Sample records for amplitude modulated tones

  1. Amplitude modulation reduces loudness adaptation to high-frequency tones.

    PubMed

    Wynne, Dwight P; George, Sahara E; Zeng, Fan-Gang

    2015-07-01

    Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.

  2. Human neuromagnetic steady-state responses to amplitude-modulated tones, speech, and music.

    PubMed

    Lamminmäki, Satu; Parkkonen, Lauri; Hari, Riitta

    2014-01-01

    Auditory steady-state responses that can be elicited by various periodic sounds inform about subcortical and early cortical auditory processing. Steady-state responses to amplitude-modulated pure tones have been used to scrutinize binaural interaction by frequency-tagging the two ears' inputs at different frequencies. Unlike pure tones, speech and music are physically very complex, as they include many frequency components, pauses, and large temporal variations. To examine the utility of magnetoencephalographic (MEG) steady-state fields (SSFs) in the study of early cortical processing of complex natural sounds, the authors tested the extent to which amplitude-modulated speech and music can elicit reliable SSFs. MEG responses were recorded to 90-s-long binaural tones, speech, and music, amplitude-modulated at 41.1 Hz at four different depths (25, 50, 75, and 100%). The subjects were 11 healthy, normal-hearing adults. MEG signals were averaged in phase with the modulation frequency, and the sources of the resulting SSFs were modeled by current dipoles. After the MEG recording, intelligibility of the speech, musical quality of the music stimuli, naturalness of music and speech stimuli, and the perceived deterioration caused by the modulation were evaluated on visual analog scales. The perceived quality of the stimuli decreased as a function of increasing modulation depth, more strongly for music than speech; yet, all subjects considered the speech intelligible even at the 100% modulation. SSFs were the strongest to tones and the weakest to speech stimuli; the amplitudes increased with increasing modulation depth for all stimuli. SSFs to tones were reliably detectable at all modulation depths (in all subjects in the right hemisphere, in 9 subjects in the left hemisphere) and to music stimuli at 50 to 100% depths, whereas speech usually elicited clear SSFs only at 100% depth.The hemispheric balance of SSFs was toward the right hemisphere for tones and speech, whereas

  3. The Analysis for Activations in the Brain during Hearing the Amplitude-Modulated Tone by fMRI Measurement

    NASA Astrophysics Data System (ADS)

    Fukami, Tadanori; Shimada, Takamasa; Akatsuka, Takao; Saito, Yoichi

    In audiometry, ABR (Auditory Brainstem Response) is widely used. However, it shows low accuracy in low frequency band. Meanwhile, AMFR (Amplitude-Modulation-Following Response), the response during hearing an amplitude-modulated tone, has high frequency specificity and is brought to attention. As the first step to clinical application of AMFR, we investigated the activated areas in a brain when the subjects hear SAM tone (Sinusoidally Amplitude-Modulated tone) with both ears. We measured following two signals. One is the difference of BOLD (Blood Oxygenation Level Dependent) signal between hearing SAM tone vs. silence, the other is the difference of BOLD signal between hearing SAM tone vs. unmodulated tone. As a result, in the case of SAM vs. silence, the bilaterally auditory cortex (Broadmann Area 41, 42), the biratelally BA 10, left superior frontal gyrus and right superior temporal gyrus were activated (p<0.0037, uncorrected). In the case of SAM vs. unmodulated tone, the bilaterally superior frontal gyrus (BA 6) and precuneus (BA 7), neighboring area including the bilaterally inferior parietal lobule (BA 40), the bilaterally medial frontal gyrus and superior frontal gyrus were activated (p<0.021, uncorrected). Activations of visual perception due to eye-opened state were detected in some parts of activations. As a result, we inferred that modulated tone was recognized in the medial frontal gyrus and inferior parietal lobule was the part related to perception of amplitude-modulation.

  4. Steady-state MEG responses elicited by a sequence of amplitude-modulated short tones of different carrier frequencies.

    PubMed

    Kuriki, Shinya; Kobayashi, Yusuke; Kobayashi, Takanari; Tanaka, Keita; Uchikawa, Yoshinori

    2013-02-01

    The auditory steady-state response (ASSR) is a weak potential or magnetic response elicited by periodic acoustic stimuli with a maximum response at about a 40-Hz periodicity. In most previous studies using amplitude-modulated (AM) tones of stimulus sound, long lasting tones of more than 10 s in length were used. However, characteristics of the ASSR elicited by short AM tones have remained unclear. In this study, we examined magnetoencephalographic (MEG) ASSR using a sequence of sinusoidal AM tones of 0.78 s in length with various tone frequencies of 440-990 Hz in about one octave variation. It was found that the amplitude of the ASSR was invariant with tone frequencies when the level of sound pressure was adjusted along an equal-loudness curve. The amplitude also did not depend on the existence of preceding tone or difference in frequency of the preceding tone. When the sound level of AM tones was changed with tone frequencies in the same range of 440-990 Hz, the amplitude of ASSR varied in a proportional manner to the sound level. These characteristics are favorable for the use of ASSR in studying temporal processing of auditory information in the auditory cortex. The lack of adaptation in the ASSR elicited by a sequence of short tones may be ascribed to the neural activity of widely accepted generator of magnetic ASSR in the primary auditory cortex. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Modulator for tone and binary signals. [phase of modulation of tone and binary signals on carrier waves in communication systems

    NASA Technical Reports Server (NTRS)

    Mcchesney, J. R.; Lerner, T.; Fitch, E. J. (Inventor)

    1975-01-01

    Tones and binary information are transmitted as phase variations on a carrier wave of constant amplitude and frequency. The carrier and tones are applied to a balanced modulator for deriving an output signal including a pair of sidebands relative to the carrier. The carrier is phase modulated by a digital signal so that it is + or - 90 deg out of phase with the predetermined phase of the carrier. The carrier is combined in an algebraic summing device with the phase modulated signal and the balanced modulator output signal. The output of the algebraic summing device is hard limited to derive a constant amplitude and frequency signal having very narrow bandwidth requirements. At a receiver, the tones and binary data are detected with a phase locked loop having a voltage controlled oscillator driving a pair of orthogonal detection channels.

  6. The Role of Amplitude Envelope in Lexical Tone Perception: Evidence from Cantonese Lexical Tone Discrimination in Adults with Normal Hearing

    ERIC Educational Resources Information Center

    Zhou, Yining Victor

    2012-01-01

    Previously published studies on the role of amplitude envelope in lexical tone perception focused on Mandarin only. Amplitude envelope was found to co-vary with fundamental frequency in Mandarin lexical tones, and amplitude envelope alone could cue tone perception in Mandarin which uses primarily tone contour for phonemic tonal contrasts. The…

  7. Responses to amplitude modulated infrared stimuli in the guinea pig inferior colliculus

    NASA Astrophysics Data System (ADS)

    Richter, Claus-Peter; Young, Hunter

    2013-03-01

    Responses of units in the central nucleus of the inferior colliculus of the guinea pig were recorded with tungsten electrodes. The set of data presented here is limited to high stimulus levels. The effect of changing the modulation frequency and the modulation depth was explored for acoustic and laser stimuli. The selected units responded to sinusoidal amplitude modulated (AM) tones, AM trains of clicks, and AM trains of laser pulses with a modulation of their spike discharge. At modulation frequencies of 20 Hz, some units tended to respond with 40 Hz to the acoustic stimuli, but only at 20 Hz for the trains of laser pulses. For all modes of stimulation the responses revealed a dominant response to the first cycle of the modulation, with decreasing number of action potential during successive cycles. While amplitude modulated tone bursts and amplitude modulated trains of acoustic clicks showed similar patterns, the response to trains of laser pulses was different.

  8. Four-amplitude shift keying-single sideband millimeter-wave signal generation with frequency sextupling based on optical phase modulation

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2017-03-01

    We have proposed and demonstrated a scheme to generate a frequency-sextupling amplitude shift keying (ASK)-single sideband optical millimeter (mm)-wave signal with high dispersion tolerance based on an optical phase modulator (PM) by ably using the-4th-order and +2nd-order sidebands of the optical modulation. The ASK radio frequency signal, superposed by a local oscillator with the same frequency, modulates the lightwave via an optical PM with proper voltage amplitudes, the +2nd-order sideband carries the ASK signal with a constant slope while the -4th-order sideband maintains constant amplitude. These two sidebands can be abstracted by a wavelength selective switch to form a dual-tone optical mm-wave with only one tone carrying the ASK signal. As only one tone bears the ASK signal while the other tone is unmodulated, the generated dual-tone optical mm-wave signal has high dispersion tolerance.

  9. Dual-tone optical vector millimeter wave signal generated by frequency-nonupling the radio frequency 16-star quadrature-amplitude-modulation signal

    NASA Astrophysics Data System (ADS)

    Wu, Tonggen; Ma, Jianxin

    2017-12-01

    This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.

  10. Infant Auditory Sensitivity to Pure Tones and Frequency-Modulated Tones

    ERIC Educational Resources Information Center

    Leibold, Lori J.; Werner, Lynne A.

    2007-01-01

    It has been suggested that infants respond preferentially to infant-directed speech because their auditory sensitivity to sounds with extensive frequency modulation (FM) is better than their sensitivity to less modulated sounds. In this experiment, auditory thresholds for FM tones and for unmodulated, or pure, tones in a background of noise were…

  11. Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Chou, Nee-Yin; Sachse, Glen W.

    1987-01-01

    A generalized theory for optical heterodyne spectroscopy with phase modulated laser radiation is used which allows the calculation of signal line shapes for frequency modulation spectroscopy of Lorentzian gas absorption lines. In particular, synthetic spectral line shapes for both single-tone and two-tone modulation of lead-salt diode lasers are presented in which the contributions from both amplitude and frequency modulations are included.

  12. Thresholds for linear amplitude change of a continuous pure tone.

    PubMed

    Jerlvall, L B; Arlinger, S D; Holmgren, E C

    1978-01-01

    The human auditory sensitivity in detecting linear amplitude change of a continuous pure tone has been studied in normal-hearing subjects. It is shown that for short glide durations (less than 100 ms) the duration of the following plateau exerts a significant influence on the DLI. The average DLI at 1 kHz and 60 dB HL was found to be of the order of 0.8 dB when the intensity glide had a duration of 10 ms and was followed by a much longer plateau. For longer glide durations (greater than or equal to 200 ms) the DLI increased significantly as compared with shorter durations. There was no significant difference between increasing and decreasing intensity change. Significantly larger DLIs were found at 250 and 500 Hz than at 1, 2 and 4 kHz. The sound level was found to have a significant influence on the DLI. At low levels of 40 dB HL, and lower, the increase in DLI for detecting sound levels is highly significant. A falling exponential function offers a mathematical description of the relationship with good fit. It is concluded that an integrating mechanism with an integration time of approx. 200 ms could explain the auditory ability to detect linear amplitude glides of a continuous tone. The results are discussed in relation to previous intensity discrimination data, where pulse pairs, continuous intensity modulation or intensity glides were used as stimuli.

  13. Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus

    PubMed Central

    Sayles, Mark; Füllgrabe, Christian; Winter, Ian M

    2013-01-01

    Amplitude modulation (AM) is a pervasive feature of natural sounds. Neural detection and processing of modulation cues is behaviourally important across species. Although most ecologically relevant sounds are not fully modulated, physiological studies have usually concentrated on fully modulated (100% modulation depth) signals. Psychoacoustic experiments mainly operate at low modulation depths, around detection threshold (∼5% AM). We presented sinusoidal amplitude-modulated tones, systematically varying modulation depth between zero and 100%, at a range of modulation frequencies, to anaesthetised guinea-pigs while recording spikes from neurons in the ventral cochlear nucleus (VCN). The cochlear nucleus is the site of the first synapse in the central auditory system. At this locus significant signal processing occurs with respect to representation of AM signals. Spike trains were analysed in terms of the vector strength of spike synchrony to the amplitude envelope. Neurons showed either low-pass or band-pass temporal modulation transfer functions, with the proportion of band-pass responses increasing with increasing sound level. The proportion of units showing a band-pass response varies with unit type: sustained chopper (CS) > transient chopper (CT) > primary-like (PL). Spike synchrony increased with increasing modulation depth. At the lowest modulation depth (6%), significant spike synchrony was only observed near to the unit's best modulation frequency for all unit types tested. Modulation tuning therefore became sharper with decreasing modulation depth. AM detection threshold was calculated for each individual unit as a function of modulation frequency. Chopper units have significantly better AM detection thresholds than do primary-like units. AM detection threshold is significantly worse at 40 dB vs. 10 dB above pure-tone spike rate threshold. Mean modulation detection thresholds for sounds 10 dB above pure-tone spike rate threshold at best modulation

  14. Assessment of frequency specific auditory steady-state response using amplitude modulation with 2-order exponential envelope.

    PubMed

    Cevallos-Larrea, Pablo; Pereira, Thobias; Santos, Wagner; Frota, Silvana M; Infantosi, Antonio F; Ichinose, Roberto M; Tierra-Criollo, Carlos

    2016-08-01

    This study investigated the performance of Frequency Specific Auditory Steady-State Response (FS-ASSR) detection elicited by the amplitude modulated tone with 2-order exponential envelope (AM2), using objective response detection (ORD) techniques of Spectral F-Test (SFT) and Magnitude Squared Coherence (MSC). ASSRs from 24 normal hearing adults were obtained during binaural multi-tone stimulation of amplitude-modulation (AM) and AM2 at intensities of 60, 45 and 30 dBSPL. The carrier frequencies were 500, 1000, 2000, and 4000 Hz, modulated between 77 and 105 Hz. AM2 achieve FS-ASSR amplitudes higher than AM by 16%, 18% and 12% at 60, 45 and 30 dBSPL, respectively, with a major increase at 500 Hz (22.5%). AMS2PL increased the Detection Rate (DR) up to 8.3% at 500 Hz for 30 dBSPL, which is particularly beneficial for FS-ASSR detection near the hearing threshold. In addition, responses in 1000 and 4000 Hz were consistently increased. The MSC and SFT presented no differences in Detection Rate (DR). False Detection Rate (FDR) was close to 5% for both techniques and tones. Detection times to reach DR over 90% were 3.5 and 4.9 min at 60 and 45 dBSPL, respectively. Further investigation concerning efficient multiple FS-ASSR is still necessary, such as testing subjects with hearing loss.

  15. Potentials evoked by chirp-modulated tones: a new technique to evaluate oscillatory activity in the auditory pathway.

    PubMed

    Artieda, J; Valencia, M; Alegre, M; Olaziregi, O; Urrestarazu, E; Iriarte, J

    2004-03-01

    Steady-state potentials are oscillatory responses generated by a rhythmic stimulation of a sensory pathway. The frequency of the response, which follows the frequency of stimulation, is maximal at a stimulus rate of 40 Hz for auditory stimuli. The exact cause of these maximal responses is not known, although some authors have suggested that they might be related to the 'working frequency' of the auditory cortex. Testing of the responses to different frequencies of stimulation may be lengthy if a single frequency is studied at a time. Our aim was to develop a fast technique to explore the oscillatory response to auditory stimuli, using a tone modulated in amplitude by a sinusoid whose frequency increases linearly in frequency ('chirp') from 1 to 120 Hz. Time-frequency transforms were used for the analysis of the evoked responses in 10 subjects. Also, we analyzed whether the peaks in these responses were due to increases of amplitude or to phase-locking phenomena, using single-sweep time-frequency transforms and inter-trial phase analysis. The pattern observed in the time-frequency transform of the chirp-evoked potential was very similar in all subjects: a diagonal band of energy was observed, corresponding to the frequency of modulation at each time instant. Two components were present in the band, one around 45 Hz (30-60 Hz) and a smaller one between 80 and 120 Hz. Inter-trial phase analysis showed that these components were mainly due to phase locking phenomena. A simultaneous testing of the amplitude-modulation-following oscillatory responses to auditory stimulation is feasible using a tone modulated in amplitude at increasing frequencies. The maximal energies found at stimulation frequencies around 40 Hz are probably due to increased phase-locking of the individual responses.

  16. Amplitude Modulations of Acoustic Communication Signals

    NASA Astrophysics Data System (ADS)

    Turesson, Hjalmar K.

    2011-12-01

    In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a

  17. Amplitude Modulator Chassis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erbert, G

    2009-09-01

    The Amplitude Modulator Chassis (AMC) is the final component in the MOR system and connects directly to the PAM input through a 100-meter fiber. The 48 AMCs temporally shape the 48 outputs of the MOR using an arbitrary waveform generator coupled to an amplitude modulator. The amplitude modulation element is a two stage, Lithium Niobate waveguide device, where the intensity of the light passing through the device is a function of the electrical drive applied. The first stage of the modulator is connected to a programmable high performance Arbitrary Waveform Generator (AWG) consisting of 140 impulse generators space 250 psmore » apart. An arbitrary waveform is generated by independently varying the amplitude of each impulse generator and then summing the impulses together. In addition to the AWG a short pulse generator is also connected to the first stage of the modulator to provide a sub 100-ps pulse used for timing experiments. The second stage of the modulator is connect to a square pulse generator used to further attenuate any pre or post pulse light passing through the first stage of the modulator. The fast rise and fall time of the square pulse generator is also used to produce fast rise and fall times of the AWG by clipping the AWG pulse. For maximum extinction, a pulse bias voltage is applied to each stage of the modulator. A pulse voltage is applied as opposed to a DC voltage to prevent charge buildup on the modulator. Each bias voltage is adjustable to provide a minimum of 50-dB extinction. The AMC is controlled through ICCS to generate the desired temporal pulse shape. This process involves a closed-loop control algorithm, which compares the desired temporal waveform to the produced optical pulse, and iterates the programming of the AWG until the two waveforms agree within an allowable tolerance.« less

  18. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    NASA Astrophysics Data System (ADS)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  19. Female Drosophila melanogaster respond to song-amplitude modulations.

    PubMed

    Brüggemeier, Birgit; Porter, Mason A; Vigoreaux, Jim O; Goodwin, Stephen F

    2018-06-11

    Males in numerous animal species use mating songs to attract females and intimidate competitors. We demonstrate that modulations in song amplitude are behaviourally relevant in the fruit fly Drosophila We show that D rosophila melanogaster females prefer amplitude modulations that are typical of melanogaster song over other modulations, which suggests that amplitude modulations are processed auditorily by D. melanogaster Our work demonstrates that receivers can decode messages in amplitude modulations, complementing the recent finding that male flies actively control song amplitude. To describe amplitude modulations, we propose the concept of song amplitude structure (SAS) and discuss similarities and differences to amplitude modulation with distance (AMD).This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  20. Damage detection and locating using tone burst and continuous excitation modulation method

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Wang, Zhi; Xiao, Li; Qu, Wenzhong

    2014-03-01

    Among structural health monitoring techniques, nonlinear ultrasonic spectroscopy methods are found to be effective diagnostic approach to detecting nonlinear damage such as fatigue crack, due to their sensitivity to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to detect and locate a fatigue crack on an aluminum plate. The method is different with nonlinear wave modulation method which recognizes the modulation of low-frequency vibration and high-frequency ultrasonic wave; it recognizes the modulation of tone burst and high-frequency ultrasonic wave. In the experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation were simultaneously imposed on the PZT array which was bonded on the surface of an aluminum plate. The modulations of tone burst and continuous sinusoidal excitation was observed in different actuator-sensor paths, indicating the presence and location of fatigue crack. The results of experiments show that the proposed method is capable of detecting and locating the fatigue crack successfully.

  1. Amplitude modulation detection with concurrent frequency modulation.

    PubMed

    Nagaraj, Naveen K

    2016-09-01

    Human speech consists of concomitant temporal modulations in amplitude and frequency that are crucial for speech perception. In this study, amplitude modulation (AM) detection thresholds were measured for 550 and 5000 Hz carriers with and without concurrent frequency modulation (FM), at AM rates crucial for speech perception. Results indicate that adding 40 Hz FM interferes with AM detection, more so for 5000 Hz carrier and for frequency deviations exceeding the critical bandwidth of the carrier frequency. These findings suggest that future cochlear implant processors, encoding speech fine-structures may consider limiting the FM to narrow bandwidth and to low frequencies.

  2. Timbral Sharpness and Modulations in Frequency and Amplitude: Implications for the Fusion of Musical Sounds.

    NASA Astrophysics Data System (ADS)

    Goad, Pamela Joy

    The fusion of musical voices is an important aspect of musical blend, or the mixing of individual sounds. Yet, little research has been done to explicitly determine the factors involved in fusion. In this study, the similarity of timbre and modulation were examined for their contribution to the fusion of sounds. It is hypothesized that similar timbres will fuse better than dissimilar timbres, and, voices with the same kind of modulation will fuse better than voices of different modulations. A perceptually-based measure, known as sharpness was investigated as a measure of timbre. The advantages of using sharpness are that it is based on hearing sensitivities and masking phenomena of inner ear processing. Five musical instrument families were digitally recorded in performances across a typical playing range at two extreme dynamic levels. Analyses reveal that sharpness is capable of uncovering subtle changes in timbre including those found in musical dynamics, instrument design, and performer-specific variations. While these analyses alone are insufficient to address fusion, preliminary calculations of timbral combinations indicate that sharpness has the potential to predict the fusion of sounds used in musical composition. Three experiments investigated the effects of modulation on the fusion of a harmonic major sixth interval. In the first experiment using frequency modulation, stimuli varied in deviation about a mean fundamental frequency and relative modulation phase between the two tones. Results showed smaller frequency deviations promoted fusion and relative phase differences had a minimal effect. In a second experiment using amplitude modulation, stimuli varied in deviation about a mean amplitude level and relative phase of modulation. Results showed smaller amplitude deviations promoted better fusion, but unlike frequency modulation, relative phase differences were also important. In a third experiment, frequency modulation, amplitude modulation and mixed

  3. Self-demodulation of amplitude-modulated signal components in amplitude-modulated bone-conducted ultrasonic hearing

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhito; Nakagawa, Seiji

    2015-07-01

    A novel hearing aid system utilizing amplitude-modulated bone-conducted ultrasound (AM-BCU) is being developed for use by profoundly deaf people. However, there is a lack of research on the acoustic aspects of AM-BCU hearing. In this study, acoustic fields in the ear canal under AM-BCU stimulation were examined with respect to the self-demodulation effect of amplitude-modulated signal components generated in the ear canal. We found self-demodulated signals with an audible sound pressure level related to the amplitude-modulated signal components of bone-conducted ultrasonic stimulation. In addition, the increases in the self-demodulated signal levels at low frequencies in the ear canal after occluding the ear canal opening, i.e., the positive occlusion effect, indicate the existence of a pathway by which the self-demodulated signals pass through the aural cartilage and soft tissue, and radiate into the ear canal.

  4. Isolating spectral cues in amplitude and quasi-frequency modulation discrimination by reducing stimulus duration.

    PubMed

    Borucki, Ewa; Berg, Bruce G

    2017-05-01

    This study investigated the psychophysical effects of distortion products in a listening task traditionally used to estimate the bandwidth of phase sensitivity. For a 2000 Hz carrier, estimates of modulation depth necessary to discriminate amplitude modulated (AM) tones and quasi-frequency modulated (QFM) were measured in a two interval forced choice task as a function modulation frequency. Temporal modulation transfer functions were often non-monotonic at modulation frequencies above 300 Hz. This was likely to be due to a spectral cue arising from the interaction of auditory distortion products and the lower sideband of the stimulus complex. When the stimulus duration was decreased from 200 ms to 20 ms, thresholds for low-frequency modulators rose to near-chance levels, whereas thresholds in the region of non-monotonicities were less affected. The decrease in stimulus duration appears to hinder the listener's ability to use temporal cues in order to discriminate between AM and QFM, whereas spectral information derived from distortion product cues appears more resilient. Copyright © 2017. Published by Elsevier B.V.

  5. Comparison of ABR response amplitude, test time, and estimation of hearing threshold using frequency specific chirp and tone pip stimuli in newborns.

    PubMed

    Ferm, Inga; Lightfoot, Guy; Stevens, John

    2013-06-01

    To evaluate the auditory brainstem response (ABR) amplitudes evoked by tone pip and narrowband chirp (NB CE-Chirp) stimuli when testing post-screening newborns and to determine the difference in estimated hearing level correction values. Tests were performed with tone pips and NB CE-Chirps at 4 kHz or 1 kHz. The response amplitude, response quality (Fmp), and residual noise were compared for both stimuli. Thirty babies (42 ears) who passed our ABR discharge criterion at 4 kHz following referral from their newborn hearing screen. Overall, NB CE-Chirp responses were 64% larger than the tone pip responses, closer to those evoked by clicks. Fmp was significantly higher for NB CE-Chirps. It is anticipated that there could be significant reductions in test time for the same signal to noise ratio by using NB CE-Chirps when testing newborns. This effect may vary in practice and is likely to be most beneficial for babies with low amplitude ABR responses. We propose that the ABR nHL threshold to eHL correction for NB CE-Chirps should be approximately 5 dB less than the corrections for tone pips at 4 and 1 kHz.

  6. Pitch processing of dynamic lexical tones in the auditory cortex is influenced by sensory and extrasensory processes

    PubMed Central

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Suresh, Chandan H.

    2015-01-01

    The aim is to evaluate how language experience (Chinese, English) shapes processing of pitch contours as reflected in the amplitude of cortical pitch response components. Responses were elicited from three dynamic, curvilinear, nonspeech stimuli varying in pitch direction and location of peak acceleration: Mandarin lexical Tone2 (rising) and Tone4 (falling); and a flipped variant of Tone2, Tone2′ (nonnative). At temporal sites (T7/T8), Chinese Na-Pb response amplitude to Tones 2 & 4 was greater than English in the right hemisphere only; a rightward asymmetry for Tones 2 & 4 was restricted to the Chinese group. In common to both Fz-to-linked T7/T8 and T7/T8 electrode sites, the stimulus pattern (Tones 2 & 4 > Tone2′) was found in the Chinese group only. As reflected by Pb-Nb at Fz, Chinese amplitude was larger than English in response to Tones 2 & 4; and Tones 2 & 4 were larger than Tone2′; whereas for English, Tone2 was larger than Tone2′ and Tone4. At frontal electrode sites (F3/F4), regardless of component or hemisphere, Chinese responses were larger in amplitude than English across stimuli. For either group, responses to Tones 2 & 4 were larger than Tone2′. No hemispheric asymmetry was observed at the frontal electrode sites. These findings highlight that cortical pitch response components are differentially modulated by experience-dependent, temporally distinct but functionally overlapping weighting of sensory and extrasensory effects on pitch processing of lexical tones in the right temporal lobe and, more broadly, are consistent with a distributed hierarchical predictive coding process. PMID:25943576

  7. Principal pitch of frequency-modulated tones with asymmetrical modulation waveform: a comparison of models.

    PubMed

    Etchemendy, Pablo E; Eguia, Manuel C; Mesz, Bruno

    2014-03-01

    In this work, the overall perceived pitch (principal pitch) of pure tones modulated in frequency with an asymmetric waveform is studied. The dependence of the principal pitch on the degree of asymmetric modulation was obtained from a psychophysical experiment. The modulation waveform consisted of a flat portion of constant frequency and two linear segments forming a peak. Consistent with previous results, significant pitch shifts with respect to the time-averaged geometric mean were observed. The direction of the shifts was always toward the flat portion of the modulation. The results from the psychophysical experiment, along with those obtained from previously reported studies, were compared with the predictions of six models of pitch perception proposed in the literature. Even though no single model was able to predict accurately the perceived pitch for all experiments, there were two models that give robust predictions that are within the range of acceptable tuning of modulated tones for almost all the cases. Both models point to the existence of an underlying "stability sensitive" mechanism for the computation of pitch that gives more weight to the portion of the stimuli where the frequency is changing more slowly.

  8. Modulated Source Interferometry with Combined Amplitude and Frequency Modulation

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    1998-01-01

    An improved interferometer is produced by modifying a conventional interferometer to include amplitude and/or frequency modulation of a coherent light source at radio or higher frequencies. The phase of the modulation signal can be detected in an interfering beam from an interferometer and can be used to determine the actual optical phase of the beam. As such, this improvement can be adapted to virtually any two-beam interferometer, including: Michelson, Mach-Zehnder, and Sagnac interferometers. The use of an amplitude modulated coherent tight source results in an interferometer that combines the wide range advantages of coherent interferometry with the precise distance measurement advantages of white light interferometry.

  9. A model of anuran auditory periphery reveals frequency-dependent adaptation to be a contributing mechanism for two-tone suppression and amplitude modulation coding.

    PubMed

    Wotton, J M; Ferragamo, M J

    2011-10-01

    Anuran auditory nerve fibers (ANF) tuned to low frequencies display unusual frequency-dependent adaptation which results in a more phasic response to signals above best frequency (BF) and a more tonic response to signals below. A network model of the first two layers of the anuran auditory system was used to test the contribution of this dynamic peripheral adaptation on two-tone suppression and amplitude modulation (AM) tuning. The model included a peripheral sandwich component, leaky-integrate-and-fire cells and adaptation was implemented by means of a non-linear increase in threshold weighted by the signal frequency. The results of simulations showed that frequency-dependent adaptation was both necessary and sufficient to produce high-frequency-side two-tone suppression for the ANF and cells of the dorsal medullary nucleus (DMN). It seems likely that both suppression and this dynamic adaptation share a common mechanism. The response of ANFs to AM signals was influenced by adaptation and carrier frequency. Vector strength synchronization to an AM signal improved with increased adaptation. The spike rate response to a carrier at BF was the expected flat function with AM rate. However, for non-BF carrier frequencies the response showed a weak band-pass pattern due to the influence of signal sidebands and adaptation. The DMN received inputs from three ANFs and when the frequency tuning of inputs was near the carrier, then the rate response was a low-pass or all-pass shape. When most of the inputs were biased above or below the carrier, then band-pass responses were observed. Frequency-dependent adaptation enhanced the band-pass tuning for AM rate, particularly when the response of the inputs was predominantly phasic for a given carrier. Different combinations of inputs can therefore bias a DMN cell to be especially well suited to detect specific ranges of AM rates for a particular carrier frequency. Such selection of inputs would clearly be advantageous to the frog

  10. 10 Hz Amplitude Modulated Sounds Induce Short-Term Tinnitus Suppression

    PubMed Central

    Neff, Patrick; Michels, Jakob; Meyer, Martin; Schecklmann, Martin; Langguth, Berthold; Schlee, Winfried

    2017-01-01

    Objectives: Acoustic stimulation or sound therapy is proposed as a main treatment option for chronic subjective tinnitus. To further probe the field of acoustic stimulations for tinnitus therapy, this exploratory study compared 10 Hz amplitude modulated (AM) sounds (two pure tones, noise, music, and frequency modulated (FM) sounds) and unmodulated sounds (pure tone, noise) regarding their temporary suppression of tinnitus loudness. First, it was hypothesized that modulated sounds elicit larger temporary loudness suppression (residual inhibition) than unmodulated sounds. Second, with manipulation of stimulus loudness and duration of the modulated sounds weaker or stronger effects of loudness suppression were expected, respectively. Methods: We recruited 29 participants with chronic tonal tinnitus from the multidisciplinary Tinnitus Clinic of the University of Regensburg. Participants underwent audiometric, psychometric and tinnitus pitch matching assessments followed by an acoustic stimulation experiment with a tinnitus loudness growth paradigm. In a first block participants were stimulated with all of the sounds for 3 min each and rated their subjective tinnitus loudness to the pre-stimulus loudness every 30 s after stimulus offset. The same procedure was deployed in the second block with the pure tone AM stimuli matched to the tinnitus frequency, manipulated in length (6 min), and loudness (reduced by 30 dB and linear fade out). Repeated measures mixed model analyses of variance (ANOVA) were calculated to assess differences in loudness growth between the stimuli for each block separately. Results: First, we found that all sounds elicit a short-term suppression of tinnitus loudness (seconds to minutes) with strongest suppression right after stimulus offset [F(6, 1331) = 3.74, p < 0.01]. Second, similar to previous findings we found that AM sounds near the tinnitus frequency produce significantly stronger tinnitus loudness suppression than noise [vs. Pink noise: t

  11. Trellis Tone Modulation Multiple-Access for Peer Discovery in D2D Networks

    PubMed Central

    Lim, Chiwoo; Kim, Sang-Hyo

    2018-01-01

    In this paper, a new non-orthogonal multiple-access scheme, trellis tone modulation multiple-access (TTMMA), is proposed for peer discovery of distributed device-to-device (D2D) communication. The range and capacity of discovery are important performance metrics in peer discovery. The proposed trellis tone modulation uses single-tone transmission and achieves a long discovery range due to its low Peak-to-Average Power Ratio (PAPR). The TTMMA also exploits non-orthogonal resource assignment to increase the discovery capacity. For the multi-user detection of superposed multiple-access signals, a message-passing algorithm with supplementary schemes are proposed. With TTMMA and its message-passing demodulation, approximately 1.5 times the number of devices are discovered compared to the conventional frequency division multiple-access (FDMA)-based discovery. PMID:29673167

  12. Trellis Tone Modulation Multiple-Access for Peer Discovery in D2D Networks.

    PubMed

    Lim, Chiwoo; Jang, Min; Kim, Sang-Hyo

    2018-04-17

    In this paper, a new non-orthogonal multiple-access scheme, trellis tone modulation multiple-access (TTMMA), is proposed for peer discovery of distributed device-to-device (D2D) communication. The range and capacity of discovery are important performance metrics in peer discovery. The proposed trellis tone modulation uses single-tone transmission and achieves a long discovery range due to its low Peak-to-Average Power Ratio (PAPR). The TTMMA also exploits non-orthogonal resource assignment to increase the discovery capacity. For the multi-user detection of superposed multiple-access signals, a message-passing algorithm with supplementary schemes are proposed. With TTMMA and its message-passing demodulation, approximately 1.5 times the number of devices are discovered compared to the conventional frequency division multiple-access (FDMA)-based discovery.

  13. Cascaded Amplitude Modulations in Sound Texture Perception.

    PubMed

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  14. Amplitude-modulation detection by gerbils in reverberant sound fields.

    PubMed

    Lingner, Andrea; Kugler, Kathrin; Grothe, Benedikt; Wiegrebe, Lutz

    2013-08-01

    Reverberation can dramatically reduce the depth of amplitude modulations which are critical for speech intelligibility. Psychophysical experiments indicate that humans' sensitivity to amplitude modulation in reverberation is better than predicted from the acoustic modulation depth at the receiver position. Electrophysiological studies on reverberation in rabbits highlight the contribution of neurons sensitive to interaural correlation. Here, we use a prepulse-inhibition paradigm to quantify the gerbils' amplitude modulation threshold in both anechoic and reverberant virtual environments. Data show that prepulse inhibition provides a reliable method for determining the gerbils' AM sensitivity. However, we find no evidence for perceptual restoration of amplitude modulation in reverberation. Instead, the deterioration of AM sensitivity in reverberant conditions can be quantitatively explained by the reduced modulation depth at the receiver position. We suggest that the lack of perceptual restoration is related to physical properties of the gerbil's ear input signals and inner-ear processing as opposed to shortcomings of their binaural neural processing. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Cascaded Amplitude Modulations in Sound Texture Perception

    PubMed Central

    McWalter, Richard; Dau, Torsten

    2017-01-01

    Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches. PMID:28955191

  16. Habituation of Auditory Steady State Responses Evoked by Amplitude-Modulated Acoustic Signals in Rats

    PubMed Central

    Prado-Gutierrez, Pavel; Castro-Fariñas, Anisleidy; Morgado-Rodriguez, Lisbet; Velarde-Reyes, Ernesto; Martínez, Agustín D.; Martínez-Montes, Eduardo

    2015-01-01

    Generation of the auditory steady state responses (ASSR) is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials. PMID:26557360

  17. Fetal auditory evoked responses to onset of amplitude modulated sounds. A fetal magnetoencephalography (fMEG) study.

    PubMed

    Draganova, R; Schollbach, A; Schleger, F; Braendle, J; Brucker, S; Abele, H; Kagan, K O; Wallwiener, D; Fritsche, A; Eswaran, H; Preissl, H

    2018-06-01

    The human fetal auditory system is functional around the 25th week of gestational age when the thalamocortical connections are established. Fetal magnetoencephalography (fMEG) provides evidence for fetal auditory brain responses to pure tones and syllables. Fifty-five pregnant women between 31 and 40 weeks of gestation were included in the study. Fetal MEG was recorded during the presentation of an amplitude modulated tone (AM) with a carrier frequency of 500 Hz to the maternal abdomen modulated by low modulation rates (MRs) - 2/s and 4/s, middle MR - 8/s and high MRs - 27/s, 42/s, 78/s and 91/s. The aim was to determine whether the fetal brain responds differently to envelope slopes and intensity change at the onset of the AM sounds. A significant decrease of the response latencies of transient event-related responses (ERR) to high and middle MRs in comparison to the low MRs was observed. The highest fetal response rate was achieved by modulation rates of 2/s, 4/s and 27/s (70%, 57%, and 86%, respectively). Additionally, a maturation effect of the ERR (response latency vs. gestational age) was observed only for 4/s MR. The significant difference between the response latencies to low, middle, and high MRs suggests that still before birth the fetal brain processes the sound slopes at the onset in different integration time-windows, depending on the time for the intensity increase or stimulus power density at the onset, which is a prerequisite for language acquisition. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Manifestation of peripherial coding in the effect of increasing loudness and enhanced discrimination of the intensity of tone bursts before and after tone burst noise

    NASA Astrophysics Data System (ADS)

    Rimskaya-Korsavkova, L. K.

    2017-07-01

    To find the possible reasons for the midlevel elevation of the Weber fraction in intensity discrimination of a tone burst, a comparison was performed for the complementary distributions of spike activity of an ensemble of space nerves, such as the distribution of time instants when spikes occur, the distribution of interspike intervals, and the autocorrelation function. The distribution properties were detected in a poststimulus histogram, an interspike interval histogram, and an autocorrelation histogram—all obtained from the reaction of an ensemble of model space nerves in response to an auditory noise burst-useful tone burst complex. Two configurations were used: in the first, the peak amplitude of the tone burst was varied and the noise amplitude was fixed; in the other, the tone burst amplitude was fixed and the noise amplitude was varied. Noise could precede or follow the tone burst. The noise and tone burst durations, as well as the interval between them, was 4 kHz and corresponded to the characteristic frequencies of the model space nerves. The profiles of all the mentioned histograms had two maxima. The values and the positions of the maxima in the poststimulus histogram corresponded to the amplitudes and mutual time position of the noise and the tone burst. The maximum that occurred in response to the tone burst action could be a basis for the formation of the loudness of the latter (explicit loudness). However, the positions of the maxima in the other two histograms did not depend on the positions of tone bursts and noise in the combinations. The first maximum fell in short intervals and united intervals corresponding to the noise and tone burst durations. The second maximum fell in intervals corresponding to a tone burst delay with respect to noise, and its value was proportional to the noise amplitude or tone burst amplitude that was smaller in the complex. An increase in tone burst or noise amplitudes was caused by nonlinear variations in the two

  19. Temporal Effects on Monaural Amplitude-Modulation Sensitivity in Ipsilateral, Contralateral and Bilateral Noise.

    PubMed

    Marrufo-Pérez, Miriam I; Eustaquio-Martín, Almudena; López-Bascuas, Luis E; Lopez-Poveda, Enrique A

    2018-04-01

    The amplitude modulations (AMs) in speech signals are useful cues for speech recognition. Several adaptation mechanisms may make the detection of AM in noisy backgrounds easier when the AM carrier is presented later rather than earlier in the noise. The aim of the present study was to characterize temporal adaptation to noise in AM detection. AM detection thresholds were measured for monaural (50 ms, 1.5 kHz) pure-tone carriers presented at the onset ('early' condition) and 300 ms after the onset ('late' condition) of ipsilateral, contralateral, and bilateral (diotic) broadband noise, as well as in quiet. Thresholds were 2-4 dB better in the late than in the early condition for the three noise lateralities. The temporal effect held for carriers at equal sensation levels, confirming that it was not due to overshoot on carrier audibility. The temporal effect was larger for broadband than for low-band contralateral noises. Many aspects in the results were consistent with the noise activating the medial olivocochlear reflex (MOCR) and enhancing AM depth in the peripheral auditory response. Other aspects, however, indicate that central masking and adaptation unrelated to the MOCR also affect both carrier-tone and AM detection and are involved in the temporal effects.

  20. Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.

    PubMed

    Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo

    2016-11-14

    We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.

  1. Effects of modulation phase on profile analysis in normal-hearing and hearing-impaired listeners

    NASA Astrophysics Data System (ADS)

    Rogers, Deanna; Lentz, Jennifer

    2003-04-01

    The ability to discriminate between sounds with different spectral shapes in the presence of amplitude modulation was measured in normal-hearing and hearing-impaired listeners. The standard stimulus was the sum of equal-amplitude modulated tones, and the signal stimulus was generated by increasing the level of half the tones (up components) and decreasing the level of half the tones (down components). The down components had the same modulation phase, and a phase shift was applied to the up components to encourage segregation from the down tones. The same phase shift was used in both standard and signal stimuli. Profile-analysis thresholds were measured as a function of the phase shift between up and down components. The phase shifts were 0, 30, 45, 60, 90, and 180 deg. As expected, thresholds were lowest when all tones had the same modulation phase and increased somewhat with increasing phase disparity. This small increase in thresholds was similar for both groups. These results suggest that hearing-impaired listeners are able to use modulation phase to group sounds in a manner similar to that of normal listeners. [Work supported by NIH (DC 05835).

  2. Unpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence.

    PubMed

    Chang, Andrew; Bosnyak, Dan J; Trainor, Laurel J

    2016-01-01

    Extracting temporal regularities in external stimuli in order to predict upcoming events is an essential aspect of perception. Fluctuations in induced power of beta band (15-25 Hz) oscillations in auditory cortex are involved in predictive timing during rhythmic entrainment, but whether such fluctuations are affected by prediction in the spectral (frequency/pitch) domain remains unclear. We tested whether unpredicted (i.e., unexpected) pitches in a rhythmic tone sequence modulate beta band activity by recording EEG while participants passively listened to isochronous auditory oddball sequences with occasional unpredicted deviant pitches at two different presentation rates. The results showed that the power in low-beta (15-20 Hz) was larger around 200-300 ms following deviant tones compared to standard tones, and this effect was larger when the deviant tones were less predicted. Our results suggest that the induced beta power activities in auditory cortex are consistent with a role in sensory prediction of both "when" (timing) upcoming sounds will occur as well as the prediction precision error of "what" (spectral content in this case). We suggest, further, that both timing and content predictions may co-modulate beta oscillations via attention. These findings extend earlier work on neural oscillations by investigating the functional significance of beta oscillations for sensory prediction. The findings help elucidate the functional significance of beta oscillations in perception.

  3. Unpredicted Pitch Modulates Beta Oscillatory Power during Rhythmic Entrainment to a Tone Sequence

    PubMed Central

    Chang, Andrew; Bosnyak, Dan J.; Trainor, Laurel J.

