude modulated tone bursts with a modulation frequency of 20 Hz and modulation depths of 10 and 80% were recorded. The carrier frequency was equal to the characteristic frequency of a neuron, the average signal level was 20 30 dB above the threshold, and the signal duration was equal to ten full modulation periods. Of the 133 neurons studied, 129 neurons responded to 80% modulated tone bursts by discharges that were phase-locked with the envelope waveform. At this modulation depth, the best phase locking was observed for neurons with the phasic type of response to tone bursts. For tonic neurons with low characteristic frequencies, along with the reproduction of the modulation, phase locking with the carrier frequency of the signal was observed. At 10% amplitude modulation, phasic neurons usually responded to only the onset of a tone burst. Almost all tonic units showed a tendency to reproduce the envelope, although the efficiency of the reproduction was low, and for half of these neurons, it was below the reliability limit. Some neurons exhibited a more efficient reproduction of the weak modulation. For almost half of the neurons, a reliable improvement was observed in the phase locking of the response during the tone burst presentation (from the first to the tenth modulation period). The cooperative histogram of a set of neurons responding to 10% modulated tone bursts within narrow ranges of frequencies and intensities retains the information on the dynamics of the envelope variation. The data are compared with the results obtained from the study of the responses to similar signals in the acoustic midbrain center of the same object and also with the psychophysical effect of a differential

  3. Relativistic Electron Microburst Induced by Large Amplitude EMIC Rising-tone Emissions

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Omura, Y.

    2015-12-01

    We study dynamics of radiation belt electrons interacting with large amplitude EMIC rising-tone emissions by performing test particle simulations. Engebretson et al. [JGR, 2015] reported observation of large amplitude EMIC rising-tone emissions outside the plasmasphere and depletion of radiation belt electrons in response to these emissions. We make the two kinds of wave models; one is in low-density region based on the observation and the other is in the plasmasphere. To reproduce the large wave amplitude we include the convective wave growth, which are neglected through propagation of EMIC model waves in the previous studies [Omura and Zhao, JGR, 2012, 2013; Kubota et al., JGR, 2015]. Furthermore, we also include Landau damping in setting up the model waves. Comparing with a wave model ignoring the convective wave growth, it is found that the large wave amplitude contributes to rapid electron precipitation. Some of relativistic electrons change their equatorial pitch angles more than 15 degrees in a time scale of 0.1 s, precipitated into the atmosphere. We set up the EMIC model waves in a local longitude and distribute test electrons throughout all longitudinal direction initially. The electrons moving eastward encounter the localized EMIC waves and some of resonant electrons are precipitated into the atmosphere. We obtain distribution of radiation belt electrons with respect to their equatorial pitch angle and kinetic energy. We find that the frequency variation expands the resonant electron range of pitch angles and energies. For comparison with observation of precipitated electrons, we monitor fluxes of electrons lost into the atmosphere in a narrow longitudinal range. Furthermore, we find echo of electron depletion due to eastward drift around the Earth. Energy ranges of efficient precipitation are different depending on the regions of interaction inside and outside of the plasmapause. Inside the plasmapause, electrons with energy > 0.5 MeV are precipitated

  4. Amplitude and phase modulation with waveguide optics

    SciTech Connect

    Burkhart, S.C.; Wilcox, R.B.; Browning, D.; Penko, F.A.

    1996-12-17

    We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high- speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz.

  5. Cochlear hearing loss and the detection of sinusoidal versus random amplitude modulation.

    PubMed

    Grose, John H; Porter, Heather L; Buss, Emily; Hall, Joseph W

    2016-08-01

    This study assessed the effect of cochlear hearing loss on detection of random and sinusoidal amplitude modulation. Listeners with hearing loss and normal-hearing listeners (eight per group) generated temporal modulation transfer functions (TMTFs) for envelope fluctuations carried by a 2000-Hz pure tone. TMTFs for the two groups were similar at low modulation rates but diverged at higher rates presumably because of differences in frequency selectivity. For both groups, detection of random modulation was poorer than for sinusoidal modulation at lower rates but the reverse occurred at higher rates. No evidence was found that cochlear hearing loss, per se, affects modulation detection. PMID:27586778

  6. Modulated Source Interferometry with Combined Amplitude and Frequency Modulation

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    1998-01-01

    An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.

  7. Generation of pure electrical quadrature amplitude modulation with photonic vector modulator.

    PubMed

    Corral, Juan L; Sambaraju, Rakesh; Piqueras, Miguel A; Polo, Valentín

    2008-06-15

    A photonic vector modulator architecture for generating pure quadrature amplitude modulation (QAM) signals is presented. An electrical quadrature-modulated signal at microwave-millimeter-wave frequencies is generated from its corresponding baseband in-phase (I) and quadrature (Q) components. In the proposed scheme, no electrical devices apart from the electrical tone oscillator are needed in the generation process. In addition, the purity of the generated signal is increased, and the hardware requirements are reduced when compared with previously proposed architectures so a highly compact low-cost architecture can be implemented. A pure 1.25 Gbit/s 4-QAM signal has been experimentally generated at a 42 GHz carrier frequency.

  8. Modulation rate discrimination using half-wave rectified and sinusoidally amplitude modulated stimuli in cochlear-implant users.

    PubMed

    Kreft, Heather A; Oxenham, Andrew J; Nelson, David A

    2010-02-01

    Detection and modulation rate discrimination were measured in cochlear-implant users for pulse-trains that were either sinusoidally amplitude modulated or were modulated with half-wave rectified sinusoids, which in acoustic hearing have been used to simulate the response to low-frequency temporal fine structure. In contrast to comparable results from acoustic hearing, modulation rate discrimination was not statistically different for the two stimulus types. The results suggest that, in contrast to binaural perception, pitch perception in cochlear-implant users does not benefit from using stimuli designed to more closely simulate the cochlear response to low-frequency pure tones. PMID:20136187

  9. Laryngeal-level amplitude modulation in vibrato.

    PubMed

    Dromey, Christopher; Reese, Lorie; Hopkin, J Arden

    2009-03-01

    The goal of this investigation was to test a new methodology for measuring amplitude modulation (AM) at the level of the vocal folds during vibrato in trained singers, because previous research has suggested that AM arises in large part as an acoustic epiphenomenon through an interaction of the harmonics in the laryngeal source with the resonances of the vocal tract as the fundamental frequency oscillates. A within-subjects model was used to compare vocal activity across three pitch and three loudness conditions. Seventeen female singers with a range of training and experience were recorded with a microphone and an electroglottograph (EGG). Fluctuations in the ratio of closing to opening peaks in the first derivative of the EGG signal were used as an index of laryngeal-level AM. Evidence of laryngeal AM was found to a greater or lesser extent in all the singers, and its extent was not related to the degree of training. Across singers and pitch conditions, it was more prominent at lower intensities. The differentiated EGG signal lends itself to the measurement of AM at the level of the larynx, and the extent of the modulation appears more related to the level of vocal effort than to individual singer characteristics. PMID:17658720

  10. Modulator-free quadrature amplitude modulation signal synthesis

    PubMed Central

    Liu, Zhixin; Kakande, Joseph; Kelly, Brian; O’Carroll, John; Phelan, Richard; Richardson, David J.; Slavík, Radan

    2014-01-01

    The ability to generate high-speed on–off-keyed telecommunication signals by directly modulating a semiconductor laser’s drive current was one of the most exciting prospective applications of the nascent field of laser technology throughout the 1960s. Three decades of progress led to the commercialization of 2.5 Gbit s−1-per-channel submarine fibre optic systems that drove the growth of the internet as a global phenomenon. However, the detrimental frequency chirp associated with direct modulation forced industry to use external electro-optic modulators to deliver the next generation of on–off-keyed 10 Gbit s−1 systems and is absolutely prohibitive for today’s (>)100 Gbit s−1 coherent systems, which use complex modulation formats (for example, quadrature amplitude modulation). Here we use optical injection locking of directly modulated semiconductor lasers to generate complex modulation format signals showing distinct advantages over current and other currently researched solutions. PMID:25523757

  11. Modulator-free quadrature amplitude modulation signal synthesis

    NASA Astrophysics Data System (ADS)

    Liu, Zhixin; Kakande, Joseph; Kelly, Brian; O'Carroll, John; Phelan, Richard; Richardson, David J.; Slavík, Radan

    2014-12-01

    The ability to generate high-speed on-off-keyed telecommunication signals by directly modulating a semiconductor laser’s drive current was one of the most exciting prospective applications of the nascent field of laser technology throughout the 1960s. Three decades of progress led to the commercialization of 2.5 Gbit s-1-per-channel submarine fibre optic systems that drove the growth of the internet as a global phenomenon. However, the detrimental frequency chirp associated with direct modulation forced industry to use external electro-optic modulators to deliver the next generation of on-off-keyed 10 Gbit s-1 systems and is absolutely prohibitive for today’s (>)100 Gbit s-1 coherent systems, which use complex modulation formats (for example, quadrature amplitude modulation). Here we use optical injection locking of directly modulated semiconductor lasers to generate complex modulation format signals showing distinct advantages over current and other currently researched solutions.

  12. Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus.

    PubMed

    Sayles, Mark; Füllgrabe, Christian; Winter, Ian M

    2013-07-01

    Amplitude modulation (AM) is a pervasive feature of natural sounds. Neural detection and processing of modulation cues is behaviourally important across species. Although most ecologically relevant sounds are not fully modulated, physiological studies have usually concentrated on fully modulated (100% modulation depth) signals. Psychoacoustic experiments mainly operate at low modulation depths, around detection threshold (∼5% AM). We presented sinusoidal amplitude-modulated tones, systematically varying modulation depth between zero and 100%, at a range of modulation frequencies, to anaesthetised guinea-pigs while recording spikes from neurons in the ventral cochlear nucleus (VCN). The cochlear nucleus is the site of the first synapse in the central auditory system. At this locus significant signal processing occurs with respect to representation of AM signals. Spike trains were analysed in terms of the vector strength of spike synchrony to the amplitude envelope. Neurons showed either low-pass or band-pass temporal modulation transfer functions, with the proportion of band-pass responses increasing with increasing sound level. The proportion of units showing a band-pass response varies with unit type: sustained chopper (CS) > transient chopper (CT) > primary-like (PL). Spike synchrony increased with increasing modulation depth. At the lowest modulation depth (6%), significant spike synchrony was only observed near to the unit's best modulation frequency for all unit types tested. Modulation tuning therefore became sharper with decreasing modulation depth. AM detection threshold was calculated for each individual unit as a function of modulation frequency. Chopper units have significantly better AM detection thresholds than do primary-like units. AM detection threshold is significantly worse at 40 dB vs. 10 dB above pure-tone spike rate threshold. Mean modulation detection thresholds for sounds 10 dB above pure-tone spike rate threshold at best modulation

  13. Detection of time-varying harmonic amplitude alterations due to spectral interpolations between musical instrument tones.

    PubMed

    Horner, Andrew B; Beauchamp, James W; So, Richard H Y

    2009-01-01

    Gradated spectral interpolations between musical instrument tone pairs were used to investigate discrimination as a function of time-averaged spectral difference. All possible nonidentical pairs taken from a collection of eight musical instrument sounds consisting of bassoon, clarinet, flute, horn, oboe, saxophone, trumpet, and violin were tested. For each pair, several tones were generated with different balances between the primary and secondary instruments, where the balance was fixed across the duration of each tone. Among primary instruments it was found that changes to horn and bassoon [corrected] were most easily discriminable, while changes to saxophone and trumpet timbres were least discriminable. Among secondary instruments, the clarinet had the strongest effect on discrimination, whereas the bassoon had the least effect. For primary instruments, strong negative correlations were found between discrimination and their spectral incoherences, suggesting that the presence of dynamic spectral variations tends to increase the difficulty of detecting time-varying alterations such as spectral interpolation. PMID:19173434

  14. Detection of time-varying harmonic amplitude alterations due to spectral interpolations between musical instrument tones.

    PubMed

    Horner, Andrew B; Beauchamp, James W; So, Richard H Y

    2009-01-01

    Gradated spectral interpolations between musical instrument tone pairs were used to investigate discrimination as a function of time-averaged spectral difference. All possible nonidentical pairs taken from a collection of eight musical instrument sounds consisting of bassoon, clarinet, flute, horn, oboe, saxophone, trumpet, and violin were tested. For each pair, several tones were generated with different balances between the primary and secondary instruments, where the balance was fixed across the duration of each tone. Among primary instruments it was found that changes to horn and bassoon [corrected] were most easily discriminable, while changes to saxophone and trumpet timbres were least discriminable. Among secondary instruments, the clarinet had the strongest effect on discrimination, whereas the bassoon had the least effect. For primary instruments, strong negative correlations were found between discrimination and their spectral incoherences, suggesting that the presence of dynamic spectral variations tends to increase the difficulty of detecting time-varying alterations such as spectral interpolation.

  15. The perception of speech modulation cues in lexical tones is guided by early language-specific experience.

    PubMed

    Cabrera, Laurianne; Tsao, Feng-Ming; Liu, Huei-Mei; Li, Lu-Yang; Hu, You-Hsin; Lorenzi, Christian; Bertoncini, Josiane

    2015-01-01

    A number of studies showed that infants reorganize their perception of speech sounds according to their native language categories during their first year of life. Still, information is lacking about the contribution of basic auditory mechanisms to this process. This study aimed to evaluate when native language experience starts to noticeably affect the perceptual processing of basic acoustic cues [i.e., frequency-modulation (FM) and amplitude-modulation information] known to be crucial for speech perception in adults. The discrimination of a lexical-tone contrast (rising versus low) was assessed in 6- and 10-month-old infants learning either French or Mandarin using a visual habituation paradigm. The lexical tones were presented in two conditions designed to either keep intact or to severely degrade the FM and fine spectral cues needed to accurately perceive voice-pitch trajectory. A third condition was designed to assess the discrimination of the same voice-pitch trajectories using click trains containing only the FM cues related to the fundamental-frequency (F0) in French- and Mandarin-learning 10-month-old infants. Results showed that the younger infants of both language groups and the Mandarin-learning 10-month-olds discriminated the intact lexical-tone contrast while French-learning 10-month-olds failed. However, only the French 10-month-olds discriminated degraded lexical tones when FM, and thus voice-pitch cues were reduced. Moreover, Mandarin-learning 10-month-olds were found to discriminate the pitch trajectories as presented in click trains better than French infants. Altogether, these results reveal that the perceptual reorganization occurring during the first year of life for lexical tones is coupled with changes in the auditory ability to use speech modulation cues. PMID:26379605

  16. Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds

    PubMed Central

    Ashida, Go; Kretzberg, Jutta; Tollin, Daniel J.

    2016-01-01

    Many sensory neurons encode temporal information by detecting coincident arrivals of synaptic inputs. In the mammalian auditory brainstem, binaural neurons of the medial superior olive (MSO) are known to act as coincidence detectors, whereas in the lateral superior olive (LSO) roles of coincidence detection have remained unclear. LSO neurons receive excitatory and inhibitory inputs driven by ipsilateral and contralateral acoustic stimuli, respectively, and vary their output spike rates according to interaural level differences. In addition, LSO neurons are also sensitive to binaural phase differences of low-frequency tones and envelopes of amplitude-modulated (AM) sounds. Previous physiological recordings in vivo found considerable variations in monaural AM-tuning across neurons. To investigate the underlying mechanisms of the observed temporal tuning properties of LSO and their sources of variability, we used a simple coincidence counting model and examined how specific parameters of coincidence detection affect monaural and binaural AM coding. Spike rates and phase-locking of evoked excitatory and spontaneous inhibitory inputs had only minor effects on LSO output to monaural AM inputs. In contrast, the coincidence threshold of the model neuron affected both the overall spike rates and the half-peak positions of the AM-tuning curve, whereas the width of the coincidence window merely influenced the output spike rates. The duration of the refractory period affected only the low-frequency portion of the monaural AM-tuning curve. Unlike monaural AM coding, temporal factors, such as the coincidence window and the effective duration of inhibition, played a major role in determining the trough positions of simulated binaural phase-response curves. In addition, empirically-observed level-dependence of binaural phase-coding was reproduced in the framework of our minimalistic coincidence counting model. These modeling results suggest that coincidence detection of excitatory

  17. Age-related Shifts in Distortion Product Otoacoustic Emissions Peak-ratios and Amplitude Modulation Spectra

    PubMed Central

    Lai, Jesyin; Bartlett, Edward L.

    2015-01-01

    Amplitude modulation (AM) is an important temporal cue for precise speech and complex sound recognition. However, functional decline of the auditory periphery as well as degradation of central auditory processing due to aging can reduce the salience and resolution of temporal cues. Age-related deficits in central temporal processing have previously been observed at more rapid AM frequencies and various AM depths. These centrally observed changes result from cochlear changes compounded with changes along the ascending auditory pathway. In fact, a decrease in ability to detect temporally modulated sounds accurately could originate from changes in cochlear filtering properties and in cochlear mechanics due to aging. Nonetheless, few studies have examined cochlear mechanisms in AM detection. To assess integrity of the mechanical properties of the auditory periphery, distortion product otoacoustic emissions (DPOAEs) are a tool commonly used in clinics and in research. In this study, we measured DPOAEs to reveal age-related changes in peak f2/f1 ratio and degradation in AM detection by basilar membrane vibration. Two tones (f1 and f2, f2>f1) at various f2/f1 ratios and simultaneous presentation of one AM and one pure tone were used as stimuli to evoke DPOAEs. In addition of observing reduced DPOAE amplitudes and steeper slopes in the input-output DPOAE functions, higher peak f2/f1 ratios and broader f2/f1 tuning were also observed in aged animals. Aged animals generally had lower distortion product (DP) and first sideband (SB 1) responses evoked by an f1 pure tone and an f2 AM tone, regardless of whether the AM frequency was 45 Hz or 128 Hz. SB 1 thresholds, which corresponds to the smallest stimulus AM depth that can induce cochlear vibrations at the DP generator locus, were higher in aged animals as well. The results suggest that age-related changes in peak f2/f1 ratio and AM detection by basilar membrane vibration are consistent with a reduction in endocochlear

  18. Preliminary analysis of amplitude and phase fluctuations in the JAPE multiple tone data to distances of 500 meters

    NASA Technical Reports Server (NTRS)

    Rogers, James; Sokolov, Radomir; Hicks, Daniel; Cartwright, Lloyd

    1993-01-01

    The JAPE short range data provide a good opportunity for studying phase and amplitude fluctuations of acoustic signals in the atmosphere over distances of several hundred meters. Several factors contribute to the usefulness of these data: extensive meteorological measurements were made, controlled sources were used, the data were recorded with a high dynamic range digital system that preserved phase information and a significant number of measurement points were obtained allowing both longitudinal and transverse studies. Further, Michigan Tech, in cooperation with the U.S. Army TARDEC, has developed phase tracking algorithms for studying vehicle acoustic signals. These techniques provide an excellent tool for analyzing the amplitude and phase fluctuations of the JAPE data. The results of studies such as those reported here have application at several levels: the mechanisms of signal amplitude and phase fluctuations in propagating acoustic signals are not well understood nor are the mathematical models highly developed, acoustic arrays depend strongly on signal coherence and signal amplitude stability in order to perform to their design specifications and active noise control implementation in regions considerably removed from the primary and secondary sources depends upon signal amplitude and phase stability. Work reported here is preliminary in nature but it does indicate the utility of the phase tracking and amplitude detection algorithms. The results obtained indicate that the phase fluctuations of the JAPE continuous multiple tone data (simultaneous transmission of 80, 200 and 500 Hz) are in general agreement with existing theories but the amplitude fluctuations are seen to be less well behaved and show less consistency.

  19. Timbral Sharpness and Modulations in Frequency and Amplitude: Implications for the Fusion of Musical Sounds.

    NASA Astrophysics Data System (ADS)

    Goad, Pamela Joy

    The fusion of musical voices is an important aspect of musical blend, or the mixing of individual sounds. Yet, little research has been done to explicitly determine the factors involved in fusion. In this study, the similarity of timbre and modulation were examined for their contribution to the fusion of sounds. It is hypothesized that similar timbres will fuse better than dissimilar timbres, and, voices with the same kind of modulation will fuse better than voices of different modulations. A perceptually-based measure, known as sharpness was investigated as a measure of timbre. The advantages of using sharpness are that it is based on hearing sensitivities and masking phenomena of inner ear processing. Five musical instrument families were digitally recorded in performances across a typical playing range at two extreme dynamic levels. Analyses reveal that sharpness is capable of uncovering subtle changes in timbre including those found in musical dynamics, instrument design, and performer-specific variations. While these analyses alone are insufficient to address fusion, preliminary calculations of timbral combinations indicate that sharpness has the potential to predict the fusion of sounds used in musical composition. Three experiments investigated the effects of modulation on the fusion of a harmonic major sixth interval. In the first experiment using frequency modulation, stimuli varied in deviation about a mean fundamental frequency and relative modulation phase between the two tones. Results showed smaller frequency deviations promoted fusion and relative phase differences had a minimal effect. In a second experiment using amplitude modulation, stimuli varied in deviation about a mean amplitude level and relative phase of modulation. Results showed smaller amplitude deviations promoted better fusion, but unlike frequency modulation, relative phase differences were also important. In a third experiment, frequency modulation, amplitude modulation and mixed

  20. Interdecadal Modulation of ENSO Amplitude During the Last Millennium

    NASA Astrophysics Data System (ADS)

    Li, J.; Xie, S.; Cook, E.; Huang, G.; D'Arrigo, R.; Liu, F.; Ma, J.; Zheng, X.

    2010-12-01

    El Niño/Southern Oscillation (ENSO) is the dominant mode of interannual variability, and affects climate around the globe. ENSO amplitude displays considerable variations on the instrumental record, and its future change is highly uncertain. Here we analyze a newly updated version of the tree-ring derived North American Drought Atlas (NADA) for the past 1100 years, and show that ENSO variance displays a quasi-regular cycle of 50-90 years. Interannual variability and its low-frequency amplitude modulation in NADA are in broad agreement with independent proxy records in the Pacific and surrounding regions. Large volcanic eruptions tend to trigger El Niño, but for the past millennium solar variations seem to drive amplitude modulation of ENSO. Simulating the quasi-periodic ENSO amplitude modulation may hold the key to improving models and their prediction of ENSO behavior in global warming.

  1. Imaging cobalt nanoparticles by amplitude modulation atomic force microscopy: comparison between low and high amplitude solutions.

    PubMed

    Tello, M; San Paulo, A; Rodríguez, T R; Blanco, M C; García, R

    2003-01-01

    In many situations of interest amplitude modulation AFM is characterized by the coexistence of two solutions with different physical properties. Here, we compare the performance of those solutions in the imaging of cobalt nanoparticles. We show that imaging with the high amplitude solution implies an irreversible deformation of the nanoparticles while repeated imaging with the low solution does not produce noticeable changes in the nanoparticles. Theoretical simulations show that the maximum tip-surface force in the high amplitude solution is about 14nN while in the low amplitude solution is about -4nN. We attribute the differences in the high and low amplitude images to the differences in the exerted forces on the sample. PMID:12801669

  2. Imaging cobalt nanoparticles by amplitude modulation atomic force microscopy: comparison between low and high amplitude solutions.

    PubMed

    Tello, M; San Paulo, A; Rodríguez, T R; Blanco, M C; García, R

    2003-01-01

    In many situations of interest amplitude modulation AFM is characterized by the coexistence of two solutions with different physical properties. Here, we compare the performance of those solutions in the imaging of cobalt nanoparticles. We show that imaging with the high amplitude solution implies an irreversible deformation of the nanoparticles while repeated imaging with the low solution does not produce noticeable changes in the nanoparticles. Theoretical simulations show that the maximum tip-surface force in the high amplitude solution is about 14nN while in the low amplitude solution is about -4nN. We attribute the differences in the high and low amplitude images to the differences in the exerted forces on the sample.

  3. Optical vector network analyzer based on amplitude-phase modulation

    NASA Astrophysics Data System (ADS)

    Morozov, Oleg G.; Morozov, Gennady A.; Nureev, Ilnur I.; Kasimova, Dilyara I.; Zastela, Mikhail Y.; Gavrilov, Pavel V.; Makarov, Igor A.; Purtov, Vadim A.

    2016-03-01

    The article describes the principles of optical vector network analyzer (OVNA) design for fiber Bragg gratings (FBG) characterization based on amplitude-phase modulation of optical carrier that allow us to improve the measurement accuracy of amplitude and phase parameters of the elements under test. Unlike existing OVNA based on a single-sideband and unbalanced double sideband amplitude modulation, the ratio of the two side components of the probing radiation is used for analysis of amplitude and phase parameters of the tested elements, and the radiation of the optical carrier is suppressed, or the latter is used as a local oscillator. The suggested OVNA is designed for the narrow band-stop elements (π-phaseshift FBG) and wide band-pass elements (linear chirped FBG) research.

  4. Direct inversion methods for spectral amplitude modulation of femtosecond pulses.

    PubMed

    Delgado-Aguillón, Jesús; Garduño-Mejía, Jesús; López-Téllez, Juan Manuel; Bruce, Neil C; Rosete-Aguilar, Martha; Román-Moreno, Carlos Jesús; Ortega-Martínez, Roberto

    2014-04-01

    In the present work, we applied an amplitude-spatial light modulator to shape the spectral amplitude of femtosecond pulses in a single step, without an iterative algorithm, by using an inversion method defined as the generalized retardance function. Additionally, we also present a single step method to shape the intensity profile defined as the influence matrix. Numerical and experimental results are presented for both methods.

  5. Discriminating Simulated Vocal Tremor Source Using Amplitude Modulation Spectra

    PubMed Central

    Carbonell, Kathy M.; Lester, Rosemary A.; Story, Brad H.; Lotto, Andrew J.

    2014-01-01

    Objectives/Hypothesis Sources of vocal tremor are difficult to categorize perceptually and acoustically. This paper describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Study Design Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Methods Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor) and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. Results The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. Conclusions These results supply initial support for an amplitude-envelope based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. PMID:25532813

  6. Cholinergic Modulation of the Hippocampus during Encoding and Retrieval of Tone/Shock-Induced Fear Conditioning

    ERIC Educational Resources Information Center

    Rogers, Jason L.; Kesner, Raymond P.

    2004-01-01

    We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with…

  7. Automated force controller for amplitude modulation atomic force microscopy.

    PubMed

    Miyagi, Atsushi; Scheuring, Simon

    2016-05-01

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed. PMID:27250433

  8. Self-demodulation of amplitude-modulated signal components in amplitude-modulated bone-conducted ultrasonic hearing

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhito; Nakagawa, Seiji

    2015-07-01

    A novel hearing aid system utilizing amplitude-modulated bone-conducted ultrasound (AM-BCU) is being developed for use by profoundly deaf people. However, there is a lack of research on the acoustic aspects of AM-BCU hearing. In this study, acoustic fields in the ear canal under AM-BCU stimulation were examined with respect to the self-demodulation effect of amplitude-modulated signal components generated in the ear canal. We found self-demodulated signals with an audible sound pressure level related to the amplitude-modulated signal components of bone-conducted ultrasonic stimulation. In addition, the increases in the self-demodulated signal levels at low frequencies in the ear canal after occluding the ear canal opening, i.e., the positive occlusion effect, indicate the existence of a pathway by which the self-demodulated signals pass through the aural cartilage and soft tissue, and radiate into the ear canal.

  9. Tailoring quantum superpositions with linearly polarized amplitude-modulated light

    SciTech Connect

    Pustelny, S.; Koczwara, M.; Cincio, L.; Gawlik, W.

    2011-04-15

    Amplitude-modulated nonlinear magneto-optical rotation is a powerful technique that offers a possibility of controllable generation of given quantum states. In this paper, we demonstrate creation and detection of specific ground-state magnetic-sublevel superpositions in {sup 87}Rb. By appropriate tuning of the modulation frequency and magnetic-field induction the efficiency of a given coherence generation is controlled. The processes are analyzed versus different experimental parameters.

  10. Contextual Modulation of N400 Amplitude to Lexically Ambiguous Words

    ERIC Educational Resources Information Center

    Titone, Debra A.; Salisbury, Dean F.

    2004-01-01

    Through much is known about the N400 component, an event-related EEG potential that is sensitive to semantic manipulations, it is unclear whether modulations of N400 amplitude reflect automatic processing, controlled processing, or both. We examined this issue using a semantic judgment task that manipulated local and global contextual cues. Word…

  11. Superposed pulse amplitude modulation for visible light communication.

    PubMed

    Li, J F; Huang, Z T; Zhang, R Q; Zeng, F X; Jiang, M; Ji, Y F

    2013-12-16

    We propose and experimentally demonstrate a novel modulation scheme called superposed pulse amplitude modulation (SPAM) which is low-cost, insensitive to non-linearity of light emitting diode (LED). Multiple optical pulses transmit parallelly from different spatial position in the LED array and overlap linearly in free space to realize SPAM. With LED arrangement, the experimental results show that using the modulation we proposed the data rate of 120 Mbit/s with BER 1 × 10(-3) can be achieved with an optical blue filter and RC post-equalization. PMID:24514674

  12. Demodulation techniques for the amplitude modulated laser imager

    NASA Astrophysics Data System (ADS)

    Mullen, Linda; Laux, Alan; Cochenour, Brandon; Zege, Eleonora P.; Katsev, Iosif L.; Prikhach, Alexander S.

    2007-10-01

    A new technique has been found that uses in-phase and quadrature phase (I/Q) demodulation to optimize the images produced with an amplitude-modulated laser imaging system. An I/Q demodulator was used to collect the I/Q components of the received modulation envelope. It was discovered that by adjusting the local oscillator phase and the modulation frequency, the backscatter and target signals can be analyzed separately via the I/Q components. This new approach enhances image contrast beyond what was achieved with a previous design that processed only the composite magnitude information.

  13. Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Zhang, Shangjian; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Zhang, Zhiyao; Zhang, Xiaoxia; Liu, Yong

    2016-08-01

    The two-tone intensity modulated optical stimulus is proposed and demonstrated for measuring the high-frequency response of photodetectors. The method provides a narrow linewidth and wide bandwidth optical stimulus based on the two-tone modulation of a Mach-Zehnder electro-optical intensity modulator, and achieves the self-referenced measurement of photodetectors without the need for correcting the power variation of optical stimulus. Moreover, the two-tone intensity modulation method allows bias-independent measurement with doubled measuring frequency range. In the experiment, the consistency between our method and the conventional methods verifies the simple but accurate measurement.

  14. Age-Related Differences in Auditory Processing as Assessed by Amplitude-Modulation Following Responses in Quiet and in Noise

    PubMed Central

    Parthasarathy, Aravindakshan; Cunningham, Paul A.; Bartlett, Edward L.

    2010-01-01

    Our knowledge of age-related changes in auditory processing in the central auditory system is limited, unlike the changes in the peripheral hearing organs which are more extensively studied. This study aims to further understanding of temporal processing in aging using non-invasive electrophysiological measurements in a rat model system. Amplitude modulation following responses (AMFRs) were assessed using sinusoidally amplitude modulated (SAM) tones presented to aged (92- to 95-weeks old) and young (9- to 12-weeks old) Fischer-344 rats. The modulation frequency and sound level were systematically varied, and the SAM stimuli were also presented simultaneously with wideband background noise at various levels. The overall shapes and cutoff frequencies of the AMFR temporal modulation transfer functions (tMTFs) were similar between young and aged animals. The fast Fourier transform (FFT) amplitudes of the aged animals were similar to the young in the 181–512 Hz modulation frequency range, but were significantly lower at most modulation frequencies above and below. There were no significant age-related differences in the nature of growth or FFT amplitudes with change in sound level at 256 and 1024 Hz modulation frequencies. The AMFR amplitudes were also not correlated with the ABR wave I or wave III amplitudes elicited for broadband click stimuli presented at the same sound level suggesting that sustained AMFR provide complementary information to phasic ABR responses. The FFT amplitudes varied significantly between young and aged animals for SAM stimuli in the presence of background noise, depending on the modulation frequency used and signal to noise ratio. The results show that the representation of temporally modulated stimuli is similar between young and aged animals in quiet listening conditions, but diverges substantially with the addition of background noise. This is consistent with a decrease in inhibition causing altered temporal processing with age. PMID

  15. Auditory evoked potentials to spectro-temporal modulation of complex tones in normal subjects and patients with severe brain injury.

    PubMed

    Jones, S J; Vaz Pato, M; Sprague, L; Stokes, M; Munday, R; Haque, N

    2000-05-01

    In order to assess higher auditory processing capabilities, long-latency auditory evoked potentials (AEPs) were recorded to synthesized musical instrument tones in 22 post-comatose patients with severe brain injury causing variably attenuated behavioural responsiveness. On the basis of normative studies, three different types of spectro-temporal modulation were employed. When a continuous 'clarinet' tone changes pitch once every few seconds, N1/P2 potentials are evoked at latencies of approximately 90 and 180 ms, respectively. Their distribution in the fronto-central region is consistent with generators in the supratemporal cortex of both hemispheres. When the pitch is modulated at a much faster rate ( approximately 16 changes/s), responses to each change are virtually abolished but potentials with similar distribution are still elicited by changing the timbre (e.g. 'clarinet' to 'oboe') every few seconds. These responses appear to represent the cortical processes concerned with spectral pattern analysis and the grouping of frequency components to form sound 'objects'. Following a period of 16/s oscillation between two pitches, a more anteriorly distributed negativity is evoked on resumption of a steady pitch. Various lines of evidence suggest that this is probably equivalent to the 'mismatch negativity' (MMN), reflecting a pre-perceptual, memory-based process for detection of change in spectro-temporal sound patterns. This method requires no off-line subtraction of AEPs evoked by the onset of a tone, and the MMN is produced rapidly and robustly with considerably larger amplitude (usually >5 microV) than that to discontinuous pure tones. In the brain-injured patients, the presence of AEPs to two or more complex tone stimuli (in the combined assessment of two authors who were 'blind' to the clinical and behavioural data) was significantly associated with the demonstrable possession of discriminative hearing (the ability to respond differentially to verbal commands

  16. Unpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence.

    PubMed

    Chang, Andrew; Bosnyak, Dan J; Trainor, Laurel J

    2016-01-01

    Extracting temporal regularities in external stimuli in order to predict upcoming events is an essential aspect of perception. Fluctuations in induced power of beta band (15-25 Hz) oscillations in auditory cortex are involved in predictive timing during rhythmic entrainment, but whether such fluctuations are affected by prediction in the spectral (frequency/pitch) domain remains unclear. We tested whether unpredicted (i.e., unexpected) pitches in a rhythmic tone sequence modulate beta band activity by recording EEG while participants passively listened to isochronous auditory oddball sequences with occasional unpredicted deviant pitches at two different presentation rates. The results showed that the power in low-beta (15-20 Hz) was larger around 200-300 ms following deviant tones compared to standard tones, and this effect was larger when the deviant tones were less predicted. Our results suggest that the induced beta power activities in auditory cortex are consistent with a role in sensory prediction of both "when" (timing) upcoming sounds will occur as well as the prediction precision error of "what" (spectral content in this case). We suggest, further, that both timing and content predictions may co-modulate beta oscillations via attention. These findings extend earlier work on neural oscillations by investigating the functional significance of beta oscillations for sensory prediction. The findings help elucidate the functional significance of beta oscillations in perception. PMID:27014138

  17. Unpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence

    PubMed Central

    Chang, Andrew; Bosnyak, Dan J.; Trainor, Laurel J.

    2016-01-01

    Extracting temporal regularities in external stimuli in order to predict upcoming events is an essential aspect of perception. Fluctuations in induced power of beta band (15–25 Hz) oscillations in auditory cortex are involved in predictive timing during rhythmic entrainment, but whether such fluctuations are affected by prediction in the spectral (frequency/pitch) domain remains unclear. We tested whether unpredicted (i.e., unexpected) pitches in a rhythmic tone sequence modulate beta band activity by recording EEG while participants passively listened to isochronous auditory oddball sequences with occasional unpredicted deviant pitches at two different presentation rates. The results showed that the power in low-beta (15–20 Hz) was larger around 200–300 ms following deviant tones compared to standard tones, and this effect was larger when the deviant tones were less predicted. Our results suggest that the induced beta power activities in auditory cortex are consistent with a role in sensory prediction of both “when” (timing) upcoming sounds will occur as well as the prediction precision error of “what” (spectral content in this case). We suggest, further, that both timing and content predictions may co-modulate beta oscillations via attention. These findings extend earlier work on neural oscillations by investigating the functional significance of beta oscillations for sensory prediction. The findings help elucidate the functional significance of beta oscillations in perception. PMID:27014138

  18. Unpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence.

    PubMed

    Chang, Andrew; Bosnyak, Dan J; Trainor, Laurel J

    2016-01-01

    Extracting temporal regularities in external stimuli in order to predict upcoming events is an essential aspect of perception. Fluctuations in induced power of beta band (15-25 Hz) oscillations in auditory cortex are involved in predictive timing during rhythmic entrainment, but whether such fluctuations are affected by prediction in the spectral (frequency/pitch) domain remains unclear. We tested whether unpredicted (i.e., unexpected) pitches in a rhythmic tone sequence modulate beta band activity by recording EEG while participants passively listened to isochronous auditory oddball sequences with occasional unpredicted deviant pitches at two different presentation rates. The results showed that the power in low-beta (15-20 Hz) was larger around 200-300 ms following deviant tones compared to standard tones, and this effect was larger when the deviant tones were less predicted. Our results suggest that the induced beta power activities in auditory cortex are consistent with a role in sensory prediction of both "when" (timing) upcoming sounds will occur as well as the prediction precision error of "what" (spectral content in this case). We suggest, further, that both timing and content predictions may co-modulate beta oscillations via attention. These findings extend earlier work on neural oscillations by investigating the functional significance of beta oscillations for sensory prediction. The findings help elucidate the functional significance of beta oscillations in perception.

  19. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    NASA Astrophysics Data System (ADS)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  20. Air-segmented amplitude-modulated multiplexed flow analysis.

    PubMed

    Inui, Koji; Uemura, Takeshi; Ogusu, Takeshi; Takeuchi, Masaki; Tanaka, Hideji

    2011-01-01

    Air-segmentation is applied to amplitude-modulated multiplexed flow analysis, which we proposed recently. Sample solutions, the flow rates of which are varied periodically, are merged with reagent and/or diluent solution. The merged stream is segmented by air-bubbles and, downstream, its absorbance is measured after deaeration. The analytes in the samples are quantified from the amplitudes of the respective wave components in the absorbance. The proposed method is applied to the determinations of a food dye, phosphate ions and nitrite ions. The air-segmentation is effective for limiting amplitude damping through the axial dispersion, resulting in an improvement in sensitivity. This effect is more pronounced at shorter control periods and longer flow path lengths.

  1. Analytical parameters for amplitude-modulated multiplexed flow analysis.

    PubMed

    Kurokawa, Yohei; Takeuchi, Masaki; Tanaka, Hideji

    2010-01-01

    Analytical conditions of amplitude-modulated multiplexed flow analysis, the basic concept of which was recently proposed by our group, are investigated for higher sample throughput rate. The performance of the improved system is evaluated by applying it to the determination of chloride ions. The flow rates of two sample solutions are independently varied in accordance with sinusoidal voltage signals, each having different frequency. The solutions are merged with a reagent solution and/or a diluent, while the total flow rate is held constant. Downstream, the analytical signal V(d) is monitored with a spectrophotometer. The V(d) shows a complicated profile resulting from amplitude modulated and multiplexed information on the two samples. The V(d) can, however, be deconvoluted to the contribution of each sample through fast Fourier transform (FFT). The amplitudes of the separated wave components are closely related to the concentrations of the analytes in the samples. By moving the window for FFT analysis with time, a temporal profile of the amplitudes can be obtained in real-time. Analytical conditions such as modulation period and system configuration have been optimized using aqueous solutions of Malachite Green (MG). Adequate amplitudes are obtained at the period of as low as 5 s. At this period, the calibration curve for the MG concentration of 0-30 micromol dm(-3) has enough linearity (r(2) = 0.999) and the limit of detection (3.3sigma) is 1.3 micromol dm(-3); the relative standard deviation of repeated measurements (C(MG) = 15 micromol dm(-3), n = 10) is 2.4%. The developed system has been applied to the determination of chloride ions by a mercury(II) thiocyanate method. The system can adequately follow the changes in analyte concentration. The recoveries of chloride ion spiked in real water samples (river and tap water) are satisfactory, around 100%. PMID:20631441

  2. Impact of modulator chirp in 100 Gbps class optical discrete multi-tone transmission system

    NASA Astrophysics Data System (ADS)

    Nishihara, Masato; Tanaka, Toshiki; Takahara, Tomoo; Li, Lei; Tao, Zhenning; Rasmussen, Jens C.

    2012-12-01

    Discrete multi-tone (DMT) technology is an attractive modulation technique for short reach optical transmission system. One of the main factors that limit the performance of the 1.5-μm band DMT system is the interplay between the chromatic dispersion of the transmission fiber and the chirp characteristic of the transmitter. We experimentally measured and compared the chirp characteristics of various modulator configurations, which are lithium-niobate Mach-Zehnder modulator, directly modulated laser, and electro-absorption modulator, by the frequency discriminator method using MZ interferometer. We also measured and compared the transmission characteristics of the transmitters using above-mentioned modulators and discuss the suitable transmitter configuration for DMT technology.

  3. Symbol rate identification for auxiliary amplitude modulation optical signal

    NASA Astrophysics Data System (ADS)

    Wei, Junyu; Dong, Zhi; Huang, Zhiping; Zhang, Yimeng

    2016-09-01

    In this paper, we creatively propose and demonstrate a method for symbol rate identification (SRI) of auxiliary amplitude modulation (AAM) optical signal based on asynchronous delay-tap sampling (ADTS) and average magnitude difference function (AMDF). The method can accurately estimate symbol rate and has large transmission impairments tolerance. Furthermore, it can be realized in the digital signal processor (DSP) with low logical resources because of multiplication-free. In order to improve the accuracy of SRI, the peak to valley ratio (PTVR) of AMDF is introduced into our method for blind chromatic dispersion (CD) compensation. The results of the numerical simulations show that the overall maximum SRI error is smaller 0.079% for return-to-zero (RZ) on-off keying (OOK), RZ differential phase-shift keying (DPSK), RZ differential quadrature phase-shift keying (DQPSK) and RZ 16-ary quadrature amplitude modulation (QAM) with 50% duty cycles.

  4. Amplitude Modulation in the ZZ Ceti Star GD 244

    NASA Astrophysics Data System (ADS)

    Bognár, Zs.; Paparó, M.; Molnár, L.; Plachy, E.; Sódor, Á.

    2015-06-01

    Previous studies of GD 244 revealed seven pulsation frequencies (two doublets and three single periods) in the light variations of the star. The data obtained at McDonald Observatory between 2003 and 2006, and our additional measurements in 2006 and 2007 at Konkoly Observatory, allow the investigation of the long-term pulsational behaviour of GD 244. We found that the 307.1 s period component of one of the doublets show long-term, periodic amplitude modulation with a time scale of ˜ 740 days. Possible explanations are that nonlinear resonant mode coupling is operating among the rotationally split frequency components, or two modes, unresolved in the yearly data are excited at ˜ 307.1 s. This is the first time that such long-term periodic amplitude modulation is published on a ZZ Ceti star.

  5. Effient Supply-Modulated Transmitters for Variable Amplitude Radar

    NASA Astrophysics Data System (ADS)

    Zai, Andrew H.

    This thesis introduces an efficient radar transmitter with improved spectral confinement, enabled by a pulse waveform that contains both amplitude and frequency modulation. The theoretical behavior of the Class-B power amplifier (PA) under Gaussian envelope is compared to that of a Class-A PA. Experimental validation is performed on a 4-W 10-GHz GaN MMIC PA, biased in Class B with a power added efficiency (PAE) of 50%. When driven with a Gaussian-like pulse envelope with a 5 MHz linear frequency modulation (LFM), the PA demonstrates a 31% average efficiency over the pulse duration. To improve the efficiency, a simple resonant supply modulator with a peak efficiency of 92% is used for the pulse Gaussian amplitude modulation, while the LFM is provided only through the PA input. This case results in a 5-point improvement in system efficiency, with an average PAE=40% over the pulse duration for the PA alone, and with simultaneous 40-dB reduction in spectral emissions relative to a rectangular pulse with the same energy. A measurement bench, which was internally developed, and supply-modulation simulations with Applied Wave Research (AWR) Microwave Office and VSS are also presented. Supply modulation simulation is helpful for predicting the performance of a supply-modulated system while a well calibrated bench is essential for verification. Both tools are used to demonstrate resonant supply-modulated GaN MMIC PAs. Lastly, the design of an X-Band GaN Doherty MMIC PA for use in a variable power radar is presented. Simulations and preliminary measurement demonstrate power added efficiency of greater that 40% from 30 to 35 dBm of output power.

  6. Habituation of Auditory Steady State Responses Evoked by Amplitude-Modulated Acoustic Signals in Rats

    PubMed Central

    Prado-Gutierrez, Pavel; Castro-Fariñas, Anisleidy; Morgado-Rodriguez, Lisbet; Velarde-Reyes, Ernesto; Martínez, Agustín D.; Martínez-Montes, Eduardo

    2015-01-01

    Generation of the auditory steady state responses (ASSR) is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials. PMID:26557360

  7. Population transfer by an amplitude-modulated pulse

    SciTech Connect

    Vitanov, N.V.; Yatsenko, L.P.; Bergmann, K.

    2003-10-01

    We propose a technique for coherent population inversion of a two-state system, which uses an amplitude-modulated pulse. In the modulation-free adiabatic basis, the modulation introduces oscillating interaction between the adiabatic states. In a second rotating-wave approximation picture, this oscillating interaction induces a pair of level crossings between the energies of the adiabatic states if the modulation frequency is chosen appropriately. By suitably offsetting the modulation with respect to the center of the pulse, one can make the modulation act only in the vicinity of one of these crossings. In a higher-order adiabatic basis, this crossing shows up as an avoided crossing between the energies of the higher-order adiabatic states. As a result robust and efficient population transfer can be achieved between the adiabatic states, and hence, between the original bare states. We derive analytically the conditions on the interaction parameters for this technique and verify them with numerical simulations. Possible experimental implementations are discussed.

  8. Magnitude of luminance modulation specifies amplitude of perceived movement.

    PubMed

    Allik, J; Pulver, A

    1995-01-01

    A compelling impression of movement, which is perceptually indistinguishable from a real displacement, can be elicited by patterns containing no spatially displaced elements. An apparent oscillation, w-movement, was generated by a stationary pattern containing a large number of horizontal pairs of spatially adjacent dots modulated in brightness. The observer's task was to adjust the perceived amplitude of the w-motion to match the amplitude of a real oscillation. All of the data can be accounted for by a simple rule: If the relative change in the luminance, W = delta L/L, between two adjacent stationary dots is kept constant, the distance over which these dots appeared to travel in space comprises a fixed fraction of the total distance by which they are separated. The apparent amplitude of the w-motion increases strictly in proportion with luminance contrast, provided that the contrast is represented in the motion-encoding system by a rapidly saturating compressive Weibull transformation. These findings can be explained in terms of bilocal motion encoders comparing two luminance modulations occurring at two different locations.

  9. Molecular dynamics simulation of amplitude modulation atomic force microscopy.

    PubMed

    Hu, Xiaoli; Egberts, Philip; Dong, Yalin; Martini, Ashlie

    2015-06-12

    Molecular dynamics (MD) simulations were used to model amplitude modulation atomic force microscopy (AM-AFM). In this novel simulation, the model AFM tip responds to both tip-substrate interactions and to a sinusoidal excitation signal. The amplitude and phase shift of the tip oscillation observed in the simulation and their variation with tip-sample distance were found to be consistent with previously reported trends from experiments and theory. These simulation results were also fit to an expression enabling estimation of the energy dissipation, which was found to be smaller than that in a corresponding experiment. The difference was analyzed in terms of the effects of tip size and substrate thickness. Development of this model is the first step toward using MD to gain insight into the atomic-scale phenomena that occur during an AM-AFM measurement.

  10. Dispersion interferometer using modulation amplitudes on LHD (invited)

    SciTech Connect

    Akiyama, T. Yasuhara, R.; Kawahata, K.; Okajima, S.; Nakayama, K.

    2014-11-15

    Since a dispersion interferometer is insensitive to mechanical vibrations, a vibration compensation system is not necessary. The CO{sub 2} laser dispersion interferometer with phase modulations on the Large Helical Device utilizes the new phase extraction method which uses modulation amplitudes and can improve a disadvantage of the original dispersion interferometer: measurement errors caused by variations of detected intensities. The phase variation within ±2 × 10{sup 17} m{sup −3} is obtained without vibration compensation system. The measured line averaged electron density with the dispersion interferometer shows good agreement with that with the existing far infrared laser interferometer. Fringe jump errors in high density ranging up to 1.5 × 10{sup 20} m{sup −3} can be overcome by a sufficient sampling rate of about 100 kHz.

  11. Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain.

    PubMed

    Henry, Kenneth S; Neilans, Erikson G; Abrams, Kristina S; Idrobo, Fabio; Carney, Laurel H

    2016-04-01

    Amplitude modulation (AM) is a crucial feature of many communication signals, including speech. Whereas average discharge rates in the auditory midbrain correlate with behavioral AM sensitivity in rabbits, the neural bases of AM sensitivity in species with human-like behavioral acuity are unexplored. Here, we used parallel behavioral and neurophysiological experiments to explore the neural (midbrain) bases of AM perception in an avian speech mimic, the budgerigar (Melopsittacus undulatus). Behavioral AM sensitivity was quantified using operant conditioning procedures. Neural AM sensitivity was studied using chronically implanted microelectrodes in awake, unrestrained birds. Average discharge rates of multiunit recording sites in the budgerigar midbrain were insufficient to explain behavioral sensitivity to modulation frequencies <100 Hz for both tone- and noise-carrier stimuli, even with optimal pooling of information across recording sites. Neural envelope synchrony, in contrast, could explain behavioral performance for both carrier types across the full range of modulation frequencies studied (16-512 Hz). The results suggest that envelope synchrony in the budgerigar midbrain may underlie behavioral sensitivity to AM. Behavioral AM sensitivity based on synchrony in the budgerigar, which contrasts with rate-correlated behavioral performance in rabbits, raises the possibility that envelope synchrony, rather than average discharge rate, might also underlie AM perception in other species with sensitive AM detection abilities, including humans. These results highlight the importance of synchrony coding of envelope structure in the inferior colliculus. Furthermore, they underscore potential benefits of devices (e.g., midbrain implants) that evoke robust neural synchrony. PMID:26843608

  12. A role for amplitude modulation phase relationships in speech rhythm perception.

    PubMed

    Leong, Victoria; Stone, Michael A; Turner, Richard E; Goswami, Usha

    2014-07-01

    Prosodic rhythm in speech [the alternation of "Strong" (S) and "weak" (w) syllables] is cued, among others, by slow rates of amplitude modulation (AM) within the speech envelope. However, it is unclear exactly which envelope modulation rates and statistics are the most important for the rhythm percept. Here, the hypothesis that the phase relationship between "Stress" rate (∼2 Hz) and "Syllable" rate (∼4 Hz) AMs provides a perceptual cue for speech rhythm is tested. In a rhythm judgment task, adult listeners identified AM tone-vocoded nursery rhyme sentences that carried either trochaic (S-w) or iambic patterning (w-S). Manipulation of listeners' rhythm perception was attempted by parametrically phase-shifting the Stress AM and Syllable AM in the vocoder. It was expected that a 1π radian phase-shift (half a cycle) would reverse the perceived rhythm pattern (i.e., trochaic → iambic) whereas a 2π radian shift (full cycle) would retain the perceived rhythm pattern (i.e., trochaic → trochaic). The results confirmed these predictions. Listeners judgments of rhythm systematically followed Stress-Syllable AM phase-shifts, but were unaffected by phase-shifts between the Syllable AM and the Sub-beat AM (∼14 Hz) in a control condition. It is concluded that the Stress-Syllable AM phase relationship is an envelope-based modulation statistic that supports speech rhythm perception. PMID:24993221

  13. [The influence of amplitude modulation on the structure of call spectrum in marmots (Marmota, rodentia, sciuridae)].

    PubMed

    Nikol'skiĭ, A A

    2007-01-01

    A relationship was established between the amplitude modulation and the structure of call spectrum in animals by the example of alarm call in three marmots (Marmota sibirica, M. menzbieri, and M. caudata). In the case of amplitude modulation, side frequencies are produced higher and lower than the carrier frequencies. In the absence of amplitude modulation, no side frequencies are produced.

  14. Amplitude modulation detection by human listeners in sound fields

    PubMed Central

    Zahorik, Pavel; Kim, Duck O.; Kuwada, Shigeyuki; Anderson, Paul W.; Brandewie, Eugene; Srinivasan, Nirmal

    2011-01-01

    The temporal modulation transfer function (TMTF) approach allows techniques from linear systems analysis to be used to predict how the auditory system will respond to arbitrary patterns of amplitude modulation (AM). Although this approach forms the basis for a standard method of predicting speech intelligibility based on estimates of the acoustical modulation transfer function (MTF) between source and receiver, human sensitivity to AM as characterized by the TMTF has not been extensively studied under realistic listening conditions, such as in reverberant sound fields. Here, TMTFs (octave bands from 2 – 512 Hz) were obtained in 3 listening conditions simulated using virtual auditory space techniques: diotic, anechoic sound field, reverberant room sound field. TMTFs were then related to acoustical MTFs estimated using two different methods in each of the listening conditions. Both diotic and anechoic data were found to be in good agreement with classic results, but AM thresholds in the reverberant room were lower than predictions based on acoustical MTFs. This result suggests that simple linear systems techniques may not be appropriate for predicting TMTFs from acoustical MTFs in reverberant sound fields, and may be suggestive of mechanisms that functionally enhance modulation during reverberant listening. PMID:22822417

  15. Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus.

    PubMed

    Choe, Katrina Y; Olson, James E; Bourque, Charles W

    2012-09-01

    Cells can release the free amino acid taurine through volume-regulated anion channels (VRACs), and it has been hypothesized that taurine released from glial cells is capable of inhibiting action potential (AP) firing by activating neuronal glycine receptors (GlyRs) (Hussy et al., 1997). Although an inhibitory GlyR tone is widely observed in the brain, it remains unknown whether this specifically reflects gliotransmission because most neurons also express VRACs and other endogenous molecules can activate GlyRs. We found that VRACs are absent in neurons of the rat supraoptic nucleus (SON), suggesting that glial cells are the exclusive source of taurine in this nucleus. Application of strychnine to rat hypothalamic explants caused a depolarization of SON neurons associated with a decrease of chloride conductance and could excite these cells in the absence of fast synaptic transmission. This inhibitory GlyR tone was eliminated by pharmacological blockade of VRACs, by cellular taurine depletion, by metabolic inactivation of glia with fluorocitrate, and after retraction of astrocytic processes that intercalate neuronal somata and dendrites. Finally, GlyR tone varied inversely with extracellular fluid tonicity to mediate the osmotic control of AP firing by SON neurons. These findings establish taurine as a physiological gliotransmitter and show that gliotransmission is a spatially constrained process that can be modulated by the morphological rearrangement of astrocytes. PMID:22956842

  16. Non-pharmacological modulation of the autonomic tone to treat heart failure.

    PubMed

    Singh, Jagmeet P; Kandala, Jagdesh; Camm, A John

    2014-01-01

    The autonomic nervous system has a significant role in the pathophysiology and progression of heart failure. The absence of any recent breakthrough advances in the medical therapy of heart failure has led to the evolution of innovative non-pharmacological interventions that can favourably modulate the cardiac autonomic tone. Several new therapeutic modalities that may act at different levels of the autonomic nervous system are being investigated for their role in the treatment of heart failure. The current review examines the role of renal denervation, vagal nerve stimulators, carotid baroreceptors, and spinal cord stimulators in the treatment of heart failure.

  17. Effect of reduced attention on auditory amplitude-modulation following responses: a study with chirp-evoked potentials.