    2016-01-01

    Extracting temporal regularities in external stimuli in order to predict upcoming events is an essential aspect of perception. Fluctuations in induced power of beta band (15–25 Hz) oscillations in auditory cortex are involved in predictive timing during rhythmic entrainment, but whether such fluctuations are affected by prediction in the spectral (frequency/pitch) domain remains unclear. We tested whether unpredicted (i.e., unexpected) pitches in a rhythmic tone sequence modulate beta band activity by recording EEG while participants passively listened to isochronous auditory oddball sequences with occasional unpredicted deviant pitches at two different presentation rates. The results showed that the power in low-beta (15–20 Hz) was larger around 200–300 ms following deviant tones compared to standard tones, and this effect was larger when the deviant tones were less predicted. Our results suggest that the induced beta power activities in auditory cortex are consistent with a role in sensory prediction of both “when” (timing) upcoming sounds will occur as well as the prediction precision error of “what” (spectral content in this case). We suggest, further, that both timing and content predictions may co-modulate beta oscillations via attention. These findings extend earlier work on neural oscillations by investigating the functional significance of beta oscillations for sensory prediction. The findings help elucidate the functional significance of beta oscillations in perception. PMID:27014138

  4. Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain

    PubMed Central

    Neilans, Erikson G.; Abrams, Kristina S.; Idrobo, Fabio; Carney, Laurel H.

    2016-01-01

    Amplitude modulation (AM) is a crucial feature of many communication signals, including speech. Whereas average discharge rates in the auditory midbrain correlate with behavioral AM sensitivity in rabbits, the neural bases of AM sensitivity in species with human-like behavioral acuity are unexplored. Here, we used parallel behavioral and neurophysiological experiments to explore the neural (midbrain) bases of AM perception in an avian speech mimic, the budgerigar (Melopsittacus undulatus). Behavioral AM sensitivity was quantified using operant conditioning procedures. Neural AM sensitivity was studied using chronically implanted microelectrodes in awake, unrestrained birds. Average discharge rates of multiunit recording sites in the budgerigar midbrain were insufficient to explain behavioral sensitivity to modulation frequencies <100 Hz for both tone- and noise-carrier stimuli, even with optimal pooling of information across recording sites. Neural envelope synchrony, in contrast, could explain behavioral performance for both carrier types across the full range of modulation frequencies studied (16–512 Hz). The results suggest that envelope synchrony in the budgerigar midbrain may underlie behavioral sensitivity to AM. Behavioral AM sensitivity based on synchrony in the budgerigar, which contrasts with rate-correlated behavioral performance in rabbits, raises the possibility that envelope synchrony, rather than average discharge rate, might also underlie AM perception in other species with sensitive AM detection abilities, including humans. These results highlight the importance of synchrony coding of envelope structure in the inferior colliculus. Furthermore, they underscore potential benefits of devices (e.g., midbrain implants) that evoke robust neural synchrony. PMID:26843608

  5. Quantum model for electro-optical amplitude modulation.

    PubMed

    Capmany, José; Fernández-Pousa, Carlos R

    2010-11-22

    We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.

  6. Vocal fold vibration and voice source aperiodicity in 'dist' tones: a study of a timbral ornament in rock singing.

    PubMed

    Borch, D Zangger; Sundberg, J; Lindestad, P A; Thalén, M

    2004-01-01

    The acoustic characteristics of so-called 'dist' tones, commonly used in singing rock music, are analyzed in a case study. In an initial experiment a professional rock singer produced examples of 'dist' tones. The tones were found to contain aperiodicity, SPL at 0.3 m varied between 90 and 96 dB, and subglottal pressure varied in the range of 20-43 cm H2O, a doubling yielding, on average, an SPL increase of 2.3 dB. In a second experiment, the associated vocal fold vibration patterns were recorded by digital high-speed imaging of the same singer. Inverse filtering of the simultaneously recorded audio signal showed that the aperiodicity was caused by a low frequency modulation of the flow glottogram pulse amplitude. This modulation was produced by an aperiodic or periodic vibration of the supraglottic mucosa. This vibration reduced the pulse amplitude by obstructing the airway for some of the pulses produced by the apparently periodically vibrating vocal folds. The supraglottic mucosa vibration can be assumed to be driven by the high airflow produced by the elevated subglottal pressure.

  7. Plasma based optical guiding of an amplitude-modulated electromagnetic beam

    NASA Astrophysics Data System (ADS)

    Singh, Mamta; Gupta, D. N.

    2015-06-01

    We propose the stronger optical guiding of an electromagnetic beam in a plasma by considering the amplitude modulation of the fundamental beam. With the advent of high power source of electromagnetic radiation, the electron velocity in a plasma may become quite large (comparable to the light velocity in free space). Thus, the effect of relativistic mass variation must be taken into account. The relativistic effect of the laser propagation in a plasma leads to self-focusing because of the dielectric constant of a plasma being an increasing function of the intensity. The ponderomotive force of the laser beam pushes the electrons out of the region of high intensity, which reduces the local electron density and increases the plasma dielectric function further, leading to even more selffocusing of the laser. In this work, we consider a short pulse laser of finite spot size as an amplitude modulation in time. Our findings show an efficient optical guiding mechanism based on amplitude modulation signal propagation in plasmas. Medium nonlinearity becomes stronger if an amplitude modulated beam is introduced, which contributes significantly in laser guiding in plasmas. Furthermore, the rate of laser self-focusing is increased with modulation index due the fact of stronger Kerr effect. The study related to amplitude modulated optical signal may be useful for communication technology.

  8. Implication of Taylor's hypothesis on amplitude modulation

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Yang, Xiang

    2017-11-01

    Amplitude modulation is a physical phenomenon which describes the non-linear inter-scale interaction between large and small scales in a turbulent wall-bounded flow. The amplitude of the small scale fluctuations are modulated by the large scale flow structures. Due to the increase of amplitude modulation as a function of Reynolds number (Reτ = δuτ / ν), this phenomenon is frequently studied using experimental temporal 1D signals, taken using hot-wire anemometry. Typically, Taylor's frozen turbulence hypothesis has been invoked where the convection by velocity fluctuations is neglected and the mean velocity is used as the convective velocity. At high Reynolds numbers, turbulent fluctuations are comparable to the mean velocity in the near wall region (y+ O(10)), and as a result, using a constant global convective velocity systematically locally compresses or stretches a velocity signal when converting from temporal to spatial domain given a positive or negative fluctuation respectively. Despite this, temporal hot-wire data from wind tunnel or field experiments of high Reynolds number boundary layer flows can still be used for measuring modulation provided that the local fluid velocity is used as the local convective velocity. MH is funded through the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1656518 and the Stanford Graduate Fellowship. XY is funded by the US AFOSR, Grant No. 1194592-1-TAAHO monitored by Dr. Ivett Leyva.

  9. [Amplitude modulation in sound signals by mammals].

    PubMed

    Nikol'skiĭ, A A

    2012-01-01

    Periodic variations in amplitude of a signal, or amplitude modulation (AM), affect the structure of communicative messages spectrum. Within the spectrum of AM-signals, side frequencies are formed both above and below the carrier frequency that is subjected to modulation. In case of harmonic signal structure they are presented near fundamental frequency as well as near harmonics. Thus, AM may by viewed as a relatively simple mechanism for controlling the spectrum of messages transmitted by mammals. Examples of AM affecting the spectrum structure of functionally different sound signals are discussed as applied to representatives of four orders of mammals: rodents (Reodentia), duplicidentates (Lagomorpha), pinnipeds (Pinnipedia), and paridigitates (Artiodactia). For the first time, the classification of AM in animals' sound signals is given. Five forms of AM are picked out in sound signals by mammals: absence of AM, continuous AM, fragmented, heterogeneous, and multilevel one. AM presence/absence is related neither with belonging to any specific order nor with some particular function of a signal. Similar forms of AM can occur in different orders of mammals in parallel. On the contrary, different forms of AM can be detected in signals meant for similar functions. The assumption is made about AM-signals facilitating information encoding and jamprotection of messages transmitted by mammals. Preliminry analysis indicates that hard-driving amplitude modulation is incompatible with hard-driving frequency modulation.

  10. Benzodiazepine temazepam suppresses the transient auditory 40-Hz response amplitude in humans.

    PubMed

    Jääskeläinen, I P; Hirvonen, J; Saher, M; Pekkonen, E; Sillanaukee, P; Näätänen, R; Tiitinen, H

    1999-06-18

    To discern the role of the GABA(A) receptors in the generation and attentive modulation of the transient auditory 40-Hz response, the effects of the benzodiazepine temazepam (10 mg) were studied in 10 healthy social drinkers, using a double-blind placebo-controlled design. Three hundred Hertz standard and 330 Hz rare deviant tones were presented to the left, and 1000 Hz standards and 1100 Hz deviants to the right ear of the subjects. Subjects attended to a designated ear and were to detect deviants therein while ignoring tones to the other. Temazepam significantly suppressed the amplitude of the 40-Hz response, the effect being equal for attended and non-attended tone responses. This suggests involvement of GABA(A) receptors in transient auditory 40-Hz response generation, however, not in the attentive modulation of the 40-Hz response.

  11. Investigation of focusing and correcting aberrations with binary amplitude and polarization modulation

    DOE PAGES

    Fiala, Peter; Li, Yunqi; Dorrer, Christophe

    2018-01-29

    Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less

  12. Investigation of focusing and correcting aberrations with binary amplitude and polarization modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiala, Peter; Li, Yunqi; Dorrer, Christophe

    Here, we investigate the focusing and correcting wavefront aberration of an optical wave using binary amplitude and polarization modulation. Focusing is performed by selectively modulating the field in different zones of the pupil to obtain on-axis constructive interference at a given distance. The conventional Soret zone plate (binary amplitude profile) is expanded to a polarization Soret zone plate with twice the focusing efficiency. Binary pixelated devices that approximate the sinusoidal transmission profile of a Gabor zone plate by spatial dithering are also investigated with amplitude and polarization modulation. Wavefront aberrations are corrected by modulation of the field in the pupilmore » plane to prevent destructive interference in the focal plane of an ideal focusing element. Polarization modulation improves the efficiency obtained by amplitude-only modulation, with a gain that depends on the aberration. Experimental results obtained with Cr-on-glass devices for amplitude modulation and liquid crystal devices operating in the Mauguin condition for polarization modulation are in very good agreement with simulations.« less

  13. Influence of rate of change of frequency on the overall pitch of frequency-modulated tones.

    PubMed

    Gockel, H; Moore, B C; Carlyon, R P

    2001-02-01

    The mechanism(s) determining pitch may assign less weight to portions of a sound where the frequency is changing rapidly. The present experiments explored the possible effect of this on the overall pitch of frequency-modulated sounds. Pitch matches were obtained between an adjustable unmodulated sinusoid and a sinusoidal carrier that was frequency modulated using a highly asymmetric function with the form of a repeating U or inverted U shaped function. The amplitude was constant during the 400-ms presentation time of each stimulus, except for 10-ms raised-cosine onset and offset ramps. In experiment 1, the carrier level was 50 dB SPL and the geometric mean of the instantaneous frequency of the modulated carrier, fc, was either 0.5, 1, 2, or 8 kHz. The modulation rate (fm) was 5, 10, or 20 Hz. The overall depth (maximum to minimum) of the FM was 8% of fc. For all carrier frequencies, the matched frequency was shifted away from the mean carrier frequency, downwards for the U shaped function stimuli and upwards for the repeated inverted U shaped function stimuli. The shift was typically slightly greater than 1% of fc, and did not vary markedly with fc. The effect of fm was small, but there was a trend for the shifts to decrease with increasing fm for fc = 0.5 kHz and to increase with increasing fm for fc = 2 kHz. In experiment 2, the carrier level was reduced to 20 dB SL and matches were obtained only for fc = 2 kHz. Shifts in matched frequency of about 1% were still observed, but the trend for the shifts to increase with increasing fm no longer occurred. In experiment 3, matches were obtained for a 4-kHz carrier at 50 dB SPL. Shifts of about 1% again occurred, which did not vary markedly with fm. The shifts in matched frequency observed in all three experiments are not predicted by models based on the amplitude- or intensity-weighted average of instantaneous frequency (EWAIF or IWAIF). The shifts (and the pitch shifts observed earlier for two-tone complexes and for

  14. High speed cross-amplitude modulation in concatenated SOA-EAM-SOA.

    PubMed

    Cleary, Ciaran S; Manning, Robert J

    2012-06-18

    We observe a near-ideal high speed amplitude impulse response in an SOA-EAM-SOA configuration under optimum conditions. Full amplitude recovery times as low as 10 ps with modulation depths of 70% were observed in pump-probe measurements. System behavior could be controlled by the choice of signal wavelength, SOA current biases and EAM reverse bias voltages. Experimental data and impulse response modelling indicated that the slow tail in the gain response of first SOA was negated by a combination of cross-absorption modulation between pump and modulated CW probe, and self-gain modulation of the modulated CW probe in both the EAM and second SOA.

  15. Mandarin Chinese Tone Identification in Cochlear Implants: Predictions from Acoustic Models

    PubMed Central

    Morton, Kenneth D.; Torrione, Peter A.; Throckmorton, Chandra S.; Collins, Leslie M.

    2015-01-01

    It has been established that current cochlear implants do not supply adequate spectral information for perception of tonal languages. Comprehension of a tonal language, such as Mandarin Chinese, requires recognition of lexical tones. New strategies of cochlear stimulation such as variable stimulation rate and current steering may provide the means of delivering more spectral information and thus may provide the auditory fine structure required for tone recognition. Several cochlear implant signal processing strategies are examined in this study, the continuous interleaved sampling (CIS) algorithm, the frequency amplitude modulation encoding (FAME) algorithm, and the multiple carrier frequency algorithm (MCFA). These strategies provide different types and amounts of spectral information. Pattern recognition techniques can be applied to data from Mandarin Chinese tone recognition tasks using acoustic models as a means of testing the abilities of these algorithms to transmit the changes in fundamental frequency indicative of the four lexical tones. The ability of processed Mandarin Chinese tones to be correctly classified may predict trends in the effectiveness of different signal processing algorithms in cochlear implants. The proposed techniques can predict trends in performance of the signal processing techniques in quiet conditions but fail to do so in noise. PMID:18706497

  16. Pulse amplitude modulated chlorophyll fluorometer

    DOEpatents

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  17. Implementation and preliminary evaluation of 'C-tone': A novel algorithm to improve lexical tone recognition in Mandarin-speaking cochlear implant users.

    PubMed

    Ping, Lichuan; Wang, Ningyuan; Tang, Guofang; Lu, Thomas; Yin, Li; Tu, Wenhe; Fu, Qian-Jie

    2017-09-01

    Because of limited spectral resolution, Mandarin-speaking cochlear implant (CI) users have difficulty perceiving fundamental frequency (F0) cues that are important to lexical tone recognition. To improve Mandarin tone recognition in CI users, we implemented and evaluated a novel real-time algorithm (C-tone) to enhance the amplitude contour, which is strongly correlated with the F0 contour. The C-tone algorithm was implemented in clinical processors and evaluated in eight users of the Nurotron NSP-60 CI system. Subjects were given 2 weeks of experience with C-tone. Recognition of Chinese tones, monosyllables, and disyllables in quiet was measured with and without the C-tone algorithm. Subjective quality ratings were also obtained for C-tone. After 2 weeks of experience with C-tone, there were small but significant improvements in recognition of lexical tones, monosyllables, and disyllables (P < 0.05 in all cases). Among lexical tones, the largest improvements were observed for Tone 3 (falling-rising) and the smallest for Tone 4 (falling). Improvements with C-tone were greater for disyllables than for monosyllables. Subjective quality ratings showed no strong preference for or against C-tone, except for perception of own voice, where C-tone was preferred. The real-time C-tone algorithm provided small but significant improvements for speech performance in quiet with no change in sound quality. Pre-processing algorithms to reduce noise and better real-time F0 extraction would improve the benefits of C-tone in complex listening environments. Chinese CI users' speech recognition in quiet can be significantly improved by modifying the amplitude contour to better resemble the F0 contour.

  18. Amplitude Control of Solid-State Modulators for Precision Fast Kicker Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J A; Anaya, R M; Caporaso, G C

    2002-11-15

    A solid-state modulator with very fast rise and fall times, pulse width agility, and multi-pulse burst and intra-pulse amplitude adjustment capability for use with high speed electron beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. Amplitude adjustment is provided by controlling individual modules in the adder, and is used to compensate for transverse e-beam motion as well as the dynamic response and beam-induced steering effects associated with the kicker structure. A control algorithm calculates a voltage based on measured e-beam displacement and adjusts the modulator to regulate beammore » centroid position. This paper presents design details of amplitude control along with measured performance data from kicker operation on the ETA-II accelerator at LLNL.« less

  19. Vibrotactile sensory substitution for object manipulation: amplitude versus pulse train frequency modulation.

    PubMed

    Stepp, Cara E; Matsuoka, Yoky

    2012-01-01

    Incorporating sensory feedback with prosthetic devices is now possible, but the optimal methods of providing such feedback are still unknown. The relative utility of amplitude and pulse train frequency modulated stimulation paradigms for providing vibrotactile feedback for object manipulation was assessed in 10 participants. The two approaches were studied during virtual object manipulation using a robotic interface as a function of presentation order and a simultaneous cognitive load. Despite the potential pragmatic benefits associated with pulse train frequency modulated vibrotactile stimulation, comparison of the approach with amplitude modulation indicates that amplitude modulation vibrotactile stimulation provides superior feedback for object manipulation.

  20. Amplitude Modulation of Pulsation Modes in Delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Bowman, Dominic M.

    2017-10-01

    The pulsations in δ Sct stars are excited by a heat engine driving mechanism caused by increased opacity in their surface layers, and have pulsation periods of order a few hours. Space based observations in the last decade have revealed a diverse range of pulsational behaviour in these stars, which is investigated using an ensemble of 983 δ Sct stars observed continuously for 4 yr by the Kepler Space Telescope. A statistical search for amplitude modulation of pulsation modes is carried out and it is shown that 61.3 per cent of the 983 δ Sct stars exhibit significant amplitude modulation in at least a single pulsation mode, and that this is uncorrelated with effective temperature and surface gravity. Hence, the majority of δ Sct stars exhibit amplitude modulation, with time-scales of years and longer demonstrated to be significant in these stars both observationally and theoretically. An archetypal example of amplitude modulation in a δ Sct star is KIC 7106205, which contains only a single pulsation mode that varies significantly in amplitude whilst all other pulsation modes stay constant in amplitude and phase throughout the 4-yr Kepler data set. Therefore, the visible pulsational energy budget in this star, and many others, is not conserved over 4 yr. Models of beating of close-frequency pulsation modes are used to identify δ Sct stars with frequencies that lie closer than 0.001 d^{-1}, which are barely resolved using 4 yr of Kepler observations, and maintain their independent identities over 4 yr. Mode coupling models are used to quantify the strength of coupling and distinguish between non-linearity in the form of combination frequencies and non-linearity in the form of resonant mode coupling for families of pulsation modes in several stars. The changes in stellar structure caused by stellar evolution are investigated for two high amplitude δ Sct (HADS) stars in the Kepler data set, revealing a positive quadratic change in phase for the fundamental and

  1. Effects of low harmonics on tone identification in natural and vocoded speech.

    PubMed

    Liu, Chang; Azimi, Behnam; Tahmina, Qudsia; Hu, Yi

    2012-11-01

    This study investigated the contribution of low-frequency harmonics to identifying Mandarin tones in natural and vocoded speech in quiet and noisy conditions. Results showed that low-frequency harmonics of natural speech led to highly accurate tone identification; however, for vocoded speech, low-frequency harmonics yielded lower tone identification than stimuli with full harmonics, except for tone 4. Analysis of the correlation between tone accuracy and the amplitude-F0 correlation index suggested that "more" speech contents (i.e., more harmonics) did not necessarily yield better tone recognition for vocoded speech, especially when the amplitude contour of the signals did not co-vary with the F0 contour.

  2. Musical experience facilitates lexical tone processing among Mandarin speakers: Behavioral and neural evidence.

    PubMed

    Tang, Wei; Xiong, Wen; Zhang, Yu-Xuan; Dong, Qi; Nan, Yun

    2016-10-01

    Music and speech share many sound attributes. Pitch, as the percept of fundamental frequency, often occupies the center of researchers' attention in studies on the relationship between music and speech. One widely held assumption is that music experience may confer an advantage in speech tone processing. The cross-domain effects of musical training on non-tonal language speakers' linguistic pitch processing have been relatively well established. However, it remains unclear whether musical experience improves the processing of lexical tone for native tone language speakers who actually use lexical tones in their daily communication. Using a passive oddball paradigm, the present study revealed that among Mandarin speakers, musicians demonstrated enlarged electrical responses to lexical tone changes as reflected by the increased mismatch negativity (MMN) amplitudes, as well as faster behavioral discrimination performance compared with age- and IQ-matched nonmusicians. The current results suggest that in spite of the preexisting long-term experience with lexical tones in both musicians and nonmusicians, musical experience can still modulate the cortical plasticity of linguistic tone processing and is associated with enhanced neural processing of speech tones. Our current results thus provide the first electrophysiological evidence supporting the notion that pitch expertise in the music domain may indeed be transferable to the speech domain even for native tone language speakers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Subcortical amplitude modulation encoding deficits suggest evidence of cochlear synaptopathy in normal-hearing 18-19 year olds with higher lifetime noise exposure.

    PubMed

    Paul, Brandon T; Waheed, Sajal; Bruce, Ian C; Roberts, Larry E

    2017-11-01

    Noise exposure and aging can damage cochlear synapses required for suprathreshold listening, even when cochlear structures needed for hearing at threshold remain unaffected. To control for effects of aging, behavioral amplitude modulation (AM) detection and subcortical envelope following responses (EFRs) to AM tones in 25 age-restricted (18-19 years) participants with normal thresholds, but different self-reported noise exposure histories were studied. Participants with more noise exposure had smaller EFRs and tended to have poorer AM detection than less-exposed individuals. Simulations of the EFR using a well-established cochlear model were consistent with more synaptopathy in participants reporting greater noise exposure.

  4. Discriminating Simulated Vocal Tremor Source Using Amplitude Modulation Spectra

    PubMed Central

    Carbonell, Kathy M.; Lester, Rosemary A.; Story, Brad H.; Lotto, Andrew J.

    2014-01-01

    Objectives/Hypothesis Sources of vocal tremor are difficult to categorize perceptually and acoustically. This paper describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Study Design Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Methods Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor) and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. Results The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. Conclusions These results supply initial support for an amplitude-envelope based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. PMID:25532813

  5. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation.

    PubMed

    Rout, Saroj; Sonkusale, Sameer

    2016-06-27

    The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation.

  6. Masking release for words in amplitude-modulated noise as a function of modulation rate and task

    PubMed Central

    Buss, Emily; Whittle, Lisa N.; Grose, John H.; Hall, Joseph W.

    2009-01-01

    For normal-hearing listeners, masked speech recognition can improve with the introduction of masker amplitude modulation. The present experiments tested the hypothesis that this masking release is due in part to an interaction between the temporal distribution of cues necessary to perform the task and the probability of those cues temporally coinciding with masker modulation minima. Stimuli were monosyllabic words masked by speech-shaped noise, and masker modulation was introduced via multiplication with a raised sinusoid of 2.5–40 Hz. Tasks included detection, three-alternative forced-choice identification, and open-set identification. Overall, there was more masking release associated with the closed than the open-set tasks. The best rate of modulation also differed as a function of task; whereas low modulation rates were associated with best performance for the detection and three-alternative identification tasks, performance improved with modulation rate in the open-set task. This task-by-rate interaction was also observed when amplitude-modulated speech was presented in a steady masker, and for low- and high-pass filtered speech presented in modulated noise. These results were interpreted as showing that the optimal rate of amplitude modulation depends on the temporal distribution of speech cues and the information required to perform a particular task. PMID:19603883

  7. Polarization-sensitive optical coherence tomography using continuous polarization modulation with arbitrary phase modulation amplitude

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2012-03-01

    We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.

  8. Preliminary analysis of amplitude and phase fluctuations in the JAPE multiple tone data to distances of 500 meters

    NASA Technical Reports Server (NTRS)

    Rogers, James; Sokolov, Radomir; Hicks, Daniel; Cartwright, Lloyd

    1993-01-01

    The JAPE short range data provide a good opportunity for studying phase and amplitude fluctuations of acoustic signals in the atmosphere over distances of several hundred meters. Several factors contribute to the usefulness of these data: extensive meteorological measurements were made, controlled sources were used, the data were recorded with a high dynamic range digital system that preserved phase information and a significant number of measurement points were obtained allowing both longitudinal and transverse studies. Further, Michigan Tech, in cooperation with the U.S. Army TARDEC, has developed phase tracking algorithms for studying vehicle acoustic signals. These techniques provide an excellent tool for analyzing the amplitude and phase fluctuations of the JAPE data. The results of studies such as those reported here have application at several levels: the mechanisms of signal amplitude and phase fluctuations in propagating acoustic signals are not well understood nor are the mathematical models highly developed, acoustic arrays depend strongly on signal coherence and signal amplitude stability in order to perform to their design specifications and active noise control implementation in regions considerably removed from the primary and secondary sources depends upon signal amplitude and phase stability. Work reported here is preliminary in nature but it does indicate the utility of the phase tracking and amplitude detection algorithms. The results obtained indicate that the phase fluctuations of the JAPE continuous multiple tone data (simultaneous transmission of 80, 200 and 500 Hz) are in general agreement with existing theories but the amplitude fluctuations are seen to be less well behaved and show less consistency.

  9. Modulation of high frequency noise by engine tones of small boats.

    PubMed

    Pollara, Alexander; Sutin, Alexander; Salloum, Hady

    2017-07-01

    The effect of modulation of high frequency ship noise by propeller rotation frequencies is well known. This modulation is observed with the Detection of Envelope Modulation on Noise (DEMON) algorithm. Analysis of the DEMON spectrum allows the revolutions per minute and number of blades of the propeller to be determined. This work shows that the high frequency noise of a small boat can also be modulated by engine frequencies. Prior studies have not reported high frequency noise amplitude modulated at engine frequencies. This modulation is likely produced by bubbles from the engine exhaust system.

  10. Extending single molecule fluorescence observation time by amplitude-modulated excitation

    PubMed Central

    Kisley, Lydia; Chang, Wei-Shun; Cooper, David; Mansur, Andrea P; Landes, Christy F

    2014-01-01

    We present a hardware-based method that can improve single molecule fluorophore observation time by up to 1500% and super-localization by 47% for the experimental conditions used. The excitation was modulated using an acousto-optic modulator (AOM) synchronized to the data acquisition and inherent data conversion time of the detector. The observation time and precision in super-localization of four commonly used fluorophores were compared under modulated and traditional continuous excitation, including direct total internal reflectance excitation of Alexa 555 and Cy3, non-radiative Förster resonance energy transfer (FRET) excited Cy5, and direct epi-fluorescence wide field excitation of Rhodamine 6G. The proposed amplitude-modulated excitation does not perturb the chemical makeup of the system or sacrifice signal and is compatible with multiple types of fluorophores. Amplitude-modulated excitation has practical applications for any fluorescent study utilizing an instrumental setup with time-delayed detectors. PMID:24587894

  11. Amplitude modulation of sound from wind turbines under various meteorological conditions.

    PubMed

    Larsson, Conny; Öhlund, Olof

    2014-01-01

    Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.

  12. Generation and transmission of multilevel quadrature amplitude modulation formats using only one optical modulator: MATLAB Simulink simulation models

    NASA Astrophysics Data System (ADS)

    Binh, Le Nguyen

    2009-04-01

    A geometrical and phasor representation technique is presented to illustrate the modulation of the lightwave carrier to generate quadrature amplitude modulated (QAM) signals. The modulation of the amplitude and phase of the lightwave carrier is implemented using only one dual-drive Mach-Zehnder interferometric modulator (MZIM) with the assistance of phasor techniques. Any multilevel modulation scheme can be generated, but we illustrate specifically, the multilevel amplitude and differential phase shift keying (MADPSK) signals. The driving voltage levels are estimated for driving the traveling wave electrodes of the modulator. Phasor diagrams are extensively used to demonstrate the effectiveness of modulation schemes. MATLAB Simulink models are formed to generate the multilevel modulation formats, transmission, and detection in optically amplified fiber communication systems. Transmission performance is obtained for the multilevel optical signals and proven to be equivalent or better than those of binary level with equivalent bit rate. Further, the resilience to nonlinear effects is much higher for MADPSK of 50% and 33% pulse width as compared to non-return-to-zero (NRZ) pulse shaping.

  13. Relative sideband amplitudes versus modulation index for common functions using frequency and phase modulation. [for design and testing of communication system

    NASA Technical Reports Server (NTRS)

    Stocklin, F.

    1973-01-01

    The equations defining the amplitude of sidebands resulting from either frequency modulation or phase modulation by either square wave, sine wave, sawtooth or triangular modulating functions are presented. Spectral photographs and computer generated tables of modulation index vs. relative sideband amplitudes are also included.

  14. Polarization-interleave-multiplexed discrete multi-tone modulation with direct detection utilizing MIMO equalization.

    PubMed

    Zhou, Xian; Zhong, Kangping; Gao, Yuliang; Sui, Qi; Dong, Zhenghua; Yuan, Jinhui; Wang, Liang; Long, Keping; Lau, Alan Pak Tao; Lu, Chao

    2015-04-06

    Discrete multi-tone (DMT) modulation is an attractive modulation format for short-reach applications to achieve the best use of available channel bandwidth and signal noise ratio (SNR). In order to realize polarization-multiplexed DMT modulation with direct detection, we derive an analytical transmission model for dual polarizations with intensity modulation and direct diction (IM-DD) in this paper. Based on the model, we propose a novel polarization-interleave-multiplexed DMT modulation with direct diction (PIM-DMT-DD) transmission system, where the polarization de-multiplexing can be achieved by using a simple multiple-input-multiple-output (MIMO) equalizer and the transmission performance is optimized over two distinct received polarization states to eliminate the singularity issue of MIMO demultiplexing algorithms. The feasibility and effectiveness of the proposed PIM-DMT-DD system are investigated via theoretical analyses and simulation studies.

  15. Demodulation techniques for the amplitude modulated laser imager

    NASA Astrophysics Data System (ADS)

    Mullen, Linda; Laux, Alan; Cochenour, Brandon; Zege, Eleonora P.; Katsev, Iosif L.; Prikhach, Alexander S.

    2007-10-01

    A new technique has been found that uses in-phase and quadrature phase (I/Q) demodulation to optimize the images produced with an amplitude-modulated laser imaging system. An I/Q demodulator was used to collect the I/Q components of the received modulation envelope. It was discovered that by adjusting the local oscillator phase and the modulation frequency, the backscatter and target signals can be analyzed separately via the I/Q components. This new approach enhances image contrast beyond what was achieved with a previous design that processed only the composite magnitude information.

  16. Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

    PubMed Central

    Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind

    2012-01-01

    Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531

  17. Encoding and decoding amplitude-modulated cochlear implant stimuli—a point process analysis

    PubMed Central

    Shea-Brown, Eric; Rubinstein, Jay T.

    2010-01-01

    Cochlear implant speech processors stimulate the auditory nerve by delivering amplitude-modulated electrical pulse trains to intracochlear electrodes. Studying how auditory nerve cells encode modulation information is of fundamental importance, therefore, to understanding cochlear implant function and improving speech perception in cochlear implant users. In this paper, we analyze simulated responses of the auditory nerve to amplitude-modulated cochlear implant stimuli using a point process model. First, we quantify the information encoded in the spike trains by testing an ideal observer’s ability to detect amplitude modulation in a two-alternative forced-choice task. We vary the amount of information available to the observer to probe how spike timing and averaged firing rate encode modulation. Second, we construct a neural decoding method that predicts several qualitative trends observed in psychophysical tests of amplitude modulation detection in cochlear implant listeners. We find that modulation information is primarily available in the sequence of spike times. The performance of an ideal observer, however, is inconsistent with observed trends in psychophysical data. Using a neural decoding method that jitters spike times to degrade its temporal resolution and then computes a common measure of phase locking from spike trains of a heterogeneous population of model nerve cells, we predict the correct qualitative dependence of modulation detection thresholds on modulation frequency and stimulus level. The decoder does not predict the observed loss of modulation sensitivity at high carrier pulse rates, but this framework can be applied to future models that better represent auditory nerve responses to high carrier pulse rate stimuli. The supplemental material of this article contains the article’s data in an active, re-usable format. PMID:20177761

  18. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.

    PubMed

    Soetaert, Frederik; Dupré, Luc; Ivkov, Robert; Crevecoeur, Guillaume

    2015-10-01

    Magnetic nanoparticles (MNPs) can interact with alternating magnetic fields (AMFs) to deposit localized energy for hyperthermia treatment of cancer. Hyperthermia is useful in the context of multimodality treatments with radiation or chemotherapy to enhance disease control without increased toxicity. The unique attributes of heat deposition and transfer with MNPs have generated considerable attention and have been the focus of extensive investigations to elucidate mechanisms and optimize performance. Three-dimensional (3D) simulations are often conducted with the finite element method (FEM) using the Pennes' bioheat equation. In the current study, the Pennes' equation was modified to include a thermal damage-dependent perfusion profile to improve model predictions with respect to known physiological responses to tissue heating. A normal distribution of MNPs in a model liver tumor was combined with empirical nanoparticle heating data to calculate tumor temperature distributions and resulting survival fraction of cancer cells. In addition, calculated spatiotemporal temperature changes were compared among magnetic field amplitude modulations of a base 150-kHz sinusoidal waveform, specifically, no modulation, sinusoidal, rectangular, and triangular modulation. Complex relationships were observed between nanoparticle heating and cancer tissue damage when amplitude modulation and damage-related perfusion profiles were varied. These results are tantalizing and motivate further exploration of amplitude modulation as a means to enhance efficiency of and overcome technical challenges associated with magnetic nanoparticle hyperthermia (MNH).

  19. Are lexical tones musical? Native language's influence on neural response to pitch in different domains.

    PubMed

    Chen, Ao; Peter, Varghese; Wijnen, Frank; Schnack, Hugo; Burnham, Denis

    2018-04-21

    Language experience shapes musical and speech pitch processing. We investigated whether speaking a lexical tone language natively modulates neural processing of pitch in language and music as well as their correlation. We tested tone language (Mandarin Chinese), and non-tone language (Dutch) listeners in a passive oddball paradigm measuring mismatch negativity (MMN) for (i) Chinese lexical tones and (ii) three-note musical melodies with similar pitch contours. For lexical tones, Chinese listeners showed a later MMN peak than the non-tone language listeners, whereas for MMN amplitude there were no significant differences between groups. Dutch participants also showed a late discriminative negativity (LDN). In the music condition two MMNs, corresponding to the two notes that differed between the standard and the deviant were found for both groups, and an LDN were found for both the Dutch and the Chinese listeners. The music MMNs were significantly right lateralized. Importantly, significant correlations were found between the lexical tone and the music MMNs for the Dutch but not the Chinese participants. The results suggest that speaking a tone language natively does not necessarily enhance neural responses to pitch either in language or in music, but that it does change the nature of neural pitch processing: non-tone language speakers appear to perceive lexical tones as musical, whereas for tone language speakers, lexical tones and music may activate different neural networks. Neural resources seem to be assigned differently for the lexical tones and for musical melodies, presumably depending on the presence or absence of long-term phonological memory traces. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Quadrature amplitude modulation (QAM) using binary-driven coupling-modulated rings

    NASA Astrophysics Data System (ADS)

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-05-01

    We propose and fully analyze a compact structure for DAC-free pure optical QAM modulation. The proposed structure is the first ring resonator-based DAC-free QAM modulator reported in the literature, to the best of our knowledge. The device consists of two segmented add-drop Mach Zehnder interferometer-assisted ring modulators (MZIARM) in an IQ configuration. The proposed architecture is investigated based on the parameters from SOI technology where various key design considerations are discussed. We have included the loss in the MZI arms in our analysis of phase and amplitude modulation using MZIARM for the first time and show that the imbalanced loss results in a phase error. The output level linearity is also studied for both QAM-16 and QAM-64 not only based on optimizing RF segment lengths but also by optimizing the number of segments. In QAM-16, linearity among levels is achievable with two segments while in QAM-64 an additional segment may be required.

  1. GPER modulates tone and coronary vascular reactivity in male and female rats.

    PubMed

    Debortoli, Angelina Rafaela; Rouver, Wender do Nascimento; Delgado, Nathalie Tristão Banhos; Mengal, Vinicius; Claudio, Erick Roberto Gonçalves; Pernomian, Laena; Bendhack, Lusiane Maria; Moysés, Margareth Ribeiro; Santos, Roger Lyrio Dos

    2017-08-01

    Compared with age-matched men, premenopausal women are largely protected from coronary artery disease, a difference that is lost after menopause. The effects of oestrogens are mediated by the activation of nuclear receptors (ERα and ERβ) and by the G protein-coupled oestrogen receptor (GPER). This study aims to evaluate the potential role of GPER in coronary circulation in female and male rats. The baseline coronary perfusion pressure (CPP) and the concentration-response curve with a GPER agonist (G-1) were evaluated in isolated hearts before and after the blockade of GPER. GPER, superoxide dismutase (SOD-2), catalase and gp91phox protein expression were assessed by Western blotting. Superoxide production was evaluated ' in situ ' via dihydroethidium fluorescence (DHE). GPER blockade significantly increased the CPP in both groups, demonstrating the modulation of coronary tone by GPER. G-1 causes relaxation of the coronary bed in a concentration-dependent manner and was significantly higher in female rats. No differences were detected in GPER, SOD-2 and catalase protein expression. However, gp91phox expression and DHE fluorescence were higher in male rats, indicating elevated superoxide production. Therefore, GPER plays an important role in modulating coronary tone and reactivity in female and male rats. The observed differences in vascular reactivity may be related to the higher superoxide production in male rats. These findings help to elucidate the role of GPER-modulating coronary circulation, providing new information to develop a potential therapeutic target for the treatment of coronary heart disease. © 2017 Society for Endocrinology.

  2. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation.

    PubMed

    Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart

    2018-04-25

    To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Modulating Tone to Promote Motor Development Using a Neurofacilitation of Developmental Reaction (NFDR) Approach in Children with Neurodevelopmental Delay

    PubMed Central

    Batra, Vijay; Batra, Meenakshi; Pandey, Ravindra Mohan; Sharma, Vijai Prakash; Agarwal, Girdhar Gopal

    2015-01-01

    Objective To compare the efficacy of a Neurofacilitation of Developmental Reaction (NFDR) approach with that of a Conventional approach in the modulation of tone in children with neurodevelopmental delay. Methods Experimental control design. A total of 30 spastic children ranging in age from 4 to 7 years with neurodevelopmental delay were included. Baseline evaluations of muscle tone and gross motor functional performance abilities were performed. The children were allocated into two intervention groups of 15 subjects each. In groups A and B, the NFDR and conventional approaches were applied, respectively, for 3 months and were followed by subsequent re-evaluations. Results Between group analyses were performed using independent t test for tone and primitive reflex intensity and a Mann-Whitney U test for gross motor functional ability. For the within-group analyses, paired t tests were used for tone and primitive reflex intensity, and a Wilcoxon signed-rank test was used for gross motor functional ability. Conclusion The NFDR approach/technique prepares the muscle to undergo tonal modulation and thereby enhances motor development and improves the motor functional performance abilities of the children with neurodevelopmental delay. PMID:28239268

  4. Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss.

    PubMed

    Paraouty, Nihaad; Ewert, Stephan D; Wallaert, Nicolas; Lorenzi, Christian

    2016-07-01

    Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured for a 500-Hz carrier frequency and a 5-Hz modulation rate. For AM detection, FM at the same rate as the AM was superimposed with varying FM depth. For FM detection, AM at the same rate was superimposed with varying AM depth. The target stimuli always contained both amplitude and frequency modulations, while the standard stimuli only contained the interfering modulation. Young and older normal-hearing listeners, as well as older listeners with mild-to-moderate sensorineural hearing loss were tested. For all groups, AM and FM detection thresholds were degraded in the presence of the interfering modulation. AM detection with and without interfering FM was hardly affected by either age or hearing loss. While aging had an overall detrimental effect on FM detection with and without interfering AM, there was a trend that hearing loss further impaired FM detection in the presence of AM. Several models using optimal combination of temporal-envelope cues at the outputs of off-frequency filters were tested. The interfering effects could only be predicted for hearing-impaired listeners. This indirectly supports the idea that, in addition to envelope cues resulting from FM-to-AM conversion, normal-hearing listeners use temporal fine-structure cues for FM detection.

  5. Polarization-sensitive optical coherence tomography measurements with different phase modulation amplitude when using continuous polarization modulation

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2012-01-01

    We demonstrate theoretically and experimentally that the phase retardance and relative optic-axis orientation of a sample can be calculated without prior knowledge of the actual value of the phase modulation amplitude when using a polarization-sensitive optical coherence tomography system based on continuous polarization modulation (CPM-PS-OCT). We also demonstrate that the sample Jones matrix can be calculated at any values of the phase modulation amplitude in a reasonable range depending on the system effective signal-to-noise ratio. This has fundamental importance for the development of clinical systems by simplifying the polarization modulator drive instrumentation and eliminating its calibration procedure. This was validated on measurements of a three-quarter waveplate and an equine tendon sample by a fiber-based swept-source CPM-PS-OCT system.

  6. Cholinergic Modulation of the Hippocampus during Encoding and Retrieval of Tone/Shock-Induced Fear Conditioning

    ERIC Educational Resources Information Center

    Rogers, Jason L.; Kesner, Raymond P.

    2004-01-01

    We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with…

  7. Dissociable neural response signatures for slow amplitude and frequency modulation in human auditory cortex.

    PubMed

    Henry, Molly J; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.