    PubMed

    Alegre, Manuel; Barbosa, Carla; Valencia, Miguel; Pérez-Alcázar, Marta; Iriarte, Jorge; Artieda, Julio

    2008-02-01

    The amplitude of the auditory amplitude-modulation following responses (AMFR) is variable, depending on the modulation rate. Although 40-Hz responses have higher amplitudes in adults, the AMFR in the 80- to 120-Hz range are less influenced by sleep and more consistent in children. The effect of attention on 40-Hz responses has been addressed in some studies; however, no study to our knowledge has investigated the effect of attention on other stimulation rates. Our aim was to test the effect of attention on the AMFR to different frequencies of stimulation, using a chirp-modulated tone as stimulus. We recorded chirp-evoked responses in 12 subjects while attending to the sound (first condition) and reading a novel (second condition), in a randomly determined sequence. The energy of the response and the intertrial coherence (ITC) were measured by means of time-frequency transforms. The frequency range of response was similar in both conditions. No significant differences were found in the ITC values in the 40-Hz and the 80- to 120-Hz ranges, nor in the energy of the 40-Hz response. The only statistically significant difference found was the lower energy of the response in the 80- to 120-Hz range in the reading condition. Our results suggest that attention may affect auditory steady-state clinical testing using amplitude values. Phase measures may be preferable in this context.

  18. Electro-optic modulator capable of generating simultaneous amplitude and phase modulations.

    PubMed

    Cusack, Benedict J; Sheard, Benjamin S; Shaddock, Daniel A; Gray, Malcolm B; Lam, Ping Koy; Whitcomb, Stan E

    2004-09-10

    We report on the analysis and prototype characterization of a dual-electrode electro-optic modulator that can generate both amplitude and phase modulations with a selectable relative phase, termed a quadrature variable modulator (QVM). All modulation states can be reached by tuning only the electrical inputs, facilitating real-time tuning, and the device has shown good suppression and stability properties. A mathematical analysis is presented, including the development of a geometric-phase representation for modulation. The experimental characterization of the device shows that relative suppressions of 38, 39, and 30 dB for phase, single sideband, and carrier-suppressed modulations, respectively, can be obtained as well as that the device is well behaved when scanning continuously through the parameter space of modulations. The QVM is compared with existing optical configurations that can produce amplitude and phase-modulation combinations in the context of applications such as the tuning of lock points in optical-locking schemes, single-sideband applications, modulation fast-switching applications, and applications requiring combined modulations. PMID:15468710

  19. Spatial horizons in amplitude and frequency modulation atomic force microscopy.

    PubMed

    Font, Josep; Santos, Sergio; Barcons, Victor; Thomson, Neil H; Verdaguer, Albert; Chiesa, Matteo

    2012-04-01

    In dynamic atomic force microscopy (AFM) the cantilever is vibrated and its dynamics are monitored to probe the sample with nanoscale and atomic resolution. Amplitude and frequency modulation atomic force microscopy (AM-AFM and FM-AFM) have established themselves as the most powerful methods in the field. Nevertheless, it is still debatable whether one or the other technique is preferred in a given medium or experiment. Here, we quantitatively establish and compare the limitations in resolution of both techniques by introducing the concept of spatial horizon (SH) and quantifying it. The SH is the limiting spatial boundary beyond which collective atomic interactions do not affect the detection parameters of a given feedback system. We show that while an FM-AFM feedback can resolve a single atom or atomic defect where an AM feedback might fail, relative contrast is in fact equivalent for both feedback systems. That is, if the AM feedback could detect sufficiently small amplitude shifts and there was no noise, the detection of single atoms or atomic defects would be equivalent in AM-AFM and FM-AFM.

  20. Polarization-sensitive optical coherence tomography using continuous polarization modulation with arbitrary phase modulation amplitude

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2012-03-01

    We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.

  1. A Computational Model of Inferior Colliculus Responses to Amplitude Modulated Sounds in Young and Aged Rats

    PubMed Central

    Rabang, Cal F.; Parthasarathy, Aravindakshan; Venkataraman, Yamini; Fisher, Zachery L.; Gardner, Stephanie M.; Bartlett, Edward L.

    2012-01-01

    The inferior colliculus (IC) receives ascending excitatory and inhibitory inputs from multiple sources, but how these auditory inputs converge to generate IC spike patterns is poorly understood. Simulating patterns of in vivo spike train data from cellular and synaptic models creates a powerful framework to identify factors that contribute to changes in IC responses, such as those resulting in age-related loss of temporal processing. A conductance-based single neuron IC model was constructed, and its responses were compared to those observed during in vivo IC recordings in rats. IC spike patterns were evoked using amplitude-modulated tone or noise carriers at 20–40 dB above threshold and were classified as low-pass, band-pass, band-reject, all-pass, or complex based on their rate modulation transfer function tuning shape. Their temporal modulation transfer functions were also measured. These spike patterns provided experimental measures of rate, vector strength, and firing pattern for comparison with model outputs. Patterns of excitatory and inhibitory synaptic convergence to IC neurons were based on anatomical studies and generalized input tuning for modulation frequency. Responses of modeled ascending inputs were derived from experimental data from previous studies. Adapting and sustained IC intrinsic models were created, with adaptation created via calcium-activated potassium currents. Short-term synaptic plasticity was incorporated into the model in the form of synaptic depression, which was shown to have a substantial effect on the magnitude and time course of the IC response. The most commonly observed IC response sub-types were recreated and enabled dissociation of inherited response properties from those that were generated in IC. Furthermore, the model was used to make predictions about the consequences of reduction in inhibition for age-related loss of temporal processing due to a reduction in GABA seen anatomically with age. PMID:23129994

  2. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation.

    PubMed

    Rout, Saroj; Sonkusale, Sameer

    2016-06-27

    The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation. PMID:27410614

  3. Lipreading and covert speech production similarly modulate human auditory-cortex responses to pure tones

    PubMed Central

    Kauramäki, Jaakko; Jääskeläinen, Iiro P.; Hari, Riitta; Möttönen, Riikka; Rauschecker, Josef P.; Sams, Mikko

    2010-01-01

    Watching the lips of a speaker enhances speech perception. At the same time, the 100-ms response to speech sounds is suppressed in the observer’s auditory cortex. Here, we used whole-scalp 306-channel magnetoencephalography (MEG) to study whether lipreading modulates human auditory processing already at the level of the most elementary sound features, i.e., pure tones. We further envisioned the temporal dynamics of the suppression to tell whether the effect is driven by top-down influences. Nineteen subjects were presented with 50-ms tones spanning six octaves (125–8000 Hz) (1) during “lipreading”, i.e. when they watched video clips of silent articulations of Finnish vowels /a/, /i/, /o/, /y/, and reacted to vowels presented twice in a row, (2) during a visual control task, (3) during a still-face passive control condition, and, in a separate experiment with a subset of nine subjects, (4) during covert production of the same vowels. Auditory-cortex 100-ms responses (N100m) were equally suppressed in the lipreading and covert speech-production tasks compared with the visual control and baseline tasks; the effects involved all frequencies and were most prominent in the left hemisphere. Responses to tones presented at different times with respect to the onset of the visual articulation showed significantly increased N100m suppression immediately after the articulatory gesture. These findings suggest that the lipreading-related suppression in the auditory cortex is caused by top-down influences, possibly by an efference copy from the speech-production system, generated during both own speech and lipreading. PMID:20107058

  4. Lipreading and covert speech production similarly modulate human auditory-cortex responses to pure tones.

    PubMed

    Kauramäki, Jaakko; Jääskeläinen, Iiro P; Hari, Riitta; Möttönen, Riikka; Rauschecker, Josef P; Sams, Mikko

    2010-01-27

    Watching the lips of a speaker enhances speech perception. At the same time, the 100 ms response to speech sounds is suppressed in the observer's auditory cortex. Here, we used whole-scalp 306-channel magnetoencephalography (MEG) to study whether lipreading modulates human auditory processing already at the level of the most elementary sound features, i.e., pure tones. We further envisioned the temporal dynamics of the suppression to tell whether the effect is driven by top-down influences. Nineteen subjects were presented with 50 ms tones spanning six octaves (125-8000 Hz) (1) during "lipreading," i.e., when they watched video clips of silent articulations of Finnish vowels /a/, /i/, /o/, and /y/, and reacted to vowels presented twice in a row; (2) during a visual control task; (3) during a still-face passive control condition; and (4) in a separate experiment with a subset of nine subjects, during covert production of the same vowels. Auditory-cortex 100 ms responses (N100m) were equally suppressed in the lipreading and covert-speech-production tasks compared with the visual control and baseline tasks; the effects involved all frequencies and were most prominent in the left hemisphere. Responses to tones presented at different times with respect to the onset of the visual articulation showed significantly increased N100m suppression immediately after the articulatory gesture. These findings suggest that the lipreading-related suppression in the auditory cortex is caused by top-down influences, possibly by an efference copy from the speech-production system, generated during both own speech and lipreading. PMID:20107058

  5. An additional study and implementation of tone calibrated technique of modulation

    NASA Technical Reports Server (NTRS)

    Rafferty, W.; Bechtel, L. K.; Lay, N. E.

    1985-01-01

    The Tone Calibrated Technique (TCT) was shown to be theoretically free from an error floor, and is only limited, in practice, by implementation constraints. The concept of the TCT transmission scheme along with a baseband implementation of a suitable demodulator is introduced. Two techniques for the generation of the TCT signal are considered: a Manchester source encoding scheme (MTCT) and a subcarrier based technique (STCT). The results are summarized for the TCT link computer simulation. The hardware implementation of the MTCT system is addressed and the digital signal processing design considerations involved in satisfying the modulator/demodulator requirements are outlined. The program findings are discussed and future direction are suggested based on conclusions made regarding the suitability of the TCT system for the transmission channel presently under consideration.

  6. Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss.

    PubMed

    Paraouty, Nihaad; Ewert, Stephan D; Wallaert, Nicolas; Lorenzi, Christian

    2016-07-01

    Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured for a 500-Hz carrier frequency and a 5-Hz modulation rate. For AM detection, FM at the same rate as the AM was superimposed with varying FM depth. For FM detection, AM at the same rate was superimposed with varying AM depth. The target stimuli always contained both amplitude and frequency modulations, while the standard stimuli only contained the interfering modulation. Young and older normal-hearing listeners, as well as older listeners with mild-to-moderate sensorineural hearing loss were tested. For all groups, AM and FM detection thresholds were degraded in the presence of the interfering modulation. AM detection with and without interfering FM was hardly affected by either age or hearing loss. While aging had an overall detrimental effect on FM detection with and without interfering AM, there was a trend that hearing loss further impaired FM detection in the presence of AM. Several models using optimal combination of temporal-envelope cues at the outputs of off-frequency filters were tested. The interfering effects could only be predicted for hearing-impaired listeners. This indirectly supports the idea that, in addition to envelope cues resulting from FM-to-AM conversion, normal-hearing listeners use temporal fine-structure cues for FM detection.

  7. ERP responses to processing prosodic phrasing of sentences in amplitude modulated noise.

    PubMed

    Carroll, Rebecca; Ruigendijk, Esther

    2016-02-01

    Intonation phrase boundaries (IPBs) were hypothesized to be especially difficult to process in the presence of an amplitude modulated noise masker because of a potential rhythmic competition. In an event-related potential study, IPBs were presented in silence, stationary, and amplitude modulated noise. We elicited centro-parietal Closure Positive Shifts (CPS) in 23 young adults with normal hearing at IPBs in all acoustic conditions, albeit with some differences. CPS peak amplitudes were highest in stationary noise, followed by modulated noise, and lowest in silence. Both noise types elicited CPS delays, slightly more so in stationary compared to amplitude modulated noise. These data suggest that amplitude modulation is not tantamount to a rhythmic competitor for prosodic phrasing but rather supports an assumed speech perception benefit due to local release from masking. The duration of CPS time windows was, however, not only longer in noise compared to silence, but also longer for amplitude modulated compared to stationary noise. This is interpreted as support for additional processing load associated with amplitude modulation for the CPS component. Taken together, processing prosodic phrasing of sentences in amplitude modulated noise seems to involve the same issues that have been observed for the perception and processing of segmental information that are related to lexical items presented in noise: a benefit from local release from masking, even for prosodic cues, and a detrimental additional processing load that is associated with either stream segregation or signal reconstruction. PMID:26776233

  8. Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation

    NASA Astrophysics Data System (ADS)

    Jaatinen, Esa; Hopper, David J.

    2008-01-01

    Residual amplitude modulation (RAM) distorts saturated absorption signals, limiting the accuracy of optical frequency references based on modulation transfer spectroscopy (MTS). Described here are two independent means by which RAM is produced in these references: (1) by the modulator and (2) when the overlap of the optical fields in the saturable absorber is asymmetric. Methods to vary RAM generated by either mechanism will be outlined and these will be used to show how RAM arising from one effect can be cancelled by the other. A theoretical treatment of MTS signals in references containing RAM is given and used to evaluate the level of signal distortion allowing the conditions for RAM cancellation to be determined. This technique is applied to improve the frequency accuracy of a reference by an order of magnitude.

  9. The distinctions between amplitude and phase modulations in detecting nonlinear coupling

    NASA Astrophysics Data System (ADS)

    Lan, Tao; Yu, Changxuan; Xu, Yuhong; Shen, Huagang; Yu, Yi; Xu, Min; Wu, Jie; Liu, Ahdi; Xie, Jinlin; Li, Hong; Liu, Wandong

    2015-11-01

    The amplitude and phase modulations are basic processing in plasma science. The amplitude modulation reflects the parametric instability. And Doppler shift mainly contributes the phase modulation due to plasma rotation in laboratory frame. The bispectral and envelop analysis are widely-used tools for detecting the nonlinear coupling. In this poster, artificial data and real experiment data are used to calculate both bispectra and envelop. The results show that both amplitude and phase modulations have significant amplitude in the bispectra and envelops. Particularly, the cross-phase between envelop and original signal reveals the distinctions of amplitude and phase modulations. Furthermore, the results discover that the basic bispectral analysis is not suitable for examining the nonlinear coupling in some cases. Supported by NNSFC (Nos. 10990210, 10990211, 10335060, 10905057 and 11375188), YIF (No. WK2030040019).

  10. Discrimination of Direction in Fast Frequency-Modulated Tones by Rats

    PubMed Central

    King, Isabella; Felsheim, Christian; Ostwald, Joachim; von der Behrens, Wolfger

    2006-01-01

    Fast frequency modulations (FM) are an essential part of species-specific auditory signals in animals as well as in human speech. Major parameters characterizing non-periodic frequency modulations are the direction of frequency change in the FM sweep (upward/downward) and the sweep speed, i.e., the speed of frequency change. While it is well established that both parameters are represented in the mammalian central auditory pathway, their importance at the perceptual level in animals is unclear. We determined the ability of rats to discriminate between upward and downward modulated FM-tones as a function of sweep speed in a two-alternative-forced-choice-paradigm. Directional discrimination in logarithmic FM-sweeps was reduced with increasing sweep speed between 20 and 1,000 octaves/s following a psychometric function. Average threshold sweep speed for FM directional discrimination was 96 octaves/s. This upper limit of perceptual FM discrimination fits well the upper limit of preferred sweep speeds in auditory neurons and the upper limit of neuronal direction selectivity in the rat auditory cortex and midbrain, as it is found in the literature. Influences of additional stimulus parameters on FM discrimination were determined using an adaptive testing-procedure for efficient threshold estimation based on a maximum likelihood approach. Directional discrimination improved with extended FM sweep range between two and five octaves. Discrimination performance declined with increasing lower frequency boundary of FM sweeps, showing an especially strong deterioration when the boundary was raised from 2 to 4 kHz. This deterioration corresponds to a frequency-dependent decline in direction selectivity of FM-encoding neurons in the rat auditory cortex, as described in the literature. Taken together, by investigating directional discrimination of FM sweeps in the rat we found characteristics at the perceptual level that can be related to several aspects of FM encoding in the

  11. Musical experience modulates categorical perception of lexical tones in native Chinese speakers

    PubMed Central

    Wu, Han; Ma, Xiaohui; Zhang, Linjun; Liu, Youyi; Zhang, Yang; Shu, Hua

    2015-01-01

    Although musical training has been shown to facilitate both native and non-native phonetic perception, it remains unclear whether and how musical experience affects native speakers’ categorical perception (CP) of speech at the suprasegmental level. Using both identification and discrimination tasks, this study compared Chinese-speaking musicians and non-musicians in their CP of a lexical tone continuum (from the high level tone, Tone1 to the high falling tone, Tone4). While the identification functions showed similar steepness and boundary location between the two subject groups, the discrimination results revealed superior performance in the musicians for discriminating within-category stimuli pairs but not for between-category stimuli. These findings suggest that musical training can enhance sensitivity to subtle pitch differences between within-category sounds in the presence of robust mental representations in service of CP of lexical tonal contrasts. PMID:25918511

  12. Optimization of phase contrast in bimodal amplitude modulation AFM.

    PubMed

    Damircheli, Mehrnoosh; Payam, Amir F; Garcia, Ricardo

    2015-01-01

    Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.

  13. Optimization of phase contrast in bimodal amplitude modulation AFM

    PubMed Central

    Damircheli, Mehrnoosh; Payam, Amir F

    2015-01-01

    Summary Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes. PMID:26114079

  14. Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes

    PubMed Central

    2013-01-01

    In this paper, the potential sensitivity in Kelvin probe force microscopy (KPFM) was investigated in frequency modulation (FM) and heterodyne amplitude modulation (AM) modes. We showed theoretically that the minimum detectable contact potential difference (CPD) in FM-KPFM is higher than in heterodyne AM-KPFM. We experimentally confirmed that the signal-to-noise ratio in FM-KPFM is lower than that in heterodyne AM-KPFM, which is due to the higher minimum detectable CPD dependence in FM-KPFM. We also compared the corrugations in the local contact potential difference on the surface of Ge (001), which shows atomic resolution in heterodyne AM-KPFM. In contrast, atomic resolution cannot be obtained in FM-KPFM under the same experimental conditions. The higher potential resolution in heterodyne AM-KPFM was attributed to the lower crosstalk and higher potential sensitivity between topographic and potential measurements. PMID:24350866

  15. Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes.

    PubMed

    Ma, Zong-Min; Mu, Ji-Liang; Tang, Jun; Xue, Hui; Zhang, Huan; Xue, Chen-Yang; Liu, Jun; Li, Yan-Jun

    2013-01-01

    In this paper, the potential sensitivity in Kelvin probe force microscopy (KPFM) was investigated in frequency modulation (FM) and heterodyne amplitude modulation (AM) modes. We showed theoretically that the minimum detectable contact potential difference (CPD) in FM-KPFM is higher than in heterodyne AM-KPFM. We experimentally confirmed that the signal-to-noise ratio in FM-KPFM is lower than that in heterodyne AM-KPFM, which is due to the higher minimum detectable CPD dependence in FM-KPFM. We also compared the corrugations in the local contact potential difference on the surface of Ge (001), which shows atomic resolution in heterodyne AM-KPFM. In contrast, atomic resolution cannot be obtained in FM-KPFM under the same experimental conditions. The higher potential resolution in heterodyne AM-KPFM was attributed to the lower crosstalk and higher potential sensitivity between topographic and potential measurements.

  16. Quadrature amplitude modulation (QAM) using binary-driven coupling-modulated rings

    NASA Astrophysics Data System (ADS)

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-05-01

    We propose and fully analyze a compact structure for DAC-free pure optical QAM modulation. The proposed structure is the first ring resonator-based DAC-free QAM modulator reported in the literature, to the best of our knowledge. The device consists of two segmented add-drop Mach Zehnder interferometer-assisted ring modulators (MZIARM) in an IQ configuration. The proposed architecture is investigated based on the parameters from SOI technology where various key design considerations are discussed. We have included the loss in the MZI arms in our analysis of phase and amplitude modulation using MZIARM for the first time and show that the imbalanced loss results in a phase error. The output level linearity is also studied for both QAM-16 and QAM-64 not only based on optimizing RF segment lengths but also by optimizing the number of segments. In QAM-16, linearity among levels is achievable with two segments while in QAM-64 an additional segment may be required.

  17. Envelope pulsed ultrasonic distance measurement system based upon amplitude modulation and phase modulation

    NASA Astrophysics Data System (ADS)

    Huang, Y. P.; Wang, J. S.; Huang, K. N.; Ho, C. T.; Huang, J. D.; Young, M. S.

    2007-06-01

    A novel microcomputer-based ultrasonic distance measurement system is presented. This study proposes an efficient algorithm which combines both the amplitude modulation (AM) and the phase modulation (PM) of the pulse-echo technique. The proposed system can reduce error caused by inertia delay and amplitude attenuation effect when using the AM and PM envelope square wave form (APESW). The APESW ultrasonic driving wave form causes a phase inversion phenomenon in the relative wave form of the receiver. The phase inversion phenomenon sufficiently identifies the "measurement pulse" in the received wave forms, which can be used for accurate time-of-flight (TOF) measurement. In addition, combining a countertechnique to compute the phase shifts of the last cycle for TOF, the presented system can obtain distance resolution of 0.1% of the wavelength corresponding to the 40kHz frequency of the ultrasonic wave. The standard uncertainty of the proposed distance measurement system is found to be 0.2mm at a range of 50-500mm. The APESW signal generator and phase detector of this measuring system are designed on a complex programmable logic device, which is used to govern the TOF measurement and send the data to a personal computer for distance calibration and examination. The main advantages of this APESW system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  18. Amplitude modulation in δ Sct stars: statistics from an ensemble study of Kepler targets

    NASA Astrophysics Data System (ADS)

    Bowman, Dominic M.; Kurtz, Donald W.; Breger, Michel; Murphy, Simon J.; Holdsworth, Daniel L.

    2016-08-01

    We present the results of a search for amplitude modulation of pulsation modes in 983 δ Sct stars, which have effective temperatures between 6400 ≤ Teff ≤ 10 000 K in the Kepler Input Catalogue and were continuously observed by the Kepler Space Telescope for 4 yr. We demonstrate the diversity in pulsational behaviour observed, in particular non-linearity, which is predicted for δ Sct stars. We analyse and discuss examples of δ Sct stars with constant amplitudes and phases; those that exhibit amplitude modulation caused by beating of close-frequency pulsation modes; those that exhibit pure amplitude modulation (with no associated phase variation); those that exhibit phase modulation caused by binarity; and those that exhibit amplitude modulation caused by non-linearity. Using models and examples of individual stars, we demonstrate that observations of the changes in amplitude and phase of pulsation modes can be used to distinguish among the different scenarios. We find that 603 δ Sct stars (61.3 per cent) exhibit at least one pulsation mode that varies significantly in amplitude over 4 yr. Conversely, many δ Sct stars have constant pulsation amplitudes so short-length observations can be used to determine precise frequencies, amplitudes and phases for the most coherent and periodic δ Sct stars. It is shown that amplitude modulation is not restricted to a small region on the HR diagram, therefore not necessarily dependent on stellar parameters such as Teff or log g. Our catalogue of 983 δ Sct stars will be useful for comparisons to similar stars observed by K2 and TESS, because the length of the 4-yr Kepler data set will not be surpassed for some time.

  19. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer.

    PubMed

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance. PMID:27036752

  20. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R.

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  1. All-optical atomic magnetometers based on nonlinear magneto-optical rotation with amplitude modulated light

    NASA Astrophysics Data System (ADS)

    Pustelny, Szymon; Wojciechowski, Adam; Kotyrba, Mateusz; Sycz, Krystian; Zachorowski, Jerzy; Gawlik, Wojciech; Cingoz, Arman; Leefer, Nathan; Higbie, James M.; Corsini, Eric; Ledbetter, Micah P.; Rochester, Simon M.; Sushkov, Alexander O.; Budker, Dmitry

    2007-03-01

    We demonstrate a magnetometric technique based on nonlinear magneto-optical rotation using amplitude modulated light. The magnetometers can be operated in either open-loop (typical nonlinear magneto-optical rotation with amplitude-modulated light) or closed-loop (self-oscillating) modes. The latter mode is particularly well suited for conditions where the magnetic field is changing by large amounts over a relatively short timescale.

  2. Amplitude Control of Solid-State Modulators for Precision Fast Kicker Applications

    SciTech Connect

    Watson, J A; Anaya, R M; Caporaso, G C; Chen, Y J; Cook, E G; Lee, B S; Hawkins, A

    2002-11-15

    A solid-state modulator with very fast rise and fall times, pulse width agility, and multi-pulse burst and intra-pulse amplitude adjustment capability for use with high speed electron beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. Amplitude adjustment is provided by controlling individual modules in the adder, and is used to compensate for transverse e-beam motion as well as the dynamic response and beam-induced steering effects associated with the kicker structure. A control algorithm calculates a voltage based on measured e-beam displacement and adjusts the modulator to regulate beam centroid position. This paper presents design details of amplitude control along with measured performance data from kicker operation on the ETA-II accelerator at LLNL.

  3. Dissociable Neural Response Signatures for Slow Amplitude and Frequency Modulation in Human Auditory Cortex

    PubMed Central

    Henry, Molly J.; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals. PMID:24205309

  4. Smooth Pursuit Saccade Amplitude Modulation During Exposure to Microgravity

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Sayenko, D. G.; Sayenko, I.; Somers, J. T.; Paloski, W. H.

    2002-01-01

    Russian investigators have reported changes in pursuit tracking of a vertically moving point stimulus during space flight. Early in microgravity, changes were manifested by decreased eye movement amplitude (undershooting) and the appearance of correction saccades. As the flight progressed, pursuit of the moving point stimulus deteriorated while associated saccadic movements were unchanged. Immediately postflight there was an improved execution of active head movements indicating that the deficiencies in pursuit function noted in microgravity may be of central origin. In contrast, tests of two cosmonauts showed that horizontal and vertical smooth pursuit were unchanged inflight. However, results of corresponding saccadic tasks showed a tendency toward the overshooting of a horizontal target early inflight with high accuracy developing later inflight, accompanied by an increased saccade velocity and a trend toward decreased saccade latency. Based on these equivocal results, we have further investigated the effects of space flight on the smooth pursuit mechanism during and after short duration flight, and postflight on returning MIR crewmembers. Sinusoidal target movement was presented horizontally at frequencies of 0.33 and 1.0 Hz. Subjects were asked to perform two trials for each stimulus combination: (1) moving eyes-only (EO) and (2) moving eyes and head (EH) with the target motion. Peak amplitude was 30 deg for 0.33 Hz trials and 15 deg for the 1.0 Hz trials. The relationship between saccade amplitude and peak velocity were plotted as a main sequence for each phase of flight, and linear regression analysis allowed us to determine the slope of each main sequence plot. The linear slopes were then combined for each flight phase for each individual subject. The main sequence for both EO and EH trials at both the 0.33 and 1.0 Hz frequencies during flight for the short duration flyers showed a reduction in saccade velocity and amplitude when compared to the preflight

  5. Speckle-reduced holographic display by modulating complex amplitude in single-lens system

    NASA Astrophysics Data System (ADS)

    Chang, Chenliang; Xia, Jun; Qi, Yijun; Yuan, Caojin; Nie, Shouping

    2016-06-01

    This paper proposes a method for calculating phase-only computer-generated hologram (CGH) in holographic display with reduced speckle noise. The method works by encoding the desired complex-amplitude field of object into a phase-only CGH by a linear canonical transform algorithm. The complex-amplitude field can then be reconstructed independently from the encoded CGH using a filter at the Fourier plane of a single-lens optical system. The feasibility and effectiveness of the proposed method was verified by a simulation experiment. An optical experiment for holographic display was also conducted with reduced speckle using a single phase-only spatial-light modulator. The object was, in fact, reconstructed with different depth of focus clearly without speckle noise due to the simultaneous modulation of both amplitude and phase, confirming our method's ability to suppress speckle noise in holographic displays by modulating complex amplitude in three-dimensional space.

  6. Radio frequency path characterization for wide band quadrature amplitude modulation

    SciTech Connect

    Bracht, R.

    1998-12-31

    Remote, high speed, high explosive wave front monitoring requires very high bandwidth telemetry to allow transmission of diagnostic data before the explosion destroys the sensor system itself. The main motivation for this study is that no known existing implementation of this sort has been applied to realistic weapons environments. These facts have prompted the research and gathering of data that can be used to extrapolate towards finding the best modulation method for this application. In addition to research of similar existing analysis and testing operations, data was recently captured from a Joint Test Assembly (JTA) Air Launched Cruise Missile (ALCM) flight.

  7. Amplitude modulation of lower hybrid waves for transport control

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Baek, S. G.; Faust, I. C.; Golfinopoulos, T.; Labombard, B. L.; Mumgaard, R. T.; Parker, R. R.; Scott, S. D.; Shiraiwa, S.; Terry, J. L.

    2014-10-01

    Steady, high-power lower hybrid (LH) waves have been shown to alter transport characteristics in the edge and pedestal regions of EDA H-modes on Alcator C-Mod. The modifications of the pedestal are particularly striking in high-density H-modes [J. Terry, this conference], perhaps through interaction with the transport-regulating edge Quasi-Coherent Mode (QCM), since it is strongly affected by the injection of LH waves. The transport modification effect is present even at high densities for which LH waves are not accessible to the core plasma and current drive effects are negligible. Experiments have been conducted to determine if modulating LH power near the QCM frequency can enhance the beneficial effects of LH waves on the pedestal and the QCM. A new capability was developed to modulate the net LH wave power at frequencies from 1-200 kHz. The presence and character of edge modes was monitored using gas puff imaging, phase contrast imaging, reflectometry, and magnetic pickup loops. This work supported by USDoE Awards DE-FC02-99ER54512 and DE-AC02-09CH11466.

  8. Diffusion-induced periodic transition between oscillatory modes in amplitude-modulated patterns

    SciTech Connect

    Tang, Xiaodong; He, Yuxiu; Wang, Shaorong; Gao, Qingyu; Epstein, Irving R.; Wang, Qun

    2014-06-15

    We study amplitude-modulated waves, e.g., wave packets in one dimension, overtarget spirals and superspirals in two dimensions, under mixed-mode oscillatory conditions in a three-variable reaction-diffusion model. New transition zones, not seen in the homogeneous system, are found, in which periodic transitions occur between local 1{sup N−1} and 1{sup N} oscillations. Amplitude-modulated complex patterns result from periodic transition between (N − 1)-armed and N-armed waves. Spatial recurrence rates provide a useful guide to the stability of these modulated patterns.

  9. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control.

    PubMed

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-01-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz; the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5-10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices. PMID:27558516

  10. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-08-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5–10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices.

  11. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control

    PubMed Central

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-01-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz; the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5–10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices. PMID:27558516

  12. Pitch processing of dynamic lexical tones in the auditory cortex is influenced by sensory and extrasensory processes

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim is to evaluate how language experience (Chinese, English) shapes processing of pitch contours as reflected in the amplitude of cortical pitch response components. Responses were elicited from three dynamic, curvilinear, nonspeech stimuli varying in pitch direction and location of peak acceleration: Mandarin lexical Tone2 (rising) and Tone4 (falling); and a flipped variant of Tone2, Tone2′ (nonnative). At temporal sites (T7/T8), Chinese Na-Pb response amplitude to Tones 2 & 4 was greater than English in the right hemisphere only; a rightward asymmetry for Tones 2 & 4 was restricted to the Chinese group. In common to both Fz-to-linked T7/T8 and T7/T8 electrode sites, the stimulus pattern (Tones 2 & 4 > Tone2′) was found in the Chinese group only. As reflected by Pb-Nb at Fz, Chinese amplitude was larger than English in response to Tones 2 & 4; and Tones 2 & 4 were larger than Tone2′; whereas for English, Tone2 was larger than Tone2′ and Tone4. At frontal electrode sites (F3/F4), regardless of component or hemisphere, Chinese responses were larger in amplitude than English across stimuli. For either group, responses to Tones 2 & 4 were larger than Tone2′. No hemispheric asymmetry was observed at the frontal electrode sites. These findings highlight that cortical pitch response components are differentially modulated by experience-dependent, temporally distinct but functionally overlapping weighting of sensory and extrasensory effects on pitch processing of lexical tones in the right temporal lobe and, more broadly, are consistent with a distributed hierarchical predictive coding process. PMID:25943576

  13. Heme oxygenase-1 upregulation modulates tone and fibroelastic properties of internal anal sphincter.

    PubMed

    Krishna, Chadalavada Vijay; Singh, Jagmohan; Kumar, Sumit; Rattan, Satish

    2014-09-15

    A compromise in the internal anal sphincter (IAS) tone and fibroelastic properties (FEP) plays an important role in rectoanal incontinence. Herein, we examined the effects of heme oxygenase (HO)-1 upregulation on these IAS characteristics in young rats. We determined the effect of HO-1 upregulator hemin on HO-1 mRNA and protein expressions and on basal IAS tone and its FEP before and after HO-1 inhibitor tin protoporphyrin IX. For FEP, we determined the kinetics of the IAS smooth muscle responses, by the velocities of relaxation, and recovery of the IAS tone following 0 Ca(2+) and electrical field stimulation. To characterize the underlying signal transduction for these changes, we determined the effects of hemin on RhoA-associated kinase (RhoA)/Rho kinase (ROCK) II, myosin-binding subunit of myosin light chain phosphatase 1, fibronectin, and elastin expression levels. Hemin increased HO-1 mRNA and protein similar to the increases in the basal tone, and in the FEP of the IAS. Underlying mechanisms in the IAS characteristics are associated with increases in the genetic and translational expressions of RhoA/ROCKII, and elastin. Fibronectin expression levels on the other hand were found to be decreased following HO-1 upregulation. The results of our study show that the hemin/HO-1 system regulates the tone and FEP of IAS. The hemin/HO-1 system thus provides a potential target for the development of new interventions aimed at treatment of gastrointestinal motility disorders, specifically the age-related IAS dysfunction.

  14. Dynamics of fermions in an amplitude-modulated lattice

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Tomotake; Watanabe, Shinichi; Ohgoda, Shun; Itin, Alexander P.

    2016-06-01

    We study the dynamics of fermions loaded in an optical lattice with a superimposed parabolic trap potential. In the recent Hamburg experiments [J. Heinze et al., Phys. Rev. Lett. 110, 085302 (2013), 10.1103/PhysRevLett.110.085302] on quantum simulation of photoconductivity, a modulation pulse on the optical lattice transferred part of the population of the lowest band to an excited band, leaving a hole in the particle distribution of the lowest band. The subsequent intricate dynamics of both excited particles and holes can be explained by a semiclassical approach based on the evolution of the Wigner function. Here we provide a more detailed analysis of the dynamics, taking into account the dimensionality of the system and finite-temperature effects, aiming at reproducing experimental results on longer time scales. A semiclassical wave packet is constructed more accurately than in the previous theory. As a result, semiclassical dynamics indeed reproduces experimental data and full quantum numerical calculations with a much better accuracy. In particular, the fascinating phenomenon of collapse and revival of holes is investigated in more detail. We presume that the experimental setup can be used for deeper exploration of nonlinear waves in fermionic gases.

  15. Upper stability island of the quadrupole mass filter with amplitude modulation of the applied voltages.

    PubMed

    Konenkov, N V; Korolkov, A N; Machmudov, Marat

    2005-03-01

    Modulation of the voltages applied to a quadrupole mass filter (QMF), either RF or RF and DC, leads to splitting of the stability region into islands of stability. The ion optical properties, such as transmission, resolving power and peak tails of the first upper stability islands have been investigated by numerical simulation of ion trajectories. The dependence of the location of this island on the amplitude of the modulation and the parameter nu = omega/Omega = Q/P where omega is modulation frequency, Omega is main angular radio frequency, and Q and P are integers, is calculated in detail. Different methods of adjusting the QMF resolution are examined. It is found that operation at the upper and lower tips of the stability islands created by amplitude modulation of the RF voltage is preferred, because of the technical simplicity of this method and a reduction of the required separation time. Amplitude modulation improves the performance of a QMF constructed with round rods, in comparison to perfect quadrupole fields. For example, with amplitude modulation of the RF, to reach a resolution of R(0.1) = 1200 requires only about 75 RF cycles of ion motion in a quadrupole field created by round rods. PMID:15734331

  16. New asymmetric propagation invariant beams obtained by amplitude and phase modulation in frequency space

    PubMed Central

    Mendoza-Hernández, J.; Arroyo Carrasco, M.L.; Méndez Otero, M.M.; Chávez-Cerda, S.; Iturbe Castillo, M.D.

    2014-01-01

    In this paper, we demonstrate, numerically and experimentally that using the mask-lens setup used by Durnin to generate Bessel beams Durnin [Phys. Rev. Lett. 58, 1499 (1987)], it is possible to generate different kinds of propagation invariant beams. A modification in the amplitude or phase of the field that illuminates the annular slit is proposed that corresponds to modulation in frequency space. In particular, we characterize the new invariant beams that were obtained by modulating the amplitude of the annular mask and when the incident field was modulated with a one-dimensional quadratic or cubic phase. Experimental results using an amplitude mask are shown in order to corroborate the numerical predictions. PMID:25705088

  17. Amplitude modulation of sound from wind turbines under various meteorological conditions.

    PubMed

    Larsson, Conny; Öhlund, Olof

    2014-01-01

    Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood. PMID:24437746

  18. Amplitude modulation of sound from wind turbines under various meteorological conditions.

    PubMed

    Larsson, Conny; Öhlund, Olof

    2014-01-01

    Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.

  19. Effects of continuous-wave, pulsed, and sinusoidal-amplitude-modulated microwaves on brain energy metabolism.

    PubMed

    Sanders, A P; Joines, W T; Allis, J W

    1985-01-01

    A comparison of the effects of continuous-wave, sinusoidal-amplitude-modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague-Dawley rats (175-225 g). Brain NADH fluorescence, adenosine triphosphate (ATP) concentration, and creatine phosphate (CP) concentration were determined as a function of modulation frequency. Brain temperatures of animals were maintained between -0.1 and -0.4 degrees C from the preexposure temperature when subjected to as much as 20 mW/cm2 (average power) CW, pulsed, or sinusoidal-amplitude modulated 591-MHz radiation for 5 min. Sinusoidal-amplitude-modulated exposures at 16-24 Hz showed a trend toward preferential modulation frequency response in inducing an increase in brain NADH fluorescence. The pulse-modulated and sinusoidal-amplitude-modulated (16 Hz) microwaves were not significantly different from CW exposures in inducing increased brain NADH fluorescence and decreased ATP and CP concentrations. When the pulse-modulation frequency was decreased from 500 to 250 pulses per second the average incident power density threshold for inducing an increase in brain NADH fluorescence increased by a factor of 4--ie, from about 0.45 to about 1.85 mW/cm2. Since brain temperature did not increase, the microwave-induced increase in brain NADH and decrease in ATP and CP concentrations was not due to hyperthermia. This suggests a direct interaction mechanism and is consistent with the hypothesis of microwave inhibition of mitochondrial electron transport chain function of ATP production.

  20. Micro-antennas for the phase and amplitude modulation of terahertz wave

    NASA Astrophysics Data System (ADS)

    He, Jingwen; Wang, Sen; Zhang, Yan

    2015-11-01

    Based on the localized surface plasmons (LSPs), a series of C-shaped slits antennas are designed to modulate the phase and amplitude of the cross-polarized transmitted wave in THz waveband. By adjusting the structure parameters of the antenna unit, arbitrary phase and amplitude modulation of the cross-polarized THz wave can be obtained. The C-shaped slit antenna units are designed at two operating frequencies f=0.8 THz and f=1.0 THz using a commercial software package (Lumerical Solutions), which is based on the finite-difference time-domain method. According to the simulated results, principles for modulating the phase and amplitude of THz wave are summarized as follows. Firstly, the operating wavelength depends on the effective length of the antenna and the operating wavelength increases as the effective length increases; Secondly, the phase of the cross-polarized wave can be modulated from 0 to 2π by changing the opening angle of the split; Thirdly, the amplitude transmittance of the cross-polarized wave can be changed from the extinction state to the maximum value by rotating the symmetry axis of the C-shaped slit. These principles can be used to direct the design of the field modulator in any other working frequency.

  1. Effect of current focusing on the sensitivity of inferior colliculus neurons to amplitude-modulated stimulation.

    PubMed

    George, Shefin S; Shivdasani, Mohit N; Fallon, James B

    2016-09-01

    In multichannel cochlear implants (CIs), current is delivered to specific electrodes along the cochlea in the form of amplitude-modulated pulse trains, to convey temporal and spectral cues. Our previous studies have shown that focused multipolar (FMP) and tripolar (TP) stimulation produce more restricted neural activation and reduced channel interactions in the inferior colliculus (IC) compared with traditional monopolar (MP) stimulation, suggesting that focusing of stimulation could produce better transmission of spectral information. The present study explored the capability of IC neurons to detect modulated CI stimulation with FMP and TP stimulation compared with MP stimulation. The study examined multiunit responses of IC neurons in acutely deafened guinea pigs by systematically varying the stimulation configuration, modulation depth, and stimulation level. Stimuli were sinusoidal amplitude-modulated pulse trains (carrier rate of 120 pulses/s). Modulation sensitivity was quantified by measuring modulation detection thresholds (MDTs), defined as the lowest modulation depth required to differentiate the response of a modulated stimulus from an unmodulated one. Whereas MP stimulation showed significantly lower MDTs than FMP and TP stimulation (P values <0.05) at stimulation ≤2 dB above threshold, all stimulation configurations were found to have similar modulation sensitivities at 4 dB above threshold. There was no difference found in modulation sensitivity between FMP and TP stimulation. The present study demonstrates that current focusing techniques such as FMP and TP can adequately convey amplitude modulation and are comparable to MP stimulation, especially at higher stimulation levels, although there may be some trade-off between spectral and temporal fidelity with current focusing stimulation. PMID:27306672

  2. Effect of current focusing on the sensitivity of inferior colliculus neurons to amplitude-modulated stimulation.

    PubMed

    George, Shefin S; Shivdasani, Mohit N; Fallon, James B

    2016-09-01

    In multichannel cochlear implants (CIs), current is delivered to specific electrodes along the cochlea in the form of amplitude-modulated pulse trains, to convey temporal and spectral cues. Our previous studies have shown that focused multipolar (FMP) and tripolar (TP) stimulation produce more restricted neural activation and reduced channel interactions in the inferior colliculus (IC) compared with traditional monopolar (MP) stimulation, suggesting that focusing of stimulation could produce better transmission of spectral information. The present study explored the capability of IC neurons to detect modulated CI stimulation with FMP and TP stimulation compared with MP stimulation. The study examined multiunit responses of IC neurons in acutely deafened guinea pigs by systematically varying the stimulation configuration, modulation depth, and stimulation level. Stimuli were sinusoidal amplitude-modulated pulse trains (carrier rate of 120 pulses/s). Modulation sensitivity was quantified by measuring modulation detection thresholds (MDTs), defined as the lowest modulation depth required to differentiate the response of a modulated stimulus from an unmodulated one. Whereas MP stimulation showed significantly lower MDTs than FMP and TP stimulation (P values <0.05) at stimulation ≤2 dB above threshold, all stimulation configurations were found to have similar modulation sensitivities at 4 dB above threshold. There was no difference found in modulation sensitivity between FMP and TP stimulation. The present study demonstrates that current focusing techniques such as FMP and TP can adequately convey amplitude modulation and are comparable to MP stimulation, especially at higher stimulation levels, although there may be some trade-off between spectral and temporal fidelity with current focusing stimulation.

  3. Polarization-sensitive optical coherence tomography measurements with different phase modulation amplitude when using continuous polarization modulation

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2012-01-01

    We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.

  4. Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

    PubMed Central

    Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind

    2012-01-01

    Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531

  5. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements.

    PubMed

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland

    2016-07-01

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  6. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements.

    PubMed

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland

    2016-07-01

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys. PMID:27475604

  7. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    NASA Astrophysics Data System (ADS)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland

    2016-07-01

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.

  8. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme wavesa)

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur-; Kerr, Michael Mc; El-Taibany, Wael F.; Kourakis, Ioannis; Qamar, A.

    2015-02-01

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  9. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme waves

    SciTech Connect

    Rahman, Ata-ur-; Kerr, Michael Mc Kourakis, Ioannis; El-Taibany, Wael F.; Qamar, A.

    2015-02-15

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  10. Broadcasting Stations of the World; Part I. Amplitude Modulation Broadcasting Stations According to Country and City.

    ERIC Educational Resources Information Center

    Foreign Broadcast Information Service, Washington, DC.

    This first part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations, with the exception of those in the United States which broadcast on domestic channels, covers amplitude modulation broadcasting stations. Information is indexed alphabetically by country and city. Within a city, stations…

  11. Broadcasting Stations of the World; Part II. Amplitude Modulation Broadcasting Stations According to Frequency.

    ERIC Educational Resources Information Center

    Foreign Broadcast Information Service, Washington, DC.

    This second part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations with the exception of those in the United States which broadcast on domestic channels, covers amplitude modulation broadcasting stations according to frequency in ascending order. Information included covers call letters,…

  12. Radar transponder operation with compensation for distortion due to amplitude modulation

    SciTech Connect

    Ormesher, Richard C.; Tise, Bertice L.; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  13. Synchronized slow-amplitude modulations in the electromyograms of shivering muscles.

    PubMed

    Israel, D J; Pozos, R S

    1989-05-01

    The electromyograms (EMG) of shivering human subjects exposed to 0 degrees C air in an environmental chamber were analyzed to detect slow-amplitude modulations (SAMs, less than 1 Hz) in the EMGs of widely separated muscles and to study the relationship of these SAMs to respiration rate and skin temperature. Distinct amplitude modulations were observed in the raw EMGs during shivering. The peaks in EMG activity occurred simultaneously in the majority of the monitored muscles in all subjects. Pearson correlations between the average rectified EMGs of 93% of the muscles were significant (P less than 0.05). Visual analysis of the EMG and respiration signals indicated that the peaks in muscular activity occurred 6-12 times/min, whereas respiration ranged from 10 to 23 cycles/min. For all subjects respiration was at a higher frequency than amplitude modulation in the EMG. Comparison of EMG records with expiratory flow rate traces in shivering subjects indicated no one-to-one correlation between the occurrence of respiration and EMG amplitude modulations. Respiratory flow rate and average rectified EMG showed significant correlation in only 33% of the cases. In addition, skin temperature changes could not be correlated with the SAMS.

  14. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation.

    PubMed

    Wen, Zhongquan; He, Yinghu; Li, Yuyan; Chen, Li; Chen, Gang

    2014-09-01

    In this paper, we numerically demonstrate the advantage of utilizing continuous amplitude and phase modulation in super-oscillation focusing lens design. Numerical results show that compared with simple binary amplitude modulation, continuous amplitude and phase modulation can greatly improve the super-oscillation focusing performance by increasing the central lobe intensity and the ratio of its energy to the total energy, reducing the sidelobe intensity, and substantially extending the field of view. Our study also reveals the role of phase distribution in reducing the spatial frequency bandwidth of the super-oscillation optical field on the focal plane. Based on continuous amplitude and binary phase modulation, a lens was designed with double layer metal slit array for wavelength of 4.6 µm. COMSOL is used to carry out the 2D simulation. The lens focal length is 40.18λ and the focal spot FWHM is 0.308λ. Two largest sidelobes are located right next to the central lobe with intensity about 40% of the central lobe intensity. Except for the two sidelobes, other sidelobes have intensity less than 25% of the central lobe intensity, which leads to a clear field of view on the whole focal plane. PMID:25321591

  15. Determination of nanovibration amplitudes using frequency-modulated semiconductor laser autodyne

    SciTech Connect

    Usanov, D A; Skripal, A V; Astakhov, E I

    2014-02-28

    The method for measuring nanovibration amplitudes using the autodyne signal of a semiconductor laser at several laser radiation wavelengths is described. The theoretical description of the frequency-modulated autodyne signal under harmonic vibrations of the reflector is presented and the relations for its spectral components are derived using the expansions into the Fourier and Bessel series. The results of numerical modelling based on the proposed method for measuring the reflector nanovibration amplitudes are presented that make use of the low-frequency spectrum of the autodyne signal from the frequency-modulated laser autodyne and the solution of the appropriate inverse problem. The experimental setup is described; the results of the measurements are presented for the nanovibration amplitudes and the autodyne signal spectra under the reflector nanovibrations. (laser applications and other topics in quantum electronics)

  16. Atomic force microscopy force-distance curves with small amplitude ultrasonic modulation.

    PubMed

    Ma, Chengfu; Chen, Yuhang; Wang, Tian; Chu, Jiaru

    2015-01-01

    Force-distance curves were acquired on a highly oriented pyrolytic graphite (HOPG) specimen and a gold film specimen under ultrasonic modulation in atomic force microscopy (AFM). Measurements demonstrated that small amplitude ultrasonic oscillation of either the cantilever or the sample has significant impacts on the characteristics of force-distance curves. With the increase of excitation amplitude, the apparent pull-off force decreased gradually and the hysteresis between the approach and retraction curves reduced significantly. Furthermore, the decrease of the pull-off force was determined to be also relevant to the excitation frequency. With the assistance of contact resonance spectra, the pull-off force was verified to have a near-linear relationship with the cantilever contact oscillation amplitude. Theoretical analysis and subsequent numerical simulations well interpreted the experimental results. The emergence of large oscillating contact forces under ultrasonic modulation altered the force-distance curves, and such a mechanism was ascertained by further ultrasonic AFM imaging.

  17. Instrument Reflections and Scene Amplitude Modulation in a Polychromatic Microwave Quadrature Interferometer

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Jones, Jonathan E.; Chavers, Greg

    2003-01-01

    A polychromatic microwave quadrature interferometer has been characterized using several laboratory plasmas. Reflections between the transmitter and the receiver have been observed, and the effects of including reflection terms in the data reduction equation have been examined. An error analysis which includes the reflections, modulation of the scene beam amplitude by the plasma, and simultaneous measurements at two frequencies has been applied to the empirical database, and the results are summarized. For reflection amplitudes around 1096, the reflection terms were found to reduce the calculated error bars for electron density measurements by about a factor of 2. The impact of amplitude modulation is also quantified. In the complete analysis, the mean error bar for high- density measurements is 7.596, and the mean phase shift error for low-density measurements is 1.2". .

  18. Monocular 3D see-through head-mounted display via complex amplitude modulation.

    PubMed

    Gao, Qiankun; Liu, Juan; Han, Jian; Li, Xin

    2016-07-25

    The complex amplitude modulation (CAM) technique is applied to the design of the monocular three-dimensional see-through head-mounted display (3D-STHMD) for the first time. Two amplitude holograms are obtained by analytically dividing the wavefront of the 3D object to the real and the imaginary distributions, and then double amplitude-only spatial light modulators (A-SLMs) are employed to reconstruct the 3D images in real-time. Since the CAM technique can inherently present true 3D images to the human eye, the designed CAM-STHMD system avoids the accommodation-convergence conflict of the conventional stereoscopic see-through displays. The optical experiments further demonstrated that the proposed system has continuous and wide depth cues, which enables the observer free of eye fatigue problem. The dynamic display ability is also tested in the experiments and the results showed the possibility of true 3D interactive display. PMID:27464184

  19. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice.

    PubMed

    Manzini, S; Pinna, C; Busnelli, M; Cinquanta, P; Rigamonti, E; Ganzetti, G S; Dellera, F; Sala, A; Calabresi, L; Franceschini, G; Parolini, C; Chiesa, G

    2015-11-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcat(wt)) and LCAT knockout (Lcat(KO)) mice exposed to noradrenaline showed reduced contractility in Lcat(KO) mice (P<0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in Lcat(KO) mice (P<0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in Lcat(KO) mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcat(wt) and Lcat(KO) mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. PMID:26254103

  20. Cross-Modulated Amplitudes and Frequencies Characterize Interacting Components in Complex Systems

    NASA Astrophysics Data System (ADS)

    Gans, Fabian; Schumann, Aicko Y.; Kantelhardt, Jan W.; Penzel, Thomas; Fietze, Ingo

    2009-03-01

    The dynamics of complex systems is characterized by oscillatory components on many time scales. To study the interactions between these components we analyze the cross modulation of their instantaneous amplitudes and frequencies, separating synchronous and antisynchronous modulation. We apply our novel technique to brain-wave oscillations in the human electroencephalogram and show that interactions between the α wave and the δ or β wave oscillators as well as spatial interactions can be quantified and related with physiological conditions (e.g., sleep stages). Our approach overcomes the limitation to oscillations with similar frequencies and enables us to quantify directly nonlinear effects such as positive or negative frequency modulation.

  1. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    SciTech Connect

    Nigam, R.; Kosovichev, A. G. E-mail: sasha@quake.stanford.ed

    2010-01-10

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  2. Pilot-aided modulation for narrow-band satellite communications

    NASA Technical Reports Server (NTRS)

    Saulnier, Gary J.; Rafferty, William

    1988-01-01

    This paper discusses a number of tone-aided modulation techniques which have been studied as part of the Mobile Satellite Experiment (MSAT-X) Program. In all instances tone(s) are inserted into data-free portions of the transmit spectrum and used by the receiver to sense the amplitude and frequency/phase distortions introduced by the channel. The receiver then uses this information in a feedforward manner to lessen the effect of the distortions on the data detection performance. Particular techniques discussed are the Tone Calibration Technique (TCT), the Dual Tone Calibrated Technique (DTCT), Transparent Tone-In-Band (TTIB), and Dual-Tone Single Sideband (DTSSB).

  3. Numerical generation of a polarization singularity array with modulated amplitude and phase.

    PubMed

    Ye, Dong; Peng, Xinyu; Zhao, Qi; Chen, Yanru

    2016-09-01

    A point having no defined polarized ellipse azimuthal angle (circularly polarized) in a space-variant vector field is called a polarization singularity, and it has three types: Lemon, Monstar, and Star. Recently, the connection of polarization singularities has been performed. Inspired by this, we conduct a numerical generation of a polarization singularity array. Our method is based on two orthogonal linearly polarized light beams with modulated amplitude and phase. With appropriate distribution functions of amplitudes and phases we can control the polarized states of polarization singularities, which offer a possibility to simulate a polarization singularity array. PMID:27607491

  4. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays

    PubMed Central

    2013-01-01

    Background Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat (‘artificial animal’) applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Results Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. Conclusions We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects

  5. Dynamic enhancement of autofocusing property for symmetric Airy beam with exponential amplitude modulation

    NASA Astrophysics Data System (ADS)

    Liu, Weiwei; Lu, Yao; Gong, Lei; Chu, Xiuxiang; Xue, Guosheng; Ren, Yuxuan; Zhong, Mincheng; Wang, Ziqiang; Zhou, Jinhua; Li, Yinmei

    2016-07-01

    A symmetric Airy beam (SAB) autofocuses during free space propagation. Such autofocusing SAB is useful in optical manipulation and biomedical imaging. However, its inherently limited autofocusing property may degrade the performance of the SAB in those applications. To enhance the autofocus, a symmetric apodization mask was proposed to regulate the SAB. In combination with the even cubic phase that shapes the SAB, this even exponential function mask with an adjustable parameter regulates the contribution of different frequency spectral components to the SAB. The propagation properties of this new amplitude modulated SAB (AMSAB) were investigated both theoretically and experimentally. Simulation shows that the energy distribution and autofocusing property of an AMSAB can be adjusted by the exponential amplitude modulation. Especially, the beam energy will be more concentrated in the central lobe once the even cubic phase is modulated by the mask with a higher proportion of high-frequency spectral components. Consequently, the autofocusing property and axial gradient force of AMSABs are efficiently enhanced. The experimental generation and characterization for AMSABs were implemented by modulating the collimated beam with a phase-only spatial light modulator. The experimental results well supported the theoretical predictions. With the ability to enhance the autofocus, the proposed exponential apodization modulation will make SAB more powerful in various applications, including optical trapping, fluorescence imaging and particle acceleration.

  6. Discrimination of amplitude-modulated synthetic echo trains by an echolocating bottlenose dolphin.

    PubMed

    Dankiewicz, Lois A; Helweg, David A; Moore, Patrick W; Zafran, Justine M

    2002-10-01

    Bottlenose dolphins (Tursiops truncatus) have an acute ability to use target echoes to judge attributes such as size, shape, and material composition. Most target recognition studies have focused on features associated with individual echoes as opposed to information conveyed across echo sequences (feature envelope of the multi-echo train). One feature of aspect-dependent targets is an amplitude modulation (AM) across the return echoes in the echo train created by relative movement of the target and dolphin. The current study examined whether dolphins could discriminate targets with different AM envelopes. "Electronic echoes" triggered by a dolphin's outgoing echolocation clicks were manipulated to create sinusoidal envelopes with varying AM rate and depth. Echo trains were equated for energy, requiring the dolphin to extract and retain information from multiple echoes in order to detect and report the presence of AM. The dolphin discriminated amplitude-modulated echo trains from those that were not modulated. AM depth thresholds were approximately 0.8 dB, similar to other published amplitude limens. Decreasing the rate of modulation from approximately 16 to 2 cycles per second did not affect the dolphin's AM depth sensitivity. The results support multiple-echo processing in bottlenose dolphin echolocation. This capability provides additional theoretical justification for exploring synthetic aperture sonar concepts in models of animal echolocation that potentially support theories postulating formation of images as an ultimate means for target identification.

  7. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy.

    PubMed

    Martínez, Nicolás F; García, Ricardo

    2006-04-14

    By recording the phase angle difference between the excitation force and the tip response in amplitude modulation AFM it is possible to image compositional variations in heterogeneous samples. In this contribution we address some of the experimental issues relevant to perform phase contrast imaging measurements. Specifically, we study the dependence of the phase shift on the tip-surface separation, interaction regime, cantilever parameters, free amplitude and tip-surface dissipative processes. We show that phase shift measurements can be converted into energy dissipation values. Energy dissipation curves show a maximum (∼10 eV/cycle) with the amplitude ratio. Furthermore, energy dissipation maps provide a robust method to image material properties because they do not depend directly on the tip-surface interaction regime. Compositional contrast images are illustrated by imaging conjugated molecular islands deposited on silicon surfaces. PMID:21727409

  8. On the modulational instability of large amplitude waves in supersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Papageorgiou, Demetrios T.

    1995-01-01

    The evolution of large amplitude Tollmien-Schlichting waves in a supersonic boundary layer is investigated. Disturbances which have their wavenumber and frequency slowly varying in time and space are described using a phase equation type of approach. Unlike the incompressible case we find that the initial bifurcation to a finite amplitude Tollmien-Schlichting wave is subcritical for most Mach numbers. In fact the bifurcation is only supercritical for a small range of Mach numbers and even then for only a finite range of wave propagation angles. The modulational instability of large amplitude wavetrains is considered and is shown to be governed by an equation similar to Burgers equation but with the viscous term replaced by a fractional derivative. A numerical investigation of the solution of this equation is described. It is shown that uniform wavetrains are unstable.

  9. A method of measuring the amplitude-modulated vacuum field near a conducting mirror

    NASA Technical Reports Server (NTRS)

    Youn, Sun-Hyun; Lee, Jai-Hyung; Chang, Joon-Sung

    1994-01-01

    Electromagnetic fields of the vacuum mode near a conducting mirror are modified with respect to those in free space, with their amplitudes having a sinusoidal spatial dependence from the mirror. Therefore if we combine this spatially amplitude-modulated vacuum field mode and intense coherent light with a beam splitter, we may detect this fluctuation of the vacuum mode in a homodyne detection scheme. It will give a new method to produce squeezed states of light with a single mirror placed close to an unused port of a beam splitter. We show that the amplitude fluctuation of the combined light can be reduced by a factor of 2 below that of the coherent light. We also discuss the limitations due to the finite line width of the laser and the effective absorption length of the photodiodes.

  10. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators

    PubMed Central

    Zhu, Long; Wang, Jian

    2014-01-01

    Spatial structure of a light beam is an important degree of freedom to be extensively explored. By designing simple configurations with phase-only spatial light modulators (SLMs), we show the ability to arbitrarily manipulate the spatial full field information (i.e. amplitude and phase) of a light beam. Using this approach to facilitating arbitrary and independent control of spatial amplitude and phase, one can flexibly generate different special kinds of light beams for different specific applications. Multiple collinear orbital angular momentum (OAM) beams, Laguerre-Gaussian (LG) beams, and Bessel beams, having both spatial amplitude and phase distributions, are successfully generated in the experiments. Some arbitrary beams with odd-shaped intensity are also generated in the experiments. PMID:25501584

  11. Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy.

    PubMed

    Martínez, Nicolás F; García, Ricardo

    2006-04-14

    By recording the phase angle difference between the excitation force and the tip response in amplitude modulation AFM it is possible to image compositional variations in heterogeneous samples. In this contribution we address some of the experimental issues relevant to perform phase contrast imaging measurements. Specifically, we study the dependence of the phase shift on the tip-surface separation, interaction regime, cantilever parameters, free amplitude and tip-surface dissipative processes. We show that phase shift measurements can be converted into energy dissipation values. Energy dissipation curves show a maximum (∼10 eV/cycle) with the amplitude ratio. Furthermore, energy dissipation maps provide a robust method to image material properties because they do not depend directly on the tip-surface interaction regime. Compositional contrast images are illustrated by imaging conjugated molecular islands deposited on silicon surfaces.

  12. Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM.

    PubMed

    Gómez, Carlos J; Garcia, Ricardo

    2010-05-01

    We develop a theoretical framework that explains the use of amplitude modulation AFM to measure and identify energy dissipation processes at the nanoscale. The variation of the dissipated energy on a surface by a vibrating tip as a function of its amplitude has a shape that singles out the dissipative process. The method is illustrated by calculating the dynamic-dissipation curves for surface adhesion energy hysteresis, long-range interfacial interactions and viscoelastic processes. We also show that by diving the dissipated energy by its maximum value, the dynamic-dissipation curves become independent of the experimental parameters. In particular, for long-range dissipative processes we have derived an analytical relationship that shows the independence of the normalized dynamic-dissipation curves with respect the free amplitude, cantilever constant or quality factor.

  13. Cross correlation analysis of plasma perturbation in amplitude modulated reactive dusty plasmas

    NASA Astrophysics Data System (ADS)

    Ito, Teppei; Soejima, Masahiro; Yamashita, Daisuke; Seo, Hyunwoong; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Kobayashi, Tatsuya; Inagaki, Shigeru

    2015-09-01

    Interactions between plasmas and nano-interface are one of the most important issues in plasma processing. We have studied effects of plasma perturbation on growth of nanoparticles in amplitude modulated reactive dusty plasmas and have clarified that amplitude modulation (AM) leads to suppression of growth of nanoparticles [1]. Here we report results of cross correlation analysis of time evolution of laser light scattering intensity from nanoparticles in reactive plasmas. Experiments were carried out using a capacitively-coupled rf discharge reactor with a two-dimensional laser light scattering (LLS) system. We employed Ar +DM-DMOS discharge plasmas to generate nanoparticles. The peaks at higher harmonics and subharmonics in spectra of laser light scattering intensity were detected, suggesting nonlinear coupling between plasma and nanoparticle amount. We found high cross correlation t between waves at AM frequency and its higher harmonics. Namely, perturbation at fAM closely correlates with those at higher harmonics.

  14. Velocity-Field Measurements of an Axisymmetric Separated Flow Subjected to Amplitude-Modulated Excitation

    NASA Technical Reports Server (NTRS)

    Trosin, Barry James

    2007-01-01

    Active flow control was applied at the point of separation of an axisymmetric, backward-facing-step flow. The control was implemented by employing a Helmholtz resonator that was externally driven by an amplitude-modulated, acoustic disturbance from a speaker located upstream of the wind tunnel. The velocity field of the separating/reattaching flow region downstream of the step was characterized using hotwire velocity measurements with and without flow control. Conventional statistics of the data reveal that the separating/reattaching flow is affected by the imposed forcing. Triple decomposition along with conditional averaging was used to distinguish periodic disturbances from random turbulence in the fluctuating velocity component. A significant outcome of the present study is that it demonstrates that amplitude-modulated forcing of the separated flow alters the flow in the same manner as the more conventional method of periodic excitation.

  15. Quantitative security evaluation of optical encryption using hybrid phase- and amplitude-modulated keys.

    PubMed

    Sarkadi, Tamás; Koppa, Pál

    2012-02-20

    In the increasing number of system approaches published in the field of optical encryption, the security level of the system is evaluated by qualitative and empirical methods. To quantify the security of the optical system, we propose to use the equivalent of the key length routinely used in algorithmic encryption. We provide a calculation method of the number of independent keys and deduce the binary key length for optical data encryption. We then investigate and optimize the key length of the combined phase- and amplitude-modulated key encryption in the holographic storage environment, which is one of the promising solutions for the security enhancement of single- and double-random phase-encoding encryption and storage systems. We show that a substantial growth of the key length can be achieved by optimized phase and amplitude modulation compared to phase-only encryption. We also provide experimental confirmation of the model results.

  16. Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation

    PubMed Central

    Ates, Serkan; Agha, Imad; Gulinatti, Angelo; Rech, Ivan; Badolato, Antonio; Srinivasan, Kartik

    2013-01-01

    Single epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit nonideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light. We observe that the single photon purity, temporal overlap between successive emission events, and indistinguishability can be greatly improved with this technique. As this method can be applied to any triggered single photon source, independent of geometry and after device fabrication, it is a flexible approach to improve the performance of systems based on single solid-state quantum emitters, which often suffer from excess dephasing and multi-photon background emission. PMID:23466520

  17. Phase and Amplitude Modulation Methods for Nonlinear Ultrasound Imaging With CMUTs.

    PubMed

    Satir, Sarp; Degertekin, F Levent

    2016-08-01

    Conventional amplitude and phase modulated pulse sequences for selective imaging of nonlinear tissue and ultrasound contrast agents are designed for piezoelectric transducers that behave linearly. Inherent nonlinearity of capacitive micromachined ultrasonic transducers (CMUTs), especially during large-signal operation, renders these methods inapplicable. In this paper, we present different pulse sequences for nonlinear imaging that are valid for small- and large-signal CMUT operations. For small-signal operation, two-pulse amplitude and phase modulation methods for microbubble and tissue harmonic imaging are presented, where CMUT nonlinearity is compensated via subharmonic excitation. In the large-signal regime, using a nonlinear model, we first show that there is a simple linear relationship between the phases of each harmonic distortion component generated and the input drive signal. Based on this observation, we demonstrate a pulse sequence using N+1 consecutive phase modulated transmit events to extract N harmonics of the nonlinear contrast agent echo content uncorrupted by CMUT nonlinearity. The proposed methods assume no apriori information about the transducer and, therefore, are applicable to any CMUT. The phase modulation method is also valid for piezoelectric transducers and systems with nonlinearities described by Taylor series where the same phase relationship between the input signal and the harmonic content is valid. The proof of principle experiments using a commercial contrast agent validates the phase modulated pulse sequences for CMUTs, operating in a highly nonlinear collapse-snapback mode and for piezoelectric transducers. PMID:27116737

  18. Modulation of amplitude and latency of motor evoked potential by direction of transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Itoh, Yuji; Iramina, Keiji

    2014-05-01

    The present study analyzed the effects of monophasic magnetic stimulation to the motor cortex. The effects of magnetic stimulation were evaluated by analyzing the motor evoked potentials (MEPs). The amplitude and latency of MEPs on the abductor pollicis brevis muscle were used to evaluate the effects of repetitive magnetic stimulation. A figure eight-shaped flat coil was used to stimulate the region over the primary motor cortex. The intensity of magnetic stimulation was 120% of the resting motor threshold, and the frequency of magnetic stimulation was 0.1 Hz. In addition, the direction of the current in the brain was posterior-anterior (PA) or anterior-posterior (AP). The latency of MEP was compared with PA and AP on initial magnetic stimulation. The results demonstrated that a stimulus in the AP direction increased the latency of the MEP by approximately 2.5 ms. MEP amplitude was also compared with PA and AP during 60 magnetic stimulations. The results showed that a stimulus in the PA direction gradually increased the amplitude of the MEP. However, a stimulus in the AP direction did not modulate the MEP amplitude. The average MEP amplitude induced from every 10 magnetic pulses was normalized by the average amplitude of the first 10 stimuli. These results demonstrated that the normalized MEP amplitude increased up to approximately 150%. In terms of pyramidal neuron indirect waves (I waves), magnetic stimulation inducing current flowing backward to the anterior preferentially elicited an I1 wave, and current flowing forward to the posterior elicited an I3 wave. It has been reported that the latency of the I3 wave is approximately 2.5 ms longer than the I1 wave elicitation, so the resulting difference in latency may be caused by this phenomenon. It has also been reported that there is no alteration of MEP amplitude at a frequency of 0.1 Hz. However, this study suggested that the modulation of MEP amplitude depends on stimulation strength and stimulation direction.

  19. Estimation of the level and phase of the simple distortion tone in the modulation domain

    NASA Astrophysics Data System (ADS)

    Sek, Aleksander; Moore, Brian C. J.

    2004-11-01

    These experiments were designed to test the idea that nonlinearities in the auditory system can introduce a distortion component into the internal representation of the envelope of a sound, and to estimate the phase of the hypothetical distortion component. In experiment 1, a two-alternative forced-choice (2AFC) task with feedback was used to measure psychometric functions for detecting 5-Hz probe modulation of a 4-kHz sinusoidal carrier in the presence of a masker modulator with components at 50 and 55 Hz (m=0.3 for each component). Performance was measured as a function of the relative phase, ΔΦ, of the probe relative to the ``venelope'' (envelope of the envelope) of the masker. Performance was poorest for ΔJ=135°. In experiment 2, Δφ was fixed at 135°, m was set to 0.48 for each masker component, and psychometric functions for detecting probe modulation were measured using a 2AFC task without feedback. For small probe modulation depths (m~0.03), the detectability index, d', was consistently negative, consistent with the existence of a weak distortion product which can ``cancel'' the probe modulation. The distortion component for the conditions of the experiment was estimated to have a phase of about -25° relative to the venelope. .

  20. Novel Interventional Therapies to Modulate the Autonomic Tone in Heart Failure.

    PubMed

    Chatterjee, Neal A; Singh, Jagmeet P

    2015-10-01

    Heart failure (HF) represents a significant and expanding public health burden associated with increasing prevalence and exponential growth in related health care costs. Contemporary advances in both pharmacological and nonpharmacological therapies have often been restricted in application and benefit. Given the critical role of the autonomic nervous system (ANS) in maintaining cardiovascular homeostasis in the failing heart, there has been increasing interest in the role of ANS modulation as a therapeutic modality in HF. In this review, we highlight the anatomy of the ANS and its role in the pathophysiology of HF, as well as metrics of its assessment. Given the limitations associated with pharmacological ANS modulation, including lack of specificity and medication intolerance, we focus in this review on contemporary nonpharmacological ANS modulation therapies. For each therapy-vagal nerve stimulation, carotid baroreceptor stimulation, spinal cord stimulation, and renal denervation-we review the rationale for modulation, pre-clinical and clinical assessments, as well as procedural considerations and limitations. We conclude by commenting on novel technologies and strategies for ANS modulation on the horizon.

  1. Effect of modulation maskers on the detection of second-order amplitude modulation with and without notched noise.

    PubMed

    Uchanski, Rosalie M; Moore, Brian C J; Glasberg, Brian R

    2006-05-01

    The mechanisms underlying the detection of second-order amplitude modulation (AM) were explored. The detectability of second-order AM (fixed depth for each subject) was measured for first- and second-order modulation rates of 16 and 2 Hz, respectively (slow-rate pair), and 50 and 10 Hz, respectively (fast-rate pair), with no masker, a low-band modulation masker (centered at 2 or 10 Hz), and a high-band modulation masker (centered at 16 or 50 Hz). This was done in the absence and presence of an audio-frequency notched noise centered at the carrier frequency of 4000 Hz. Both modulation maskers were "low-noise" noises, to prevent overmodulation. In the absence of notched noise, both modulation maskers impaired performance for the slow-rate pair, but only the low-band masker impaired performance for the fast-rate pair. When notched noise was present, the low-band masker had no significant effect for either rate pair and the high-band masker had an effect only for the slow-rate pair. These results suggest that second-order AM detection is mediated both by an envelope distortion component at the second-order rate and by slow fluctuations in the output of a modulation filter tuned to the first-order rate. When notched noise is present, the distortion component plays little role. PMID:16708951

  2. Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene

    NASA Astrophysics Data System (ADS)

    Jessop, David S.; Sol, Christian W. O.; Xiao, Long; Kindness, Stephen J.; Braeuninger-Weimer, Philipp; Lin, Hungyen; Griffiths, Jonathan P.; Ren, Yuan; Kamboj, Varun S.; Hofmann, Stephan; Zeitler, J. Axel; Beere, Harvey E.; Ritchie, David A.; Degl'Innocenti, Riccardo

    2016-02-01

    The growing interest in terahertz (THz) technologies in recent years has seen a wide range of demonstrated applications, spanning from security screening, non-destructive testing, gas sensing, to biomedical imaging and communication. Communication with THz radiation offers the advantage of much higher bandwidths than currently available, in an unallocated spectrum. For this to be realized, optoelectronic components capable of manipulating THz radiation at high speeds and high signal-to-noise ratios must be developed. In this work we demonstrate a room temperature frequency dependent optoelectronic amplitude modulator working at around 2 THz, which incorporates graphene as the tuning medium. The architecture of the modulator is an array of plasmonic dipole antennas surrounded by graphene. By electrostatically doping the graphene via a back gate electrode, the reflection characteristics of the modulator are modified. The modulator is electrically characterized to determine the graphene conductivity and optically characterization, by THz time-domain spectroscopy and a single-mode 2 THz quantum cascade laser, to determine the optical modulation depth and cut-off frequency. A maximum optical modulation depth of ~ 30% is estimated and is found to be most (least) sensitive when the electrical modulation is centered at the point of maximum (minimum) differential resistivity of the graphene. A 3 dB cut-off frequency > 5 MHz, limited only by the area of graphene on the device, is reported. The results agree well with theoretical calculations and numerical simulations, and demonstrate the first steps towards ultra-fast, graphene based THz optoelectronic devices.

  3. Ultrafast modulation of polarization amplitude by terahertz fields in electronic-type organic ferroelectrics

    NASA Astrophysics Data System (ADS)

    Miyamoto, Tatsuya; Yada, Hiroyuki; Yamakawa, Hiromichi; Okamoto, Hiroshi

    2013-10-01

    Ferroelectrics sometimes show large electro-optical and non-linear optical effects, available for polarization rotation and frequency conversion of light, respectively. If the amplitude of ferroelectric polarization is modulated in the picosecond time domain, terahertz repetition of optical switching via electro-optical and non-linear optical effects would be achieved. Here we show that polarization amplitude can be rapidly modulated by a terahertz electric field in an organic ferroelectric, tetrathiafulvalene-p-chloranil (TTF-CA). In this compound, alternately stacked donor (TTF) and acceptor (CA) molecules are dimerized via the spin-Peierls mechanism, and charge transfer within each dimer results in a new type of ferroelectricity called electronic-type ferroelectricity. Using a terahertz field, the intradimer charge transfer is strongly modulated, producing a subpicosecond change in the macroscopic polarization, which is demonstrated by transient reflectivity and second-harmonic generation measurements. Subsequently, coherent oscillation of the dimeric molecular displacements occur, which is explained by the modulation of the spin moment of each molecule.

  4. Collinear laser spectroscopy of francium using online rubidium vapor neutralization and amplitude modulated lasers

    SciTech Connect

    Sell, J. F.; Gulyuz, K.; Sprouse, G. D.

    2009-12-15

    Performing collinear laser spectroscopy on low intensity radioactive beams requires sensitive detection techniques. We explain our apparatus to detect atomic resonances in neutralized {sup 208-210}Fr ion beams at beam energies of 5 keV and intensities of 10{sup 5} s{sup -1}. Efficient neutralization ({>=}80%) is accomplished by passing the beam through a dense Rb vapor. Increased detection efficiency is achieved by amplitude modulating the exciting laser to decrease the scattered light background, allowing fluorescence detection only when the laser is near its minimum in the modulation cycle. Using this technique in a collinear geometry we achieve a background reduction by a factor of 180 and a signal-to-noise increase of 2.2, with the lifetime of the atomic state playing a role in the efficiency of this process. Such laser modulation will also produce sidebands on the atomic spectra which we illustrate.

  5. Collinear laser spectroscopy of francium using online rubidium vapor neutralization and amplitude modulated lasers.

    PubMed

    Sell, J F; Gulyuz, K; Sprouse, G D

    2009-12-01

    Performing collinear laser spectroscopy on low intensity radioactive beams requires sensitive detection techniques. We explain our apparatus to detect atomic resonances in neutralized (208-210)Fr ion beams at beam energies of 5 keV and intensities of 10(5) s(-1). Efficient neutralization (> or = 80%) is accomplished by passing the beam through a dense Rb vapor. Increased detection efficiency is achieved by amplitude modulating the exciting laser to decrease the scattered light background, allowing fluorescence detection only when the laser is near its minimum in the modulation cycle. Using this technique in a collinear geometry we achieve a background reduction by a factor of 180 and a signal-to-noise increase of 2.2, with the lifetime of the atomic state playing a role in the efficiency of this process. Such laser modulation will also produce sidebands on the atomic spectra which we illustrate. PMID:20059132

  6. Collinear laser spectroscopy of francium using online rubidium vapor neutralization and amplitude modulated lasers

    NASA Astrophysics Data System (ADS)

    Sell, J. F.; Gulyuz, K.; Sprouse, G. D.

    2009-12-01

    Performing collinear laser spectroscopy on low intensity radioactive beams requires sensitive detection techniques. We explain our apparatus to detect atomic resonances in neutralized F208-210r ion beams at beam energies of 5 keV and intensities of 105 s-1. Efficient neutralization (≥80%) is accomplished by passing the beam through a dense Rb vapor. Increased detection efficiency is achieved by amplitude modulating the exciting laser to decrease the scattered light background, allowing fluorescence detection only when the laser is near its minimum in the modulation cycle. Using this technique in a collinear geometry we achieve a background reduction by a factor of 180 and a signal-to-noise increase of 2.2, with the lifetime of the atomic state playing a role in the efficiency of this process. Such laser modulation will also produce sidebands on the atomic spectra which we illustrate.

  7. Modulation of Muscle Tone and Sympathovagal Balance in Cervical Dystonia Using Percutaneous Stimulation of the Auricular Vagus Nerve.

    PubMed

    Kampusch, Stefan; Kaniusas, Eugenijus; Széles, Jozsef C

    2015-10-01

    Primary cervical dystonia is characterized by abnormal, involuntary, and sustained contractions of cervical muscles. Current ways of treatment focus on alleviating symptomatic muscle activity. Besides pharmacological treatment, in severe cases patients may receive neuromodulative intervention such as deep brain stimulation. However, these (highly invasive) methods have some major drawbacks. For the first time, percutaneous auricular vagus nerve stimulation (pVNS) was applied in a single case of primary cervical dystonia. Auricular vagus nerve stimulation was already shown to modulate the (autonomous) sympathovagal balance of the body and proved to be an effective treatment in acute and chronic pain, epilepsy, as well as major depression. pVNS effects on cervical dystonia may be hypothesized to rely upon: (i) the alteration of sensory input to the brain, which affects structures involved in the genesis of motoric and nonmotoric dystonic symptoms; and (ii) the alteration of the sympathovagal balance with a sustained impact on involuntary movement control, pain, quality of sleep, and general well-being. The presented data provide experimental evidence that pVNS may be a new alternative and minimally invasive treatment in primary cervical dystonia. One female patient (age 50 years) suffering from therapy refractory cervical dystonia was treated with pVNS over 20 months. Significant improvement in muscle pain, dystonic symptoms, and autonomic regulation as well as a subjective improvement in motility, sleep, and mood were achieved. A subjective improvement in pain recorded by visual analog scale ratings (0-10) was observed from 5.42 to 3.92 (medians). Muscle tone of the mainly affected left and right trapezius muscle in supine position was favorably reduced by about 96%. Significant reduction of muscle tone was also achieved in sitting and standing positions of the patient. Habituation to stimulation leading to reduced stimulation efficiency was observed and

  8. Modulation of Muscle Tone and Sympathovagal Balance in Cervical Dystonia Using Percutaneous Stimulation of the Auricular Vagus Nerve.

    PubMed

    Kampusch, Stefan; Kaniusas, Eugenijus; Széles, Jozsef C

    2015-10-01

    Primary cervical dystonia is characterized by abnormal, involuntary, and sustained contractions of cervical muscles. Current ways of treatment focus on alleviating symptomatic muscle activity. Besides pharmacological treatment, in severe cases patients may receive neuromodulative intervention such as deep brain stimulation. However, these (highly invasive) methods have some major drawbacks. For the first time, percutaneous auricular vagus nerve stimulation (pVNS) was applied in a single case of primary cervical dystonia. Auricular vagus nerve stimulation was already shown to modulate the (autonomous) sympathovagal balance of the body and proved to be an effective treatment in acute and chronic pain, epilepsy, as well as major depression. pVNS effects on cervical dystonia may be hypothesized to rely upon: (i) the alteration of sensory input to the brain, which affects structures involved in the genesis of motoric and nonmotoric dystonic symptoms; and (ii) the alteration of the sympathovagal balance with a sustained impact on involuntary movement control, pain, quality of sleep, and general well-being. The presented data provide experimental evidence that pVNS may be a new alternative and minimally invasive treatment in primary cervical dystonia. One female patient (age 50 years) suffering from therapy refractory cervical dystonia was treated with pVNS over 20 months. Significant improvement in muscle pain, dystonic symptoms, and autonomic regulation as well as a subjective improvement in motility, sleep, and mood were achieved. A subjective improvement in pain recorded by visual analog scale ratings (0-10) was observed from 5.42 to 3.92 (medians). Muscle tone of the mainly affected left and right trapezius muscle in supine position was favorably reduced by about 96%. Significant reduction of muscle tone was also achieved in sitting and standing positions of the patient. Habituation to stimulation leading to reduced stimulation efficiency was observed and

  9. Perceptual learning and generalization resulting from training on an auditory amplitude-modulation detection task.

    PubMed

    Fitzgerald, Matthew B; Wright, Beverly A

    2011-02-01

    Fluctuations in sound amplitude provide important cues to the identity of many sounds including speech. Of interest here was whether the ability to detect these fluctuations can be improved with practice, and if so whether this learning generalizes to untrained cases. To address these issues, normal-hearing adults (n = 9) were trained to detect sinusoidal amplitude modulation (SAM; 80-Hz rate, 3-4 kHz bandpass carrier) 720 trials/day for 6-7 days and were tested before and after training on related SAM-detection and SAM-rate-discrimination conditions. Controls (n = 9) only participated in the pre- and post-tests. The trained listeners improved more than the controls on the trained condition between the pre- and post-tests, but different subgroups of trained listeners required different amounts of practice to reach asymptotic performance, ranging from 1 (n = 6) to 4-6 (n = 3) sessions. This training-induced learning did not generalize to detection with two untrained carrier spectra (5 kHz low-pass and 0.5-1.5 kHz bandpass) or to rate discrimination with the trained rate and carrier spectrum, but there was some indication that it generalized to detection with two untrained rates (30 and 150 Hz). Thus, practice improved the ability to detect amplitude modulation, but the generalization of this learning to untrained cases was somewhat limited.

  10. Subharmonic excitation in amplitude modulation atomic force microscopy in the presence of adsorbed water layers

    SciTech Connect

    Santos, Sergio; Barcons, Victor; Verdaguer, Albert; Chiesa, Matteo

    2011-12-01

    In ambient conditions, nanometric water layers form on hydrophilic surfaces covering them and significantly changing their properties and characteristics. Here we report the excitation of subharmonics in amplitude modulation atomic force microscopy induced by intermittent water contacts. Our simulations show that there are several regimes of operation depending on whether there is perturbation of water layers. Single period orbitals, where subharmonics are never induced, follow only when the tip is either in permanent contact with the water layers or in pure noncontact where the water layers are never perturbed. When the water layers are perturbed subharmonic excitation increases with decreasing oscillation amplitude. We derive an analytical expression which establishes whether water perturbations compromise harmonic motion and show that the predictions are in agreement with numerical simulations. Empirical validation of our interpretation is provided by the observation of a range of values for apparent height of water layers when subharmonic excitation is predicted.

  11. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    SciTech Connect

    Ramos, Jorge R.

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  12. An integrated Mach-Zehnder modulator bias controller based on eye-amplitude monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Min-Hyeong; Jung, Hyun-Yong; Zimmermann, Lars; Choi, Woo-Young

    2016-03-01

    A novel integrated Mach-Zehnder modulator (MZM) bias controller based on eye-amplitude monitoring is demonstrated in IHP's 0.25-μm BiCMOS technology. The bias controller monitors the MZM output light, automatically moves the MZM bias voltage to the optimal value that produces the largest eye amplitude, and maintains it there even if the MZM transfer characteristics change due to thermal drift. The controller is based on the feedback loop consisting of Si photodetector, trans-impedance amplifier, rectifier, square amplifier, track-and-hold circuit, comparator, polarity changer, and charge-pump, all of which are monolithically integrated. The area of the controller is 0.083-mm2 and it consumes 92.5-mW. Our bias controller shows successful operation for a commercially-available 850-nm LiNbO3 MZM modulated with 3-Gbps PRBS data by maintaining a very clean eye for at least 30 minutes. Without the controller, the eye for the same MZM modulation becomes completely closed due to thermal drift. The data rate is limited by the Si PD integrated in the controller not by the controller architecture. Since our controller is based on the Si BiCMOS technology which can also provide integrated Si photonics devices on the same Si, it has a great potential for realizing a Si MZM with an integrated bias controller, which should fully demonstrate the advantage of electronic-photonic integrated circuit technology.

  13. Exposure to extinction-associated contextual tone during slow-wave sleep and wakefulness differentially modulates fear expression.

    PubMed

    Ai, Si-Zhi; Chen, Jie; Liu, Jian-Feng; He, Jia; Xue, Yan-Xue; Bao, Yan-Ping; Han, Fang; Tang, Xiang-Dong; Lu, Lin; Shi, Jie

    2015-09-01

    Recent research has used context cues (odor or auditory cues) to target memories during sleep and has demonstrated that they can enhance declarative and procedural memories. However, the effects of external cues re-presented during sleep on emotional memory are still not fully understood. In the present study, we conducted a Pavlovian fear conditioning/extinction paradigm and examined the effects of re-exposure to extinction memory associated contextual tones during slow-wave sleep (SWS) and wakefulness on fear expression. The participants underwent fear conditioning on the first day, during which colored squares served as the conditioned stimulus (CS) and a mild shock served as the unconditioned stimulus (US). The next day, they underwent extinction, during which the CSs were presented without the US but accompanied by a contextual tone (pink noise). Immediately after extinction, the participants were required to take a nap or remain awake and randomly assigned to six groups. Four of the groups were separately exposed to the associated tone (i.e. SWS-Tone group and Wake-Tone group) or an irrelevant tone (control tone, CtrT) (i.e. SWS-CtrT group and Wake-CtrT group), while the other two groups were not (i.e. SWS-No Tone group and Wake-No Tone group). Subsequently, the conditioned responses to the CSs were tested to evaluate the fear expression. All of the participants included in the final analysis showed successful levels of fear conditioning and extinction. During the recall test, the fear responses were significantly higher in the SWS-Tone group than that in the SWS-No Tone group or the SWS-CtrT group, while the Wake-Tone group exhibited more attenuated fear responses than either the Wake-No Tone group or Wake-CtrT group. Otherwise, re-exposure to auditory tones during SWS did not affect sleep profiles. These results suggest that distinct conditions during which re-exposure to an extinction memory associated contextual cue contributes to differential effects on

  14. Exposure to extinction-associated contextual tone during slow-wave sleep and wakefulness differentially modulates fear expression.

    PubMed

    Ai, Si-Zhi; Chen, Jie; Liu, Jian-Feng; He, Jia; Xue, Yan-Xue; Bao, Yan-Ping; Han, Fang; Tang, Xiang-Dong; Lu, Lin; Shi, Jie

    2015-09-01

    Recent research has used context cues (odor or auditory cues) to target memories during sleep and has demonstrated that they can enhance declarative and procedural memories. However, the effects of external cues re-presented during sleep on emotional memory are still not fully understood. In the present study, we conducted a Pavlovian fear conditioning/extinction paradigm and examined the effects of re-exposure to extinction memory associated contextual tones during slow-wave sleep (SWS) and wakefulness on fear expression. The participants underwent fear conditioning on the first day, during which colored squares served as the conditioned stimulus (CS) and a mild shock served as the unconditioned stimulus (US). The next day, they underwent extinction, during which the CSs were presented without the US but accompanied by a contextual tone (pink noise). Immediately after extinction, the participants were required to take a nap or remain awake and randomly assigned to six groups. Four of the groups were separately exposed to the associated tone (i.e. SWS-Tone group and Wake-Tone group) or an irrelevant tone (control tone, CtrT) (i.e. SWS-CtrT group and Wake-CtrT group), while the other two groups were not (i.e. SWS-No Tone group and Wake-No Tone group). Subsequently, the conditioned responses to the CSs were tested to evaluate the fear expression. All of the participants included in the final analysis showed successful levels of fear conditioning and extinction. During the recall test, the fear responses were significantly higher in the SWS-Tone group than that in the SWS-No Tone group or the SWS-CtrT group, while the Wake-Tone group exhibited more attenuated fear responses than either the Wake-No Tone group or Wake-CtrT group. Otherwise, re-exposure to auditory tones during SWS did not affect sleep profiles. These results suggest that distinct conditions during which re-exposure to an extinction memory associated contextual cue contributes to differential effects on

  15. Contour Tones.

    ERIC Educational Resources Information Center

    Yip, Moira

    1989-01-01

    Argues that contour tones in East Asian languages behave as melodic units consisting of a root node [upper] dominating a branching specification. It is also argued that, with upper as the tonal root node, no more than two rising or falling tones will contrast underlying. (49 references) (JL)

  16. Amplitude-modulated reticle constructed by a liquid crystal cell array.

    PubMed

    Itakura, Y; Sugimura, A; Tsutsumi, S

    1981-08-15

    A new type of amplitude-modulated (AM) reticle constructed by a liquid crystal (LC) cell array finds an excellent application in remote sensing for a flow velocity with unpredictable variation of speed and direction. The LC-AM reticle is a spatiotemporal spatial filter, optoelectrically achieved by using the consequent opaqueness due to the LCs dynamic scattering caused by the electric field sequentially applied to the respective LC cell. A feasibility test for the sensor with a pair of these reticles has measured the flow-velocity vector of a river. PMID:20333047

  17. Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces

    NASA Astrophysics Data System (ADS)

    Wan, Xiang; Jia, Sheng Li; Cui, Tie Jun; Zhao, Yong Jiu

    2016-05-01

    We propose ultrathin Huygens metasurfaces to control transmission amplitudes and phases of electromagnetic waves independently, in which each unit cell is comprised of an electric dipole and a magnetic dipole. By altering the electric and magnetic responses of unit cells, arbitrary complex transmission coefficients with modulus values smaller than 0.85 are obtained. Two Huygens metasurfaces capable of controlling the diffraction orders are designed and fabricated by modulating the distributions of the complex transmission coefficients. More complicated functions such as holographic imaging can also be accomplished by using the proposed Huygens metasurfaces.

  18. Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces.

    PubMed

    Wan, Xiang; Jia, Sheng Li; Cui, Tie Jun; Zhao, Yong Jiu

    2016-01-01

    We propose ultrathin Huygens metasurfaces to control transmission amplitudes and phases of electromagnetic waves independently, in which each unit cell is comprised of an electric dipole and a magnetic dipole. By altering the electric and magnetic responses of unit cells, arbitrary complex transmission coefficients with modulus values smaller than 0.85 are obtained. Two Huygens metasurfaces capable of controlling the diffraction orders are designed and fabricated by modulating the distributions of the complex transmission coefficients. More complicated functions such as holographic imaging can also be accomplished by using the proposed Huygens metasurfaces. PMID:27197759

  19. Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces

    PubMed Central

    Wan, Xiang; Jia, Sheng Li; Cui, Tie Jun; Zhao, Yong Jiu

    2016-01-01

    We propose ultrathin Huygens metasurfaces to control transmission amplitudes and phases of electromagnetic waves independently, in which each unit cell is comprised of an electric dipole and a magnetic dipole. By altering the electric and magnetic responses of unit cells, arbitrary complex transmission coefficients with modulus values smaller than 0.85 are obtained. Two Huygens metasurfaces capable of controlling the diffraction orders are designed and fabricated by modulating the distributions of the complex transmission coefficients. More complicated functions such as holographic imaging can also be accomplished by using the proposed Huygens metasurfaces. PMID:27197759

  20. Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam.

    PubMed

    Lin, Han; Jia, Baohua; Gu, Min

    2011-07-01

    An axially super-resolved quasi-spherical focal spot can be generated by focusing an amplitude-modulated radially polarized beam through a high numerical aperture objective. A method based on the unique depolarization properties of a circular focus is proposed to design the amplitude modulation. The generated focal spot shows a ratio of x:y:z=1:1:1.48 for the normalized FWHM in three dimensions, compared to that of x:y:z=1:0.74:1.72 under linear polarization (in the x direction) illumination. Moreover, the focusable light efficiency of the designed amplitude-modulated beam is 65%, which is more than 3 times higher than the optimized case under linear polarization and thus make the amplitude-modulated radial polarization beam more suitable for a wide range of applications.

  1. Sensitive detection of vortex-core resonance using amplitude-modulated magnetic field

    PubMed Central

    Cui, Xiaomin; Hu, Shaojie; Hidegara, Makoto; Yakata, Satoshi; Kimura, Takashi

    2015-01-01

    Understanding and manipulating the dynamic properties of the magnetic vortices stabilized in patterned ferromagnetic structures are of great interest owing to the superior resonant features with the high thermal stability and their flexible tunability. So far, numerous methods for investigating the dynamic properties of the magnetic vortex have been proposed and demonstrated. However, those techniques have some regulations such as spatial resolution, experimental facility and sensitivity. Here, we develop a simple and sensitive method for investigating the vortex-core dynamics by using the electrically separated excitation and detection circuits. We demonstrate that the resonant oscillation of the magnetic vortex induced by the amplitude- modulated alternating-sign magnetic field is efficiently picked up by the lock-in detection with the modulated frequency. By extending this method, we also investigate the size dependence and the influence of the magneto-static interaction in the resonant property of the magnetic vortex. PMID:26647840

  2. Sensitive detection of vortex-core resonance using amplitude-modulated magnetic field

    NASA Astrophysics Data System (ADS)

    Cui, Xiaomin; Hu, Shaojie; Hidegara, Makoto; Yakata, Satoshi; Kimura, Takashi

    2015-12-01

    Understanding and manipulating the dynamic properties of the magnetic vortices stabilized in patterned ferromagnetic structures are of great interest owing to the superior resonant features with the high thermal stability and their flexible tunability. So far, numerous methods for investigating the dynamic properties of the magnetic vortex have been proposed and demonstrated. However, those techniques have some regulations such as spatial resolution, experimental facility and sensitivity. Here, we develop a simple and sensitive method for investigating the vortex-core dynamics by using the electrically separated excitation and detection circuits. We demonstrate that the resonant oscillation of the magnetic vortex induced by the amplitude- modulated alternating-sign magnetic field is efficiently picked up by the lock-in detection with the modulated frequency. By extending this method, we also investigate the size dependence and the influence of the magneto-static interaction in the resonant property of the magnetic vortex.

  3. Responses of neurons in chinchilla auditory cortex to frequency-modulated tones.

    PubMed

    Brown, Trecia A; Harrison, Robert V

    2009-04-01

    Frequency-modulated (FM) stimuli have been used to explore the behavior of neurons in the auditory cortex of several animal models; however, the properties of FM-sensitive auditory cortical neurons in the chinchilla are still unknown. Single-unit responses to FM stimulation were obtained from the auditory cortex of anesthetized adult chinchillas (Chinchilla laniger). Upward and downward linear FM sweeps spanning frequencies from 0.1 to 20 kHz were presented at speeds of 0.05 to 0.82 kHz/ms. Results indicated that >90% of sampled neurons were responsive to FM sweeps. The population preference was for upward FM sweeps and for medium to fast speeds (> or =0.3 kHz/ms). Few units (3%) were selective for downward FM sweeps, whereas <22% of units preferred slow speeds (< or =0.1 kHz/ms). Velocity preference and direction sensitivity were positively correlated for upward sweeps only (r = 0.40, P = 0.0021, t-test). Three types of firing rate patterns were observed in the FM response peristimulus time histograms: a single peak at sweep onset/offset ("onset") and a single peak ("late") or multiple peaks ("burst") during the sweep. "Late" units expressed the highest mean values for direction sensitivity and speed selectivity; "onset" units were selective only for direction and "burst" units were not selective for either direction or speed. The robust responsiveness of these neurons to FM sweeps suggests a functional role for FM detection such as the identification of FM sweeps present in vocalizations of other organisms within the chinchilla's natural environment. PMID:19211659

  4. Improvement of the Spatial Amplitude Isotropy of a ^4He Magnetometer Using a Modulated Pumping Beam

    NASA Astrophysics Data System (ADS)

    Chéron, B.; Gilles, H.; Hamel, J.; Moreau, O.; Noël, E.

    1997-08-01

    Optically pumped magnetometers are scalar magnetometers. Contrary to vectoriel magnetometers, they measure the total magnetic field whatever the direction of the sensor. However, for some orientations of the magnetometer with respect to the magnetic field direction, the resonant signal vanishes and the measurement is impossible. In this paper we present a simple solution to reduce the amplitude spatial anisotropy and apply it to a ^4He magnetometer developed in our Laboratory. Les magnétomètres à pompage optique sont des magnétomètres scalaires. Contrairement aux magnétomètres vectoriels, ils mesurent le module du champ magnétique quelle que soit l'orientation du capteur dans l'espace. Cependant, pour certaines orientations du magnétomètre par rapport à la direction du champ à mesurer, l'amplitude du signal de résonance s'annule et la mesure devient impossible. Dans cet article, nous présentons une solution simple pour réduire l'anisotropie spatiale d'amplitude et nous l'appliquons à un magnétomètre à hélium-4 développé dans notre Laboratoire.

  5. Use of amplitude modulation cues recovered from frequency modulation for cochlear implant users when original speech cues are severely degraded.

    PubMed

    Won, Jong Ho; Shim, Hyun Joon; Lorenzi, Christian; Rubinstein, Jay T

    2014-06-01

    Won et al. (J Acoust Soc Am 132:1113-1119, 2012) reported that cochlear implant (CI) speech processors generate amplitude-modulation (AM) cues recovered from broadband speech frequency modulation (FM) and that CI users can use these cues for speech identification in quiet. The present study was designed to extend this finding for a wide range of listening conditions, where the original speech cues were severely degraded by manipulating either the acoustic signals or the speech processor. The manipulation of the acoustic signals included the presentation of background noise, simulation of reverberation, and amplitude compression. The manipulation of the speech processor included changing the input dynamic range and the number of channels. For each of these conditions, multiple levels of speech degradation were tested. Speech identification was measured for CI users and compared for stimuli having both AM and FM information (intact condition) or FM information only (FM condition). Each manipulation degraded speech identification performance for both intact and FM conditions. Performance for the intact and FM conditions became similar for stimuli having the most severe degradations. Identification performance generally overlapped for the intact and FM conditions. Moreover, identification performance for the FM condition was better than chance performance even at the maximum level of distortion. Finally, significant correlations were found between speech identification scores for the intact and FM conditions. Altogether, these results suggest that despite poor frequency selectivity, CI users can make efficient use of AM cues recovered from speech FM in difficult listening situations.

  6. Amplitude-modulated sinusoidal microchannels for observing adaptability in C. elegans locomotion

    PubMed Central

    Parashar, Archana; Lycke, Roy; Carr, John A.; Pandey, Santosh

    2011-01-01

    In this paper, we present a movement-based assay to observe adaptability in Caenorhabditis elegans locomotion behavior. The assay comprises a series of sinusoidal microchannels with a fixed wavelength and modulating (increasing or decreasing) amplitude. The channel width is comparable to the body diameter of the organism. Worms are allowed to enter the channel from the input port and migrate toward the output port. Within channel sections that closely match the worm’s natural undulations, the worm movement is relatively quick and steady. As the channel amplitude increases or decreases along the device, the worm faces difficulty in generating the propulsive thrust, begins to slow down and eventually fails to move forward. A set of locomotion parameters (i.e., average forward velocity, number and duration of stops, range of contact angle, and cut-off region) is defined for worm locomotion in modulated sinusoidal channels and extracted from the recorded videos. The device is tested on wild-type C. elegans (N2) and two mutants (lev-8 and unc-38). We anticipate this passive, movement-based assay can be used to screen nematodes showing difference in locomotion phenotype. PMID:21772935

  7. Amplitude-Phase Modulation, Topological Horseshoe and Scaling Attractor of a Dynamical System

    NASA Astrophysics Data System (ADS)

    Li, Chun-Lai; Li, Wen; Zhang, Jing; Xie, Yuan-Xi; Zhao, Yi-Bo

    2016-09-01

    A three-dimensional autonomous chaotic system is discussed in this paper. Some basic dynamical properties of the system, including phase portrait, Poincaré map, power spectrum, Kaplan–Yorke dimension, Lyapunov exponent spectra, signal amplitude and topological horseshoe are studied theoretically and numerically. The main finding by analysis is that the signal amplitude can be modulated via controlling the coefficients of the linear term, cross-product term and squared term simultaneously or respectively, and the phase of x3 can be modulated by the product of the coefficients of the linear term and cross-product term. Furthermore, scaling chaotic attractors of this system are achieved by modified projective synchronization with an optimization-based linear coupling method, which is safer for secure communications than the existed synchronization scheme since the scaling factors can be regarded as the security encoding key. Supported by Hunan Provincial Natural Science Foundation of China under Grant No. 2016JJ4036, University Natural Science Foundation of Jiangsu Province under Grant No. 14KJB120007 and the National Natural Science Foundation of China under Grant Nos. 11504176 and 11602084

  8. Apoptosis induced by ultraviolet radiation is enhanced by amplitude modulated radiofrequency radiation in mutant yeast cells.

    PubMed

    Markkanen, Ari; Penttinen, Piia; Naarala, Jonne; Pelkonen, Jukka; Sihvonen, Ari-Pekka; Juutilainen, Jukka

    2004-02-01

    The aim of this study was to investigate whether radiofrequency (RF) electromagnetic field (EMF) exposure affects cell death processes of yeast cells. Saccharomyces cerevisiae yeast cells of the strains KFy417 (wild-type) and KFy437 (cdc48-mutant) were exposed to 900 or 872 MHz RF fields, with or without exposure to ultraviolet (UV) radiation, and incubated simultaneously with elevated temperature (+37 degrees C) to induce apoptosis in the cdc48-mutated strain. The RF exposure was carried out in a special waveguide exposure chamber where the temperature of the cell cultures can be precisely controlled. Apoptosis was analyzed using the annexin V-FITC method utilizing flow cytometry. Amplitude modulated (217 pulses per second) RF exposure significantly enhanced UV induced apoptosis in cdc48-mutated cells, but no effect was observed in cells exposed to unmodulated fields at identical time-average specfic absorption rates (SAR, 0.4 or 3.0 W/kg). The findings suggest that amplitude modulated RF fields, together with known damaging agents, can affect the cell death process in mutated yeast cells. Bioelectromagnetics 25:127-133, 2004.

  9. Amplitude-Phase Modulation, Topological Horseshoe and Scaling Attractor of a Dynamical System

    NASA Astrophysics Data System (ADS)

    Li, Chun-Lai; Li, Wen; Zhang, Jing; Xie, Yuan-Xi; Zhao, Yi-Bo

    2016-09-01

    A three-dimensional autonomous chaotic system is discussed in this paper. Some basic dynamical properties of the system, including phase portrait, Poincaré map, power spectrum, Kaplan-Yorke dimension, Lyapunov exponent spectra, signal amplitude and topological horseshoe are studied theoretically and numerically. The main finding by analysis is that the signal amplitude can be modulated via controlling the coefficients of the linear term, cross-product term and squared term simultaneously or respectively, and the phase of x3 can be modulated by the product of the coefficients of the linear term and cross-product term. Furthermore, scaling chaotic attractors of this system are achieved by modified projective synchronization with an optimization-based linear coupling method, which is safer for secure communications than the existed synchronization scheme since the scaling factors can be regarded as the security encoding key. Supported by Hunan Provincial Natural Science Foundation of China under Grant No. 2016JJ4036, University Natural Science Foundation of Jiangsu Province under Grant No. 14KJB120007 and the National Natural Science Foundation of China under Grant Nos. 11504176 and 11602084

  10. Acoustic change responses to amplitude modulation: a method to quantify cortical temporal processing and hemispheric asymmetry

    PubMed Central

    Han, Ji Hye; Dimitrijevic, Andrew

    2015-01-01

    Objective: Sound modulation is a critical temporal cue for the perception of speech and environmental sounds. To examine auditory cortical responses to sound modulation, we developed an acoustic change stimulus involving amplitude modulation (AM) of ongoing noise. The AM transitions in this stimulus evoked an acoustic change complex (ACC) that was examined parametrically in terms of rate and depth of modulation and hemispheric symmetry. Methods: Auditory cortical potentials were recorded from 64 scalp electrodes during passive listening in two conditions: (1) ACC from white noise to 4, 40, 300 Hz AM, with varying AM depths of 100, 50, 25% lasting 1 s and (2) 1 s AM noise bursts at the same modulation rate. Behavioral measures included AM detection from an attend ACC condition and AM depth thresholds (i.e., a temporal modulation transfer function, TMTF). Results: The N1 response of the ACC was large to 4 and 40 Hz and small to the 300 Hz AM. In contrast, the opposite pattern was observed with bursts of AM showing larger responses with increases in AM rate. Brain source modeling showed significant hemispheric asymmetry such that 4 and 40 Hz ACC responses were dominated by right and left hemispheres respectively. Conclusion: N1 responses to the ACC resembled a low pass filter shape similar to a behavioral TMTF. In the ACC paradigm, the only stimulus parameter that changes is AM and therefore the N1 response provides an index for this AM change. In contrast, an AM burst stimulus contains both AM and level changes and is likely dominated by the rise time of the stimulus. The hemispheric differences are consistent with the asymmetric sampling in time hypothesis suggesting that the different hemispheres preferentially sample acoustic time across different time windows. Significance: The ACC provides a novel approach to studying temporal processing at the level of cortex and provides further evidence of hemispheric specialization for fast and slow stimuli. PMID:25717291

  11. Bilateral Collicular Interaction: Modulation of Auditory Signal Processing in Amplitude Domain

    PubMed Central

    Fu, Zi-Ying; Wang, Xin; Jen, Philip H.-S.; Chen, Qi-Cai

    2012-01-01

    In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in modulating amplitude-domain signal processing using electrophysiological recording, acoustic and focal electrical stimulation. Focal electrical stimulation of one (ipsilateral) IC produces widespread inhibition (61.6%) and focused facilitation (9.1%) of responses of neurons in the other (contralateral) IC, while 29.3% of the neurons were not affected. Bilateral collicular interaction produces a decrease in the response magnitude and an increase in the response latency of inhibited IC neurons but produces opposite effects on the response of facilitated IC neurons. These two groups of neurons are not separately located and are tonotopically organized within the IC. The modulation effect is most effective at low sound level and is dependent upon the interval between the acoustic and electric stimuli. The focal electrical stimulation of the ipsilateral IC compresses or expands the rate-level functions of contralateral IC neurons. The focal electrical stimulation also produces a shift in the minimum threshold and dynamic range of contralateral IC neurons for as long as 150 minutes. The degree of bilateral collicular interaction is dependent upon the difference in the best frequency between the electrically stimulated IC neurons and modulated IC neurons. These data suggest that bilateral collicular interaction mainly changes the ratio between excitation and inhibition during signal processing so as to sharpen the amplitude sensitivity of IC neurons. Bilateral interaction may be also involved in acoustic

  12. A high retardation-amplitude photoelastic modulator study for an ultra-high speed infrared spectroscopy remote sensing measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Tingdun; Li, Kewu; Chen, Yuanyuan; Wang, Yaoli; Zhang, Minjuan; Chen, Youhua; Wang, Zhibin

    2016-10-01

    The currently allowable photoelastic modulator based Fourier transform spectrometer (PEM-FTS) retardation-amplitude is low, and spectral resolution is relatively poor. This paper presents a method for high retardation-amplitude whose PEM is based on microtrapezoidal photoelastic crystals and Herriott-PEM. The retardation-amplitude of the improved PEM is about 19 times larger than an ordinary PEM. The ultra-high speed infrared spectroscopy remote measurement prototype is designed based on high retardation-amplitude PEM. The best spectral resolution of the prototype is 4 cm-1, and the zero-crossing single sided interferogram scanning time is less than 5 µs.

  13. Hierarchical effects of task engagement on amplitude modulation encoding in auditory cortex

    PubMed Central

    Niwa, Mamiko; O'Connor, Kevin N.; Engall, Elizabeth; Johnson, Jeffrey S.

    2014-01-01

    We recorded from middle lateral belt (ML) and primary (A1) auditory cortical neurons while animals discriminated amplitude-modulated (AM) sounds and also while they sat passively. Engagement in AM discrimination improved ML and A1 neurons' ability to discriminate AM with both firing rate and phase-locking; however, task engagement affected neural AM discrimination differently in the two fields. The results suggest that these two areas utilize different AM coding schemes: a “single mode” in A1 that relies on increased activity for AM relative to unmodulated sounds and a “dual-polar mode” in ML that uses both increases and decreases in neural activity to encode modulation. In the dual-polar ML code, nonsynchronized responses might play a special role. The results are consistent with findings in the primary and secondary somatosensory cortices during discrimination of vibrotactile modulation frequency, implicating a common scheme in the hierarchical processing of temporal information among different modalities. The time course of activity differences between behaving and passive conditions was also distinct in A1 and ML and may have implications for auditory attention. At modulation depths ≥ 16% (approximately behavioral threshold), A1 neurons' improvement in distinguishing AM from unmodulated noise is relatively constant or improves slightly with increasing modulation depth. In ML, improvement during engagement is most pronounced near threshold and disappears at highly suprathreshold depths. This ML effect is evident later in the stimulus, and mainly in nonsynchronized responses. This suggests that attention-related increases in activity are stronger or longer-lasting for more difficult stimuli in ML. PMID:25298387

  14. Hierarchical effects of task engagement on amplitude modulation encoding in auditory cortex.

    PubMed

    Niwa, Mamiko; O'Connor, Kevin N; Engall, Elizabeth; Johnson, Jeffrey S; Sutter, M L

    2015-01-01

    We recorded from middle lateral belt (ML) and primary (A1) auditory cortical neurons while animals discriminated amplitude-modulated (AM) sounds and also while they sat passively. Engagement in AM discrimination improved ML and A1 neurons' ability to discriminate AM with both firing rate and phase-locking; however, task engagement affected neural AM discrimination differently in the two fields. The results suggest that these two areas utilize different AM coding schemes: a "single mode" in A1 that relies on increased activity for AM relative to unmodulated sounds and a "dual-polar mode" in ML that uses both increases and decreases in neural activity to encode modulation. In the dual-polar ML code, nonsynchronized responses might play a special role. The results are consistent with findings in the primary and secondary somatosensory cortices during discrimination of vibrotactile modulation frequency, implicating a common scheme in the hierarchical processing of temporal information among different modalities. The time course of activity differences between behaving and passive conditions was also distinct in A1 and ML and may have implications for auditory attention. At modulation depths ≥ 16% (approximately behavioral threshold), A1 neurons' improvement in distinguishing AM from unmodulated noise is relatively constant or improves slightly with increasing modulation depth. In ML, improvement during engagement is most pronounced near threshold and disappears at highly suprathreshold depths. This ML effect is evident later in the stimulus, and mainly in nonsynchronized responses. This suggests that attention-related increases in activity are stronger or longer-lasting for more difficult stimuli in ML.