  8. Increased dynamic regulation of postural tone through Alexander Technique training

    PubMed Central

    Cacciatore, TW; Gurfinkel, VS; Horak, FB; Cordo, PJ; Ames, KE

    2010-01-01

    Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo “long-term” (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of “short-term” (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (~50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. PMID:21185100

  9. Detection and rate discrimination of amplitude modulation in electrical hearing.

    PubMed

    Chatterjee, Monita; Oberzut, Cherish

    2011-09-01

    Three experiments were designed to examine temporal envelope processing by cochlear implant (CI) listeners. In experiment 1, the hypothesis that listeners' modulation sensitivity would in part determine their ability to discriminate between temporal modulation rates was examined. Temporal modulation transfer functions (TMTFs) obtained in an amplitude modulation detection (AMD) task were compared to threshold functions obtained in an amplitude modulation rate discrimination (AMRD) task. Statistically significant nonlinear correlations were observed between the two measures. In experiment 2, results of loudness-balancing showed small increases in the loudness of modulated over unmodulated stimuli beyond a modulation depth of 16%. Results of experiment 3 indicated small but statistically significant effects of level-roving on the overall gain of the TMTF, but no impact of level-roving on the average shape of the TMTF across subjects. This suggested that level-roving simply increased the task difficulty for most listeners, but did not indicate increased use of intensity cues under more challenging conditions. Data obtained with one subject, however, suggested that the most sensitive listeners may derive some benefit from intensity cues in these tasks. Overall, results indicated that intensity cues did not play an important role in temporal envelope processing by the average CI listener. © 2011 Acoustical Society of America

  10. Miniature Surface Plasmon Polariton Amplitude Modulator by Beat Frequency and Polarization Control

    PubMed Central

    Chang, Cheng-Wei; Lin, Chu-En; Yu, Chih-Jen; Yeh, Ting-Tso; Yen, Ta-Jen

    2016-01-01

    The miniaturization of modulators keeps pace for the compact devices in optical applications. Here, we present a miniature surface plasmon polariton amplitude modulator (SPPAM) by directing and interfering surface plasmon polaritons on a nanofabricated chip. Our results show that this SPPAM enables two kinds of modulations. The first kind of modulation is controlled by encoding angular-frequency difference from a Zeeman laser, with a beat frequency of 1.66 MHz; the second of modulation is validated by periodically varying the polarization states from a polarization generator, with rotation frequencies of 0.5–10 k Hz. In addition, the normalized extinction ratio of our plasmonic structure reaches 100. Such miniaturized beat-frequency and polarization-controlled amplitude modulators open an avenue for the exploration of ultrasensitive nanosensors, nanocircuits, and other integrated nanophotonic devices. PMID:27558516

  11. A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland

    2016-07-15

    Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signalsmore » with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.« less

  12. Dissociable Neural Response Signatures for Slow Amplitude and Frequency Modulation in Human Auditory Cortex

    PubMed Central

    Henry, Molly J.; Obleser, Jonas

    2013-01-01

    Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals. PMID:24205309

  13. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.

    PubMed

    Tejani, Viral D; Abbas, Paul J; Brown, Carolyn J

    This study investigates the relationship between electrophysiological and psychophysical measures of amplitude modulation (AM) detection. Prior studies have reported both measures of AM detection recorded separately from cochlear implant (CI) users and acutely deafened animals, but no study has made both measures in the same CI users. Animal studies suggest a progressive loss of high-frequency encoding as one ascends the auditory pathway from the auditory nerve to the cortex. Because the CI speech processor uses the envelope of an ongoing acoustic signal to modulate pulse trains that are subsequently delivered to the intracochlear electrodes, it is of interest to explore auditory nerve responses to modulated stimuli. In addition, psychophysical AM detection abilities have been correlated with speech perception outcomes. Thus, the goal was to explore how the auditory nerve responds to AM stimuli and to relate those physiologic measures to perception. Eight patients using Cochlear Ltd. Implants participated in this study. Electrically evoked compound action potentials (ECAPs) were recorded using a 4000 pps pulse train that was sinusoidally amplitude modulated at 125, 250, 500, and 1000 Hz rates. Responses were measured for each pulse over at least one modulation cycle for an apical, medial, and basal electrode. Psychophysical modulation detection thresholds (MDTs) were also measured via a three-alternative forced choice, two-down, one-up adaptive procedure using the same modulation frequencies and electrodes. ECAPs were recorded from individual pulses in the AM pulse train. ECAP amplitudes varied sinusoidally, reflecting the sinusoidal variation in the stimulus. A modulated response amplitude (MRA) metric was calculated as the difference in the maximal and minimum ECAP amplitudes over the modulation cycles. MRA increased as modulation frequency increased, with no apparent cutoff (up to 1000 Hz). In contrast, MDTs increased as the modulation frequency increased. This

  14. Increased dynamic regulation of postural tone through Alexander Technique training.

    PubMed

    Cacciatore, T W; Gurfinkel, V S; Horak, F B; Cordo, P J; Ames, K E

    2011-02-01

    Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo "long-term" (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of "short-term" (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (∼50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme wavesa)

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur-; Kerr, Michael Mc; El-Taibany, Wael F.; Kourakis, Ioannis; Qamar, A.

    2015-02-01

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  16. Modulated amplitude waves in collisionally inhomogeneous Bose Einstein condensates

    NASA Astrophysics Data System (ADS)

    Porter, Mason A.; Kevrekidis, P. G.; Malomed, Boris A.; Frantzeskakis, D. J.

    2007-05-01

    We investigate the dynamics of an effectively one-dimensional Bose-Einstein condensate (BEC) with scattering length a subjected to a spatially periodic modulation, a=a(x)=a(x+L). This “collisionally inhomogeneous” BEC is described by a Gross-Pitaevskii (GP) equation whose nonlinearity coefficient is a periodic function of x. We transform this equation into a GP equation with a constant coefficient and an additional effective potential and study a class of extended wave solutions of the transformed equation. For weak underlying inhomogeneity, the effective potential takes a form resembling a superlattice, and the amplitude dynamics of the solutions of the constant-coefficient GP equation obey a nonlinear generalization of the Ince equation. In the small-amplitude limit, we use averaging to construct analytical solutions for modulated amplitude waves (MAWs), whose stability we subsequently examine using both numerical simulations of the original GP equation and fixed-point computations with the MAWs as numerically exact solutions. We show that “on-site” solutions, whose maxima correspond to maxima of a(x), are more robust and likely to be observed than their “off-site” counterparts.

  17. Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization.

    PubMed

    Tai, Zhaoyang; Yan, Lulu; Zhang, Yanyan; Zhang, Xiaofei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng

    2016-12-01

    The reduction of the residual amplitude modulation (RAM) induced by electro-optic modulation is essential for many applications of frequency modulation spectroscopy requiring a lower system noise floor. Here, we demonstrate a simple passive approach employing an electro-optic modulator (EOM) cut at Brewster's angle. The proposed EOM exhibits a RAM of a few parts per million, which is comparable with that achieved by a common EOM under critical active temperature and bias voltage controls. The frequency instability of a 10 cm cavity-stabilized laser induced by the RAM effect of the proposed EOM is below 3×10-17 for integration times from 1 to 1000 s, and below 4×10-16 for comprehensive noise contributions for integration times from 1 to 100 s.

  18. Vagal tone as an index of mental state

    NASA Technical Reports Server (NTRS)

    Porges, Stephen W.

    1988-01-01

    The utility of monitoring oscillations in the heart rate pattern as a window to the brain is discussed as an index of general central nervous system status. Quantification of the amplitude of respiratory sinus arrhythmia provides an accurate index of cardiac vagal tone. A number of studies have demonstrated the validity of this measure; the relationship between flight performance and vagal tone has also been studied. In general, the vagal tone index appears to monitor global states of the central nervous system and may be useful in screening the general state of pilots.

  19. Vagal afferent fibres determine the oxytocin-induced modulation of gastric tone

    PubMed Central

    Holmes, Gregory M; Browning, Kirsteen N; Babic, Tanja; Fortna, Samuel R; Coleman, F Holly; Travagli, R Alberto

    2013-01-01

    Oxytocin (OXT) inputs to the dorsal vagal complex (DVC; nucleus of the tractus solitarius (NTS) dorsal motor nucleus of the vagus (DMV) and area postrema) decrease gastric tone and motility. Our first aim was to investigate the mechanism(s) of OXT-induced gastric relaxation. We demonstrated recently that vagal afferent inputs modulate NTS–DMV synapses involved in gastric and pancreatic reflexes via group II metabotropic glutamate receptors (mGluRs). Our second aim was to investigate whether group II mGluRs similarly influence the response of vagal motoneurons to OXT. Microinjection of OXT in the DVC decreased gastric tone in a dose-dependent manner. The OXT-induced gastric relaxation was enhanced following bethanechol and reduced by l-NAME administration, suggesting a nitrergic mechanism of gastroinhibition. DVC application of the group II mGluR antagonist EGLU induced a gastroinhibition that was not dose dependent and shifted the gastric effects of OXT to a cholinergic-mediated mechanism. Evoked and miniature GABAergic synaptic currents between NTS and identified gastric-projecting DMV neurones were not affected by OXT in any neurones tested, unless the brainstem slice was (a) pretreated with EGLU or (b) derived from rats that had earlier received a surgical vagal deafferentation. Conversely, OXT inhibited glutamatergic currents even in naive slices, but their responses were unaffected by EGLU pretreatment. These results suggest that the OXT-induced gastroinhibition is mediated by activation of the NANC pathway. Inhibition of brainstem group II mGluRs, however, uncovers the ability of OXT to modulate GABAergic transmission between the NTS and DMV, resulting in the engagement of an otherwise silent cholinergic vagal neurocircuit. PMID:23587885

  20. Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser.

    PubMed

    Shehzad, Atif; Brochard, Pierre; Matthey, Renaud; Blaser, Stéphane; Gresch, Tobias; Maulini, Richard; Muller, Antoine; Südmeyer, Thomas; Schilt, Stéphane

    2018-04-30

    We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only.

  1. Memory for pure tone sequences without contour.

    PubMed

    Lefebvre, Christine; Jolicœur, Pierre

    2016-06-01

    We presented pure tones interspersed with white noise sounds to disrupt contour perception in an acoustic short-term memory (ASTM) experiment during which we recorded the electroencephalogram. The memory set consisted of seven stimuli, 0, 1, 2, 3, or 4 of which were to-be-remembered tones. We estimated each participant׳s capacity, K, for each set size and measured the amplitude of the SAN (sustained anterior negativity, an ERP related to acoustic short-term memory). We correlated their K slopes with their SAN amplitude slopes as a function of set size, and found a significant link between performance and the SAN: a larger increase in SAN amplitude was linked with a larger number of stimuli maintained in ASTM. The SAN decreased in amplitude in the later portion of the silent retention interval, but the correlation between the SAN and capacity remained strong. These results show the SAN is not an index of contour but rather an index of the maintenance of individual objects in STM. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Modeling of Pulses Having Arbitrary Amplitude and Frequency Modulation.

    DTIC Science & Technology

    1980-03-01

    function, fi(t), has been discussed in great detail in Section II. The linearized amplitude modulation, 1(t), is given by: (IV-6) vo A +h( -) TO’ # where "A...10. LCDR Francis Martin Lunney, USN 6143 Gatsby Green Columbia, Maryland 21045 149

  3. Neural Representation of Scale Illusion: Magnetoencephalographic Study on the Auditory Illusion Induced by Distinctive Tone Sequences in the Two Ears

    PubMed Central

    Kuriki, Shinya; Yokosawa, Koichi; Takahashi, Makoto

    2013-01-01

    The auditory illusory perception “scale illusion” occurs when a tone of ascending scale is presented in one ear, a tone of descending scale is presented simultaneously in the other ear, and vice versa. Most listeners hear illusory percepts of smooth pitch contours of the higher half of the scale in the right ear and the lower half in the left ear. Little is known about neural processes underlying the scale illusion. In this magnetoencephalographic study, we recorded steady-state responses to amplitude-modulated short tones having illusion-inducing pitch sequences, where the sound level of the modulated tones was manipulated to decrease monotonically with increase in pitch. The steady-state responses were decomposed into right- and left-sound components by means of separate modulation frequencies. It was found that the time course of the magnitude of response components of illusion-perceiving listeners was significantly correlated with smooth pitch contour of illusory percepts and that the time course of response components of stimulus-perceiving listeners was significantly correlated with discontinuous pitch contour of stimulus percepts in addition to the contour of illusory percepts. The results suggest that the percept of illusory pitch sequence was represented in the neural activity in or near the primary auditory cortex, i.e., the site of generation of auditory steady-state response, and that perception of scale illusion is maintained by automatic low-level processing. PMID:24086676

  4. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Q.; Jenkins, M.V.; Bernadas, S.R.

    1997-09-09

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal. 17 figs.

  5. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Qiujie; Jenkins, Michael V.; Bernadas, Salvador R.

    1997-01-01

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal.

  6. The acoustical bright spot and mislocalization of tones by human listeners

    PubMed Central

    Macaulay, Eric J.; Hartmann, William M.; Rakerd, Brad

    2010-01-01

    Listeners attempted to localize 1500-Hz sine tones presented in free field from a loudspeaker array, spanning azimuths from 0° (straight ahead) to 90° (extreme right). During this task, the tone levels and phases were measured in the listeners’ ear canals. Because of the acoustical bright spot, measured interaural level differences (ILD) were non-monotonic functions of azimuth with a maximum near 55°. In a source-identification task, listeners’ localization decisions closely tracked the non-monotonic ILD, and thus became inaccurate at large azimuths. When listeners received training and feedback, their accuracy improved only slightly. In an azimuth-discrimination task, listeners decided whether a first sound was to the left or to the right of a second. The discrimination results also reflected the confusion caused by the non-monotonic ILD, and they could be predicted approximately by a listener’s identification results. When the sine tones were amplitude modulated or replaced by narrow bands of noise, interaural time difference (ITD) cues greatly reduced the confusion for most listeners, but not for all. Recognizing the important role of the bright spot requires a reevaluation of the transition between the low-frequency region for localization (mainly ITD) and the high-frequency region (mainly ILD). PMID:20329844

  7. The acoustical bright spot and mislocalization of tones by human listeners.

    PubMed

    Macaulay, Eric J; Hartmann, William M; Rakerd, Brad

    2010-03-01

    Listeners attempted to localize 1500-Hz sine tones presented in free field from a loudspeaker array, spanning azimuths from 0 degrees (straight ahead) to 90 degrees (extreme right). During this task, the tone levels and phases were measured in the listeners' ear canals. Because of the acoustical bright spot, measured interaural level differences (ILD) were non-monotonic functions of azimuth with a maximum near 55 degrees . In a source-identification task, listeners' localization decisions closely tracked the non-monotonic ILD, and thus became inaccurate at large azimuths. When listeners received training and feedback, their accuracy improved only slightly. In an azimuth-discrimination task, listeners decided whether a first sound was to the left or to the right of a second. The discrimination results also reflected the confusion caused by the non-monotonic ILD, and they could be predicted approximately by a listener's identification results. When the sine tones were amplitude modulated or replaced by narrow bands of noise, interaural time difference (ITD) cues greatly reduced the confusion for most listeners, but not for all. Recognizing the important role of the bright spot requires a reevaluation of the transition between the low-frequency region for localization (mainly ITD) and the high-frequency region (mainly ILD).

  8. Automated force controller for amplitude modulation atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollablemore » drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.« less

  9. Instrument Reflections and Scene Amplitude Modulation in a Polychromatic Microwave Quadrature Interferometer

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Jones, Jonathan E.; Chavers, Greg

    2003-01-01

    A polychromatic microwave quadrature interferometer has been characterized using several laboratory plasmas. Reflections between the transmitter and the receiver have been observed, and the effects of including reflection terms in the data reduction equation have been examined. An error analysis which includes the reflections, modulation of the scene beam amplitude by the plasma, and simultaneous measurements at two frequencies has been applied to the empirical database, and the results are summarized. For reflection amplitudes around 1096, the reflection terms were found to reduce the calculated error bars for electron density measurements by about a factor of 2. The impact of amplitude modulation is also quantified. In the complete analysis, the mean error bar for high- density measurements is 7.596, and the mean phase shift error for low-density measurements is 1.2". .

  10. Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds

    PubMed Central

    Ashida, Go; Kretzberg, Jutta; Tollin, Daniel J.

    2016-01-01

    Many sensory neurons encode temporal information by detecting coincident arrivals of synaptic inputs. In the mammalian auditory brainstem, binaural neurons of the medial superior olive (MSO) are known to act as coincidence detectors, whereas in the lateral superior olive (LSO) roles of coincidence detection have remained unclear. LSO neurons receive excitatory and inhibitory inputs driven by ipsilateral and contralateral acoustic stimuli, respectively, and vary their output spike rates according to interaural level differences. In addition, LSO neurons are also sensitive to binaural phase differences of low-frequency tones and envelopes of amplitude-modulated (AM) sounds. Previous physiological recordings in vivo found considerable variations in monaural AM-tuning across neurons. To investigate the underlying mechanisms of the observed temporal tuning properties of LSO and their sources of variability, we used a simple coincidence counting model and examined how specific parameters of coincidence detection affect monaural and binaural AM coding. Spike rates and phase-locking of evoked excitatory and spontaneous inhibitory inputs had only minor effects on LSO output to monaural AM inputs. In contrast, the coincidence threshold of the model neuron affected both the overall spike rates and the half-peak positions of the AM-tuning curve, whereas the width of the coincidence window merely influenced the output spike rates. The duration of the refractory period affected only the low-frequency portion of the monaural AM-tuning curve. Unlike monaural AM coding, temporal factors, such as the coincidence window and the effective duration of inhibition, played a major role in determining the trough positions of simulated binaural phase-response curves. In addition, empirically-observed level-dependence of binaural phase-coding was reproduced in the framework of our minimalistic coincidence counting model. These modeling results suggest that coincidence detection of excitatory

  11. Spatial hearing in Cope's gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations.

    PubMed

    Caldwell, Michael S; Lee, Norman; Schrode, Katrina M; Johns, Anastasia R; Christensen-Dalsgaard, Jakob; Bee, Mark A

    2014-04-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope's gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1-4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs.

  12. Overnight Fasting Regulates Inhibitory Tone to Cholinergic Neurons of the Dorsomedial Nucleus of the Hypothalamus

    PubMed Central

    Groessl, Florian; Jeong, Jae Hoon; Talmage, David A.; Role, Lorna W.; Jo, Young-Hwan

    2013-01-01

    The dorsomedial nucleus of the hypothalamus (DMH) contributes to the regulation of overall energy homeostasis by modulating energy intake as well as energy expenditure. Despite the importance of the DMH in the control of energy balance, DMH-specific genetic markers or neuronal subtypes are poorly defined. Here we demonstrate the presence of cholinergic neurons in the DMH using genetically modified mice that express enhanced green florescent protein (eGFP) selectively in choline acetyltransferase (Chat)-neurons. Overnight food deprivation increases the activity of DMH cholinergic neurons, as shown by induction of fos protein and a significant shift in the baseline resting membrane potential. DMH cholinergic neurons receive both glutamatergic and GABAergic synaptic input, but the activation of these neurons by an overnight fast is due entirely to decreased inhibitory tone. The decreased inhibition is associated with decreased frequency and amplitude of GABAergic synaptic currents in the cholinergic DMH neurons, while glutamatergic synaptic transmission is not altered. As neither the frequency nor amplitude of miniature GABAergic or glutamatergic postsynaptic currents is affected by overnight food deprivation, the fasting-induced decrease in inhibitory tone to cholinergic neurons is dependent on superthreshold activity of GABAergic inputs. This study reveals that cholinergic neurons in the DMH readily sense the availability of nutrients and respond to overnight fasting via decreased GABAergic inhibitory tone. As such, altered synaptic as well as neuronal activity of DMH cholinergic neurons may play a critical role in the regulation of overall energy homeostasis. PMID:23585854

  13. Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging

    PubMed Central

    Kupinski, Matthew A.

    2012-01-01

    Abstract. We theoretically investigate the effect of noise on frequency-domain heterodyne and/or homodyne measurements of intensity-modulated beams propagating through diffusive media, such as a photon density wave. We assumed that the attenuated amplitude and delayed phase are estimated by taking the Fourier transform of the noisy, modulated output data. We show that the estimated amplitude and phase are biased when the number of output photons is small. We also show that the use of image intensifiers for photon amplification in heterodyne or homodyne measurements increases the amount of biases. Especially, it turns out that the biased estimation is independent of AC-dependent noise in sinusoidal heterodyne or homodyne outputs. Finally, the developed theory indicates that the previously known variance model of modulation amplitude and phase is not valid in low light situations. Monte-Carlo simulations with varied numbers of input photons verify our theoretical trends of the bias. PMID:22352660

  14. BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2016-09-01

    In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.

  15. Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam.

    PubMed

    Lin, Han; Jia, Baohua; Gu, Min

    2011-07-01

    An axially super-resolved quasi-spherical focal spot can be generated by focusing an amplitude-modulated radially polarized beam through a high numerical aperture objective. A method based on the unique depolarization properties of a circular focus is proposed to design the amplitude modulation. The generated focal spot shows a ratio of x:y:z=1:1:1.48 for the normalized FWHM in three dimensions, compared to that of x:y:z=1:0.74:1.72 under linear polarization (in the x direction) illumination. Moreover, the focusable light efficiency of the designed amplitude-modulated beam is 65%, which is more than 3 times higher than the optimized case under linear polarization and thus make the amplitude-modulated radial polarization beam more suitable for a wide range of applications.

  16. Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations

    PubMed Central

    Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.

    2014-01-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183

  17. Attention deficits revealed by passive auditory change detection for pure tones and lexical tones in ADHD children.

    PubMed

    Yang, Ming-Tao; Hsu, Chun-Hsien; Yeh, Pei-Wen; Lee, Wang-Tso; Liang, Jao-Shwann; Fu, Wen-Mei; Lee, Chia-Ying

    2015-01-01

    Inattention (IA) has been a major problem in children with attention deficit/hyperactivity disorder (ADHD), accounting for their behavioral and cognitive dysfunctions. However, there are at least three processing steps underlying attentional control for auditory change detection, namely pre-attentive change detection, involuntary attention orienting, and attention reorienting for further evaluation. This study aimed to examine whether children with ADHD would show deficits in any of these subcomponents by using mismatch negativity (MMN), P3a, and late discriminative negativity (LDN) as event-related potential (ERP) markers, under the passive auditory oddball paradigm. Two types of stimuli-pure tones and Mandarin lexical tones-were used to examine if the deficits were general across linguistic and non-linguistic domains. Participants included 15 native Mandarin-speaking children with ADHD and 16 age-matched controls (across groups, age ranged between 6 and 15 years). Two passive auditory oddball paradigms (lexical tones and pure tones) were applied. The pure tone oddball paradigm included a standard stimulus (1000 Hz, 80%) and two deviant stimuli (1015 and 1090 Hz, 10% each). The Mandarin lexical tone oddball paradigm's standard stimulus was /yi3/ (80%) and two deviant stimuli were /yi1/ and /yi2/ (10% each). The results showed no MMN difference, but did show attenuated P3a and enhanced LDN to the large deviants for both pure and lexical tone changes in the ADHD group. Correlation analysis showed that children with higher ADHD tendency, as indexed by parents' and teachers' ratings on ADHD symptoms, showed less positive P3a amplitudes when responding to large lexical tone deviants. Thus, children with ADHD showed impaired auditory change detection for both pure tones and lexical tones in both involuntary attention switching, and attention reorienting for further evaluation. These ERP markers may therefore be used for the evaluation of anti-ADHD drugs that aim to

  18. The molecular basis of the genesis of basal tone in internal anal sphincter

    PubMed Central

    Zhang, Cheng-Hai; Wang, Pei; Liu, Dong-Hai; Chen, Cai-Ping; Zhao, Wei; Chen, Xin; Chen, Chen; He, Wei-Qi; Qiao, Yan-Ning; Tao, Tao; Sun, Jie; Peng, Ya-Jing; Lu, Ping; Zheng, Kaizhi; Craige, Siobhan M.; Lifshitz, Lawrence M.; Keaney Jr, John F.; Fogarty, Kevin E.; ZhuGe, Ronghua; Zhu, Min-Sheng

    2016-01-01

    Smooth muscle sphincters exhibit basal tone and control passage of contents through organs such as the gastrointestinal tract; loss of this tone leads to disorders such as faecal incontinence. However, the molecular mechanisms underlying this tone remain unknown. Here, we show that deletion of myosin light-chain kinases (MLCK) in the smooth muscle cells from internal anal sphincter (IAS-SMCs) abolishes basal tone, impairing defecation. Pharmacological regulation of ryanodine receptors (RyRs), L-type voltage-dependent Ca2+ channels (VDCCs) or TMEM16A Ca2+-activated Cl− channels significantly changes global cytosolic Ca2+ concentration ([Ca2+]i) and the tone. TMEM16A deletion in IAS-SMCs abolishes the effects of modulators for TMEM16A or VDCCs on a RyR-mediated rise in global [Ca2+]i and impairs the tone and defecation. Hence, MLCK activation in IAS-SMCs caused by a global rise in [Ca2+]i via a RyR-TMEM16A-VDCC signalling module sets the basal tone. Targeting this module may lead to new treatments for diseases like faecal incontinence. PMID:27101932

  19. Stability, resolution, and ultra-low wear amplitude modulation atomic force microscopy of DNA: Small amplitude small set-point imaging

    NASA Astrophysics Data System (ADS)

    Santos, Sergio; Barcons, Victor; Christenson, Hugo K.; Billingsley, Daniel J.; Bonass, William A.; Font, Josep; Thomson, Neil H.

    2013-08-01

    A way to operate fundamental mode amplitude modulation atomic force microscopy is introduced which optimizes stability and resolution for a given tip size and shows negligible tip wear over extended time periods (˜24 h). In small amplitude small set-point (SASS) imaging, the cantilever oscillates with sub-nanometer amplitudes in the proximity of the sample, without the requirement of using large drive forces, as the dynamics smoothly lead the tip to the surface through the water layer. SASS is demonstrated on single molecules of double-stranded DNA in ambient conditions where sharp silicon tips (R ˜ 2-5 nm) can resolve the right-handed double helix.

  20. Changes in auditory nerve responses across the duration of sinusoidally amplitude-modulated electric pulse-train stimuli.

    PubMed

    Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan

    2010-12-01

    Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.

  1. Comparing the effects of age on amplitude modulation and frequency modulation detection.

    PubMed

    Wallaert, Nicolas; Moore, Brian C J; Lorenzi, Christian

    2016-06-01

    Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured at 40 dB sensation level for young (22-28 yrs) and older (44-66 yrs) listeners with normal audiograms for a carrier frequency of 500 Hz and modulation rates of 2 and 20 Hz. The number of modulation cycles, N, varied between 2 and 9. For FM detection, uninformative AM at the same rate as the FM was superimposed to disrupt excitation-pattern cues. For both groups, AM and FM detection thresholds were lower for the 2-Hz than for the 20-Hz rate, and AM and FM detection thresholds decreased with increasing N. Thresholds were higher for older than for younger listeners, especially for FM detection at 2 Hz, possibly reflecting the effect of age on the use of temporal-fine-structure cues for 2-Hz FM detection. The effect of increasing N was similar across groups for both AM and FM. However, at 20 Hz, older listeners showed a greater effect of increasing N than younger listeners for both AM and FM. The results suggest that ageing reduces sensitivity to both excitation-pattern and temporal-fine-structure cues for modulation detection, but more so for the latter, while sparing temporal integration of these cues at low modulation rates.

  2. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus.

    PubMed

    Paul, Brandon T; Bruce, Ian C; Roberts, Larry E

    2017-02-01

    Damage to auditory nerve fibers that expresses with suprathreshold sounds but is hidden from the audiogram has been proposed to underlie deficits in temporal coding ability observed among individuals with otherwise normal hearing, and to be present in individuals experiencing chronic tinnitus with clinically normal audiograms. We tested whether these individuals may have hidden synaptic losses on auditory nerve fibers with low spontaneous rates of firing (low-SR fibers) that are important for coding suprathreshold sounds in noise while high-SR fibers determining threshold responses in quiet remain relatively unaffected. Tinnitus and control subjects were required to detect the presence of amplitude modulation (AM) in a 5 kHz, suprathreshold tone (a frequency in the tinnitus frequency region of the tinnitus subjects, whose audiometric thresholds were normal to 12 kHz). The AM tone was embedded within background noise intended to degrade the contribution of high-SR fibers, such that AM coding was preferentially reliant on low-SR fibers. We also recorded by electroencephalography the "envelope following response" (EFR, generated in the auditory midbrain) to a 5 kHz, 85 Hz AM tone presented in the same background noise, and also in quiet (both low-SR and high-SR fibers contributing to AM coding in the latter condition). Control subjects with EFRs that were comparatively resistant to the addition of background noise had better AM detection thresholds than controls whose EFRs were more affected by noise. Simulated auditory nerve responses to our stimulus conditions using a well-established peripheral model suggested that low-SR fibers were better preserved in the former cases. Tinnitus subjects had worse AM detection thresholds and reduced EFRs overall compared to controls. Simulated auditory nerve responses found that in addition to severe low-SR fiber loss, a degree of high-SR fiber loss that would not be expected to affect audiometric thresholds was needed to

  3. An additional study and implementation of tone calibrated technique of modulation

    NASA Technical Reports Server (NTRS)

    Rafferty, W.; Bechtel, L. K.; Lay, N. E.

    1985-01-01

    The Tone Calibrated Technique (TCT) was shown to be theoretically free from an error floor, and is only limited, in practice, by implementation constraints. The concept of the TCT transmission scheme along with a baseband implementation of a suitable demodulator is introduced. Two techniques for the generation of the TCT signal are considered: a Manchester source encoding scheme (MTCT) and a subcarrier based technique (STCT). The results are summarized for the TCT link computer simulation. The hardware implementation of the MTCT system is addressed and the digital signal processing design considerations involved in satisfying the modulator/demodulator requirements are outlined. The program findings are discussed and future direction are suggested based on conclusions made regarding the suitability of the TCT system for the transmission channel presently under consideration.

  4. Effect of tones on vocal attack time in Cantonese speakers.

    PubMed

    Ma, Estella P-M; Baken, R J; Roark, Rick M; Li, P-M

    2012-09-01

    Vocal attack time (VAT) is the time lag between the growth of the sound pressure signal and the development of physical contact of vocal folds at vocal initiation. It can be derived by a cross-correlation of short-time amplitude changes occurring in the sound pressure and electroglottographic (EGG) signals. Cantonese is a tone language in which tone determines the lexical meaning of the syllable. Such linguistic function of tone has implications for the physiology of tone production. The aim of the present study was to investigate the possible effects of Cantonese tones on VAT. Sound pressure and EGG signals were simultaneously recorded from 59 native Cantonese speakers (31 females and 28 males). The subjects were asked to read aloud 12 disyllabic words comprising homophone pairs of the six Cantonese lexical tones. Results revealed a gender difference in VAT values, with the mean VAT significantly smaller in females than in males. There was also a significant difference in VAT values between the two tone categories, with the mean VAT values of the three level tones (tone 1, 3, and 6) significantly smaller than those of the three contour tones (tone 2, 4, and 5). The findings support the notion that norms and interpretations based on nontone European languages may not be directly applied to tone languages. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  5. High-frequency tone-pip-evoked otoacoustic emissions in chinchillas

    NASA Astrophysics Data System (ADS)

    Siegel, Jonathan H.; Charaziak, Karolina K.

    2015-12-01

    We measured otoacoustic emissions in anesthetized chinchillas evoked by short (1 ms) high-frequency (4 kHz) tone-pips (TEOAE) using either a compression or suppression method to separate the stimulus from the emission. Both methods revealed consistent features of the TEOAEs. The main spectral band of the emission generally corresponded to the spectrum of the stimulus, exhibiting a group delay similar to that of SFOAEs [9]. However, a second spectral band below 1.5 kHz, clearly separated from the low-frequency cut-off frequency of the stimulus spectrum, corresponded to an amplitude modulation of the waveform of the TEOAE. The group delay of this low-frequency band was similar to that of the main band near the probe frequency. The average level and group delay of the main band declined monotonically when revealed as the suppressor frequency was raised above the probe. The low-frequency band was more sensitive than the main band to shifts in compound action potential thresholds near the probe frequency induced by acute exposure to intense tones. Taken together, the experiments indicate that both the main and low-frequency bands of the TEOAE are generated primarily near the cochlear region maximally stimulated by the probe, but that significant contributions arise over a large region even more basal.

  6. Contextual Modulation of N400 Amplitude to Lexically Ambiguous Words

    ERIC Educational Resources Information Center

    Titone, Debra A.; Salisbury, Dean F.

    2004-01-01

    Through much is known about the N400 component, an event-related EEG potential that is sensitive to semantic manipulations, it is unclear whether modulations of N400 amplitude reflect automatic processing, controlled processing, or both. We examined this issue using a semantic judgment task that manipulated local and global contextual cues. Word…

  7. Neurophysiological and Behavioral Responses of Mandarin Lexical Tone Processing

    PubMed Central

    Yu, Yan H.; Shafer, Valerie L.; Sussman, Elyse S.

    2017-01-01

    Language experience enhances discrimination of speech contrasts at a behavioral- perceptual level, as well as at a pre-attentive level, as indexed by event-related potential (ERP) mismatch negativity (MMN) responses. The enhanced sensitivity could be the result of changes in acoustic resolution and/or long-term memory representations of the relevant information in the auditory cortex. To examine these possibilities, we used a short (ca. 600 ms) vs. long (ca. 2,600 ms) interstimulus interval (ISI) in a passive, oddball discrimination task while obtaining ERPs. These ISI differences were used to test whether cross-linguistic differences in processing Mandarin lexical tone are a function of differences in acoustic resolution and/or differences in long-term memory representations. Bisyllabic nonword tokens that differed in lexical tone categories were presented using a passive listening multiple oddball paradigm. Behavioral discrimination and identification data were also collected. The ERP results revealed robust MMNs to both easy and difficult lexical tone differences for both groups at short ISIs. At long ISIs, there was either no change or an enhanced MMN amplitude for the Mandarin group, but reduced MMN amplitude for the English group. In addition, the Mandarin listeners showed a larger late negativity (LN) discriminative response than the English listeners for lexical tone contrasts in the long ISI condition. Mandarin speakers outperformed English speakers in the behavioral tasks, especially under the long ISI conditions with the more similar lexical tone pair. These results suggest that the acoustic correlates of lexical tone are fairly robust and easily discriminated at short ISIs, when the auditory sensory memory trace is strong. At longer ISIs beyond 2.5 s language-specific experience is necessary for robust discrimination. PMID:28321179

  8. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB.

    PubMed

    Liu, S; Cai, H; DeRose, C T; Davids, P; Pomerene, A; Starbuck, A L; Trotter, D C; Camacho, R; Urayama, J; Lentine, A

    2017-05-15

    We experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 - 1640 nm and 95 nm from 1280 - 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. We investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplers and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. Our demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.

  9. EFFECTS OF CONTINUOUS-WAVE, PULSED, AND SINUSOIDAL-AMPLITUDE-MODULATED MICROWAVES ON BRAIN ENERGY METABOLISM

    EPA Science Inventory

    A comparison of the effects of continuous wave, sinusoidal-amplitude modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague Dawley rats (175-225g). Brain NADH fluorescence, adensine triphosphate (ATP) concentrat...

  10. Antimultipath communication by injecting tone into null in signal spectrum

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Inventor)

    1987-01-01

    A transmitter for digital radio communication creates a null by balanced encoding of data modulated on an RF carrier, and inserts a calibration tone within the null. This is accomplished by having the calibration tone coincide in phase and frequency with the transmitted radio frequency output, for coherent demodulation of data at the receiver where the tone calibration signal is extracted and used for multipath fading compensation.

  11. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation

    NASA Astrophysics Data System (ADS)

    Sosnovtseva, O. V.; Pavlov, A. N.; Mosekilde, E.; Holstein-Rathlou, N.-H.; Marsh, D. J.

    2004-09-01

    Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using double-wavelet analysis we propose a method to examine how the instantaneous frequency and amplitude of a fast mode is modulated by the presence of a slower mode. Our method is applied both to experimental data from normotensive and hypertensive rats showing different oscillatory patterns and to simulation results obtained from a physiologically based model of the nephron pressure and flow control. We reveal a nonlinear interaction between the two mechanisms that regulate the renal blood flow in the form of frequency and amplitude modulation of the myogenic oscillations.

  12. Cross-Modulated Amplitudes and Frequencies Characterize Interacting Components in Complex Systems

    NASA Astrophysics Data System (ADS)

    Gans, Fabian; Schumann, Aicko Y.; Kantelhardt, Jan W.; Penzel, Thomas; Fietze, Ingo

    2009-03-01

    The dynamics of complex systems is characterized by oscillatory components on many time scales. To study the interactions between these components we analyze the cross modulation of their instantaneous amplitudes and frequencies, separating synchronous and antisynchronous modulation. We apply our novel technique to brain-wave oscillations in the human electroencephalogram and show that interactions between the α wave and the δ or β wave oscillators as well as spatial interactions can be quantified and related with physiological conditions (e.g., sleep stages). Our approach overcomes the limitation to oscillations with similar frequencies and enables us to quantify directly nonlinear effects such as positive or negative frequency modulation.

  13. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigam, R.; Kosovichev, A. G., E-mail: rakesh@quake.stanford.ed, E-mail: sasha@quake.stanford.ed

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts ofmore » acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.« less

  14. Radar transponder operation with compensation for distortion due to amplitude modulation

    DOEpatents

    Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  15. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, S.; Cai, H.; DeRose, C. T.

    Here, we experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 – 1640 nm and 95 nm from 1280 – 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. Furthermore, we investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplersmore » and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. This demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.« less

  16. High speed ultra-broadband amplitude modulators with ultrahigh extinction >65 dB

    DOE PAGES

    Liu, S.; Cai, H.; DeRose, C. T.; ...

    2017-05-04

    Here, we experimentally demonstrate ultrahigh extinction ratio (>65 dB) amplitude modulators (AMs) that can be electrically tuned to operate across a broad spectral range of 160 nm from 1480 – 1640 nm and 95 nm from 1280 – 1375 nm. Our on-chip AMs employ one extra coupler compared with conventional Mach-Zehnder interferometers (MZI), thus form a cascaded MZI (CMZI) structure. Either directional or adiabatic couplers are used to compose the CMZI AMs and experimental comparisons are made between these two different structures. Furthermore, we investigate the performance of CMZI AMs under extreme conditions such as using 95:5 split ratio couplersmore » and unbalanced waveguide losses. Electro-optic phase shifters are also integrated in the CMZI AMs for high-speed operation. Finally, we investigate the output optical phase when the amplitude is modulated, which provides us valuable information when both amplitude and phase are to be controlled. This demonstration not only paves the road to applications such as quantum information processing that requires high extinction ratio AMs but also significantly alleviates the tight fabrication tolerance needed for large-scale integrated photonics.« less

  17. An amplitude modulated radio frequency plasma generator

    NASA Astrophysics Data System (ADS)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  18. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.

    PubMed

    Chakraborty, Arup Lal; Ruxton, Keith; Johnstone, Walter; Lengden, Michael; Duffin, Kevin

    2009-06-08

    A new fiber-optic technique to eliminate residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy is presented. The modulated laser output is split to pass in parallel through the gas measurement cell and an optical fiber delay line, with the modulation frequency / delay chosen to introduce a relative phase shift of pi between them. The two signals are balanced using a variable attenuator and recombined through a fiber coupler. In the absence of gas, the direct laser intensity modulation cancels, thereby eliminating the high background. The presence of gas induces a concentration-dependent imbalance at the coupler's output from which the absolute absorption profile is directly recovered with high accuracy using 1f detection.

  19. Tone-activated, remote, alert communication system

    NASA Technical Reports Server (NTRS)

    Baker, C. D.; Couvillon, L. A.; Hubbard, W. P.; Kollar, F. J.; Postal, R. B.; Tegnelia, C. R.

    1971-01-01

    Pocket sized transmitter, frequency modulated by crystal derived tones, with integral loop antenna provides police with easy operating alert signal communicator which uses patrol car radio to relay signal. Communication channels are time shared by several patrol units.

  20. Neuroendocrine abnormalities in hypothalamic amenorrhea: spectrum, stability, and response to neurotransmitter modulation.

    PubMed

    Perkins, R B; Hall, J E; Martin, K A

    1999-06-01

    To characterize the neuroendocrine patterns of abnormal GnRH secretion in hypothalamic amenorrhea (HA), 49 women with primary and secondary HA underwent frequent sampling of LH in a total of 72 baseline studies over 12-24 h. A subset of women participated in more than one study to address 1) the variability of LH pulse patterns over time; and 2) the impact of modulating opioid, dopaminergic, and adrenergic tone on LH secretory patterns. The frequency and amplitude of LH secretion was compared with that seen in the early follicular phase (EFP) of normally cycling women. The spectrum of abnormalities of LH pulses was 8% apulsatile, 27% low frequency/low amplitude, 8% low amplitude/normal frequency, 43% low frequency/normal amplitude, 14% normal frequency/normal amplitude. Of patients studied overnight, 45% demonstrated a pubertal pattern of augmented LH secretion during sleep. Of patients studied repeatedly, 75% demonstrated at least 2 different patterns of LH secretion, and 33% reverted at least once to a normal pattern of secretion. An increase in LH pulse frequency was seen in 12 of 15 subjects in response to naloxone (opioid receptor antagonist). Clonidine (alpha-2 adrenergic agonist) was associated with a decrease in mean LH in 3 of 3 subjects. An increase in LH pulse frequency was seen in 4 of 8 subjects in response to metoclopramide (dopamine receptor antagonist), but the response was not statistically significant. Baseline abnormalities in LH secretion did not appear to influence response to neurotransmitter modulation. 1) HA represents a spectrum of disordered GnRH secretion that can vary over time; 2) LH pulse patterns at baseline do not appear to influence the ability to respond to neurotransmitter modulation; 3) Opioid and adrenergic tone appear to influence the hypothalamic GnRH pulse generator in some individuals with HA.

  1. Amplitude modulation detection by human listeners in sound fields.

    PubMed

    Zahorik, Pavel; Kim, Duck O; Kuwada, Shigeyuki; Anderson, Paul W; Brandewie, Eugene; Srinivasan, Nirmal

    2011-10-01

    The temporal modulation transfer function (TMTF) approach allows techniques from linear systems analysis to be used to predict how the auditory system will respond to arbitrary patterns of amplitude modulation (AM). Although this approach forms the basis for a standard method of predicting speech intelligibility based on estimates of the acoustical modulation transfer function (MTF) between source and receiver, human sensitivity to AM as characterized by the TMTF has not been extensively studied under realistic listening conditions, such as in reverberant sound fields. Here, TMTFs (octave bands from 2 - 512 Hz) were obtained in 3 listening conditions simulated using virtual auditory space techniques: diotic, anechoic sound field, reverberant room sound field. TMTFs were then related to acoustical MTFs estimated using two different methods in each of the listening conditions. Both diotic and anechoic data were found to be in good agreement with classic results, but AM thresholds in the reverberant room were lower than predictions based on acoustical MTFs. This result suggests that simple linear systems techniques may not be appropriate for predicting TMTFs from acoustical MTFs in reverberant sound fields, and may be suggestive of mechanisms that functionally enhance modulation during reverberant listening.

  2. Amplitude and phase modulation in microwave ring resonators by doped CVD graphene.

    PubMed

    Grande, M; Bianco, G V; Capezzuto, P; Petruzzelli, V; Prudenzano, F; Scalora, M; Bruno, G; D'Orazio, A

    2018-08-10

    In this paper, we numerically and experimentally demonstrate how to modulate the amplitude and phase of a microwave ring resonator by means of few-layers chemical vapour deposition graphene. In particular, both numerical and experimental results show a modulation of about 10 dB and a 90 degrees-shift (quadrature phase shift) when the graphene sheet-resistance is varied. These findings prove once again that graphene could be efficiently exploited for the dynamically tuning and modulation of microwave devices fostering the realization of (i) innovative beam-steering and beam-forming systems and (ii) graphene-based sensors.