  15. Photon-counting chirped amplitude modulation lidar using a smart premixing method.

    PubMed

    Zhang, Zijing; Zhang, Jianlong; Wu, Long; Zhang, Yong; Zhao, Yuan; Su, Jianzhong

    2013-11-01

    We proposed a new premixing method for photon-counting chirped amplitude modulation lidar (PCCAML). Earlier studies used the counting results of the returned signal detected by a Geiger mode avalanche photodiode detector (Gm-APD) to mix with the reference signal, called the postmixing method. We use an alternative method known as the premixing method, in which the reference signal is used to directly modulate the sampling gate width of the Gm-APD, and the mixing of the returned signal and the reference signal is completed before the Gm-APD. This premixing method is more flexible and may perform better than the postmixing method in terms of signal-to-noise ratio by cutting down a separated mixer commonly used in the postmixing lidar system. Furthermore, this premixing method lowers the demand for the sampling frequency of the Gm-APD. It allows the use of a much wider modulation bandwidth to improve the range accuracy and resolution. To the best of our knowledge, this is the first report to use the premixing method in the PCCAML system, which will benefit future lidar applications.

  16. Acousto-optic tomography using amplitude-modulated focused ultrasound and a near-IR laser

    SciTech Connect

    Yao Yong; Xing Da; He Yonghong; Ueda, Ken-ichi

    2001-11-30

    A novel tomographic method that can be applied in strongly scattering optical media is proposed. 1-MHz focused ultrasound is used to tag the scattering photons in the biological tissue; it carries a 10-KHz sinusoidal wave to act as a detection wave through amplitude-modulation (AM). The scattering photons that come from the focused zone carry the modulated information. Their optoelectronic signal is demodulated by real-time FFT. By detecting and discriminating ultrasound-modulated information carried by scattered photons, the optical tomographic images of the media simulating biological tissue and of a buried object are reconstructed by the AM spectral intensity. This ultrasound-tagged optical tomography can be applied to tissue structures with different optical parameters. For the first time, by using this method, we obtained the tomographic image of a 5 mm-wide soft rubber cube buried in a biological tissue-simulating media with a detecting depth of 30 mm. (laser applications and other topics in quantum electronics)

  17. Amplitude modulation detection by human listeners in reverberant sound fields: Effects of prior listening exposure

    PubMed Central

    Zahorik, Pavel; Anderson, Paul W.

    2013-01-01

    Previous work [Zahorik et al., POMA, 15, 050002 (2012)] has reported that for both broadband and narrowband noise carrier signals in a simulated reverberant sound field, human sensitivity to amplitude modulation (AM) is higher than would be predicted based on the acoustical modulation transfer function (MTF) of the listening environment. These results may be suggestive of mechanisms that functionally enhance modulation in reverberant listening, although many details of this enhancement effect are unknown. Given recent findings that demonstrate improvements in speech understanding with prior exposure to reverberant listening environments, it is of interest to determine whether listening exposure to a reverberant room might also influence AM detection in the room, and perhaps contribute to the AM enhancement effect. Here, AM detection thresholds were estimated (using an adaptive 2-alternative forced-choice procedure) in each of two listening conditions: one in which consistent listening exposure to a particular room was provided, and a second that intentionally disrupted listening exposure by varying the room from trial-to-trial. Results suggest that consistent prior listening exposure contributes to enhanced AM sensitivity in rooms. [Work supported by the NIH/NIDCD.] PMID:24163718

  18. Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram.

    PubMed

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-08-01

    We propose an approach to the generation of nondiffracting quasi-circularly polarized beams by a highly focusing azimuthally polarized beam using an amplitude modulated spiral phase hologram. Numerical verifications are implemented in the calculation of the electromagnetic fields and Poynting vector field near the focus based on the vector diffraction theory, and the polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the electric field, magnetic field, and Poynting vector field can simultaneously be uniform and nondiverging over a relatively long axial range of ~7.23λ. In the transverse plane, the ellipticity and azimuthal angle of the local polarization ellipse varies from point to point. No polarization singularity and phase singularity are found at the beam center, which makes the bright spot possible. PMID:21811334

  19. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    SciTech Connect

    Clément, P.-Y.; Baraduc, C. Chshiev, M.; Diény, B.; Ducruet, C.; Vila, L.

    2015-09-07

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  20. Amplitude modulated telemeter laser with nonlinear postdetection: Study of a single laser system

    NASA Astrophysics Data System (ADS)

    Vincent, D.; Lavigne, P.; Otis, G.

    1981-04-01

    We performed a theoretical and experimental study of a 10.6 micrometer heterodyne detection system with nonlinear postdetection. A single laser acts as both transmitter and local oscillator; the intermediate frequency is given by Doppler effect due to a rotating target. An electrooptic crystal amplitude modulates the laser beam at a frequency of 15 kHz; a synchronous voltmeter measures this signal after the nonlinear element. Values of signal-to-noise ratio with respect to incident optical power are in agreement with the results of the theoretical model. In particular, experimentally measured target-induced frequency spreading effects on signal-to-noise ratio correspond to the predictions of the model.

  1. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    NASA Astrophysics Data System (ADS)

    Babic, Bakir; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan

    2016-06-01

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  2. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Clément, P.-Y.; Baraduc, C.; Ducruet, C.; Vila, L.; Chshiev, M.; Diény, B.

    2015-09-01

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  3. Detection performance improvement of chirped amplitude modulation ladar based on Gieger-mode avalanche photoelectric detector.

    PubMed

    Zhang, Zijing; Wu, Long; Zhang, Yu; Zhao, Yuan; Sun, Xiudong

    2011-12-10

    This paper presents an improved system structure of photon-counting chirped amplitude modulation (AM) ladar based on the Geiger-mode avalanche photoelectric detector (GmAPD). The error-pulse probability is investigated with statistical method. The research shows that most of the error pulses that are triggered by noise are distributed in the intensity troughs of the chirped AM waveform. The error-pulse probability is lowered with the sliding window and the threshold. With the average intensity of noise and signal being 0.3 count/sample and 1 count/sample, respectively, the probability of error pulses is reduced from 12% to 1.0%, and the SNR is improved by 2.2 dB in the improved system. PMID:22193131

  4. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes.

    PubMed

    Vahdat, Vahid; Grierson, David S; Turner, Kevin T; Carpick, Robert W

    2013-04-23

    Wear is one of the main factors that hinders the performance of probes for atomic force microscopy (AFM), including for the widely used amplitude modulation (AM-AFM) mode. Unfortunately, a comprehensive scientific understanding of nanoscale wear is lacking. We have developed a protocol for conducting consistent and quantitative AM-AFM wear experiments. The protocol involves controlling the tip-sample interaction regime during AM-AFM scanning, determining the tip-sample contact geometry, calculating the peak repulsive force and normal stress over the course of the wear test, and quantifying the wear volume using high-resolution transmission electron microscopy imaging. The peak repulsive tip-sample interaction force is estimated from a closed-form equation accompanied by an effective tip radius measurement procedure, which combines transmission electron microscopy and blind tip reconstruction. The contact stress is estimated by applying Derjaguin-Müller-Toporov contact mechanics model and also numerically solving a general contact mechanics model recently developed for the adhesive contact of arbitrary axisymmetric punch shapes. We discuss the important role that the assumed tip shape geometry plays in calculating both the interaction forces and the contact stresses. Contact stresses are significantly affected by the tip geometry while the peak repulsive force is mainly determined by experimentally controlled parameters, specifically, the free oscillation amplitude and amplitude ratio. The applicability of this protocol is demonstrated experimentally by assessing the performance of diamond-like carbon-coated and silicon-nitride-coated silicon probes scanned over ultrananocrystalline diamond substrates in repulsive mode AM-AFM. There is no sign of fracture or plastic deformation in the case of diamond-like carbon; wear could be characterized as a gradual atom-by-atom process. In contrast, silicon nitride wears through removal of the cluster of atoms and plastic

  5. An investigation of the influence of residual amplitude modulation in phase electro-optic modulator on the signal of fiber-optic gyroscope

    NASA Astrophysics Data System (ADS)

    Pogorelaya, D. A.; Smolovik, M. A.; Strigalev, V. E.; Aleynik, A. S.; Deyneka, I. G.

    2016-08-01

    The investigation is devoted to residual amplitude modulation (RAM) of phase electro-optic modulator, which guides are made in LiNbO3 crystal by Ti diffusion technology. An analysis is presented that shows influence of RAM on the signal of fiber-optic gyroscope. The RAM compensation method is offered.

  6. Toward automatic phenotyping of retinal images from genetically determined mono- and dizygotic twins using amplitude modulation-frequency modulation methods

    NASA Astrophysics Data System (ADS)

    Soliz, P.; Davis, B.; Murray, V.; Pattichis, M.; Barriga, S.; Russell, S.

    2010-03-01

    This paper presents an image processing technique for automatically categorize age-related macular degeneration (AMD) phenotypes from retinal images. Ultimately, an automated approach will be much more precise and consistent in phenotyping of retinal diseases, such as AMD. We have applied the automated phenotyping to retina images from a cohort of mono- and dizygotic twins. The application of this technology will allow one to perform more quantitative studies that will lead to a better understanding of the genetic and environmental factors associated with diseases such as AMD. A method for classifying retinal images based on features derived from the application of amplitude-modulation frequency-modulation (AM-FM) methods is presented. Retinal images from identical and fraternal twins who presented with AMD were processed to determine whether AM-FM could be used to differentiate between the two types of twins. Results of the automatic classifier agreed with the findings of other researchers in explaining the variation of the disease between the related twins. AM-FM features classified 72% of the twins correctly. Visual grading found that genetics could explain between 46% and 71% of the variance.

  7. Probing the adsorption of weak acids on graphite using amplitude modulation-frequency modulation atomic force microscopy.

    PubMed

    Moustafa, Ahmed M A; Huang, Jun; McPhedran, Kerry N; Zeng, Hongbo; El-Din, Mohamed Gamal

    2015-03-17

    Recent thermodynamics calculations and adsorption isotherms showed that the adsorption of a self-assembled layer (SAL) of ionized weak acids to carbon was attributed to the negatively charged hydrogen bonding (-CAHB), yet the direct visualization and characterization of this adsorption behavior have not been reported. Here, an amplitude modulation-frequency modulation atomic force microscopy (AM-FM AFM) technique was applied to discriminate the adsorption of decanoic acids (DA) on highly ordered pyrolytic graphite (HOPG). Thermodynamics calculations revealed that the adsorption of SAL was driven by the formation of -CAHB with negatively charged functional groups of HOPG. Multilayer adsorption could occur over the adsorbed ionized SAL, leading to the development of aggregates. AM-FM AFM imaging showed that the adsorption of the DA molecules forming aggregates occurred only for the HOPG-functionalized steps, while DA molecules were found to adsorb over the entire functionalized HOPG surface after water-plasma treatment, as evident from the frequency shifts identified in AFM images. PMID:25710305

  8. Probing the adsorption of weak acids on graphite using amplitude modulation-frequency modulation atomic force microscopy.

    PubMed

    Moustafa, Ahmed M A; Huang, Jun; McPhedran, Kerry N; Zeng, Hongbo; El-Din, Mohamed Gamal

    2015-03-17

    Recent thermodynamics calculations and adsorption isotherms showed that the adsorption of a self-assembled layer (SAL) of ionized weak acids to carbon was attributed to the negatively charged hydrogen bonding (-CAHB), yet the direct visualization and characterization of this adsorption behavior have not been reported. Here, an amplitude modulation-frequency modulation atomic force microscopy (AM-FM AFM) technique was applied to discriminate the adsorption of decanoic acids (DA) on highly ordered pyrolytic graphite (HOPG). Thermodynamics calculations revealed that the adsorption of SAL was driven by the formation of -CAHB with negatively charged functional groups of HOPG. Multilayer adsorption could occur over the adsorbed ionized SAL, leading to the development of aggregates. AM-FM AFM imaging showed that the adsorption of the DA molecules forming aggregates occurred only for the HOPG-functionalized steps, while DA molecules were found to adsorb over the entire functionalized HOPG surface after water-plasma treatment, as evident from the frequency shifts identified in AFM images.

  9. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    SciTech Connect

    Fang, Zhao-Xiang; Gong, Lei; Ren, Yu-Xuan; Vaveliuk, Pablo; Chen, Yue; Lu, Rong-De

    2015-11-28

    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.

  10. Auditory Discrimination Using Frequency-Modulated Amplification with Long-Term Amplitude Compression.

    NASA Astrophysics Data System (ADS)

    Shea, Bernard David

    This dissertation considers the effects of long -term amplitude compression used in narrow-band frequency modulated (FM) assistive listening devices on the auditory discrimination of severely and profoundly hearing-impaired individuals. Compression has been used in narrow-band FM transmitters for hearing-impaired children in educational programs for over twenty years. It restricts the peak deviation of the FM signal to within allowable limits. Narrow -band FM equipment can vary in peak limitation approaches via compression, i.e., using a form of compression limiting or using long-term compression (automatic volume control). Numerous investigations have studied the benefits of FM system use, but none have tested the benefits or deleterious effects of these compression forms on the auditory discrimination of hearing-impaired individuals. Despite the marked limitations associated with severe or profound sensorineural hearing impairment in children, spoken language development is possible. Research and experience have suggested that the auditory system represents the best sensory input channel for these children. With appropriate amplification and educational intervention they can achieve dramatic improvements in speech perception, speech production, language development, and educational achievement (Boothroyd, 1985; Hudgins, 1953, 1954; Ling & Milne, 1981; Wedenberg, 1954). Most hearing-impaired children in educational programs across the United States receive the amplified teacher's speech signal via narrow-band frequency modulated (FM) transmission, yet a controlled investigation of the input compression used in these systems has never been conducted. This dissertation reviews and discusses narrow -band frequency modulated (FM) radio wave systems and the use of audio compression. The experiment tested 32 students with severe to profound sensorineural hearing loss under two narrow -band FM transmitter conditions. The FM transmitter conditions were varied on the basis

  11. Amplitude modulation of charge-density-wave domains in 1T-TaS sub 2 at 300 K

    SciTech Connect

    Coleman, R.V.; McNairy, W.W.; Slough, C.G.

    1991-01-01

    Measurements of the charge-density-wave (CDW) amplitude modulation in 1T-TaS{sub 2} at room temperature have been made using a scanning tunneling microscope (STM) operating in the constant current mode. The amplitude profiles are in good agreement with the profile predicated by the CDW domain model of Nakanishi and Shiba. Interference effects between the atomic and CDW lattices have been analyzed and do not modify these profiles significantly. They represent the true CDW amplitude variation connected with the CDW domain structure.

  12. Amplitude modulation of charge-density-wave domains in 1T-TaS{sub 2} at 300 K

    SciTech Connect

    Coleman, R.V.; McNairy, W.W.; Slough, C.G.

    1991-12-31

    Measurements of the charge-density-wave (CDW) amplitude modulation in 1T-TaS{sub 2} at room temperature have been made using a scanning tunneling microscope (STM) operating in the constant current mode. The amplitude profiles are in good agreement with the profile predicated by the CDW domain model of Nakanishi and Shiba. Interference effects between the atomic and CDW lattices have been analyzed and do not modify these profiles significantly. They represent the true CDW amplitude variation connected with the CDW domain structure.

  13. Heteronuclear refocusing by nonlinear phase and amplitude modulation on a single transmitter channel

    NASA Astrophysics Data System (ADS)

    Moore, Jay; Colón, Raul D.; Tadanki, Sasidhar; Waddell, Kevin W.

    2014-08-01

    The application of low magnetic fields to heteronuclear NMR has expanded recently alongside the emergence of methods for achieving near unity polarization of spin ensembles, independent of magnetic field strength. The parahydrogen induced hyperpolarization methods in particular, often use a hybrid arrangement where a high field spectrometer is used to detect or image polarized molecules that have been conjured on a separate, dedicated polarizer instrument operating at fields in the mT regime where yields are higher. For controlling polarizer chemistry, spare TTL channels of portable NMR spectrometers can be used to pulse program reaction timings in synchrony with heteronuclear RF transformations. The use of a spectrometer as a portable polarizer control module has the advantage of allowing detection in situ, simplifying the process of optimizing polarization yields prior to in vivo experimental trials. Suitable heteronuclear spectrometers compatible with this application are becoming more common, but are still sparsely available in comparison to a large existing infrastructure of single channel NMR consoles. With the goal of expanding the range of these systems to multinuclear applications, the feasibility of rotating a pair of heteronuclear spins (13C and 1H) at 12 mT was investigated in this study. Nonlinear phase and amplitude modulated waveforms designed to simultaneously refocus magnetization at 128 kHz (13C) and 510 kHz (1H) were generated numerically with optimal control. Although precise quantitative comparisons were not attempted due to limitations of the experimental setup, signals refocused at heteronuclear frequencies with this PANORAMIC approach (Precession And Nutation for Observing Rotation At Multiple Intervals about the Carrier) yielded amplitudes comparable to signals which were refocused using traditional block pulses on heteronuclear channels. Using this PANORAMIC approach to heteronuclear NMR at low field would reduce expense as well as

  14. Endogenous nitric oxide derived from NOS I or II in thoracic spinal cord exerts opposing tonic modulation on sympathetic vasomotor tone via disparate mechanisms in anesthetized rats.

    PubMed

    Poon, Yan-Yuen; Tsai, Ching-Yi; Cheng, Chung-Dar; Chang, Alice Y W; Chan, Samuel H H

    2016-09-01

    The sympathetic preganglionic neurons (SPN) in the thoracic spinal cord regulate vasomotor tone via norepinephrine released from sympathetic terminals and adrenal medulla. We assessed the hypothesis that nitric oxide synthase I (NOS I)- and NOS II-derived nitric oxide (NO) in the thoracic spinal cord differentially modulate sympathetic outflow and that the adrenal medulla may be involved in those modulatory actions. In Sprague-Dawley rats, NOS I immunoreactivity was distributed primarily in the perikaryon, proximal dendrites, or axons of SPN, and small clusters of NOS II immunoreactivity impinged mainly on the circumference of SPN. Intrathecal administration of 7-nitroindazole (7-NI), a specific NOS I antagonist, into the thoracic spinal cord significantly reduced arterial pressure, heart rate, and basal or baroreflex-mediated sympathetic vasomotor tone. On the other hand, intrathecal application of S-methylisothiourea (SMT), a specific NOS II antagonist, elevated arterial pressure with a transient reduction of heart rate, induced a surge of plasma norepinephrine, and reduced baroreflex-mediated but not basal sympathetic vasomotor tone. Bilateral adrenalectomy significantly exacerbated the cardiovascular responses to 7-NI but antagonized those to SMT. We conclude that both NOS I and NOS II are present in the thoracic spinal cord and are tonically active under physiological conditions. Furthermore, the endogenous NO generated by NOS I-containing SPN exerts a tonic excitatory action on vasomotor tone mediated by norepinephrine released from the adrenal medulla and sympathetic nerve terminals. On the other hand, NO derived from NOS II exerts a tonic inhibitory action on sympathetic outflow from the SPN that targets primarily the blood vessels. PMID:27371683

  15. Changes in the amplitude of cyclic load biphasically modulate endothelial cell DNA synthesis and division.

    PubMed

    Upchurch, G R; Loscalzo, J; Banes, A J

    1997-01-01

    Several physical factors, including shear stress and cyclic load, modulate the ability of endothelial cells to respond to injury. The objective of these experiments was to test the hypothesis that cyclic mechanical load stimulates endothelial cell DNA synthesis and division in vitro. Rabbit aortic endothelial cells were cultured on Flex I flexible-bottomed culture plates, and subjected to load amplitudes of increasing magnitude (0, 0.18, 0.24 and 0.27 load at 1 Hz) using a Flexercell strain unit. Cells were harvested enzymatically and cell numbers determined on days 1, 3 and 5 after initiating the load regimen. DNA synthesis was quantified after trichloroacetic acid precipitation of [3H]thymidine-labeled cells from: (1) whole culture wells and (2) areas of minimum and maximum strain in culture cells. Data were analyzed using analysis of variance and a Tukey's test (n = 6 observations/strain regimen per day in triplicate). Results from analysis of endothelial cells in whole, subconfluent cultures showed that cells subjected to strains of 0.18 had a decreased rate of cell division (76% of control) and DNA synthesis (63% of control), while cells subjected to strains of 0.24 and 0.27 had an increased rate of cell division (108 and 83% increase, respectively, compared with control; p < 0.001) and DNA synthesis (39 and 172% increase, respectively, compared with control; p < 0.001 for 0.27) on day 3 when compared with control cells. The results indicate that endothelial cells respond to various physiologic levels of cyclic load in a biphasic manner to initiate DNA synthesis and cell division. These data suggest that endothelial cell mitogenesis may be modulated by specific levels of cyclic load. PMID:9546945

  16. Correlation of neural responses in the cochlear nucleus with low-frequency noise amplitude modulation of a tonal signal

    NASA Astrophysics Data System (ADS)

    Bibikov, N. G.

    2014-09-01

    The responses of single neurons of the cochlear nucleus of a grass frog to long tonal signals amplitude-modulated by repeat intervals of low-frequency noise have been studied. The carrier frequency always corresponded to the characteristic frequency of the studied cell (a range of 0.2 kHz-2 kHz); the modulated signal was noise in the ranges 0-15 Hz, 0-50 Hz, or 0-150 Hz. We obtained the correlation functions of the cyclic histogram reflecting the change in probability of a neuron pulse discharge (spike) during the modulation period with the shape of the signal envelope in the same period. The form of the obtained correlation functions usually does not change qualitatively with a change in carrier level or modulation depth; however, this could essentially depend of the frequency component of the modulating function. In the majority of cases, comparison of the cyclic histogram of the reaction with only the current amplitude value does not adequately reveal the signal's time features that determine the reaction of a neuron. The response is also determined by the other sound features, primarily by the rate of the change in amplitude. The studied neurons differed among themselves, both in preference toward a certain range of modulated frequencies and in the features of the envelope that caused the cell's response.

  17. Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system

    NASA Astrophysics Data System (ADS)

    Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel

    2000-04-01

    Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.

  18. Anti-ship missile tracking with a chirped amplitude modulation ladar

    NASA Astrophysics Data System (ADS)

    Redman, Brian C.; Stann, Barry L.; Ruff, William C.; Giza, Mark M.; Aliberti, Keith; Lawler, William B.

    2004-09-01

    Shipboard infrared search and track (IRST) systems can detect sea-skimming anti-ship missiles at long ranges. Since IRST systems cannot measure range and velocity, they have difficulty distinguishing missiles from slowly moving false targets and clutter. ARL is developing a ladar based on its patented chirped amplitude modulation (AM) technique to provide unambiguous range and velocity measurements of targets handed over to it by the IRST. Using the ladar's range and velocity data, false alarms and clutter objects will be distinguished from valid targets. If the target is valid, it's angular location, range, and velocity, will be used to update the target track until remediation has been effected. By using an array receiver, ARL's ladar can also provide 3D imagery of potential threats in support of force protection. The ladar development program will be accomplished in two phases. In Phase I, currently in progress, ARL is designing and building a breadboard ladar test system for proof-of-principle static platform field tests. In Phase II, ARL will build a brassboard ladar test system that will meet operational goals in shipboard testing against realistic targets. The principles of operation for the chirped AM ladar for range and velocity measurements, the ladar performance model, and the top-level design for the Phase I breadboard are presented in this paper.

  19. Amplitude modulation of sexy phrases is salient for song attractiveness in female canaries (Serinus canaria).

    PubMed

    Pasteau, Magali; Ung, Davy; Kreutzer, Michel; Aubin, Thierry

    2012-07-01

    Song discrimination and recognition in songbird species have usually been studied by measuring responses to song playbacks. In female canaries, Serinus canaria, copulation solicitation displays (CSDs) are used as an index of female preferences, which are related to song recognition. Despite the fact that many studies underline the role of song syntax in this species, we observed that short segments of songs (a few seconds long) are enough for females to discriminate between conspecific and heterospecific songs, whereas such a short duration is not sufficient to identify the syntax rules. This suggests that other cues are salient for song recognition. In this experiment, we investigated the influence of amplitude modulation (AM) on the responses (CSDs) of female canaries to song playbacks. We used two groups of females: (1) raised in acoustic isolation and (2) raised in normal conditions. When adult, we tested their preferences for sexy phrases with different AMs. We broadcast three types of stimuli: (1) songs with natural canary AM, (2) songs with AM removed, or (3) song with wren Troglodytes troglodytes AM. Results indicate that female canaries prefer and have predispositions for a song type with the natural canary AM. Thus, this acoustic parameter is a salient cue for song attractiveness.

  20. Efficient Amplitude-Modulated Pulses for Triple- to Single-Quantum Coherence Conversion in MQMAS NMR

    PubMed Central

    2014-01-01

    The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed “too challenging”. PMID:25047226

  1. Amplitude modulation of sexy phrases is salient for song attractiveness in female canaries (Serinus canaria).

    PubMed

    Pasteau, Magali; Ung, Davy; Kreutzer, Michel; Aubin, Thierry

    2012-07-01

    Song discrimination and recognition in songbird species have usually been studied by measuring responses to song playbacks. In female canaries, Serinus canaria, copulation solicitation displays (CSDs) are used as an index of female preferences, which are related to song recognition. Despite the fact that many studies underline the role of song syntax in this species, we observed that short segments of songs (a few seconds long) are enough for females to discriminate between conspecific and heterospecific songs, whereas such a short duration is not sufficient to identify the syntax rules. This suggests that other cues are salient for song recognition. In this experiment, we investigated the influence of amplitude modulation (AM) on the responses (CSDs) of female canaries to song playbacks. We used two groups of females: (1) raised in acoustic isolation and (2) raised in normal conditions. When adult, we tested their preferences for sexy phrases with different AMs. We broadcast three types of stimuli: (1) songs with natural canary AM, (2) songs with AM removed, or (3) song with wren Troglodytes troglodytes AM. Results indicate that female canaries prefer and have predispositions for a song type with the natural canary AM. Thus, this acoustic parameter is a salient cue for song attractiveness. PMID:22476242

  2. Wave-packet dynamics of noninteracting ultracold bosons in an amplitude-modulated parabolic optical lattice

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Tomotake; Watanabe, Shinichi

    2015-06-01

    The recent Aarhus experiment [Phys. Rev. A 88, 023620 (2013), 10.1103/PhysRevA.88.023620] produced wave packets by applying amplitude modulation to a trapped Bose-Einstein condensate (BEC) of 87Rb using an optical lattice. The present paper renders a theoretical account of this experimental production of wave packets and their subsequent time evolution, focusing on a one-dimensional noninteracting bosonic system as a fundamental starting point for accurate quantum analysis. Since experimental manipulation requires efficient wave-packet creation, we introduce the "single-Q Rabi model" to give a simple and reliable description of the interband transition. As a natural extension, we demonstrate enhancement of the wave-packet production by the "two-step Rabi oscillation method" using either one or two frequencies. The subsequent time evolution is affected by the intertwining of Bragg reflection and the Landau-Zener transition at each band gap, which is analyzed with the aid of a semiclassical theory [Phys. Rev. Lett. 110, 085302 (2013), 10.1103/PhysRevLett.110.085302].

  3. Practical loss tangent imaging with amplitude-modulated atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Proksch, Roger; Kocun, Marta; Hurley, Donna; Viani, Mario; Labuda, Aleks; Meinhold, Waiman; Bemis, Jason

    2016-04-01

    Amplitude-modulated (AM) atomic force microscopy (AFM), also known as tapping or AC mode, is a proven, reliable, and gentle imaging method with widespread applications. Previously, the contrast in AM-AFM has been difficult to quantify. AFM loss tangent imaging is a recently introduced technique that recasts AM mode phase imaging into a single term tan δ that includes both the dissipated and stored energy of the tip-sample interaction. It promises fast, versatile mapping of variations in near-surface viscoelastic properties. However, experiments to date have generally obtained values larger than expected for the viscoelastic loss tangent of materials. Here, we explore and discuss several practical considerations for AFM loss tangent imaging experiments. A frequent limitation to tapping in air is Brownian (thermal) motion of the cantilever. This fundamental noise source limits the accuracy of loss tangent estimation to approximately 0.01

  4. Photosynthesis assessment in microphytobenthos using conventional and imaging pulse amplitude modulation fluorometry.

    PubMed

    Vieira, Sónia; Ribeiro, Lourenço; Jesus, Bruno; Cartaxana, Paulo; da Silva, Jorge Marques

    2013-01-01

    Imaging pulse amplitude modulated (Imaging-PAM) fluorometry is a breakthrough in the study of spatial heterogeneity of photosynthetic assemblages. However, Imaging and conventional PAM uses a different technology, making comparisons between these techniques doubtful. Thereby, photosynthetic processes were comparatively assessed using conventional (Junior PAM and PAM 101) and Imaging-PAM on intertidal microphytobenthos (MPB; mud and sand) and on cork oak leaves. Lower values of α (initial slope of the rETR, relative photosynthetic electron transport rate) vs E (incident photosynthetic active radiation) curve), ETR(max) (maximum relative ETR), E(k) (light saturation parameter) and F(v)/F(m) (maximum quantum efficiency of photosystem II of dark-adapted samples) were obtained using the Imaging-PAM. The level of discrepancy between conventional and Imaging-PAM systems was dependent on the type of sample, being more pronounced for MPB muddy sediments. This may be explained by differences in the depth integration of the fluorescence signal related to the thickness of the photosynthetic layer and in the light attenuation coefficients of downwelling irradiance. An additional relevant parameter is the taxonomic composition of the MPB, as cyanobacteria present in sandy sediments rendered different results with red and blue excitation light fluorometers. These findings emphasize the caution needed when interpreting chlorophyll fluorescence data of MPB communities.

  5. Performance of differential amplitude pulse-position modulation with RZ coding for indoor optical wireless links

    NASA Astrophysics Data System (ADS)

    Sethakaset, Ubolthip; Gulliver, T. Aaron

    2005-02-01

    We investigate the performance of a differential amplitude pulse-position modulation with return-to-zero coding (DAPPM-RZ) over an indoor optical wireless channel. We compare the performance of DAPPM-RZ(A=2) with DAPPM(A=2), DPPM and DH-PIM. The result shows that, over a non-dispersive channel, DAPPM-RZ yields better power efficiency than DAPPM. It requires about 1.5 dB less transmit power. However, the bandwidth of DAPPM-RZ is double that of DAPPM. Compared to DPPM, the bandwidth of DAPPM-RZ is about the same as that of DPPM but DAPPM-RZ yields less power efficiency. When the number of bits/symbol(M) is above 3, the DAPPM-RZ is superior to DH-PIM_2 in terms of power efficiency but has less bandwidth efficiency. Over a dispersive channel, given the same value of M, DAPPM-RZ outperforms DPPM, DAPPM (without RZ) and DH-PIM2 when the normalized rms delay spread is high.

  6. Hindlimb movement in the cat induced by amplitude-modulated stimulation using extra-spinal electrodes

    NASA Astrophysics Data System (ADS)

    Tai, Changfeng; Wang, Jicheng; Shen, Bing; Wang, Xianchun; Roppolo, James R.; de Groat, William C.

    2008-06-01

    Hindlimb movement in the cat induced by electrical stimulation with an amplitude-modulated waveform of the dorsal surface of the L5-S1 spinal cord or the L5-S1 dorsal/ventral roots was investigated before and after acute spinal cord transection at the T13-L1 level. Stimulation of the spinal cord or dorsal/ventral root at the same spinal segment induced similar movements including coordinated multi-joint flexion or extension. The induced movements changed from flexion to extension when the stimulation was moved from rostral (L5) to caudal (S1) spinal segments. Stimulation of a dorsal or ventral root on one side induced only ipsilateral hindlimb movement. However, stimulation on the dorsal surface of the spinal cord along the midline or across the spinal cord induced bilateral movements. The extension induced by stimulation of L7 dorsal root produced the largest ground reaction force that was strong enough to support body weight. Dorsal root stimulation induced a larger ground reaction force than ventral root stimulation and produced a more graded recruitment curve. Stepping at different speeds could be generated by combined stimulation of the rostral (L5) and the caudal (L6/L7) spinal segments with an appropriate timing between the different stimulation channels. Acute transection of the spinal cord did not change the responses indicating that the induced movements did not require the involvement of the supraspinal locomotor centers. The methods and the stimulation strategy developed in this study might be utilized to restore locomotor function after spinal cord injury.

  7. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals.

    PubMed

    Acuña, Alonso M; Snellenburg, Joris J; Gwizdala, Michal; Kirilovsky, Diana; van Grondelle, Rienk; van Stokkum, Ivo H M

    2016-01-01

    Pulse-amplitude modulated (PAM) fluorometry is extensively used to characterize photosynthetic organisms on the slow time-scale (1-1000 s). The saturation pulse method allows determination of the quantum yields of maximal (F(M)) and minimal fluorescence (F(0)), parameters related to the activity of the photosynthetic apparatus. Also, when the sample undergoes a certain light treatment during the measurement, the fluorescence quantum yields of the unquenched and the quenched states can be determined. In the case of cyanobacteria, however, the recorded fluorescence does not exclusively stem from the chlorophyll a in photosystem II (PSII). The phycobilins, the pigments of the cyanobacterial light-harvesting complexes, the phycobilisomes (PB), also contribute to the PAM signal, and therefore, F(0) and F(M) are no longer related to PSII only. We present a functional model that takes into account the presence of several fluorescent species whose concentrations can be resolved provided their fluorescence quantum yields are known. Data analysis of PAM measurements on in vivo cells of our model organism Synechocystis PCC6803 is discussed. Three different components are found necessary to fit the data: uncoupled PB (PB(free)), PB-PSII complexes, and free PSI. The free PSII contribution was negligible. The PB(free) contribution substantially increased in the mutants that lack the core terminal emitter subunits allophycocyanin D or allophycocyanin F. A positive correlation was found between the amount of PB(free) and the rate constants describing the binding of the activated orange carotenoid protein to PB, responsible for non-photochemical quenching. PMID:25893897

  8. Perceived pitch of complex FM-AM tones--pitch determination process of vibrato sounds.

    PubMed

    Iwamiya, S; Miyakura, T; Satoh, N; Hayashi, Y

    1994-09-01

    Pitch-matching experiments were conducted to clarify the pitch determination process of complex FM-AM tones which consist of components whose frequency and amplitude are simultaneously modulated. The pitch is higher when FM and AM of each component are in phase than when they are out of phase. The pitch shift induced by the phase difference between FM and AM of each component becomes larger as its relative power increases. These experimental results suggest that the pitch of complex FM-AM tones is determined as follows: A complex FM-AM tone is resolved into each FM-AM component by the auditory filter bank. The spectral pitch of each FM-AM component is determined by a loudness-weighted pitch averaging processes. The central pattern recognizer determines the pitch of complex FM-AM tones by integration of virtual pitches derived from the spectral pitches. PMID:7872986

  9. Method to improve the performance of the optical modulation format identification system based on asynchronous amplitude histogram

    NASA Astrophysics Data System (ADS)

    Cui, Sheng; He, Sheng; Shang, Jin; Ke, Changjian; Fu, Songnian; Liu, Deming

    2015-06-01

    A method to improve the performance of the asynchronous amplitude histogram (AAH) based optical modulation format identification system is proposed. It is demonstrated that with additional static dispersion compensation modules (SDCMs), polarization and non-polarization multiplexed (PM/NPM) signals can be distinguished simply from the AAH peak position difference, while the stringent chromatic dispersion limit imposed on the MFI method can be expanded up to desired values by selectively enabling the SDCMs to minimize the width to area ratio (WAR) of the AAH. Numerical simulations and experiments are carried out to demonstrate the effectiveness of this method.

  10. Cortical activities of single-trial P300 amplitudes modulated by memory load using simultaneous EEG-fMRI

    NASA Astrophysics Data System (ADS)

    Zhang, Qiushi; Zhao, Xiaojie; Zhu, Chaozhe; Yang, Xueqian; Yao, Li

    2015-03-01

    The functional magnetic resonance imaging (fMRI) researches on working memory have found that activation of cortical areas appeared dependent on memory load, and event-related potentials (ERP) studies have demonstrated that amplitudes of P300 decreased significantly when working memory load increased. However, the cortical activities related with P300 amplitudes under different memory loads remains unclear. Joint fMRI and EEG analysis which fusions the time and spatial information in simultaneous EEG-fMRI recording can reveal the regional activation at each ERP time point. In this paper, we first used wavelet transform to obtain the single-trial amplitudes of P300 caused by a digital N-back task in the simultaneous EEG-fMRI recording as the ERP feature sequences. Then the feature sequences in 1-back condition and 3-back condition were introduced into general linear model (GLM) separately as parametric modulations to compare the cortical activation under different memory loads. The results showed that the average amplitudes of P300 in 3-back significantly decreased than that in 1-back, and the activities induced by ERP feature sequences in 3-back also significantly decreased than that in the 1-back, including the insular, anterior cingulate cortex, right inferior frontal gyrus, and medial frontal gyrus, which were relevant to the storage, monitoring, and manipulation of information in working memory task. Moreover, the difference in the activation caused by ERP feature showed a positive correlation with the difference in behavioral performance. These findings demonstrated the locations of P300 amplitudes differences modulated by the memory load and its relationship with the behavioral performance.

  11. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, Alan D.; Haigh, Ronald E.; Hugenberg, Keith F.

    1995-01-01

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.

  12. Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices

    DOEpatents

    Conder, A.D.; Haigh, R.E.; Hugenberg, K.F.

    1995-09-26

    An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place. 7 figs.

  13. Eliminating bistability and reducing sample damage through frequency and amplitude modulation in tapping-mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Solares, Santiago D.

    2007-03-01

    Since its invention, amplitude-modulation tapping-mode atomic force microscopy (AM-AFM) has rapidly developed into a common high-resolution surface characterization tool. However, despite the technical advances, imaging bistability caused by the coexistence of the so-called attractive and repulsive imaging regimes, and potential sample damage in the repulsive regime (often critical in biological and other soft-sample applications) still remain as fundamental barriers which prevent users from consistently obtaining high-quality images. This report proposes a new intermittent-contact AFM imaging concept, frequency- and amplitude-modulation atomic force microscopy (FAM-AFM), which offers the potential to overcome both issues. This imaging method combines existing knowledge from non-contact frequency-modulation atomic force microscopy (FM-AFM) and AM-AFM in a new control scheme involving the use of variable excitation force amplitude and frequency to control the cantilever effective frequency and limit the magnitude of the tip-sample repulsive forces. As in FM-AFM, within the new scheme the cantilever is continuously excited at its (variable) effective frequency so it is not prone to bistability. Control of the repulsive forces is achieved through the adjustment of the excitation force amplitude, so that the effective frequency always remains below the free resonant frequency. Promising results from numerical simulations are presented for single-walled carbon nanotube (SWNT) and silicon tips interacting with a Si(100)-OH surface, and for SWNT tips interacting with the same surface while intermittently forming and breaking covalent bonds, and while experiencing attractive electrostatic interactions.

  14. [Modulating effect of dopamine on amplitude of GABA-produced chemocontrolled currents in multipolar spinal cord neurons of ammocaete].

    PubMed

    Bukinich, A A

    2010-01-01

    By using the patch-clamp method in the whole cell configuration, modulating effect of dopamine on GABA-activated currents has been studied on isolated multipolar spinal cord neurons of the ammocaete (larva of the lamprey Lampetra planeri). At application of dopamine (5 microM), there was observed in some cases a decrease of the GABA-activated current, on average, by 33.3 +/- 8.7 (n = 8, p < 0.01), in other cases--an increase of the amplitude, on average, by 37.3 +/- 11.8% (n = 5, p < 0.01). Concentration of GABA amounted to 2 mM. Study of action of agonists of D1- and D2-receptors on amplitude of che-mocontrolled currents has shown that agonist of D1-receptors (+)-SKF-38393 (5 microM) decreases the GABA-activated current amplitude, on average, by 63.1 +/- 11.7% (n = 8, p < 0.01); the agonist of D2-receptors (-)-quinpirole (5 microM) produces in various cells the dopamine-like effects: an increase of the GABA-activated current amplitude, on average, by 61.0 +/- 13.8% (n = 8, p < 0.01) and a decrease of amplitude, on average, by 55.7 +/- 2.0 % (n = 6, p < 0.01). It has been shown that antagonist of D2-receptors sulpiride (5 microM) does not block effects produced by dopamine. The dopamine effects were partially blocked by antagonist of D1-receptors (+)-SCH-23390 (5 microM): a decrease of the GABA-activated amplitude current amounted, on average, to 11.7 +/- 1.8 % (n = 7, p < 0.01), while an increase of amplitude--8.3 +/- 2.0 % (n = 5,p < 0.01). At the same time, effects of agonist of D1-receptors quinpirole (5 microM) were partially blocked by antagonist of D1-receptors (+)-SCH-23390: a decrease of the GABA-activated current amplitude amounted, on average, to 9.2 +/- 3.4 % (n = 6, p < 0.01) and an increase of amplitude--6.3 +/- 1.8 % (n = 10, p < 0.01). The obtained data indicate differences of mechanisms of the receptor-mediated effect of agonists of dopamine receptors on GABA-activated and potential-activated currents of multipolar neurons of the ammocaete spinal

  15. Peak forces and lateral resolution in amplitude modulation force microscopy in liquid.

    PubMed

    Guzman, Horacio V; Garcia, Ricardo

    2013-01-01

    The peak forces exerted on soft and rigid samples by a force microscope have been modeled by performing numerical simulations of the tip motion in liquid. The forces are obtained by using two contact mechanics models, Hertz and Tatara. We present a comparison between the numerical simulations and three analytical models for a wide variety of probe and operational parameters. In general, the forces derived from analytical expressions are not in good quantitative agreement with the simulations when the Young modulus and the set-point amplitude are varied. The only exception is the parametrized approximation that matches the results given by Hertz contact mechanics for soft materials and small free amplitudes. We also study the elastic deformation of the sample as a function of the imaging conditions for materials with a Young modulus between 25 MPa and 2 GPa. High lateral resolution images are predicted by using both small free amplitudes (less than 2 nm for soft materials) and high set-point amplitudes.

  16. The onion fly modulates the adult eclosion time in response to amplitude of temperature cycle

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuhiro; Watari, Yasuhiko

    2011-08-01

    To confirm whether the amplitude of diel temperature cycles causes a phase shift of adult eclosion rhythm of the onion fly, Delia antiqua, the peak time ( Ø E) of adult eclosion was determined under various thermoperiods with a fixed temperature either in the warm or cool phase and temperature differences ranging from 1°C to 4°C between the two phases. Irrespective of the temperature level during the warm or cool phase, Ø E occurred earlier with decreasing amplitude of the temperature cycle. The results strongly support the previous conclusion of Tanaka and Watari (Naturwissenschaften 90:76-79, 2003) that D. antiqua responds to the amplitude of temperature cycle as a cue for the circadian adult eclosion timing. The phase advance was larger in thermoperiods with a fixed warm-phase temperature than in those with a fixed cool-phase temperature. This might be ascribed to the interaction between the amplitude and level of temperature in the thermoperiodic regimes.

  17. Peak forces and lateral resolution in amplitude modulation force microscopy in liquid

    PubMed Central

    Guzman, Horacio V

    2013-01-01

    Summary The peak forces exerted on soft and rigid samples by a force microscope have been modeled by performing numerical simulations of the tip motion in liquid. The forces are obtained by using two contact mechanics models, Hertz and Tatara. We present a comparison between the numerical simulations and three analytical models for a wide variety of probe and operational parameters. In general, the forces derived from analytical expressions are not in good quantitative agreement with the simulations when the Young modulus and the set-point amplitude are varied. The only exception is the parametrized approximation that matches the results given by Hertz contact mechanics for soft materials and small free amplitudes. We also study the elastic deformation of the sample as a function of the imaging conditions for materials with a Young modulus between 25 MPa and 2 GPa. High lateral resolution images are predicted by using both small free amplitudes (less than 2 nm for soft materials) and high set-point amplitudes. PMID:24367754

  18. Simultaneous determination of nitrite and nitrate ions by air-segmented amplitude-modulated multiplexed flow analysis.

    PubMed

    Yoshida, Haruka; Inui, Koji; Takeuchi, Masaki; Tanaka, Hideji

    2012-01-01

    The concept of amplitude-modulated multiplexed flow analysis has been extended to the simultaneous determination of multiple analytes in a sample. A sample solution containing nitrite and nitrate ions is delivered from two channels, but the flow rates are varied at different frequencies. One of the channels has a reduction column for converting nitrate ions to nitrite ions. Downstream, the absorbance of the diazo-coupling product is monitored after the merging of both solutions with a Griess reagent. The signal is analyzed by a fast Fourier transform (FFT) in real time. From the thus-obtained amplitude, a µmol dm(-3) level of the ions can be determined. The introduction of air bubbles is effective to reduce any axial dispersion, and hence to improve the sensitivity.

  19. Composite Amplitude Modulated Phase Only Filter Based Detection and Tracking of the Back-Reflection of KDP Images

    SciTech Connect

    Awwal, A S; McClay, W A; Ferguson, S W; Candy, J V; Salmon, J T; Wegner, P J

    2004-08-26

    An algorithm for determining the position of the KDP back-reflection image was developed. It was compared to a centroid-based algorithm. While the algorithm based on centroiding exhibited a radial standard deviation of 9 pixels, the newly proposed algorithm based on classical matched filtering (CMF) and a Gaussian fit to correlation peak provided a radial standard deviation of less than 1 pixel. The speed of the peak detection was improved from an average of 5.5 seconds for Gaussian fit to 0.022 seconds by using a polynomial fit. The performance was enhanced even further by utilizing a composite amplitude modulated phase only filter; producing a radial standard deviation of 0.27 pixels. The proposed technique was evaluated on 900+ images with varying degrees of noise and image amplitude as well as real National Ignition Facility (NIF) images.

  20. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    PubMed

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  1. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    PubMed

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  2. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    PubMed Central

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  3. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    NASA Astrophysics Data System (ADS)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-03-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  4. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  5. Calcium modulates the frequency and amplitude of spontaneous otoacoustic emissions in the bobtail skink.

    PubMed

    Manley, Geoffrey A; Sienknecht, Ulrike; Köppl, Christine

    2004-11-01

    Active processes in the inner ear of lizards can be monitored using spontaneous otoacoustic emissions (SOAE) measured outside the eardrum. In the Australian bobtail lizard, SOAE are generated by an active motility process in the hair-cell bundle. This mechanism has been shown to be sensitive to the calcium-chelating agent 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid and is presumed to be related to the calcium-sensitive transduction-channel motor implicated in other nonmammalian hair cell systems. In studies of frog saccular and turtle auditory papillar hair cells in vitro, the frequency and amplitude of bundle oscillations depend on the concentration of calcium in the bathing solutions. In the present study, the calcium concentration in the endolymph was changed in vivo in the Australian bobtail lizard Tiliqua rugosa, and SOAE were monitored. Glass pipettes with large tips and containing different calcium concentrations in their fluids were introduced into scala media, and their contents were allowed to passively flow into the endolymph. Low calcium concentrations resulted in a downward shift in the frequency of SOAE spectral peaks and generally an increase in their amplitudes. Calcium concentrations > 2 mM resulted in increases in frequency of SOAE peaks and generally a loss in amplitude. These frequency shifts were consistent with in vitro data on the frequencies and amplitudes of spontaneous oscillation of hair cell bundles and thus also implicate calcium ions in the generation of active motility in nonmammalian hair cells. The data also suggest that in this lizard species, the ionic calcium concentration in the cochlear endolymph is > or = 1 mM.

  6. Identification of Buried Objects in GPR Using Amplitude Modulated Signals Extracted from Multiresolution Monogenic Signal Analysis.

    PubMed

    Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu

    2015-01-01

    It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146

  7. Blocked versus randomized presentation modes differentially modulate feedback-related negativity and P3b amplitudes

    PubMed Central

    Pfabigan, Daniela M.; Zeiler, Michael; Lamm, Claus; Sailer, Uta

    2014-01-01

    Objective Electrophysiological studies on feedback processing typically use a wide range of feedback stimuli which might not always be comparable. The current study investigated whether two indicators of feedback processing – feedback-related negativity (FRN) and P3b – differ for feedback stimuli with explicit (facial expressions) or assigned valence information (symbols). In addition, we assessed whether presenting feedback in either a trial-by-trial or a block-wise fashion affected these ERPs. Methods EEG was recorded in three experiments while participants performed a time estimation task and received two different types of performance feedback. Results Only P3b amplitudes varied consistently in response to feedback type for both presentation types. Moreover, the blocked feedback type presentation yielded more distinct FRN peaks, higher effect sizes, and a significant relation between FRN amplitudes and behavioral task performance measures. Conclusion Both stimulus type and presentation mode may provoke systematic changes in feedback-related ERPs. The current findings point at important potential confounds that need to be controlled for when designing FRN or P3b studies. Significance Studies investigating P3b amplitudes using mixed types of stimuli have to be interpreted with caution. Furthermore, we suggest implementing a blocked presentation format when presenting different feedback types within the same experiment. PMID:24144779

  8. Identification of Buried Objects in GPR Using Amplitude Modulated Signals Extracted from Multiresolution Monogenic Signal Analysis

    PubMed Central

    Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu

    2015-01-01

    It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146

  9. Amplitude modulation detection by human listeners in reverberant sound fields: Carrier bandwidth effects and binaural versus monaural comparison

    PubMed Central

    Zahorik, Pavel; Kim, Duck O.; Kuwada, Shigeyuki; Anderson, Paul W.; Brandewie, Eugene; Collecchia, Regina; Srinivasan, Nirmal

    2012-01-01

    Previous work [Zahorik et al., POMA, 12, 050005 (2011)] has reported that for a broadband noise carrier signal in a simulated reverberant sound field, human sensitivity to amplitude modulation (AM) is higher than would be predicted based on the broadband acoustical modulation transfer function (MTF) of the listening environment. Interpretation of this result was complicated by the fact that acoustical MTFs of rooms are often quite different for different carrier frequency regions, and listeners may have selectively responded to advantageous carrier frequency regions where the effective acoustic modulation loss due to the room was less than indicated by a broadband acoustic MTF analysis. Here, AM sensitivity testing and acoustic MTF analyses were expanded to include narrowband noise carriers (1-octave and 1/3-octave bands centered at 4 kHz), as well as monaural and binaural listening conditions. Narrowband results were found to be consistent with broadband results: In a reverberant sound field, human AM sensitivity is higher than indicated by the acoustical MTFs. The effect was greatest for modulation frequencies above 32 Hz and was present whether the stimulation was monaural or binaural. These results are suggestive of mechanisms that functionally enhance modulation in reverberant listening. PMID:23437416

  10. Mosquito (Aedes aegypti) flight tones: Frequency, harmonicity, spherical spreading, and phase relationships

    PubMed Central

    Arthur, Benjamin J.; Emr, Kevin S.; Wyttenbach, Robert A.; Hoy, Ronald R.

    2014-01-01

    Mosquito flight produces a tone as a side effect of wing movement; this tone is also a communication signal that is frequency-modulated during courtship. Recordings of tones produced by tethered flying male and female Aedes aegypti were undertaken using pairs of pressure-gradient microphones above and below, ahead and behind, and to the left and right over a range of distances. Fundamental frequencies were close to those previously reported, although amplitudes were lower. The male fundamental frequency was higher than that of the female and males modulated it over a wider range. Analysis of harmonics shows that the first six partials were nearly always within 1 Hz of integer multiples of the fundamental, even when the fundamental was being modulated. Along the front-back axis, amplitude attenuated as a function of distance raised to the power 2.3. Front and back recordings were out of phase, as were above and below, while left and right were in phase. Recordings from ahead and behind showed quadratic phase coupling, while others did not. Finally, two methods are presented for separating simultaneous flight tones in a single recording and enhancing their frequency resolution. Implications for mosquito behavior are discussed. PMID:25234901

  11. The effect of microphone wind noise on the amplitude modulation of wind turbine noise and its mitigation.

    PubMed

    Kendrick, Paul; von Hünerbein, Sabine; Cox, Trevor J

    2016-07-01

    Microphone wind noise can corrupt outdoor recordings even when wind shields are used. When monitoring wind turbine noise, microphone wind noise is almost inevitable because measurements cannot be made in still conditions. The effect of microphone wind noise on two amplitude modulation (AM) metrics is quantified in a simulation, showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can result. As microphone wind noise is intermittent, a wind noise detection algorithm is used to automatically find uncorrupted sections of the recording, and so recover the true AM metrics to within ±2/±0.5 dBA.

  12. Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses

    PubMed Central

    van Dijk, Hanneke; van der Werf, Jurrian; Mazaheri, Ali; Medendorp, W. Pieter; Jensen, Ole

    2009-01-01

    Event-related responses and oscillatory activity are typically regarded as manifestations of different neural processes. Recent work has nevertheless revealed a mechanism by which slow event-related responses are created as a direct consequence of modulations in brain oscillations with nonsinusoidal properties. It remains unknown if this mechanism applies to cognitively relevant event-related responses. Here, we investigated whether sustained event-related fields (ERFs) measured during working memory maintenance can be explained by modulations in oscillatory power. In particular, we focused on contralateral delayed activity (CDA) typically observed in working memory tasks in which hemifield specific attention is manipulated. Using magnetoencephalography, we observed sustained posterior ERFs following the presentation of the memory target. These ERFs were systematically lateralized with respect to the hemisphere in which the target was presented. A strikingly similar pattern emerged for modulations in alpha (9–13 Hz) power. The alpha power and ERF lateralization were strongly correlated over subjects. Based on a mechanistic argument pertaining to the nonsinusoidal properties of the alpha activity, we conclude that the ERFs modulated by working memory are likely to be directly produced by the modulations in oscillatory alpha activity. Given that posterior alpha activity typically reflects disengagement, we conclude that the CDA is not attributable to an additive process reflecting memory maintenance per se but, rather, is a consequence of how attentional resources are allocated. PMID:20080773

  13. Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage

    NASA Astrophysics Data System (ADS)

    Golovin, Andrii B.; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2003-11-01

    We demonstrate theoretically and experimentally a fast-switching nematic optical retarder capable to switch a few microns of optical retardation in less than 1 ms. For example, a nematic cell of thickness 14.5 μm switches 0.3 μm of retardation within 0.15 ms and 2.5 μm within 0.5 ms for single passage of beam. The corresponding figure of merit is two orders of magnitude higher than the one known for the best nematic materials synthesized so far. The fit is achieved by employing a dual-frequency nematic liquid crystal in high-pretilt angle cells and a special addressing scheme that features amplitude and frequency modulated voltage. The scheme can be used in spatial light modulators, retarders, beam deflectors, polarization rotator, and displays.

  14. Amplitude modulation for the Swift-Hohenberg and Kuramoto-Sivashinski equations

    NASA Astrophysics Data System (ADS)

    Kirkinis, Eleftherios; O'Malley, Robert E.

    2014-12-01

    Employing a harmonic balance technique inspired from the methods of Renormalization Group and Multiple Scales [R. E. O'Malley, Jr. and E. Kirkinis. "A combined renormalization group-multiple scale method for singularly perturbed problems," Stud. Appl. Math. 124(4), 383-410, (2010)], we derive the amplitude equations for the Swift-Hohenberg and Kuramoto-Sivashinski equations to arbitrary order in the context of roll patterns. This new and straightforward derivation improves previous attempts and can be carried-out with symbolic computation that minimizes effort and avoids error.

  15. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise

    PubMed Central

    Pallesen, Karen Johanne; Bailey, Christopher J.; Brattico, Elvira; Gjedde, Albert; Palva, J. Matias; Palva, Satu

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG) while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4–8 Hz) alpha (8–14 Hz), beta- (14–30 Hz) and gamma- (30–80 Hz) bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality. PMID:26291324

  16. Amplitude-modulated ultrasound radiation force combined with phase-sensitive optical coherence tomography for shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2015-03-01

    Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.

  17. Air segmented amplitude modulated multiplexed flow analysis with software-based phase recognition: determination of phosphate ion.

    PubMed

    Ogusu, Takeshi; Uchimoto, Katsuya; Takeuchi, Masaki; Tanaka, Hideji

    2014-01-01

    Amplitude modulated multiplexed flow analysis (AMMFA) has been improved by introducing air segmentation and software-based phase recognition. Sample solutions, the flow rates of which are respectively varied at different frequencies, are merged. Air is introduced to the merged liquid stream in order to limit the dispersion of analytes within each liquid segment separated by air bubbles. The stream is led to a detector with no physical deaeration. Air signals are distinguished from liquid signals through the analysis of detector output signals, and are suppressed down to the level of liquid signals. Resulting signals are smoothed based on moving average computation. Thus processed signals are analyzed by fast Fourier transform. The analytes in the samples are respectively determined from the amplitudes of the corresponding wave components obtained. The developed system has been applied to the simultaneous determinations of phosphate ions in water samples by a Malachite Green method. The linearity of the analytical curve (0.0-31.0 μmol dm(-3)) is good (r(2)>0.999) and the detection limit (3.3 σ) at the modulation period of 30s is 0.52 μmol dm(-3). Good recoveries around 100% have been obtained for phosphate ions spiked into real water samples.