  3. Double-Referential Holography and Spatial Quadrature Amplitude Modulation

    NASA Astrophysics Data System (ADS)

    Zukeran, Keisuke; Okamoto, Atsushi; Takabayashi, Masanori; Shibukawa, Atsushi; Sato, Kunihiro; Tomita, Akihisa

    2013-09-01

    We proposed a double-referential holography (DRH) that allows phase-detection without external additional beams. In the DRH, phantom beams, prepared in the same optical path as signal beams and preliminary multiplexed in a recording medium along with the signal, are used to produce interference fringes on an imager for converting a phase into an intensity distribution. The DRH enables stable and high-accuracy phase detection independent of the fluctuations and vibrations of the optical system owing to medium shift and temperature variation. Besides, the collinear arrangement of the signal and phantom beams leads to the compactness of the optical data storage system. We conducted an experiment using binary phase modulation signals for verifying the DRH operation. In addition, 38-level spatial quadrature amplitude modulation signals were successfully reproduced with the DRH by numerical simulation. Furthermore, we verified that the distributed phase-shifting method moderates the dynamic range consumption for the exposure of phantom beams.

  4. Amplitude by Peak Interaction but No Evidence of Auditory Mismatch Response Deficits to Frequency Change in Preschool-Aged Children with Fetal Alcohol Spectrum Disorders.

    PubMed

    Kabella, Danielle M; Flynn, Lucinda; Peters, Amanda; Kodituwakku, Piyadasa; Stephen, Julia M

    2018-05-24

    Prior studies indicate that the auditory mismatch response is sensitive to early alterations in brain development in multiple developmental disorders. Prenatal alcohol exposure is known to impact early auditory processing. The current study hypothesized alterations in the mismatch response in young children with fetal alcohol spectrum disorders (FASD). Participants in this study were 9 children with a FASD and 17 control children (Control) aged 3 to 6 years. Participants underwent magnetoencephalography and structural magnetic resonance imaging scans separately. We compared groups on neurophysiological mismatch negativity (MMN) responses to auditory stimuli measured using the auditory oddball paradigm. Frequent (1,000 Hz) and rare (1,200 Hz) tones were presented at 72 dB. There was no significant group difference in MMN response latency or amplitude represented by the peak located ~200 ms after stimulus presentation in the difference time course between frequent and infrequent tones. Examining the time courses to the frequent and infrequent tones separately, repeated measures analysis of variance with condition (frequent vs. rare), peak (N100m and N200m), and hemisphere as within-subject factors and diagnosis and sex as the between-subject factors showed a significant interaction of peak by diagnosis (p = 0.001), with a pattern of decreased amplitude from N100m to N200m in Control children and the opposite pattern in children with FASD. However, no significant difference was found with the simple effects comparisons. No group differences were found in the response latencies of the rare auditory evoked fields. The results indicate that there was no detectable effect of alcohol exposure on the amplitude or latency of the MMNm response to simple tones modulated by frequency change in preschool-aged children with FASD. However, while discrimination abilities to simple tones may be intact, early auditory sensory processing revealed by the interaction between N100

  5. Downdrift in a Tone Language with Four Tone Levels.

    ERIC Educational Resources Information Center

    Clements, G. N.

    1991-01-01

    Many tone languages exhibit some form of downdrift or automatic downstep, the lowering of high tones separated by low tones. In extreme cases, the realization of high tones at the end of a domain (such as the sentence) may be lower than the realization of low tones at the beginning. Tone languages with this property are cross-level tone languages.…

  6. The effects of click and tone-burst stimulus parameters on the vestibular evoked myogenic potential (VEMP).

    PubMed

    Akin, Faith Wurm; Murnane, Owen D; Proffitt, Tina M

    2003-11-01

    Vestibular evoked myogenic potentials (VEMP) are short latency electromyograms (EMG) evoked by high-level acoustic stimuli and recorded from surface electrodes over the tonically contracted sternocleidomastoid (SCM) muscle and are presumed to originate in the saccule. The present experiments examined the effects of click and tone-burst level and stimulus frequency on the latency, amplitude, and threshold of the VEMP in subjects with normal hearing sensitivity and no history of vestibular disease. VEMPs were recorded in all subjects using 100 dB nHL click stimuli. Most subjects had VEMPs present at 500, 750, and 1000 Hz, and few subjects had VEMPs present at 2000 Hz. The response amplitude of the VEMP increased with click and tone-burst level, whereas VEMP latency was not influenced by the stimulus level. The largest tone-burst-evoked VEMPs and lowest thresholds were obtained at 500 and 750 Hz. VEMP latency was independent of stimulus frequency when tone-burst duration was held constant.

  7. On the benefit of DMT modulation in nonlinear VLC systems.

    PubMed

    Qian, Hua; Cai, Sunzeng; Yao, Saijie; Zhou, Ting; Yang, Yang; Wang, Xudong

    2015-02-09

    In a visible light communication (VLC) system, the nonlinear characteristic of the light emitting diode (LED) in transmitter is a limiting factor of system performance. Modern modulation signals with large peak-to-power-ratio (PAPR) suffers uneven distortion. The nonlinear response directly impacts the intensity modulation and direct detection VLC system with pulse-amplitude modulation (PAM). The amplitude of the PAM signal is distorted unevenly and large signal is vulnerable to noise. Orthogonal linear transformations, such as discrete multi-tone (DMT) modulation, can spread the nonlinear effects evenly to each data symbol, thus perform better than PAM signals. In this paper, we provide theoretical analysis on the benefit of DMT modulation in nonlinear VLC system. We show that the DMT modulation is a better choice than the PAM modulation for the VLC system as the DMT modulation is more robust against nonlinearity. We also show that the post-distortion nonlinear elimination method, which is applied at the receiver, can be a reliable solution to the nonlinear VLC system. Simulation results show that the post-distortion greatly improves the system performance for the DMT modulation.

  8. Variation of fan tone steadiness for several inflow conditions

    NASA Technical Reports Server (NTRS)

    Balombin, J. R.

    1978-01-01

    An amplitude probability density function analysis technique for quantifying the degree of fan noise tone steadiness has been applied to data from a fan tested under a variety of inflow conditions. The test conditions included typical static operation, inflow control by a honeycomb/screen device and forward velocity in a wind tunnel simulating flight. The ratio of mean square sinusoidal-to-random signal content in the fundamental and second harmonic tones was found to vary by more than an order-of-magnitude. Some implications of these results concerning the nature of fan noise generation mechanisms are discussed.

  9. Asymmetry of perceived key movement in chorale sequences: converging evidence from a probe-tone analysis.

    PubMed

    Cuddy, L L; Thompson, W F

    1992-01-01

    In a probe-tone experiment, two groups of listeners--one trained, the other untrained, in traditional music theory--rated the goodness of fit of each of the 12 notes of the chromatic scale to four-voice harmonic sequences. Sequences were 12 simplified excerpts from Bach chorales, 4 nonmodulating, and 8 modulating. Modulations occurred either one or two steps in either the clockwise or the counterclockwise direction on the cycle of fifths. A consistent pattern of probe-tone ratings was obtained for each sequence, with no significant differences between listener groups. Two methods of analysis (Fourier analysis and regression analysis) revealed a directional asymmetry in the perceived key movement conveyed by modulating sequences. For a given modulation distance, modulations in the counterclockwise direction effected a clearer shift in tonal organization toward the final key than did clockwise modulations. The nature of the directional asymmetry was consistent with results reported for identification and rating of key change in the sequences (Thompson & Cuddy, 1989a). Further, according to the multiple-regression analysis, probe-tone ratings did not merely reflect the distribution of tones in the sequence. Rather, ratings were sensitive to the temporal structure of the tonal organization in the sequence.

  10. A laryngographic and laryngoscopic study of Northern Vietnamese tones.

    PubMed

    Brunelle, Marc; Nguyên, Duy Duong; Nguyên, Khac Hùng

    2010-01-01

    A laryngographic and laryngoscopic study of tone production in Northern Vietnamese, a language whose tones combine both fundamental frequency (f0) modulations and voice qualities (phonation types), was conducted with 5 male and 5 female speakers. Results show that the f0 contours of Northern Vietnamese tones are not only attributable to changes in vocal fold length and tension (partly through changes in larynx height), but that f0 drops are also largely caused by the glottal configurations responsible for the contrastive voice qualities associated with some of the tones. We also find that voice quality contrasts are mostly due to glottal constriction: they occasionally involve additional ventricular fold incursion and epiglottal constriction, but these articulations are usually absent. Copyright © 2010 S. Karger AG, Basel.

  11. Motivation modulates the P300 amplitude during brain-computer interface use.

    PubMed

    Kleih, S C; Nijboer, F; Halder, S; Kübler, A

    2010-07-01

    This study examined the effect of motivation as a possible psychological influencing variable on P300 amplitude and performance in a brain-computer interface (BCI) controlled by event-related potentials (ERP). Participants were instructed to copy spell a sentence by attending to cells of a randomly flashing 7*7 matrix. Motivation was manipulated by monetary reward. In two experimental groups participants received 25 (N=11) or 50 (N=11) Euro cent for each correctly selected character; the control group (N=11) was not rewarded. BCI performance was defined as the overall percentage of correctly selected characters (correct response rate=CRR). Participants performed at an average of 99%. At electrode location Cz the P300 amplitude was positively correlated to self-rated motivation. The P300 amplitude of the most motivated participants was significantly higher than that of the least motivated participants. Highly motivated participants were able to communicate correctly faster with the ERP-BCI than less motivated participants. Motivation modulates the P300 amplitude in an ERP-BCI. Motivation may contribute to variance in BCI performance and should be monitored in BCI settings. Copyright 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Velocity-Field Measurements of an Axisymmetric Separated Flow Subjected to Amplitude-Modulated Excitation

    NASA Technical Reports Server (NTRS)

    Trosin, Barry James

    2007-01-01

    Active flow control was applied at the point of separation of an axisymmetric, backward-facing-step flow. The control was implemented by employing a Helmholtz resonator that was externally driven by an amplitude-modulated, acoustic disturbance from a speaker located upstream of the wind tunnel. The velocity field of the separating/reattaching flow region downstream of the step was characterized using hotwire velocity measurements with and without flow control. Conventional statistics of the data reveal that the separating/reattaching flow is affected by the imposed forcing. Triple decomposition along with conditional averaging was used to distinguish periodic disturbances from random turbulence in the fluctuating velocity component. A significant outcome of the present study is that it demonstrates that amplitude-modulated forcing of the separated flow alters the flow in the same manner as the more conventional method of periodic excitation.

  13. Thouless dephasing and amplitude modulation of Aharonov-Bohm oscillations in mesoscopic InGaAs/InAlAs interferometers

    NASA Astrophysics Data System (ADS)

    Heremans, J. J.; Ren, S. L.; Zhang, Yao; Gaspe, C. K.; Vijeyaragunathan, S.; Mishima, T. D.; Santos, M. B.

    2014-03-01

    Aharonov-Bohm oscillations in the low-temperature magnetoresistance of mesoscopic interferometric rings are investigated for their dependence on bias current and temperature, and to explore origins of the observed amplitude modulation in magnetic field. Single-ring interferometers of radius 650 nm and lithographic arm width 300 nm were fabricated on a high-mobility high-density InGaAs/InAlAs heterostructure. The rings show interference oscillations over a wide range of magnetic fields, with amplitudes subject to modulation with applied magnetic field. The quantum phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by comparative study of the amplitude. The variation of the amplitude with bias current and temperature shows the existence of a critical excitation energy consistent with the Thouless energy for quantum phase smearing. Autocorrelation and Fourier analysis are used to determine the quasi-period of the amplitude modulation, which is found to be consistent with an origin in the magnetic flux threading the finite width of the interferometer arms, changing the mesoscopic realization of the system. Supported by DOE DE-FG02-08ER46532 (VT) and NSF DMR-0520550 (UoO).

  14. ELF/VLF Wave Generation via HF Modulation of the Equatorial Electrojet at Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Flint, Q. A.; Moore, R. C.; Burch, H.; Erdman, A.; Wilkes, R.

    2017-12-01

    In this work we generate ELF/VLF waves by modulating the conductivity of the lower ionosphere using the HF heater at Arecibo. For many years, researchers have generated ELF/VLF waves using the powerful HF transmitters at HAARP, but few have attempted to do the same in the mid- to low- latitude region. While HAARP users have benefitted from the auroral electrojet, we attempt to exploit the equatorial electrojet to generate radio waves. On 31 July 2017, we transmitted at an HF frequency of 5.1 MHz (X-Mode) applying sinusoidal amplitude modulation in a step-like fashion from 0-5 kHz in 200 Hz steps over 10 seconds at 100% peak power to approximate a linear frequency ramp. We also transmitted 10-second-long fixed frequency tones spaced from 1 to 5 kHz. The frequency sweep is a helpful visual tool to identify generated waves, but is also used to determine optimal modulation frequencies for future campaigns. The tones allow us to perform higher SNR analysis. Ground-based B-field VLF receivers recorded the amplitude and phase of the generated radio waves. We employ time-of-arrival techniques to determine the altitude of the ELF/VLF signal source. In this paper, we present the initial analysis of these experimental results.

  15. Nonlinear effects in the radiation force generated by amplitude-modulated focused beams

    NASA Astrophysics Data System (ADS)

    González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco

    2012-10-01

    Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.

  16. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer.

    PubMed

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  17. Somatosensory spatial attention modulates amplitudes, latencies, and latency jitter of laser-evoked brain potentials.

    PubMed

    Franz, Marcel; Nickel, Moritz M; Ritter, Alexander; Miltner, Wolfgang H R; Weiss, Thomas

    2015-04-01

    Several studies provided evidence that the amplitudes of laser-evoked potentials (LEPs) are modulated by attention. However, previous reports were based on across-trial averaging of LEP responses at the expense of losing information about intertrial variability related to attentional modulation. The aim of this study was to investigate the effects of somatosensory spatial attention on single-trial parameters (i.e., amplitudes, latencies, and latency jitter) of LEP components (N2 and P2). Twelve subjects participated in a sustained spatial attention paradigm while noxious laser stimuli (left hand) and noxious electrical stimuli (right hand) were sequentially delivered to the dorsum of the respective hand with nonnoxious air puffs randomly interspersed within the sequence of noxious stimuli. Participants were instructed to mentally count all stimuli (i.e., noxious and nonnoxious) applied to the attended location. Laser stimuli, presented to the attended hand (ALS), elicited larger single-trial amplitudes of the N2 component compared with unattended laser stimuli (ULS). In contrast, single-trial amplitudes of the P2 component were not significantly affected by spatial attention. Single-trial latencies of the N2 and P2 were significantly smaller for ALS vs. ULS. Additionally, the across-trial latency jitter of the N2 component was reduced for ALS. Conversely, the latency jitter of the P2 component was smaller for ULS compared with ALS. With the use of single-trial analysis, the study provided new insights into brain dynamics of LEPs related to spatial attention. Our results indicate that single-trial parameters of LEP components are differentially modulated by spatial attention. Copyright © 2015 the American Physiological Society.

  18. Is a High Tone Pointy? Speakers of Different Languages Match Mandarin Chinese Tones to Visual Shapes Differently

    PubMed Central

    Shang, Nan; Styles, Suzy J.

    2017-01-01

    Studies investigating cross-modal correspondences between auditory pitch and visual shapes have shown children and adults consistently match high pitch to pointy shapes and low pitch to curvy shapes, yet no studies have investigated linguistic-uses of pitch. In the present study, we used a bouba/kiki style task to investigate the sound/shape mappings for Tones of Mandarin Chinese, for three groups of participants with different language backgrounds. We recorded the vowels [i] and [u] articulated in each of the four tones of Mandarin Chinese. In Study 1 a single auditory stimulus was presented with two images (one curvy, one spiky). In Study 2 a single image was presented with two auditory stimuli differing only in tone. Participants were asked to select the best match in an online ‘Quiz.’ Across both studies, we replicated the previously observed ‘u-curvy, i-pointy’ sound/shape cross-modal correspondence in all groups. However, Tones were mapped differently by people with different language backgrounds: speakers of Mandarin Chinese classified as Chinese-dominant systematically matched Tone 1 (high, steady) to the curvy shape and Tone 4 (falling) to the pointy shape, while English speakers with no knowledge of Chinese preferred to match Tone 1 (high, steady) to the pointy shape and Tone 3 (low, dipping) to the curvy shape. These effects were observed most clearly in Study 2 where tone-pairs were contrasted explicitly. These findings are in line with the dominant patterns of linguistic pitch perception for speakers of these languages (pitch-change, and pitch height, respectively). Chinese English balanced bilinguals showed a bivalent pattern, swapping between the Chinese pitch-change pattern and the English pitch-height pattern depending on the task. These findings show for that the supposedly universal pattern of mapping linguistic sounds to shape is modulated by the sensory properties of a speaker’s language system, and that people with high functioning

  19. Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration

    NASA Astrophysics Data System (ADS)

    Fishman, Yonatan I.; Arezzo, Joseph C.; Steinschneider, Mitchell

    2004-09-01

    Auditory stream segregation refers to the organization of sequential sounds into ``perceptual streams'' reflecting individual environmental sound sources. In the present study, sequences of alternating high and low tones, ``...ABAB...,'' similar to those used in psychoacoustic experiments on stream segregation, were presented to awake monkeys while neural activity was recorded in primary auditory cortex (A1). Tone frequency separation (ΔF), tone presentation rate (PR), and tone duration (TD) were systematically varied to examine whether neural responses correlate with effects of these variables on perceptual stream segregation. ``A'' tones were fixed at the best frequency of the recording site, while ``B'' tones were displaced in frequency from ``A'' tones by an amount=ΔF. As PR increased, ``B'' tone responses decreased in amplitude to a greater extent than ``A'' tone responses, yielding neural response patterns dominated by ``A'' tone responses occurring at half the alternation rate. Increasing TD facilitated the differential attenuation of ``B'' tone responses. These findings parallel psychoacoustic data and suggest a physiological model of stream segregation whereby increasing ΔF, PR, or TD enhances spatial differentiation of ``A'' tone and ``B'' tone responses along the tonotopic map in A1.

  20. Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds

    PubMed Central

    Dietz, Mathias; Marquardt, Torsten; Salminen, Nelli H.; McAlpine, David

    2013-01-01

    The ability to locate the direction of a target sound in a background of competing sources is critical to the survival of many species and important for human communication. Nevertheless, brain mechanisms that provide for such accurate localization abilities remain poorly understood. In particular, it remains unclear how the auditory brain is able to extract reliable spatial information directly from the source when competing sounds and reflections dominate all but the earliest moments of the sound wave reaching each ear. We developed a stimulus mimicking the mutual relationship of sound amplitude and binaural cues, characteristic to reverberant speech. This stimulus, named amplitude modulated binaural beat, allows for a parametric and isolated change of modulation frequency and phase relations. Employing magnetoencephalography and psychoacoustics it is demonstrated that the auditory brain uses binaural information in the stimulus fine structure only during the rising portion of each modulation cycle, rendering spatial information recoverable in an otherwise unlocalizable sound. The data suggest that amplitude modulation provides a means of “glimpsing” low-frequency spatial cues in a manner that benefits listening in noisy or reverberant environments. PMID:23980161

  1. Amplitude-Phase Modulation, Topological Horseshoe and Scaling Attractor of a Dynamical System

    NASA Astrophysics Data System (ADS)

    Li, Chun-Lai; Li, Wen; Zhang, Jing; Xie, Yuan-Xi; Zhao, Yi-Bo

    2016-09-01

    A three-dimensional autonomous chaotic system is discussed in this paper. Some basic dynamical properties of the system, including phase portrait, Poincaré map, power spectrum, Kaplan-Yorke dimension, Lyapunov exponent spectra, signal amplitude and topological horseshoe are studied theoretically and numerically. The main finding by analysis is that the signal amplitude can be modulated via controlling the coefficients of the linear term, cross-product term and squared term simultaneously or respectively, and the phase of x3 can be modulated by the product of the coefficients of the linear term and cross-product term. Furthermore, scaling chaotic attractors of this system are achieved by modified projective synchronization with an optimization-based linear coupling method, which is safer for secure communications than the existed synchronization scheme since the scaling factors can be regarded as the security encoding key. Supported by Hunan Provincial Natural Science Foundation of China under Grant No. 2016JJ4036, University Natural Science Foundation of Jiangsu Province under Grant No. 14KJB120007 and the National Natural Science Foundation of China under Grant Nos. 11504176 and 11602084

  2. Auditory fear conditioning modifies steady-state evoked potentials in the rat inferior colliculus.

    PubMed

    Lockmann, André Luiz Vieira; Mourão, Flávio Afonso Gonçalves; Moraes, Marcio Flávio Dutra

    2017-08-01

    The rat inferior colliculus (IC) is a major midbrain relay for ascending inputs from the auditory brain stem and has been suggested to play a key role in the processing of aversive sounds. Previous studies have demonstrated that auditory fear conditioning (AFC) potentiates transient responses to brief tones in the IC, but it remains unexplored whether AFC modifies responses to sustained periodic acoustic stimulation-a type of response called the steady-state evoked potential (SSEP). Here we used an amplitude-modulated tone-a 10-kHz tone with a sinusoidal amplitude modulation of 53.7 Hz-as the conditioning stimulus (CS) in an AFC protocol (5 CSs per day in 3 consecutive days) while recording local field potentials (LFPs) from the IC. In the preconditioning session ( day 1 ), the CS elicited prominent 53.7-Hz SSEPs. In the training session ( day 2 ), foot shocks occurred at the end of each CS (paired group) or randomized in the inter-CS interval (unpaired group). In the test session ( day 3 ), SSEPs markedly differed from preconditioning in the paired group: in the first two trials the phase to which the SSEP coupled to the CS amplitude envelope shifted ~90°; in the last two trials the SSEP power and the coherence of SSEP with the CS amplitude envelope increased. LFP power decreased in frequency bands other than 53.7 Hz. In the unpaired group, SSEPs did not change in the test compared with preconditioning. Our results show that AFC causes dissociated changes in the phase and power of SSEP in the IC. NEW & NOTEWORTHY Local field potential oscillations in the inferior colliculus follow the amplitude envelope of an amplitude-modulated tone, originating a neural response called the steady-state evoked potential. We show that auditory fear conditioning of an amplitude-modulated tone modifies two parameters of the steady-state evoked potentials in the inferior colliculus: first the phase to which the evoked oscillation couples to the amplitude-modulated tone shifts

  3. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens.

    PubMed

    Cone, Barbara; Whitaker, Richard

    2013-07-01

    Cortical auditory evoked potentials (CAEPs) to tones and speech sounds were obtained in infants to: (1) further knowledge of auditory development above the level of the brainstem during the first year of life; (2) establish CAEP input-output functions for tonal and speech stimuli as a function of stimulus level and (3) elaborate the data-base that establishes CAEP in infants tested while awake using clinically relevant stimuli, thus providing methodology that would have translation to pediatric audiological assessment. Hypotheses concerning CAEP development were that the latency and amplitude input-output functions would reflect immaturity in encoding stimulus level. In a second experiment, infants were tested with the same stimuli used to evoke the CAEPs. Thresholds for these stimuli were determined using observer-based psychophysical techniques. The hypothesis was that the behavioral thresholds would be correlated with CAEP input-output functions because of shared cortical response areas known to be active in sound detection. 36 infants, between the ages of 4 and 12 months (mean=8 months, s.d.=1.8 months) and 9 young adults (mean age 21 years) with normal hearing were tested. First, CAEPs amplitude and latency input-output functions were obtained for 4 tone bursts and 7 speech tokens. The tone bursts stimuli were 50 ms tokens of pure tones at 0.5, 1.0, 2.0 and 4.0 kHz. The speech sound tokens, /a/, /i/, /o/, /u/, /m/, /s/, and /∫/, were created from natural speech samples and were also 50 ms in duration. CAEPs were obtained for tone burst and speech token stimuli at 10 dB level decrements in descending order from 70 dB SPL. All CAEP tests were completed while the infants were awake and engaged in quiet play. For the second experiment, observer-based psychophysical methods were used to establish perceptual threshold for the same speech sound and tone tokens. Infant CAEP component latencies were prolonged by 100-150 ms in comparison to adults. CAEP latency

  4. Investigation of the Acoustics of Plucked String Tones Based on the Analysis of Their Time-Varying Spectra.

    NASA Astrophysics Data System (ADS)

    Chen, Kwok-Ping John

    This research investigates two aspects of the time-varying vibration patterns of plucked string tones of classical guitar, Chinese pipa and Chinese ch'in. First, the assumption that horizontal and vertical frequencies and decay rates may be different is used as a basis for classifying the partial amplitude envelopes into four types. It is found that the partial envelopes of the tones produced by the three instruments, using the finger tip excitation method, on a single undamped string, can be described in terms of these four types. The results show that ch'in tones contain Type III, and IV, guitar tones contain Type I, II and III, and pipa tones contain all four types with a higher percentage of Type III and IV. Second, the theories of "missing modes" (Young, 1800), (Benade, 1976) and delayed generation of these modes (Fletcher, 1984), (Hall, 1987) are re-examined experimentally. The edge of a conventional guitar pick is used to excite a single undamped string on a classical guitar at nodal position N which is L/N from the bridge. As a result, it is a consistent feature that any mode whose index n is a multiple of N is attenuated during the attack phase but subsequently rises with a more gradual attack to reach a significant peak amplitude, except for the first multiple of locations L/3 to L/7. This amplitude envelope pattern, Type V, which is only applicable when the pick-edge excitation method is used, is distinct from the other four types mentioned above.

  5. Modulation of amplitude and latency of motor evoked potential by direction of transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Itoh, Yuji; Iramina, Keiji

    2014-05-01

    The present study analyzed the effects of monophasic magnetic stimulation to the motor cortex. The effects of magnetic stimulation were evaluated by analyzing the motor evoked potentials (MEPs). The amplitude and latency of MEPs on the abductor pollicis brevis muscle were used to evaluate the effects of repetitive magnetic stimulation. A figure eight-shaped flat coil was used to stimulate the region over the primary motor cortex. The intensity of magnetic stimulation was 120% of the resting motor threshold, and the frequency of magnetic stimulation was 0.1 Hz. In addition, the direction of the current in the brain was posterior-anterior (PA) or anterior-posterior (AP). The latency of MEP was compared with PA and AP on initial magnetic stimulation. The results demonstrated that a stimulus in the AP direction increased the latency of the MEP by approximately 2.5 ms. MEP amplitude was also compared with PA and AP during 60 magnetic stimulations. The results showed that a stimulus in the PA direction gradually increased the amplitude of the MEP. However, a stimulus in the AP direction did not modulate the MEP amplitude. The average MEP amplitude induced from every 10 magnetic pulses was normalized by the average amplitude of the first 10 stimuli. These results demonstrated that the normalized MEP amplitude increased up to approximately 150%. In terms of pyramidal neuron indirect waves (I waves), magnetic stimulation inducing current flowing backward to the anterior preferentially elicited an I1 wave, and current flowing forward to the posterior elicited an I3 wave. It has been reported that the latency of the I3 wave is approximately 2.5 ms longer than the I1 wave elicitation, so the resulting difference in latency may be caused by this phenomenon. It has also been reported that there is no alteration of MEP amplitude at a frequency of 0.1 Hz. However, this study suggested that the modulation of MEP amplitude depends on stimulation strength and stimulation direction.

  6. The influence of a time-varying least squares parametric model when estimating SFOAEs evoked with swept-frequency tones

    NASA Astrophysics Data System (ADS)

    Hajicek, Joshua J.; Selesnick, Ivan W.; Henin, Simon; Talmadge, Carrick L.; Long, Glenis R.

    2018-05-01

    Stimulus frequency otoacoustic emissions (SFOAEs) were evoked and estimated using swept-frequency tones with and without the use of swept suppressor tones. SFOAEs were estimated using a least-squares fitting procedure. The estimated SFOAEs for the two paradigms (with- and without-suppression) were similar in amplitude and phase. The fitting procedure minimizes the square error between a parametric model of total ear-canal pressure (with unknown amplitudes and phases) and ear-canal pressure acquired during each paradigm. Modifying the parametric model to allow SFOAE amplitude and phase to vary over time revealed additional amplitude and phase fine structure in the without-suppressor, but not the with-suppressor paradigm. The use of a time-varying parametric model to estimate SFOAEs without-suppression may provide additional information about cochlear mechanics not available when using a with-suppressor paradigm.

  7. Effects of hypnagogic imagery on the event-related potential to external tone stimuli.

    PubMed

    Michida, Nanae; Hayashi, Mitsuo; Hori, Tadao

    2005-07-01

    The purpose of this study was to examine the influence of hypnagogic imagery on the information processes of external tone stimuli during the sleep onset period with the use of event-related potentials. Event-related potentials to tone stimuli were compared between conditions with and without the experience of hypnagogic imagery. To control the arousal level when the tone was presented, a certain criterion named the electroencephalogram stage was used. Stimuli were presented at electroencephalogram stage 4, which was characterized by the appearance of a vertex sharp wave. Data were collected in the sleep laboratory at Hiroshima University. Eleven healthy university and graduate school students participated in the study. N/A. Experiments were performed at night. Reaction times to tone stimuli were measured, and only trials with shorter reaction times than 5000 milliseconds were analyzed. Electroencephalograms were recorded from Fz, Cz, Pz, Oz, T5 and T6. There were no differences in reaction times and electroencephalogram spectra between the conditions of with and without hypnagogic imagery. These results indicated that the arousal levels were not different between the 2 conditions. On the other hand, the N550 amplitude of the event-related potentials in the imagery condition was lower than in the no-imagery condition. The decrease in the N550 amplitude in the imagery condition showed that experiences of hypnagogic imagery exert some influence on the information processes of external tone stimuli. It is possible that the processing of hypnagogic imagery interferes with the processing of external stimuli, lowering the sensitivity to external stimuli.

  8. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device.

    PubMed

    Goorden, Sebastianus A; Bertolotti, Jacopo; Mosk, Allard P

    2014-07-28

    We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.

  9. Screech tones from free and ducted supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III

    1994-01-01

    It is well known that screech tones from supersonic jets are generated by a feedback loop. The loop consists of three main components. They are the downstream propagating instability wave, the shock cell structure in the jet plume, and the feedback acoustic waves immediately outside the jet. Evidence will be presented to show that the screech frequency is largely controlled by the characteristics of the feedback acoustic waves. The feedback loop is driven by the instability wave of the jet. Thus the tone intensity and its occurrence are dictated by the characteristics of the instability wave. In this paper the dependence of the instability wave spectrum on the azimuthal mode number (axisymmetric or helical/flapping mode, etc.), the jet-to-ambient gas temperature ratio, and the jet Mach number are studied. The results of this study provide an explanation for the observed screech tone mode switch phenomenon (changing from axisymmetric to helical mode as Mach number increases) and the often-cited experimental observation that tone intensity reduces with increase in jet temperature. For ducted supersonic jets screech tones can also be generated by feedback loops formed by the coupling of normal duct modes to instability waves of the jet. The screech frequencies are dictated by the frequencies of the duct modes. Super resonance, resonance involving very large pressure oscillations, can occur when the feedback loop is powered by the most amplified instability wave. It is proposed that the observed large amplitude pressure fluctuations and tone in the test cells of Arnold Engineering Development Center were generated by super resonance. Estimated super-resonance frequency for a Mach 1.3 axisymmetric jet tested in the facility agrees well with measurement.

  10. Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise

    PubMed Central

    Chertoff, Mark E.; Earl, Brian R.; Diaz, Francisco J.; Sorensen, Janna L.

    2012-01-01

    The cochlear microphonic was recorded in response to a 733 Hz tone embedded in noise that was high-pass filtered at 25 different frequencies. The amplitude of the cochlear microphonic increased as the high-pass cutoff frequency of the noise increased. The amplitude growth for a 60 dB SPL tone was steeper and saturated sooner than that of an 80 dB SPL tone. The growth for both signal levels, however, was not entirely cumulative with plateaus occurring at about 4 and 7 mm from the apex. A phenomenological model of the electrical potential in the cochlea that included a hair cell probability function and spiral geometry of the cochlea could account for both the slope of the growth functions and the plateau regions. This suggests that with high-pass-filtered noise, the cochlear microphonic recorded at the round window comes from the electric field generated at the source directed towards the electrode and not down the longitudinal axis of the cochlea. PMID:23145616

  11. External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices.

    PubMed

    Kindness, S J; Jessop, D S; Wei, B; Wallis, R; Kamboj, V S; Xiao, L; Ren, Y; Braeuninger-Weimer, P; Aria, A I; Hofmann, S; Beere, H E; Ritchie, D A; Degl'Innocenti, R

    2017-08-09

    Active control of the amplitude and frequency of terahertz sources is an essential prerequisite for exploiting a myriad of terahertz applications in imaging, spectroscopy, and communications. Here we present a optoelectronic, external modulation technique applied to a terahertz quantum cascade laser which holds the promise of addressing a number of important challenges in this research area. A hybrid metamaterial/graphene device is implemented into an external cavity set-up allowing for optoelectronic tuning of feedback into a quantum cascade laser. We demonstrate powerful, all-electronic, control over the amplitude and frequency of the laser output. Full laser switching is performed by electrostatic gating of the metamaterial/graphene device, demonstrating a modulation depth of 100%. External control of the emission spectrum is also achieved, highlighting the flexibility of this feedback method. By taking advantage of the frequency dispersive reflectivity of the metamaterial array, different modes of the QCL output are selectively suppressed using lithographic tuning and single mode operation of the multi-mode laser is enforced. Side mode suppression is electrically modulated from ~6 dB to ~21 dB, demonstrating active, optoelectronic modulation of the laser frequency content between multi-mode and single mode operation.

  12. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays.

    PubMed

    Hammond, Mark W; Xydas, Dimitris; Downes, Julia H; Bucci, Giovanna; Becerra, Victor; Warwick, Kevin; Constanti, Andrew; Nasuto, Slawomir J; Whalley, Benjamin J

    2013-03-26

    Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat ('artificial animal') applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain

  13. Pulse-amplitude modulation of optical injection-locked quantum-dot lasers

    NASA Astrophysics Data System (ADS)

    Zhou, Yue-Guang; Wang, Cheng

    2018-02-01

    This work theoretically investigates the four-level pulse-amplitude modulation characteristics of quantum dot lasers subject to optical injection. The rate equation model takes into account carrier dynamics in the carrier reservoir, in the excited state, and in the ground state, as well as photon dynamics and phase dynamics of the electric field. It is found that the optical injection significantly improves the eye diagram quality through suppressing the relaxation oscillation, while the extinction ratio is reduced as well. In addition, both the adiabatic chirp and the transient chirp of the signal are substantially suppressed.

  14. FIBER OPTICS. ACOUSTOOPTICS: Amplitude and phase nonreciprocities of acoustooptic modulators for counterpropagating light waves under the Bragg diffraction conditions

    NASA Astrophysics Data System (ADS)

    Veselovskaya, T. V.; Klochan, E. L.; Lariontsev, E. G.; Parfenov, S. V.; Shelaev, A. N.

    1990-07-01

    Theoretical and experimental investigations demonstrated that in real acoustooptic modulators the diffraction of light by a standing ultrasonic wave may give rise to both phase and amplitude nonreciprocities of counterpropagating light waves. Analytic expressions are derived for the dependences of these nonreciprocities on the parameters of the traveling component of an ultrasonic wave in a modulator. It is shown that when the angle of incidence of light on a modulator deviates from the Bragg angle, the phase nonreciprocity may be suppressed, but the amplitude nonreciprocity becomes maximal and its sign is governed by the law of deviation of the angle of incidence from the Bragg angle. A diffraction acoustooptic feedback makes it possible not only to achieve mode locking with an acoustooptic modulator utilizing a traveling ultrasonic wave, but also to control the magnitude and sign of amplitude-frequency nonreciprocities. It is reported that an acoustooptic feedback can be used to generate self-pumping waves in a solid-state mode-locked ring laser and thus stabilize bidirectional lasing in a wide range of the frequency offset between the counterpropagating waves.

  15. Amplitude variations of modulated RV Tauri stars support the dust obscuration model of the RVb phenomenon

    NASA Astrophysics Data System (ADS)

    Kiss, L. L.; Bódi, A.

    2017-12-01

    Context. RV Tauri-type variables are pulsating post-asymptotic giant branch (AGB) stars that evolve rapidly through the instability strip after leaving the AGB. Their light variability is dominated by radial pulsations. Members of the RVb subclass show an additional variability in the form of a long-term modulation of the mean brightness, for which the most popular theories all assume binarity and some kind of circumstellar dust. Here we assess whether or not the amplitude modulations are consistent with the dust obscuration model. Aims: We measure and interpret the overall changes of the mean amplitude of the pulsations along the RVb variability. Methods: We compiled long-term photometric data for RVb-type stars, including visual observations of the American Association of Variable Star Observers, ground-based CCD photometry from the OGLE and ASAS projects, and ultra-precise space photometry of one star, DF Cygni, from theKepler space telescope. After converting all the observations to flux units, we measure the cycle-to-cycle variations of the pulsation amplitude and correlate them to the actual mean fluxes. Results: We find a surprisingly uniform correlation between the pulsation amplitude and the mean flux; they scale linearly with each other for a wide range of fluxes and amplitudes. This means that the pulsation amplitude actually remains constant when measured relative to the system flux level. The apparent amplitude decrease in the faint states has long been noted in the literature but it was always claimed to be difficult to explain with the actual models of the RVb phenomenon. Here we show that when fluxes are used instead of magnitudes, the amplitude attenuation is naturally explained by periodic obscuration from a large opaque screen, one most likely corresponding to a circumbinary dusty disk that surrounds the whole system.

  16. Effects of temporal primary-tone arrangement on DPOAE properties in humans

    NASA Astrophysics Data System (ADS)

    Zelle, Dennis; Krokenberger, Michael; Gummer, Anthony W.; Dalhoff, Ernst

    2018-05-01

    Distortion-product otoacoustic emissions (DPOAEs) emerge as a by-product of the nonlinear amplification of sound waves in the cochlea when presenting two tones of frequencies f1 and f2. According to a widely accepted model, DPOAEs comprise two main components, which can be separated in the time domain using short stimulus pulses. The present study utilized two acquisition paradigms with different primary-tone arrangements, denoted as SP-f1 and SP-f2, to investigate the nonlinear-distortion component arising near the f2-tonotopic site on the basilar membrane. In SP-f2, a conventional paradigm, the f1 tone was presented for 25 ms, whereas the f2 tone was switched on 5 ms after f1 onset for frequency-dependent durations between 3 and 11 ms to elicit the DPOAE. SP-f1 interchanged the temporal arrangement and durations of the primary tones. DPOAEs were recorded at eight frequencies (f2 = 1 - 8 kHz; f2/f1 = 1.2) and five primary-tone levels L2 = 30 - 70 dB SPL in 56 normal-hearing ears from 33 subjects. Comparison between the corresponding DPOAE responses revealed significantly larger amplitudes and shorter latencies of the nonlinear-distortion component for SP-f1, i.e. when the f1 short pulse triggers DPOAE generation.

  17. Aharonov-Bohm oscillations, quantum decoherence and amplitude modulation in mesoscopic InGaAs/InAlAs rings.

    PubMed

    Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B

    2013-10-30

    Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.

  18. Modulation-Frequency-Specific Adaptation in Awake Auditory Cortex

    PubMed Central

    Beitel, Ralph E.; Vollmer, Maike; Heiser, Marc A.; Schreiner, Christoph E.

    2015-01-01

    Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical “modulation masking,” in which the presentation of a modulated “masker” signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neuron's signal pathway appears sufficient to engender context-sensitive cortical adaptation. PMID:25878263

  19. Perceptual Improvement of Lexical Tones in Infants: Effects of Tone Language Experience

    PubMed Central

    Tsao, Feng-Ming

    2017-01-01

    To learn words in a tonal language, tone-language learners should not only develop better abilities for perceiving consonants and vowels, but also for lexical tones. The divergent trend of enhancing sensitivity to native phonetic contrasts and reduced sensitivity to non-native phonetic contrast is theoretically essential to evaluate effects of listening to an ambient language on speech perception development. The loss of sensitivity in discriminating lexical tones among non-tonal language-learning infants was apparent between 6 and 12 months of age, but only few studies examined trends of differentiating native lexical tones in infancy. The sensitivity in discriminating lexical tones among 6–8 and 10–12 month-old Mandarin-learning infants (n = 120) was tested in Experiment 1 using three lexical tone contrasts of Mandarin. Facilitation of linguistic experience was shown in the tonal contrast (Tone 1 vs. 3), but both age groups performed similar in the other two tonal contrasts (Tone 2 vs. 4; Tone 2 vs. 3). In Experiment 2, 6–8 and 10–12 month-old Mandarin-learning infants (n = 90) were tested with tonal contrasts that have pitch contours either similar to or inverse from lexical tones in Mandarin, and perceptual improvement was shown only in a tonal contrast with familiar pitch contours (i.e., Tone 1 vs. 3). In Experiment 3, 6–8 and 10–12 month-old English-learning infants (n = 40) were tested with Tone 1 vs. 3 contrast of Mandarin and showed an improvement in the perception of non-native lexical tones. This study reveals that tone-language learning infants develop more accurate representations of lexical tones around their first birthday, and the results of both tone and non-tone language-learning infants imply that the rate of development depends on listening experience and the acoustical salience of specific tone contrasts. PMID:28443053

  20. Spatiotemporal reconstruction of auditory steady-state responses to acoustic amplitude modulations: Potential sources beyond the auditory pathway.

    PubMed

    Farahani, Ehsan Darestani; Goossens, Tine; Wouters, Jan; van Wieringen, Astrid

    2017-03-01

    Investigating the neural generators of auditory steady-state responses (ASSRs), i.e., auditory evoked brain responses, with a wide range of screening and diagnostic applications, has been the focus of various studies for many years. Most of these studies employed a priori assumptions regarding the number and location of neural generators. The aim of this study is to reconstruct ASSR sources with minimal assumptions in order to gain in-depth insight into the number and location of brain regions that are activated in response to low- as well as high-frequency acoustically amplitude modulated signals. In order to reconstruct ASSR sources, we applied independent component analysis with subsequent equivalent dipole modeling to single-subject EEG data (young adults, 20-30 years of age). These data were based on white noise stimuli, amplitude modulated at 4, 20, 40, or 80Hz. The independent components that exhibited a significant ASSR were clustered among all participants by means of a probabilistic clustering method based on a Gaussian mixture model. Results suggest that a widely distributed network of sources, located in cortical as well as subcortical regions, is active in response to 4, 20, 40, and 80Hz amplitude modulated noises. Some of these sources are located beyond the central auditory pathway. Comparison of brain sources in response to different modulation frequencies suggested that the identified brain sources in the brainstem, the left and the right auditory cortex show a higher responsiveness to 40Hz than to the other modulation frequencies. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Performance improvement by orthogonal pulse amplitude modulation and discrete multitone modulation signals in hybrid fiber-visible laser light communication system

    NASA Astrophysics Data System (ADS)

    Zhang, Fangliu; He, Jing; Deng, Rui; Chen, Qinghui; Chen, Lin

    2016-10-01

    A modulation format, orthogonal pulse amplitude modulation and discrete multitone modulation (O-PAM-DMT), is experimentally demonstrated in a hybrid fiber-visible laser light communication (fiber-VLLC) system using a cost-effective directly modulated laser and blue laser diode. In addition, low overhead is achieved by utilizing only one training sequence to implement synchronization and channel estimation. Through adjusting the ratio of PAM and DMT signal, three types of O-PAM-DMT signals are investigated. After transmission over a 20-km standard single-mode fiber and 5-m free-space VLLC, the receiver sensitivity for 4.36-Gbit/s O-PAM-DMT signals can be improved by 0.4, 1.4, and 2.7 dB, respectively, at a bit error rate of 1×10-3, compared with a conventional DMT signal.