  18. Phase-amplitude coupling characteristics in directly modulated quantum dot lasers

    SciTech Connect

    Wang, C.; Osiński, M.; Even, J.; Grillot, F.

    2014-12-01

    We present a semi-analytical model for studying the phase-amplitude coupling (α-factor) in quantum dot (QD) semiconductor lasers, which takes into account the influence of carrier populations in the excited state and in the two-dimensional carrier reservoir on the refractive index change. Calculations of the α-factor based on the amplified spontaneous emission method and on the “FM/AM” technique are both investigated. It is shown that the α-factor of a QD laser strongly depends on the energy separation between the ground state and the off-resonant states. Through band structure engineering, the α-factor can be reduced by enlarging this energy separation.

  19. Tone-activated, remote, alert communication system

    NASA Technical Reports Server (NTRS)

    Baker, C. D.; Couvillon, L. A.; Hubbard, W. P.; Kollar, F. J.; Postal, R. B.; Tegnelia, C. R.

    1971-01-01

    Pocket sized transmitter, frequency modulated by crystal derived tones, with integral loop antenna provides police with easy operating alert signal communicator which uses patrol car radio to relay signal. Communication channels are time shared by several patrol units.

  20. From the heart to the mind: cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli

    PubMed Central

    Park, Gewnhi; Thayer, Julian F.

    2014-01-01

    The neurovisceral integration model (Thayer and Lane, 2000) posits that cardiac vagal tone, indexed by heart rate variability (HRV), can indicate the functional integrity of the neural networks implicated in emotion–cognition interactions. Our recent findings begin to disentangle how HRV is associated with both top-down and bottom-up cognitive processing of emotional stimuli. Higher resting HRV is associated with more adaptive and functional top-down and bottom-up cognitive modulation of emotional stimuli, which may facilitate effective emotion regulation. Conversely, lower resting HRV is associated with hyper-vigilant and maladaptive cognitive responses to emotional stimuli, which may impede emotion regulation. In the present paper, we recapitulate the neurovisceral integration model and review recent findings that shed light on the relationship between HRV and top-down and bottom-up visual perception and attention to emotional stimuli, which may play an important role in emotion regulation. Further implications of HRV on individual well-being and mental health are discussed. PMID:24817853

  1. Event-related desynchronization and synchronization in MEG: Framework for analysis and illustrative datasets related to discrimination of frequency-modulated tones.

    PubMed

    Zygierewicz, J; Sieluzycki, C; König, R; Durka, P J

    2008-02-15

    We introduce a complete framework for the calculation of statistically significant event-related desynchronization and synchronization (ERD/ERS) in the time-frequency plane for magnetoencephalographic (MEG) data, and provide free Internet access to software and illustrative datasets related to a classification task of frequency-modulated (FM) tones. Event-related changes in MEG were analysed on the basis of the normal component of the magnetic field acquired by the 148 magnetometers of the hardware configuration of our whole-head MEG device, and by computing planar gradients in longitudinal and latitudinal direction. Time-frequency energy density for the magnetometer as well as the two gradient configurations is first approximated using short-time Fourier transform. Subsequently, detailed information is obtained from high-resolution time-frequency maps for the most interesting sensors by means of the computationally much more demanding matching pursuit parametrization. We argue that the ERD/ERS maps are easier to interpret in the gradient approaches and discuss the superior resolution of the matching pursuit time-frequency representation compared to short-time Fourier and wavelet transforms. Experimental results are accompanied by the following resources, available from http://brain.fuw.edu.pl/MEG: (a) 48 high-resolution figures presenting the results of four subjects in all applicable settings, (b) raw datasets, and (c) complete software environment, allowing to recompute these figures from the raw datasets. PMID:17983663

  2. Characterization of the effects of cannabinoids on guinea-pig tracheal smooth muscle tone: role in the modulation of acetylcholine release from parasympathetic nerves.

    PubMed

    Spicuzza, L; Haddad, E B; Birrell, M; Ling, A; Clarke, D; Venkatesan, P; Barnes, P J; Belvisi, M G

    2000-08-01

    We investigated the ability of the cannabinoid agonists CP55,940 (CB(1)/CB(2)) and anandamide (endogenous cannabinoid) to modulate electrical field stimulation (EFS)-induced acetylcholine (ACh) release from parasympathetic nerve terminals innervating guinea-pig trachea. We assessed whether modulation of transmitter release translated to an impact on functional responses by investigating the effect of these agents on contractile responses evoked by EFS and ACh. Furthermore, we evaluated the ability of these compounds to elicit bronchodilation in pre-contracted guinea-pig tracheal strips. CP55,940 and anandamide significantly inhibited EFS-evoked ACh release (maximal inhibition of 35.1+/-2.9% and 33.4+/-6.4% at 1 microM, P<0.05, respectively). The CB(1) receptor antagonist SR 141716A (1 microM), had no effect on ACh release and failed to reverse the inhibitory effect of CP55,940 (1 microM). Paradoxically, CP55,940 had no significant effect on EFS-evoked cholinergic contractile responses. Furthermore, CP55,940 did not relax pre-contracted tracheal strips or affect contractile responses to exogenous ACh. This lack of activity on smooth muscle tone is consistent with the fact that no detectable specific binding of [(3)H] CP55,940 was found in tracheal homogenates. These data suggest that cannabinoid agonists inhibit ACh release from cholinergic nerve terminals via activation of CB(2) receptors but that this inhibitory action does not impact on functional responses such as cholinergic contraction.

  3. Chroma key without color restrictions based on asynchronous amplitude modulation of background illumination on retroreflective screens

    NASA Astrophysics Data System (ADS)

    Vidal, Borja; Lafuente, Juan A.

    2016-03-01

    A simple technique to avoid color limitations in image capture systems based on chroma key video composition using retroreflective screens and light-emitting diodes (LED) rings is proposed and demonstrated. The combination of an asynchronous temporal modulation onto the background illumination and simple image processing removes the usual restrictions on foreground colors in the scene. The technique removes technical constraints in stage composition, allowing its design to be purely based on artistic grounds. Since it only requires adding a very simple electronic circuit to widely used chroma keying hardware based on retroreflective screens, the technique is easily applicable to TV and filming studios.

  4. Study of the optimal duty cycle and pumping rate for square-wave amplitude-modulated Bell–Bloom magnetometers

    NASA Astrophysics Data System (ADS)

    Mei-Ling, Wang; Meng-Bing, Wang; Gui-Ying, Zhang; Kai-Feng, Zhao

    2016-06-01

    We theoretically and experimentally study the optimal duty cycle and pumping rate for square-wave amplitude-modulated Bell–Bloom magnetometers. The theoretical and the experimental results are in good agreement for duty cycles and corresponding pumping rates ranging over 2 orders of magnitude. Our study gives the maximum field response as a function of duty cycle and pumping rate. Especially, for a fixed duty cycle, the maximum field response is obtained when the time averaged pumping rate, which is the product of pumping rate and duty cycle, is equal to the transverse relaxation rate in the dark. By using a combination of small duty cycle and large pumping rate, one can increase the maximum field response by up to a factor of 2 or π/2, relative to that of the sinusoidal modulation or the 50% duty cycle square-wave modulation respectively. We further show that the same pumping condition is also practically optimal for the sensitivity due to the fact that the signal at resonance is insensitive to the fluctuations of pumping rate and duty cycle. Project supported by the National Natural Science Foundation of China (Grant No. 11074050).

  5. Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.

    PubMed

    Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David

    2010-09-27

    We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.

  6. The effect of inharmonic partials on pitch of piano tones

    NASA Astrophysics Data System (ADS)

    Anderson, Brian E.; Strong, William J.

    2005-05-01

    Piano tones have partials whose frequencies are sharp relative to harmonic values. A listening test was conducted to determine the effect of inharmonicity on pitch for piano tones in the lowest three octaves of a piano. Nine real tones from the lowest three octaves of a piano were analyzed to obtain frequencies, relative amplitudes, and decay rates of their partials. Synthetic inharmonic tones were produced from these results. Synthetic harmonic tones, each with a twelfth of a semitone increase in the fundamental, were also produced. A jury of 21 listeners matched the pitch of each synthetic inharmonic tone to one of the synthetic harmonic tones. The effect of the inharmonicity on pitch was determined from an average of the listeners' results. For the nine synthetic piano tones studied, pitch increase ranged from approximately two and a half semitones at low fundamental frequencies to an eighth of a semitone at higher fundamental frequencies. .

  7. Solid-state NMR heteronuclear coherence transfer using phase and amplitude modulated rf irradiation at the Hartmann Hahn sideband conditions

    NASA Astrophysics Data System (ADS)

    Bjerring, Morten; Nielsen, Niels Chr.

    2003-12-01

    An improved variant of the popular double cross-polarization (DCP) experiment for heteronuclear dipolar recoupling in solid-state NMR spectroscopy under magic-angle-spinning is introduced. By simple phase and amplitude modulation of the rf irradiation at the Hartman-Hahn sideband conditions, the new pulse sequence, dubbed iDCP, enables broadband excitation with the high efficiency of γ-encoded coherence transfer. The efficiency and robustness of iDCP toward isotropic chemical shift variations and chemical shift anisotropies, in the order typically applying for the backbone atoms in uniformly 13C, 15N-labeled proteins, is demonstrated numerically and experimentally by 15N to 13C coherence transfer for 15N-labeled N-Ac- L-valyl- L-leucine and 13C, 15N-labeled- L-threonine.

  8. Phase reduction of a limit cycle oscillator perturbed by a strong amplitude-modulated high-frequency force.

    PubMed

    Pyragas, Kestutis; Novičenko, Viktor

    2015-07-01

    The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective phase response curve. We show that if the effective phase response curve is everywhere positive (negative), then an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower) than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.

  9. Complex linear minimum mean-squared-error equalization of spatially quadrature-amplitude-modulated signals in holographic data storage

    NASA Astrophysics Data System (ADS)

    Sato, Takanori; Kanno, Kazutaka; Bunsen, Masatoshi

    2016-09-01

    We applied complex linear minimum mean-squared-error equalization to spatially quadrature-amplitude-modulated signals in holographic data storage (HDS). The equalization technique can improve dispersion in constellation outputs due to intersymbol interference. We confirm the effectiveness of the equalization technique in numerical simulations and basic optical experiments. Our numerical results have shown that intersymbol interference of a retrieved signal in a HDS system can be improved by using the equalization technique. In our experiments, a mean squared error (MSE), which indicates the deviation from an ideal signal, has been used for quantitatively evaluating the dispersion of equalized signals. Our equalization technique has been able to improve the MSE. However, symbols in the equalized signal have remained inseparable. To further improve the MSE and make the symbols separable, reducing errors in repeated measurements is our future task.

  10. The effect of microphone wind noise on the amplitude modulation of wind turbine noise and its mitigation.

    PubMed

    Kendrick, Paul; von Hünerbein, Sabine; Cox, Trevor J

    2016-07-01

    Microphone wind noise can corrupt outdoor recordings even when wind shields are used. When monitoring wind turbine noise, microphone wind noise is almost inevitable because measurements cannot be made in still conditions. The effect of microphone wind noise on two amplitude modulation (AM) metrics is quantified in a simulation, showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can result. As microphone wind noise is intermittent, a wind noise detection algorithm is used to automatically find uncorrupted sections of the recording, and so recover the true AM metrics to within ±2/±0.5 dBA. PMID:27475217

  11. Bi-stability of amplitude modulation AFM in air: deterministic and stochastic outcomes for imaging biomolecular systems.

    PubMed

    Santos, Sergio; Barcons, Victor; Font, Josep; Thomson, Neil H

    2010-06-01

    The dynamics of the oscillating microcantilever for amplitude modulation atomic force microscopy (AM AFM) operating in air is well understood theoretically but the experimental outcomes are still emerging. We use double-stranded DNA on mica as a model biomolecular system for investigating the connection between theory and experiment. A demonstration that the switching between the two cantilever oscillation states is stochastic in nature is achieved, and it can be induced by means of topographical anomalies on the surface. Whether one or the other attractor basin is accessed depends on the tip-sample separation history used to achieve the imaging conditions, and we show that the behaviour is reproducible when the tip is stable and well characterized. Emergence of background noise occurs in certain regions of parameter space regardless of whether two cantilever oscillation states coexist. The low state has been explored in detail and we note that at low to intermediate values of the free amplitude, noise-free imaging is achieved. The outcomes shown here are general and demonstrate that a thorough and systematic experimental approach in conjunction with standard modelling gives insight into the mechanisms behind image contrast formation in AM AFM in air. PMID:20453275

  12. Bi-stability of amplitude modulation AFM in air: deterministic and stochastic outcomes for imaging biomolecular systems.

    PubMed

    Santos, Sergio; Barcons, Victor; Font, Josep; Thomson, Neil H

    2010-06-01

    The dynamics of the oscillating microcantilever for amplitude modulation atomic force microscopy (AM AFM) operating in air is well understood theoretically but the experimental outcomes are still emerging. We use double-stranded DNA on mica as a model biomolecular system for investigating the connection between theory and experiment. A demonstration that the switching between the two cantilever oscillation states is stochastic in nature is achieved, and it can be induced by means of topographical anomalies on the surface. Whether one or the other attractor basin is accessed depends on the tip-sample separation history used to achieve the imaging conditions, and we show that the behaviour is reproducible when the tip is stable and well characterized. Emergence of background noise occurs in certain regions of parameter space regardless of whether two cantilever oscillation states coexist. The low state has been explored in detail and we note that at low to intermediate values of the free amplitude, noise-free imaging is achieved. The outcomes shown here are general and demonstrate that a thorough and systematic experimental approach in conjunction with standard modelling gives insight into the mechanisms behind image contrast formation in AM AFM in air.

  13. An Asymmetry in the Automatic Detection of the Presence or Absence of a Frequency Modulation within a Tone: A Mismatch Negativity Study

    PubMed Central

    Timm, Jana; Weise, Annekathrin; Grimm, Sabine; Schröger, Erich

    2011-01-01

    The infrequent occurrence of a transient feature (deviance; e.g., frequency modulation, FM) in one of the regular occurring sinusoidal tones (standards) elicits the deviance related mismatch negativity (MMN) component of the event-related brain potential. Based on a memory-based comparison, MMN reflects the mismatch between the representations of incoming and standard sounds. The present study investigated to what extent the infrequent exclusion of an FM is detected by the MMN system. For that purpose we measured MMN to deviances that either consisted of the exclusion or inclusion of an FM at an early or late position within the sound that was present or absent, respectively, in the standard. According to the information-content hypothesis, deviance detection relies on the difference in informational content of the deviant relative to that of the standard. As this difference between deviants with FM and standards without FM is the same as in the reversed case, comparable MMNs should be elicited to FM inclusions and exclusions. According to the feature-detector hypothesis, however, the deviance detection depends on the increased activation of feature detectors to additional sound features. Thus, rare exclusions of the FM should elicit no or smaller MMN than FM inclusions. In passive listening condition, MMN was obtained only for the early inclusion, but not for the exclusions nor for the late inclusion of an FM. This asymmetry in automatic deviance detection seems to partly reflect the contribution of feature detectors even though it cannot fully account for the missing MMN to late FM inclusions. Importantly, the behavioral deviance detection performance in the active listening condition did not reveal such an asymmetry, suggesting that the intentional detection of the deviants is based on the difference in informational content. On a more general level, the results partly support the “fresh-afferent” account or an extended memory-comparison based account of MMN

  14. Gas Phase Photoacoustic Spectroscopy in the long-wave IR using Quartz Tuning Forks and Amplitude Modulated Quantum Cascade Lasers

    SciTech Connect

    Wojcik, Michael D.; Phillips, Mark C.; Cannon, Bret D.

    2006-12-31

    A paper to accompany a 20 minute talk about the progress of a DARPA funded project called LPAS. ABSTRACT: We demonstrate the performance of a novel long-wave infrared photoacoustic laser absorbance spectrometer for gas-phase species using an amplitude modulated (AM) quantum cascade (QC) laser and a quartz tuning fork microphone. Photoacoustic signal was generated by focusing the output of a Fabry-Perot QC laser operating at 8.41 micron between the legs of a quartz tuning fork which served as a transducer for the transient acoustic pressure wave. The QC laser was modulated at the resonant frequency of the tuning fork (32.8 kHz). This sensor was calibrated using the infrared absorber Freon-134a by performing a simultanious absorption measurement using a 35 cm absorption cell. The NEAS of this instrument was determined to be 2 x 10^-8 W cm^-1 /Hz^1/2 and the fundamental sensitivity of this technique is limited by the noise floor of the tuning fork itself.

  15. Gas Phase Photoacoustic Sensor at 8.41 mu m Using Quartz Tuning Forks and Amplitude Modulated Quantum Cascade Lasers

    SciTech Connect

    Wojcik, Michael D.; Phillips, Mark C.; Cannon, Bret D.; Taubman, Matthew S.

    2006-10-01

    We demonstrate the performance of a novel long-wave infrared photoacoustic laser absorbance spectrometer for gas-phase species using an amplitude modulated (AM) quantum cascade (QC) laser and a quartz tuning fork microphone. Photoacoustic signal was generated by focusing the output of a Fabry-Perot QC laser operating at 8.41 ?m between the legs of a quartz tuning fork which served as a transducer for the transient acoustic pressure wave. The QC laser was modulated at the resonant frequency of the tuning fork (32.8 kHz) and delivered a modest 5.3 mW at the tuning fork. This spectrometer was calibrated using the infrared absorber Freon-134a by performing a simultaneous absorption measurement using a 35 cm absorption cell. The NEAS of this instrument was determined to be 2 x 10{sup -8} W cm-1 Hz{sup -1/2}. A corresponding theoretical analysis of the instrument sensitivity is presented and is capable of quantitatively reproducing the experimental NEAS, indicating that the fundamental sensitivity of this technique is limited by the noise floor of the tuning fork itself.

  16. Noninvasive Focused Ultrasound Stimulation Can Modulate Phase-Amplitude Coupling between Neuronal Oscillations in the Rat Hippocampus

    PubMed Central

    Yuan, Yi; Yan, Jiaqing; Ma, Zhitao; Li, Xiaoli

    2016-01-01

    Noninvasive focused ultrasound stimulation (FUS) can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC) between neuronal oscillations is tightly associated with cognitive processes, including learning, attention, and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9, 9.6, and 19.2 W/cm2). The local field potentials (LFPs) in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4–8 Hz) and gamma (30–80 Hz) bands and between the alpha (9–13 Hz) and ripple (81–200 Hz) bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity. PMID:27499733

  17. Bounds and Simulation Results of 32-ary and 64-ary Quadrature Amplitude Modulation for Broadband-ISDN via Satellite

    NASA Technical Reports Server (NTRS)

    Kifle, Muli; Vanderaar, Mark

    1994-01-01

    Union bounds and Monte Carlo simulation Bit-Error-Rate (BER) performance results are presented for various 32-ary and 64-ary Quadrature Amplitude Modulation (QAM) schemes. Filtered and unfiltered modulation formats are compared for the best packing arrangement in peak power limited systems. It is verified that circular constellations which populate as many symbols as possible at the peak magnitude offer the best performance. For example: a 32-ary QAM scheme based on concentric circles offers about 1.05 dB better peak power improvement at a BER of 10(exp -6) over the scheme optimized for average power using triangular symbol packing. This peak power improvement increases to 1.25 dB for comparable 64-ary QAM schemes. This work serves as a precursor to determine the feasibility of a combined modem/codec that can accommodate Broadband Integrated Services Digital Network (B-ISDN) at a rate of 155.52 Mbps through typical transponder bandwidths of 36 MHz and 54 MHz.

  18. Auditory distance coding in rabbit midbrain neurons and human perception: monaural amplitude modulation depth as a cue.

    PubMed

    Kim, Duck O; Zahorik, Pavel; Carney, Laurel H; Bishop, Brian B; Kuwada, Shigeyuki

    2015-04-01

    Mechanisms underlying sound source distance localization are not well understood. Here we tested the hypothesis that a novel mechanism can create monaural distance sensitivity: a combination of auditory midbrain neurons' sensitivity to amplitude modulation (AM) depth and distance-dependent loss of AM in reverberation. We used virtual auditory space (VAS) methods for sounds at various distances in anechoic and reverberant environments. Stimulus level was constant across distance. With increasing modulation depth, some rabbit inferior colliculus neurons increased firing rates whereas others decreased. These neurons exhibited monotonic relationships between firing rates and distance for monaurally presented noise when two conditions were met: (1) the sound had AM, and (2) the environment was reverberant. The firing rates as a function of distance remained approximately constant without AM in either environment and, in an anechoic condition, even with AM. We corroborated this finding by reproducing the distance sensitivity using a neural model. We also conducted a human psychophysical study using similar methods. Normal-hearing listeners reported perceived distance in response to monaural 1 octave 4 kHz noise source sounds presented at distances of 35-200 cm. We found parallels between the rabbit neural and human responses. In both, sound distance could be discriminated only if the monaural sound in reverberation had AM. These observations support the hypothesis. When other cues are available (e.g., in binaural hearing), how much the auditory system actually uses the AM as a distance cue remains to be determined.

  19. Auditory Distance Coding in Rabbit Midbrain Neurons and Human Perception: Monaural Amplitude Modulation Depth as a Cue

    PubMed Central

    Zahorik, Pavel; Carney, Laurel H.; Bishop, Brian B.; Kuwada, Shigeyuki

    2015-01-01

    Mechanisms underlying sound source distance localization are not well understood. Here we tested the hypothesis that a novel mechanism can create monaural distance sensitivity: a combination of auditory midbrain neurons' sensitivity to amplitude modulation (AM) depth and distance-dependent loss of AM in reverberation. We used virtual auditory space (VAS) methods for sounds at various distances in anechoic and reverberant environments. Stimulus level was constant across distance. With increasing modulation depth, some rabbit inferior colliculus neurons increased firing rates whereas others decreased. These neurons exhibited monotonic relationships between firing rates and distance for monaurally presented noise when two conditions were met: (1) the sound had AM, and (2) the environment was reverberant. The firing rates as a function of distance remained approximately constant without AM in either environment and, in an anechoic condition, even with AM. We corroborated this finding by reproducing the distance sensitivity using a neural model. We also conducted a human psychophysical study using similar methods. Normal-hearing listeners reported perceived distance in response to monaural 1 octave 4 kHz noise source sounds presented at distances of 35–200 cm. We found parallels between the rabbit neural and human responses. In both, sound distance could be discriminated only if the monaural sound in reverberation had AM. These observations support the hypothesis. When other cues are available (e.g., in binaural hearing), how much the auditory system actually uses the AM as a distance cue remains to be determined. PMID:25834060

  20. Responses of inferior collicular neurones of bats to tone bursts with different rise times

    PubMed Central

    Suga, N.

    1971-01-01

    1. A study was made of the responses of single neurones in the inferior colliculus of bats to tone bursts with different rise times (or with different rates of amplitude increase) in order to determine whether the neurones were specialized for analysis of amplitude-modulated sound, especially the rising phase in amplitude. 2. The response patterns of neurones which showed phasic on-responses usually did not change with rise time, although the response patterns of some neurones changed from phasic on-responses to inhibitory responses. 3. The thresholds of responses to tone bursts increased when the rise time was lengthened. The amount of increase greatly differed from neurone to neurone. For the excitation of neurones which showed a large increase in threshold, the stimulus amplitude should quickly increase in amplitude. For tone bursts with a short rise time, some neurones showed an upper-threshold above which the sounds failed to excite them. The upper-threshold usually disappeared when the rise time was lengthened. For the excitation of neurones which showed an upper-threshold, the rate of amplitude increase and its extent were very important parameters. 4. Lengthening the rise time of a tone burst from 0·5 to 98 msec caused various types of change in the excitatory area. In some cases, there was a diminution of the area and, in others, there was an expansion of the area. Neurones showing these changes may be considered to be specialized for responding to tone bursts with either a rapid or slow increase in amplitude. 5. Changes with rise time occurred not only in the excitatory area, but also in the inhibitory area. The change in the inhibitory area of a given neurone, however, was not necessarily the same as that in the excitatory area. 6. The latency of response usually changed as a function of stimulus amplitude and rise time. In 26% of the neurones studied, however, the latency was relatively constant regardless of stimulus amplitude and rise time. Some of

  1. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration

    PubMed Central

    Watson, Meghan; Sawan, Mohamad

    2016-01-01

    Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP) recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100–200 Hz or pulse duration from 0.18–0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters. PMID:27442588

  2. Effect of tones on vocal attack time in Cantonese speakers.

    PubMed

    Ma, Estella P-M; Baken, R J; Roark, Rick M; Li, P-M

    2012-09-01

    Vocal attack time (VAT) is the time lag between the growth of the sound pressure signal and the development of physical contact of vocal folds at vocal initiation. It can be derived by a cross-correlation of short-time amplitude changes occurring in the sound pressure and electroglottographic (EGG) signals. Cantonese is a tone language in which tone determines the lexical meaning of the syllable. Such linguistic function of tone has implications for the physiology of tone production. The aim of the present study was to investigate the possible effects of Cantonese tones on VAT. Sound pressure and EGG signals were simultaneously recorded from 59 native Cantonese speakers (31 females and 28 males). The subjects were asked to read aloud 12 disyllabic words comprising homophone pairs of the six Cantonese lexical tones. Results revealed a gender difference in VAT values, with the mean VAT significantly smaller in females than in males. There was also a significant difference in VAT values between the two tone categories, with the mean VAT values of the three level tones (tone 1, 3, and 6) significantly smaller than those of the three contour tones (tone 2, 4, and 5). The findings support the notion that norms and interpretations based on nontone European languages may not be directly applied to tone languages.

  3. Cloud Atlas: Discovery of Patchy Clouds and High-amplitude Rotational Modulations in a Young, Extremely Red L-type Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Lew, Ben W. P.; Apai, Daniel; Zhou, Yifan; Schneider, Glenn; Burgasser, Adam J.; Karalidi, Theodora; Yang, Hao; Marley, Mark S.; Cowan, Nicolas B.; Bedin, Luigi R.; Metchev, Stanimir A.; Radigan, Jacqueline; Lowrance, Patrick J.

    2016-10-01

    Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs, but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here, we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-K s = 2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy, we find a best-fit rotational period (13.20 ± 0.14 hr) with a larger amplitude at 1.1 μm than at 1.7 μm. This is the third-largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentative trend between the wavelength dependence of relative amplitude, possibly proxy for small dust grains lofted in the upper atmosphere, and the likelihood of large-amplitude variability. By assuming forsterite as a haze particle, we successfully explain the wavelength-dependent amplitude with submicron-sized haze particle sizes of around 0.4 μm. W0047 links the earlier spectral and later spectral type brown dwarfs in which rotational modulations have been observed; the large amplitude variations in this object make this a benchmark brown dwarf for the study of cloud properties close to the L/T transition.

  4. Dual-pilot tone calibration technique. [to reduce multipath fading effects at mobile satellite link receiver

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.

    1986-01-01

    Pilot-based calibration techniques are used to reduce the effects of multipath fading in mobile satellite receivers. One of the more recent of these techniques, namely the tone calibration technique (TCT), suggests transmitting double sideband modulation with the pilot tone located at the center of its spectrum where the amplitude and phase characteristics of the channel are most stable. To 'make room' for the pilot in the presence of the Doppler shift, the equivalent low-pass data sidebands must be shaped so as to have zero response in the neighborhood of dc. Other techniques such as transparent tone-in-band (TTIB) similarly 'notch out' a hole in the center of the data spectrum for location of the pilot. An alternate possibility which is at the same time much more bandwidth efficient than TCT is a dual-pilot tone calibration technique (DPTCT) that symmetrically locates a pair of pilots outside the data spectrum near the band edges of the channel. The operation and performance of DPTCT are analyzed, and its effectiveness is compared to that of the single tone TCT technique.

  5. Eight-state trellis-coded optical modulation with signal constellations of four-dimensional M-ary quadrature-amplitude modulation.

    PubMed

    Ishimura, Shota; Kikuchi, Kazuro

    2015-03-01

    We apply the eight-state trellis-coded modulation (TCM) using signal constellations of four-dimensional M-ary quadrature-amplitude modulation (4D-MQAM) to optical communication systems for the first time to our knowledge. In the TCM scheme, the free distance of the trellis diagram is equal to the minimum distance between constellation points in partitioned subsets, which enlarges the coding gain effectively. In fact, its asymptotic power efficiency is 3-dB larger than that of the set-partitioned 4D-MQAM (SP-4D-MQAM) format, while their spectral efficiencies are the same. Such theoretical predictions are confirmed through computer simulations on eight-state TCM with constellations of 4D-4QAM (i.e., 4D quadrature phase-shift keying: 4D-QPSK) and 4D-16QAM. In particular, eight-state TCM with 4D-QPSK constellations is practically important because of its simple encoder structure, relatively low computational cost, and high coding gain against dual-polarization QPSK (DP-QPSK) and SP-4D-QPSK. Through measurements of its bit-error rate (BER) performance, we confirm that the coding gain against DP-QPSK is about 3 dB at BER=10(-3).

  6. Application of amplitude-modulated radiofrequency fields to the magic-angle spinning NMR of spin- {7}/{2} nuclei

    NASA Astrophysics Data System (ADS)

    Madhu, P. K.; Johannessen, Ole G.; Pike, Kevin J.; Dupree, Ray; Smith, Mark E.; Levitt, Malcolm H.

    2003-08-01

    We report pulse sequences for the sensitivity enhancement of magic-angle spinning and multiple-quantum magic-angle spinning spectra of spin- {7}/{2} systems. Sensitivity enhancement is obtained with the use of fast amplitude-modulated (FAM) radiofrequency pulses. In one-dimensional magic-angle spinning experiments, signal enhancement of 3 is obtained by a FAM pulse followed by a soft 90° pulse. In two-dimensional multiple-quantum magic-angle spinning experiments, FAM pulses are used for both the excitation of multiple-quantum coherences and for their conversion into observable single-quantum coherences. The observed signal enhancements are 2.2 in 3Q experiments, 3.1 in 5Q experiments, and 4.1 in 7Q experiments, compared to the conventional two-pulse scheme. The pulse schemes are demonstrated on the 45Sc NMR of Sc 2(SO 4) 3 · 5H 2O and the 139La NMR of LaAlO 3. We also demonstrate the generation of FAM pulses by double-frequency irradiation.

  7. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR.

    PubMed

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr; Nielsen, Anders B

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization ((RESPIRATION)CP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the (RESPIRATION)CP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous (15)N → (13)CO and (15)N → (13)Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability. PMID:27608995

  8. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Marutschke, Christoph; Walters, Deron; Cleveland, Jason; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika

    2014-08-01

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic—yet decisive—question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.

  9. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy.

    PubMed

    Marutschke, Christoph; Walters, Deron; Walters, Deron; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika

    2014-08-22

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic - yet decisive - question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface. PMID:25074402

  10. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2015-01-01

    Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6).

  11. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR

    NASA Astrophysics Data System (ADS)

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr.; Nielsen, Anders B.

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization (RESPIRATIONCP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the RESPIRATIONCP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous 15N → 13CO and 15N → 13Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.

  12. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy.

    PubMed

    Marutschke, Christoph; Walters, Deron; Walters, Deron; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika

    2014-08-22

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic - yet decisive - question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.

  13. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography

    PubMed Central

    Nguyen, Thu-Mai; Arnal, Bastien; Song, Shaozhen; Huang, Zhihong; Wang, Ruikang K.; O’Donnell, Matthew

    2015-01-01

    Abstract. Investigating the elasticity of ocular tissue (cornea and intraocular lens) could help the understanding and management of pathologies related to biomechanical deficiency. In previous studies, we introduced a setup based on optical coherence tomography for shear wave elastography (SWE) with high resolution and high sensitivity. SWE determines tissue stiffness from the propagation speed of shear waves launched within tissue. We proposed acoustic radiation force to remotely induce shear waves by focusing an ultrasound (US) beam in tissue, similar to several elastography techniques. Minimizing the maximum US pressure is essential in ophthalmology for safety reasons. For this purpose, we propose a pulse compression approach. It utilizes coded US emissions to generate shear waves where the energy is spread over a long emission, and then numerically compressed into a short, localized, and high-energy pulse. We used a 7.5-MHz single-element focused transducer driven by coded excitations where the amplitude is modulated by a linear frequency-swept square wave (1 to 7 kHz). An inverse filter approach was used for compression. We demonstrate the feasibility of performing shear wave elastography measurements in tissue-mimicking phantoms at low US pressures (mechanical index <0.6). PMID:25554970

  14. [Dose-dependent tazepam modulation of amplitude-temporal characteristics of thalamocortical responses and the constant potential of the sensorimotor cortex in rabbits at eye opening].

    PubMed

    Shimko, I A; Fokin, V F

    2000-01-01

    The pronounced benzodiazepine (antiphobic) modulation of the amplitude-temporal parameters of different components of the thalamocortical responses (TCR) of the sensorimotor cortex is observed in rabbits in their early postnatal ontogeny. This modulation is of a dose-dependent character and is registered not after the injection of tazepam in a concentration of the "therapeutic tranquilizing window" but also in the psychotoxic plasma range. A gradual increase in blood tazepam concentration in a young rabbit pup is accompanied by the wave-like and differential decrease in the amplitude of the second and third positive (P2 and P3) and third negative (N3) TCR components, while the second negative (N2) and fourth positive (P4) components tend to a wave-like increase. The dose-dependent dynamics of tazepam modulation of the P2, P3, and N3 latencies is characterized by a wave-like and differential increase. The latency of P4 decreases slightly and that of the N2 increases with a low degree of significance. The selective dynamics of benzodiazepine modulation appears to be related with peculiarities of the electrogenesis of each of the components. The dose-dependent modulation of the level of cortical DC potential is of the same character as the respective amplitude changes in P2, P3, and N3, but its fluctiatuons are more pronounced.

  15. Eliminating the effect of phase shift between injection current and amplitude modulation in DFB-LD WMS for high-precision measurement.

    PubMed

    Wei, Wei; Chang, Jun; Liu, Yuanyuan; Chen, Xi; Liu, Zhaojun; Qin, Zengguang; Wang, Qiang

    2016-05-01

    Phase shift between the injection current and amplitude modulation due to the characteristics of diode lasers is discussed in this paper. Phase shift has no apparent regularity, but it has an obvious effect on measurement results, especially for high-precision measurement. A new method is proposed to suppress the influence of this phase shift. Water vapor is chosen as the target gas for experiment in this paper. A new detection system with the new method applied is presented and shows much better performance than the traditional wavelength modulation spectroscopy detection system. Phase shift fluctuation between the injection current and amplitude modulation is suppressed from 0.72 deg to 0.07 deg; accuracy is improved from 0.88 ppm to 0.16 ppm.

  16. Prosodic boundary tone classification with voice quality features.

    PubMed

    Han, Ran; Choi, Jeung-Yoon

    2013-04-01

    Voice quality features such as harmonic structure and spectral tilt are investigated in classifying vocalic segments into one of five boundary tones in the tones and break indices system. Static and nonstatic features are examined, and performance is compared with features related to duration, pitch, and amplitude, along with adjacent segment characteristics. From statistical tests, voice quality features are found to be significant for classifying prosodic boundary tones, and especially for distinguishing low-tone boundaries. Classification results using features selected from Kruskal-Wallis tests, Akaike information criterion values, and from sequential forward search show that using voice quality features leads to lower balanced error rates.

  17. Are Tones Phones?

    ERIC Educational Resources Information Center

    Burnham, Denis; Kim, Jeesun; Davis, Chris; Ciocca, Valter; Schoknecht, Colin; Kasisopa, Benjawan; Luksaneeyanawin, Sudaporn

    2011-01-01

    The psycholinguistic status of lexical tones and phones is indexed via phonological and tonological awareness (PA and TA, respectively) using Thai speech. In Experiment 1 (Thai participants, alphabetic script and orthographically explicit phones/tones), PA was better than TA in children and primary school-educated adults, and TA improved to PA…

  18. A neural mechanism of phase-locked responses to sinusoidally amplitude-modulated signals in the inferior colliculus.

    PubMed

    Kato, Takayuki; Fujita, Kazuhisa; Kashimori, Yoshiki

    2015-08-01

    The central nucleus of the inferior colliculus (ICc) is an auditory region that receives convergent inputs from a large number of lower auditory nuclei. ICc neurons phase-lock to low frequencies of sinusoidally amplitude-modulated (SAM) signals but have a different mechanism in the phase-locking from that in neurons of lower nuclei. In the mustached bat, the phase-locking ability in lower nuclei is created by the coincidence of phase-locked excitatory and inhibitory inputs that have slightly different latencies. In contrast, the phase-locking property of ICc neurons is little influenced by the blocking of inhibitory synapses. Moreover, ICc neurons exhibit different characteristics in the spike patterns and synchronicity, classified here by three types of ICc neurons, or sustained, onset, and non-onset phase-locking neurons. However it remains unclear how ICc neurons create the phase-locking ability and the different characteristics. To address this issue, we developed a model of ICc neuronal population. Using this model, we show that the phase-locking ability of ICc neurons to low SAM frequencies is created by an intrinsic membrane property of ICc neuron, limited by inhibitory ion channels. We also show that response characteristics of the three types of neurons arise from the difference in an inhibitory effect sensitive to SAM frequencies. Our model reproduces well the experimental results observed in the mustached bat. These findings provide necessary conditions of how ICc neurons can give rise to the phase-locking ability and characteristic responses to low SAM frequencies. PMID:26032987

  19. Amplitude modulation drive to rectangular-plate linear ultrasonic motors with vibrators dimensions 8 mm x 2.16 mm X 1 mm.

    PubMed

    Ming, Yang; Hanson, Ben; Levesley, Martin C; Walker, Peter G; Watterson, Kevin G

    2006-12-01

    In this paper, to exploit the contribution from not only the stators but also from other parts of miniature ultrasonic motors, an amplitude modulation drive is proposed to drive a miniature linear ultrasonic motor consisting of two rectangular piezoelectric ceramic plates. Using finite-element software, the first longitudinal and second lateral-bending frequencies of the vibrator are shown to be very close when its dimensions are 8 mm x 2.16 mm x 1 mm. So one single frequency power should be able to drive the motor. However, in practice the motor is found to be hard to move with a single frequency power because of its small vibration amplitudes and big frequency difference between its longitudinal and bending resonance, which is induced by the boundary condition variation. To drive the motor effectively, an amplitude modulation drive is used by superimposing two signals with nearly the same frequencies, around the resonant frequency of the vibrators of the linear motor. When the amplitude modulation frequency is close to the resonant frequency of the vibrator's surroundings, experimental results show that the linear motor can move back and forward with a maximum thrust force (over 0.016 N) and a maximum velocity (over 50 mm/s).

  20. Antimultipath communication by injecting tone into null in signal spectrum

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Inventor)

    1987-01-01

    A transmitter for digital radio communication creates a null by balanced encoding of data modulated on an RF carrier, and inserts a calibration tone within the null. This is accomplished by having the calibration tone coincide in phase and frequency with the transmitted radio frequency output, for coherent demodulation of data at the receiver where the tone calibration signal is extracted and used for multipath fading compensation.

  1. Investigation of the effects of continuous-wave, pulse- and amplitude-modulated microwaves on single excitable cells of Chara corallina.

    PubMed

    Liu, L M; Garber, F; Cleary, S F

    1982-01-01

    Single internodal excitable cells of Chara corallina were exposed to CW, pulse-modulated and sinusoidally modulated S-band microwave fields in a temperature-controlled waveguide exposure chamber. All electrical measurements were made external to the waveguide (ie, under no impressed microwave field). The dependent variables measured before, during, and after exposure to the S-band microwave fields included: resting potential, amplitude of the action potential, rise and decay time of the action potential, conduction velocity, and excitability. Cells maintained at 22 +/- 0.1 degrees C during exposure showed no consistent or statistically significant microwave-dependent alterations in any of the dependent variables.

  2. Neural response to modulating the probability that actions of self or other result in auditory tones: A parametric fMRI study into causal ambiguity.

    PubMed

    de Bézenac, Christophe E; Sluming, Vanessa; Gouws, André; Corcoran, Rhiannon

    2016-09-01

    In normal circumstances we can easily distinguish between changes to the external world brought about by our own actions from those with external causes. However, in certain contexts our sense of ownership and agency over acts is not so clear. Neuroimaging studies have implicated a number of regions in the sense of agency, some of which have been shown to vary continuously with action-outcome discordance. However, little is known about dynamic, ambiguous contexts characterised by a lack of information for self-other differentiation, yet such ambiguous states are important in relation to symptoms and levels of consciousness that characterise certain mental health conditions. With a block-design fMRI paradigm, we investigated neural responses to changes in the probability that a participant's irregular finger taps over 12s would result in auditory tones as opposed to tones generated by 'another's finger taps'. The main findings were that misattribution increased in ambiguous conditions where the probability of a tone belonging to self and other was equal. Task-sensitive brain regions, previously identified in self-agency, motor cognition, and ambiguity processing, showed a quadratic response to our self-to-other manipulation, with particular sensitivity to self-control. Task performance (low error and bias) was related to attenuated response in ambiguous conditions while increased response in regions associated with the default mode network was associated with greater overall error and bias towards other. These findings suggest that causal ambiguity as it occurs over time is a prominent feature in sense of agency, one that may eventually contribute to a more comprehensive understanding of positive symptoms of psychosis.

  3. Neural response to modulating the probability that actions of self or other result in auditory tones: A parametric fMRI study into causal ambiguity.

    PubMed

    de Bézenac, Christophe E; Sluming, Vanessa; Gouws, André; Corcoran, Rhiannon

    2016-09-01

    In normal circumstances we can easily distinguish between changes to the external world brought about by our own actions from those with external causes. However, in certain contexts our sense of ownership and agency over acts is not so clear. Neuroimaging studies have implicated a number of regions in the sense of agency, some of which have been shown to vary continuously with action-outcome discordance. However, little is known about dynamic, ambiguous contexts characterised by a lack of information for self-other differentiation, yet such ambiguous states are important in relation to symptoms and levels of consciousness that characterise certain mental health conditions. With a block-design fMRI paradigm, we investigated neural responses to changes in the probability that a participant's irregular finger taps over 12s would result in auditory tones as opposed to tones generated by 'another's finger taps'. The main findings were that misattribution increased in ambiguous conditions where the probability of a tone belonging to self and other was equal. Task-sensitive brain regions, previously identified in self-agency, motor cognition, and ambiguity processing, showed a quadratic response to our self-to-other manipulation, with particular sensitivity to self-control. Task performance (low error and bias) was related to attenuated response in ambiguous conditions while increased response in regions associated with the default mode network was associated with greater overall error and bias towards other. These findings suggest that causal ambiguity as it occurs over time is a prominent feature in sense of agency, one that may eventually contribute to a more comprehensive understanding of positive symptoms of psychosis. PMID:27381929

  4. Negative-tone 193-nm resists

    NASA Astrophysics Data System (ADS)

    Cho, Sungseo; Vander Heyden, Anthony; Byers, Jeff D.; Willson, C. Grant

    2000-06-01

    A great deal of progress has been made in the design of single layer positive tone resists for 193 nm lithography. Commercial samples of such materials are now available from many vendors. The patterning of certain levels of devices profits from the use of negative tone resists. There have been several reports of work directed toward the design of negative tones resists for 193 nm exposure but, none have performed as well as the positive tone systems. Polymers with alicyclic structures in the backbone have emerged as excellent platforms from which to design positive tone resists for 193 nm exposure. We now report the adaptation of this class of polymers to the design of high performance negative tone 193 nm resists. New systems have been prepared that are based on a polarity switch mechanism for modulation of the dissolution rate. The systems are based on a polar, alicyclic polymer backbone that includes a monomer bearing a glycol pendant group that undergoes the acid catalyzed pinacol rearrangement upon exposure and bake to produce the corresponding less polar ketone. This monomer was copolymerized with maleic anhydride and a norbornene bearing a bis-trifluoromethylcarbinol. The rearrangement of the copolymer was monitored by FT-IR as a function of temperature. The synthesis of the norbornene monomers will be presented together with characterization of copolymers of these monomers with maleic anhydride. The lithographic performance of the new resist system will also be presented.

  5. Tone and Depression in Phuthi

    ERIC Educational Resources Information Center

    Donnelly, Simon

    2009-01-01

    This paper outlines key tone and voice quality properties in Phuthi, a Nguni (Bantu) language spoken in southern Lesotho and the northern Transkei (South Africa). The focus is the phonological presence of high tone (H) in Phuthi, and its interaction with other tones, both H and L. From verbs that employ a single H tone sponsor (lexical paradigms),…

  6. Fast amplitude-modulated pulse trains with frequency sweep (SW-FAM) in static NMR of half-integer spin quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Bräuniger, Thomas; Hempel, Günter; Madhu, P. K.

    2006-07-01

    In solid-state NMR of quadrupolar nuclei with half-integer spin I, fast amplitude-modulated (FAM) pulse trains have been utilised to enhance the intensity of the central-transition signal, by transferring spin population from the satellite transitions. In this paper, the signal-enhancement performance of the recently introduced SW-FAM pulse train with swept modulation frequency [T. Bräuniger, K. Ramaswamy, P.K. Madhu, Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses, Chem. Phys. Lett. 383 (2004) 403-410] is explored in more detail for static spectra. It is shown that by sweeping the modulation frequencies linearly over the pulse pairs (SW (1/τ)-FAM), the shape of the frequency distribution is improved in comparison to the original pulse scheme (SW (τ)-FAM). For static spectra of 27Al (I = 5/2), better signal-enhancement performance is found for the SW (1/τ)-FAM sequence, as demonstrated both by experiments and numerical simulations.

  7. Two-tone intermodulation analysis of communication satellite transponders

    NASA Technical Reports Server (NTRS)

    Riddle, L. P.

    1985-01-01

    Amplitudes of the in-band intermodulation products that arise when two equal-amplitude sinusoids are transmitted through a satellite transponder can be found from a linear transformation when the transponder characteristic is represented by a polynomial. Conversely, the nonlinearity that produces the intermodulation levels measured in a two-tone test can be found from the inverse transformation. As an application, the bandpass nonlinearity is deduced that gives rise to two-tone IM amplitudes that were measured during orbital tests of a satellite transponder, and compared with the measured bandpass characteristic.

  8. Improvement of the transmission performance in multi-IF-over-fiber mobile fronthaul by using tone-reservation technique.

    PubMed

    Sung, Minkyu; Han, Changyo; Cho, Seung-Hyun; Chung, Hwan Seok; Lee, Jong Hyun

    2015-11-16

    We demonstrate the improvement of the transmission performance based on tone-reservation technique in a multiple intermediate-frequency-over-fiber (IFoF) based mobile fronthaul. The tone-reservation technique can suppress nonlinear distortion by eliminating the high peak components of orthogonal frequency-division multiplexing (OFDM) signal. To prevent the regrowth of peak, we employ tone-reservation after multiplexing IF carriers. Furthermore, we use an out-of-band signal as the reserved tones to avoid any modification of a mobile signal. The impact of the number of IF carriers on peak-to-average power ratio (PAPR) characteristics is presented via numerical simulation. For the multi-IFoF based mobile fronthaul, we experimentally investigate the transmission performance of 36-IF carriers of the long term evolution-advanced (LTE-A) signals mapped with 64-quadrature amplitude modulation (QAM). It is clearly observed that the clipping-induced nonlinear distortion is dramatically suppressed by using tone-reservation. As a result, the transmission performance of 36-IF carriers of the LTE-A signal is improved by an error-vector-magnitude (EVM) of 4% (from 9.7% to 5.7%) after 20-km transmission. PMID:26698444

  9. Is the effect of tinnitus on auditory steady-state response amplitude mediated by attention?

    PubMed Central

    Diesch, Eugen; Andermann, Martin; Rupp, Andre

    2012-01-01

    Objectives: Auditory steady-state response (ASSR) amplitude enhancement effects have been reported in tinnitus patients. As ASSR amplitude is also enhanced by attention, the effect of tinnitus on ASSR amplitude could be interpreted as an effect of attention mediated by tinnitus. As N1 attention effects are significantly larger than those on the ASSR, if the effect of tinnitus on ASSR amplitude were due to attention, there should be similar amplitude enhancement effects in tinnitus for the N1 component of the auditory-evoked response. Methods: MEG recordings which were previously examined for the ASSR (Diesch et al., 2010a) were analyzed with respect to the N1m component. Like the ASSR previously, the N1m was analyzed in the source domain (source space projection). Stimuli were amplitude-modulated (AM) tones with one of three carrier frequencies matching the tinnitus frequency or a surrogate frequency 1½ octave above the audiometric edge frequency in controls, the audiometric edge frequency, and a frequency below the audiometric edge. Single AM-tones were presented in a single condition and superpositions of three AM-tones differing in carrier and modulation frequency in a composite condition. Results: In the earlier ASSR study (Diesch et al., 2010a), the ASSR amplitude in tinnitus patients, but not in controls, was significantly larger in the (surrogate) tinnitus condition than in the edge condition. Patients showed less evidence than controls of reciprocal inhibition of component ASSR responses in the composite condition. In the present study, N1m amplitudes elicited by stimuli located at the audiometric edge and at the (surrogate) tinnitus frequency were smaller than N1m amplitudes elicited by sub-edge tones both in patients and controls. The relationship of the N1m response in the composite condition to the N1m response in the single condition indicated that reciprocal inhibition among component N1m responses was reduced in patients compared against controls

  10. Maximum decoding abilities of temporal patterns and synchronized firings: application to auditory neurons responding to click trains and amplitude modulated white noise.

    PubMed

    Gourévitch, Boris; Eggermont, Jos J

    2010-08-01

    Simultaneous recordings of an increasing number of neurons have recently become available, but few methods have been proposed to handle this activity. Here, we extract and investigate all the possible temporal neural activity patterns based on synchronized firings of neurons recorded on multiple electrodes, or based on bursts of single-electrode activity in cat primary auditory cortex. We apply this to responses to periodic click trains or sinusoïdal amplitude modulated noise by obtaining for each pattern its temporal modulation transfer function. An algorithm that maximizes the mutual information between all patterns and stimuli subsequently leads to the identification of patterns that optimally decode modulation frequency (MF). We show that stimulus information contained in multi-electrode synchronized firing is not redundant with single-electrode firings and leads to improved efficiency of MF decoding. We also show that the combined use of firing rate and temporal codes leads to a better discrimination of the MF.

  11. The Effect of Phase and Amplitude Imbalance on the Performance of BPSK/QPSK Communication Systems

    NASA Astrophysics Data System (ADS)

    Tsou, H.

    1997-04-01

    The balanced modulator, which is comprised of two matched amplitude-modulation modules, is widely used in phase-modulated communication systems. In practice, the perfect balance between these amplitude-modulation modules is difficult to maintain, and the amplitude and phase imbalance can cause signal distortion and also introduce an undesired interfering tone signal component when such an unbalanced modulator is used to modulate the data directly onto the RF carrier. The rendered imperfection inevitably degrades the receiver performance and, particularly in a quadrature-phase-shift-keyed (QPSK) system, causes cross-talk between channels. This article describes the error performance of binary-phase-shift-keyed (BPSK) and QPSK signals generated from unbalanced modulators and tracked by the conventional Costas loop and a generalized Costas loop, respectively, with the effect of modulator unbalance on the steady-state lock points of these carrier tracking loops being taken into consideration. Also, a more generalized model that includes the possible phase deviation from the ideal 90-deg separation between the in-phase and quadrature channels of QPSK is considered in this article.

  12. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of

  13. Vagal tone as an index of mental state

    NASA Technical Reports Server (NTRS)

    Porges, Stephen W.

    1988-01-01

    The utility of monitoring oscillations in the heart rate pattern as a window to the brain is discussed as an index of general central nervous system status. Quantification of the amplitude of respiratory sinus arrhythmia provides an accurate index of cardiac vagal tone. A number of studies have demonstrated the validity of this measure; the relationship between flight performance and vagal tone has also been studied. In general, the vagal tone index appears to monitor global states of the central nervous system and may be useful in screening the general state of pilots.

  14. Phonetics and Phonology of Chicahuaxtla Triqui Tones

    ERIC Educational Resources Information Center

    Matsukawa, Kosuke

    2012-01-01

    Chicahuaxtla Triqui (Otomanguean, Mexico) is one of the rare tone languages with five contrastive level tones and its underlying tone system is even more complicated than its surface five-level tone system. The complexity of its underlying tone system has developed through the historical tone shifts from Proto-Triqui. The surface tone system of…

  15. A Low-Cost 16 Quadrature Amplitude Modulation Direct-Detection-Orthogonal Frequency-Division Multiplexing Radio-over-Fiber System Using Low-Cost Direct-Modulation Laser to Generate Optical mm-Wave

    NASA Astrophysics Data System (ADS)

    Nguyen, HoangViet

    2015-07-01

    This article demonstrates a novel scheme to generate 16 quadrature amplitude modulation orthogonal frequency-division multiplexing signals for radio-over-fiber systems using a low-cost direct-modulation laser to generate an optical millimeter-wave. Mathematical analysis of that system is also investigated. The fiber Bragg grating is employed because the repetitive frequency of the radio frequency source and the bandwidth of the optical modulator are largely reduced, and the architecture of the radio-over-fiber system is simpler. Because no expensive broadband external modulator is used, the overall system is considered a low-cost solution. The simple structure and low cost of the radio-over-fiber system is attractive for the future cost-effective systems.

  16. Tones for Profoundly Deaf Tone-Language Speakers.

    ERIC Educational Resources Information Center

    Ching, Teresa

    A study assessed the practical use of the simplified speech pattern approach to teaching lipreading in a tone language by comparing performance using an acoustic hearing-aid and a Sivo-aid in a tone labelling task. After initial assessment, subjects were given training to enhance perception of lexically contrastive tones, then post-tested. The…

  17. Responses of Inferior Colliculus Neurons to Double Harmonic Tones

    PubMed Central

    Li, Hongzhe

    2008-01-01

    The auditory system can segregate sounds that overlap in time and frequency, if the sounds differ in acoustic properties such as fundamental frequency (f0). However, the neural mechanisms that underlie this ability are poorly understood. Responses of neurons in the inferior colliculus (IC) of the anesthetized chinchilla were measured. The stimuli were harmonic tones, presented alone (single harmonic tones) and in the presence of a second harmonic tone with a different f0 (double harmonic tones). Responses to single harmonic tones exhibited no stimulus-related temporal pattern, or in some cases, a simple envelope modulated at f0. Responses to double harmonic tones exhibited complex slowly modulated discharge patterns. The discharge pattern varied with the difference in f0 and with characteristic frequency. The discharge pattern also varied with the relative levels of the two tones; complex temporal patterns were observed when levels were equal, but as the level difference increased, the discharge pattern reverted to that associated with single harmonic tones. The results indicated that IC neurons convey information about simultaneous sounds in their temporal discharge patterns and that the patterns are produced by interactions between adjacent components in the spectrum. The representation is “low-resolution,” in that it does not convey information about single resolved components from either individual sound. PMID:17913991

  18. Distortion-Product Emissions and Pure-Tone Behavioral Thresholds.

    NASA Astrophysics Data System (ADS)

    Harris, Frances Pauline

    Distortion-product emissions (DPEs) are tonal responses that may be detected in the ear canal when the ear is stimulated simultaneously by two tones that are closely spaced in frequency. In experimental animals, DPEs are reduced in amplitude or are eliminated when cochlear function is disrupted. This association has not been investigated in human subjects. This study was designed to investigate the relation of cochlear status, as determined by pure -tone behavioral thresholds, to DPE amplitude in human subjects. Forty men were selected as subjects. Twenty had normal hearing and 20 had high-frequency sensorineural hearing loss. Pure-tone behavioral thresholds were determined using conventional audiometric procedures for eight frequencies from 750 to 8000 Hz. DPEs were generated in the test ear of each subject by stimulating the ear with two tones, f1 and f2. The stimuli were selected to approximate audiometric test frequencies. Responses were detected by a sensitive microphone that was placed in the ear canal and were extracted by spectral analysis. Results of the study indicated that DPE amplitude was associated with pure-tone threshold. When audiometric threshold was <=10 dB HL, DPEs could be elicited at all test frequencies for 98% of subjects in both groups. Mean maximum emission amplitude ranged from 3 to 13 dB SPL across frequency. When pure-tone threshold was above 50 dB HL, DPEs were absent or were significantly attenuated. DPEs varied in amplitude when audiometric threshold was between these two extremes. The association of DPE amplitude were pure-tone threshold was frequency specific. DPE amplitude was maximal when pure-tone thresholds were <=10 dB HL and decreased as pure-tone behavioral threshold increased in the same subject. Repetition of the DPE protocol with five subjects from each group during separate test sessions indicated that the results were reliable over time. Results of the study have clinical implications. The technique may have potential

  19. Memory for pure tone sequences without contour.

    PubMed

    Lefebvre, Christine; Jolicœur, Pierre

    2016-06-01

    We presented pure tones interspersed with white noise sounds to disrupt contour perception in an acoustic short-term memory (ASTM) experiment during which we recorded the electroencephalogram. The memory set consisted of seven stimuli, 0, 1, 2, 3, or 4 of which were to-be-remembered tones. We estimated each participant׳s capacity, K, for each set size and measured the amplitude of the SAN (sustained anterior negativity, an ERP related to acoustic short-term memory). We correlated their K slopes with their SAN amplitude slopes as a function of set size, and found a significant link between performance and the SAN: a larger increase in SAN amplitude was linked with a larger number of stimuli maintained in ASTM. The SAN decreased in amplitude in the later portion of the silent retention interval, but the correlation between the SAN and capacity remained strong. These results show the SAN is not an index of contour but rather an index of the maintenance of individual objects in STM. This article is part of a Special Issue entitled SI: Auditory working memory. PMID:26903419

  20. Memory for pure tone sequences without contour.

    PubMed

    Lefebvre, Christine; Jolicœur, Pierre

    2016-06-01

    We presented pure tones interspersed with white noise sounds to disrupt contour perception in an acoustic short-term memory (ASTM) experiment during which we recorded the electroencephalogram. The memory set consisted of seven stimuli, 0, 1, 2, 3, or 4 of which were to-be-remembered tones. We estimated each participant׳s capacity, K, for each set size and measured the amplitude of the SAN (sustained anterior negativity, an ERP related to acoustic short-term memory). We correlated their K slopes with their SAN amplitude slopes as a function of set size, and found a significant link between performance and the SAN: a larger increase in SAN amplitude was linked with a larger number of stimuli maintained in ASTM. The SAN decreased in amplitude in the later portion of the silent retention interval, but the correlation between the SAN and capacity remained strong. These results show the SAN is not an index of contour but rather an index of the maintenance of individual objects in STM. This article is part of a Special Issue entitled SI: Auditory working memory.

  1. Formation of 85Rb2 ultracold molecules via photoassociation by two-color laser fields modulating the Gaussian amplitude

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Zhang, Wei; Wang, Gao-Ren; Xie, Ting; Cong, Shu-Lin

    2012-10-01

    The formations of 85Rb2 molecules via photoassociation (PA) steered by two-color laser fields are explored theoretically in order to find an efficient and robust PA scheme. The PA processes steered by the PA pulses modulated by two Gaussian pulses and by two chirped pulses are discussed and compared in detail. The two pulses are coherent in the picosecond range and reach their maxima at the same time. The influences of the linear chirp rate, the frequency difference between two pulses, and the phase shift of the modulated envelope with respect to the maximum of the Gaussian envelope on the PA process are investigated. The yield of photoassociated molecules on vibrational levels with a binding energy of >1.0 cm-1 with respect to the 5S+5P1/2 dissociation limit can apparently be enhanced by choosing proper pulse parameters. Especially, the two-color laser field modulated by two chirped pulses can raise the PA efficiency on one side, and weaken the dependence of the PA process on phase shift on the other side.

  2. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization

    NASA Astrophysics Data System (ADS)

    Meyers, Stephen R.

    2015-12-01

    Cyclostratigraphic analysis has produced fundamental advancements in our understanding of climate change, paleoceanography, celestial mechanics, geochronology, and chronostratigraphy. Of central importance to this success has been the development of astrochronologic testing methods for the evaluation of astronomical-climate influence on sedimentation. Most pre-Pleistocene astrochronologic testing methods fall into one of two categories: (1) those that test for expected amplitude or frequency modulation imposed by an astronomical signal or (2) those that test for bedding hierarchies (frequency ratios or bundling) that are predicted by the dominant astronomical periods. In this study, a statistical methodology for combining these complementary approaches is developed, which identifies the time scale that simultaneously optimizes eccentricity amplitude modulation of the precession band, and the concentration of power at precession (carrier) and eccentricity (modulator) frequencies. The technique is demonstrated to have high statistical power—it is capable of identifying astronomical cycles when present—under a wide range of conditions, and its application to synthetic models illuminates a range of potential pitfalls that are encountered when more conventional nonoptimization approaches are used. The method is also independent from the interpretation of power spectrum peak significance, resolving previous concerns regarding appropriate confidence level assessment and "multiple testing." As two case studies, the algorithm is applied to Miocene strata of Ocean Drilling Program (ODP) Site 926B, and the Paleocene-Eocene Thermal Maximum-Eocene Thermal Maximum 2 interval at ODP Site 1262. The results verify published cyclostratigraphic interpretations and support the theoretical astronomical solutions. This new astrochronologic testing approach can be used to evaluate cyclostratigraphic records spanning the Phanerozoic and potentially beyond.

  3. Is there an ironic tone of voice?

    PubMed

    Bryant, Gregory A; Fox Tree, Jean E

    2005-01-01

    Research on nonverbal vocal cues and verbal irony has often relied on the concept of an ironic tone of voice. Here we provide acoustic analysis and experimental evidence that this notion is oversimplified and misguided. Acoustic analyses of spontaneous ironic speech extracted from talk radio shows, both ambiguous and unambiguous in written form, revealed only a difference in amplitude variability compared to matched nonironic speech from the same sources, and that was only among the most clear-cut items. In a series of experiments, participants rated content-filtered versions of the same ironic and nonironic utterances on a range of affective and linguistic dimensions. Listeners did not rely on any set of vocal cues to identify verbal irony that was separate from other emotional and linguistic judgments. We conclude that there is no particular ironic tone of voice and that listeners interpret verbal irony by combining a variety of cues, including information outside of the linguistic context.

  4. Arsenic toxicity in the water weed Wolffia arrhiza measured using Pulse Amplitude Modulation Fluorometry (PAM) measurements of photosynthesis.

    PubMed

    Ritchie, Raymond J; Mekjinda, Nutsara

    2016-10-01

    Accumulation of arsenic in plants is a serious South-east Asian environmental problem. Photosynthesis in the small aquatic angiosperm Wolffia arrhiza is very sensitive to arsenic toxicity, particularly in water below pH 7 where arsenite (As (OH)3) (AsIII) is the dominant form; at pH >7 AsO4(2-) (As(V) predominates). A blue-diode PAM (Pulse Amplitude Fluorometer) machine was used to monitor photosynthesis in Wolffia. Maximum gross photosynthesis (Pgmax) and not maximum yield (Ymax) is the most reliable indicator of arsenic toxicity. The toxicity of arsenite As(III) and arsenate (H2AsO4(2-)) As(V) vary with pH. As(V) was less toxic than As(III) at both pH 5 and pH 8 but both forms of arsenic were toxic (>90% inhibition) at below 0.1molm(-3) when incubated in arsenic for 24h. Arsenite toxicity was apparent after 1h based on Pgmax and gradually increased over 7h but there was no apparent effect on Ymax or photosynthetic efficiency (α0). PMID:27318559

  5. Habitat-related differences in auditory processing of complex tones and vocal signal properties in four songbirds.

    PubMed

    Lucas, Jeffrey R; Vélez, Alejandro; Henry, Kenneth S

    2015-04-01

    We examined temporal processing of harmonic tone complexes in two woodland species (tufted titmice and white-breasted nuthatches) and two open-habitat species (house sparrows and white-crowned sparrows). Envelope and fine-structure processing were quantified using the envelope following response (EFR) and frequency following response (FFR). We predicted stronger EFRs in the open-habitat species based on broader auditory filters and greater amplitude modulation of vocal signals in this group. We predicted stronger FFRs in woodland species based on narrower auditory filters. As predicted, EFR amplitude was generally greatest in the open habitat species. FFR amplitude, in contrast, was greatest in white-crowned sparrows with no clear difference between habitats. This result cannot be fully explained by species differences in audiogram shape and might instead reflect greater acoustic complexity of songs in the white-crowned sparrow. Finally, we observed stronger FFRs in woodland species when tones were broadcast with the next higher harmonic in the complex. Thus, species such as nuthatches that have songs with strong harmonics may process these sounds using enhanced spectral processing instead of enhanced amplitude-envelope processing. The results suggest coevolution between signal design and temporal processing of complex signals and underscore the need to study auditory processing with a diversity of signals.

  6. Attention deficits revealed by passive auditory change detection for pure tones and lexical tones in ADHD children.

    PubMed

    Yang, Ming-Tao; Hsu, Chun-Hsien; Yeh, Pei-Wen; Lee, Wang-Tso; Liang, Jao-Shwann; Fu, Wen-Mei; Lee, Chia-Ying

    2015-01-01

    Inattention (IA) has been a major problem in children with attention deficit/hyperactivity disorder (ADHD), accounting for their behavioral and cognitive dysfunctions. However, there are at least three processing steps underlying attentional control for auditory change detection, namely pre-attentive change detection, involuntary attention orienting, and attention reorienting for further evaluation. This study aimed to examine whether children with ADHD would show deficits in any of these subcomponents by using mismatch negativity (MMN), P3a, and late discriminative negativity (LDN) as event-related potential (ERP) markers, under the passive auditory oddball paradigm. Two types of stimuli-pure tones and Mandarin lexical tones-were used to examine if the deficits were general across linguistic and non-linguistic domains. Participants included 15 native Mandarin-speaking children with ADHD and 16 age-matched controls (across groups, age ranged between 6 and 15 years). Two passive auditory oddball paradigms (lexical tones and pure tones) were applied. The pure tone oddball paradigm included a standard stimulus (1000 Hz, 80%) and two deviant stimuli (1015 and 1090 Hz, 10% each). The Mandarin lexical tone oddball paradigm's standard stimulus was /yi3/ (80%) and two deviant stimuli were /yi1/ and /yi2/ (10% each). The results showed no MMN difference, but did show attenuated P3a and enhanced LDN to the large deviants for both pure and lexical tone changes in the ADHD group. Correlation analysis showed that children with higher ADHD tendency, as indexed by parents' and teachers' ratings on ADHD symptoms, showed less positive P3a amplitudes when responding to large lexical tone deviants. Thus, children with ADHD showed impaired auditory change detection for both pure tones and lexical tones in both involuntary attention switching, and attention reorienting for further evaluation. These ERP markers may therefore be used for the evaluation of anti-ADHD drugs that aim to

  7. Fast amplitude-modulated pulse trains with frequency sweep (SW-FAM) in solid-state NMR of spin-7/2 nuclei

    NASA Astrophysics Data System (ADS)

    Bräuniger, Thomas; Madhu, P. K.

    2008-07-01

    We here investigate the sensitivity enhancement of central-transition NMR spectra of quadrupolar nuclei with spin-7/2 in the solid state, generated by fast amplitude-modulated RF pulse trains with constant (FAM-I) and incremented pulse durations (SW-FAM). Considerable intensity is gained for the central-transition resonance of single-quantum spectra by means of spin population transfer from the satellite transitions, both under static and magic-angle-spinning (MAS) conditions. It is also shown that incorporation of a SW-FAM train into the excitation part of a 7QMAS sequence improves the efficiency of 7Q coherence generation, resulting in improved signal-to-noise ratio. The application of FAM-type pulse trains may thus facilitate faster spectra acquisition of spin-7/2 systems.

  8. Enhancement of the central-transition signal in static and magic-angle-spinning NMR of quadrupolar nuclei by frequency-swept fast amplitude-modulated pulses

    NASA Astrophysics Data System (ADS)

    Bräuniger, Thomas; Ramaswamy, Kannan; Madhu, P. K.

    2004-01-01

    We here report on using fast amplitude-modulated (FAM) pulse trains with constantly incremented pulse durations (SW-FAM) for signal enhancement in one-dimensional nuclear magnetic resonance spectra of quadrupolar nuclei with half-integer spin. In such systems, a FAM pulse train leads to a redistribution of populations across the spin levels, which results in a substantial gain for the central-transition signal. Compared to fixed-duration FAM pulse trains, SW-FAM delivers about the same signal enhancement for spinning samples, but gives much better performance in the static case. This is demonstrated for several compounds, observing the nuclei 23Na ( I=3/2), 27Al ( I=5/2), and 45Sc ( I=7/2).

  9. Experimental verification of low-frequency, highly-directive sound radiation in ambient air by amplitude-modulated, high-intensity ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Lierke, E. G.

    2000-07-01

    A 21 kHz standing-wave amplifier at the focus of a 36 cm diameter parabolic mirror (ka=70) is used for highly directive radiation of low frequency sine waves, voice signals and even music (of poor quality). The low frequency waves are amplitude-modulated onto the ultrasonic carrier wave and radiated into a solid angle of ±1° (-3 dB). Low frequency sound waves with frequencies between 50 Hz and 3 kHz are radiated over a distance of more than 20 m. The achievable audio sound pressure levels decrease with approximately 20 dB per distance doubling and reached about 30 dB at 20 m distance. The discussion of the measurements is based on Blackstock's weak shock theory [5] and on the nonsaturated radiation pressure at saturated sound pressure levels.

  10. Color image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional Sine logistic modulation map

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli

    2015-12-01

    A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.

  11. Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency

    PubMed Central

    Branstetter, Brian K.; DeLong, Caroline M.; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly

    2016-01-01

    Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin’s (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin’s ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin’s acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition. PMID:26863519

  12. Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency.

    PubMed

    Branstetter, Brian K; DeLong, Caroline M; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly

    2016-01-01

    Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin's (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin's ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin's acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition.

  13. Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency.

    PubMed

    Branstetter, Brian K; DeLong, Caroline M; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly

    2016-01-01

    Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin's (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin's ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin's acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition. PMID:26863519

  14. Simulation study of amplitude-modulated (AM) harmonic motion imaging (HMI) for stiffness contrast quantification with experimental validation.

    PubMed

    Maleke, Caroline; Luo, Jianwen; Gamarnik, Viktor; Lu, Xin L; Konofagou, Elisa E

    2010-07-01

    The objective of this study is to show that Harmonic Motion Imaging (HMI) can be used as a reliable tumor-mapping technique based on the tumor's distinct stiffness at the early onset of disease. HMI is a radiation-force-based imaging method that generates a localized vibration deep inside the tissue to estimate the relative tissue stiffness based on the resulting displacement amplitude. In this paper, a finite-element model (FEM) study is presented, followed by an experimental validation in tissue-mimicking polyacrylamide gels and excised human breast tumors ex vivo. This study compares the resulting tissue motion in simulations and experiments at four different gel stiffnesses and three distinct spherical inclusion diameters. The elastic moduli of the gels were separately measured using mechanical testing. Identical transducer parameters were used in both the FEM and experimental studies, i.e., a 4.5-MHz single-element focused ultrasound (FUS) and a 7.5-MHz diagnostic (pulse-echo) transducer. In the simulation, an acoustic pressure field was used as the input stimulus to generate a localized vibration inside the target. Radiofrequency (rf) signals were then simulated using a 2D convolution model. A one-dimensional cross-correlation technique was performed on the simulated and experimental rf signals to estimate the axial displacement resulting from the harmonic radiation force. In order to measure the reliability of the displacement profiles in estimating the tissue stiffness distribution, the contrast-transfer efficiency (CTE) was calculated. For tumor mapping ex vivo, a harmonic radiation force was applied using a 2D raster-scan technique. The 2D HMI images of the breast tumor ex vivo could detect a malignant tumor (20 x 10 mm2) surrounded by glandular and fat tissues. The FEM and experimental results from both gels and breast tumors ex vivo demonstrated that HMI was capable of detecting and mapping the tumor or stiff inclusion with various diameters or

  15. Soleus Hoffmann reflex amplitudes are specifically modulated by cutaneous inputs from the arms and opposite leg during walking but not standing.

    PubMed

    Suzuki, Shinya; Nakajima, Tsuyoshi; Futatsubashi, Genki; Mezzarane, Rinaldo A; Ohtsuka, Hiroyuki; Ohki, Yukari; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-08-01

    Electrical stimulation of cutaneous nerves innervating heteronymous limbs (the arms or contralateral leg) modifies the excitability of soleus Hoffmann (H-) reflexes. The differences in the sensitivities of the H-reflex pathway to cutaneous afferents from different limbs and their modulation during the performance of motor tasks (i.e., standing and walking) are not fully understood. In the present study, we investigated changes in soleus H-reflex amplitudes induced by electrical stimulation of peripheral nerves. Selected targets for conditioning stimulation included the superficial peroneal nerve, which innervates the foot dorsum in the contralateral ankle (cSP), and the superficial radial nerve, which innervates the dorsum of the hand in the ipsilateral (iSR) or contralateral wrist (cSR). Stimulation and subsequent reflex assessment took place during the standing and early-stance phase of treadmill walking in ten healthy subjects. Cutaneous stimulation produced long-latency inhibition (conditioning-test interval of ~100 ms) of the H-reflex during the early-stance phase of walking, and the inhibition was stronger following cSP stimulation compared with iSR or cSR stimulation. In contrast, although similar conditioning stimulation significantly facilitated the H-reflex during standing, this effect remained constant irrespective of the different conditioning sites. These findings suggest that cutaneous inputs from the arms and contralateral leg had reversible effects on the H-reflex amplitudes, including inhibitions with different sensitivities during the early-stance phase of walking and facilitation during standing. Furthermore, the differential sensitivities of the H-reflex modulations were expressed only during walking when the locations of the afferent inputs were functionally relevant. PMID:27030502

  16. Tone clarity in mixed pitch/phonation type tones

    NASA Astrophysics Data System (ADS)

    Andruski, Jean E.

    2001-05-01

    Lexical tone identity is often determined by a complex of acoustic cues. In Green Mong, a Hmong-Mien language of Southeast Asia, a small subset of tones is characterized by phonation type in addition to pitch height, pitch contour, and duration, which characterize the remaining tones of the language. In tones that incorporate multiple cues to tonal identity, what makes a tone clear, or easy to recognize? This study examines acoustic and perceptual data to address this question. Six native speakers of Green Mong were asked to produce 132 phonological CV words in sentence context, using a conversational speaking style. Seventeen native speakers of the language were then asked to categorize three tones which have similar falling contours, but are differentiated by phonation type (breathy, creaky, and modal). Tokens that were correctly identified by 100% of the listeners were compared with tokens that were relatively poorly identified. Data indicate that the breathy- and creaky-voiced tones are less susceptible to identification errors than the modal-voiced tone. However, the clearest tokens of the three tones are also differentiated by details of pitch contour shape, and by duration. Similarities and differences between acoustic cue values for the best and worst tokens will be discussed.

  17. Distortion cancellation of frequency converted pulses with simple linear signal processing and application to frequency modulation to amplitude modulation conversion in high power lasers.

    PubMed

    Vidal, Sébastien; Luce, Jacques; Hocquet, Steve; Gouédard, Claude; Calvet, Pierre; Penninckx, Denis

    2012-08-20

    It is known that a linear filter may be easily compensated with its inverse transfer function. However, it was shown that this approach could also be valid even for such a complex nonlinear system as frequency conversion. As a matter of fact, it is possible to at least partly precompensate for distortions occurring within, or even downstream from, frequency conversion crystals with a simple linear optical filter set upstream. In this paper, we give the theoretical background and derive the optimum precompensation filter from simple analytical formulas even in the case of saturation. We first show the relevance of our approach for Gaussian pulses: the pulse may be short or not and chirped or not, and the same linear precompensation filter may be used as long as saturation is not reached. We then study the case of phase-modulated pulses, as can be found on high power lasers such as lasers for fusion. We show that previous experimental results are in perfect agreement with these calculations. Finally, justified by our simple analytical formulas, we present a rigorous parametrical study giving the distortion reduction for any second and third harmonic generation system in the case of phase-modulated pulses. PMID:22907009

  18. Tone Features, Tone Perception, and Peak Alignment in Thai

    ERIC Educational Resources Information Center

    Zsiga, Elizabeth; Nitisaroj, Rattima

    2007-01-01

    This paper investigates the relationship between the phonological features of tone and tone perception in Thai. Specifically, it tests the hypothesis (proposed by Moren & Zsiga, 2006) that the principle perceptual cues to the five-way tonal contrast in Thai are high and low pitch targets aligned to moras. Results of four perception studies, one…

  19. Attention deficits revealed by passive auditory change detection for pure tones and lexical tones in ADHD children

    PubMed Central

    Yang, Ming-Tao; Hsu, Chun-Hsien; Yeh, Pei-Wen; Lee, Wang-Tso; Liang, Jao-Shwann; Fu, Wen-Mei; Lee, Chia-Ying

    2015-01-01

    Inattention (IA) has been a major problem in children with attention deficit/hyperactivity disorder (ADHD), accounting for their behavioral and cognitive dysfunctions. However, there are at least three processing steps underlying attentional control for auditory change detection, namely pre-attentive change detection, involuntary attention orienting, and attention reorienting for further evaluation. This study aimed to examine whether children with ADHD would show deficits in any of these subcomponents by using mismatch negativity (MMN), P3a, and late discriminative negativity (LDN) as event-related potential (ERP) markers, under the passive auditory oddball paradigm. Two types of stimuli—pure tones and Mandarin lexical tones—were used to examine if the deficits were general across linguistic and non-linguistic domains. Participants included 15 native Mandarin-speaking children with ADHD and 16 age-matched controls (across groups, age ranged between 6 and 15 years). Two passive auditory oddball paradigms (lexical tones and pure tones) were applied. The pure tone oddball paradigm included a standard stimulus (1000 Hz, 80%) and two deviant stimuli (1015 and 1090 Hz, 10% each). The Mandarin lexical tone oddball paradigm’s standard stimulus was /yi3/ (80%) and two deviant stimuli were /yi1/ and /yi2/ (10% each). The results showed no MMN difference, but did show attenuated P3a and enhanced LDN to the large deviants for both pure and lexical tone changes in the ADHD group. Correlation analysis showed that children with higher ADHD tendency, as indexed by parents’ and teachers’ ratings on ADHD symptoms, showed less positive P3a amplitudes when responding to large lexical tone deviants. Thus, children with ADHD showed impaired auditory change detection for both pure tones and lexical tones in both involuntary attention switching, and attention reorienting for further evaluation. These ERP markers may therefore be used for the evaluation of anti-ADHD drugs that

  20. Strategies for Analyzing Tone Languages

    ERIC Educational Resources Information Center

    Coupe, Alexander R.

    2014-01-01

    This paper outlines a method of auditory and acoustic analysis for determining the tonemes of a language starting from scratch, drawing on the author's experience of recording and analyzing tone languages of north-east India. The methodology is applied to a preliminary analysis of tone in the Thang dialect of Khiamniungan, a virtually undocumented…

  1. Amplitude-modulation detection by recreational-noise-exposed humans with near-normal hearing thresholds and its medium-term progression

    PubMed Central

    Stone, Michael A.; Moore, Brian C.J.

    2014-01-01

    Noise exposure can affect the functioning of cochlear inner and outer hair cells (IHC/OHC), leading to multiple perceptual changes. This work explored possible changes in detection of amplitude modulation (AM) at three Sensation Levels (SL) for carrier frequencies of 3, 4 and 6 kHz. There were two groups of participants, aged 19 to 24 (Young) and 26 to 35 (Older) years. All had near-normal audiometric thresholds. Participants self-assessed exposure to high-level noise in recreational settings. Each group was sub-grouped into low-noise (LN) or high-noise (HN) exposure. AM detection thresholds were worse for the HN than for the LN sub-group at the lowest SL, for the males only of the Young group and for both genders for the Older group, despite no significant difference in absolute threshold at 3 and 4 kHz between sub-groups. AM detection at the lowest SL, at both 3 and 4 kHz, generally improved with increasing age and increasing absolute threshold, consistent with a recruitment-like process. However, poorer AM detection was correlated with increasing exposure at 3 kHz in the Older group. It is suggested that high-level noise exposure produces both IHC- and OHC-related damage, the balance between the two varying across frequency. However, the use of AM detection offers poor sensitivity as a measure of the effects. PMID:25260433

  2. Examination of humidity effects on measured thickness and interfacial phenomena of exfoliated graphene on silicon dioxide via amplitude modulation atomic force microscopy

    SciTech Connect

    Jinkins, K.; Farina, L.; Wu, Y.; Camacho, J.

    2015-12-14

    The properties of Few-Layer Graphene (FLG) change with the number of layers and Amplitude Modulation (AM) Atomic Force Microscopy (AFM) is commonly used to determine the thickness of FLG. However, AFM measurements have been shown to be sensitive to environmental conditions such as relative humidity (RH). In the present study, AM-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO{sub 2}) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. The loss tangent values of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO{sub 2}. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO{sub 2} substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AM-AFM.

  3. Cortical Auditory Event Related Potentials (P300) for Frequency Changing Dynamic Tones

    PubMed Central

    Kalaiah, Mohan Kumar

    2016-01-01

    Background and Objectives P300 has been studied with a variety of stimuli. However, the nature of P300 has not been investigated for deviant stimuli which change its characteristics from standard stimuli after a period of time from onset. Subjects and Methods Nine young adults with normal hearing participated in the study. The P300 was elicited using an oddball paradigm, the probability of standard and deviant stimuli was 80% and 20% respectively. Six stimuli were used to elicit P300, it included two pure-tones (1,000 Hz and 2,000 Hz) and four tone-complexes (tones with frequency changes). Among these stimuli, 1,000 Hz tone served as standard while others served as deviant stimuli. The P300 was recorded in five separate blocks, with one of the deviant stimuli as target in each block. Electroencephalographic was recorded from electrode sites Fz, Cz, C3, C4, and Pz. Latency and amplitude of components of the cortical auditory evoked potentials were measured at Cz. Results Waveforms obtained in the present study shows that, all the deviant stimuli elicited obligatory P1-N1-P2 for stimulus onset. 2,000 Hz deviant tone elicited P300 at a latency of 300 ms. While, tone-complexes elicited acoustic change complex (ACC) for frequency changes and finally elicited P300 at a latency of 600 ms. In addition, the results showed shorter latency and larger amplitude ACC and P300 for rising tone-complexes compared to falling tone-complexes. Conclusions Tone-complexes elicited distinct waveforms compared to 2,000 Hz deviant tone. Rising tone-complexes which had an increase in frequency elicited shorter latency and larger amplitude responses, which could be attributed to perceptual bias for frequency changes. PMID:27144230

  4. A muiti-mode modulation and demodulation system and method

    NASA Technical Reports Server (NTRS)

    Stevenson, Carl R. (Inventor)

    1988-01-01

    An improved system and method for modulation, demodulation and signal processing for single sideband communications systems which provides correction for the adverse effects of rapid fading characteristics in a mobile environment. The system provides modulation through a modified Weaver modulator in which the audio input is processed to produce an output in the form of an upper sideband having a pilot tone in a spectral gap at approximately midband. The receiver includes a modified Weaver demodulator and a correction signal generating circuit which processes the received faded audio input and pilot tone to produce a correcting signal. The correcting signal is mixed with the received signal to regenerate unfaded versions of both the signal and pilot by removing random amplitude and phase modulations imposed on them by the fading.

  5. Spatial hearing in Cope's gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations.

    PubMed

    Caldwell, Michael S; Lee, Norman; Schrode, Katrina M; Johns, Anastasia R; Christensen-Dalsgaard, Jakob; Bee, Mark A

    2014-04-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope's gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1-4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs.

  6. Effect of contralateral precursor type on the temporal effect in simultaneous masking with tone and noise maskers (L)

    NASA Astrophysics Data System (ADS)

    Savel, Sophie; Bacon, Sid P.

    2003-08-01

    A sound (contralateral precursor) presented to the nontest ear prior to the onset of a masker and probe has been shown to reduce the temporal effect in simultaneous masking with noise maskers but not with tonal maskers. The present study examined this further. The probe was a 4.0-kHz tone. In experiment 1a, the masker was a 4.4-kHz tone and the precursor was a 4.4-kHz tone or an unmodulated (UM) or amplitude-modulated (AM) band of noise (4.4-8.0 kHz). In experiment 1b, the masker was a broadband noise and the precursor was a UM or an AM broadband noise. In both experiments the precursor consistently reduced the temporal effect for only one of the seven or eight subjects, regardless of precursor type. These largely negative results indicate that it may not be possible to use contralateral precursors to gain much insight into the mechanisms underlying temporal effects in simultaneous masking.

  7. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral

    PubMed Central

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0–21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming. PMID:26582993

  8. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.

    PubMed

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming. PMID:26582993

  9. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation.

    PubMed

    Chen, Gang; Li, Yuyan; Yu, Anping; Wen, Zhongquan; Dai, Luru; Chen, Li; Zhang, Zhihai; Jiang, Senlin; Zhang, Kun; Wang, Xianyou; Lin, Feng

    2016-01-01

    In traditional optics, the focal spot size of a conventional lens is restricted to the diffraction limit 0.5λ/NA, where λ is the wavelength in vacuum and NA is the numerical aperture of the lens. Recently, various sub-diffraction focusing optical devices have been demonstrated, but they usually have short focal length and high numerical aperture. Moreover, they always suffer the problem of huge sidelobes near the focal spot and small field of view, especially when the focal spot size is less than the super-oscillation criteria 0.38λ/NA. To address the problem, here, we reported a far-field sub-diffraction point-focusing lens based on binary phase and amplitude modulation with ultra-long focal length 252.8 μm (399.5λ) and small numerical aperture 0.78, and experimentally demonstrated a super-oscillatory focusing of circularly polarized light with spot size 287 nm (0.454λ), smaller than the diffraction limit 0.64λ and the super-oscillation criterion 0.487λ. What's more, on the focal plane, in the measured area within the radius of 142λ, the largest sidelobe intensity is less than 26% of the central lobe intensity. Such ultra-long distance super-oscillatory focusing with small sidelobes and large field of view has great potential applications in far-field super-resolution microscopy, ultra-high-density optical storage and nano-fabrication. PMID:27353239

  10. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation

    PubMed Central

    Chen, Gang; Li, Yuyan; Yu, Anping; Wen, Zhongquan; Dai, Luru; Chen, Li; Zhang, Zhihai; Jiang, Senlin; Zhang, Kun; Wang, Xianyou; Lin, Feng

    2016-01-01

    In traditional optics, the focal spot size of a conventional lens is restricted to the diffraction limit 0.5λ/NA, where λ is the wavelength in vacuum and NA is the numerical aperture of the lens. Recently, various sub-diffraction focusing optical devices have been demonstrated, but they usually have short focal length and high numerical aperture. Moreover, they always suffer the problem of huge sidelobes near the focal spot and small field of view, especially when the focal spot size is less than the super-oscillation criteria 0.38λ/NA. To address the problem, here, we reported a far-field sub-diffraction point-focusing lens based on binary phase and amplitude modulation with ultra-long focal length 252.8 μm (399.5λ) and small numerical aperture 0.78, and experimentally demonstrated a super-oscillatory focusing of circularly polarized light with spot size 287 nm (0.454λ), smaller than the diffraction limit 0.64λ and the super-oscillation criterion 0.487λ. What’s more, on the focal plane, in the measured area within the radius of 142λ, the largest sidelobe intensity is less than 26% of the central lobe intensity. Such ultra-long distance super-oscillatory focusing with small sidelobes and large field of view has great potential applications in far-field super-resolution microscopy, ultra-high-density optical storage and nano-fabrication. PMID:27353239

  11. ENGLISH STRESSES AND CHINESE TONES IN CHINESE SENTENCES.

    ERIC Educational Resources Information Center

    CHENG, CHIN-CHUAN

    CHINESE SPEAKERS IN THE UNITED STATES USUALLY SPEAK CHINESE WITH ENGLISH WORDS INSERTED. IN MANDARIN CHINESE, A TONE-SANDHI RULE CHANGES A THIRD TONE PRECEDING ANOTHER THIRD TONE TO A SECOND TONE. THE THIRD TONE IS LOW--THE THREE OTHER TONES ARE HIGH. IT IS THE (-HIGH) FEATURE THAT PROVOKES CHINESE TONE SANDHI. USING THE TONE-SANDHI RULE, THE…

  12. On the origin of falling-tone chorus elements in Earth's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Agapitov, O.; Artemyev, A.; Krasnoselskikh, V.; Le Contel, O.; Cully, C. M.; Angelopoulos, V.; Zaliznyak, Y.; Rolland, G.

    2014-12-01

    Generation of extremely/very low frequency (ELF/VLF) chorus waves in Earth's inner magnetosphere has received increased attention recently because of their significance for radiation belt dynamics. Though past theoretical and numerical models have demonstrated how rising-tone chorus elements are produced, falling-tone chorus element generation has yet to be explained. Our new model proposes that weak-amplitude falling-tone chorus elements can be generated by magnetospheric reflection of rising-tone elements. Using ray tracing in a realistic plasma model of the inner magnetosphere, we demonstrate that rising-tone elements originating at the magnetic equator propagate to higher latitudes. Upon reflection there, they propagate to lower L-shells and turn into oblique falling tones of reduced power, frequency, and bandwidth relative to their progenitor rising tones. Our results are in good agreement with comprehensive statistical studies of such waves, notably using magnetic field measurements from THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft. Thus, we conclude that the proposed mechanism can be responsible for the generation of weak-amplitude falling-tone chorus emissions.

  13. High-frequency tone-pip-evoked otoacoustic emissions in chinchillas

    NASA Astrophysics Data System (ADS)

    Siegel, Jonathan H.; Charaziak, Karolina K.

    2015-12-01

    We measured otoacoustic emissions in anesthetized chinchillas evoked by short (1 ms) high-frequency (4 kHz) tone-pips (TEOAE) using either a compression or suppression method to separate the stimulus from the emission. Both methods revealed consistent features of the TEOAEs. The main spectral band of the emission generally corresponded to the spectrum of the stimulus, exhibiting a group delay similar to that of SFOAEs [9]. However, a second spectral band below 1.5 kHz, clearly separated from the low-frequency cut-off frequency of the stimulus spectrum, corresponded to an amplitude modulation of the waveform of the TEOAE. The group delay of this low-frequency band was similar to that of the main band near the probe frequency. The average level and group delay of the main band declined monotonically when revealed as the suppressor frequency was raised above the probe. The low-frequency band was more sensitive than the main band to shifts in compound action potential thresholds near the probe frequency induced by acute exposure to intense tones. Taken together, the experiments indicate that both the main and low-frequency bands of the TEOAE are generated primarily near the cochlear region maximally stimulated by the probe, but that significant contributions arise over a large region even more basal.

  14. Evoked magnetoencephalographic responses to omission of a tone in a musical scale.

    PubMed

    Nemoto, Iku

    2012-06-01

    The musical scale is a basis for melodies and can be a simple melody by itself. The present study investigated magnetoencephalographic (MEG) responses to omissions of one tone out of the C major scale. The tone preceding the omitted "target" tone was either prolonged or repeated. In another series, the tone after the target tone was repeated. In "normal" oddball experiments, the complete C major scale was presented more frequently than an incomplete scale lacking one tone, and in "reverse" oddball experiments, the roles were exchanged. In the normal oddball experiments, omission of any tone produced a response significantly different in amplitude from the standard response in the group of non-musicians, although the responses differed depending on the types of omission. The leading tone (B in the C major scale) was shown to elicit a large response when omitted and also when its presence was emphasized. The Reverse oddball experiments showed that repeated presentation of an incomplete scale lacking one tone temporarily reduced the influence of the complete scale but could not even temporarily replace it working as "standard." In addition, an auxiliary study was done to see possible influence of rhythmic variations. PMID:22712949

  15. Gray tone image watermarking with complementary computer generated holography.

    PubMed

    Martinez, Christophe; Laulagnet, Fabien; Lemonnier, Olivier

    2013-07-01

    We present herein an original approach for the watermarking of holograms in gray tone images for use in microscopic halftone image archiving. Our concept is based on the principle of complementary holography presented in a previous contribution. The efficiency of the concept is evaluated theoretically and experimentally. We demonstrate the interest of elliptical diffraction patterns as an alternative to the usual rectangular diffraction patterns and confirm the subsidiary role of the hologram amplitude in the hologram recovery process.

  16. Syzygies probing scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Liu, Junyu; Xie, Ruofei; Zhang, Hao; Zhou, Yehao

    2016-09-01

    We propose a new efficient algorithm to obtain the locally minimal generating set of the syzygies for an ideal, i.e. a generating set whose proper subsets cannot be generating sets. Syzygy is a concept widely used in the current study of scattering amplitudes. This new algorithm can deal with more syzygies effectively because a new generation of syzygies is obtained in each step and the irreducibility of this generation is also verified in the process. This efficient algorithm can also be applied in getting the syzygies for the modules. We also show a typical example to illustrate the potential application of this method in scattering amplitudes, especially the Integral-By-Part(IBP) relations of the characteristic two-loop diagrams in the Yang-Mills theory.

  17. Effects of variation in emotional tone of voice on speech perception.

    PubMed

    Mullennix, John W; Bihon, Tressa; Bricklemyer, Jodie; Gaston, Jeremy; Keener, Jessica M

    2002-09-01

    The effects of variation from stimulus to stimulus in emotional tone of voice on speech perception were examined through a series of perceptual experiments. Stimuli were recorded from human speakers who produced utterances in tones of voice designed to convey affective information. Then, stimuli varying in talker voice and emotional tone were presented to listeners for perceptual matching and classification. The results showed that both intertalker variation in talker voice and intratalker variation in emotional tone had a negative effect on perceptual performance. The results suggest that sources of variation in the speech signal that affect the spectral/temporal properties of speech (i.e., talker voice, speech rate, emotional tone) may be treated differently than sources of variation that do not affect these properties (i.e., vocal amplitude).

  18. A Tone-Aided/Dual Vestigial Sideband (TA/DVSB) system for mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Saulnier, Gary J.; Millar, Gilbert M.; Depaolo, Anthony D.

    1990-01-01

    Tone-aided modulation is one way of combatting the effects of multipath fading and Doppler frequency shifts. A new tone-aided modulation format for M-ary phase-shift keyed signals (MPSK) is discussed. A spectral null for the placement of the tone is created in the center of the MPSK signal by translating the upper sideband upwards in frequency by the same amount. The key element of the system is the algorithm for recombining the data sidebands in the receiver, a function that is performed by a specialized phase-locked loop (PLL). The system structure is discussed and simulation results showing the PLL acquisition performance are presented.

  19. [Vasomotor tone and CBP : monitoring components, pratical and therapeutic approaches].

    PubMed

    Isetta, C; Janot, N

    2012-05-01

    The vasomotor tone is an essential determinant of blood pressure. Vascular resistance is the result of a calculation including vasomotor tone, blood flow and blood viscosity. The vascular tone is modulated by the sympathetic system and the direct actions of drugs (patient's pathology, anaesthesia). The pressure and flow allow the vascular tone apprehension. A decrease in vasomotor tone lowers the mean arterial pressure and may cause an intense vasoplegia with arterial vascular resistance below than 800 dyn/s/cm(5) leading to a lack of tissue oxygenation. Vasomotor paralysis can be caused by the patient medications or an intense inflammatory reaction starting at the extracorporeal circulation onset. Monitoring parameters of extracorporeal circulation such as pressure, flow, arterial and venous oxygen saturation, blood level in the venous reservoir, and extensively blood gases, haemoglobin, CO(2) partial pressure level of the oxygenator vent, bispectral index, and oxygen saturation of cerebral tissue are reviewed. They will know the vasoplegia consequences and bear an indication of adequate tissue oxygenation. It may be obtained by using vasopressors (ephedrine, norepinephrine, terbutalin and vasopressin) methylene blue, increasing blood viscosity (erythrocytes) and blood flow, even by inducing hypothermia.

  20. Screech tones from free and ducted supersonic jets

    NASA Astrophysics Data System (ADS)

    Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III

    1994-05-01

    It is well known that screech tones from supersonic jets are generated by a feedback loop. The loop consists of three main components. They are the downstream propagating instability wave, the shock cell structure in the jet plume, and the feedback acoustic waves immediately outside the jet. Evidence will be presented to show that the screech frequency is largely controlled by the characteristics of the feedback acoustic waves. The feedback loop is driven by the instability wave of the jet. Thus the tone intensity and its occurrence are dictated by the characteristics of the instability wave. In this paper the dependence of the instability wave spectrum on the azimuthal mode number (axisymmetric or helical/flapping mode, etc.), the jet-to-ambient gas temperature ratio, and the jet Mach number are studied. The results of this study provide an explanation for the observed screech tone mode switch phenomenon (changing from axisymmetric to helical mode as Mach number increases) and the often-cited experimental observation that tone intensity reduces with increase in jet temperature. For ducted supersonic jets screech tones can also be generated by feedback loops formed by the coupling of normal duct modes to instability waves of the jet. The screech frequencies are dictated by the frequencies of the duct modes. Super resonance, resonance involving very large pressure oscillations, can occur when the feedback loop is powered by the most amplified instability wave. It is proposed that the observed large amplitude pressure fluctuations and tone in the test cells of Arnold Engineering Development Center were generated by super resonance. Estimated super-resonance frequency for a Mach 1.3 axisymmetric jet tested in the facility agrees well with measurement.

  1. Improved perception of speech in noise and Mandarin tones with acoustic simulations of harmonic coding for cochlear implants.

    PubMed

    Li, Xing; Nie, Kaibao; Imennov, Nikita S; Won, Jong Ho; Drennan, Ward R; Rubinstein, Jay T; Atlas, Les E

    2012-11-01

    Harmonic and temporal fine structure (TFS) information are important cues for speech perception in noise and music perception. However, due to the inherently coarse spectral and temporal resolution in electric hearing, the question of how to deliver harmonic and TFS information to cochlear implant (CI) users remains unresolved. A harmonic-single-sideband-encoder [(HSSE); Nie et al. (2008). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing; Lie et al., (2010). Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing] strategy has been proposed that explicitly tracks the harmonics in speech and transforms them into modulators conveying both amplitude modulation and fundamental frequency information. For unvoiced speech, HSSE transforms the TFS into a slowly varying yet still noise-like signal. To investigate its potential, four- and eight-channel vocoder simulations of HSSE and the continuous-interleaved-sampling (CIS) strategy were implemented, respectively. Using these vocoders, five normal-hearing subjects' speech recognition performance was evaluated under different masking conditions; another five normal-hearing subjects' Mandarin tone identification performance was also evaluated. Additionally, the neural discharge patterns evoked by HSSE- and CIS-encoded Mandarin tone stimuli were simulated using an auditory nerve model. All subjects scored significantly higher with HSSE than with CIS vocoders. The modeling analysis demonstrated that HSSE can convey temporal pitch cues better than CIS. Overall, the results suggest that HSSE is a promising strategy to enhance speech perception with CIs. PMID:23145619

  2. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Q.; Jenkins, M.V.; Bernadas, S.R.

    1997-09-09

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal. 17 figs.

  3. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Qiujie; Jenkins, Michael V.; Bernadas, Salvador R.

    1997-01-01

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal.

  4. Autonomic cardiovascular regulation and cortical tone.

    PubMed

    Duschek, Stefan; Wörsching, Jana; Reyes Del Paso, Gustavo A

    2015-09-01

    This study aimed to investigate interactions between tonic cortical arousal and features of autonomic cardiovascular regulation. In 50 healthy subjects, the power spectrum of the spontaneous EEG was obtained at resting state. Concurrently, respiratory sinus arrhythmia (RSA), baroreflex sensitivity (BRS) and R-wave to pulse interval (RPI) were recorded as indices of cardiovascular control. At the bivariate level, only a negative correlation between beta power recorded at frontal electrode positions and RPI was found. However, when common variance of BRS and RSA was controlled for in multiple regression analyses, a positive association between alpha power and RSA, and an inverse relationship with BRS, also arose. The findings concerning RPI and RSA are suggestive of a relationship between higher levels of cortical tone and increased sympathetic and reduced vagal cardiac influences. The inverse association between BRS and alpha activity may reflect bottom-up modulation of cortical arousal by baroreceptor afferents. PMID:25080269

  5. Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations

    PubMed Central

    Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.

    2014-01-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183

  6. Ca(2+)-activation kinetics modulate successive puff/spark amplitude, duration and inter-event-interval correlations in a Langevin model of stochastic Ca(2+) release.

    PubMed

    Wang, Xiao; Hao, Yan; Weinberg, Seth H; Smith, Gregory D

    2015-06-01

    Through theoretical analysis of the statistics of stochastic calcium (Ca(2+)) release (i.e., the amplitude, duration and inter-event interval of simulated Ca(2+) puffs and sparks), we show that a Langevin description of the collective gating of Ca(2+) channels may be a good approximation to the corresponding Markov chain model when the number of Ca(2+) channels per Ca(2+) release unit (CaRU) is in the physiological range. The Langevin description of stochastic Ca(2+) release facilitates our investigation of correlations between successive puff/spark amplitudes, durations and inter-spark intervals, and how such puff/spark statistics depend on the number of channels per release site and the kinetics of Ca(2+)-mediated inactivation of open channels. When Ca(2+) inactivation/de-inactivation rates are intermediate-i.e., the termination of Ca(2+) puff/sparks is caused by an increase in the number of inactivated channels-the correlation between successive puff/spark amplitudes is negative, while the correlations between puff/spark amplitudes and the duration of the preceding or subsequent inter-spark interval are positive. These correlations are significantly reduced or change signs when inactivation/de-inactivation rates are extreme (slow or fast) and puff/sparks terminate via stochastic attrition. PMID:25843352

  7. Processing Cantonese lexical tones: Evidence from oddball paradigms.

    PubMed

    Jia, S; Tsang, Y-K; Huang, J; Chen, H-C

    2015-10-01

    Two event-related potential (ERP) experiments were conducted to investigate whether Cantonese lexical tones are processed with general auditory perception mechanisms and/or a special speech module. Two tonal features (f0 direction and f0 height deviation) were manipulated to reflect acoustic processing, and the contrast between syllables and hums was used to reveal the involvement of a speech module. Experiment 1 adopted a passive oddball paradigm to study a relatively early stage of tonal processing. Mismatch negativity (MMN) and novelty P3 (P3a) were modulated by the interaction between tonal feature and stimulus type. Similar interactions were found for N2 and P3 in Experiment 2, where more in-depth tonal processing was examined with an active oddball paradigm. Moreover, detecting tonal deviants of syllables elicited N1 and P2 that were not found in hum detection. Together, these findings suggest that the processing of lexical tone relies on both acoustic and linguistic processes from the early stage. Another noteworthy finding is the absence of brain lateralization in both experiments, which challenges the use of a lateralization pattern as evidence for processing lexical tones through a special speech module.

  8. Modulation of VLF signal amplitudes from 5 different transmitters during a C9.3-class solar flare as observed from a single receiving station in India: modeling with an ion chemistry model and LWPC

    NASA Astrophysics Data System (ADS)

    Palit, Sourav; Chakrabarti, Sandip Kumar; Pal, Sujay; Das, Bakul; Ray, Suman

    2016-07-01

    Very Low Frequency (VLF) signal at any location on Earth's surface is strongly dependent on the interference of various modes. The modulation effects on VLF signal due to any terrestrial or extra-terrestrial events vary widely from one propagation path to another depending on the interference patterns along these paths. The task of predicting or reproducing the modulation in the values of signal amplitudes or phase between any two transmitting and receiving stations is challenging. In this work we present results of modeling of the VLF signal amplitudes from five different transmitters as observed at a single receiving station in India during a C9.3 class solar flare. In this model we simulate the ionization rates at lower ionospheric heights from actual flare spectra with the GEANT4 Monte Carlo simulation code and find the equilibrium ion densities with a D-region ion-chemistry model. We find the signal amplitude variation along different propagation paths with the LWPC code. Such efforts are essential for an appropriate understanding of the VLF propagation in Earth's ionosphere waveguide and to achieve desired accuracy while using Earth's ionosphere as an efficient detector of such extra-terrestrial ionization events.

  9. The Role of Tone in Processing Prose.

    ERIC Educational Resources Information Center

    Crismore, Avon

    Working on the assumption that an adequate model of comprehension must also deal with its connotative aspect (the aspect that concerns the feeling, mood, or "tone" of the text), this paper examines the concept of contextual tone. After defining tone according to its various senses and synonymous forms (voice, attitude, style, mood, and…

  10. Dialectal Variation in the Lexical Tone System.

    ERIC Educational Resources Information Center

    Remijsen, Bert

    2001-01-01

    Discusses dialectal variation in the lexical tone system of Ma'ya, an Austronesian language featuring three lexically contrastive tonemes. Representative acoustic data were collected from the Missol, Slawati, and Laganyan dialects, and on the basis of these data, an account is given of their tone systems and of how these tone systems compare to…

  11. Voice quality and tone identification in White Hmong.

    PubMed

    Garellek, Marc; Keating, Patricia; Esposito, Christina M; Kreiman, Jody

    2013-02-01

    This study investigates the importance of source spectrum slopes in the perception of phonation by White Hmong listeners. In White Hmong, nonmodal phonation (breathy or creaky voice) accompanies certain lexical tones, but its importance in tonal contrasts is unclear. In this study, native listeners participated in two perceptual tasks, in which they were asked to identify the word they heard. In the first task, participants heard natural stimuli with manipulated F0 and duration (phonation unchanged). Results indicate that phonation is important in identifying the breathy tone, but not the creaky tone. Thus, breathiness can be viewed as contrastive in White Hmong. Next, to understand which parts of the source spectrum listeners use to perceive contrastive breathy phonation, source spectrum slopes were manipulated in the second task to create stimuli ranging from modal to breathy sounding, with F0 held constant. Results indicate that changes in H1-H2 (difference in amplitude between the first and second harmonics) and H2-H4 (difference in amplitude between the second and fourth harmonics) are independently important for distinguishing breathy from modal phonation, consistent with the view that the percept of breathiness is influenced by a steep drop in harmonic energy in the lower frequencies.

  12. The molecular basis of the genesis of basal tone in internal anal sphincter.

    PubMed

    Zhang, Cheng-Hai; Wang, Pei; Liu, Dong-Hai; Chen, Cai-Ping; Zhao, Wei; Chen, Xin; Chen, Chen; He, Wei-Qi; Qiao, Yan-Ning; Tao, Tao; Sun, Jie; Peng, Ya-Jing; Lu, Ping; Zheng, Kaizhi; Craige, Siobhan M; Lifshitz, Lawrence M; Keaney, John F; Fogarty, Kevin E; ZhuGe, Ronghua; Zhu, Min-Sheng

    2016-01-01

    Smooth muscle sphincters exhibit basal tone and control passage of contents through organs such as the gastrointestinal tract; loss of this tone leads to disorders such as faecal incontinence. However, the molecular mechanisms underlying this tone remain unknown. Here, we show that deletion of myosin light-chain kinases (MLCK) in the smooth muscle cells from internal anal sphincter (IAS-SMCs) abolishes basal tone, impairing defecation. Pharmacological regulation of ryanodine receptors (RyRs), L-type voltage-dependent Ca(2+) channels (VDCCs) or TMEM16A Ca(2+)-activated Cl(-) channels significantly changes global cytosolic Ca(2+) concentration ([Ca(2+)]i) and the tone. TMEM16A deletion in IAS-SMCs abolishes the effects of modulators for TMEM16A or VDCCs on a RyR-mediated rise in global [Ca(2+)]i and impairs the tone and defecation. Hence, MLCK activation in IAS-SMCs caused by a global rise in [Ca(2+)]i via a RyR-TMEM16A-VDCC signalling module sets the basal tone. Targeting this module may lead to new treatments for diseases like faecal incontinence. PMID:27101932

  13. The molecular basis of the genesis of basal tone in internal anal sphincter

    PubMed Central

    Zhang, Cheng-Hai; Wang, Pei; Liu, Dong-Hai; Chen, Cai-Ping; Zhao, Wei; Chen, Xin; Chen, Chen; He, Wei-Qi; Qiao, Yan-Ning; Tao, Tao; Sun, Jie; Peng, Ya-Jing; Lu, Ping; Zheng, Kaizhi; Craige, Siobhan M.; Lifshitz, Lawrence M.; Keaney Jr, John F.; Fogarty, Kevin E.; ZhuGe, Ronghua; Zhu, Min-Sheng

    2016-01-01

    Smooth muscle sphincters exhibit basal tone and control passage of contents through organs such as the gastrointestinal tract; loss of this tone leads to disorders such as faecal incontinence. However, the molecular mechanisms underlying this tone remain unknown. Here, we show that deletion of myosin light-chain kinases (MLCK) in the smooth muscle cells from internal anal sphincter (IAS-SMCs) abolishes basal tone, impairing defecation. Pharmacological regulation of ryanodine receptors (RyRs), L-type voltage-dependent Ca2+ channels (VDCCs) or TMEM16A Ca2+-activated Cl− channels significantly changes global cytosolic Ca2+ concentration ([Ca2+]i) and the tone. TMEM16A deletion in IAS-SMCs abolishes the effects of modulators for TMEM16A or VDCCs on a RyR-mediated rise in global [Ca2+]i and impairs the tone and defecation. Hence, MLCK activation in IAS-SMCs caused by a global rise in [Ca2+]i via a RyR-TMEM16A-VDCC signalling module sets the basal tone. Targeting this module may lead to new treatments for diseases like faecal incontinence. PMID:27101932

  14. The Role of Tone Height, Melodic Contour, and Tone Chroma in Melody Recognition.

    ERIC Educational Resources Information Center

    Massaro, Dominic W.; And Others

    1980-01-01

    Relationships among tone height, melodic contour, tone chroma, and recognition of recently learned melodies were investigated. Results replicated previous studies using familiar folk songs, providing evidence that melodic contour, tone chroma, and tone height contribute to recognition of both highly familiar and recently learned melodies.…

  15. Perception of Mandarin Chinese Tone 2/Tone 3 and the Role of Creaky Voice

    ERIC Educational Resources Information Center

    Cao, Rui

    2012-01-01

    Research has shown that lexical tones, a suprasegmental feature, are processed by native speakers as linguistic elements just like other segmental information. Among the four tones of Mandarin Chinese, in particular, Tone 2 and Tone 3 are very similar in their pitch contour shapes and thus can be difficult to distinguish in native and nonnative…

  16. Root Tone: A Holistic Approach to Tone Pedagogy of Western Classical Flute

    ERIC Educational Resources Information Center

    BastaniNezhad, Arya

    2012-01-01

    This article examines how key components of holistic tone production can help flutists form a resonant tone. This is framed in an exploration of tone pedagogy and includes a model of tone evaluation and education. This research is also applicable to other instrumentalists, especially wind players. In this case study information was collected by…

  17. Neural signatures of lexical tone reading.

    PubMed

    Kwok, Veronica P Y; Wang, Tianfu; Chen, Siping; Yakpo, Kofi; Zhu, Linlin; Fox, Peter T; Tan, Li Hai

    2015-01-01

    Research on how lexical tone is neuroanatomically represented in the human brain is central to our understanding of cortical regions subserving language. Past studies have exclusively focused on tone perception of the spoken language, and little is known as to the lexical tone processing in reading visual words and its associated brain mechanisms. In this study, we performed two experiments to identify neural substrates in Chinese tone reading. First, we used a tone judgment paradigm to investigate tone processing of visually presented Chinese characters. We found that, relative to baseline, tone perception of printed Chinese characters were mediated by strong brain activation in bilateral frontal regions, left inferior parietal lobule, left posterior middle/medial temporal gyrus, left inferior temporal region, bilateral visual systems, and cerebellum. Surprisingly, no activation was found in superior temporal regions, brain sites well known for speech tone processing. In activation likelihood estimation (ALE) meta-analysis to combine results of relevant published studies, we attempted to elucidate whether the left temporal cortex activities identified in Experiment one is consistent with those found in previous studies of auditory lexical tone perception. ALE results showed that only the left superior temporal gyrus and putamen were critical in auditory lexical tone processing. These findings suggest that activation in the superior temporal cortex associated with lexical tone perception is modality-dependent.