  2. Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: Amplitude and frequency modulation within low- and high-momentum pathways

    NASA Astrophysics Data System (ADS)

    Awasthi, Ankit; Anderson, William

    2018-04-01

    We have studied the effects of topographically driven secondary flows on inner-outer interaction in turbulent channel flow. Recent studies have revealed that large-scale motions in the logarithmic region impose an amplitude and frequency modulation on the dynamics of small-scale structures near the wall. This led to development of a predictive model for near-wall dynamics, which has practical relevance for large-eddy simulations. Existing work on amplitude modulation has focused on smooth-wall flows; however, Anderson [J. Fluid Mech. 789, 567 (2016), 10.1017/jfm.2015.744] addressed the problem of rough-wall turbulent channel flow in which the correlation profiles for amplitude modulation showed trends similar to those reported by Mathis et al. [Phys. Fluids 21, 111703 (2009), 10.1063/1.3267726]. For the present study, we considered flow over surfaces with a prominent spanwise heterogeneity, such that domain-scale turbulent secondary flows in the form of counter-rotating vortices are sustained within the flow. (We also show results for flow over a homogeneous roughness, which serves as a benchmark against the spanwise-perturbed cases.) The vortices are anchored to the topography such that prominent upwelling and downwelling occur above the low and high roughness, respectively. We have quantified the extent to which such secondary flows disrupt the distribution of spectral density across constituent wavelengths throughout the depth of the flow, which has direct implications for the existence of amplitude and frequency modulation. We find that the distinct outer peak associated with large-scale motions—the "modulators"—is preserved within the upwelling zone but vanishes in the downwelling zone. Within the downwelling zones, structures are steeper and shorter. Single- and two-point correlations for inner-outer amplitude and frequency modulation demonstrate insensitivity to resolution across cases. We also show a pronounced crossover between the single- and two

  3. Heme oxygenase-1 upregulation modulates tone and fibroelastic properties of internal anal sphincter

    PubMed Central

    Krishna, Chadalavada Vijay; Singh, Jagmohan; Kumar, Sumit

    2014-01-01

    A compromise in the internal anal sphincter (IAS) tone and fibroelastic properties (FEP) plays an important role in rectoanal incontinence. Herein, we examined the effects of heme oxygenase (HO)-1 upregulation on these IAS characteristics in young rats. We determined the effect of HO-1 upregulator hemin on HO-1 mRNA and protein expressions and on basal IAS tone and its FEP before and after HO-1 inhibitor tin protoporphyrin IX. For FEP, we determined the kinetics of the IAS smooth muscle responses, by the velocities of relaxation, and recovery of the IAS tone following 0 Ca2+ and electrical field stimulation. To characterize the underlying signal transduction for these changes, we determined the effects of hemin on RhoA-associated kinase (RhoA)/Rho kinase (ROCK) II, myosin-binding subunit of myosin light chain phosphatase 1, fibronectin, and elastin expression levels. Hemin increased HO-1 mRNA and protein similar to the increases in the basal tone, and in the FEP of the IAS. Underlying mechanisms in the IAS characteristics are associated with increases in the genetic and translational expressions of RhoA/ROCKII, and elastin. Fibronectin expression levels on the other hand were found to be decreased following HO-1 upregulation. The results of our study show that the hemin/HO-1 system regulates the tone and FEP of IAS. The hemin/HO-1 system thus provides a potential target for the development of new interventions aimed at treatment of gastrointestinal motility disorders, specifically the age-related IAS dysfunction. PMID:25035109

  4. Modulating complex beams in amplitude and phase using fast tilt-micromirror arrays and phase masks.

    PubMed

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2018-06-15

    The Letter proposes a system for the spatial modulation of light in amplitude and phase at kilohertz frame rates and high spatial resolution. The focus is fast spatial light modulators (SLMs) consisting of continuously tiltable micromirrors. We investigate the utilization of such SLMs in combination with a static phase mask in a 4f setup. The phase mask enables the complex beam modulation in a linear optical arrangement. Furthermore, adding so-called phase steps to the phase mask increases both the number of image pixels at constant SLM resolution and the optical efficiency. We illustrate our concept based on numerical simulations.

  5. Automatic processing of tones and speech stimuli in children with specific language impairment.

    PubMed

    Uwer, Ruth; Albrecht, Ronald; von Suchodoletz, W

    2002-08-01

    It is well known from behavioural experiments that children with specific language impairment (SLI) have difficulties discriminating consonant-vowel (CV) syllables such as /ba/, /da/, and /ga/. Mismatch negativity (MMN) is an auditory event-related potential component that represents the outcome of an automatic comparison process. It could, therefore, be a promising tool for assessing central auditory processing deficits for speech and non-speech stimuli in children with SLI. MMN is typically evoked by occasionally occurring 'deviant' stimuli in a sequence of identical 'standard' sounds. In this study MMN was elicited using simple tone stimuli, which differed in frequency (1000 versus 1200 Hz) and duration (175 versus 100 ms) and to digitized CV syllables which differed in place of articulation (/ba/, /da/, and /ga/) in children with expressive and receptive SLI and healthy control children (n=21 in each group, 46 males and 17 females; age range 5 to 10 years). Mean MMN amplitudes between groups were compared. Additionally, the behavioural discrimination performance was assessed. Children with SLI had attenuated MMN amplitudes to speech stimuli, but there was no significant difference between the two diagnostic subgroups. MMN to tone stimuli did not differ between the groups. Children with SLI made more errors in the discrimination task, but discrimination scores did not correlate with MMN amplitudes. The present data suggest that children with SLI show a specific deficit in automatic discrimination of CV syllables differing in place of articulation, whereas the processing of simple tone differences seems to be unimpaired.

  6. A review of demodulation techniques for amplitude-modulation atomic force microscopy

    PubMed Central

    Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J

    2017-01-01

    In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596

  7. Successful measurement of the mismatch negativity despite a concurrent movie soundtrack: reduced amplitude but normal component morphology.

    PubMed

    Moreau, Patricia; Jolicœur, Pierre; Lidji, Pascale; Peretz, Isabelle

    2013-12-01

    To examine the mechanisms responsible for the reduction of the mismatch negativity (MMN) ERP component observed in response to pitch changes when the soundtrack of a movie is presented while recording the MMN. In three experiments we measured the MMN to tones that differed in pitch from a repeated standard tone presented with a silent subtitled movie, with the soundtrack played forward or backward, or with soundtracks set at different intensity levels. MMN amplitude was reduced when the soundtrack was presented either forward or backward compared to the silent subtitled movie. With the soundtrack, MMN amplitude increased proportionally to the increments in the sound-to-noise intensity ratio. MMN was reduced in amplitude but had normal morphology with a concurrent soundtrack, most likely because of basic acoustical interference from the soundtrack with MMN-critical tones rather than from attentional effects. A normal MMN can be recorded with a concurrent movie soundtrack, but signal amplitudes need to be set with caution to ensure a sufficiently high sound-to-noise ratio between MMN stimuli and the soundtrack. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Generation of a widely spaced optical frequency comb using an amplitude modulator pair

    NASA Astrophysics Data System (ADS)

    Gunning, Fatima C. G.; Ellis, Andrew D.

    2005-06-01

    Multi-wavelength sources are required for wavelength division multiplexed (WDM) optical communication systems, and typically a bank of DFB lasers is used. However, large costs are involved to provide wavelength selected sources and high precision wavelength lockers. Optical comb generation is attractive solution, minimizing the component count and improving wavelength stability. In addition, comb generation offers the potential for new WDM architectures, such as coherent WDM, as it preserves the phase relation between the generated channels. Complex comb generation systems have been introduced in the past, using fibre ring lasers [1] or non-linear effects within long fibres [2]. More recently, simpler set-ups were proposed, including hybrid amplitude-phase modulation schemes [3-5]. However, the narrow line spacing of these systems, typically 17 GHz, restricts their use to bit rates up to 10 Gbit/s. In this paper, we propose and demonstrate a simple method of comb generation that is suitable for bit rates up to 42.667 Gbit/s. The comb generator was composed of two Mach-Zehnder modulators (MZM) in series, each being driven with a sinusoidal wave at 42.667 GHz with a well-defined phase relationship. As a result, 7 comb lines separated by 42.667 GHz were generated from a single source, when amplitude up to 2.2 Vp was applied to the modulators, giving flatness better than 1 dB. By passively multiplexing 8 source lasers with the comb generator and minimising inter-modulator dispersion, it was possible to achieve a multi-wavelength transmitter with 56 channels, with flatness better than 1.2 dB across 20 nm (2.4 THz).

  9. Sorcin modulation of Ca2+ sparks in rat vascular smooth muscle cells

    PubMed Central

    Rueda, Angélica; Song, Ming; Toro, Ligia; Stefani, Enrico; Valdivia, Héctor H

    2006-01-01

    Spontaneous, local Ca2+ release events or Ca2+ sparks by ryanodine receptors (RyRs) are important determinants of vascular tone and arteriolar resistance, but the mechanisms that modulate their properties in smooth muscle are poorly understood. Sorcin, a Ca2+-binding protein that associates with cardiac RyRs and quickly stops Ca2+ release in the heart, provides a potential mechanism to modulate Ca2+ sparks in vascular smooth muscle, but little is known about the functional role of sorcin in this tissue. In this work, we characterized the expression and intracellular location of sorcin in aorta and cerebral artery and gained mechanistic insights into its functional role as a modulator of Ca2+ sparks. Sorcin is present in endothelial and smooth muscle cells, as assessed by immunocytochemical and Western blot analyses. Smooth muscle sorcin translocates from cytosolic to membranous compartments in a Ca2+-dependent manner and associates with RyRs, as shown by coimmunoprecipitation and immunostaining experiments. Ca2+ sparks recorded in saponin-permeabilized vascular myocytes have increased frequency, duration and spatial spread but reduced amplitude with respect to Ca2+ sparks in intact cells, suggesting that permeabilization disrupts the normal organization of RyRs and releases diffusible substances that control Ca2+ spark properties. Perfusion of 2 μm sorcin onto permeabilized myocytes reduced the amplitude, duration and spatial spread of Ca2+ sparks, demonstrating that sorcin effectively regulates Ca2+ signalling in vascular smooth muscle. Together with a dense distribution in the perimeter of the cell along a pool of RyRs, these properties make sorcin a viable candidate to modulate vascular tone in smooth muscle. PMID:16931553

  10. An amplitude and phase hybrid modulation Fresnel diffractive optical element

    NASA Astrophysics Data System (ADS)

    Li, Fei; Cheng, Jiangao; Wang, Mengyu; Jin, Xueying; Wang, Keyi

    2018-04-01

    An Amplitude and Phase Hybrid Modulation Fresnel Diffractive Optical Element (APHMFDOE) is proposed here. We have studied the theory of APHMFDOE and simulated the focusing properties of it along the optical axis, which show that the focus can be blazed to other positions with changing the quadratic phase factor. Moreover, we design a Composite Fresnel Diffraction Optical Element (CFDOE) based on the characteristics of APHMFDOE. It greatly increases the outermost zone width without changing the F-number, which brings a lot of benefits to the design and processing of diffraction device. More importantly, the diffraction efficiency of the CFDOE is almost unchanged compared with AFZP at the same focus.

  11. Glimpsing Speech in the Presence of Nonsimultaneous Amplitude Modulations from a Competing Talker: Effect of Modulation Rate, Age, and Hearing Loss

    ERIC Educational Resources Information Center

    Fogerty, Daniel; Ahlstrom, Jayne B.; Bologna, William J.; Dubno, Judy R.

    2016-01-01

    Purpose: This study investigated how listeners process acoustic cues preserved during sentences interrupted by nonsimultaneous noise that was amplitude modulated by a competing talker. Method: Younger adults with normal hearing and older adults with normal or impaired hearing listened to sentences with consonants or vowels replaced with noise…

  12. Optical subcarrier processing for Nyquist SCM signals via coherent spectrum overlapping in four-wave mixing with coherent multi-tone pump.

    PubMed

    Lu, Guo-Wei; Luís, Ruben S; Mendinueta, José Manuel Delgado; Sakamoto, Takahide; Yamamoto, Naokatsu

    2018-01-22

    As one of the promising multiplexing and multicarrier modulation technologies, Nyquist subcarrier multiplexing (Nyquist SCM) has recently attracted research attention to realize ultra-fast and ultra-spectral-efficient optical networks. In this paper, we propose and experimentally demonstrate optical subcarrier processing technologies for Nyquist SCM signals such as frequency conversion, multicast and data aggregation of subcarriers, through the coherent spectrum overlapping between subcarriers in four-wave mixing (FWM) with coherent multi-tone pump. The data aggregation is realized by coherently superposing or combining low-level subcarriers to yield high-level subcarriers in the optical field. Moreover, multiple replicas of the data-aggregated subcarriers and the subcarriers carrying the original data are obtained. In the experiment, two 5 Gbps quadrature phase-shift keying (QPSK) subcarriers are coherently combined to generate a 10 Gbps 16 quadrature amplitude modulation (QAM) subcarrier with frequency conversions through the FWM with coherent multi-tone pump. Less than 1 dB optical signal-to-noise ratio (OSNR) penalty variation is observed for the synthesized 16QAM subcarriers after the data aggregation. In addition, some subcarriers are kept in the original formats, QPSK, with a power penalty of less than 0.4 dB with respect to the original input subcarriers. The proposed subcarrier processing technology enables flexibility for spectral management in future dynamic optical networks.

  13. Electromagnetic correlates of musical expertise in processing of tone patterns.

    PubMed

    Kuchenbuch, Anja; Paraskevopoulos, Evangelos; Herholz, Sibylle C; Pantev, Christo

    2012-01-01

    Using magnetoencephalography (MEG), we investigated the influence of long term musical training on the processing of partly imagined tone patterns (imagery condition) compared to the same perceived patterns (perceptual condition). The magnetic counterpart of the mismatch negativity (MMNm) was recorded and compared between musicians and non-musicians in order to assess the effect of musical training on the detection of deviants to tone patterns. The results indicated a clear MMNm in the perceptual condition as well as in a simple pitch oddball (control) condition in both groups. However, there was no significant mismatch response in either group in the imagery condition despite above chance behavioral performance in the task of detecting deviant tones. The latency and the laterality of the MMNm in the perceptual condition differed significantly between groups, with an earlier MMNm in musicians, especially in the left hemisphere. In contrast the MMNm amplitudes did not differ significantly between groups. The behavioral results revealed a clear effect of long-term musical training in both experimental conditions. The obtained results represent new evidence that the processing of tone patterns is faster and more strongly lateralized in musically trained subjects, which is consistent with other findings in different paradigms of enhanced auditory neural system functioning due to long-term musical training.

  14. A tone analyzer based on a piezoelectric polymer and organic thin film transistors.

    PubMed

    Hsu, Yu-Jen; Kymissis, Ioannis

    2012-12-01

    A tone analyzer is demonstrated using a distributed resonator architecture on a tensioned piezoelectric polyvinyledene diuoride (PVDF) sheet. This sheet is used as both the resonator and detection element. Two architectures are demonstrated; one uses distributed, directly addressed elements as a proof of concept, and the other integrates organic thin film transistor-based transimpedance amplifiers directly with the PVDF to convert the piezoelectric charge signal into a current signal. The PVDF sheet material is instrumented along its length, and the amplitude response at 15 sites is recorded and analyzed as a function of the frequency of excitation. The determination of the dominant component of an incoming tone is demonstrated using linear system decomposition of the time-averaged response of the sheet and is performed without any time domain analysis. This design allows for the determination of the spectral composition of a sound using the mechanical signal processing provided by the amplitude response and eliminates the need for time-domain downstream signal processing of the incoming signal.

  15. ERP Correlates of Pitch Error Detection in Complex Tone and Voice Auditory Feedback with Missing Fundamental

    PubMed Central

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R.

    2012-01-01

    Previous studies have shown that the pitch of a sound is perceived in the absence of its fundamental frequency (F0), suggesting that a distinct mechanism may resolve pitch based on a pattern that exists between harmonic frequencies. The present study investigated whether such a mechanism is active during voice pitch control. ERPs were recorded in response to +200 cents pitch shifts in the auditory feedback of self-vocalizations and complex tones with and without the F0. The absence of the fundamental induced no difference in ERP latencies. However, a right-hemisphere difference was found in the N1 amplitudes with larger responses to complex tones that included the fundamental compared to when it was missing. The P1 and N1 latencies were shorter in the left hemisphere, and the N1 and P2 amplitudes were larger bilaterally for pitch shifts in voice and complex tones compared with pure tones. These findings suggest hemispheric differences in neural encoding of pitch in sounds with missing fundamental. Data from the present study suggest that the right cortical auditory areas, thought to be specialized for spectral processing, may utilize different mechanisms to resolve pitch in sounds with missing fundamental. The left hemisphere seems to perform faster processing to resolve pitch based on the rate of temporal variations in complex sounds compared with pure tones. These effects indicate that the differential neural processing of pitch in the left and right hemispheres may enable the audio-vocal system to detect temporal and spectral variations in the auditory feedback for vocal pitch control. PMID:22386045

  16. Tone-Evoked Acoustic Change Complex (ACC) Recorded in a Sedated Animal Model.

    PubMed

    Presacco, Alessandro; Middlebrooks, John C

    2018-05-10

    The acoustic change complex (ACC) is a scalp-recorded cortical evoked potential complex generated in response to changes (e.g., frequency, amplitude) in an auditory stimulus. The ACC has been well studied in humans, but to our knowledge, no animal model has been evaluated. In particular, it was not known whether the ACC could be recorded under the conditions of sedation that likely would be necessary for recordings from animals. For that reason, we tested the feasibility of recording ACC from sedated cats in response to changes of frequency and amplitude of pure-tone stimuli. Cats were sedated with ketamine and acepromazine, and subdermal needle electrodes were used to record electroencephalographic (EEG) activity. Tones were presented from a small loudspeaker located near the right ear. Continuous tones alternated at 500-ms intervals between two frequencies or two levels. Neurometric functions were created by recording neural response amplitudes while systematically varying the magnitude of steps in frequency centered in octave frequency around 2, 4, 8, and 16 kHz, all at 75 dB SPL, or in decibel level around 75 dB SPL tested at 4 and 8 kHz. The ACC could be recorded readily under this ketamine/azepromazine sedation. In contrast, ACC could not be recorded reliably under any level of isoflurane anesthesia that was tested. The minimum frequency (expressed as Weber fractions (df/f)) or level steps (expressed in dB) needed to elicit ACC fell in the range of previous thresholds reported in animal psychophysical tests of discrimination. The success in recording ACC in sedated animals suggests that the ACC will be a useful tool for evaluation of other aspects of auditory acuity in normal hearing and, presumably, in electrical cochlear stimulation, especially for novel stimulation modes that are not yet feasible in humans.

  17. Method to Measure Tone of Axial and Proximal Muscle

    PubMed Central

    Gurfinkel, Victor S.; Cacciatore, Timothy W.; Cordo, Paul J.; Horak, Fay B.

    2011-01-01

    The control of tonic muscular activity remains poorly understood. While abnormal tone is commonly assessed clinically by measuring the passive resistance of relaxed limbs1, no systems are available to study tonic muscle control in a natural, active state of antigravity support. We have developed a device (Twister) to study tonic regulation of axial and proximal muscles during active postural maintenance (i.e. postural tone). Twister rotates axial body regions relative to each other about the vertical axis during stance, so as to twist the neck, trunk or hip regions. This twisting imposes length changes on axial muscles without changing the body's relationship to gravity. Because Twister does not provide postural support, tone must be regulated to counteract gravitational torques. We quantify this tonic regulation by the restive torque to twisting, which reflects the state of all muscles undergoing length changes, as well as by electromyography of relevant muscles. Because tone is characterized by long-lasting low-level muscle activity, tonic control is studied with slow movements that produce "tonic" changes in muscle length, without evoking fast "phasic" responses. Twister can be reconfigured to study various aspects of muscle tone, such as co-contraction, tonic modulation to postural changes, tonic interactions across body segments, as well as perceptual thresholds to slow axial rotation. Twister can also be used to provide a quantitative measurement of the effects of disease on axial and proximal postural tone and assess the efficacy of intervention. PMID:22214974

  18. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat.

    PubMed

    Anselmi, L; Toti, L; Bove, C; Travagli, R A

    2017-11-01

    Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1 ) assess the gastric effects of brain stem DA application, 2 ) identify the DA receptor subtype, and, 3 ) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility. NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway. Copyright © 2017 the American Physiological Society.

  19. Amplitude-Integrated EEG and Range-EEG Modulation Associated with Pneumatic Orocutaneous Stimulation in Preterm Infants

    PubMed Central

    Barlow, Steven M; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Song, Dongli

    2013-01-01

    Background Controlled somatosensory stimulation strategies have demonstrated merit in developing oral feeding skills in premature infants who lack a functional suck, however, the effects of orosensory entrainment stimulation on electrocortical dynamics is unknown. Objective To determine the effects of servo-controlled pneumatic orocutaneous stimulation presented during gavage feedings on the modulation of aEEG and rEEG activity. Methods Two-channel EEG recordings were collected during 180 sessions that included orocutaneous stimulation and non-stimulation epochs among 22 preterm infants (mean gestational age = 28.56 weeks) who were randomized to treatment and control ‘sham’ conditions. The study was initiated at around 32 weeks post-menstrual age (PMA). The raw EEG was transformed into amplitude-integrated EEG (aEEG) margins, and range-EEG (rEEG) amplitude bands measured at 1-minute intervals and subjected to a mixed models statistical analysis. Results Multiple significant effects were observed in the processed EEG during and immediately following 3-minute periods of orocutaneous stimulation, including modulation of the upper and lower margins of the aEEG, and a reorganization of rEEG with an apparent shift from amplitude bands D and E to band C throughout the 23-minute recording period that followed the first stimulus block when compared to the sham condition. Cortical asymmetry also was apparent in both EEG measures. Conclusions Orocutaneous stimulation represents a salient trigeminal input which has both short- and long-term effects in modulating electrocortical activity, and thus, is hypothesized to represent a form of neural adaptation or plasticity that may benefit the preterm infant during this critical period of brain maturation. PMID:24310443

  20. Q-controlled amplitude modulation atomic force microscopy in liquids: An analysis

    NASA Astrophysics Data System (ADS)

    Hölscher, H.; Schwarz, U. D.

    2006-08-01

    An analysis of amplitude modulation atomic force microscopy in liquids is presented with respect to the application of the Q-Control technique. The equation of motion is solved by numerical and analytic methods with and without Q-Control in the presence of a simple model interaction force adequate for many liquid environments. In addition, the authors give an explicit analytical formula for the tip-sample indentation showing that higher Q factors reduce the tip-sample force. It is found that Q-Control suppresses unwanted deformations of the sample surface, leading to the enhanced image quality reported in several experimental studies.

  1. VERY LOW FREQUENCY 16 HZ AMPLITUDE MODULATED ELECTROMAGNETIC RADIATION INCREASES CALCIUM EFFLUX FROM THE FROG HEART

    EPA Science Inventory

    The effects of continuous and amplitude-modulated radiofrequency electromagnetic waves on calcium efflux from 45Ca preloaded frog hearts were examined. rog hearts, electrically stimulated at their natural beating frequency, were exposed for 30 min to 240 MHz radiowaves in a Crawf...

  2. Musical duplex perception: perception of figurally good chords with subliminal distinguishing tones.

    PubMed

    Hall, M D; Pastore, R E

    1992-08-01

    In a variant of duplex perception with speech, phoneme perception is maintained when distinguishing components are presented below intensities required for separate detection, forming the basis for the claim that a phonetic module takes precedence over nonspeech processing. This finding is replicated with music chords (C major and minor) created by mixing a piano fifth with a sinusoidal distinguishing tone (E or E flat). Individual threshold intensities for detecting E or E flat in the context of the fixed piano tones are established. Chord discrimination thresholds defined by distinguishing tone intensity were determined. Experiment 2 verified masked detection thresholds and subliminal chord identification for experienced musicians. Accurate chord perception was maintained at distinguishing tone intensities nearly 20 dB below the threshold for separate detection. Speech and music findings are argued to demonstrate general perceptual principles.

  3. Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation

    PubMed Central

    Cagnan, Hayriye; Brittain, John-Stuart; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Joint, Carole; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu

    2013-01-01

    High frequency deep brain stimulation of the thalamus can help ameliorate severe essential tremor. Here we explore how the efficacy, efficiency and selectivity of thalamic deep brain stimulation might be improved in this condition. We started from the hypothesis that the effects of electrical stimulation on essential tremor may be phase dependent, and that, in particular, there are tremor phases at which stimuli preferentially lead to a reduction in the amplitude of tremor. The latter could be exploited to improve deep brain stimulation, particularly if tremor suppression could be reinforced by cumulative effects. Accordingly, we stimulated 10 patients with essential tremor and thalamic electrodes, while recording tremor amplitude and phase. Stimulation near the postural tremor frequency entrained tremor. Tremor amplitude was also modulated depending on the phase at which stimulation pulses were delivered in the tremor cycle. Stimuli in one half of the tremor cycle reduced median tremor amplitude by ∼10%, while those in the opposite half of the tremor cycle increased tremor amplitude by a similar amount. At optimal phase alignment tremor suppression reached 27%. Moreover, tremor amplitude showed a non-linear increase in the degree of suppression with successive stimuli; tremor suppression was increased threefold if a stimulus was preceded by four stimuli with a similar phase relationship with respect to the tremor, suggesting cumulative, possibly plastic, effects. The present results pave the way for a stimulation system that tracks tremor phase to control when deep brain stimulation pulses are delivered to treat essential tremor. This would allow treatment effects to be maximized by focussing stimulation on the optimal phase for suppression and by ensuring that this is repeated over many cycles so as to harness cumulative effects. Such a system might potentially achieve tremor control with far less power demand and greater specificity than current high frequency

  4. Reflex Augmentation of a Tap-Elicited Eyeblink: The Effects of Tone Frequency and Tap Intensity.

    ERIC Educational Resources Information Center

    Cohen, Michelle E.; And Others

    1986-01-01

    Describes two experiments that examined whether the amplitude of the human eyeblink by a mild tap between the eyebrows can be increased if a brief tone is presented simultaneously with the tap and how these effects change from newborn infants to adults. (HOD)

  5. Sound level-dependent growth of N1m amplitude with low and high-frequency tones.

    PubMed

    Soeta, Yoshiharu; Nakagawa, Seiji

    2009-04-22

    The aim of this study was to determine whether the amplitude and/or latency of the N1m deflection of auditory-evoked magnetic fields are influenced by the level and frequency of sound. The results indicated that the amplitude of the N1m increased with sound level. The growth in amplitude with increasing sound level was almost constant with low frequencies (250-1000 Hz); however, this growth decreased with high frequencies (>2000 Hz). The behavior of the amplitude may reflect a difference in the increase in the activation of the peripheral and/or central auditory systems.

  6. The Role of Tone Height, Melodic Contour, and Tone Chroma in Melody Recognition.

    ERIC Educational Resources Information Center

    Massaro, Dominic W.; And Others

    1980-01-01

    Relationships among tone height, melodic contour, tone chroma, and recognition of recently learned melodies were investigated. Results replicated previous studies using familiar folk songs, providing evidence that melodic contour, tone chroma, and tone height contribute to recognition of both highly familiar and recently learned melodies.…

  7. Screech tones from free and ducted supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ahuja, K. K.; Jones, R. R., III

    1993-01-01

    The dependence of the instability wave spectrum on azimuthal mode number, the jet to ambient gas temperature ratio, and the jet Mach number is studied. It is shown that the switch of the dominant screech mode (axisymmetric to helical/flapping) as Mach number increases is due to the switch in dominance of the corresponding mode of instability waves. Super-resonance can occur when the feedback loop is powered by the most amplified instability wave. It is suggested that the large amplitude pressure fluctuations and tone in the test cells are generated by super-resonance.

  8. Binaural sluggishness in the perception of tone sequences and speech in noise.

    PubMed

    Culling, J F; Colburn, H S

    2000-01-01

    The binaural system is well-known for its sluggish response to changes in the interaural parameters to which it is sensitive. Theories of binaural unmasking have suggested that detection of signals in noise is mediated by detection of differences in interaural correlation. If these theories are correct, improvements in the intelligibility of speech in favorable binaural conditions is most likely mediated by spectro-temporal variations in interaural correlation of the stimulus which mirror the spectro-temporal amplitude modulations of the speech. However, binaural sluggishness should limit the temporal resolution of the representation of speech recovered by this means. The present study tested this prediction in two ways. First, listeners' masked discrimination thresholds for ascending vs descending pure-tone arpeggios were measured as a function of rate of frequency change in the NoSo and NoSpi binaural configurations. Three-tone arpeggios were presented repeatedly and continuously for 1.6 s, masked by a 1.6-s burst of noise. In a two-interval task, listeners determined the interval in which the arpeggios were ascending. The results showed a binaural advantage of 12-14 dB for NoSpi at 3.3 arpeggios per s (arp/s), which reduced to 3-5 dB at 10.4 arp/s. This outcome confirmed that the discrimination of spectro-temporal patterns in noise is susceptible to the effects of binaural sluggishness. Second, listeners' masked speech-reception thresholds were measured in speech-shaped noise using speech which was 1, 1.5, and 2 times the original articulation rate. The articulation rate was increased using a phase-vocoder technique which increased all the modulation frequencies in the speech without altering its pitch. Speech-reception thresholds were, on average, 5.2 dB lower for the NoSpi than for the NoSo configuration, at the original articulation rate. This binaural masking release was reduced to 2.8 dB when the articulation rate was doubled, but the most notable effect

  9. Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene

    NASA Astrophysics Data System (ADS)

    Jessop, David S.; Sol, Christian W. O.; Xiao, Long; Kindness, Stephen J.; Braeuninger-Weimer, Philipp; Lin, Hungyen; Griffiths, Jonathan P.; Ren, Yuan; Kamboj, Varun S.; Hofmann, Stephan; Zeitler, J. Axel; Beere, Harvey E.; Ritchie, David A.; Degl'Innocenti, Riccardo

    2016-02-01

    The growing interest in terahertz (THz) technologies in recent years has seen a wide range of demonstrated applications, spanning from security screening, non-destructive testing, gas sensing, to biomedical imaging and communication. Communication with THz radiation offers the advantage of much higher bandwidths than currently available, in an unallocated spectrum. For this to be realized, optoelectronic components capable of manipulating THz radiation at high speeds and high signal-to-noise ratios must be developed. In this work we demonstrate a room temperature frequency dependent optoelectronic amplitude modulator working at around 2 THz, which incorporates graphene as the tuning medium. The architecture of the modulator is an array of plasmonic dipole antennas surrounded by graphene. By electrostatically doping the graphene via a back gate electrode, the reflection characteristics of the modulator are modified. The modulator is electrically characterized to determine the graphene conductivity and optically characterization, by THz time-domain spectroscopy and a single-mode 2 THz quantum cascade laser, to determine the optical modulation depth and cut-off frequency. A maximum optical modulation depth of ~ 30% is estimated and is found to be most (least) sensitive when the electrical modulation is centered at the point of maximum (minimum) differential resistivity of the graphene. A 3 dB cut-off frequency > 5 MHz, limited only by the area of graphene on the device, is reported. The results agree well with theoretical calculations and numerical simulations, and demonstrate the first steps towards ultra-fast, graphene based THz optoelectronic devices.

  10. Phonological awareness and sinusoidal amplitude modulation in phonological dislexia.

    PubMed

    Peñaloza-López, Yolanda; Herrera-Rangel, Aline; Pérez-Ruiz, Santiago J; Poblano, Adrián

    2016-04-01

    Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA) and Sinusoidal amplitude modulation (SAM) threshold in children with Phonological dyslexia (PD). We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD.

  11. Broadband metasurface holograms: toward complete phase and amplitude engineering

    PubMed Central

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519

  12. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    PubMed

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-09-12

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  13. Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.

    NASA Astrophysics Data System (ADS)

    Averkiou, Michalakis Andrea

    Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.

  14. Selecting the best tone-pip stimulus-envelope time for estimating an objective middle-latency response threshold for low- and middle-tone sensorineural hearing losses.

    PubMed

    Xu, Z M; De Vel, E; Vinck, B; Van Cauwenberge, P

    1995-01-01

    The effects of rise-fall and plateau times for the Pa component of the middle-latency response (MLR) were investigated in normally hearing subjects, and an objective MLR threshold was measured in patients with low- and middle-tone hearing losses, using a selected stimulus-envelope time. Our results showed that the stimulus-envelope time (the rise-fall time and plateau time groups) affected the Pa component of the MLR (quality was determined by the (chi 2-test and amplitude by the F-test). The 4-2-4 tone-pips produced good Pa quality by visual inspection. However, our data revealed no statistically significant Na-Pa amplitude differences between the two subgroups studied when comparing the 2- and 4-ms rise-fall times and the 0- and 2-ms plateau times. In contrast, Na-Pa became significantly smaller from the 4-ms to the 6-ms rise-fall time and from the 2-ms to the 4-ms plateau time (paired t-test). This result allowed us to select the 2- or 4-ms rise-fall time and the 0- or 2-ms plateau time without influencing amplitude. Analysis of the stimulus spectral characteristics demonstrated that a rise-fall time of at least 2ms could prevent spectral splatter and indicated that a stimulus with a 5-ms rise-fall time had a greater frequency-specificity than a stimulus of 2-ms rise-fall time. When considering the synchronous discharge and frequency-specificity of MLR, our findings show that a rise-fall time of four periods with a plateau of two periods is an acceptable compromise for estimating the objective MLR threshold.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Lin, Yiyu; Liu, Siqi; Zheng, Xudong; Jin, Zhonghe

    2017-02-01

    This paper reports a novel oscillation control algorithm for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation (MEAM) technique, which enhances the robustness against the frequency variation of the driving mode, compared to the conventional EAM (CEAM) scheme. In this approach, the carrier voltage exerted on the proof mass is frequency-modulated by the drive resonant frequency. Accordingly, the pick-up signal from the interface circuit involves a constant-frequency component that contains the amplitude and phase information of the vibration displacement. In other words, this informational detection signal is independent of the mechanical resonant frequency, which varies due to different batches, imprecise micro-fabrication and changing environmental temperature. In this paper, the automatic gain control loop together with the phase-locked loop are simultaneously analyzed using the averaging method and Routh-Hurwitz criterion, deriving the stability condition and the parameter optimization rules of the transient response. Then, a simulation model based on the real system is set up to evaluate the control algorithm. Further, the proposed MEAM method is tested using a field-programmable-gate-array based digital platform on a capacitive vibratory gyroscope. By optimizing the control parameters, the transient response of the drive amplitude reveals a settling time of 45.2 ms without overshoot, according well with the theoretical prediction and simulation results. The first measurement results show that the amplitude variance of the drive displacement is 12 ppm in an hour while the phase standard deviation is as low as 0.0004°. The mode-split gyroscope operating under atmospheric pressure demonstrates an outstanding performance. By virtue of the proposed MEAM method, the bias instability and angle random walk are measured to be 0.9° h-1 (improved by 2.4 times compared to the CEAM method) and 0.068° (√h)-1 (improved by 1.4 times

  16. What Can Lexical Tone Training Studies in Adults Tell Us about Tone Processing in Children?

    PubMed Central

    Antoniou, Mark; Chin, Jessica L. L.

    2018-01-01

    A growing number of studies on the acquisition of lexical tone by adult learners have revealed that factors such as language background, musical experience, cognitive abilities, and neuroanatomy all play a role in determining tone learning success. On the basis of these findings, it has been argued that the effectiveness of tone learning in adulthood depends on individual differences in these factors. However, it is not clear whether similar individual differences play an analogous role in tone learning in childhood. Indeed, relatively few studies have made comparisons between how adults and children learn lexical tones. Here, we review recent developments for tone learning in both adults and children. The review covers tone training in a range of contexts, including in naive listeners, in native speakers of other tone languages, in listeners with varying levels of musical experience, and in individuals with speech and hearing disorders. Finally, we discuss the parallels between adult and child tone learning, and provide recommendations concerning how findings in adult tone training can provide insights into tone learning for children by accommodating the needs of individual learners. PMID:29410639

  17. Distortion product otoacoustic emissions: comparison of sequential vs. simultaneous presentation of primary tones.

    PubMed

    Kumar, U Ajith; Maruthy, Sandeep; Chandrakant, Vishwakarma

    2009-03-01

    Distortion product otoacoustic emissions are one form of evoked otoacoustic emissions. DPOAEs provide the frequency specific information about the hearing status in mid and high frequency regions. But in most screening protocols TEOAEs are preferred as it requires less time compared to DPOAE. This is because, in DPOAE each stimulus is presented one after the other and responses are analyzed. Grason and Stadler Incorporation 60 (GSI-60) offer simultaneous presentation of four sets of primary tones at a time and checks for the DPOAE. In this mode of presentation, all the pairs are presented at a time and following that response is extracted separately whereas, in sequential mode primaries are presented in orderly fashion one after the other. In this article simultaneous and sequential protocols were used to compare the Distortion product otoacoustic emission amplitude, noise floor and administration time in individuals with normal hearing and mild sensori-neural (SN) hearing loss. In simultaneous protocols four sets of primary tones (i.e. 8 tones) were presented together whereas, in sequential presentation mode one set of primary tones was presented each time. Simultaneous protocol was completed in less than half the time required for the completion of sequential protocol. Two techniques yielded similar results at frequencies above 1000 Hz only in normal hearing group. In SN hearing loss group simultaneous presentation yielded signifi cantly higher noise floors and distortion product amplitudes. This result challenges the use of simultaneous presentation technique in neonatal hearing screening programmes and on other pathologies. This discrepancy between two protocols may be due to some changes in biomechanical process in the cochlear and/or due to higher distortion/noise produced by the system during the simultaneous presentation mode.

  18. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain

    NASA Astrophysics Data System (ADS)

    Kou, Na; Yu, Shixing; Li, Long

    2017-01-01

    A high-order Bessel vortex beam carrying orbital angular momentum (OAM) is generated by using multilayer amplitude-phase-modulated surfaces (APMSs) at 10 GHz. The APMS transmitarray is composed of four-layer conformal square-loop (FCSL) surfaces with both amplitude and phase modulation. The APMS can transform a quasi-spherical wave emitted from the feeding source into a pseudo non-diffractive high-order Bessel vortex beam with OAM. The APMS for a second-order Bessel beam carrying OAM in the n = 2 mode is designed, fabricated, and measured. Full-wave simulation and measurement results confirm that Bessel vortex beams with OAM can be effectively generated using the proposed APMS transmitarray.

  19. Brain Plasticity in Speech Training in Native English Speakers Learning Mandarin Tones

    NASA Astrophysics Data System (ADS)

    Heinzen, Christina Carolyn

    The current study employed behavioral and event-related potential (ERP) measures to investigate brain plasticity associated with second-language (L2) phonetic learning based on an adaptive computer training program. The program utilized the acoustic characteristics of Infant-Directed Speech (IDS) to train monolingual American English-speaking listeners to perceive Mandarin lexical tones. Behavioral identification and discrimination tasks were conducted using naturally recorded speech, carefully controlled synthetic speech, and non-speech control stimuli. The ERP experiments were conducted with selected synthetic speech stimuli in a passive listening oddball paradigm. Identical pre- and post- tests were administered on nine adult listeners, who completed two-to-three hours of perceptual training. The perceptual training sessions used pair-wise lexical tone identification, and progressed through seven levels of difficulty for each tone pair. The levels of difficulty included progression in speaker variability from one to four speakers and progression through four levels of acoustic exaggeration of duration, pitch range, and pitch contour. Behavioral results for the natural speech stimuli revealed significant training-induced improvement in identification of Tones 1, 3, and 4. Improvements in identification of Tone 4 generalized to novel stimuli as well. Additionally, comparison between discrimination of across-category and within-category stimulus pairs taken from a synthetic continuum revealed a training-induced shift toward more native-like categorical perception of the Mandarin lexical tones. Analysis of the Mismatch Negativity (MMN) responses in the ERP data revealed increased amplitude and decreased latency for pre-attentive processing of across-category discrimination as a result of training. There were also laterality changes in the MMN responses to the non-speech control stimuli, which could reflect reallocation of brain resources in processing pitch patterns

  20. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles

    PubMed Central

    Tykocki, Nathan R.; Boerman, Erika M.; Jackson, William F.

    2017-01-01

    Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body’s tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. PMID:28333380

  1. Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds II: single-neuron recordings

    PubMed Central

    Marquardt, Torsten; Stange, Annette; Pecka, Michael; Grothe, Benedikt; McAlpine, David

    2014-01-01

    Recently, with the use of an amplitude-modulated binaural beat (AMBB), in which sound amplitude and interaural-phase difference (IPD) were modulated with a fixed mutual relationship (Dietz et al. 2013b), we demonstrated that the human auditory system uses interaural timing differences in the temporal fine structure of modulated sounds only during the rising portion of each modulation cycle. However, the degree to which peripheral or central mechanisms contribute to the observed strong dominance of the rising slope remains to be determined. Here, by recording responses of single neurons in the medial superior olive (MSO) of anesthetized gerbils and in the inferior colliculus (IC) of anesthetized guinea pigs to AMBBs, we report a correlation between the position within the amplitude-modulation (AM) cycle generating the maximum response rate and the position at which the instantaneous IPD dominates the total neural response. The IPD during the rising segment dominates the total response in 78% of MSO neurons and 69% of IC neurons, with responses of the remaining neurons predominantly coding the IPD around the modulation maximum. The observed diversity of dominance regions within the AM cycle, especially in the IC, and its comparison with the human behavioral data suggest that only the subpopulation of neurons with rising slope dominance codes the sound-source location in complex listening conditions. A comparison of two models to account for the data suggests that emphasis on IPDs during the rising slope of the AM cycle depends on adaptation processes occurring before binaural interaction. PMID:24554782

  2. Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation

    PubMed Central

    Micali, Gabriele; Aquino, Gerardo; Richards, David M.; Endres, Robert G.