  18. Source location of falling tone chorus

    NASA Astrophysics Data System (ADS)

    Kurita, Satoshi; Misawa, Hiroaki; Cully, Christopher M.; Le Contel, Olivier; Angelopoulos, Vassilis

    2012-11-01

    Chorus is characterized by its fine structures consisting of rising or falling tones believed to result from nonlinear wave-particle interactions. However, previous studies have showed that the intensity and propagation characteristics of rising and falling tone chorus are quite different, suggesting that their generation processes might be different. In this paper, the propagation direction of falling tone chorus is statistically investigated to identify its source region based on the Poynting vector measurement with THEMIS. The result shows that the falling tone chorus propagates from the magnetic equator to higher latitude both in the northern and southern hemispheres, in the same way as rising tone chorus. Our result shows that the magnetic equator is the common source location for both rising and falling tone chorus. The result emphasizes that the different properties between rising and falling tone chorus originate from their generation mechanism rather than source region.

  19. Visual sensitivity correlated tone reproduction for low dynamic range images in the compression field

    NASA Astrophysics Data System (ADS)

    Lee, Geun-Young; Lee, Sung-Hak; Kwon, Hyuk-Ju; Sohng, Kyu-Ik

    2014-11-01

    An image toning method for low dynamic range image compression is presented. The proposed method inserts tone mapping into JPEG baseline instead of postprocessing. First, an image is decomposed into detail, base, and surrounding components in terms of the discrete cosine transform coefficients. Subsequently, a luminance-adaptive tone mapping based on the human visual sensitivity properties is applied. In addition, compensation modules are added to enhance the visually sensitive factors, such as saturation, sharpness, and gamma. A comparative study confirms that the transmitted compression images have good image quality.

  20. Production and perception of coarticulated tones.

    PubMed

    Xu, Y

    1994-04-01

    In the present study, the distinctive tones of Mandarin were found to coarticulate with adjacent tones in running speech. However, the amount of deviation of a tone from its canonical form due to coarticulation varied depending on the nature of the tonal context. In a context where adjacent tonal values agree (a "compatible" context), the deviation was relatively small. In a context where adjacent tonal values disagree (a "conflicting" context), the deviation was much greater, sometimes even to the extent of changing the direction of a dynamic tone. To examine the perception of coarticulated tones, naturally produced words and phrases were used as stimuli for tone identification. However, their semantic information was removed through waveform editing while all the tonal information contained in the signal remained intact. Identification of tones in the compatible context was highly accurate with or without the original tonal context. Tonal identification for the conflicting context remained accurate only when the tones were presented with the original tonal context. Without the original context, i.e., in isolation, correct tone identification dropped below chance. When the original tonal context was altered, listeners compensated for the altered context as if it had been there originally. It thus seems that, in tone perception, listeners compensate for variations due to coarticulation. Nevertheless, even with the presence of the original context, perceptual identification was better for the compatible context than for the conflicting context, indicating that variation due to coarticulation is not always completely compensated for by listeners.

  1. Reflex Augmentation of a Tap-Elicited Eyeblink: The Effects of Tone Frequency and Tap Intensity.

    ERIC Educational Resources Information Center

    Cohen, Michelle E.; And Others

    1986-01-01

    Describes two experiments that examined whether the amplitude of the human eyeblink by a mild tap between the eyebrows can be increased if a brief tone is presented simultaneously with the tap and how these effects change from newborn infants to adults. (HOD)

  2. Cues to the perception of Taiwanese tones.

    PubMed

    Lin, H B; Repp, B H

    1989-01-01

    A labeling test with synthetic speech stimuli was carried out to determine to what extent the two dimensions of fundamental frequency (F0), height and movement, and syllable duration provide cues to tonal distinctions in Taiwanese. The data show that the high level vs. mid level tones and the high falling vs. mid falling tones can be reliably distinguished by F0 height alone, whereas the distinction between tones with dissimilar contours, such as the high falling and low rising tones, is predominantly cued by F0 movement. However, the other dimension of F0 may collaborate with the dominant one in cueing a tonal contrast, depending on the extent to which the two tones differ along that dimension. Syllable duration has a small additional effect on the perception of the distinction between falling and nonfalling tones. These results are consistent with previous findings in tone languages other than Taiwanese in that they suggest that tones are mainly cued by F0. While the primacy of F0 dimensions as cues to tonal contrasts depends on the contrast to be distinguished, the present findings show that tones which nominally differ only in register (e.g., high falling vs. mid falling) may exhibit perceptually relevant contour differences, and vice versa.

  3. Tone Noise and Nearfield Pressure Produced by Jet-Cavity Interaction

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Envia, Edmane; Bencic, Timothy J.

    1998-01-01

    Cavity flow resonance can cause numerous problems in aerospace applications. While our long-term goal is to understand cavity flows well enough to devise effective cavity resonance suppression techniques, this paper describes a fundamental study of resonant tones produced by jet-cavity interaction at subsonic and supersonic speeds. Our specific jet-cavity configuration can also be used as a test bed for evaluating active and passive flow resonance control concepts. Two significant findings emerge from this study. 1) Originally, we expected that tones produced by jet-cavity interaction would resemble cavity tones or jet tones or would involve some simple combinations of each. The experimental data do not support these expectations: instead, the jet cavity interaction produce a unique set of tones. We propose simple yet and physically insightful correlations for these tones. Although the pressure patterns on the cavity floor display very complex variations with the Mach number for a length/depth = 8 cavity, the tones correspond to the acoustic modes of the cavity-independent of flow. For a length/ depth = 3 cavity, however, a surprise emerges: the pressure patterns on the cavity floor are not so complex but the tones depend significantly on the flow. Additionally, we examine the role of external feedback unique to jet-cavity interaction. 2) Previous research led us to expect that traditional classifications (open, transitional, or closed) for cavities in an infinite flight stream would be insensitive to small changes in Mach number and would depend primarily on cavity length/depth ratios. Use of the novel high resolution photoluminescent pressure sensitive paint shows that the classifications are actually quite sensitive to jet Mach number for a length/depth = 8 cavity. However, these classifications provide no guidance whatsoever for tone amplitude or frequency. Detailed experimental data and insights presented here will assist researchers who are performing

  4. Energy dissipation and dynamic response of an amplitude-modulation atomic-force microscopy subjected to a tip-sample viscous force.

    PubMed

    Lin, Shueei Muh

    2007-01-01

    In a common environment of atomic force microscopy (AFM), a damping force occurs between a tip and a sample. The influence of damping on the dynamic response of a cantilever must be significant. Moreover, accurate theory is very helpful for the interpretation of a sample's topography and properties. In this study, the effects of damping and nonlinear interatomic tip-sample forces on the dynamic response of an amplitude-formulation AFM are investigated. The damping force is simulated by using the conventional Kelvin-Voigt damping model. The interatomic tip-sample force is the attractive van der Waals force. For consistance with real measurement of a cantilever, the mathematical equations of the beam theory of an AM-AFM are built and its analytical solution is derived. Moreover, an AFM system is also simplified into a mass-spring-damper model. Its exact solution is simple and intuitive. Several relations among the damping ratio, the response ratio, the frequency shift, the energy dissipation and the Q-factor are revealed. It is found that the resonant frequencies and the phase angles determined by the two models are almost same. Significant differences in the resonant quality factors and the response ratios determined by using the two models are also found. Finally, the influences of the variations of several parameters on the error of measuring a sample's topography are investigated. PMID:16982149

  5. On the benefit of DMT modulation in nonlinear VLC systems.

    PubMed

    Qian, Hua; Cai, Sunzeng; Yao, Saijie; Zhou, Ting; Yang, Yang; Wang, Xudong

    2015-02-01

    In a visible light communication (VLC) system, the nonlinear characteristic of the light emitting diode (LED) in transmitter is a limiting factor of system performance. Modern modulation signals with large peak-to-power-ratio (PAPR) suffers uneven distortion. The nonlinear response directly impacts the intensity modulation and direct detection VLC system with pulse-amplitude modulation (PAM). The amplitude of the PAM signal is distorted unevenly and large signal is vulnerable to noise. Orthogonal linear transformations, such as discrete multi-tone (DMT) modulation, can spread the nonlinear effects evenly to each data symbol, thus perform better than PAM signals. In this paper, we provide theoretical analysis on the benefit of DMT modulation in nonlinear VLC system. We show that the DMT modulation is a better choice than the PAM modulation for the VLC system as the DMT modulation is more robust against nonlinearity. We also show that the post-distortion nonlinear elimination method, which is applied at the receiver, can be a reliable solution to the nonlinear VLC system. Simulation results show that the post-distortion greatly improves the system performance for the DMT modulation.

  6. Effects of Lexical Tone Contour on Mandarin Sentence Intelligibility

    ERIC Educational Resources Information Center

    Chen, Fei; Wong, Lena L. N.; Hu, Yi

    2014-01-01

    Purpose: This study examined the effects of lexical tone contour on the intelligibility of Mandarin sentences in quiet and in noise. Method: A text-to-speech synthesis engine was used to synthesize Mandarin sentences with each word carrying the original lexical tone, flat tone, or a tone randomly selected from the 4 Mandarin lexical tones. The…

  7. Modulation of Auditory Responses to Speech vs. Nonspeech Stimuli during Speech Movement Planning

    PubMed Central

    Daliri, Ayoub; Max, Ludo

    2016-01-01

    Previously, we showed that the N100 amplitude in long latency auditory evoked potentials (LLAEPs) elicited by pure tone probe stimuli is modulated when the stimuli are delivered during speech movement planning as compared with no-speaking control conditions. Given that we probed the auditory system only with pure tones, it remained unknown whether the nature and magnitude of this pre-speech auditory modulation depends on the type of auditory stimulus. Thus, here, we asked whether the effect of speech movement planning on auditory processing varies depending on the type of auditory stimulus. In an experiment with nine adult subjects, we recorded LLAEPs that were elicited by either pure tones or speech syllables when these stimuli were presented prior to speech onset in a delayed-response speaking condition vs. a silent reading control condition. Results showed no statistically significant difference in pre-speech modulation of the N100 amplitude (early stages of auditory processing) for the speech stimuli as compared with the nonspeech stimuli. However, the amplitude of the P200 component (later stages of auditory processing) showed a statistically significant pre-speech modulation that was specific to the speech stimuli only. Hence, the overall results from this study indicate that, immediately prior to speech onset, modulation of the auditory system has a general effect on early processing stages but a speech-specific effect on later processing stages. This finding is consistent with the hypothesis that pre-speech auditory modulation may play a role in priming the auditory system for its role in monitoring auditory feedback during speech production. PMID:27242494

  8. The Phonology and Phonetics of Tone Perception

    ERIC Educational Resources Information Center

    Ramadoss, Deepti

    2012-01-01

    This dissertation studies the perception of tones in Thai, and aims to contribute to a formal characterization of speech perception more generally. Earlier work had argued that perception of tones involves retrieval of some abstract "autosegmental" representation provided by the phonology, while another line of work had argued for the…

  9. Emai Verbal and Preverbal Tone: Preliminaries.

    ERIC Educational Resources Information Center

    Schaefer, Ronald P.; Egbokhare, Francis O.

    A study of Emai, an Edoid language of south-central Nigeria, focuses on the system of constraints governing tonal processes. Specifically, it examines the ways in which general processes of low tone raising and high tone lowering are realized in domains constructed by verbs and by preverbal auxiliary and adverbial constituents. Sequentially…

  10. Pitch center of stringed instrument vibrato tones.

    PubMed

    Brown, J C; Vaughn, K V

    1996-09-01

    The determination of the pitch center of frequency modulated sounds has been the focus of a number of previous studies. The sources have usually been pure tones or synthetic complex sounds with a well-defined spectral composition. These synthetic sounds differ in temporal and spectral properties from the sounds produced by musical instruments; and it is these acoustic sounds which performers are trained to produce and to perceive in order to make intonation choices. Thus samples chosen for this study consist of approximately 1 s of acoustic sounds produced by a virtuoso violist playing the notes D4, C5#, A5, and G6 with and without vibrato. The sounds without vibrato were then resampled to give frequencies from -15 to +21 cents with respect to the mean of the sound with vibrato. Two-interval two-alternative forced choice (212AFC) experiments were carried out comparing the sounds with vibrato to those without vibrato using two sets of musically experienced listeners as subjects. A control set consisting of the comparison of pitch levels of the unmodulated sounds was carried out simultaneously. Results are consistent with the finding that the pitch perceived is that of the mean. The difference limen inferred from the control set was 2.8 cents for the first group and 2.5 cents for the second group with an upper bound on the error of 1 cent.

  11. Pitch center of stringed instrument vibrato tones.

    PubMed

    Brown, J C; Vaughn, K V

    1996-09-01

    The determination of the pitch center of frequency modulated sounds has been the focus of a number of previous studies. The sources have usually been pure tones or synthetic complex sounds with a well-defined spectral composition. These synthetic sounds differ in temporal and spectral properties from the sounds produced by musical instruments; and it is these acoustic sounds which performers are trained to produce and to perceive in order to make intonation choices. Thus samples chosen for this study consist of approximately 1 s of acoustic sounds produced by a virtuoso violist playing the notes D4, C5#, A5, and G6 with and without vibrato. The sounds without vibrato were then resampled to give frequencies from -15 to +21 cents with respect to the mean of the sound with vibrato. Two-interval two-alternative forced choice (212AFC) experiments were carried out comparing the sounds with vibrato to those without vibrato using two sets of musically experienced listeners as subjects. A control set consisting of the comparison of pitch levels of the unmodulated sounds was carried out simultaneously. Results are consistent with the finding that the pitch perceived is that of the mean. The difference limen inferred from the control set was 2.8 cents for the first group and 2.5 cents for the second group with an upper bound on the error of 1 cent. PMID:8817899

  12. Spontaneous tone in different types of longitudinal muscle preparations of guinea pig ileum.

    PubMed

    Suzuki, N; Shibayama, T; Mambo, T; Gomi, Y

    1995-09-01

    Spontaneous tone of longitudinal muscle in guinea pig ileum was investigated in three types of preparations, intact segment preparation, segment preparation deprived of the mucosal layer and longitudinal strip preparation. Tone was defined as the sustained contraction that was lost by 10(-7) M atropine in the isotonically recorded manner. The magnitudes of tone were constant for at least 3 hr in the two types of segment preparations. Contractions in response to 10(-6) M acetylcholine, which were induced 9 times with an interval of 20 min between each induction, were almost identical throughout the period. In the longitudinal strip preparation, on the other hand, the tone gradually decayed and was eventually lost, while the amplitudes of acetylcholine-induced contractions were reciprocally increased. The tone in the intact segment preparation was reduced to 19% of the control by tetrodotoxin (3 x 10(-7) M), to 51% by indomethacin (3 x 10(-6) M) and to 26% by N6-cyclopentyladenosine (10(-7) M), but was not affected by AA-861 (3 x 10(-6) M) or CP-96,345 (3 x 10(-7) M). In the three types of preparations, the dose-response curves for acetylcholine were alike with similar EC50s. These results suggest that the tone of longitudinal muscle was mainly induced due to neural activity in the myenteric plexus of guinea pig ileum and that sensitivity to acetylcholine was not affected by the neural activity.

  13. BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2016-09-01

    In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.

  14. Perception and production of tone in aphasia.

    PubMed

    Gandour, J; Petty, S H; Dardarananda, R

    1988-11-01

    An acoustical and perceptual study of lexical tone was conducted to evaluate the extent and nature of tonal disruption in aphasia. The language under investigation was Thai, a tone language which has five lexical tones--mid, low, falling, high, and rising. Subjects included six left brain-damaged aphasics (two Broca's, one transcortical motor, one global, one conduction, one Wernicke), one right brain-damaged nonaphasic, one cerebellar dysarthric, and five normals. High-quality tape recordings of each subject's productions of a minimal set of five, monosyllabic Thai words were presented to 10 adult Thai listeners for identification. Results from the phonemic identification tests indicated that tone production is relatively spared in aphasic patients with unilateral left hemisphere lesions. The performance of the global aphasic, however, was considerably below normal. Patterns of tonal confusions further revealed that the performance of all aphasics, except the global, differed from that of normal speakers primarily in degree rather than in kind. Tonal contrasts were signaled at a high level of proficiency by the right brain-damaged and dysarthric patients. Acoustical analysis revealed that F0 contours associated with the five tones for all aphasics, except the global, were similar in overall shape as well as position in the tone space to those of normals. F0 contours for the right brain-damaged patient and the dysarthric also generally agreed with those of normals in terms of shape and position. F0 ranges of both aphasic and nonaphasic brain-damaged speakers were generally larger than those of normals for all five tones. The relationship between tone and vowel duration was generally similar to that of normals for all brain-damaged speakers. A comparison of aphasics' performance on tone perception (J. Gandour & R. Dardarananda, 1983, Brain and Language, 18, 94-114) and tone production indicated that, for the normal and right brain-damaged subjects, performance on

  15. Cholinergic Blockade Reduces Theta-Gamma Phase Amplitude Coupling and Speed Modulation of Theta Frequency Consistent with Behavioral Effects on Encoding

    PubMed Central

    Gillet, Shea N.; Climer, Jason R.; Hasselmo, Michael E.

    2013-01-01

    Large-scale neural activation dynamics in the hippocampal-entorhinal circuit local field potential, observable as theta and gamma rhythms and coupling between these rhythms, is predictive of encoding success. Behavioral studies show that systemic administration of muscarinic acetylcholine receptor antagonists selectively impairs encoding, suggesting that they may also disrupt the coupling between the theta and gamma bands. Here, we tested the hypothesis that muscarinic antagonists selectively disrupt coupling between theta and gamma. Specifically, we characterized the effects of systemically administered scopolamine on movement-induced theta and gamma rhythms recorded in the superficial layers of the medial entorhinal cortex (MEC) of freely moving rats. We report the novel result that gamma power at the peak of theta was most reduced following muscarinic blockade, significantly shifting the phase of maximal gamma power to occur at later phases of theta. We also characterize the existence of multiple distinct gamma bands in the superficial layers of the MEC. Further, we observed that theta frequency was significantly less modulated by movement speed following muscarinic blockade. Finally, the slope relating speed to theta frequency, a correlate of familiarity with a testing enclosure, increased significantly less between the preinjection and recovery trials when scopolamine was administered during the intervening injection session than when saline was administered, suggesting that scopolamine reduced encoding of the testing enclosure. These data are consistent with computational models suggesting that encoding and retrieval occur during the peak and trough of theta, respectively, and support the theory that acetylcholine regulates the balance between encoding versus retrieval. PMID:24336727

  16. Children's Acquisition of Tone 3 Sandhi in Mandarin

    ERIC Educational Resources Information Center

    Wang, Chiung-Yao

    2011-01-01

    The purpose of the dissertation is to examine Mandarin-speaking children's acquisition of a syntax-dependent phonological rule Tone 3 Sandhi (T3S). A Tone 3 (low dipping tone) is changed to a Tone 2 (mid rising tone) when it is followed by another Tone 3. Application of T3S in fact involves a complex process. In setting up the prosodic domains…

  17. Sensitivity enhancement of the central-transition signal of half-integer spin quadrupolar nuclei in solid-state NMR: Features of multiple fast amplitude-modulated pulse transfer

    NASA Astrophysics Data System (ADS)

    Goswami, Mithun; Madhu, P. K.

    2008-06-01

    Sensitivity enhancement of solid-state NMR spectrum of half-integer spin quadrupolar nuclei under both magic-angle spinning (MAS) and static cases has been demonstrated by transferring polarisation associated with satellite transitions to the central m = -1/2 → 1/2 transition with suitably modulated radio-frequency pulse schemes. It has been shown that after the application of such enhancement schemes, there still remains polarisation in the satellite transitions that can be transferred to the central transition. This polarisation is available without having to wait for the spin system to return to thermal equilibrium. We demonstrate here the additional sensitivity enhancement obtained by making use of this remaining polarisation with fast amplitude-modulated (FAM) pulse schemes under both MAS and static conditions on a spin-3/2 and a spin-5/2 system. Considerable signal enhancement is obtained with the application of the multiple FAM sequence, denoted as m-FAM. We also report here some of the salient features of these multiple FAM sequences with respect to the nutation frequency of the pulses and the spinning frequency.

  18. Vagal tone: effects on sensitivity, motility, and inflammation.

    PubMed

    Bonaz, B; Sinniger, V; Pellissier, S

    2016-04-01

    The vagus nerve (VN) is a key element of the autonomic nervous system. As a mixed nerve, the VN contributes to the bidirectional interactions between the brain and the gut, i.e., the brain-gut axis. In particular, after integration in the central autonomic network of peripheral sensations such as inflammation and pain via vagal and spinal afferents, an efferent response through modulation of preganglionic parasympathetic neurons of the dorsal motor nucleus of the vagus and/or preganglionic sympathetic neurons of the spinal cord is able to modulate gastrointestinal nociception, motility, and inflammation. A low vagal tone, as assessed by heart rate variability, a marker of the sympatho-vagal balance, is observed in functional digestive disorders and inflammatory bowel diseases. To restore a normal vagal tone appears as a goal in such diseases. Among the therapeutic tools, such as drugs targeting the cholinergic system and/or complementary medicine (hypnosis, meditation…), deep breathing, physical exercise, VN stimulation (VNS), either invasive or non-invasive, appears as innovative. There is new evidence in the current issue of this Journal supporting the role of VNS in the modulation of gastrointestinal functions. PMID:27010234

  19. Attentional modulation in the detection of irrelevant deviance: a simultaneous ERP/fMRI study.

    PubMed

    Sabri, M; Liebenthal, E; Waldron, E J; Medler, D A; Binder, J R

    2006-05-01

    Little is known about the neural mechanisms that control attentional modulation of deviance detection in the auditory modality. In this study, we manipulated the difficulty of a primary task to test the relation between task difficulty and the detection of infrequent, task-irrelevant deviant (D) tones (1,300 Hz) presented among repetitive standard (S) tones (1,000 Hz). Simultaneous functional magnetic resonance imaging (fMRI)/event-related potentials (ERPs) were recorded from 21 subjects performing a two-alternative forced-choice duration discrimination task (short and long tones of equal probability). The duration of the short tone was always 50 msec. The duration of the long tone was 100 msec in the easy task and 60 msec in the difficult task. As expected, response accuracy decreased and response time (RT) increased in the difficult compared with the easy task. Performance was also poorer for D than for S tones, indicating distraction by task-irrelevant frequency information on trials involving D tones. In the difficult task, an amplitude increase was observed in the difference waves for N1 and P3a, ERP components associated with increased attention to deviant sounds. The mismatch negativity (MMN) response, associated with passive deviant detection, was larger in the easy task, demonstrating the susceptibility of this component to attentional manipulations. The fMRI contrast D > S in the difficult task revealed activation on the right superior temporal gyrus (STG) and extending ventrally into the superior temporal sulcus, suggesting this region's involvement in involuntary attention shifting toward unattended, infrequent sounds. Conversely, passive deviance detection, as reflected by the MMN, was associated with more dorsal activation on the STG. These results are consistent with the view that the dorsal STG region is responsive to mismatches between the memory trace of the standard and the incoming deviant sound, whereas the ventral STG region is activated by

  20. Mixing and Noise Benefit Versus Thrust Penalty in Supersonic Jets Using Impingement Tones

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.

    1994-01-01

    This paper reports the results of an experimental investigation on the effect of impingement tones generated by obstacles of various geometries on the spreading of a supersonic jet flow. A rectangular supersonic jet was produced using a convergent-divergent nozzle that was operated near its design point (with shocks minimized). The immersion of obstacles in the flow produced an intense impingement tone which then propagated upstream (as feedback) to the jet lip and excited the antisymmetric hydrodynamic mode in the jet, thus setting up a resonant self-sustaining loop. The violent flapping motion of the jet due to excitation of the antisymmetric mode, combined with the unsteady wakes of the obstacles, produced large changes in jet mixing. It was possible to control the frequency and amplitude of the impingement tone excitation by varying the nozzle-to-obstacle distance and the obstacle immersion. By proper shaping of the obstacles it was possible to reduce the thrust penalty significantly.

  1. Tone and prosodic organization in Cherokee nouns

    NASA Astrophysics Data System (ADS)

    Johnson, Keith; Haag, Marcia

    2005-04-01

    Preliminary observations in the speech of one speaker of Cherokee led us to postulate three factors affecting tone in Cherokee. (1) Tone may be lexically specified with distinctive low, low fall, low rise, and high tones. (2) There is a metrically determined high fall pattern which may be distributed over not more than 2 syllables from the right edge of a prosodic domain. (3) Intonational domains may be associated with discourse functions, marked by high fall, or by pitch range upstep. This paper tests these observations in recordings of word lists and sentences produced by five additional speakers. The analysis we give, positing both lexical tone and metrical prosodic accent, is not unique in descriptions of language, but is different from the usual description of Cherokee. [Work supported by NSF.

  2. Calculating scattering amplitudes efficiently

    SciTech Connect

    Dixon, L.

    1996-01-01

    We review techniques for more efficient computation of perturbative scattering amplitudes in gauge theory, in particular tree and one- loop multi-parton amplitudes in QCD. We emphasize the advantages of (1) using color and helicity information to decompose amplitudes into smaller gauge-invariant pieces, and (2) exploiting the analytic properties of these pieces, namely their cuts and poles. Other useful tools include recursion relations, special gauges and supersymmetric rearrangements. 46 refs., 11 figs.

  3. Numerical simulation of the edge tone phenomenon

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Liu, B. L.; Ofarrell, J. M.

    1994-01-01

    Time accurate Navier-Stokes computations were performed to study a class 2 (acoustic) whistle, the edge tone, and to gain knowledge of the vortex-acoustic coupling mechanisms driving production of these tones. Results were obtained by solving the full Navier-Stokes equations for laminar compressible air flow of a two dimensional jet issuing from a slit interacting with a wedge. Cases considered were determined by varying the distance from the slit to the wedge. Flow speed was kept constant at 1,750 cm/s as was the slit thickness of 0.1 cm, corresponding to conditions in the experiments of Brown. The analytical computations revealed edge tones to be present in four harmonic stages of jet flow instability over the wedge as the jet length was varied from 0.3 to 1.6 cm. Excellent agreement was obtained in all four edge tone stage cases between the present computational results and the experimentally obtained frequencies and flow visualization results of Brown. Specific edge tone generation phenomena and further confirmation of certain theories and empirical formulas concerning these phenomena were brought to light in this analytical simulation of edge tones.

  4. General perceptual contributions to lexical tone normalization.

    PubMed

    Huang, Jingyuan; Holt, Lori L

    2009-06-01

    Within tone languages that use pitch variations to contrast meaning, large variability exists in the pitches produced by different speakers. Context-dependent perception may help to resolve this perceptual challenge. However, whether speakers rely on context in contour tone perception is unclear; previous studies have produced inconsistent results. The present study aimed to provide an unambiguous test of the effect of context on contour lexical tone perception and to explore its underlying mechanisms. In three experiments, Mandarin listeners' perception of Mandarin first and second (high-level and mid-rising) tones was investigated with preceding speech and non-speech contexts. Results indicate that the mean fundamental frequency (f0) of a preceding sentence affects perception of contour lexical tones and the effect is contrastive. Following a sentence with a higher-frequency mean f0, the following syllable is more likely to be perceived as a lower frequency lexical tone and vice versa. Moreover, non-speech precursors modeling the mean spectrum of f0 also elicit this effect, suggesting general perceptual processing rather than articulatory-based or speaker-identity-driven mechanisms. PMID:19507980

  5. Dialect experience in Vietnamese tone perception.

    PubMed

    Kirby, James

    2010-06-01

    This study investigated the perceptual dimensions of tone in Vietnamese and the effect of dialect experience on listener's prelinguistic perception of tone. While Northern Vietnamese tones are cued by a combination of pitch and voice quality, Southern Vietnamese tones are purely pitch based. 30 listeners from two Vietnamese dialects (10 Northern, 20 Southern) participated in a speeded AX discrimination task using northern stimuli. The resulting reaction times were used to compute an INDSCAL multidimensional scaling solution and were submitted to hierarchical clustering analysis. While the analysis revealed a similar three-dimensional perceptual space structure for both listener groups, corresponding roughly to f(0) offset, voice quality, and contour type, the relative salience of these dimensions varied by dialect: Southern listeners were more likely to confuse tones produced with nonmodal voice quality, whereas Northern listeners found tones with similar pitch excursions to be more confusable. The results of hierarchical clustering of the stimuli further support an analysis where low-level perceptual similarity is influenced by primary dialect experience.

  6. Electro-cochlear potentials elicited by sinusoidally modulated signals.

    PubMed

    Verweij, C; Rodenburg, M

    1977-01-01

    Responses of the guinea pig cochlea to amplitude-modulated stimuli were measured with the aid of a gross electrode. The dynamic characteristics of this part of the auditory system was studied by varying several parameters of the applied signal. The signals used as carriers in our experiments were either white noise or pure tones of 1 and 4 kHz. The modulation frequency, dynamic and intensity characteristics were determined by varying the modulating frequency, the modulation depth and the intensity of the applied signal. To get an idea about possible non-linear aspects of the system under investigation, we always computed the Fourier transform of the response data and plotted the amplitude of the various harmonics and the phase of the fundamental separately as functions of the signal parameter in question. The greatest response was always found at a modulation frequency of about 200 Hz, with a relatively gradual rise up to this frequency and a sharper drop above 200 Hz. The phase of the fundamental changes very rapidly at frequencies above Hz. The distortion is mainly second-harmonic and has a maximum about 1 octave lower than the fundamental. The carrier frequency and the intensity of the stimulus were not found to have a great influence on the frequency characteristic. For small modulation depths, the system is nearly linear; at higher intensities and modulation depths saturation occurs, coinciding with a relative increase in the intensity of the second harmonic with respect to the fundamental. PMID:880128

  7. Response properties and location of neurons selective for sinusoidal frequency modulations in the inferior colliculus of the big brown bat.

    PubMed

    Yue, Qi; Casseday, John H; Covey, Ellen

    2007-09-01

    Most animal vocalizations, including echolocation signals used by bats, contain frequency-modulated (FM) components. Previous studies have described a class of neurons in the inferior colliculus (IC) of the big brown bat that respond exclusively to sinusoidally frequency modulated (SFM) signals and fail to respond to pure tones, noise, amplitude-modulated tones, or single FM sweeps. The aims of this study were to further characterize these neurons' response properties and to determine whether they are localized within a specific area of the IC. We recorded extracellularly from 214 neurons throughout the IC. Of these, 47 (22%) responded exclusively to SFM. SFM-selective cells were tuned to relatively low carrier frequencies (9-50 kHz), low modulation rates (20-210 Hz), and shallow modulation depths (3-10 kHz). Most had extremely low thresholds, with an average of 16.5 +/- 7.6 dB SPL, and 89% had upper thresholds and closed response areas. For SFM-selective cells with spontaneous activity, the spontaneous activity was eliminated when sound amplitude exceeded their upper threshold and resumed after the stimulus was over. These findings suggest that SFM-selective cells receive low-threshold excitatory inputs and high-threshold inhibitory inputs. SFM-selective cells were clustered in the rostrodorsal part of the IC. Within this area, best modulation rate appeared to be correlated with best carrier frequency and depth within the IC.

  8. Lexical Encoding of L2 Tones: The Role of L1 Stress, Pitch Accent and Intonation

    ERIC Educational Resources Information Center

    Braun, Bettina; Galts, Tobias; Kabak, Baris

    2014-01-01

    Native language prosodic structure is known to modulate the processing of non-native suprasegmental information. It has been shown that native speakers of French, a language without lexical stress, have difficulties storing non-native stress contrasts. We investigated whether the ability to store lexical tone (as in Mandarin Chinese) also depends…

  9. Brain Plasticity in Speech Training in Native English Speakers Learning Mandarin Tones

    NASA Astrophysics Data System (ADS)

    Heinzen, Christina Carolyn

    The current study employed behavioral and event-related potential (ERP) measures to investigate brain plasticity associated with second-language (L2) phonetic learning based on an adaptive computer training program. The program utilized the acoustic characteristics of Infant-Directed Speech (IDS) to train monolingual American English-speaking listeners to perceive Mandarin lexical tones. Behavioral identification and discrimination tasks were conducted using naturally recorded speech, carefully controlled synthetic speech, and non-speech control stimuli. The ERP experiments were conducted with selected synthetic speech stimuli in a passive listening oddball paradigm. Identical pre- and post- tests were administered on nine adult listeners, who completed two-to-three hours of perceptual training. The perceptual training sessions used pair-wise lexical tone identification, and progressed through seven levels of difficulty for each tone pair. The levels of difficulty included progression in speaker variability from one to four speakers and progression through four levels of acoustic exaggeration of duration, pitch range, and pitch contour. Behavioral results for the natural speech stimuli revealed significant training-induced improvement in identification of Tones 1, 3, and 4. Improvements in identification of Tone 4 generalized to novel stimuli as well. Additionally, comparison between discrimination of across-category and within-category stimulus pairs taken from a synthetic continuum revealed a training-induced shift toward more native-like categorical perception of the Mandarin lexical tones. Analysis of the Mismatch Negativity (MMN) responses in the ERP data revealed increased amplitude and decreased latency for pre-attentive processing of across-category discrimination as a result of training. There were also laterality changes in the MMN responses to the non-speech control stimuli, which could reflect reallocation of brain resources in processing pitch patterns

  10. Computational Support for Early Elicitation and Classification of Tone

    ERIC Educational Resources Information Center

    Bird, Steven; Lee, Haejoong

    2014-01-01

    Investigating a tone language involves careful transcription of tone on words and phrases. This is challenging when the phonological categories--the tones or melodies--have not been identified. Effects such as coarticulation, sandhi, and phrase-level prosody appear as obstacles to early elicitation and classification of tone. This article presents…

  11. Durations required to distinguish noise and tone: Effects of noise bandwidth and frequency.

    PubMed

    Taghipour, Armin; Moore, Brian C J; Edler, Bernd

    2016-05-01

    Perceptual audio coders exploit the masking properties of the human auditory system to reduce the bit rate in audio recording and transmission systems; it is intended that the quantization noise is just masked by the audio signal. The effectiveness of the audio signal as a masker depends on whether it is tone-like or noise-like. The determination of this, both physically and perceptually, depends on the duration of the stimuli. To gather information that might improve the efficiency of perceptual coders, the duration required to distinguish between a narrowband noise and a tone was measured as a function of center frequency and noise bandwidth. In experiment 1, duration thresholds were measured for isolated noise and tone bursts. In experiment 2, duration thresholds were measured for tone and noise segments embedded within longer tone pulses. In both experiments, center frequencies were 345, 754, 1456, and 2658 Hz and bandwidths were 0.25, 0.5, and 1 times the equivalent rectangular bandwidth of the auditory filter at each center frequency. The duration thresholds decreased with increasing bandwidth and with increasing center frequency up to 1456 Hz. It is argued that the duration thresholds depended mainly on the detection of amplitude fluctuations in the noise bursts. PMID:27250144

  12. Tone calibration technique: A digital signaling scheme for mobile applications

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1986-01-01

    Residual carrier modulation is conventionally used in a communication link to assist the receiver with signal demodulation and detection. Although suppressed carrier modulation has a slight power advantage over the residual carrier approach in systems enjoying a high level of stability, it lacks sufficient robustness to be used in channels severely contaminated by noise, interference and propagation effects. In mobile links, in particular, the vehicle motion and multipath waveform propagation affect the received carrier in an adverse fashion. A residual carrier scheme that uses a pilot carrier to calibrate a mobile channel against multipath fading anomalies is described. The benefits of this scheme, known as tone calibration technique, are described. A brief study of the system performance in the presence of implementation anomalies is also given.

  13. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2013-04-01

    The problem of the production of extended (~1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (~100 ns), maintains the electron density at a level ne = (3-5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (~0.5 eV) and a long lifetime (~1 ms), which are produced upon cessation of the laser pulse.

  14. An airborne amplitude-modulated 1.57 μm differential laser absorption spectrometer: simultaneous measurement of partial column-averaged dry air mixing ratio of CO2 and target range

    NASA Astrophysics Data System (ADS)

    Sakaizawa, D.; Kawakami, S.; Nakajima, M.; Tanaka, T.; Morino, I.; Uchino, O.

    2013-02-01

    Simultaneous measurements of the partial column-averaged dry air mixing ratio of CO2 (XCO2) and target range were demonstrated using airborne amplitude-modulated 1.57 μm differential laser absorption spectrometer (LAS). The LAS system is useful for discriminating between ground and cloud return signals and has a demonstrated ability to suppress the impact of integrated aerosol signals on atmospheric CO2 measurements. A high correlation coefficient (R) of 0.987 between XCO2 observed by LAS and XCO2 calculated from in situ measurements was obtained. The averaged difference in XCO2 obtained from LAS and validation data was within 1.5 ppm for all spiral measurements. An interesting vertical profile was observed for both XCO2LAS and XCO2val, in which lower altitude CO2 decreases compared to higher altitude CO2 attributed to the photosynthesis over grassland in the summer. In the case of an urban area where there are boundary-layer enhanced CO2 and aerosol in the winter, the difference of XCO2LAS to XCO2val is a negative bias of 1.5 ppm, and XCO2LAS is in agreement with XCO2val within the measurement precision of 2.4 ppm (1 SD).

  15. Studying Emergent Tone-Systems in Nepal: Pitch, Phonation and Word-Tone in Tamang

    ERIC Educational Resources Information Center

    Mazaudon, Martine

    2014-01-01

    This paper focuses on the particular kinds of difficulties which arise in the study of an emergent tone-system, exemplified by Tamang in Nepal, where pitch, phonation and other laryngeal features combine in the definition of a tone. As a consequence, conducting a well-ordered analysis in stages first of phonetic transcription, then variation in…

  16. Monitoring a high-amplitude δ Scuti star for 152 days: discovery of 12 additional modes and modulation effects in the light curve of CoRoT 101155310

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Rainer, M.; Weiss, W. W.; Bognár, Zs.; Moya, A.; Niemczura, E.; Suárez, J. C.; Auvergne, M.; Baglin, A.; Baudin, F.; Benkő, J. M.; Debosscher, J.; Garrido, R.; Mantegazza, L.; Paparó, M.

    2011-04-01

    Aims: The detection of small-amplitude nonradial modes in high-amplitude δ Sct (HADS) variables has been very elusive until at least five of them were detected in the light curve of V974 Oph obtained from ground-based observations. The combination of radial and nonradial modes has a high asteroseismic potential, thanks to the strong constraints we can put in the modelling. The continuous monitoring of ASAS 192647-0030.0 ≡ CoRoT 101155310 (P = 0.1258 d, V = 13.4) ensured from space by the CoRoT (COnvection, ROtation and planetary Transits) mission constitutes a unique opportunity to exploit such potential. Methods: The 22270 CoRoT measurements were performed in the chromatic mode. They span 152 d and cover 1208 consecutive cycles. After the correction for one jump and the long-term drift, the level of the noise turned out to be 29 μmag. The phase shifts and amplitude ratios of the coloured CoRoT data, the HARPS spectra, and the period-luminosity relation were used to determine a self-consistent physical model. In turn, it allowed us to model the oscillation spectrum, also giving feedback on the internal structure of the star. Results: In addition to the fundamental radial mode f1 = 7.949 d-1 with harmonics up to 10f1, we detected 12 independent terms. Linear combinations were also found and the light curve was solved by means of 61 frequencies (smallest amplitude 0.10 mmag). The newest result is the detection of a periodic modulation of the f1 mode (triplets at ± 0.193 d-1 centred on f1 and 2f1), discussed as a rotational effect or as an extension of the Blazhko effect to HADS stars. The physical model suggests that CoRoT 101155310 is an evolved star, with a slight subsolar metallic abundance, close to the terminal age main sequence. All the 12 additional terms are identified with mixed modes in the predicted overstable region. The CoRoT space mission was developed and is operated by the French space agency CNES, with the participation of ESA's RSSD and Science

  17. Cortical activity associated with the detection of temporal gaps in tones: a magnetoencephalography study

    PubMed Central

    Mitsudo, Takako; Hironaga, Naruhito; Mori, Shuji

    2014-01-01

    We used magnetoencephalogram (MEG) in two experiments to investigate spatio-temporal profiles of brain responses to gaps in tones. Stimuli consisted of leading and trailing markers with gaps between the two markers of 0, 30, or 80 ms. Leading and trailing markers were 300 ms pure tones at 800 or 3200 Hz.Two conditions were examined: the within-frequency (WF) condition in which the leading and trailing markers had identical frequencies, and the between-frequency (BF) condition in which they had different frequencies. Using minimum norm estimates (MNE), we localized the source activations at the time of the peak response to the trailing markers. Results showed that MEG signals in response to 800 and 3200 Hz tones were localized in different regions within the auditory cortex, indicating that the frequency pathways activated by the two markers were spatially represented.The time course of regional activity (RA) was extracted from each localized region for each condition. In Experiment 1, which used a continuous tone for the WF 0-ms stimulus, the N1m amplitude for the trailing marker in the WF condition differed depending on gap duration but not tonal frequency. In contrast, N1m amplitude in BF conditions differed depending on the frequency of the trailing marker. In Experiment 2, in which the 0-ms gap stimulus in the WF condition was made from two markers and included an amplitude reduction in the middle, the amplitude in WF and BF conditions changed depending on frequency, but not gap duration.The difference in temporal characteristics betweenWF and BF conditions could be observed in the RA. PMID:25346672

  18. Direct Numerical Simulation of Automobile Cavity Tones

    NASA Technical Reports Server (NTRS)

    Kurbatskii, Konstantin; Tam, Christopher K. W.

    2000-01-01

    The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.

  19. PULSE AMPLITUDE ANALYZER

    DOEpatents

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  20. PULSE AMPLITUDE ANALYSERS

    DOEpatents

    Lewis, I.A.D.

    1956-05-15

    This patent pentains to an electrical pulse amplitude analyzer, capable of accepting input pulses having a separation between adjacent pulses in the order of one microsecond while providing a large number of channels of classification. In its broad aspect the described pulse amplitude analyzer utilizes a storage cathode ray tube und control circuitry whereby the amplitude of the analyzed pulses controls both the intensity and vertical defiection of the beam to charge particular spots in horizontal sectors of the tube face as the beam is moved horizontally across the tube face. As soon as the beam has swept the length of the tube the information stored therein is read out by scanning individually each horizontal sector corresponding to a certain range of pulse amplitudes and applying the output signal from each scan to separate indicating means.

  1. PC-PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries.

    PubMed

    Mauban, Joseph R H; Zacharia, Joseph; Fairfax, Seth; Wier, Withrow Gil

    2015-06-15

    Myogenic tone is an intrinsic property of the vasculature that contributes to blood pressure control and tissue perfusion. Earlier investigations assigned a key role in myogenic tone to phospholipase C (PLC) and its products, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Here, we used the PLC inhibitor, U-73122, and two other, specific inhibitors of PLC subtypes (PI-PLC and PC-PLC) to delineate the role of PLC in myogenic tone of pressurized murine mesenteric arteries. U-73122 inhibited depolarization-induced contractions (high external K(+) concentration), thus confirming reports of nonspecific actions of U-73122 and its limited utility for studies of myogenic tone. Edelfosine, a specific inhibitor of PI-PLC, did not affect depolarization-induced contractions but modulated myogenic tone. Because PI-PLC produces IP3, we investigated the effect of blocking IP3 receptor-mediated Ca(2+) release on myogenic tone. Incubation of arteries with xestospongin C did not affect tone, consistent with the virtual absence of Ca(2+) waves in arteries with myogenic tone. D-609, an inhibitor of PC-PLC and sphingomyelin synthase, strongly inhibited myogenic tone and had no effect on depolarization-induced contraction. D-609 appeared to act by lowering cytoplasmic Ca(2+) concentration to levels below those that activate contraction. Importantly, incubation of pressurized arteries with a membrane-permeable analog of DAG induced vasoconstriction. The results therefore mandate a reexamination of the signaling pathways activated by the Bayliss mechanism. Our results suggest that PI-PLC and IP3 are not required in maintaining myogenic tone, but DAG, produced by PC-PLC and/or SM synthase, is likely through multiple mechanisms to increase Ca(2+) entry and promote vasoconstriction.

  2. PC-PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries

    PubMed Central

    Zacharia, Joseph; Fairfax, Seth; Wier, Withrow Gil

    2015-01-01

    Myogenic tone is an intrinsic property of the vasculature that contributes to blood pressure control and tissue perfusion. Earlier investigations assigned a key role in myogenic tone to phospholipase C (PLC) and its products, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Here, we used the PLC inhibitor, U-73122, and two other, specific inhibitors of PLC subtypes (PI-PLC and PC-PLC) to delineate the role of PLC in myogenic tone of pressurized murine mesenteric arteries. U-73122 inhibited depolarization-induced contractions (high external K+ concentration), thus confirming reports of nonspecific actions of U-73122 and its limited utility for studies of myogenic tone. Edelfosine, a specific inhibitor of PI-PLC, did not affect depolarization-induced contractions but modulated myogenic tone. Because PI-PLC produces IP3, we investigated the effect of blocking IP3 receptor-mediated Ca2+ release on myogenic tone. Incubation of arteries with xestospongin C did not affect tone, consistent with the virtual absence of Ca2+ waves in arteries with myogenic tone. D-609, an inhibitor of PC-PLC and sphingomyelin synthase, strongly inhibited myogenic tone and had no effect on depolarization-induced contraction. D-609 appeared to act by lowering cytoplasmic Ca2+ concentration to levels below those that activate contraction. Importantly, incubation of pressurized arteries with a membrane-permeable analog of DAG induced vasoconstriction. The results therefore mandate a reexamination of the signaling pathways activated by the Bayliss mechanism. Our results suggest that PI-PLC and IP3 are not required in maintaining myogenic tone, but DAG, produced by PC-PLC and/or SM synthase, is likely through multiple mechanisms to increase Ca2+ entry and promote vasoconstriction. PMID:25888510

  3. Louder sounds can produce less forward masking: Effects of component phase in complex tones

    NASA Astrophysics Data System (ADS)

    Gockel, Hedwig; Moore, Brian C. J.; Patterson, Roy D.; Meddis, Ray

    2003-08-01

    The influence of the degree of envelope modulation and periodicity on the loudness and effectiveness of sounds as forward maskers was investigated. In the first experiment, listeners matched the loudness of complex tones and noise. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz and were filtered into a frequency range from the 10th harmonic to 5000 Hz. The Gaussian noise was filtered in the same way. The components of the complex tones were added either in cosine phase (CPH), giving a large crest factor, or in random phase (RPH), giving a smaller crest factor. For each F0, subjects matched the loudness between all possible stimulus pairs. Six different levels of the fixed stimulus were used, ranging from about 30 dB SPL to about 80 dB SPL in 10-dB steps. Results showed that, at a given overall level, the CPH and the RPH tones were louder than the noise, and that the CPH tone was louder than the RPH tone. The difference in loudness was larger at medium than at low levels and was only slightly reduced by the addition of a noise intended to mask combination tones. The differences in loudness were slightly smaller for the higher than for the lower F0. In the second experiment, the stimuli with the lower F0s were used as forward maskers of a 20-ms sinusoid, presented at various frequencies within the spectral range of the maskers. Results showed that the CPH tone was the least effective forward masker, even though it was the loudest. The differences in effectiveness as forward maskers depended on masker level and signal frequency; in order to produce equal masking, the level of the CPH tone had to be up to 35 dB above that of the RPH tone and the noise. The implications of these results for models of loudness are discussed and a model is presented based on neural activity patterns in the auditory nerve; this predicts the general pattern of loudness matches. It is suggested that the effects observed in the experiments may have been influenced by two factors

  4. Perception of tones by infants learning a non-tone language.

    PubMed

    Liu, Liquan; Kager, René

    2014-11-01

    This article examines the perception of tones by non-tone-language-learning (non-tone-learning) infants between 5 and 18 months in a study that reveals infants' initial sensitivity to tonal contrasts, deterioration yet plasticity of tonal sensitivity at the end of the first year, and a perceptual rebound in the second year. Dutch infants in five age groups were tested on their ability to discriminate a tonal contrast of Mandarin Chinese as well as a contracted tonal contrast. Infants are able to discriminate tonal contrasts at 5-6 months, and their tonal sensitivity deteriorates at around 9 months. However, the sensitivity rebound sat 17-18 months. Non-tone-learning infants' tonal perception is elastic, as is shown by the influence of acoustic salience and distributional learning: (1) a salient contrast may remain discriminable throughout infancy whereas a less salient one does not; (2) a bimodal distribution in tonal exposure increases non-tone-learning infants' discrimination ability during the trough in sensitivity to tonal contrasts at 11-12 months. These novel findings reveal non-tone-learning infants' U-shaped pattern in tone perception, and display their perceptual flexibility.

  5. ERP correlates of pitch error detection in complex tone and voice auditory feedback with missing fundamental.

    PubMed

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R

    2012-04-11

    Previous studies have shown that the pitch of a sound is perceived in the absence of its fundamental frequency (F0), suggesting that a distinct mechanism may resolve pitch based on a pattern that exists between harmonic frequencies. The present study investigated whether such a mechanism is active during voice pitch control. ERPs were recorded in response to +200 cents pitch shifts in the auditory feedback of self-vocalizations and complex tones with and without the F0. The absence of the fundamental induced no difference in ERP latencies. However, a right-hemisphere difference was found in the N1 amplitudes with larger responses to complex tones that included the fundamental compared to when it was missing. The P1 and N1 latencies were shorter in the left hemisphere, and the N1 and P2 amplitudes were larger bilaterally for pitch shifts in voice and complex tones compared with pure tones. These findings suggest hemispheric differences in neural encoding of pitch in sounds with missing fundamental. Data from the present study suggest that the right cortical auditory areas, thought to be specialized for spectral processing, may utilize different mechanisms to resolve pitch in sounds with missing fundamental. The left hemisphere seems to perform faster processing to resolve pitch based on the rate of temporal variations in complex sounds compared with pure tones. These effects indicate that the differential neural processing of pitch in the left and right hemispheres may enable the audio-vocal system to detect temporal and spectral variations in the auditory feedback for vocal pitch control.

  6. Periodic amplitude variations in Jovian continuum radiation

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.

    1986-01-01

    An analysis of periodic variations in the amplitude of continuum radiation near 3 kHz trapped in the Jovian magnetosphere shows structure with periods near both five and ten hours. Contrary to a plausible initial idea, the continuum amplitudes are not organized by position of the observer relative to the dense plasma sheet. Instead, there seem to be preferred orientations of system III longitude with respect to the direction to the sun which account for the peaks. This implies a clock-like modulation of the continuum radiation intensity as opposed to a searchlight effect. The importance of the dipole longitude-solar wind alignment to the amplitude of the continuum radiation implies the source region of the radiation is near the magnetopause and may indirectly tie the generation of the radio waves to the clocklike modulation of energetic electron fluxes from Jupiter.

  7. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire-KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    SciTech Connect

    Zvorykin, V D; Ionin, Andrei A; Levchenko, A O; Mesyats, Gennadii A; Seleznev, L V; Sinitsyn, D V; Smetanin, Igor V; Sunchugasheva, E S; Ustinovskii, N N; Shutov, A V

    2013-04-30

    The problem of the production of extended ({approx}1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration ({approx}100 ns), maintains the electron density at a level n{sub e} = (3-5) Multiplication-Sign 10{sup 14} cm{sup -3} by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy ({approx}0.5 eV) and a long lifetime ({approx}1 ms), which are produced upon cessation of the laser pulse. (extreme light fields and their applications)

  8. The effects of non-elastic taping on muscle tone in stroke patients: a pilot study

    PubMed Central

    Kim, Ji Young; Chung, Jun Sub; Jang, Gwon Uk; Park, Seol; Park, Ji Won

    2015-01-01

    [Purpose] Hemiplegia occurs when posturing with a dominant flexor tone is present in the upper limbs, thus preventing increased abnormal tone. We attempted to improve the side effects of this condition using elbow re-positioning with non-elastic tape; this method is used to modulate abnormal muscle tone in chronic hemiplegic stroke patients. [Subjects and Methods] Fourteen post-stroke patients were included in this study. Non-elastic tape was applied to the elbow joint in a spiral manner. Before and after the tape was applied, the degree of spasticity (hypertonia) was measured in the elbow flexor muscles using the Modified Ashworth Scale (MAS). Global synkinesis (GS) intensity using electromyography (EMG) was measured in the biceps brachii and triceps brachii during voluntary isometric elbow contractions of the contralateral upper limbs. [Results] Application of non-elastic tape at the elbow joint significantly changed the GS intensity, but no significant changes were found when compared with the MAS. [Conclusion] This study demonstrates that non-elastic tape can be used to decrease abnormal elbow flexor tone. The findings may be used to influence the choice of intervention regarding muscle tone and spastic elbow flexion. PMID:26834377

  9. The value of visualizing tone of voice.

    PubMed

    Pullin, Graham; Cook, Andrew

    2013-10-01

    Whilst most of us have an innate feeling for tone of voice, it is an elusive quality that even phoneticians struggle to describe with sufficient subtlety. For people who cannot speak themselves this can have particularly profound repercussions. Augmentative communication often involves text-to-speech, a technology that only supports a basic choice of prosody based on punctuation. Given how inherently difficult it is to talk about more nuanced tone of voice, there is a risk that its absence from current devices goes unremarked and unchallenged. Looking ahead optimistically to more expressive communication aids, their design will need to involve more subtle interactions with tone of voice-interactions that the people using them can understand and engage with. Interaction design can play a role in making tone of voice visible, tangible, and accessible. Two projects that have already catalysed interdisciplinary debate in this area, Six Speaking Chairs and Speech Hedge, are introduced together with responses. A broader role for design is advocated, as a means to opening up speech technology research to a wider range of disciplinary perspectives, and also to the contributions and influence of people who use it in their everyday lives. PMID:23855927

  10. Collaborative Documentation and Revitalization of Cherokee Tone

    ERIC Educational Resources Information Center

    Herrick, Dylan; Berardo, Marcellino; Feeling, Durbin; Hirata-Edds, Tracy; Peter, Lizette

    2015-01-01

    Cherokee, the sole member of the southern branch of Iroquoian languages, is a severely endangered language. Unlike other members of the Iroquoian family, Cherokee has lexical tone. Community members are concerned about the potential loss of their language, and both speakers and teachers comment on the difficulty that language learners have with…

  11. Tone Holes and Frequency of Open Pipes.

    ERIC Educational Resources Information Center

    Shult, Donald E.

    1991-01-01

    Presented is an experiment which provides a study both of the end correction involved with open pipes and also of the effect that varying the size of the tone hole in the pipe has on its fundamental frequency. Discussed are equipment, formulas, background, and methods. (CW)

  12. Is There an Ironic Tone of Voice?

    ERIC Educational Resources Information Center

    Bryant, Gregory A.; Fox Tree, Jean E.

    2005-01-01

    Research on nonverbal vocal cues and verbal irony has often relied on the concept of an "ironic tone of voice". Here we provide acoustic analysis and experimental evidence that this notion is oversimplified and misguided. Acoustic analyses of spontaneous ironic speech extracted from talk radio shows, both ambiguous and unambiguous in written form,…

  13. The value of visualizing tone of voice.

    PubMed

    Pullin, Graham; Cook, Andrew

    2013-10-01

    Whilst most of us have an innate feeling for tone of voice, it is an elusive quality that even phoneticians struggle to describe with sufficient subtlety. For people who cannot speak themselves this can have particularly profound repercussions. Augmentative communication often involves text-to-speech, a technology that only supports a basic choice of prosody based on punctuation. Given how inherently difficult it is to talk about more nuanced tone of voice, there is a risk that its absence from current devices goes unremarked and unchallenged. Looking ahead optimistically to more expressive communication aids, their design will need to involve more subtle interactions with tone of voice-interactions that the people using them can understand and engage with. Interaction design can play a role in making tone of voice visible, tangible, and accessible. Two projects that have already catalysed interdisciplinary debate in this area, Six Speaking Chairs and Speech Hedge, are introduced together with responses. A broader role for design is advocated, as a means to opening up speech technology research to a wider range of disciplinary perspectives, and also to the contributions and influence of people who use it in their everyday lives.