    2015-01-01

    Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM), where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM), where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel), which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms. PMID:26030820

  3. Modulating the amplitude and phase of the complex spectral degree of coherence with plasmonic interferometry

    NASA Astrophysics Data System (ADS)

    Li, Dongfang; Pacifici, Domenico

    The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.

  4. Prosodic Transfer: From Chinese Lexical Tone to English Pitch Accent

    ERIC Educational Resources Information Center

    Ploquin, Marie

    2013-01-01

    Chinese tones are associated with a syllable to convey meaning, English pitch accents are prominence markers associated with stressed syllables. As both are created by pitch modulation, their pitch contours can be quite similar. The experiment reported here examines whether native speakers of Chinese produce, when speaking English, the Chinese…

  5. Perception of Mandarin Chinese Tone 2/Tone 3 and the Role of Creaky Voice

    ERIC Educational Resources Information Center

    Cao, Rui

    2012-01-01

    Research has shown that lexical tones, a suprasegmental feature, are processed by native speakers as linguistic elements just like other segmental information. Among the four tones of Mandarin Chinese, in particular, Tone 2 and Tone 3 are very similar in their pitch contour shapes and thus can be difficult to distinguish in native and nonnative…

  6. Amplitude modulation of steady-state visual evoked potentials by event-related potentials in a working memory task

    PubMed Central

    Yao, Dezhong; Tang, Yu; Huang, Yilan; Su, Sheng

    2009-01-01

    Previous studies have shown that the amplitude and phase of the steady-state visual-evoked potential (SSVEP) can be influenced by a cognitive task, yet the mechanism of this influence has not been understood. As the event-related potential (ERP) is the direct neural electric response to a cognitive task, studying the relationship between the SSVEP and ERP would be meaningful in understanding this underlying mechanism. In this work, the traditional average method was applied to extract the ERP directly, following the stimulus of a working memory task, while a technique named steady-state probe topography was utilized to estimate the SSVEP under the simultaneous stimulus of an 8.3-Hz flicker and a working memory task; a comparison between the ERP and SSVEP was completed. The results show that the ERP can modulate the SSVEP amplitude, and for regions where both SSVEP and ERP are strong, the modulation depth is large. PMID:19960240

  7. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    PubMed

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  8. Extracting binaural information from simultaneous targets and distractors: Effects of amplitude modulation and asynchronous envelopes

    PubMed Central

    Stellmack, Mark A.; Byrne, Andrew J.; Viemeister, Neal F.

    2010-01-01

    When different components of a stimulus carry different binaural information, processing of binaural information in a target component is often affected. The present experiments examine whether such interference is affected by amplitude modulation and the relative phase of modulation of the target and distractors. In all experiments, listeners attempted to discriminate interaural time differences of a target stimulus in the presence of distractor stimuli with ITD=0. In Experiment 1, modulation of the distractors but not the target reduced interference between components. In Experiment 2, synthesized musical notes exhibited little binaural interference when there were slight asynchronies between different streams of notes (31 or 62 ms). The remaining experiments suggested that the reduction in binaural interference in the previous experiments was due neither to the complex spectra of the synthesized notes nor to greater detectability of the target in the presence of modulated distractors. These data suggest that this interference is reduced when components are modulated in ways that result in the target appearing briefly in isolation, not because of segregation cues. These data also suggest that modulation and asynchronies between modulators that might be encountered in real-world listening situations are adequate to reduce binaural interference to inconsequential levels. PMID:20815459

  9. Predictions of psychophysical measurements for sinusoidal amplitude modulated (SAM) pulse-train stimuli from a stochastic model.

    PubMed

    Xu, Yifang; Collins, Leslie M

    2007-08-01

    Two approaches have been proposed to reduce the synchrony of the neural response to electrical stimuli in cochlear implants. One approach involves adding noise to the pulse-train stimulus, and the other is based on using a high-rate pulse-train carrier. Hypotheses regarding the efficacy of the two approaches can be tested using computational models of neural responsiveness prior to time-intensive psychophysical studies. In our previous work, we have used such models to examine the effects of noise on several psychophysical measures important to speech recognition. However, to date there has been no parallel analytic solution investigating the neural response to the high-rate pulse-train stimuli and their effect on psychophysical measures. This work investigates the properties of the neural response to high-rate pulse-train stimuli with amplitude modulated envelopes using a stochastic auditory nerve model. The statistics governing the neural response to each pulse are derived using a recursive method. The agreement between the theoretical predictions and model simulations is demonstrated for sinusoidal amplitude modulated (SAM) high rate pulse-train stimuli. With our approach, predicting the neural response in modern implant devices becomes tractable. Psychophysical measurements are also predicted using the stochastic auditory nerve model for SAM high-rate pulse-train stimuli. Changes in dynamic range (DR) and intensity discrimination are compared with that observed for noise-modulated pulse-train stimuli. Modulation frequency discrimination is also studied as a function of stimulus level and pulse rate. Results suggest that high rate carriers may positively impact such psychophysical measures.

  10. Digital communication with Rydberg atoms and amplitude-modulated microwave fields

    NASA Astrophysics Data System (ADS)

    Meyer, David H.; Cox, Kevin C.; Fatemi, Fredrik K.; Kunz, Paul D.

    2018-05-01

    Rydberg atoms, with one highly excited, nearly ionized electron, have extreme sensitivity to electric fields, including microwave fields ranging from 100 MHz to over 1 THz. Here, we show that room-temperature Rydberg atoms can be used as sensitive, high bandwidth, microwave communication antennas. We demonstrate near photon-shot-noise limited readout of data encoded in amplitude-modulated 17 GHz microwaves, using an electromagnetically induced-transparency (EIT) probing scheme. We measure a photon-shot-noise limited channel capacity of up to 8.2 Mbit s-1 and implement an 8-state phase-shift-keying digital communication protocol. The bandwidth of the EIT probing scheme is found to be limited by the available coupling laser power and the natural linewidth of the rubidium D2 transition. We discuss how atomic communication receivers offer several opportunities to surpass the capabilities of classical antennas.

  11. Tone Features, Tone Perception, and Peak Alignment in Thai

    ERIC Educational Resources Information Center

    Zsiga, Elizabeth; Nitisaroj, Rattima

    2007-01-01

    This paper investigates the relationship between the phonological features of tone and tone perception in Thai. Specifically, it tests the hypothesis (proposed by Moren & Zsiga, 2006) that the principle perceptual cues to the five-way tonal contrast in Thai are high and low pitch targets aligned to moras. Results of four perception studies, one…

  12. Phase and Pupil Amplitude Recovery for JWST Space-Optics Control

    NASA Technical Reports Server (NTRS)

    Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.

    2010-01-01

    This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.

  13. Combination of binaural and harmonic masking release effects in the detection of a single component in complex tones.

    PubMed

    Klein-Hennig, Martin; Dietz, Mathias; Hohmann, Volker

    2018-03-01

    Both harmonic and binaural signal properties are relevant for auditory processing. To investigate how these cues combine in the auditory system, detection thresholds for an 800-Hz tone masked by a diotic (i.e., identical between the ears) harmonic complex tone were measured in six normal-hearing subjects. The target tone was presented either diotically or with an interaural phase difference (IPD) of 180° and in either harmonic or "mistuned" relationship to the diotic masker. Three different maskers were used, a resolved and an unresolved complex tone (fundamental frequency: 160 and 40 Hz) with four components below and above the target frequency and a broadband unresolved complex tone with 12 additional components. The target IPD provided release from masking in most masker conditions, whereas mistuning led to a significant release from masking only in the diotic conditions with the resolved and the narrowband unresolved maskers. A significant effect of mistuning was neither found in the diotic condition with the wideband unresolved masker nor in any of the dichotic conditions. An auditory model with a single analysis frequency band and different binaural processing schemes was employed to predict the data of the unresolved masker conditions. Sensitivity to modulation cues was achieved by including an auditory-motivated modulation filter in the processing pathway. The predictions of the diotic data were in line with the experimental results and literature data in the narrowband condition, but not in the broadband condition, suggesting that across-frequency processing is involved in processing modulation information. The experimental and model results in the dichotic conditions show that the binaural processor cannot exploit modulation information in binaurally unmasked conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  15. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    PubMed

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  16. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    PubMed Central

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  17. A novel injection-locked amplitude-modulated magnetron at 1497 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, Michael; Wang, Haipeng

    2015-12-15

    Thomas Jefferson National Accelerator Facility (JLab) uses low efficiency klystrons in the CEBAF machine. In the older portion they operate at 30% efficiency with a tube mean time between failure (MTBF) of five to six years. A highly efficient source (>55-60%) must provide a high degree of backwards compatibility, both in size and voltage requirements, to replace the klystron presently used at JLab, while providing energy savings. Muons, Inc. is developing a highly reliable, highly efficient RF source based upon a novel injection-locked amplitude modulated (AM) magnetron with a lower total cost of ownership, >80% efficiency, and MTBF of sixmore » to seven years. The design of the RF source is based upon a single injection-locked magnetron system at 8 kW capable of operating up to 13 kW, using the magnetron magnetic field to achieve the AM required for backwards compatibility to compensate for microphonics and beam loads. A novel injection-locked 1497 MHz 8 kW AM magnetron with a trim magnetic coil was designed and its operation numerically simulated during the Phase I project. The low-level RF system to control the trim field and magnetron anode voltage was designed and modeled for operation at the modulation frequencies of the microphonics. A plan for constructing a prototype magnetron and control system was developed.« less

  18. 14 CFR 171.265 - Glide path performance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... depth of modulation of the radio frequency carrier due to each of the 90 Hz and 150 Hz tones must be 40... tone, which is the time average equivalent to amplitude modulation. The pattern must be arranged to... 5220 MHz to 5250 MHz. The frequency tolerance may not exceed ±0.0001 percent. (f) The emission from the...

  19. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    PubMed

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  20. Electroencephalography Amplitude Modulation Analysis for Automated Affective Tagging of Music Video Clips

    PubMed Central

    Clerico, Andrea; Tiwari, Abhishek; Gupta, Rishabh; Jayaraman, Srinivasan; Falk, Tiago H.

    2018-01-01

    The quantity of music content is rapidly increasing and automated affective tagging of music video clips can enable the development of intelligent retrieval, music recommendation, automatic playlist generators, and music browsing interfaces tuned to the users' current desires, preferences, or affective states. To achieve this goal, the field of affective computing has emerged, in particular the development of so-called affective brain-computer interfaces, which measure the user's affective state directly from measured brain waves using non-invasive tools, such as electroencephalography (EEG). Typically, conventional features extracted from the EEG signal have been used, such as frequency subband powers and/or inter-hemispheric power asymmetry indices. More recently, the coupling between EEG and peripheral physiological signals, such as the galvanic skin response (GSR), have also been proposed. Here, we show the importance of EEG amplitude modulations and propose several new features that measure the amplitude-amplitude cross-frequency coupling per EEG electrode, as well as linear and non-linear connections between multiple electrode pairs. When tested on a publicly available dataset of music video clips tagged with subjective affective ratings, support vector classifiers trained on the proposed features were shown to outperform those trained on conventional benchmark EEG features by as much as 6, 20, 8, and 7% for arousal, valence, dominance and liking, respectively. Moreover, fusion of the proposed features with EEG-GSR coupling features showed to be particularly useful for arousal (feature-level fusion) and liking (decision-level fusion) prediction. Together, these findings show the importance of the proposed features to characterize human affective states during music clip watching. PMID:29367844

  1. Modulation of cardiac autonomic tone in non-hypotensive hypovolemia during blood donation.

    PubMed

    Yadav, Kavita; Singh, Akanksha; Jaryal, Ashok Kumar; Coshic, Poonam; Chatterjee, Kabita; Deepak, K K

    2017-08-01

    Non-hypotensive hypovolemia, observed during mild haemorrhage or blood donation leads to reflex readjustment of the cardiac autonomic tone. In the present study, the cardiac autonomic tone was quantified using heart rate and blood pressure variability during and after non-hypotensive hypovolemia of blood donation. 86 voluntary healthy male blood donors were recruited for the study (age 35 ± 9 years; weight 78 ± 12 kg; height 174 ± 6 cms). Continuous lead II ECG and beat-to-beat blood pressure was recorded before, during and after blood donation followed by offline time and frequency domain analysis of HRV and BPV. The overall heart rate variability (SDNN and total power) did not change during or after blood donation. However, there was a decrease in indices that represent the parasympathetic component (pNN50 %, SDSD and HF) while an increase was observed in sympathetic component (LF) along with an increase in sympathovagal balance (LF:HF ratio) during blood donation. These changes were sustained for the period immediately following blood donation. No fall of blood pressure was observed during the period of study. The blood pressure variability showed an increase in the SDNN, CoV and RMSSD time domain measures in the post donation period. These results suggest that mild hypovolemia produced by blood donation is non-hypotensive but is associated with significant changes in the autonomic tone. The increased blood pressure variability and heart rate changes that are seen only in the later part of donation period could be because of the progressive hypovolemia associated parasympathetic withdrawal and sympathetic activation that manifest during the course of blood donation.

  2. Adaptation in sound localization processing induced by interaural time difference in amplitude envelope at high frequencies.

    PubMed

    Kawashima, Takayuki; Sato, Takao

    2012-01-01

    When a second sound follows a long first sound, its location appears to be perceived away from the first one (the localization/lateralization aftereffect). This aftereffect has often been considered to reflect an efficient neural coding of sound locations in the auditory system. To understand determinants of the localization aftereffect, the current study examined whether it is induced by an interaural temporal difference (ITD) in the amplitude envelope of high frequency transposed tones (over 2 kHz), which is known to function as a sound localization cue. In Experiment 1, participants were required to adjust the position of a pointer to the perceived location of test stimuli before and after adaptation. Test and adapter stimuli were amplitude modulated (AM) sounds presented at high frequencies and their positional differences were manipulated solely by the envelope ITD. Results showed that the adapter's ITD systematically affected the perceived position of test sounds to the directions expected from the localization/lateralization aftereffect when the adapter was presented at ±600 µs ITD; a corresponding significant effect was not observed for a 0 µs ITD adapter. In Experiment 2, the observed adapter effect was confirmed using a forced-choice task. It was also found that adaptation to the AM sounds at high frequencies did not significantly change the perceived position of pure-tone test stimuli in the low frequency region (128 and 256 Hz). The findings in the current study indicate that ITD in the envelope at high frequencies induces the localization aftereffect. This suggests that ITD in the high frequency region is involved in adaptive plasticity of auditory localization processing.

  3. Modulation of cochlear responses in the guinea pig by low-frequency, phase-shifted maskers following noise trauma.

    PubMed

    Hoehmann, D; Müller, S; Dornhoffer, J L

    1995-01-01

    Low-frequency acoustic biasing using an intensive phase-shifted, low-frequency masker was studied according to its ability to determine disorders of cochlear micromechanics following noise trauma in the guinea pig as animal model. Statistical analyses proved that this technique allowed electrophysiological differentiation of controls versus groups with different degrees of experimentally induced threshold shifts. To substantiate group differences an intensity of at least 70 dB SPL was required for the 52 Hz masker and the difference in relation to the test-tone intensity had to be +/- 10 or +/- 20 dB SPL. The noise-traumatized cochlea could be identified by means of a threshold shift for the 5 microV pseudothreshold, a low modulation span of the compound action potential amplitude (< 25-50 microV frequency dependent), and reduced positive summating potential amplitude with negative non-modulating values within the different measurement phases for 1 and 2 kHz stimulation.

  4. Use of amplitude modulation cues recovered from frequency modulation for cochlear implant users when original speech cues are severely degraded.

    PubMed

    Won, Jong Ho; Shim, Hyun Joon; Lorenzi, Christian; Rubinstein, Jay T

    2014-06-01

    Won et al. (J Acoust Soc Am 132:1113-1119, 2012) reported that cochlear implant (CI) speech processors generate amplitude-modulation (AM) cues recovered from broadband speech frequency modulation (FM) and that CI users can use these cues for speech identification in quiet. The present study was designed to extend this finding for a wide range of listening conditions, where the original speech cues were severely degraded by manipulating either the acoustic signals or the speech processor. The manipulation of the acoustic signals included the presentation of background noise, simulation of reverberation, and amplitude compression. The manipulation of the speech processor included changing the input dynamic range and the number of channels. For each of these conditions, multiple levels of speech degradation were tested. Speech identification was measured for CI users and compared for stimuli having both AM and FM information (intact condition) or FM information only (FM condition). Each manipulation degraded speech identification performance for both intact and FM conditions. Performance for the intact and FM conditions became similar for stimuli having the most severe degradations. Identification performance generally overlapped for the intact and FM conditions. Moreover, identification performance for the FM condition was better than chance performance even at the maximum level of distortion. Finally, significant correlations were found between speech identification scores for the intact and FM conditions. Altogether, these results suggest that despite poor frequency selectivity, CI users can make efficient use of AM cues recovered from speech FM in difficult listening situations.

  5. Theoretical analysis of a method for extracting the phase of a phase-amplitude modulated signal generated by a direct-modulated optical injection-locked semiconductor laser

    NASA Astrophysics Data System (ADS)

    Lee, Hwan; Cho, Jun-Hyung; Sung, Hyuk-Kee

    2017-05-01

    The phase modulation (PM) and amplitude modulation (AM) of optical signals can be achieved using a direct-modulated (DM) optical injection-locked (OIL) semiconductor laser. We propose and theoretically analyze a simple method to extract the phase component of a PM signal produced by a DM-OIL semiconductor laser. The pure AM component of the combined PM-AM signal can be isolated by square-law detection in a photodetector and can then be used to compensate for the PM-AM signal based on an optical homodyne method. Using the AM compensation technique, we successfully developed a simple and cost-effective phase extraction method applicable to the PM-AM optical signal of a DM-OIL semiconductor laser.

  6. Tonal noise of a controlled-diffusion airfoil at low angle of attack and Reynolds number.

    PubMed

    Padois, Thomas; Laffay, Paul; Idier, Alexandre; Moreau, Stéphane

    2016-07-01

    The acoustic signature of a controlled-diffusion airfoil immersed in a flow is experimentally characterized. Acoustic measurements have been carried out in an anechoic open-jet-wind-tunnel for low Reynolds numbers (from 5 × 10(4) to 4.3 × 10(5)) and several angles of attack. As with the NACA0012, the acoustic spectrum is dominated by discrete tones. These tonal behaviors are divided into three different regimes. The first one is characterized by a dominant primary tone which is steady over time, surrounded by secondary peaks. The second consists of two unsteady primary tones associated with secondary peaks and the third consists of a hump dominated by several small peaks. A wavelet study allows one to identify an amplitude modulation of the acoustic signal mainly for the unsteady tonal regime. This amplitude modulation is equal to the frequency interval between two successive tones. Finally, a bispectral analysis explains the presence of tones at higher frequencies.

  7. Light and heavy touch reduces postural sway and modifies axial tone in Parkinson’s disease

    PubMed Central

    Franzén, Erika; Paquette, Caroline; Gurfinkel, Victor; Horak, Fay

    2014-01-01

    Background Light touch with a stable object reduces postural sway by increasing axial postural tone in healthy subjects. However, it is unknown whether subjects with Parkinson’s disease (PD), who have more postural sway and higher axial postural tone than healthy subjects, can benefit from haptic touch. Objective To investigate the effect of light and heavy touch on postural stability and hip tone in subjects with PD. Methods Fourteen subjects with mid-stage PD, and 14 healthy control subjects were evaluated during quiet standing with eyes closed with their arms: 1) crossed, 2) lightly touching a fixed rigid bar in front of them and 3) firmly gripping the bar. Postural sway was measured with a forceplate and axial hip tone was quantified using a unique device that measures the resistance of the hips to yaw rotation while maintaining active stance. Results Subjects with PD significantly decreased their postural sway with light or heavy touch (p<0.001 vs. arms crossed), similarly as control subjects. Without touch, hip tone was larger in PD subjects. With touch, however, tone values were similar in both groups. This change in hip tone with touch was highly correlated with the initial amount of tone (PD: r=− 0.72 to −0.95 and controls: r=−0.74 to−0.85). Conclusions We showed, for the first time, that subjects with PD benefit from touch similarly to control subjects and that despite higher axial postural tone, PD subjects are able to modulate their tone with touch. Future studies should investigate the complex relationship between touch and postural tone. PMID:22415944

  8. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Gao, J. H.

    2005-08-01

    In this paper an axisymmetric computational aeroacoustic procedure is developed to investigate the generation mechanism of axisymmetric supersonic jet screech tones. The axisymmetric Navier-Stokes equations and the two equations standard k-ɛ turbulence model modified by Turpin and Troyes ["Validation of a two-equation turbulence model for axisymmetric reacting and non-reaction flows," AIAA Paper No. 2000-3463 (2000)] are solved in the generalized curvilinear coordinate system. A generalized wall function is applied in the nozzle exit wall region. The dispersion-relation-preserving scheme is applied for space discretization. The 2N storage low-dissipation and low-dispersion Runge-Kutta scheme is employed for time integration. Much attention is paid to far-field boundary conditions and turbulence model. The underexpanded axisymmetric supersonic jet screech tones are simulated over the Mach number from 1.05 to 1.2. Numerical results are presented and compared with the experimental data by other researchers. The simulated wavelengths of A0, A1, A2, and B modes and part of simulated amplitudes agree very well with the measurement data by Ponton and Seiner ["The effects of nozzle exit lip thickness on plume resonance," J. Sound Vib. 154, 531 (1992)]. In particular, the phenomena of modes jumping have been captured correctly although the numerical procedure has to be improved to predict the amplitudes of supersonic jet screech tones more accurately. Furthermore, the phenomena of shock motions are analyzed. The predicted splitting and combination of shock cells are similar with the experimental observations of Panda ["Shock oscillation in underexpanded screeching jets," J. Fluid. Mech. 363, 173 (1998)]. Finally, the receptivity process is numerically studied and analyzed. It is shown that the receptivity zone is associated with the initial thin shear layer, and the incoming and reflected sound waves.

  9. Neural signatures of lexical tone reading.

    PubMed

    Kwok, Veronica P Y; Wang, Tianfu; Chen, Siping; Yakpo, Kofi; Zhu, Linlin; Fox, Peter T; Tan, Li Hai

    2015-01-01

    Research on how lexical tone is neuroanatomically represented in the human brain is central to our understanding of cortical regions subserving language. Past studies have exclusively focused on tone perception of the spoken language, and little is known as to the lexical tone processing in reading visual words and its associated brain mechanisms. In this study, we performed two experiments to identify neural substrates in Chinese tone reading. First, we used a tone judgment paradigm to investigate tone processing of visually presented Chinese characters. We found that, relative to baseline, tone perception of printed Chinese characters were mediated by strong brain activation in bilateral frontal regions, left inferior parietal lobule, left posterior middle/medial temporal gyrus, left inferior temporal region, bilateral visual systems, and cerebellum. Surprisingly, no activation was found in superior temporal regions, brain sites well known for speech tone processing. In activation likelihood estimation (ALE) meta-analysis to combine results of relevant published studies, we attempted to elucidate whether the left temporal cortex activities identified in Experiment one is consistent with those found in previous studies of auditory lexical tone perception. ALE results showed that only the left superior temporal gyrus and putamen were critical in auditory lexical tone processing. These findings suggest that activation in the superior temporal cortex associated with lexical tone perception is modality-dependent. © 2014 Wiley Periodicals, Inc.

  10. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter.

    PubMed

    Fandiño, Javier S; Muñoz, Pascual

    2013-11-01

    A photonic system capable of estimating the unknown frequency of a CW microwave tone is presented. The core of the system is a complementary optical filter monolithically integrated in InP, consisting of a ring-assisted Mach-Zehnder interferometer with a second-order elliptic response. By simultaneously measuring the different optical powers produced by a double-sideband suppressed-carrier modulation at the outputs of the photonic integrated circuit, an amplitude comparison function that depends on the input tone frequency is obtained. Using this technique, a frequency measurement range of 10 GHz (5-15 GHz) with a root mean square value of frequency error lower than 200 MHz is experimentally demonstrated. Moreover, simulations showing the impact of a residual optical carrier on system performance are also provided.

  11. Neonate Auditory Brainstem Responses to CE-Chirp and CE-Chirp Octave Band Stimuli I: Versus Click and Tone Burst Stimuli.

    PubMed

    Cobb, Kensi M; Stuart, Andrew

    The purpose of the study was to generate normative auditory brainstem response (ABR) wave component peak latency and amplitude values for neonates with air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli (i.e., 500, 1000, 2000, and 4000 Hz). A second objective was to compare neonate ABRs to CE-Chirp stimuli with ABR responses to traditional click and tone burst stimuli with the same stimulus parameters. Participants were 168 healthy neonates. ABRs were obtained to air- and bone-conducted CE-Chirp and click stimuli and air-conducted CE-Chirp octave band and tone burst stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps and clicks. The effect of stimulus level was also examined with bone-conducted CE-Chirps and clicks and air-conducted CE-Chirp octave band stimuli. In general, ABR wave V amplitudes to air- and bone-conducted CE-Chirp stimuli were significantly larger (p < 0.05) than those evoked to traditional click and tone burst stimuli. Systematic statistically significant (p < 0.05) wave V latency differences existed between the air- and bone-conducted CE-Chirp and CE-Chirp octave band stimuli relative to traditional click and tone burst stimuli. ABRs to air- and bone-conducted CE-Chirps and CE-Chirp octave band stimuli may be valuable in the assessment of newborn infants. However, the prognostic value of such stimuli needs to be validated.

  12. Audibility threshold spectrum for prominent discrete tone analysis

    NASA Astrophysics Data System (ADS)

    Kimizuka, Ikuo

    2005-09-01

    To evaluate the annoyance of tonal components in noise emissions, ANSI S1.13 (for general purposes) and/or ISO 7779/ECMA-74 (dedicatedfor IT equipment) state two similar metrics: tone-to-noise ratio (TNR) and prominence ratio(PR). By these or either of these two parameters, noise of question with a sharp spectral peak is analyzed by high resolution FFF and classified as prominent when it exceeds some criterion curve. According to present procedures, however this designation is dependent on only the spectral shape. To resolve this problem, the author proposes a threshold spectrum of human ear audibility. The spectrum is based on the reference threshold of hearing which is defined in ISO 389-7 and/or ISO 226. With this spectrum, one can objectively define whether the noise peak of question is audible or not, by simple comparison of the peak amplitude of noise emission and the corresponding value of threshold. Applying the threshold, one can avoid overkilling or unnecessary action for noise. Such a peak with absolutely low amplitude is not audible.

  13. Effects of threshold on single-target detection by using modified amplitude-modulated joint transform correlator

    NASA Astrophysics Data System (ADS)

    Kaewkasi, Pitchaya; Widjaja, Joewono; Uozumi, Jun

    2007-03-01

    Effects of threshold value on detection performance of the modified amplitude-modulated joint transform correlator are quantitatively studied using computer simulation. Fingerprint and human face images are used as test scenes in the presence of noise and a contrast difference. Simulation results demonstrate that this correlator improves detection performance for both types of image used, but moreso for human face images. Optimal detection of low-contrast human face images obscured by strong noise can be obtained by selecting an appropriate threshold value.

  14. Frequency sweep rates of rising tone electromagnetic ion cyclotron waves: Comparison between nonlinear theory and Cluster observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhaoguo; University of Chinese Academy of Sciences, Beijing 100049; Zong, Qiugang, E-mail: qgzong@gmail.com

    2014-12-15

    Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude,more » cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.« less

  15. Pure-tone Audiometer

    NASA Astrophysics Data System (ADS)

    Kapul, A. A.; Zubova, E. I.; Torgaev, S. N.; Drobchik, V. V.

    2017-08-01

    The research focuses on a pure-tone audiometer designing. The relevance of the study is proved by high incidence of an auditory analyser in older people and children. At first, the article provides information about subjective and objective audiometry methods. Secondly, we offer block-diagram and basic-circuit arrangement of device. We decided to base on STM32F407VG microcontroller and use digital pot in the function of attenuator. Third, we implemented microcontroller and PC connection. C programming language is used for microcontroller’s program and PC’s interface. Fourthly, we created the pure-tone audiometer prototype. In the future, we will implement the objective method ASSR in addition to pure-tone audiometry.

  16. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhao-Xiang; Gong, Lei; Ren, Yu-Xuan, E-mail: yxren@ustc.edu.cn

    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes.more » The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.« less

  17. Amplitudes and frequency sweep rates of wave packets of whistler-mode chorus observed by the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Macusova, E.; Santolik, O.; Pickett, J. S.; Gurnett, D. A.; Cornilleau-Wehrlin, N.; Demekhov, A. G.; Titova, E. E.

    2013-12-01

    Whistler-mode chorus is one of the most intense electromagnetic wave emissions observed in the inner magnetosphere, usually outside the plasmasphere. These waves play an important role in wave-particle interactions. They are usually generated close to the geomagnetic equator in a wide range of L-shells, and they propagate toward larger magnetic latitudes. Whistler-mode chorus is sometimes composed of two frequency bands separated by a gap at one half of the electron cyclotron frequency. At short time scales (on the order of hundreds of milliseconds) chorus consist of different discrete spectral shapes: rising tones, falling tones, constant frequency tones, and hooks. Our survey is based on high time resolution measurements collected by the WBD instrument onboard four Cluster spacecraft. We analyze time intervals containing different types of spectral shapes occurring at different L-shells, and at different latitudes relative to the chorus source region, as it is determined from measurements of the STAFF-SA instrument. Each of these events includes a large number of individual wave packets (between a few hundreds to a few thousands). For each individual wave packet we determine the frequency sweep rate and the average amplitude. Our results confirm previous conclusions of numerical simulations, theoretical predictions, and case studies showing that the amplitude of chorus wave packets increases with an increasing frequency sweep rate. The amplitude also increases as the wave forming chorus propagate away from the equator. The scatter of obtained values of frequency sweep rates and amplitudes is much larger closer to the Earth than at larger radial distances. This work receives EU support through the FP7-Space grant agreement no 284520 for the MAARBLE collaborative research project.

  18. Five-Year-olds' Acoustic Realization of Mandarin Tone Sandhi and Lexical Tones in Context Are Not Yet Fully Adult-Like.

    PubMed

    Xu Rattanasone, Nan; Tang, Ping; Yuen, Ivan; Gao, Liqun; Demuth, Katherine

    2018-01-01

    Large numbers of children around the world are learning tone languages, but few studies have examined the acoustic properties of children's early tone productions. Even more scarce are acquisition studies on tone sandhi, a tone change phenomenon which alters the surface realization of lexical tones. Two studies using perceptual coding report the emergence of lexical tone and tone sandhi at around 2 years (Li and Thompson, 1977; Hua and Dodd, 2000). However, the only acoustic study available shows that 3-year-olds are not yet adult-like in their lexical tone productions (Wong, 2012). This raises questions about when children's productions become acoustically adult-like and how their tone productions differ from those of adults. These questions were addressed in the current study which compared Mandarin-speaking pre-schoolers' (3-5-year-olds) tone productions to that of adults. A picture naming task was used with disyllabic real words familiar to pre-schoolers. Overall children produced appropriate tone contours for all tones, i.e., level for tone 1, rising for tones 2, 3 and full sandhi, falling for tone 4 and half sandhi. However, children's productions were not adult-like for tones 3, 4, and the sandhi forms, in terms of coordinating pitch range, slope and curvature , with little evidence of development across ages. These results suggest a protracted process in achieving adult-like acoustic realization of both lexical and sandhi tones.

  19. Distributional Learning of Lexical Tones: A Comparison of Attended vs. Unattended Listening.

    PubMed

    Ong, Jia Hoong; Burnham, Denis; Escudero, Paola

    2015-01-01

    This study examines whether non-tone language listeners can acquire lexical tone categories distributionally and whether attention in the training phase modulates the effect of distributional learning. Native Australian English listeners were trained on a Thai lexical tone minimal pair and their performance was assessed using a discrimination task before and after training. During Training, participants either heard a Unimodal distribution that would induce a single central category, which should hinder their discrimination of that minimal pair, or a Bimodal distribution that would induce two separate categories that should facilitate their discrimination. The participants either heard the distribution passively (Experiments 1A and 1B) or performed a cover task during training designed to encourage auditory attention to the entire distribution (Experiment 2). In passive listening (Experiments 1A and 1B), results indicated no effect of distributional learning: the Bimodal group did not outperform the Unimodal group in discriminating the Thai tone minimal pairs. Moreover, both Unimodal and Bimodal groups improved above chance on most test aspects from Pretest to Posttest. However, when participants' auditory attention was encouraged using the cover task (Experiment 2), distributional learning was found: the Bimodal group outperformed the Unimodal group on a novel test syllable minimal pair at Posttest relative to at Pretest. Furthermore, the Bimodal group showed above-chance improvement from Pretest to Posttest on three test aspects, while the Unimodal group only showed above-chance improvement on one test aspect. These results suggest that non-tone language listeners are able to learn lexical tones distributionally but only when auditory attention is encouraged in the acquisition phase. This implies that distributional learning of lexical tones is more readily induced when participants attend carefully during training, presumably because they are better able to

  20. Distributional Learning of Lexical Tones: A Comparison of Attended vs. Unattended Listening

    PubMed Central

    Ong, Jia Hoong; Burnham, Denis; Escudero, Paola

    2015-01-01

    This study examines whether non-tone language listeners can acquire lexical tone categories distributionally and whether attention in the training phase modulates the effect of distributional learning. Native Australian English listeners were trained on a Thai lexical tone minimal pair and their performance was assessed using a discrimination task before and after training. During Training, participants either heard a Unimodal distribution that would induce a single central category, which should hinder their discrimination of that minimal pair, or a Bimodal distribution that would induce two separate categories that should facilitate their discrimination. The participants either heard the distribution passively (Experiments 1A and 1B) or performed a cover task during training designed to encourage auditory attention to the entire distribution (Experiment 2). In passive listening (Experiments 1A and 1B), results indicated no effect of distributional learning: the Bimodal group did not outperform the Unimodal group in discriminating the Thai tone minimal pairs. Moreover, both Unimodal and Bimodal groups improved above chance on most test aspects from Pretest to Posttest. However, when participants’ auditory attention was encouraged using the cover task (Experiment 2), distributional learning was found: the Bimodal group outperformed the Unimodal group on a novel test syllable minimal pair at Posttest relative to at Pretest. Furthermore, the Bimodal group showed above-chance improvement from Pretest to Posttest on three test aspects, while the Unimodal group only showed above-chance improvement on one test aspect. These results suggest that non-tone language listeners are able to learn lexical tones distributionally but only when auditory attention is encouraged in the acquisition phase. This implies that distributional learning of lexical tones is more readily induced when participants attend carefully during training, presumably because they are better able to

  1. Effect of intonation on cantonese lexical tones.

    PubMed

    Ma, Joan K-Y; Ciocca, Valter; Whitehill, Tara L

    2006-12-01

    In tonal languages, there are potential conflicts between the FO-based changes due to the coexistence of intonation and lexical tones. In the present study, the interaction of tone and intonation in Cantonese was examined using acoustic and perceptual analyses. The acoustic patterns of tones at the initial, medial, and final positions of questions and statements were measured. Results showed that intonation affects both the FO level and contour, while the duration of the six tones varied as a function of positions within intonation contexts. All six tones at the final position of questions showed rising FO contour, regardless of their canonical form. Listeners were overall more accurate in the identification of tones presented within the original carrier than of the same tones in isolation. However, a large proportion of tones 33, 21, 23, and 22 at the final position of questions were misperceived as tone 25 both within the original carrier and as isolated words. These results suggest that although the intonation context provided cues for correct tone identification, the intonation-induced changes in FO contour cannot always be perceptually compensated for, resulting in some erroneous perception of the identity of Cantonese tone.

  2. Imaging contrast and tip-sample interaction of non-contact amplitude modulation atomic force microscopy with Q-control

    NASA Astrophysics Data System (ADS)

    Shi, Shuai; Guo, Dan; Luo, Jianbin

    2017-10-01

    Active quality factor (Q) exhibits many promising properties in dynamic atomic force microscopy. Energy dissipation and image contrasts are investigated in the non-contact amplitude modulation atomic force microscopy (AM-AFM) with an active Q-control circuit in the ambient air environment. Dissipated power and virial were calculated to compare the highly nonlinear interaction of tip-sample and image contrasts with different Q gain values. Greater free amplitudes and lower effective Q values show better contrasts for the same setpoint ratio. Active quality factor also can be employed to change tip-sample interaction force in non-contact regime. It is meaningful that non-destructive and better contrast images can be realized in non-contact AM-AFM by applying an active Q-control to the dynamic system.

  3. Comparison of tone burst versus logon stimulation for vestibular evoked myogenic potentials.

    PubMed

    Ozdek, Ali; Bayır, Omer; Tatar, Emel Cadallı; Korkmaz, Mehmet Hakan

    2012-05-01

    The following study has been carried out to compare the effectiveness of logon and tone burst acoustic stimulation to elicit vestibular evoked myogenic potential (VEMP) responses. The methods and the subjects include 31 healthy adult volunteers (62 ears) who were enrolled in this study. Two different acoustic stimuli, logon (L-VEMP) and tone burst (T-VEMP), were used to elicit VEMP responses in each subject. Bilateral recordings with simultaneous binaural acoustic stimulations were used during VEMP recordings. During the recording period, the subjects were in supine position with their head elevated. The results observed were that the response rate of p1n1 wave was 91.9% for L-VEMP and 88.7% for T-VEMP. The response rate of n2p2 wave was 80.6% for L-VEMP, and 75.8% for T-VEMP. There were no significant differences between the two groups with respect to the latencies of p1, n1, n2 and p2, p1n1 and n2p2 interval, and p1n1 and n2p2 amplitude. The conclusion was that there was no difference between logon and tone burst stimulation with respect to VEMP response rates and VEMP parameters. Therefore, they are not superior to each other.

  4. Sustained selective attention to competing amplitude-modulations in human auditory cortex.

    PubMed

    Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander

    2014-01-01

    Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control.

  5. Sustained Selective Attention to Competing Amplitude-Modulations in Human Auditory Cortex

    PubMed Central

    Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander

    2014-01-01

    Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control. PMID:25259525

  6. EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Falk, Tiago H.; Fraga, Francisco J.; Trambaiolli, Lucas; Anghinah, Renato

    2012-12-01

    Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.

  7. Sub-nanometer Resolution Imaging with Amplitude-modulation Atomic Force Microscopy in Liquid

    PubMed Central

    Farokh Payam, Amir; Piantanida, Luca; Cafolla, Clodomiro; Voïtchovsky, Kislon

    2016-01-01

    Atomic force microscopy (AFM) has become a well-established technique for nanoscale imaging of samples in air and in liquid. Recent studies have shown that when operated in amplitude-modulation (tapping) mode, atomic or molecular-level resolution images can be achieved over a wide range of soft and hard samples in liquid. In these situations, small oscillation amplitudes (SAM-AFM) enhance the resolution by exploiting the solvated liquid at the surface of the sample. Although the technique has been successfully applied across fields as diverse as materials science, biology and biophysics and surface chemistry, obtaining high-resolution images in liquid can still remain challenging for novice users. This is partly due to the large number of variables to control and optimize such as the choice of cantilever, the sample preparation, and the correct manipulation of the imaging parameters. Here, we present a protocol for achieving high-resolution images of hard and soft samples in fluid using SAM-AFM on a commercial instrument. Our goal is to provide a step-by-step practical guide to achieving high-resolution images, including the cleaning and preparation of the apparatus and the sample, the choice of cantilever and optimization of the imaging parameters. For each step, we explain the scientific rationale behind our choices to facilitate the adaptation of the methodology to every user's specific system. PMID:28060262

  8. The acoustic analysis of tone differentiation as a means for assessing tone production in speakers of Cantonese

    NASA Astrophysics Data System (ADS)

    Barry, Johanna G.; Blamey, Peter J.

    2004-09-01

    This paper reports on a methodology for acoustically analyzing tone production in Cantonese. F0 offset versus F0 onset are plotted for a series of tokens for each of the six tones in the language. These are grouped according to tone type into a set of six ellipses. Qualitative visual observations regarding the degree of differentiation of the ellipses within the tonal space are summarized numerically using two indices, referred to here as Index 1 and Index 2. Index 1 is a ratio of the area of the speaker's tonal space and the average of the areas of the ellipses of the three target tones making up the tonal space. Index 2 is a ratio of the average distance between all six tonal ellipses and the average of the sum of the two axes for all six tone ellipses. Using this methodology, tonal differentiation is compared for three groups of speakers; normally hearing adults; normally hearing children aged from 4-6 years; and, prelinguistically deafened cochlear implant users aged from 4-11 years. A potential conundrum regarding how tone production abilities can outstrip tone perception abilities is explained using the data from the acoustic analyses. It is suggested that young children of the age range tested are still learning to normalize for pitch level differences in tone production. Acoustic analysis of the data thus supports results from tone perception studies and suggests that the methodology is suitable for use in studies investigating tone production in both clinical and research contexts.

  9. Effects of remifentanil on gastric tone.

    PubMed

    Walldén, Jakob; Thörn, Sven-Egron; Lindberg, Greger; Wattwil, Magnus

    2008-08-01

    Opioids are well known for impairing gastric motility. The mechanism is far from clear and there is wide interindividual variability. The purpose of this study was to evaluate the effect of remifentanil on proximal gastric tone. Healthy volunteers were studied on two occasions and proximal gastric tone was measured by a gastric barostat. On the first occasion (n=8), glucagon 1 mg IV was given as a reference for a maximal relaxation of the stomach. On the second occasion (n=9), remifentanil was given in incremental doses (0.1, 0.2 and 0.3 microg/kg/min) for 15 min each, followed by a washout period of 30 min. Thereafter, remifentanil was readministered, and 10 min later glucagon 1 mg was given. Mean intragastric bag volumes were calculated for each 5-min interval. Glucagon decreased gastric tone in all subjects. Remifentanil had a marked effect on gastric tone; we found two distinct patterns of reactions with both increases and decreases in gastric tone and, during the remifentanil infusion, glucagon did not affect gastric tone. Remifentanil induced changes in gastric tone with both increases and decreases. The effect of remifentanil on gastric tone is probably dependent on the current state of the systems involved.

  10. Amplitude-modulated ultrasound radiation force combined with phase-sensitive optical coherence tomography for shear wave elastography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2015-03-01

    Tissue stiffness can be measured from the propagation speed of shear waves. Acoustic radiation force (ARF) can generate shear waves by focusing ultrasound in tissue for ~100 μs. Safety considerations and electronics abilities limit ultrasound pressures. We previously presented shear wave elastography combining ARF and phase-sensitive optical coherence tomography (PhS-OCT) [1]. Here, we use amplitude-modulated ARF to enhance shear wave signal-to-noise ratio (SNR) at low pressures. Experiments were performed on tissue-mimicking phantoms. ARF was applied using a single-element transducer, driven by a 7.5 MHz, 3-ms, sine wave modulated in amplitude by a linear-swept frequency (1 to 7 kHz). Pressures between 1 to 3 MPa were tested. Displacements were tracked using PhS-OCT and numerically compressed using pulse compression methods detailed in previous work [2]. SNR was compared to that of 200-μs bursts. Stiffness maps were reconstructed using time-of-flight computations. 200-μs bursts give barely detectable displacements at 1 MPa (3.7 dB SNR). Pulse compression gives 36.2 dB at 1.5 MPa. In all cases with detectable displacements, shear wave speeds were determined in 5%-gelatin and 10%-gelatin phantoms and compared to literature values. Applicability to ocular tissues (cornea, intraocular lens) is under investigation.

  11. ENCODING OF TEMPORAL FEATURES OF AUDITORY STIMULI IN THE MEDIAL NUCLEUS OF THE TRAPEZOID BODY AND SUPERIOR PARAOLIVARY NUCLEUS OF THE RAT

    PubMed Central

    Kadner, Alexander; Berrebi, Albert S.

    2008-01-01

    Neurons in the superior paraolivary nucleus (SPON) respond to the offset of pure tones with a brief burst of spikes. Medial nucleus of the trapezoid body (MNTB) neurons, which inhibit the SPON, produce a sustained pure tone response followed by an offset response characterized by a period of suppressed spontaneous activity. This MNTB offset response is duration dependent and critical to the formation of SPON offset spikes (Kadner et al., 2006; Kulesza, Jr. et al., 2007). Here we examine the temporal resolution of the MNTB/SPON circuit by assessing its capability to i) detect gaps in tones, and ii) synchronize to sinusoidally amplitude modulated (SAM) tones. Gap detection was tested by presenting two identical pure tone markers interrupted by gaps ranging from 0–25 ms duration. SPON neurons responded to the offset of the leading marker even when the two markers were separated only by their ramps (i.e., a 0 ms gap); longer gap durations elicited progressively larger responses. MNTB neurons produced an offset response at gap durations of 2 ms or longer, with a subset of neurons responding to 0 ms gaps. SAM tone stimuli used the unit’s characteristic frequency as a carrier, and modulation rates ranged from 40–1160 Hz. MNTB neurons synchronized to modulation rates up to ~1 KHz, whereas spiking of SPON neurons decreased sharply at modulation rates ≥ 400 Hz. Modulation transfer functions based on spike count were all-pass for MNTB neurons and low-pass for SPON neurons; the modulation transfer functions based on vector strength were low-pass for both nuclei, with a steeper cut-off for SPON neurons. Thus, the MNTB/SPON circuit encodes episodes of low stimulus energy, such as gaps in pure tones and troughs in amplitude modulated tones. The output of this circuit consists of brief SPON spiking episodes; their potential effects on the auditory midbrain and forebrain are discussed. PMID:18155850

  12. Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis

    PubMed Central

    Johnson, Jeffrey S.; Yin, Pingbo; O'Connor, Kevin N.

    2012-01-01

    Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1. PMID:22422997

  13. Silicon photonic Mach Zehnder modulators for next-generation short-reach optical communication networks

    NASA Astrophysics Data System (ADS)

    Lacava, C.; Liu, Z.; Thomson, D.; Ke, Li; Fedeli, J. M.; Richardson, D. J.; Reed, G. T.; Petropoulos, P.

    2016-02-01

    Communication traffic grows relentlessly in today's networks, and with ever more machines connected to the network, this trend is set to continue for the foreseeable future. It is widely accepted that increasingly faster communications are required at the point of the end users, and consequently optical transmission plays a progressively greater role even in short- and medium-reach networks. Silicon photonic technologies are becoming increasingly attractive for such networks, due to their potential for low cost, energetically efficient, high-speed optical components. A representative example is the silicon-based optical modulator, which has been actively studied. Researchers have demonstrated silicon modulators in different types of structures, such as ring resonators or slow light based devices. These approaches have shown remarkably good performance in terms of modulation efficiency, however their operation could be severely affected by temperature drifts or fabrication errors. Mach-Zehnder modulators (MZM), on the other hand, show good performance and resilience to different environmental conditions. In this paper we present a CMOS-compatible compact silicon MZM. We study the application of the modulator to short-reach interconnects by realizing data modulation using some relevant advanced modulation formats, such as 4-level Pulse Amplitude Modulation (PAM-4) and Discrete Multi-Tone (DMT) modulation and compare the performance of the different systems in transmission.

  14. Perspectives on the Pure-Tone Audiogram.

    PubMed

    Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva

    The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type

  15. Amplitude and phase controlled adaptive optics system

    NASA Astrophysics Data System (ADS)

    Pham, Ich; Ma, Sam

    2006-06-01

    An adaptive optics (AO) system is used to control the deformable mirror (DM) actuators for compensating the optical effects introduced by the turbulence in the Earth's atmosphere and distortions produced by the optical elements between the distant object and its local sensor. The typical AO system commands the DM actuators while minimizing the measured wave front (WF) phase error. This is known as the phase conjugator system, which does not work well in the strong scintillation condition because both amplitude and phase are corrupted along the propagation path. In order to compensate for the wave front amplitude, a dual DM field conjugator system may be used. The first and second DM compensate for the amplitude and the phase respectively. The amplitude controller requires the mapping from DM1 actuator command to DM2 intensity. This can be obtained from either a calibration routine or an intensity transport equation, which relates the phase to the intensity. Instead of a dual-DM, a single Spatial Light Modulator (SLM) may control the amplitude and phase independently. The technique uses the spatial carrier frequency and the resulting intensity is related to the carrier modulation, while the phase is the average carrier phase. The dynamical AO performance using the carrier modulation is limited by the actuator frequency response and not by the computational load of the controller algorithm. Simulation of the proposed field conjugator systems show significant improvement for the on-axis performance compared to the phase conjugator system.

  16. Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones.

    PubMed

    Nam, Hui; Guinan, John J

    2016-11-01

    We used low-frequency "bias" tones (BT's) to explore whether click and tone responses are affected in the same way by cochlear active processes. In nonlinear systems the responses to clicks are not always simply related to the responses to tones. Cochlear amplifier gain depends on the incremental slope of the outer-hair-cell (OHC) stereocilia mechano-electric transduction (MET) function. BTs transiently change the operating-point of OHC MET channels and can suppress cochlear-amplifier gain by pushing OHC METs into low-slope saturation regions. BT effects on single auditory-nerve (AN) fibers have been studied on tone responses but not on click responses. We recorded from AN fibers in anesthetized cats and compared tone and click responses using 50 Hz BTs at 70-120 dB SPL to manipulate OHC stereocilia position. BTs can also excite and thereby obscure the BT suppression. We measured AN-fiber response synchrony to BTs alone so that we could exclude suppression measurements when the BT synchrony might obscure the suppression. BT suppression of low-level tone and click responses followed the traditional pattern of twice-a-BT-cycle suppression with more suppression at one phase than the other. The major suppression phases of most fibers were tightly grouped with little difference between click and tone suppressions, which is consistent with low-level click and tone responses being amplified in the same way. The data are also consistent with the operating point of the OHC MET function varying smoothly from symmetric in the base to offset in the apex, and, in contrast, with the IHC MET function being offset throughout the cochlea. As previously reported, bias-tones presented alone excited AN fibers at one or more phases, a phenomena termed "peak splitting" with most BT excitation phases ∼¼ cycle before or after the major suppression phase. We explain peak splitting as being due to distortion in multiple fluid drives to inner-hair-cell stereocilia. Copyright © 2016

  17. Modulation of auditory processing during speech movement planning is limited in adults who stutter

    PubMed Central

    Daliri, Ayoub; Max, Ludo

    2015-01-01

    Stuttering is associated with atypical structural and functional connectivity in sensorimotor brain areas, in particular premotor, motor, and auditory regions. It remains unknown, however, which specific mechanisms of speech planning and execution are affected by these neurological abnormalities. To investigate pre-movement sensory modulation, we recorded 12 stuttering and 12 nonstuttering adults’ auditory evoked potentials in response to probe tones presented prior to speech onset in a delayed-response speaking condition vs. no-speaking control conditions (silent reading; seeing nonlinguistic symbols). Findings indicate that, during speech movement planning, the nonstuttering group showed a statistically significant modulation of auditory processing (reduced N1 amplitude) that was not observed in the stuttering group. Thus, the obtained results provide electrophysiological evidence in support of the hypothesis that stuttering is associated with deficiencies in modulating the cortical auditory system during speech movement planning. This specific sensorimotor integration deficiency may contribute to inefficient feedback monitoring and, consequently, speech dysfluencies. PMID:25796060

  18. Forward Behavioral Modeling of a Three-Way Amplitude Modulator-Based Transmitter Using an Augmented Memory Polynomial

    PubMed Central

    Chatrath, Jatin; Aziz, Mohsin; Helaoui, Mohamed

    2018-01-01

    Reconfigurable and multi-standard RF front-ends for wireless communication and sensor networks have gained importance as building blocks for the Internet of Things. Simpler and highly-efficient transmitter architectures, which can transmit better quality signals with reduced impairments, are an important step in this direction. In this regard, mixer-less transmitter architecture, namely, the three-way amplitude modulator-based transmitter, avoids the use of imperfect mixers and frequency up-converters, and their resulting distortions, leading to an improved signal quality. In this work, an augmented memory polynomial-based model for the behavioral modeling of such mixer-less transmitter architecture is proposed. Extensive simulations and measurements have been carried out in order to validate the accuracy of the proposed modeling strategy. The performance of the proposed model is evaluated using normalized mean square error (NMSE) for long-term evolution (LTE) signals. NMSE for a LTE signal of 1.4 MHz bandwidth with 100,000 samples for digital combining and analog combining are recorded as −36.41 dB and −36.9 dB, respectively. Similarly, for a 5 MHz signal the proposed models achieves −31.93 dB and −32.08 dB NMSE using digital and analog combining, respectively. For further validation of the proposed model, amplitude-to-amplitude (AM-AM), amplitude-to-phase (AM-PM), and the spectral response of the modeled and measured data are plotted, reasonably meeting the desired modeling criteria. PMID:29510501

  19. Congenital amusia in speakers of a tone language: association with lexical tone agnosia.

    PubMed

    Nan, Yun; Sun, Yanan; Peretz, Isabelle

    2010-09-01

    Congenital amusia is a neurogenetic disorder that affects the processing of musical pitch in speakers of non-tonal languages like English and French. We assessed whether this musical disorder exists among speakers of Mandarin Chinese who use pitch to alter the meaning of words. Using the Montreal Battery of Evaluation of Amusia, we tested 117 healthy young Mandarin speakers with no self-declared musical problems and 22 individuals who reported musical difficulties and scored two standard deviations below the mean obtained by the Mandarin speakers without amusia. These 22 amusic individuals showed a similar pattern of musical impairment as did amusic speakers of non-tonal languages, by exhibiting a more pronounced deficit in melody than in rhythm processing. Furthermore, nearly half the tested amusics had impairments in the discrimination and identification of Mandarin lexical tones. Six showed marked impairments, displaying what could be called lexical tone agnosia, but had normal tone production. Our results show that speakers of tone languages such as Mandarin may experience musical pitch disorder despite early exposure to speech-relevant pitch contrasts. The observed association between the musical disorder and lexical tone difficulty indicates that the pitch disorder as defining congenital amusia is not specific to music or culture but is rather general in nature.

  20. Electrophysiological measurement of binaural beats: effects of primary tone frequency and observer age.

    PubMed

    Grose, John H; Mamo, Sara K

    2012-01-01

    The purpose of this study was to determine the reliability of the electrophysiological binaural beat steady state response as a gauge of temporal fine structure coding, particularly as it relates to the aging auditory system. The hypothesis was that the response would be more robust in a lower, than in a higher, frequency region and in younger, than in older, adults. Two experiments were undertaken. The first measured the 40 Hz binaural beat steady state response elicited by tone pairs in two frequency regions: lower (390 and 430 Hz tone pair) and higher (810 and 850 Hz tone pair). Frequency following responses (FFRs) evoked by the tones were also recorded. Ten young adults with normal hearing participated. The second experiment measured the binaural beat and FFRs in older adults but only in the lower frequency region. Fourteen older adults with relatively normal hearing participated. Response metrics in both experiments included response component signal-to-noise ratio (F statistic) and magnitude-squared coherence. Experiment 1 showed that FFRs were elicited in both frequency regions but were more robust in the lower frequency region. Binaural beat responses elicited by the lower frequency pair of tones showed greater amplitude fluctuation within a participant than the respective FFRs. Experiment 2 showed that older adults exhibited similar FFRs to younger adults, but proportionally fewer older participants showed binaural beat responses. Age differences in onset responses were also observed. The lower prevalence of the binaural beat response in older adults, despite the presence of FFRs, provides tentative support for the sensitivity of this measure to age-related deficits in temporal processing. However, the lability of the binaural beat response advocates caution in its use as an objective measure of fine structure coding.

  1. Modulations of neural activity in auditory streaming caused by spectral and temporal alternation in subsequent stimuli: a magnetoencephalographic study.

    PubMed

    Chakalov, Ivan; Draganova, Rossitza; Wollbrink, Andreas; Preissl, Hubert; Pantev, Christo

    2012-06-20

    The aim of the present study was to identify a specific neuronal correlate underlying the pre-attentive auditory stream segregation of subsequent sound patterns alternating in spectral or temporal cues. Fifteen participants with normal hearing were presented with series' of two consecutive ABA auditory tone-triplet sequences, the initial triplets being the Adaptation sequence and the subsequent triplets being the Test sequence. In the first experiment, the frequency separation (delta-f) between A and B tones in the sequences was varied by 2, 4 and 10 semitones. In the second experiment, a constant delta-f of 6 semitones was maintained but the Inter-Stimulus Intervals (ISIs) between A and B tones were varied. Auditory evoked magnetic fields (AEFs) were recorded using magnetoencephalography (MEG). Participants watched a muted video of their choice and ignored the auditory stimuli. In a subsequent behavioral study both MEG experiments were replicated to provide information about the participants' perceptual state. MEG measurements showed a significant increase in the amplitude of the B-tone related P1 component of the AEFs as delta-f increased. This effect was seen predominantly in the left hemisphere. A significant increase in the amplitude of the N1 component was only obtained for a Test sequence delta-f of 10 semitones with a prior Adaptation sequence of 2 semitones. This effect was more pronounced in the right hemisphere. The additional behavioral data indicated an increased probability of two-stream perception for delta-f = 4 and delta-f = 10 semitones with a preceding Adaptation sequence of 2 semitones. However, neither the neural activity nor the perception of the successive streaming sequences were modulated when the ISIs were alternated. Our MEG experiment demonstrated differences in the behavior of P1 and N1 components during the automatic segregation of sounds when induced by an initial Adaptation sequence. The P1 component appeared enhanced in all

  2. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clément, P.-Y.; Baraduc, C., E-mail: claire.baraduc@cea.fr; Chshiev, M.

    2015-09-07

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pavemore » the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.« less

  3. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.

    PubMed

    Salt, Alec N; Lichtenhan, Jeffery T; Gill, Ruth M; Hartsock, Jared J

    2013-03-01

    Responses of the ear to low-frequency and infrasonic sounds have not been extensively studied. Understanding how the ear responds to low frequencies is increasingly important as environmental infrasounds are becoming more pervasive from sources such as wind turbines. This study shows endolymphatic potentials in the third cochlear turn from acoustic infrasound (5 Hz) are larger than from tones in the audible range (e.g., 50 and 500 Hz), in some cases with peak-to-peak amplitude greater than 20 mV. These large potentials were suppressed by higher-frequency tones and were rapidly abolished by perilymphatic injection of KCl at the cochlear apex, demonstrating their third-turn origins. Endolymphatic iso-potentials from 5 to 500 Hz were enhanced relative to perilymphatic potentials as frequency was lowered. Probe and infrasonic bias tones were used to study the origin of the enhanced potentials. Potentials were best explained as a saturating response summed with a sinusoidal voltage (Vo), that was phase delayed by an average of 60° relative to the biasing effects of the infrasound. Vo is thought to arise indirectly from hair cell activity, such as from strial potential changes caused by sustained current changes through the hair cells in each half cycle of the infrasound.

  4. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William [Overland Park, KS

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  5. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William [Overland Park, KS

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  6. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William [Overland Park, KS

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  7. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William [Overland Park, KS

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  8. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  9. Neurobiology of hedonic tone: the relationship between treatment-resistant depression, attention-deficit hyperactivity disorder, and substance abuse

    PubMed Central

    Sternat, Tia; Katzman, Martin A

    2016-01-01

    Anhedonia, defined as the state of reduced ability to experience feelings of pleasure, is one of the hallmarks of depression. Hedonic tone is the trait underlying one’s characteristic ability to feel pleasure. Low hedonic tone represents a reduced capacity to experience pleasure, thus increasing the likelihood of experiencing anhedonia. Low hedonic tone has been associated with several psychopathologies, including major depressive disorder (MDD), substance use, and attention-deficit hyperactivity disorder (ADHD). The main neural pathway that modulates emotional affect comprises the limbic–cortical–striatal–pallidal–thalamic circuits. The activity of various components of the limbic–cortical–striatal–pallidal–thalamic pathway is correlated with hedonic tone in healthy individuals and is altered in MDD. Dysfunction of these circuits has also been implicated in the relative ineffectiveness of selective serotonin reuptake inhibitors used to treat anxiety and depression in patients with low hedonic tone. Mood disorders such as MDD, ADHD, and substance abuse share low hedonic tone as well as altered activation of brain regions involved in reward processing and monoamine signaling as their features. Given the common features of these disorders, it is not surprising that they have high levels of comorbidities. The purpose of this article is to review the neurobiology of hedonic tone as it pertains to depression, ADHD, and the potential for substance abuse. We propose that, since low hedonic tone is a shared feature of MDD, ADHD, and substance abuse, evaluation of hedonic tone may become a diagnostic feature used to predict subtypes of MDD, such as treatment-resistant depression, as well as comorbidities of these disorders. PMID:27601909

  10. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates

    PubMed Central

    Bleeck, Stefan; McAlpine, David

    2015-01-01

    Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor—to the point of discrimination thresholds being unattainable—compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners’ sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered. PMID:26721926

  11. Processing of acoustic and phonological information of lexical tones in Mandarin Chinese revealed by mismatch negativity.

    PubMed

    Yu, Keke; Wang, Ruiming; Li, Li; Li, Ping

    2014-01-01

    The accurate perception of lexical tones in tonal languages involves the processing of both acoustic information and phonological information carried by the tonal signal. In this study we evaluated the relative role of the two types of information in native Chinese speaker's processing of tones at a preattentive stage with event-related potentials (ERPs), particularly the mismatch negativity (MNN). Specifically, we distinguished the acoustic from the phonological information by manipulating phonological category and acoustic interval of the stimulus materials. We found a significant main effect of phonological category for the peak latency of MMN, but a main effect of both phonological category and acoustic interval for the mean amplitude of MMN. The results indicated that the two types of information, acoustic and phonological, play different roles in the processing of Chinese lexical tones: acoustic information only impacts the extent of tonal processing, while phonological information affects both the extent and the time course of tonal processing. Implications of these findings are discussed in light of neurocognitive processes of phonological processing.

  12. Amplitude modulation detection by human listeners in reverberant sound fields: Effects of prior listening exposure.

    PubMed

    Zahorik, Pavel; Anderson, Paul W

    2013-01-01

    Previous work [Zahorik et al., POMA, 15, 050002 (2012)] has reported that for both broadband and narrowband noise carrier signals in a simulated reverberant sound field, human sensitivity to amplitude modulation (AM) is higher than would be predicted based on the acoustical modulation transfer function (MTF) of the listening environment. These results may be suggestive of mechanisms that functionally enhance modulation in reverberant listening, although many details of this enhancement effect are unknown. Given recent findings that demonstrate improvements in speech understanding with prior exposure to reverberant listening environments, it is of interest to determine whether listening exposure to a reverberant room might also influence AM detection in the room, and perhaps contribute to the AM enhancement effect. Here, AM detection thresholds were estimated (using an adaptive 2-alternative forced-choice procedure) in each of two listening conditions: one in which consistent listening exposure to a particular room was provided, and a second that intentionally disrupted listening exposure by varying the room from trial-to-trial. Results suggest that consistent prior listening exposure contributes to enhanced AM sensitivity in rooms. [Work supported by the NIH/NIDCD.].

  13. The Perception of Lexical Tone in Mambila.

    ERIC Educational Resources Information Center

    Connell, Bruce

    2000-01-01

    Examines tone perception in Mambila, a Benue-Congo language with four level lexical tones. A categorization experiment was run to determine some of the salient aspects of the perceptual nature of these tones. Results are discussed in light of what is known about universal tendencies of tone systems and the historical development of the Mambila…

  14. Tone-Inhibiting Insoles Enhance the Reciprocal Inhibition of Ankle Plantarflexors of Subjects With Hemiparesis After Stroke: An Electromyographic Study.

    PubMed

    Takahashi, Nobushige; Takahashi, Hidetoshi; Takahashi, Osamu; Ushijima, Ryosuke; Umebayashi, Rie; Nishikawa, Junji; Okajima, Yasutomo

    2018-02-01

    Spasticity is a common sequela of upper motor neuron pathology, such as cerebrovascular diseases and cerebral palsy. Intervention for spasticity of the ankle plantarflexors in physical therapy may include tone-inhibiting casting and/or orthoses for the ankle and foot. However, the physiological mechanism of tone reduction by such orthoses remains unclarified. To investigate the electrophysiologic effects of tone-inhibiting insoles in stroke subjects with hemiparesis by measuring changes in reciprocal Ia inhibition (RI) in the ankle plantarflexor. An interventional before-after study. Acute stroke unit or ambulatory rehabilitation clinic of a university hospital in Japan. Ten subjects (47-84 years) with hemiparesis and 10 healthy male control subjects (31-59 years) were recruited. RI of the spastic soleus in response to the electrical stimulation of the deep peroneal nerve was evaluated by stimulus-locked averaging of rectified electromyography (EMG) of the soleus while subjects were standing. The magnitude of RI, defined as the ratio of the lowest to the baseline amplitude of the rectified EMG at approximately 40 milliseconds after stimulation, was measured while subjects were standing with and without the tone-inhibiting insole on the hemiparesis side. Enhancement of EMG reduction with the tone-inhibiting insole was significant (P < .05) in the subjects with hemiparesis, whereas no significant changes were found in controls. Tone-inhibiting insoles enhanced RI of the soleus in subjects after stroke, which might enhance standing stability by reducing unfavorable ankle plantarflexion tone. III. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Toward automatic phenotyping of retinal images from genetically determined mono- and dizygotic twins using amplitude modulation-frequency modulation methods

    NASA Astrophysics Data System (ADS)

    Soliz, P.; Davis, B.; Murray, V.; Pattichis, M.; Barriga, S.; Russell, S.

    2010-03-01

    This paper presents an image processing technique for automatically categorize age-related macular degeneration (AMD) phenotypes from retinal images. Ultimately, an automated approach will be much more precise and consistent in phenotyping of retinal diseases, such as AMD. We have applied the automated phenotyping to retina images from a cohort of mono- and dizygotic twins. The application of this technology will allow one to perform more quantitative studies that will lead to a better understanding of the genetic and environmental factors associated with diseases such as AMD. A method for classifying retinal images based on features derived from the application of amplitude-modulation frequency-modulation (AM-FM) methods is presented. Retinal images from identical and fraternal twins who presented with AMD were processed to determine whether AM-FM could be used to differentiate between the two types of twins. Results of the automatic classifier agreed with the findings of other researchers in explaining the variation of the disease between the related twins. AM-FM features classified 72% of the twins correctly. Visual grading found that genetics could explain between 46% and 71% of the variance.

  16. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise.

    PubMed

    Pallesen, Karen Johanne; Bailey, Christopher J; Brattico, Elvira; Gjedde, Albert; Palva, J Matias; Palva, Satu

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG) while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4-8 Hz) alpha (8-14 Hz), beta- (14-30 Hz) and gamma- (30-80 Hz) bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality.

  17. Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas

    PubMed Central

    León, Alex; Elgueda, Diego; Silva, María A.; Hamamé, Carlos M.; Delano, Paul H.

    2012-01-01

    Background The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. Methodology/Principal Findings Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. Conclusions/Significance These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects

  18. Lexical tone and stuttering in Cantonese.

    PubMed

    Law, Thomas; Packman, Ann; Onslow, Mark; To, Carol K-S; Tong, Michael C-F; Lee, Kathy Y-S

    2018-01-01

    Cantonese is a tone language, in which the variation of the fundamental frequency contour of a syllable can change meaning. There are six different lexical tones in Cantonese. While research with Western languages has shown an association between stuttering and syllabic stress, nothing is known about whether stuttering in Cantonese speakers is associated with one or more of the six lexical tones. Such an association has been reported in conversational speech in Mandarin, which is also a tone language, but which varies markedly from Cantonese. Twenty-four native Cantonese-speaking adults who stutter participated in this study, ranging in age from 18-33 years. There were 18 men and 6 women. Participants read aloud 13 Cantonese syllables, each of which was produced with six contrastive lexical tones. All 78 syllables were embedded in the same carrier sentence, to reduce the influence of suprasegmental or linguistic stress, and were presented in random order. No significant differences were found for stuttering moments across the six lexical tones. It is suggested that this is because lexical tones, at least in Cantonese, do not place the task demands on the speech motor system that typify varying syllabic stress in Western languages: variations not only in fundamental frequency, but also in duration and intensity. The findings of this study suggest that treatments for adults who stutter in Western languages, such as speech restructuring, can be used with Cantonese speakers without undue attention to lexical tone.

  19. Contra-Rotating Open Rotor Tone Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2014-01-01

    Reliable prediction of contra-rotating open rotor (CROR) noise is an essential element of any strategy for the development of low-noise open rotor propulsion systems that can meet both the community noise regulations and cabin noise limits. Since CROR noise spectra exhibit a preponderance of tones, significant efforts have been directed towards predicting their tone content. To that end, there has been an ongoing effort at NASA to assess various in-house open rotor tone noise prediction tools using a benchmark CROR blade set for which significant aerodynamic and acoustic data have been acquired in wind tunnel tests. In the work presented here, the focus is on the nearfield noise of the benchmark open rotor blade set at the cruise condition. Using an analytical CROR tone noise model with input from high-fidelity aerodynamic simulations, tone noise spectra have been predicted and compared with the experimental data. Comparisons indicate that the theoretical predictions are in good agreement with the data, especially for the dominant tones and for the overall sound pressure level of tones. The results also indicate that, whereas the individual rotor tones are well predicted by the combination of the thickness and loading sources, for the interaction tones it is essential that the quadrupole source is also included in the analysis.

  20. Continuous-wave THz vector imaging system utilizing two-tone signal generation and self-mixing detection.

    PubMed

    Song, Hajun; Hwang, Sejin; An, Hongsung; Song, Ho-Jin; Song, Jong-In

    2017-08-21

    We propose and demonstrate a continuous-wave vector THz imaging system utilizing a photonic generation of two-tone THz signals and self-mixing detection. The proposed system measures amplitude and phase information simultaneously without the local oscillator reference or phase rotation scheme that is required for heterodyne or homodyne detection. In addition, 2π phase ambiguity that occurs when the sample is thicker than the wavelength of THz radiation can be avoided. In this work, THz signal having two frequency components was generated with a uni-traveling-carrier photodiode and electro-optic modulator on the emitter side and detected with a Schottky barrier diode detector used as a self-mixer on the receiver side. The proposed THz vector imaging system exhibited a 50-dB signal to noise ratio and 0.012-rad phase fluctuation with 100-μs integration time at 325-GHz. With the system, we demonstrate two-dimensional THz phase contrast imaging. Considering the recent use of two-dimensional arrays of Schottky barrier diodes as a THz image sensor, the proposed system is greatly advantageous for realizing a real-time THz vector imaging system due to its simple receiver configuration.

  1. Using Online Tone Generators

    ERIC Educational Resources Information Center

    Lincoln, James

    2017-01-01

    Online tone generators are free, user friendly, and can make for engaging and meaningful study of many topics in the areas of interference, waves, and the physics of music. By using a website such as OnlineToneGenerator.com, and through opening multiple windows simultaneously, students can immediately perform several experiments. In this article,…

  2. Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy.

    PubMed

    Nikfarjam, Miead; López-Guerra, Enrique A; Solares, Santiago D; Eslami, Babak

    2018-01-01

    In this short paper we explore the use of higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy (AFM) for the small-indentation imaging of soft viscoelastic materials. In viscoelastic materials, whose response depends on the deformation rate, the tip-sample forces generated as a result of sample deformation increase as the tip velocity increases. Since the eigenfrequencies in a cantilever increase with eigenmode order, and since higher oscillation frequencies lead to higher tip velocities for a given amplitude (in viscoelastic materials), the sample indentation can in some cases be reduced by using higher eigenmodes of the cantilever. This effect competes with the lower sensitivity of higher eigenmodes, due to their larger force constant, which for elastic materials leads to greater indentation for similar amplitudes, compared with lower eigenmodes. We offer a short theoretical discussion of the key underlying concepts, along with numerical simulations and experiments to illustrate a simple recipe for imaging soft viscoelastic matter with reduced indentation.

  3. Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies

    PubMed Central

    Zimmerman, Jacquelyn W.; Jimenez, Hugo; Pennison, Michael J.; Brezovich, Ivan; Morgan, Desiree; Mudry, Albert; Costa, Frederico P.; Barbault, Alexandre; Pasche, Boris

    2013-01-01

    In the past century, there have been many attempts to treat cancer with low levels of electric and magnetic fields. We have developed noninvasive biofeedback examination devices and techniques and discovered that patients with the same tumor type exhibit biofeedback responses to the same, precise frequencies. Intrabuccal administration of 27.12 MHz radiofrequency (RF) electromagnetic fields (EMF), which are amplitude-modulated at tumor-specific frequencies, results in long-term objective responses in patients with cancer and is not associated with any significant adverse effects. Intrabuccal administration allows for therapeutic delivery of very low and safe levels of EMF throughout the body as exemplified by responses observed in the femur, liver, adrenal glands, and lungs. In vitro studies have demonstrated that tumor-specific frequencies identified in patients with various forms of cancer are capable of blocking the growth of tumor cells in a tissue- and tumor-specific fashion. Current experimental evidence suggests that tumor-specific modulation frequencies regulate the expression of genes involved in migration and invasion and disrupt the mitotic spindle. This novel targeted treatment approach is emerging as an appealing therapeutic option for patients with advanced cancer given its excellent tolerability. Dissection of the molecular mechanisms accounting for the anti-cancer effects of tumor-specific modulation frequencies is likely to lead to the discovery of novel pathways in cancer. PMID:24206915

  4. Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies.

    PubMed

    Zimmerman, Jacquelyn W; Jimenez, Hugo; Pennison, Michael J; Brezovich, Ivan; Morgan, Desiree; Mudry, Albert; Costa, Frederico P; Barbault, Alexandre; Pasche, Boris

    2013-11-01

    In the past century, there have been many attempts to treat cancer with low levels of electric and magnetic fields. We have developed noninvasive biofeedback examination devices and techniques and discovered that patients with the same tumor type exhibit biofeedback responses to the same, precise frequencies. Intrabuccal administration of 27.12 MHz radiofrequency (RF) electromagnetic fields (EMF), which are amplitude-modulated at tumor-specific frequencies, results in long-term objective responses in patients with cancer and is not associated with any significant adverse effects. Intrabuccal administration allows for therapeutic delivery of very low and safe levels of EMF throughout the body as exemplified by responses observed in the femur, liver, adrenal glands, and lungs. In vitro studies have demonstrated that tumor-specific frequencies identified in patients with various forms of cancer are capable of blocking the growth of tumor cells in a tissue- and tumor-specific fashion. Current experimental evidence suggests that tumor-specific modulation frequencies regulate the expression of genes involved in migration and invasion and disrupt the mitotic spindle. This novel targeted treatment approach is emerging as an appealing therapeutic option for patients with advanced cancer given its excellent tolerability. Dissection of the molecular mechanisms accounting for the anti-cancer effects of tumor-specific modulation frequencies is likely to lead to the discovery of novel pathways in cancer.

  5. Detecting temporal changes in acoustic scenes: The variable benefit of selective attention.

    PubMed

    Demany, Laurent; Bayle, Yann; Puginier, Emilie; Semal, Catherine

    2017-09-01

    Four experiments investigated change detection in acoustic scenes consisting of a sum of five amplitude-modulated pure tones. As the tones were about 0.7 octave apart and were amplitude-modulated with different frequencies (in the range 2-32 Hz), they were perceived as separate streams. Listeners had to detect a change in the frequency (experiments 1 and 2) or the shape (experiments 3 and 4) of the modulation of one of the five tones, in the presence of an informative cue orienting selective attention either before the scene (pre-cue) or after it (post-cue). The changes left intensity unchanged and were not detectable in the spectral (tonotopic) domain. Performance was much better with pre-cues than with post-cues. Thus, change deafness was manifest in the absence of an appropriate focusing of attention when the change occurred, even though the streams and the changes to be detected were acoustically very simple (in contrast to the conditions used in previous demonstrations of change deafness). In one case, the results were consistent with a model based on the assumption that change detection was possible if and only if attention was endogenously focused on a single tone. However, it was also found that changes resulting in a steepening of amplitude rises were to some extent able to draw attention exogenously. Change detection was not markedly facilitated when the change produced a discontinuity in the modulation domain, contrary to what could be expected from the perspective of predictive coding. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Amplitude modulation detection by human listeners in reverberant sound fields: Carrier bandwidth effects and binaural versus monaural comparison.

    PubMed

    Zahorik, Pavel; Kim, Duck O; Kuwada, Shigeyuki; Anderson, Paul W; Brandewie, Eugene; Collecchia, Regina; Srinivasan, Nirmal

    2012-06-01

    Previous work [Zahorik et al., POMA, 12, 050005 (2011)] has reported that for a broadband noise carrier signal in a simulated reverberant sound field, human sensitivity to amplitude modulation (AM) is higher than would be predicted based on the broadband acoustical modulation transfer function (MTF) of the listening environment. Interpretation of this result was complicated by the fact that acoustical MTFs of rooms are often quite different for different carrier frequency regions, and listeners may have selectively responded to advantageous carrier frequency regions where the effective acoustic modulation loss due to the room was less than indicated by a broadband acoustic MTF analysis. Here, AM sensitivity testing and acoustic MTF analyses were expanded to include narrowband noise carriers (1-octave and 1/3-octave bands centered at 4 kHz), as well as monaural and binaural listening conditions. Narrowband results were found to be consistent with broadband results: In a reverberant sound field, human AM sensitivity is higher than indicated by the acoustical MTFs. The effect was greatest for modulation frequencies above 32 Hz and was present whether the stimulation was monaural or binaural. These results are suggestive of mechanisms that functionally enhance modulation in reverberant listening.

  7. Contra-Rotating Open Rotor Tone Noise Prediction

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2014-01-01

    Reliable prediction of contra-rotating open rotor (CROR) noise is an essential element of any strategy for the development of low-noise open rotor propulsion systems that can meet both the community noise regulations and the cabin noise limits. Since CROR noise spectra typically exhibits a preponderance of tones, significant efforts have been directed towards predicting their tone spectra. To that end, there has been an ongoing effort at NASA to assess various in-house open rotor tone noise prediction tools using a benchmark CROR blade set for which significant aerodynamic and acoustic data had been acquired in wind tunnel tests. In the work presented here, the focus is on the near-field noise of the benchmark open rotor blade set at the cruise condition. Using an analytical CROR tone noise model with input from high-fidelity aerodynamic simulations, detailed tone noise spectral predictions have been generated and compared with the experimental data. Comparisons indicate that the theoretical predictions are in good agreement with the data, especially for the dominant CROR tones and their overall sound pressure level. The results also indicate that, whereas individual rotor tones are well predicted by the linear sources (i.e., thickness and loading), for the interaction tones it is essential that the quadrupole sources be included in the analysis.

  8. Frequency-tuning characteristics of cervical and ocular vestibular evoked myogenic potentials induced by air-conducted tone bursts.

    PubMed

    Park, Hong Ju; Lee, In-Sik; Shin, Jung Eun; Lee, Yeo Jin; Park, Mun Su

    2010-01-01

    To better characterize both ocular and cervical vestibular evoked myogenic potentials (VEMP) responses at different frequencies of sound in 20 normal subjects. Cervical and ocular VEMPs were recorded. The intensities of sound stimulation decreased from the maximal intensity, until no responses were evoked. Thresholds, amplitudes, latencies and interaural amplitude difference ratio (IADR) at the maximal stimulation were calculated. Both tests showed the similar frequency tuning, with the lowest threshold and highest amplitude for 500-Hz tone-burst stimuli. Sound stimulation at 500Hz showed the response rates of 100% in both tests. Cervical VEMPs showed higher incidence than ocular VEMPs. Ocular VEMP thresholds were significantly higher than those of cervical VEMP. Cervical VEMP amplitudes were significantly higher than ocular VEMP amplitudes. IADRs of ocular and cervical VEMPs did not differ significantly. Ocular VEMP showed the similar frequency tuning to cervical VEMP. Cervical VEMP responses showed higher incidence, lower thresholds and larger amplitudes than ocular VEMP. Cervical VEMP is a more reliable measure than ocular VEMP, though the results of both tests will be complementary. Five hundred Hertz is the optimal frequency to use. Copyright 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise

    PubMed Central

    Pallesen, Karen Johanne; Bailey, Christopher J.; Brattico, Elvira; Gjedde, Albert; Palva, J. Matias; Palva, Satu

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG) while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4–8 Hz) alpha (8–14 Hz), beta- (14–30 Hz) and gamma- (30–80 Hz) bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality. PMID:26291324

  10. Using online tone generators

    NASA Astrophysics Data System (ADS)

    2017-04-01

    Online tone generators are free, user friendly, and can make for engaging and meaningful study of many topics in the areas of interference, waves, and the physics of music. By using a website such as OnlineToneGenerator.com, and through opening multiple windows simultaneously, students can immediately perform several experiments. In this article, I highlight five lesson ideas that come naturally from these types of websites.

  11. Exploring the Experience and Effects of Vocal Toning.

    PubMed

    Snow, Shelley; Bernardi, Nicolò Francesco; Sabet-Kassouf, Nilufar; Moran, Daniel; Lehmann, Alexandre

    2018-06-07

    Toning is a form of vocalizing that utilizes the natural voice to express sounds ranging from cries, grunts, and groans to open vowel sounds and humming on the full exhalation of the breath. Music therapists are increasingly utilizing toning in their clinical practice for a variety of therapeutic aims. Yet the effects of toning are not widely understood, with limited research to date. To gather and analyze descriptive data to better understand the experience and effects of self-administered toning. Primary aims were to: 1) understand participants' experiences with toning, and any effects resulting from their experiences; 2) measure participants' emotional response to toning and singing; and 3) examine similarities and differences across the two datasets. Participants were 20 adults, ages 20-40 years, who were non-musicians. We conducted semi-structured interviews and used qualitative content analysis to identify major themes and subcategories related to participants' toning experiences. Participants also completed a 48-item questionnaire on music and emotions. Results from the interview and questionnaire data were then compared and contrasted. Results indicate that shifts in attention, awareness, and consciousness frequently occurred when individuals engaged in toning. "Meditative," "calm," and "relaxed" were the three most common descriptors of toning. In contrast, singing evoked stronger emotions and associations than toning, with the three most common descriptors including "nostalgia," "tenderness," and "joyful activation." Findings also suggest that the physical experience with vibrations and the sound of one's own voice may be attributes of toning that likely contribute to its success in inducing altered states of awareness, attention, and consciousness. This study significantly expands our understanding of the experience and effects of toning, and has direct implications for clinical practice, including the identification of effective strategies to

  12. Categorical Perception of Mandarin Chinese Tones 1-2 and Tones 1-4: Effects of Aging and Signal Duration

    ERIC Educational Resources Information Center

    Wang, Yuxia; Yang, Xiaohu; Liu, Chang

    2017-01-01

    Purpose: The purpose of this study was to investigate the aging effect on the categorical perception of Mandarin Chinese tones with varied fundamental frequency (F0) contours and signal duration. Method: Both younger and older native Chinese listeners with normal hearing were recruited in 2 experiments--tone identification and tone discrimination…

  13. Tone calibration technique: A digital signaling scheme for mobile applications

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1986-01-01

    Residual carrier modulation is conventionally used in a communication link to assist the receiver with signal demodulation and detection. Although suppressed carrier modulation has a slight power advantage over the residual carrier approach in systems enjoying a high level of stability, it lacks sufficient robustness to be used in channels severely contaminated by noise, interference and propagation effects. In mobile links, in particular, the vehicle motion and multipath waveform propagation affect the received carrier in an adverse fashion. A residual carrier scheme that uses a pilot carrier to calibrate a mobile channel against multipath fading anomalies is described. The benefits of this scheme, known as tone calibration technique, are described. A brief study of the system performance in the presence of implementation anomalies is also given.

  14. Tone as a health concept: An analysis.

    PubMed

    McDowall, Donald; Emmanuel, Elizabeth; Grace, Sandra; Chaseling, Marilyn

    2017-11-01

    Concept analysis. This paper is a report on the analysis of the concept of tone in chiropractic. The purpose of this paper is to clarify the concept of tone as originally understood by Daniel David Palmer from 1895 to 1914 and to monitor its evolution over time. Data was sourced from Palmer's original work, published between 1895 and 1914. A literature search from 1980 to 2016 was also performed on the online databases CINHAL, PubMed and Scopus with key terms including 'tone', 'chiropractic', 'Palmer', 'vitalism', 'health', 'homeostasis', 'holism' and 'wellness'. Finally hand-searches were conducted through chiropractic books and professional literature from 1906 to 1980 for any references to 'tone'. Rodgers' evolutionary method of analysis was used to categorise the data in relation to the surrogates, attributes, references, antecedents and consequences of tone. A total of 49 references were found: five from publications by Palmer; three from the database searches, and; the remaining 41 from professional books, trade journals and websites. There is no clear interpretation of tone in the contemporary chiropractic literature. Tone is closely aligned with functional neurology and can be understood as an interface between the metaphysical and the biomedical. Using the concept of tone as a foundation for practice could strengthen the identity of the chiropractic profession. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Quasi-Periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    NASA Technical Reports Server (NTRS)

    Bult, Peter; van Doesburgh, Marieke; van der Klis, Michiel

    2017-01-01

    We introduce a new method for analyzing the a periodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain lightcurve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and a periodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton. We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  16. Amplitude quantification in contact-resonance-based voltage-modulated force spectroscopy

    NASA Astrophysics Data System (ADS)

    Bradler, Stephan; Schirmeisen, André; Roling, Bernhard

    2017-08-01

    Voltage-modulated force spectroscopy techniques, such as electrochemical strain microscopy and piezoresponse force microscopy, are powerful tools for characterizing electromechanical properties on the nanoscale. In order to correctly interpret the results, it is important to quantify the sample motion and to distinguish it from the electrostatic excitation of the cantilever resonance. Here, we use a detailed model to describe the cantilever dynamics in contact resonance measurements, and we compare the results with experimental values. We show how to estimate model parameters from experimental values and explain how they influence the sensitivity of the cantilever with respect to the excitation. We explain the origin of different crosstalk effects and how to identify them. We further show that different contributions to the measured signal can be distinguished by analyzing the correlation between the resonance frequency and the measured amplitude. We demonstrate this technique on two representative test samples: (i) ferroelectric periodically poled lithium niobate, and (ii) the Na+-ion conducting soda-lime float glass. We extend our analysis to higher cantilever bending modes and show that non-local electrostatic excitation is strongly reduced in higher bending modes due to the nodes in the lever shape. Based on our analyses, we present practical guidelines for quantitative imaging.