  14. Tone-excited jet: Theory and experiments

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Lepicovsky, J.; Tam, C. K. W.; Morris, P. J.; Burrin, R. H.

    1982-01-01

    A detailed study to understand the phenomenon of broadband jet-noise amplification produced by upstream discrete-tone sound excitation has been carried out. This has been achieved by simultaneous acquisition of the acoustic, mean velocity, turbulence intensities, and instability-wave pressure data. A 5.08 cm diameter jet has been tested for this purpose under static and also flight-simulation conditions. An open-jet wind tunnel has been used to simulate the flight effects. Limited data on heated jets have also been obtained. To improve the physical understanding of the flow modifications brought about by the upstream discrete-tone excitation, ensemble-averaged schlieren photographs of the jets have also been taken. Parallel to the experimental study, a mathematical model of the processes that lead to broadband-noise amplification by upstream tones has been developed. Excitation of large-scale turbulence by upstream tones is first calculated. A model to predict the changes in small-scale turbulence is then developed. By numerically integrating the resultant set of equations, the enhanced small-scale turbulence distribution in a jet under various excitation conditions is obtained. The resulting changes in small-scale turbulence have been attributed to broadband amplification of jet noise. Excellent agreement has been found between the theory and the experiments. It has also shown that the relative velocity effects are the same for the excited and the unexcited jets.

  15. Study of the brightness of trumpet tones

    NASA Astrophysics Data System (ADS)

    Poirson, Emilie; Petiot, Jean-François; Gilbert, Joël

    2005-10-01

    This study focuses on a particular attribute of trumpet tones, the brightness, and on the physical characteristics of the instrument thought to govern its magnitude. On the one hand, an objective study was carried out with input impedance measurements, and, on the other hand, a subjective study with hearing tests and a panel of subjects. To create a set of different trumpets a variable depth mouthpiece was developed whose depth can be easily and continuously adjusted from ``deep'' to ``shallow.'' Using this mouthpiece and the same trumpet, several instruments were generated which may be played in three ways: (i) by a musician, (ii) by an artificial mouth, and (iii) using physical modeling simulations. The influence of the depth of the mouthpiece on the perception of the trumpet's tones was investigated, and the ability of a musician, the artificial mouth, or physical modeling simulations to demonstrate perceptively noticeable differences was assessed. Physical characteristics extracted from the impedance curves are finally proposed to explain the brightness of trumpet tones. As a result, the physical modeling simulations now seem to be mature enough to exhibit coherent and subtle perceptual differences between tones. This opens the door to virtual acoustics for instrument makers.

  16. Oesophageal tone in patients with achalasia

    PubMed Central

    Gonzalez, M; Mearin, F; Vasconez, C; Armengol, J; Malagelada, J

    1997-01-01

    Background—The diagnosis and classification of oesophageal motility disorders is currently based on assessment of the phasic contractile activity of the oesophagus. Tonic muscular contraction of the oesophageal body (oesophageal tone) has not been well characterised. 
Aim—To quantify oesophageal tonic activity in healthy subjects and in patients with achalasia. 
Patients—Oesophageal tone was measured in 14 patients with untreated achalasia and in 14 healthy subjects. In eight patients with achalasia, oesophageal tone was again measured one month after either endoscopic or surgical treatment. 
Methods—Tonic wall activity was quantified by means of a flaccid intraoesophageal bag, 5 cm long and of 120 ml maximal capacity, which was placed and maintained 5 cm above the lower oesophageal sphincter and connected to an external electronic barostat. The experimental design included measurement of oesophageal basal tone and compliance as well as the oesophageal tone response to a nitric oxide donor (0.5 ml amyl nitrite inhalation). 
Results—Oesophageal basal tone, expressed as the intrabag (intraoesophageal) volume at a minimal distending pressure (2 mm Hg), did not differ significantly between patients with achalasia and healthy controls (6.6 (2.5) ml versus 4.1 (0.8) ml, respectively). Oesophageal compliance (volume/pressure relation during intraoesophageal distension) was significantly increased in achalasia (oesophageal extension ratio: 3.2 (0.4) ml/mm Hg versus 1.9 (0.2) ml/mm Hg; p< 0.01). Amyl nitrite inhalation induced oesophageal relaxation both in patients and in controls, but the magnitude of relaxation was greater in the latter (intrabag volume increase: 15.3 (2.4) ml versus 36.2 (7.1) ml; p<0.01). 
Conclusion—In patients with achalasia, oesophageal tonic activity, and not only phasic activity, is impaired. Although oesophageal compliance is increased, residual oesophageal tone is maintained so that a significant relaxant response may occur

  17. Individual differences in processing pitch contour and rise time in adults: A behavioral and electrophysiological study of Cantonese tone merging.

    PubMed

    Ou, Jinghua; Law, Sam-Po

    2016-06-01

    One way to understand the relationship between speech perception and production is to examine cases where the two dissociate. This study investigates the hypothesis that perceptual acuity reflected in event-related potentials (ERPs) to rise time of sound amplitude envelope and pitch contour [reflected in the mismatch negativity (MMN)] may associate with individual differences in production among speakers with otherwise comparable perceptual abilities. To test this hypothesis, advantage was taken of an on-going sound change-tone merging in Cantonese, and compared the ERPs between two groups of typically developed native speakers who could discriminate the high rising and low rising tones with equivalent accuracy but differed in the distinctiveness of their production of these tones. Using a passive oddball paradigm, early positive-going EEG components to rise time and MMN to pitch contour were elicited during perception of the two tones. Significant group differences were found in neural responses to rise time rather than pitch contour. More importantly, individual differences in efficiency of tone discrimination in response latency and magnitude of neural responses to rise time were correlated with acoustic measures of F0 offset and rise time differences in productions of the two rising tones.

  18. Individual differences in processing pitch contour and rise time in adults: A behavioral and electrophysiological study of Cantonese tone merging.

    PubMed

    Ou, Jinghua; Law, Sam-Po

    2016-06-01

    One way to understand the relationship between speech perception and production is to examine cases where the two dissociate. This study investigates the hypothesis that perceptual acuity reflected in event-related potentials (ERPs) to rise time of sound amplitude envelope and pitch contour [reflected in the mismatch negativity (MMN)] may associate with individual differences in production among speakers with otherwise comparable perceptual abilities. To test this hypothesis, advantage was taken of an on-going sound change-tone merging in Cantonese, and compared the ERPs between two groups of typically developed native speakers who could discriminate the high rising and low rising tones with equivalent accuracy but differed in the distinctiveness of their production of these tones. Using a passive oddball paradigm, early positive-going EEG components to rise time and MMN to pitch contour were elicited during perception of the two tones. Significant group differences were found in neural responses to rise time rather than pitch contour. More importantly, individual differences in efficiency of tone discrimination in response latency and magnitude of neural responses to rise time were correlated with acoustic measures of F0 offset and rise time differences in productions of the two rising tones. PMID:27369146

  19. Could tuning of the inhibitory tone involve graded changes in neuronal chloride transport?

    PubMed

    Titz, Stefan; Sammler, Esther M; Hormuzdi, Sheriar G

    2015-08-01

    Hyperpolarizing synaptic inhibition through GABAA and glycine receptors depends on the presence of the neuronal cation-chloride-cotransporter protein, KCC2. Several transcriptional and post-transcriptional mechanisms have been shown to regulate KCC2 and thereby influence the polarity and efficacy of inhibitory synaptic transmission. It is unclear however whether regulation of KCC2 enables the transporter to attain different levels of activity thus allowing a neuron to modulate the strength of inhibitory synaptic transmission to its changing requirements. We therefore investigated whether phosphorylation can allow KCC2 to achieve distinct levels of [Cl(-)]i in neurons. We generated a variety of KCC2 alanine dephosphorylation mimics and used NH4(+)-induced pHi shifts in cultured hippocampal neurons to quantify the rate of KCC2 transport activity exhibited by these mutants. To explore the relationship between KCC2 transport and GABAA receptor-mediated current amplitudes we performed gramicidine perforated-patch recordings. The correlation between EGABA and NH4(+)-induced pHi shifts enabled an estimate of the range of chloride extrusion possible by kinase/phosphatase regulation of KCC2. Our results demonstrate that KCC2 transport can vary considerably in magnitude depending on the combination of alanine mutations present on the protein. Transport can be enhanced to sufficiently high levels that hyperpolarizing GABAA responses may be obtained even in neurons with an extremely negative resting membrane potential and at high extracellular K(+) concentrations. Our findings highlight the significant potential for regulating the inhibitory tone by KCC2-mediated chloride extrusion and suggest that cellular signaling pathways may act combinatorially to alter KCC2 phosphorylation/dephosphorylation and thereby tune the strength of synaptic inhibition. PMID:25843644

  20. The effect of context duration on Mandarin listeners' tone normalization.

    PubMed

    Luo, Xin; Ashmore, Krista B

    2014-08-01

    Tone normalization has been observed in Mandarin listeners, who contrastively adjust tone recognition using context pitch cues. This study tested the effect of context duration on Mandarin tone normalization. The target tones varied from Tone 1 (high-flat) to Tone 2 (mid-rising). The preceding phrase was modified to have different durations with 160- or 200-Hz mean fundamental frequencies (F0s). The results showed that the high-F0 context elicited significantly more Tone-2 responses than the low-F0 context, even when the contexts were 125 ms. The contrastive context effect saturated with the 250-ms contexts, indicating a 250-ms critical context duration for robust tone normalization.

  1. Reinforcing Saccadic Amplitude Variability

    ERIC Educational Resources Information Center

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  2. Factors affecting the performance of a multi-tone carrier source based re-circulating frequency shifter

    NASA Astrophysics Data System (ADS)

    Xi, Li-Xia; Li, Jian-Ping; Zhang, Xiao-Guang; Tian, Feng; Zhang, Wen-Bo

    2011-08-01

    Generation of single-sideband (SSB) multi-carrier source based on a recirculating frequency shifter (RFS) is analysed theoretically and realized experimentally. The effects of affecting factors originating from the deviation from the right operation bias voltage and unbalanced amplitude, and the phase of the radio frequency (RF) drive signals on the performance of the multi-tone source are discussed in detail. Based on the theoretical analysis, high-quality 50-tone output is successfully realized. Experiments under some implementation imperfections are also carried out. The imperfect and low-quality output results are in good agreement with theoretical analysis.

  3. Neurobiology of hedonic tone: the relationship between treatment-resistant depression, attention-deficit hyperactivity disorder, and substance abuse

    PubMed Central

    Sternat, Tia; Katzman, Martin A

    2016-01-01

    Anhedonia, defined as the state of reduced ability to experience feelings of pleasure, is one of the hallmarks of depression. Hedonic tone is the trait underlying one’s characteristic ability to feel pleasure. Low hedonic tone represents a reduced capacity to experience pleasure, thus increasing the likelihood of experiencing anhedonia. Low hedonic tone has been associated with several psychopathologies, including major depressive disorder (MDD), substance use, and attention-deficit hyperactivity disorder (ADHD). The main neural pathway that modulates emotional affect comprises the limbic–cortical–striatal–pallidal–thalamic circuits. The activity of various components of the limbic–cortical–striatal–pallidal–thalamic pathway is correlated with hedonic tone in healthy individuals and is altered in MDD. Dysfunction of these circuits has also been implicated in the relative ineffectiveness of selective serotonin reuptake inhibitors used to treat anxiety and depression in patients with low hedonic tone. Mood disorders such as MDD, ADHD, and substance abuse share low hedonic tone as well as altered activation of brain regions involved in reward processing and monoamine signaling as their features. Given the common features of these disorders, it is not surprising that they have high levels of comorbidities. The purpose of this article is to review the neurobiology of hedonic tone as it pertains to depression, ADHD, and the potential for substance abuse. We propose that, since low hedonic tone is a shared feature of MDD, ADHD, and substance abuse, evaluation of hedonic tone may become a diagnostic feature used to predict subtypes of MDD, such as treatment-resistant depression, as well as comorbidities of these disorders.

  4. Neurobiology of hedonic tone: the relationship between treatment-resistant depression, attention-deficit hyperactivity disorder, and substance abuse.

    PubMed

    Sternat, Tia; Katzman, Martin A

    2016-01-01

    Anhedonia, defined as the state of reduced ability to experience feelings of pleasure, is one of the hallmarks of depression. Hedonic tone is the trait underlying one's characteristic ability to feel pleasure. Low hedonic tone represents a reduced capacity to experience pleasure, thus increasing the likelihood of experiencing anhedonia. Low hedonic tone has been associated with several psychopathologies, including major depressive disorder (MDD), substance use, and attention-deficit hyperactivity disorder (ADHD). The main neural pathway that modulates emotional affect comprises the limbic-cortical-striatal-pallidal-thalamic circuits. The activity of various components of the limbic-cortical-striatal-pallidal-thalamic pathway is correlated with hedonic tone in healthy individuals and is altered in MDD. Dysfunction of these circuits has also been implicated in the relative ineffectiveness of selective serotonin reuptake inhibitors used to treat anxiety and depression in patients with low hedonic tone. Mood disorders such as MDD, ADHD, and substance abuse share low hedonic tone as well as altered activation of brain regions involved in reward processing and monoamine signaling as their features. Given the common features of these disorders, it is not surprising that they have high levels of comorbidities. The purpose of this article is to review the neurobiology of hedonic tone as it pertains to depression, ADHD, and the potential for substance abuse. We propose that, since low hedonic tone is a shared feature of MDD, ADHD, and substance abuse, evaluation of hedonic tone may become a diagnostic feature used to predict subtypes of MDD, such as treatment-resistant depression, as well as comorbidities of these disorders.

  5. Neurobiology of hedonic tone: the relationship between treatment-resistant depression, attention-deficit hyperactivity disorder, and substance abuse

    PubMed Central

    Sternat, Tia; Katzman, Martin A

    2016-01-01

    Anhedonia, defined as the state of reduced ability to experience feelings of pleasure, is one of the hallmarks of depression. Hedonic tone is the trait underlying one’s characteristic ability to feel pleasure. Low hedonic tone represents a reduced capacity to experience pleasure, thus increasing the likelihood of experiencing anhedonia. Low hedonic tone has been associated with several psychopathologies, including major depressive disorder (MDD), substance use, and attention-deficit hyperactivity disorder (ADHD). The main neural pathway that modulates emotional affect comprises the limbic–cortical–striatal–pallidal–thalamic circuits. The activity of various components of the limbic–cortical–striatal–pallidal–thalamic pathway is correlated with hedonic tone in healthy individuals and is altered in MDD. Dysfunction of these circuits has also been implicated in the relative ineffectiveness of selective serotonin reuptake inhibitors used to treat anxiety and depression in patients with low hedonic tone. Mood disorders such as MDD, ADHD, and substance abuse share low hedonic tone as well as altered activation of brain regions involved in reward processing and monoamine signaling as their features. Given the common features of these disorders, it is not surprising that they have high levels of comorbidities. The purpose of this article is to review the neurobiology of hedonic tone as it pertains to depression, ADHD, and the potential for substance abuse. We propose that, since low hedonic tone is a shared feature of MDD, ADHD, and substance abuse, evaluation of hedonic tone may become a diagnostic feature used to predict subtypes of MDD, such as treatment-resistant depression, as well as comorbidities of these disorders. PMID:27601909

  6. Neurobiology of hedonic tone: the relationship between treatment-resistant depression, attention-deficit hyperactivity disorder, and substance abuse.

    PubMed

    Sternat, Tia; Katzman, Martin A

    2016-01-01

    Anhedonia, defined as the state of reduced ability to experience feelings of pleasure, is one of the hallmarks of depression. Hedonic tone is the trait underlying one's characteristic ability to feel pleasure. Low hedonic tone represents a reduced capacity to experience pleasure, thus increasing the likelihood of experiencing anhedonia. Low hedonic tone has been associated with several psychopathologies, including major depressive disorder (MDD), substance use, and attention-deficit hyperactivity disorder (ADHD). The main neural pathway that modulates emotional affect comprises the limbic-cortical-striatal-pallidal-thalamic circuits. The activity of various components of the limbic-cortical-striatal-pallidal-thalamic pathway is correlated with hedonic tone in healthy individuals and is altered in MDD. Dysfunction of these circuits has also been implicated in the relative ineffectiveness of selective serotonin reuptake inhibitors used to treat anxiety and depression in patients with low hedonic tone. Mood disorders such as MDD, ADHD, and substance abuse share low hedonic tone as well as altered activation of brain regions involved in reward processing and monoamine signaling as their features. Given the common features of these disorders, it is not surprising that they have high levels of comorbidities. The purpose of this article is to review the neurobiology of hedonic tone as it pertains to depression, ADHD, and the potential for substance abuse. We propose that, since low hedonic tone is a shared feature of MDD, ADHD, and substance abuse, evaluation of hedonic tone may become a diagnostic feature used to predict subtypes of MDD, such as treatment-resistant depression, as well as comorbidities of these disorders. PMID:27601909

  7. English and Thai Speakers' Perception of Mandarin Tones

    ERIC Educational Resources Information Center

    Li, Ying

    2016-01-01

    Language learners' language experience is predicted to display a significant effect on their accurate perception of foreign language sounds (Flege, 1995). At the superasegmental level, there is still a debate regarding whether tone language speakers are better able to perceive foreign lexical tones than non-tone language speakers (i.e Lee et al.,…

  8. Stress and Tone in Indo-Aryan Languages

    ERIC Educational Resources Information Center

    Dhillon, Rajdip Kaur

    2010-01-01

    The current work offers a comprehensive examination of stress and tone in ten Indo-Aryan languages, providing novel analyses within Optimality Theory. The languages are divided into three categories: those in which tone is attracted to stress; those in which stress is attracted to tone; and those in which no interaction between stress and tone…

  9. Perception and Acoustic Correlates of the Taiwanese Tone Sandhi Group

    ERIC Educational Resources Information Center

    Kuo, Chen-Hsiu

    2013-01-01

    This dissertation investigates how the Taiwanese Tone Sandhi Groups are perceived, and the acoustic/phonetics correlates of listeners' judgments. A series of perception experiments have been conducted to scrutinize the following topics--Taiwanese tone neutralization, Tone Sandhi Group (TSG) as a prosodic domain, perceived boundary strength in…

  10. Tone Perception Ability of Cantonese-Speaking Children.

    ERIC Educational Resources Information Center

    Lee, Kathy Yuet Sheung; Chiu, Sung Nok; van Hasselt, Charles Andrew

    2002-01-01

    Investigated a new research design for the collection of reliable tone perception data from found children, compared lexical and nonlexical items for testing tone perception ability, and identified the relative ease of perceiving the three basic tone contrasts in Cantonese--high level/high rising, high level/low falling, and high rising/low…

  11. Two Tones: The Core of Inequality in Kindergarten?

    ERIC Educational Resources Information Center

    Palludan, Charlotte

    2007-01-01

    This article examines how kindergarten-children are differentiated and segregated through vocal practices and processes. The analysis is based on empirical data, which originate from a long ethnographic fieldwork in Denmark. The author presents two different language tones: "a teaching tone and an exchange tone" and shows a pattern in the ways the…

  12. Phase and Pupil Amplitude Recovery for JWST Space-Optics Control

    NASA Technical Reports Server (NTRS)

    Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.

    2010-01-01

    This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.

  13. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  14. Modeling OAE responses to short tones

    NASA Astrophysics Data System (ADS)

    Duifhuis, Hendrikus; Siegel, Jonathan

    2015-12-01

    In 1999 Shera and Guinan postulated that otoacoustic emissions evoked by low-level transient stimuli are generated by coherent linear reflection (CRF or CLR). This hypothesis was tested experimentally, e.g., by Siegel and Charaziak[10] by measuring emissions evoked by short (1 ms) tone pips in chinchilla. Using techniques in which supplied level and recorded spectral information were used Siegel and Charaziak concluded that much of the emission was generated by a mechanism in a region extending basally from the peak of the traveling wave and that the action of the suppressor is to remove emission generators evoked by the tone-pip and not to generate nonlinear artifacts in regions basal to the peak region. The original formulation of the CRF theory does not account for these results This study addresses relevant cochlear model predictions.

  15. Sequential Grouping of Pure-Tone Percepts Evoked by the Segregation of Components from a Complex Tone

    ERIC Educational Resources Information Center

    Haywood, Nicholas R.; Roberts, Brian

    2011-01-01

    A sudden change applied to a single component can cause its segregation from an ongoing complex tone as a pure-tone-like percept. Three experiments examined whether such pure-tone-like percepts are organized into streams by extending the research of Bregman and Rudnicky (1975). Those authors found that listeners struggled to identify the…

  16. New Tone Reservation Technique for Peak to Average Power Ratio Reduction

    NASA Astrophysics Data System (ADS)

    Wilharm, Joachim; Rohling, Hermann

    2014-09-01

    In Orthogonal Frequency Division Multiplexing (OFDM) the transmit signals have a highly fluctuating, non-constant envelope which is a technical challenge for the High Power Amplifier (HPA). Without any signal processing procedures the amplitude peaks of the transmit signal will be clipped by the HPA resulting in out-ofband radiation and in bit error rate (BER) performance degradation. The classical Tone Reservation (TR) technique calculates a correction signal in an iterative way to reduce the amplitude peaks. However this step leads to a high computational complexity. Therefore, in this paper an alternative TR technique is proposed. In this case a predefined signal pattern is shifted to any peak position inside the transmit signal and reduces thereby all amplitude peaks. This new procedure is able to outperform the classical TR technique and has a much lower computational complexity.

  17. Temporal coherency for video tone mapping

    NASA Astrophysics Data System (ADS)

    Boitard, Ronan; Bouatouch, Kadi; Cozot, Remi; Thoreau, Dominique; Gruson, Adrien

    2012-10-01

    Tone Mapping Operators (TMOs) aim at converting real world high dynamic range (HDR) images captured with HDR cameras, into low dynamic range (LDR) images that can be displayed on LDR displays. Several TMOs have been proposed over the last decade, from the simple global mapping to the more complex one simulating the human vision system. While these solutions work generally well for still pictures, they are usually less e_cient for video sequences as they are source of visual artifacts. Only few of them can be adapted to cope with a sequence of images. In this paper we present a major problem that a static TMO usually encounters while dealing with video sequences, namely the temporal coherency. Indeed, as each tone mapper deals with each frame separately, no temporal coherency is taken into account and hence the results can be quite disturbing for high varying dynamics in a video. We propose a temporal coherency algorithm that is designed to analyze a video as a whole, and from its characteristics adapts each tone mapped frame of a sequence in order to preserve the temporal coherency. This temporal coherency algorithm has been tested on a set of real as well as Computer Graphics Image (CGI) content and put in competition with several algorithms that are designed to be time-dependent. Results show that temporal coherency preserves the overall contrast in a sequence of images. Furthermore, this technique is applicable to any TMO as it is a post-processing that only depends on the used TMO.

  18. Auditory streaming of tones of uncertain frequency, level, and duration.

    PubMed

    Chang, An-Chieh; Lutfi, Robert A; Lee, Jungmee

    2015-12-01

    Stimulus uncertainty is known to critically affect auditory masking, but its influence on auditory streaming has been largely ignored. Standard ABA-ABA tone sequences were made increasingly uncertain by increasing the sigma of normal distributions from which the frequency, level, or duration of tones were randomly drawn. Consistent with predictions based on a model of masking by Lutfi, Gilbertson, Chang, and Stamas [J. Acoust. Soc. Am. 134, 2160-2170 (2013)], the frequency difference for which A and B tones formed separate streams increased as a linear function of sigma in tone frequency but was much less affected by sigma in tone level or duration. PMID:26723358

  19. Auditory streaming of tones of uncertain frequency, level, and duration.

    PubMed

    Chang, An-Chieh; Lutfi, Robert A; Lee, Jungmee

    2015-12-01

    Stimulus uncertainty is known to critically affect auditory masking, but its influence on auditory streaming has been largely ignored. Standard ABA-ABA tone sequences were made increasingly uncertain by increasing the sigma of normal distributions from which the frequency, level, or duration of tones were randomly drawn. Consistent with predictions based on a model of masking by Lutfi, Gilbertson, Chang, and Stamas [J. Acoust. Soc. Am. 134, 2160-2170 (2013)], the frequency difference for which A and B tones formed separate streams increased as a linear function of sigma in tone frequency but was much less affected by sigma in tone level or duration.

  20. Dynamics of Infant Cortical Auditory Evoked Potentials (CAEPs) for Tone and Speech Tokens

    PubMed Central

    Cone, Barbara; Whitaker, Richard

    2013-01-01

    Objectives Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: 1) further knowledge of auditory development above the level of the brainstem during the first year of life; 2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and to 3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. Design 36 infants, between the ages of 4-12 months (mean= 8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Results Infant CAEP component latencies were prolonged by 100-150 ms in comparison to

  1. Optical measures of changes in cerebral vascular tone during voluntary breath holding and a Sternberg memory task.

    PubMed

    Tan, Chin Hong; Low, Kathy A; Schneider-Garces, Nils; Zimmerman, Benjamin; Fletcher, Mark A; Maclin, Edward L; Chiarelli, Antonio M; Gratton, Gabriele; Fabiani, Monica

    2016-07-01

    The human cerebral vasculature responds to changes in blood pressure and demands for oxygenation via cerebral autoregulation. Changes in cerebrovascular tone (vasoconstriction and vasodilation) also mediate the changes in blood flow measured by the BOLD fMRI signal. This cerebrovascular reactivity is known to vary with age. In two experiments, we demonstrate that cerebral pulse parameters measured using optical imaging can quantify changes in cerebral vascular tone, both globally and locally. In experiment 1, 51 older adults (age range=55-87) performed a voluntary breath-holding task while cerebral pulse amplitude measures were taken. We found significant pulse amplitude variations across breath-holding periods, indicating vasodilation during, and vasoconstriction after breath holding. The breath-holding index (BHI), a measure of cerebrovascular reactivity (CVR) was derived and found to correlate with age. BHI was also correlated with performance in the Modified Mini-Mental Status Examination, even after controlling for age and education. In experiment 2, the same participants performed a Sternberg task, and changes in regional pulse amplitude between high (set-size 6) and low (set-size 2) task loads were compared. Only task-related areas in the fronto-parietal network (FPN) showed significant reduction in pulse amplitude, indicating vasodilation. Non-task-related areas such as the somatosensory and auditory cortices did not show such reductions. Taken together, these experiments suggest that optical pulse parameters can index changes in brain vascular tone both globally and locally, using both physiological and cognitive load manipulations.

  2. Congenital amusia in speakers of a tone language: association with lexical tone agnosia.

    PubMed

    Nan, Yun; Sun, Yanan; Peretz, Isabelle

    2010-09-01

    Congenital amusia is a neurogenetic disorder that affects the processing of musical pitch in speakers of non-tonal languages like English and French. We assessed whether this musical disorder exists among speakers of Mandarin Chinese who use pitch to alter the meaning of words. Using the Montreal Battery of Evaluation of Amusia, we tested 117 healthy young Mandarin speakers with no self-declared musical problems and 22 individuals who reported musical difficulties and scored two standard deviations below the mean obtained by the Mandarin speakers without amusia. These 22 amusic individuals showed a similar pattern of musical impairment as did amusic speakers of non-tonal languages, by exhibiting a more pronounced deficit in melody than in rhythm processing. Furthermore, nearly half the tested amusics had impairments in the discrimination and identification of Mandarin lexical tones. Six showed marked impairments, displaying what could be called lexical tone agnosia, but had normal tone production. Our results show that speakers of tone languages such as Mandarin may experience musical pitch disorder despite early exposure to speech-relevant pitch contrasts. The observed association between the musical disorder and lexical tone difficulty indicates that the pitch disorder as defining congenital amusia is not specific to music or culture but is rather general in nature. PMID:20685803

  3. Congenital Amusia (or Tone-Deafness) Interferes with Pitch Processing in Tone Languages

    PubMed Central

    Tillmann, Barbara; Burnham, Denis; Nguyen, Sebastien; Grimault, Nicolas; Gosselin, Nathalie; Peretz, Isabelle

    2011-01-01

    Congenital amusia is a neurogenetic disorder that affects music processing and that is ascribed to a deficit in pitch processing. We investigated whether this deficit extended to pitch processing in speech, notably the pitch changes used to contrast lexical tones in tonal languages. Congenital amusics and matched controls, all non-tonal language speakers, were tested for lexical tone discrimination in Mandarin Chinese (Experiment 1) and in Thai (Experiment 2). Tones were presented in pairs and participants were required to make same/different judgments. Experiment 2 additionally included musical analogs of Thai tones for comparison. Performance of congenital amusics was inferior to that of controls for all materials, suggesting a domain-general pitch-processing deficit. The pitch deficit of amusia is thus not limited to music, but may compromise the ability to process and learn tonal languages. Combined with acoustic analyses of the tone material, the present findings provide new insights into the nature of the pitch-processing deficit exhibited by amusics. PMID:21734894

  4. Congenital amusia in speakers of a tone language: association with lexical tone agnosia.

    PubMed

    Nan, Yun; Sun, Yanan; Peretz, Isabelle

    2010-09-01

    Congenital amusia is a neurogenetic disorder that affects the processing of musical pitch in speakers of non-tonal languages like English and French. We assessed whether this musical disorder exists among speakers of Mandarin Chinese who use pitch to alter the meaning of words. Using the Montreal Battery of Evaluation of Amusia, we tested 117 healthy young Mandarin speakers with no self-declared musical problems and 22 individuals who reported musical difficulties and scored two standard deviations below the mean obtained by the Mandarin speakers without amusia. These 22 amusic individuals showed a similar pattern of musical impairment as did amusic speakers of non-tonal languages, by exhibiting a more pronounced deficit in melody than in rhythm processing. Furthermore, nearly half the tested amusics had impairments in the discrimination and identification of Mandarin lexical tones. Six showed marked impairments, displaying what could be called lexical tone agnosia, but had normal tone production. Our results show that speakers of tone languages such as Mandarin may experience musical pitch disorder despite early exposure to speech-relevant pitch contrasts. The observed association between the musical disorder and lexical tone difficulty indicates that the pitch disorder as defining congenital amusia is not specific to music or culture but is rather general in nature.

  5. Lexical tone awareness among Chinese children with developmental dyslexia.

    PubMed

    Li, Wing-Sze; Suk-Han Ho, Connie

    2011-09-01

    This study examined the extent and nature of lexical tone deficit in Chinese developmental dyslexia. Twenty Cantonese-speaking Chinese dyslexic children (mean age 8;11) were compared to twenty average readers of the same age (CA control group, mean age 8;11), and another twenty younger average readers of the same word reading level (RL control group, mean age 7;4) on different measures of lexical tone awareness, rhyme awareness and visual-verbal paired-associate learning. Results showed that the Chinese dyslexic children performed significantly worse than the CA but not the RL control groups in nearly all the lexical tone and rhyme awareness measures. Analyses of individual performance demonstrated that over one-third of the dyslexic children showed a deficit in some aspects of tone awareness. Tone discrimination and tone production were found to correlate significantly with Chinese word reading. These findings confirm that Chinese dyslexic children show weaknesses in tone awareness.

  6. Impaired learning of event frequencies in tone deafness.

    PubMed

    Loui, Psyche; Schlaug, Gottfried

    2012-04-01

    Musical knowledge is ubiquitous, effortless, and implicitly acquired all over the world via exposure to musical materials in one's culture. In contrast, one group of individuals who show insensitivity to music, specifically the inability to discriminate pitches and melodies, is the tone-deaf. In this study, we asked whether difficulties in pitch and melody discrimination among the tone-deaf could be related to learning difficulties, and, if so, what processes of learning might be affected in the tone-deaf. We investigated the learning of frequency information in a new musical system in tone-deaf individuals and matched controls. Results showed significantly impaired learning abilities in frequency matching in the tone-deaf. This impairment was positively correlated with the severity of tone deafness as assessed by the Montreal Battery for Evaluation of Amusia. Taken together, the results suggest that tone deafness is characterized by an impaired ability to acquire frequency information from pitched materials in the sound environment.

  7. Processing of pure-tone and FM stimuli in the auditory cortex of the FM bat, Myotis lucifugus.

    PubMed

    Shannon-Hartman, S; Wong, D; Maekawa, M

    1992-08-01

    FM bats perceive their surroundings during echolocation by analyzing frequency-modulated (FM) acoustic signals. Results from this study indicate a cortical organization in Myotis lucifugus which is largely made up of neurons sensitive to FM sounds (FM-sensitive neurons). Three types of neurons were distinguished by their responses to pure-tone and FM stimuli: (1) Type I FM-sensitive units (83%), Type II FM-sensitive units (13%) and pure-tone sensitive units (4%). Type I FM-sensitive units responded to pure tones, but exhibited greater response magnitudes to FM stimuli when the best FM swept through the BF. An orderly frequency representation was found when the frequencies of pure tones essential for response (EPTs) in Type I units were mapped along the cortical surface. The EPTs for Type I neurons were usually found within the last millisecond of a downward FM sweep. As outlined by two neuronal network models, both the responses of Type I and II units could likely result from the convergence of excitatory and inhibitory lower level neurons with slightly differing BFs. Type II units were selective for an FM sweep and showed negligible to no response to pure-tone stimuli. Pure-tone sensitive units exhibited weak or no responses to FM stimuli. These neurons were clustered in a small area located rostrodorsal to the tonotopic zone and had significantly lower best frequencies than adjacent EPT frequencies of Type I FM-sensitive neurons. PMID:1326505

  8. Syllabic tone articulation influences the identification and use of words during Chinese sentence reading: Evidence from ERP and eye movement recordings.

    PubMed

    Luo, Yingyi; Yan, Ming; Yan, Shaorong; Zhou, Xiaolin; Inhoff, Albrecht W

    2016-02-01

    In two experiments, we examined the contribution of articulation-specific features to visual word recognition during the reading of Chinese. In spoken Standard Chinese, a syllable with a full tone can be tone-neutralized through sound weakening and pitch contour change, and there are two types of two-character compound words with respect to their articulation variation. One type requires articulation of a full tone for each constituent character, and the other requires a full- and a neutral-tone articulation for the first and second characters, respectively. Words of these two types with identical first characters were selected and embedded in sentences. Native speakers of Standard Chinese were recruited to read the sentences. In Experiment 1, the individual words of a sentence were presented serially at a fixed pace while event-related potentials were recorded. This resulted in less-negative N100 and anterior N250 amplitudes and in more-negative N400 amplitudes when targets contained a neutral tone. Complete sentences were visible in Experiment 2, and eye movements were recorded while participants read. Analyses of oculomotor activity revealed shorter viewing durations and fewer refixations on-and fewer regressive saccades to-target words when their second syllable was articulated with a neutral rather than a full tone. Together, the results indicate that readers represent articulation-specific word properties, that these representations are routinely activated early during the silent reading of Chinese sentences, and that the representations are also used during later stages of word processing.

  9. Modulation of auditory processing during speech movement planning is limited in adults who stutter

    PubMed Central

    Daliri, Ayoub; Max, Ludo

    2015-01-01

    Stuttering is associated with atypical structural and functional connectivity in sensorimotor brain areas, in particular premotor, motor, and auditory regions. It remains unknown, however, which specific mechanisms of speech planning and execution are affected by these neurological abnormalities. To investigate pre-movement sensory modulation, we recorded 12 stuttering and 12 nonstuttering adults’ auditory evoked potentials in response to probe tones presented prior to speech onset in a delayed-response speaking condition vs. no-speaking control conditions (silent reading; seeing nonlinguistic symbols). Findings indicate that, during speech movement planning, the nonstuttering group showed a statistically significant modulation of auditory processing (reduced N1 amplitude) that was not observed in the stuttering group. Thus, the obtained results provide electrophysiological evidence in support of the hypothesis that stuttering is associated with deficiencies in modulating the cortical auditory system during speech movement planning. This specific sensorimotor integration deficiency may contribute to inefficient feedback monitoring and, consequently, speech dysfluencies. PMID:25796060

  10. Modulation of auditory processing during speech movement planning is limited in adults who stutter.

    PubMed

    Daliri, Ayoub; Max, Ludo

    2015-04-01

    Stuttering is associated with atypical structural and functional connectivity in sensorimotor brain areas, in particular premotor, motor, and auditory regions. It remains unknown, however, which specific mechanisms of speech planning and execution are affected by these neurological abnormalities. To investigate pre-movement sensory modulation, we recorded 12 stuttering and 12 nonstuttering adults' auditory evoked potentials in response to probe tones presented prior to speech onset in a delayed-response speaking condition vs. no-speaking control conditions (silent reading; seeing nonlinguistic symbols). Findings indicate that, during speech movement planning, the nonstuttering group showed a statistically significant modulation of auditory processing (reduced N1 amplitude) that was not observed in the stuttering group. Thus, the obtained results provide electrophysiological evidence in support of the hypothesis that stuttering is associated with deficiencies in modulating the cortical auditory system during speech movement planning. This specific sensorimotor integration deficiency may contribute to inefficient feedback monitoring and, consequently, speech dysfluencies.

  11. Investigation of the Acoustics of Plucked String Tones Based on the Analysis of Their Time-Varying Spectra.

    NASA Astrophysics Data System (ADS)

    Chen, Kwok-Ping John

    This research investigates two aspects of the time-varying vibration patterns of plucked string tones of classical guitar, Chinese pipa and Chinese ch'in. First, the assumption that horizontal and vertical frequencies and decay rates may be different is used as a basis for classifying the partial amplitude envelopes into four types. It is found that the partial envelopes of the tones produced by the three instruments, using the finger tip excitation method, on a single undamped string, can be described in terms of these four types. The results show that ch'in tones contain Type III, and IV, guitar tones contain Type I, II and III, and pipa tones contain all four types with a higher percentage of Type III and IV. Second, the theories of "missing modes" (Young, 1800), (Benade, 1976) and delayed generation of these modes (Fletcher, 1984), (Hall, 1987) are re-examined experimentally. The edge of a conventional guitar pick is used to excite a single undamped string on a classical guitar at nodal position N which is L/N from the bridge. As a result, it is a consistent feature that any mode whose index n is a multiple of N is attenuated during the attack phase but subsequently rises with a more gradual attack to reach a significant peak amplitude, except for the first multiple of locations L/3 to L/7. This amplitude envelope pattern, Type V, which is only applicable when the pick-edge excitation method is used, is distinct from the other four types mentioned above.

  12. Flow Tones in a Pipeline-Cavity System: Effect of Pipe Asymmetry

    SciTech Connect

    D. Erdem; D. rockwell; P. Oshkai; M. Pollack

    2002-05-29

    Flow tones in a pipeline-cavity system are characterized in terms of unsteady pressure within the cavity and along the pipe. The reference case corresponds to equal lengths of pipe connected to the inlet and outlet ends of the cavity. Varying degrees of asymmetry of this pipe arrangement are investigated. The asymmetry is achieved by an extension of variable length, which is added to the pipe at the cavity outlet. An extension length as small as a few percent of the acoustic wavelength of the resonant mode can yield a substantial reduction in the pressure amplitude of the flow tone. This amplitude decrease occurs in a similar fashion within both the cavity and the pipe resonator, which indicates that it is a global phenomenon. Furthermore, the decrease of pressure amplitude is closely correlated with a decrease of the Q (quality)-factor of the predominant spectral component of pressure. At a sufficiently large value of extension length, however, the overall form of the pressure spectrum recovers to the form that exists at zero length of the extension. Further insight is provided by variation of the inflow velocity at selected values of extension length. Irrespective of its value, both the magnitude and frequency of the peak pressure exhibit a sequence of resonant-like states. Moreover, the maximum attainable magnitude of the peak pressure decreases with increasing extension length.

  13. Flow Tones in a Pipeline-Cavity System: Effect of Pipe Asymmetry

    SciTech Connect

    D. Erdem; D. Rockwell; P.L. Oshkai; M. Pollack

    2001-02-28

    Flow tones in a pipeline-cavity system are characterized in terms of unsteady pressure within the cavity and along the pipe. The reference case corresponds to equal lengths of pipe connected to the inlet and outlet ends of the cavity. Varying degrees of asymmetry of this pipe arrangement are investigated. The asymmetry is achieved by an extension of variable length, which is added to the pipe at the cavity outlet. An extension length as small as a few percent of the acoustic wavelength of the resonant mode can yield a substantial reduction in the pressure amplitude of the flow tone. This amplitude decrease occurs in a similar fashion within both the cavity and the pipe resonator, which indicates that it is a global phenomenon. Furthermore, the decrease of pressure amplitude is closely correlated with a decrease of the Q (quality)-factor of the predominant spectral component of pressure. At a sufficiently large value of extension length, however, the overall form of the pressure spectrum recovers to the form that exists at zero length of the extension. Further insight is provided by variation of the inflow velocity at selected values of extension length. Irrespective of its value, both the magnitude and frequency of the peak pressure exhibit a sequence of resonant-like states. moreover, the maximum attainable magnitude of the peak pressure decreases with increasing extension length.

  14. Frequency sweep rates of rising tone electromagnetic ion cyclotron waves: Comparison between nonlinear theory and Cluster observation

    SciTech Connect

    He, Zhaoguo; Zong, Qiugang Wang, Yongfu; Liu, Siqing; Lin, Ruilin; Shi, Liqin

    2014-12-15

    Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.

  15. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration

    PubMed Central

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18–35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate—acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04–0.15 Hz) to high (0.15–0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system. PMID:26284521

  16. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    PubMed

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz) to high (0.15-0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system. PMID:26284521

  17. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    PubMed

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz) to high (0.15-0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system.

  18. A fundamental residue pitch perception bias for tone language speakers

    NASA Astrophysics Data System (ADS)

    Petitti, Elizabeth

    A complex tone composed of only higher-order harmonics typically elicits a pitch percept equivalent to the tone's missing fundamental frequency (f0). When judging the direction of residue pitch change between two such tones, however, listeners may have completely opposite perceptual experiences depending on whether they are biased to perceive changes based on the overall spectrum or the missing f0 (harmonic spacing). Individual differences in residue pitch change judgments are reliable and have been associated with musical experience and functional neuroanatomy. Tone languages put greater pitch processing demands on their speakers than non-tone languages, and we investigated whether these lifelong differences in linguistic pitch processing affect listeners' bias for residue pitch. We asked native tone language speakers and native English speakers to perform a pitch judgment task for two tones with missing fundamental frequencies. Given tone pairs with ambiguous pitch changes, listeners were asked to judge the direction of pitch change, where the direction of their response indicated whether they attended to the overall spectrum (exhibiting a spectral bias) or the missing f0 (exhibiting a fundamental bias). We found that tone language speakers are significantly more likely to perceive pitch changes based on the missing f0 than English speakers. These results suggest that tone-language speakers' privileged experience with linguistic pitch fundamentally tunes their basic auditory processing.

  19. Auditory P3 latency and amplitude: relationships to earlier exogenous auditory events.

    PubMed

    Spongberg, T; Decker, T N

    1990-01-01

    The purpose of the present study was to determine the relationship for latency and amplitude between exogenous auditory potentials arising at the level of cranial nerve VIII and continuing through the level of the cortex and the auditory P3 endogenous potential. Thirty-four normal hearing adults participated in the study. Binaural ABR, MLR, LCR, and P3 recordings were obtained using 2 kHz tone bursts as the stimulus. Relationships between peak latencies and amplitudes from the early, middle, and late potentials were analyzed using Pearson Product-Moment correlation procedures and multiple regression analyses. Results indicated no significant positive relationships for latency or amplitude between early, middle, or late exogenous potentials and the endogenous P3 potential. Pa of the MLR and P3 demonstrated significant latency/amplitude trading functions. The present data support the hypothesis that P3 latency and amplitude are not related to the latencies and amplitudes of the exogenous responses.

  20. Near Field Trailing Edge Tone Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2002-01-01

    Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.

  1. Broadband metasurface holograms: toward complete phase and amplitude engineering

    NASA Astrophysics Data System (ADS)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-09-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  2. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    PubMed

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  3. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    PubMed

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519

  4. Broadband metasurface holograms: toward complete phase and amplitude engineering

    PubMed Central

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519

  5. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  6. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  7. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  8. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  9. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  10. Simultaneous Measurement of Nonlinearity and Electrochemical Impedance for Protein Sensing Using Two-Tone Excitation

    PubMed Central

    Daniels, Jonathan S.; Anderson, Erik P.; Lee, Thomas H.; Pourmand, Nader

    2009-01-01

    Impedance biosensors detect the binding of a target to an immobilized probe by quantifying changes in the impedance of the electrode-electrolyte interface. The interface's I-V relationship is inherently nonlinear, varying with DC bias, and target binding can alter the degree of nonlinearity. We propose and demonstrate a method to simultaneously measure the nonlinearity and conventional small-signal impedance using intermodulation products from a two-tone input. Intermodulation amplitudes accurately reflect the impedance's manually-measured voltage dependence. We demonstrate that changes in nonlinearity can discriminate protein binding. Our measurements suggest that target binding can alter nonlinearity via the voltage dependence of the ionic double layer. PMID:19164024

  11. Silicon photonic Mach Zehnder modulators for next-generation short-reach optical communication networks

    NASA Astrophysics Data System (ADS)

    Lacava, C.; Liu, Z.; Thomson, D.; Ke, Li; Fedeli, J. M.; Richardson, D. J.; Reed, G. T.; Petropoulos, P.

    2016-02-01

    Communication traffic grows relentlessly in today's networks, and with ever more machines connected to the network, this trend is set to continue for the foreseeable future. It is widely accepted that increasingly faster communications are required at the point of the end users, and consequently optical transmission plays a progressively greater role even in short- and medium-reach networks. Silicon photonic technologies are becoming increasingly attractive for such networks, due to their potential for low cost, energetically efficient, high-speed optical components. A representative example is the silicon-based optical modulator, which has been actively studied. Researchers have demonstrated silicon modulators in different types of structures, such as ring resonators or slow light based devices. These approaches have shown remarkably good performance in terms of modulation efficiency, however their operation could be severely affected by temperature drifts or fabrication errors. Mach-Zehnder modulators (MZM), on the other hand, show good performance and resilience to different environmental conditions. In this paper we present a CMOS-compatible compact silicon MZM. We study the application of the modulator to short-reach interconnects by realizing data modulation using some relevant advanced modulation formats, such as 4-level Pulse Amplitude Modulation (PAM-4) and Discrete Multi-Tone (DMT) modulation and compare the performance of the different systems in transmission.

  12. The acoustic analysis of tone differentiation as a means for assessing tone production in speakers of Cantonese

    NASA Astrophysics Data System (ADS)

    Barry, Johanna G.; Blamey, Peter J.

    2004-09-01

    This paper reports on a methodology for acoustically analyzing tone production in Cantonese. F0 offset versus F0 onset are plotted for a series of tokens for each of the six tones in the language. These are grouped according to tone type into a set of six ellipses. Qualitative visual observations regarding the degree of differentiation of the ellipses within the tonal space are summarized numerically using two indices, referred to here as Index 1 and Index 2. Index 1 is a ratio of the area of the speaker's tonal space and the average of the areas of the ellipses of the three target tones making up the tonal space. Index 2 is a ratio of the average distance between all six tonal ellipses and the average of the sum of the two axes for all six tone ellipses. Using this methodology, tonal differentiation is compared for three groups of speakers; normally hearing adults; normally hearing children aged from 4-6 years; and, prelinguistically deafened cochlear implant users aged from 4-11 years. A potential conundrum regarding how tone production abilities can outstrip tone perception abilities is explained using the data from the acoustic analyses. It is suggested that young children of the age range tested are still learning to normalize for pitch level differences in tone production. Acoustic analysis of the data thus supports results from tone perception studies and suggests that the methodology is suitable for use in studies investigating tone production in both clinical and research contexts.

  13. Recognition memory for single tones with and without context.

    PubMed

    Dewar, K M; Cuddy, L L; Mewhort, D J

    1977-01-01

    Sequences of seven tones were presented, and recognition memory for individual tones of each sequence was tested under varying degrees of context. With no context, the test required recognition of a tone isolated from the sequence; with full context, the tone to be recognized was embedded in the original sequence. A series of three experiments demonstrated that recognition memory was far more accurate under full-context conditions than under no-context conditions and that the superiority was not wholly attributable to the serial position information or the order information provided by the full context. It is suggested that in addition to the processing of limited information for the pitch of isolated tones, pattern (or relational) information is abstracted from a tone sequence and is retrieved in the presence of full context. PMID:845552

  14. Effect of musical experience on learning lexical tone categories.

    PubMed

    Zhao, T Christina; Kuhl, Patricia K

    2015-03-01

    Previous studies suggest that musicians show an advantage in processing and encoding foreign-language lexical tones. The current experiments examined whether musical experience influences the perceptual learning of lexical tone categories. Experiment I examined whether musicians with no prior experience of tonal languages differed from nonmusicians in the perception of a lexical tone continuum. Experiment II examined whether short-term perceptual training on lexical tones altered the perception of the lexical tone continuum differentially in English-speaking musicians and nonmusicians. Results suggested that (a) musicians exhibited higher sensitivity overall to tonal changes, but perceived the lexical tone continuum in a manner similar to nonmusicians (continuously), in contrast to native Mandarin speakers (categorically); and (b) short-term perceptual training altered perception; however, there were no significant differences between the effects of training on musicians and nonmusicians.

  15. Resolution of lexical ambiguity by emotional tone of voice.

    PubMed

    Nygaard, Lynne C; Lunders, Erin R

    2002-06-01

    In the present study, the effects of emotional tone of voice on the perception of word meaning were investigated. In two experiments, listeners were presented with emotional homophones that had one affective meaning (happy or sad) and one neutral meaning. In both experiments, the listeners were asked to transcribe the emotional homophones presented in three different affective tones--happy, neutral, and sad. In the first experiment, trials were blocked by tone of voice, and in the second experiment, tone of voice varied from trial to trial. The results showed that the listeners provided more affective than neutral transcriptions when the tone of voice was congruent with the emotional meaning of the homophone. These findings suggest that emotional tone of voice affects the processing of lexically ambiguous words by biasing the selection of word meaning.

  16. Closed string amplitudes as single-valued open string amplitudes

    NASA Astrophysics Data System (ADS)

    Stieberger, Stephan; Taylor, Tomasz R.

    2014-04-01

    We show that the single trace heterotic N-point tree-level gauge amplitude ANHET can be obtained from the corresponding type I amplitude ANI by the single-valued (sv) projection: ANHET=sv(ANI). This projection maps multiple zeta values to single-valued multiple zeta values. The latter represent a subclass of multiple zeta values originating from single-valued multiple polylogarithms at unity. Similar relations between open and closed string amplitudes or amplitudes of different string vacua can be established. As a consequence the α‧-expansion of a closed string amplitude is dictated by that of the corresponding open string amplitude. The combination of single-valued projections, Kawai-Lewellen-Tye relations and Mellin correspondence reveal a unity of all tree-level open and closed superstring amplitudes together with the maximally supersymmetric Yang-Mills and supergravity theories.

  17. Perception of touch quality in piano tones.

    PubMed

    Goebl, Werner; Bresin, Roberto; Fujinaga, Ichiro

    2014-11-01

    Both timbre and dynamics of isolated piano tones are determined exclusively by the speed with which the hammer hits the strings. This physical view has been challenged by pianists who emphasize the importance of the way the keyboard is touched. This article presents empirical evidence from two perception experiments showing that touch-dependent sound components make sounds with identical hammer velocities but produced with different touch forms clearly distinguishable. The first experiment focused on finger-key sounds: musicians could identify pressed and struck touches. When the finger-key sounds were removed from the sounds, the effect vanished, suggesting that these sounds were the primary identification cue. The second experiment looked at key-keyframe sounds that occur when the key reaches key-bottom. Key-bottom impact was identified from key motion measured by a computer-controlled piano. Musicians were able to discriminate between piano tones that contain a key-bottom sound from those that do not. However, this effect might be attributable to sounds associated with the mechanical components of the piano action. In addition to the demonstrated acoustical effects of different touch forms, visual and tactile modalities may play important roles during piano performance that influence the production and perception of musical expression on the piano. PMID:25373983

  18. Perception of touch quality in piano tones.

    PubMed

    Goebl, Werner; Bresin, Roberto; Fujinaga, Ichiro

    2014-11-01

    Both timbre and dynamics of isolated piano tones are determined exclusively by the speed with which the hammer hits the strings. This physical view has been challenged by pianists who emphasize the importance of the way the keyboard is touched. This article presents empirical evidence from two perception experiments showing that touch-dependent sound components make sounds with identical hammer velocities but produced with different touch forms clearly distinguishable. The first experiment focused on finger-key sounds: musicians could identify pressed and struck touches. When the finger-key sounds were removed from the sounds, the effect vanished, suggesting that these sounds were the primary identification cue. The second experiment looked at key-keyframe sounds that occur when the key reaches key-bottom. Key-bottom impact was identified from key motion measured by a computer-controlled piano. Musicians were able to discriminate between piano tones that contain a key-bottom sound from those that do not. However, this effect might be attributable to sounds associated with the mechanical components of the piano action. In addition to the demonstrated acoustical effects of different touch forms, visual and tactile modalities may play important roles during piano performance that influence the production and perception of musical expression on the piano.

  19. Involuntary switching of attention mediates differences in event-related responses to complex tones between early and late Spanish-English bilinguals.

    PubMed

    Ortiz-Mantilla, Silvia; Choudhury, Naseem; Alvarez, Barbara; Benasich, April A

    2010-11-29

    Most research with bilinguals has used speech stimuli to demonstrate differences in auditory processing abilities. Two main factors have been identified as modulators of such differences: proficiency and age of acquisition of the second language (L2). However, whether the bilingual brain differs from the monolingual in the efficient processing of non-verbal auditory events (known to be critical to the acoustic analysis of the speech stream) remains unclear. In this EEG/ERP study, using the mismatch negativity (MMN), P3a, and late negativity (LN), we examined differences in discrimination, involuntary switching of attention and reorienting of attention between monolinguals and bilinguals as they processed complex tones. Further, we examined the role that age of acquisition plays in modulating such responses. A group of English monolinguals and a group of proficient Spanish-English bilinguals were presented with a multiple-deviant oddball paradigm with four deviant conditions (duration, frequency, silent gap, and frequency modulation). Late bilinguals, who learned English after age 10, exhibited larger MMN and P3a responses than early bilinguals, across all deviant conditions. Significant associations were found between amplitude of the responses and both age of L2 acquisition and years of L2 experience. Individuals who acquired English at later ages and had fewer years of L2 experience had larger MMN, P3a, and LN responses than those who learned it earlier. These findings demonstrate that age of L2 acquisition is an important modulator of auditory responses in bilinguals even when processing non-speech signals. Involuntary attention switching is suggested as the main factor driving these differences. PMID:20849832

  20. Involuntary switching of attention mediates differences in event-related responses to complex tones between early and late Spanish-English bilinguals.

    PubMed

    Ortiz-Mantilla, Silvia; Choudhury, Naseem; Alvarez, Barbara; Benasich, April A

    2010-11-29

    Most research with bilinguals has used speech stimuli to demonstrate differences in auditory processing abilities. Two main factors have been identified as modulators of such differences: proficiency and age of acquisition of the second language (L2). However, whether the bilingual brain differs from the monolingual in the efficient processing of non-verbal auditory events (known to be critical to the acoustic analysis of the speech stream) remains unclear. In this EEG/ERP study, using the mismatch negativity (MMN), P3a, and late negativity (LN), we examined differences in discrimination, involuntary switching of attention and reorienting of attention between monolinguals and bilinguals as they processed complex tones. Further, we examined the role that age of acquisition plays in modulating such responses. A group of English monolinguals and a group of proficient Spanish-English bilinguals were presented with a multiple-deviant oddball paradigm with four deviant conditions (duration, frequency, silent gap, and frequency modulation). Late bilinguals, who learned English after age 10, exhibited larger MMN and P3a responses than early bilinguals, across all deviant conditions. Significant associations were found between amplitude of the responses and both age of L2 acquisition and years of L2 experience. Individuals who acquired English at later ages and had fewer years of L2 experience had larger MMN, P3a, and LN responses than those who learned it earlier. These findings demonstrate that age of L2 acquisition is an important modulator of auditory responses in bilinguals even when processing non-speech signals. Involuntary attention switching is suggested as the main factor driving these differences.