  17. Space-Time Variations in Tidal Stress and Cascadia Tremor Amplitude

    NASA Astrophysics Data System (ADS)

    Klaus, A. J.; Creager, K. C.; Sweet, J.; Wech, A.

    2011-12-01

    We present a new analysis of the influence of tidal stresses on the amplitude of non-volcanic tremor in Washington State. Tremor counts (Thomas et al., 2009), tremor amplitude (Rubinstein et al., 2008), and strain (Hawthorne and Rubin, 2010) are modulated by tidal stresses in Cascadia as well as in California. However, tremor amplitudes have not yet been extensively studied in Cascadia. Furthermore, Hawthorne and Rubin's Cascadia-wide tidal stress model (2010) allows us to look at the tremor-tide relationship in more detail than ever before. The ability to look at the tidal modulation of tremor amplitude in space as well as time will increase our understanding of this phenomenon and may provide information about the frictional properties of the plate interface. We focus on the August 2010 episodic tremor and slip (ETS) event recorded by the Array of Arrays, a seismic experiment on the Olympic Peninsula. The instrument response is deconvolved, seismograms band-pass filtered at 1.5-5.5 Hz and envelopes are made in 5-minute windows. An inverse problem compensates for site corrections and source-receiver distances to produce, for any given time, a single amplitude measurement at the source. Source locations are determined using an envelope waveform cross-correlation method. Then, we compare the amplitudes, catalog of tremor locations, and the tidal stress at the desired location and time. Amplitudes during the August 2010 ETS event are clearly modulated by tidal stresses. Viewed in the frequency domain, there are clear peaks in the tremor amplitude spectrum at several tidal periods, most prominently the 12.4 and 24 hour periods. Comparison with Hawthorne and Rubin's tidal stress model shows that higher amplitudes are associated with positive shear stress in the downdip direction and, less strongly, with more compressional normal stress.

  18. Antibody responses of mice exposed to low-power microwaves under combined, pulse-and-amplitude modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veyret, B.; Bouthet, C.; Deschaux, P.

    Irradiation by pulsed microwaves (9.4 GHz, 1 microsecond pulses at 1,000/s), both with and without concurrent amplitude modulation (AM) by a sinusoid at discrete frequencies between 14 and 41 MHz, was assessed for effects on the immune system of Balb/C mice. The mice were immunized either by sheep red blood cells (SRBC) or by glutaric-anhydride conjugated bovine serum albumin (GA-BSA), then exposed to the microwaves at a low rms power density (30 microW/cm2; whole-body-averaged SAR approximately 0.015 W/kg). Sham exposure or microwave irradiation took place during each of five contiguous days, 10 h/day. The antibody response was evaluated by themore » plaque-forming cell assay (SRBC experiment) or by the titration of IgM and IgG antibodies (GA-BSA experiment). In the absence of AM, the pulsed field did not greatly alter immune responsiveness. In contrast, exposure to the field under the combined-modulation condition resulted in significant, AM-frequency-dependent augmentation or weakening of immune responses.« less

  19. Illusory conjunctions of pitch and duration in unfamiliar tone sequences.

    PubMed

    Thompson, W F; Hall, M D; Pressing, J

    2001-02-01

    In 3 experiments, the authors examined short-term memory for pitch and duration in unfamiliar tone sequences. Participants were presented a target sequence consisting of 2 tones (Experiment 1) or 7 tones (Experiments 2 and 3) and then a probe tone. Participants indicated whether the probe tone matched 1 of the target tones in both pitch and duration. Error rates were relatively low if the probe tone matched 1 of the target tones or if it differed from target tones in pitch, duration, or both. Error rates were remarkably high, however, if the probe tone combined the pitch of 1 target tone with the duration of a different target tone. The results suggest that illusory conjunctions of these dimensions frequently occur. A mathematical model is presented that accounts for the relative contribution of pitch errors, duration errors, and illusory conjunctions of pitch and duration.

  20. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    NASA Astrophysics Data System (ADS)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The

  1. Effects of Lexical Tone Contour on Mandarin Sentence Intelligibility

    ERIC Educational Resources Information Center

    Chen, Fei; Wong, Lena L. N.; Hu, Yi

    2014-01-01

    Purpose: This study examined the effects of lexical tone contour on the intelligibility of Mandarin sentences in quiet and in noise. Method: A text-to-speech synthesis engine was used to synthesize Mandarin sentences with each word carrying the original lexical tone, flat tone, or a tone randomly selected from the 4 Mandarin lexical tones. The…

  2. Concurrent encoding of frequency and amplitude modulation in human auditory cortex: encoding transition.

    PubMed

    Luo, Huan; Wang, Yadong; Poeppel, David; Simon, Jonathan Z

    2007-12-01

    Complex natural sounds (e.g., animal vocalizations or speech) can be characterized by specific spectrotemporal patterns the components of which change in both frequency (FM) and amplitude (AM). The neural coding of AM and FM has been widely studied in humans and animals but typically with either pure AM or pure FM stimuli. The neural mechanisms employed to perceptually unify AM and FM acoustic features remain unclear. Using stimuli with simultaneous sinusoidal AM (at rate f(AM) = 37 Hz) and FM (with varying rates f(FM)), magnetoencephalography (MEG) is used to investigate the elicited auditory steady-state response (aSSR) at relevant frequencies (f(AM), f(FM), f(AM) + f(FM)). Previous work demonstrated that for sounds with slower FM dynamics (f(FM) < 5 Hz), the phase of the aSSR at f(AM) tracked the FM; in other words, AM and FM features were co-tracked and co-represented by "phase modulation" encoding. This study explores the neural coding mechanism for stimuli with faster FM dynamics (< or =30 Hz), demonstrating that at faster rates (f(FM) > 5 Hz), there is a transition from pure phase modulation encoding to a single-upper-sideband (SSB) response (at frequency f(AM) + f(FM)) pattern. We propose that this unexpected SSB response can be explained by the additional involvement of subsidiary AM encoding responses simultaneously to, and in quadrature with, the ongoing phase modulation. These results, using MEG to reveal a possible neural encoding of specific acoustic properties, demonstrate more generally that physiological tests of encoding hypotheses can be performed noninvasively on human subjects, complementing invasive, single-unit recordings in animals.

  3. Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy.

    PubMed

    Zhang, Ruihua; Ren, Ye; Liu, Chunyan; Xu, Na; Li, Xiaoli; Cong, Fengyu; Ristaniemi, Tapani; Wang, YuPing

    2017-09-01

    Neural activity of the epileptic human brain contains low- and high-frequency oscillations in different frequency bands, some of which have been used as reliable biomarkers of the epileptogenic brain areas. However, the relationship between the low- and high-frequency oscillations in different cortical areas during the period from pre-seizure to post-seizure has not been completely clarified. We recorded electrocorticogram data from the temporal lobe and hippocampus of seven patients with temporal lobe epilepsy. The modulation index based on the Kullback-Leibler distance and the phase-amplitude coupling co-modulogram were adopted to quantify the coupling strength between the phase of low-frequency oscillations (0.2-10Hz) and the amplitude of high-frequency oscillations (11-400Hz) in different seizure epochs. The time-varying phase-amplitude modulogram was used to analyze the phase-amplitude coupling pattern during the entire period from pre-seizure to post-seizure in both the left and right temporal lobe and hippocampus. Channels with strong modulation index were compared with the seizure onset channels identified by the neurosurgeons and the resection channels in the clinical surgery. The phase-amplitude coupling strength (modulation index) increased significantly in the mid-seizure epoch and decrease significantly in seizure termination and post-seizure epochs (p<0.001). The strong phase-amplitude-modulating low- and high-frequency oscillations in the mid-seizure epoch were mainly δ, θ, and α oscillations and γ and ripple oscillations, respectively. The phase-amplitude modulation and strength varied among channels and was asymmetrical in the left and right temporal cortex and hippocampus. The "fall-max" phase-amplitude modulation pattern, i.e., high-frequency amplitudes were largest in the low-frequency phase range [-π, 0], which corresponded to the falling edges of low-frequency oscillations, appeared in the middle period of the seizures at epileptic focus

  4. The influence of tone inventory on ERP without focal attention: a cross-language study.

    PubMed

    Zheng, Hong-Ying; Peng, Gang; Chen, Jian-Yong; Zhang, Caicai; Minett, James W; Wang, William S-Y

    2014-01-01

    This study investigates the effect of tone inventories on brain activities underlying pitch without focal attention. We find that the electrophysiological responses to across-category stimuli are larger than those to within-category stimuli when the pitch contours are superimposed on nonspeech stimuli; however, there is no electrophysiological response difference associated with category status in speech stimuli. Moreover, this category effect in nonspeech stimuli is stronger for Cantonese speakers. Results of previous and present studies lead us to conclude that brain activities to the same native lexical tone contrasts are modulated by speakers' language experiences not only in active phonological processing but also in automatic feature detection without focal attention. In contrast to the condition with focal attention, where phonological processing is stronger for speech stimuli, the feature detection (pitch contours in this study) without focal attention as shaped by language background is superior in relatively regular stimuli, that is, the nonspeech stimuli. The results suggest that Cantonese listeners outperform Mandarin listeners in automatic detection of pitch features because of the denser Cantonese tone system.

  5. Impaired learning of event frequencies in tone deafness

    PubMed Central

    Loui, Psyche; Schlaug, Gottfried

    2013-01-01

    Musical knowledge is ubiquitous, effortless, and implicitly acquired all over the world via exposure to musical materials in one’s culture. In contrast, one group of individuals who show insensitivity to music, specifically the inability to discriminate pitches and melodies, is the tone-deaf. In this study, we asked whether difficulties in pitch and melody discrimination among the tone-deaf could be related to learning difficulties, and, if so, what processes of learning might be affected in the tone-deaf. We investigated the learning of frequency information in a new musical system in tone-deaf individuals and matched controls. Results showed significantly impaired learning abilities in frequency matching in the tone-deaf. This impairment was positively correlated with the severity of tone deafness as assessed by the Montreal Battery for Evaluation of Amusia. Taken together, the results suggest that tone deafness is characterized by an impaired ability to acquire frequency information from pitched materials in the sound environment. PMID:22524379

  6. Impaired learning of event frequencies in tone deafness.

    PubMed

    Loui, Psyche; Schlaug, Gottfried

    2012-04-01

    Musical knowledge is ubiquitous, effortless, and implicitly acquired all over the world via exposure to musical materials in one's culture. In contrast, one group of individuals who show insensitivity to music, specifically the inability to discriminate pitches and melodies, is the tone-deaf. In this study, we asked whether difficulties in pitch and melody discrimination among the tone-deaf could be related to learning difficulties, and, if so, what processes of learning might be affected in the tone-deaf. We investigated the learning of frequency information in a new musical system in tone-deaf individuals and matched controls. Results showed significantly impaired learning abilities in frequency matching in the tone-deaf. This impairment was positively correlated with the severity of tone deafness as assessed by the Montreal Battery for Evaluation of Amusia. Taken together, the results suggest that tone deafness is characterized by an impaired ability to acquire frequency information from pitched materials in the sound environment. © 2012 New York Academy of Sciences.

  7. Perception of coarticulated tones by non-native listeners

    NASA Astrophysics Data System (ADS)

    Bent, Tessa

    2005-04-01

    Mandarin lexical tones vary in their acoustic realization depending on the surrounding context. Native listeners compensate for this tonal coarticulation when identifying tones in context. This study investigated how native English listeners handle tonal coarticulation by testing native English and Mandarin listeners discrimination of the four Mandarin lexical tones in tri-syllabic sequences in which the middle tone varied while the first and last tones were held constant. Three different such frames were tested. As expected, Mandarin listeners discriminated all pairs in all contexts with a high degree of accuracy. English listeners exhibited poorer discrimination than Mandarin listeners and their discrimination accuracy showed a high degree of context dependency. In addition to assessing accuracy, reactions times to correctly discriminated different trials were entered into a multidimensional scaling analysis. For both listener groups, the arrangement of tones in perceptual space varied depending on the surrounding context suggesting that listeners attend to different acoustic attributes of the target tone depending on the surrounding tones. These results demonstrate the importance for models of cross-language speech perception of including contextual variation when characterizing the perception of non-native prosodic categories. [Work supported by NIH/NIDCD

  8. Interdependent effects of sound duration and amplitude on neuronal onset response in mice inferior colliculus.

    PubMed

    Wang, Ningqian; Wang, Xiao; Yang, Xiaoli; Tang, Jie; Xiao, Zhongju

    2014-01-16

    In this study, we adopted iso-frequency pure tone bursts to investigate the interdependent effects of sound amplitude/intensity and duration on mice inferior colliculus (IC) neuronal onset responses. On the majority of the sampled neurons (n=57, 89.1%), sound amplitude and duration had effects on the neuronal response to each other by showing complex changes of the rat-intensity function/duration selectivity types and/or best amplitudes (BAs)/durations (BDs), evaluated by spike counts. These results suggested that the balance between the excitatory and inhibitory inputs set by one acoustic parameter, amplitude or duration, affected the neuronal spike counts responses to the other. Neuronal duration selectivity types were altered easily by the low-amplitude sounds while the changes of rate-intensity function types had no obvious preferred stimulus durations. However, the first spike latencies (FSLs) of the onset response neurons were relative stable to iso-amplitude sound durations and changing systematically along with the sound levels. The superimposition of FSL and duration threshold (DT) as a function of stimulus amplitude after normalization indicated that the effects of the sound levels on FSLs are considered on DT actually. © 2013 Published by Elsevier B.V.

  9. Random Feedback Makes Listeners Tone-Deaf.

    PubMed

    Vuvan, Dominique T; Zendel, Benjamin Rich; Peretz, Isabelle

    2018-05-08

    The mental representation of pitch structure (tonal knowledge) is a core component of musical experience and is learned implicitly through exposure to music. One theory of congenital amusia (tone deafness) posits that conscious access to tonal knowledge is disrupted, leading to a severe deficit of music cognition. We tested this idea by providing random performance feedback to neurotypical listeners while they listened to melodies for tonal incongruities and had their electrical brain activity monitored. The introduction of random feedback was associated with a reduction of accuracy and confidence, and a suppression of the late positive brain response usually elicited by conscious detection of a tonal violation. These effects mirror the behavioural and neurophysiological profile of amusia. In contrast, random feedback was associated with an increase in the amplitude of the early right anterior negativity, possibly due to heightened attention to the experimental task. This successful simulation of amusia in a normal brain highlights the key role of feedback in learning, and thereby provides a new avenue for the rehabilitation of learning disorders.

  10. Auditory evoked potentials to abrupt pitch and timbre change of complex tones: electrophysiological evidence of 'streaming'?

    PubMed

    Jones, S J; Longe, O; Vaz Pato, M

    1998-03-01

    Examination of the cortical auditory evoked potentials to complex tones changing in pitch and timbre suggests a useful new method for investigating higher auditory processes, in particular those concerned with 'streaming' and auditory object formation. The main conclusions were: (i) the N1 evoked by a sudden change in pitch or timbre was more posteriorly distributed than the N1 at the onset of the tone, indicating at least partial segregation of the neuronal populations responsive to sound onset and spectral change; (ii) the T-complex was consistently larger over the right hemisphere, consistent with clinical and PET evidence for particular involvement of the right temporal lobe in the processing of timbral and musical material; (iii) responses to timbral change were relatively unaffected by increasing the rate of interspersed changes in pitch, suggesting a mechanism for detecting the onset of a new voice in a constantly modulated sound stream; (iv) responses to onset, offset and pitch change of complex tones were relatively unaffected by interfering tones when the latter were of a different timbre, suggesting these responses must be generated subsequent to auditory stream segregation.

  11. General perceptual contributions to lexical tone normalization.

    PubMed

    Huang, Jingyuan; Holt, Lori L

    2009-06-01

    Within tone languages that use pitch variations to contrast meaning, large variability exists in the pitches produced by different speakers. Context-dependent perception may help to resolve this perceptual challenge. However, whether speakers rely on context in contour tone perception is unclear; previous studies have produced inconsistent results. The present study aimed to provide an unambiguous test of the effect of context on contour lexical tone perception and to explore its underlying mechanisms. In three experiments, Mandarin listeners' perception of Mandarin first and second (high-level and mid-rising) tones was investigated with preceding speech and non-speech contexts. Results indicate that the mean fundamental frequency (f0) of a preceding sentence affects perception of contour lexical tones and the effect is contrastive. Following a sentence with a higher-frequency mean f0, the following syllable is more likely to be perceived as a lower frequency lexical tone and vice versa. Moreover, non-speech precursors modeling the mean spectrum of f0 also elicit this effect, suggesting general perceptual processing rather than articulatory-based or speaker-identity-driven mechanisms.

  12. The perceptual reality of tone chroma in early infancy.

    PubMed

    Demany, L; Armand, F

    1984-07-01

    It has often been advanced that pitch is a two-dimensional perceptual attribute, its two dimensions being: (1) tone height, a perceptual quality monotonically related to frequency; and (2) tone chroma, a quality shared by tones forming an octave interval. However, given that many musically uneducated adults do not seem to perceive tone chroma, this model is controversial. We investigated the sensitivity of three-month-old infants to tone chroma by means of a behavioral habituation-dishabituation procedure. Infants were presented with two successive melodic sequences of pure tones, the second sequence being a distorted version of the first one. The distortion consisted in shifting the frequency of some of the original tones, through a seventh or a ninth for some infants, through an octave for others. In the former case, infants displayed significant novelty reactions. In the latter case, significant novelty reactions were observed when the two sequences differed in melodic contour, but not when they had the same contour. These results suggest that young infants are sensitive to both tone height and tone chroma, and thus that tone chroma perception does not necessitate some form of musical experience.

  13. Strategies for Analyzing Tone Languages

    ERIC Educational Resources Information Center

    Coupe, Alexander R.

    2014-01-01

    This paper outlines a method of auditory and acoustic analysis for determining the tonemes of a language starting from scratch, drawing on the author's experience of recording and analyzing tone languages of north-east India. The methodology is applied to a preliminary analysis of tone in the Thang dialect of Khiamniungan, a virtually undocumented…

  14. PC-PLC/sphingomyelin synthase activity plays a central role in the development of myogenic tone in murine resistance arteries

    PubMed Central

    Zacharia, Joseph; Fairfax, Seth; Wier, Withrow Gil

    2015-01-01

    Myogenic tone is an intrinsic property of the vasculature that contributes to blood pressure control and tissue perfusion. Earlier investigations assigned a key role in myogenic tone to phospholipase C (PLC) and its products, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Here, we used the PLC inhibitor, U-73122, and two other, specific inhibitors of PLC subtypes (PI-PLC and PC-PLC) to delineate the role of PLC in myogenic tone of pressurized murine mesenteric arteries. U-73122 inhibited depolarization-induced contractions (high external K+ concentration), thus confirming reports of nonspecific actions of U-73122 and its limited utility for studies of myogenic tone. Edelfosine, a specific inhibitor of PI-PLC, did not affect depolarization-induced contractions but modulated myogenic tone. Because PI-PLC produces IP3, we investigated the effect of blocking IP3 receptor-mediated Ca2+ release on myogenic tone. Incubation of arteries with xestospongin C did not affect tone, consistent with the virtual absence of Ca2+ waves in arteries with myogenic tone. D-609, an inhibitor of PC-PLC and sphingomyelin synthase, strongly inhibited myogenic tone and had no effect on depolarization-induced contraction. D-609 appeared to act by lowering cytoplasmic Ca2+ concentration to levels below those that activate contraction. Importantly, incubation of pressurized arteries with a membrane-permeable analog of DAG induced vasoconstriction. The results therefore mandate a reexamination of the signaling pathways activated by the Bayliss mechanism. Our results suggest that PI-PLC and IP3 are not required in maintaining myogenic tone, but DAG, produced by PC-PLC and/or SM synthase, is likely through multiple mechanisms to increase Ca2+ entry and promote vasoconstriction. PMID:25888510

  15. Modulational instability of finite-amplitude, circularly polarized Alfven waves

    NASA Technical Reports Server (NTRS)

    Derby, N. F., Jr.

    1978-01-01

    The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.

  16. Lexical Encoding of L2 Tones: The Role of L1 Stress, Pitch Accent and Intonation

    ERIC Educational Resources Information Center

    Braun, Bettina; Galts, Tobias; Kabak, Baris

    2014-01-01

    Native language prosodic structure is known to modulate the processing of non-native suprasegmental information. It has been shown that native speakers of French, a language without lexical stress, have difficulties storing non-native stress contrasts. We investigated whether the ability to store lexical tone (as in Mandarin Chinese) also depends…

  17. Concept for the fast modulation of light in amplitude and phase using analog tilt-mirror arrays

    NASA Astrophysics Data System (ADS)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2017-02-01

    The full complex, spatial modulation of light at high frame rates is essential for a variety of applications. In particular, emerging techniques applied to scattering media, such as Digital Optical Phase Conjugation and Wavefront Shaping, request challenging performance parameters. They refer to imaging tasks inside biological media, whose characteristics concerning the transmission and reflection of scattered light may change over time within milliseconds. Thus, these methods call for frame rates in the kilohertz range. Existing solutions typically over frame rate capabilities below 100 Hz, since they rely on liquid crystal spatial light modulators (SLMs). We propose a diffractive MEMS optical system for this application range. It relies on an analog, tilt-type micro mirror array (MMA) based on an established SLM technology, where the standard application is grayscale amplitude control. The new MMA system design allows the phase manipulation at high-speed as well. The article studies properties of the appropriate optical setup by simulating the propagation of the light. Relevant test patterns and sensitivity parameters of the system will be analyzed. Our results illustrate the main opportunities of the concept with particular focus on the tilt mirror technology. They indicate a promising path to realize the complex light modulation at frame rates above 1 kHz and resolutions well beyond 10,000 complex pixels.

  18. Modulation bandwidth of spin torque oscillators under current modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinsat, M.; CEA, INAC-SPINTEC, F-38054 Grenoble; CNRS, SPINTEC, F-38054 Grenoble

    2014-10-13

    For practical applications of spin torque nano-oscillators (STNO), one of the most critical characteristics is the speed at which an STNO responds to variations of external control parameters, such as current or/and field. Theory predicts that this speed is limited by the amplitude relaxation rate Γ{sub p} that determines the timescale over which the amplitude fluctuations are damped out. In this study, this limit is verified experimentally by analyzing the amplitude and frequency noise spectra of the output voltage signal when modulating an STNO by a microwave current. In particular, it is shown that due to the non-isochronous nature ofmore » the STNO the amplitude relaxation rate Γ{sub p} determines not only the bandwidth of an amplitude modulation, but also the bandwidth of a frequency modulation. The presented experimental technique will be important for the optimisation of the STNO characteristics for applications in telecommunications or/and data storage and is applicable even in the case when the STNO output signal is only several times higher than noise.« less

  19. Musical experience and Mandarin tone discrimination and imitation

    NASA Astrophysics Data System (ADS)

    Gottfried, Terry L.; Staby, Ann M.; Ziemer, Christine J.

    2004-05-01

    Previous work [T. L. Gottfried and D. Riester, J. Acoust. Soc. Am. 108, 2604 (2000)] showed that native speakers of American English with musical training performed better than nonmusicians when identifying the four distinctive tones of Mandarin Chinese (high-level, mid-rising, low-dipping, high-falling). Accuracy for both groups was relatively low since listeners were not trained on the phonemic contrasts. Current research compares musicians and nonmusicians on discrimination and imitation of unfamiliar tones. Listeners were presented with two different Mandarin words that had either the same or different tones; listeners indicated whether the tones were same or different. Thus, they were required to determine a categorical match (same or different tone), rather than an auditory match. All listeners had significantly more difficulty discriminating between mid-rising and low-dipping tones than with other contrasts. Listeners with more musical training showed significantly greater accuracy in their discrimination. Likewise, musicians' spoken imitations of Mandarin tones (model tokens presented by a native speaker) were rated as significantly more native-like than those of nonmusicians. These findings suggest that musicians may have abilities or training that facilitate their perception and production of Mandarin tones. However, further research is needed to determine whether this advantage transfers to language learning situations.

  20. Intracellular responses of onset chopper neurons in the ventral cochlear nucleus to tones: evidence for dual-component processing.

    PubMed

    Paolini, A G; Clark, G M

    1999-05-01

    Intracellular responses of onset chopper neurons in the ventral cochlear nucleus to tones: evidence for dual-component processing. The ventral cochlear nucleus (VCN) contains a heterogeneous collection of cell types reflecting the multiple processing tasks undertaken by this nucleus. This in vivo study in the rat used intracellular recordings and dye filling to examine membrane potential changes and firing characteristics of onset chopper (OC) neurons to acoustic stimulation (50 ms pure tones, 5 ms r/f time). Stable impalements were made from 15 OC neurons, 7 identified as multipolar cells. Neurons responded to characteristic frequency (CF) tones with sustained depolarization below spike threshold. With increasing stimulus intensity, the depolarization during the initial 10 ms of the response became peaked, and with further increases in intensity the peak became narrower. Onset spikes were generated during this initial depolarization. Tones presented below CF resulted in a broadening of this initial depolarizing component with high stimulus intensities required to initiate onset spikes. This initial component was followed by a sustained depolarizing component lasting until stimulus cessation. The amplitude of the sustained depolarizing component was greatest when frequencies were presented at high intensities below CF resulting in increased action potential firing during this period when compared with comparable high intensities at CF. During the presentation of tones at or above the high-frequency edge of a cell's response area, hyperpolarization was evident during the sustained component. The presence of hyperpolarization and the differences seen in the level of sustained depolarization during CF and off CF tones suggests that changes in membrane responsiveness between the initial and sustained components may be attributed to polysynaptic inhibitory mechanisms. The dual-component processing resulting from convergent auditory nerve excitation and polysynaptic

  1. The Parsing Syllable Envelopes Test for Assessment of Amplitude Modulation Discrimination Skills in Children: Development, Normative Data, and Test-Retest Reliability Studies.

    PubMed

    Cameron, Sharon; Chong-White, Nicky; Mealings, Kiri; Beechey, Tim; Dillon, Harvey; Young, Taegan

    2018-02-01

    Intensity peaks and valleys in the acoustic signal are salient cues to syllable structure, which is accepted to be a crucial early step in phonological processing. As such, the ability to detect low-rate (envelope) modulations in signal amplitude is essential to parse an incoming speech signal into smaller phonological units. The Parsing Syllable Envelopes (ParSE) test was developed to quantify the ability of children to recognize syllable boundaries using an amplitude modulation detection paradigm. The envelope of a 750-msec steady-state /a/ vowel is modulated into two or three pseudo-syllables using notches with modulation depths varying between 0% and 100% along an 11-step continuum. In an adaptive three-alternative forced-choice procedure, the participant identified whether one, two, or three pseudo-syllables were heard. Development of the ParSE stimuli and test protocols, and collection of normative and test-retest reliability data. Eleven adults (aged 23 yr 10 mo to 50 yr 9 mo, mean 32 yr 10 mo) and 134 typically developing, primary-school children (aged 6 yr 0 mo to 12 yr 4 mo, mean 9 yr 3 mo). There were 73 males and 72 females. Data were collected using a touchscreen computer. Psychometric functions (PFs) were automatically fit to individual data by the ParSE software. Performance was related to the modulation depth at which syllables can be detected with 88% accuracy (referred to as the upper boundary of the uncertainty region [UBUR]). A shallower PF slope reflected a greater level of uncertainty. Age effects were determined based on raw scores. z Scores were calculated to account for the effect of age on performance. Outliers, and individual data for which the confidence interval of the UBUR exceeded a maximum allowable value, were removed. Nonparametric tests were used as the data were skewed toward negative performance. Across participants, the performance criterion (UBUR) was met with a median modulation depth of 42%. The effect of age on the UBUR was

  2. Anti-ship missile tracking with a chirped amplitude modulation ladar

    NASA Astrophysics Data System (ADS)

    Redman, Brian C.; Stann, Barry L.; Ruff, William C.; Giza, Mark M.; Aliberti, Keith; Lawler, William B.

    2004-09-01

    Shipboard infrared search and track (IRST) systems can detect sea-skimming anti-ship missiles at long ranges. Since IRST systems cannot measure range and velocity, they have difficulty distinguishing missiles from slowly moving false targets and clutter. ARL is developing a ladar based on its patented chirped amplitude modulation (AM) technique to provide unambiguous range and velocity measurements of targets handed over to it by the IRST. Using the ladar's range and velocity data, false alarms and clutter objects will be distinguished from valid targets. If the target is valid, it's angular location, range, and velocity, will be used to update the target track until remediation has been effected. By using an array receiver, ARL's ladar can also provide 3D imagery of potential threats in support of force protection. The ladar development program will be accomplished in two phases. In Phase I, currently in progress, ARL is designing and building a breadboard ladar test system for proof-of-principle static platform field tests. In Phase II, ARL will build a brassboard ladar test system that will meet operational goals in shipboard testing against realistic targets. The principles of operation for the chirped AM ladar for range and velocity measurements, the ladar performance model, and the top-level design for the Phase I breadboard are presented in this paper.

  3. A coronagraph based on two spatial light modulators for active amplitude apodizing and phase corrections

    NASA Astrophysics Data System (ADS)

    Dou, Jiangpei; Ren, Deqing; Zhang, Xi; Zhu, Yongtian; Zhao, Gang; Wu, Zhen; Chen, Rui; Liu, Chengchao; Yang, Feng; Yang, Chao

    2014-08-01

    Almost all high-contrast imaging coronagraphs proposed until now are based on passive coronagraph optical components. Recently, Ren and Zhu proposed for the first time a coronagraph that integrates a liquid crystal array (LCA) for the active pupil apodizing and a deformable mirror (DM) for the phase corrections. Here, for demonstration purpose, we present the initial test result of a coronagraphic system that is based on two liquid crystal spatial light modulators (SLM). In the system, one SLM is served as active pupil apodizing and amplitude correction to suppress the diffraction light; another SLM is used to correct the speckle noise that is caused by the wave-front distortions. In this way, both amplitude and phase error can be actively and efficiently compensated. In the test, we use the stochastic parallel gradient descent (SPGD) algorithm to control two SLMs, which is based on the point spread function (PSF) sensing and evaluation and optimized for a maximum contrast in the discovery area. Finally, it has demonstrated a contrast of 10-6 at an inner working angular distance of ~6.2 λ/D, which is a promising technique to be used for the direct imaging of young exoplanets on ground-based telescopes.

  4. Quasi-periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bult, Peter; Doesburgh, Marieke van; Klis, Michiel van der

    We introduce a new method for analyzing the aperiodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain light curve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and aperiodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with themore » Rossi X-ray Timing Explorer and XMM-Newton . We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.« less

  5. Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system

    NASA Astrophysics Data System (ADS)

    Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel

    2000-04-01

    Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.

  6. Enhanced modulation rates via field modulation in spin torque nano-oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purbawati, A.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.

    Spin Transfer Nano-Oscillators (STNOs) are promising candidates for telecommunications applications due to their frequency tuning capabilities via either a dc current or an applied field. This frequency tuning is of interest for Frequency Shift Keying concepts to be used in wireless communication schemes or in read head applications. For these technological applications, one important parameter is the characterization of the maximum achievable rate at which an STNO can respond to a modulating signal, such as current or field. Previous studies of in-plane magnetized STNOs on frequency modulation via an rf current revealed that the maximum achievable rate is limited bymore » the amplitude relaxation rate Γ{sub p}, which gives the time scale over which amplitude fluctuations are damped out. This might be a limitation for applications. Here, we demonstrate via numerical simulation that application of an additional rf field is an alternative way for modulation of the in-plane magnetized STNO configuration, which has the advantage that frequency modulation is not limited by the amplitude relaxation rate, so that higher modulation rates above GHz are achievable. This occurs when the modulating rf field is oriented along the easy axis (longitudinal rf field). Tilting the direction of the modulating rf field in-plane and perpendicularly with respect to the easy axis (transverse rf field), the modulation is again limited by the amplitude relaxation rate similar to the response observed in current modulation.« less

  7. The sphingosine analog fingolimod (FTY720) enhances tone and contractility of rat gastric fundus smooth muscle.

    PubMed

    Kraft, M; Zettl, U K; Noack, T; Patejdl, R

    2018-05-08

    Sphingosine and its metabolite sphingosine phosphate (S1P) regulate a multitude of biological functions, including the contractile state of smooth. Gastrointestinal side effects have been reported in patients treated with FTY720, a sphingosine analog that is approved for the treatment of multiple sclerosis. The aim of this study was to characterize the effects of FTY720 on rat gastric fundus smooth muscle under basal conditions and during activation induced by high-K + solution. Isometric contractions of isolated circular strips of gastric fundus smooth muscle were recorded using the organ bath method. The effects of FTY720 or vehicle were recorded under control conditions and in the presence of indomethacin, L-NAME, HA-1100, nifedipine, JTE-013, and suramin. Tone and contractions recorded in the presence of FTY720 or vehicle are reported as % of the amplitude of an initial high-K + contraction obtained under control conditions. From a concentration of 10 μmol L -1 onwards, FTY720 increased the tone, reaching 8.9% ± 7.5% at 100 μmol L -1 (P < .05). With indomethacin in the solution, the effects of FTY720 were enhanced (32.1% ± 7.7%; P < .001). The FTY720-induced increase in tone was abolished in the absence of extracellular Ca 2+ and reduced by nifedipine, HA-1100, JTE-013, and suramin. Furthermore, FTY720 increased high-K + contractions in the presence of indomethacin. FTY720 increases tone and contractile responses to depolarization in gastric fundus smooth muscle by triggering calcium entry and calcium sensitization in a S1P receptor-dependent manner. Taken together, the experimental results presented in this work suggest that FTY720 may increase gastric tone and contractility in patients. © 2018 John Wiley & Sons Ltd.

  8. Computational Support for Early Elicitation and Classification of Tone

    ERIC Educational Resources Information Center

    Bird, Steven; Lee, Haejoong

    2014-01-01

    Investigating a tone language involves careful transcription of tone on words and phrases. This is challenging when the phonological categories--the tones or melodies--have not been identified. Effects such as coarticulation, sandhi, and phrase-level prosody appear as obstacles to early elicitation and classification of tone. This article presents…

  9. Musicians' working memory for tones, words, and pseudowords.

    PubMed

    Benassi-Werke, Mariana E; Queiroz, Marcelo; Araújo, Rúben S; Bueno, Orlando F A; Oliveira, Maria Gabriela M

    2012-01-01

    Studies investigating factors that influence tone recognition generally use recognition tests, whereas the majority of the studies on verbal material use self-generated responses in the form of serial recall tests. In the present study we intended to investigate whether tonal and verbal materials share the same cognitive mechanisms, by presenting an experimental instrument that evaluates short-term and working memories for tones, using self-generated sung responses that may be compared to verbal tests. This paradigm was designed according to the same structure of the forward and backward digit span tests, but using digits, pseudowords, and tones as stimuli. The profile of amateur singers and professional singers in these tests was compared in forward and backward digit, pseudoword, tone, and contour spans. In addition, an absolute pitch experimental group was included, in order to observe the possible use of verbal labels in tone memorization tasks. In general, we observed that musical schooling has a slight positive influence on the recall of tones, as opposed to verbal material, which is not influenced by musical schooling. Furthermore, the ability to reproduce melodic contours (up and down patterns) is generally higher than the ability to reproduce exact tone sequences. However, backward spans were lower than forward spans for all stimuli (digits, pseudowords, tones, contour). Curiously, backward spans were disproportionately lower for tones than for verbal material-that is, the requirement to recall sequences in backward rather than forward order seems to differentially affect tonal stimuli. This difference does not vary according to musical expertise.

  10. Modified hybrid subcarrier/amplitude/ phase/polarization LDPC-coded modulation for 400 Gb/s optical transmission and beyond.

    PubMed

    Batshon, Hussam G; Djordjevic, Ivan; Xu, Lei; Wang, Ting

    2010-06-21

    In this paper, we present a modified coded hybrid subcarrier/ amplitude/phase/polarization (H-SAPP) modulation scheme as a technique capable of achieving beyond 400 Gb/s single-channel transmission over optical channels. The modified H-SAPP scheme profits from the available resources in addition to geometry to increase the bandwidth efficiency of the transmission system, and so increases the aggregate rate of the system. In this report we present the modified H-SAPP scheme and focus on an example that allows 11 bits/Symbol that can achieve 440 Gb/s transmission using components of 50 Giga Symbol/s (GS/s).

  11. [Dichotic perception of Mandarin third tone by Mexican Chinese learners].

    PubMed

    Wang, Hongbin

    2014-05-01

    To investigate the relationship between the advantage ear (cerebral hemisphere) of Spanish-speaking Mexican learners and the third Chinese tone. Third tone Chinese vowel syllables were used as experimental materials with dichotic listening technology to test the Spanish-speaking Mexican Chinese learners (20-32 years old) who studied Chinese about 20 h. In terms of error rates to identify the third Chinese tone, the Spanish-speaking Mexican Chinese learners's reaction to the third tone suggested that their left ears were the advantageous ear (the right cerebral hemisphere) (Z=-2.091, P=0.036). The verbal information of tones influenced the perception of Mexican Chinese learners' mandarin tones. In the process of learning mandarin tones, Mexican Chinese learners gradually formed the category of tones.

  12. Enhanced visual perception through tone mapping

    NASA Astrophysics Data System (ADS)

    Harrison, Andre; Mullins, Linda L.; Raglin, Adrienne; Etienne-Cummings, Ralph

    2016-05-01

    Tone mapping operators compress high dynamic range images to improve the picture quality on a digital display when the dynamic range of the display is lower than that of the image. However, tone mapping operators have been largely designed and evaluated based on the aesthetic quality of the resulting displayed image or how perceptually similar the compressed image appears relative to the original scene. They also often require per image tuning of parameters depending on the content of the image. In military operations, however, the amount of information that can be perceived is more important than the aesthetic quality of the image and any parameter adjustment needs to be as automated as possible regardless of the content of the image. We have conducted two studies to evaluate the perceivable detail of a set of tone mapping algorithms, and we apply our findings to develop and test an automated tone mapping algorithm that demonstrates a consistent improvement in the amount of perceived detail. An automated, and thereby predictable, tone mapping method enables a consistent presentation of perceivable features, can reduce the bandwidth required to transmit the imagery, and can improve the accessibility of the data by reducing the needed expertise of the analyst(s) viewing the imagery.

  13. Enhanced endocannabinoid tone as a potential target of pharmacotherapy.

    PubMed

    Toczek, Marek; Malinowska, Barbara

    2018-07-01

    The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms. Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids. The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake. To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound. In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF 2α -EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels. Ultimately, further clinical and preclinical studies are

  14. Note: Demodulation of spectral signal modulated by optical chopper with unstable modulation frequency.

    PubMed

    Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong

    2017-10-01

    When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.

  15. Acute Phencyclidine Alters Neural Oscillations Evoked by Tones in the Auditory Cortex of Rats.

    PubMed

    Schnakenberg Martin, Ashley M; OʼDonnell, Brian F; Millward, James B; Vohs, Jenifer L; Leishman, Emma; Bolbecker, Amanda R; Rass, Olga; Morzorati, Sandra L

    2017-01-01

    The onset response to a single tone as measured by electroencephalography (EEG) is diminished in power and synchrony in schizophrenia. Because neural synchrony, particularly at gamma frequencies (30-80 Hz), is hypothesized to be supported by the N-methyl-D-aspartate receptor (NMDAr) system, we tested whether phencyclidine (PCP), an NMDAr antagonist, produced similar deficits to tone stimuli in rats. Experiment 1 tested the effect of a PCP dose (1.0, 2.5, and 4.5 mg/kg) on response to single tones on intracranial EEG recorded over the auditory cortex in rats. Experiment 2 evaluated the effect of PCP after acute administration of saline or PCP (5 mg/kg), after continuous subchronic administration of saline or PCP (5 mg/kg/day), and after a week of drug cessation. In both experiments, a time-frequency analysis quantified mean power (MP) and phase locking factor (PLF) between 1 and 80 Hz. Event-related potentials (ERPs) were also measured to tones, and EEG spectral power in the absence of auditory stimuli. Acute PCP increased PLF and MP between 10 and 30 Hz, while decreasing MP and PLF between approximately 50 and 70 Hz. Acute PCP produced a dose-dependent broad-band increase in EEG power that extended into gamma range frequencies. There were no consistent effects of subchronic administration on gamma range activity. Acute PCP increased ERP amplitudes for the P16 and N70 components. Findings suggest that acute PCP-induced NMDAr hypofunction has differential effects on neural power and synchrony which vary with dose, time course of administration and EEG frequency. EEG synchrony and power appear to be sensitive translational biomarkers for disrupted NMDAr function, which may contribute to the pathophysiology of schizophrenia and other neuropsychiatric disorders. © 2017 S. Karger AG, Basel.

  16. Phase reduction of a limit cycle oscillator perturbed by a strong amplitude-modulated high-frequency force.

    PubMed

    Pyragas, Kestutis; Novičenko, Viktor

    2015-07-01

    The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective phase response curve. We show that if the effective phase response curve is everywhere positive (negative), then an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower) than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.

  17. The perceptual enhancement of tones by frequency shifts.

    PubMed

    Demany, Laurent; Carcagno, Samuele; Semal, Catherine

    2013-04-01

    In a chord of pure tones with a flat spectral profile, one tone can be perceptually enhanced relative to the other tones by the previous presentation of a slightly different chord. "Intensity enhancement" (IE) is obtained when the component tones of the two chords have the same frequencies, but in the first chord the target of enhancement is attenuated relative to the other tones. "Frequency enhancement" (FE) is obtained when both chords have a flat spectral profile, but the target of enhancement shifts in frequency from the first to the second chord. We report here an experiment in which IE and FE were measured using a task requiring the listener to indicate whether or not the second chord included a tone identical to a subsequent probe tone. The results showed that a global attenuation of the first chord relative to the second chord disrupted IE more than FE. This suggests that the mechanisms of IE and FE are not the same. In accordance with this suggestion, computations of the auditory excitation patterns produced by the chords indicate that the mechanism of IE is not sufficient to explain FE for small frequency shifts. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Musical Scales in Tone Sequences Improve Temporal Accuracy.

    PubMed

    Li, Min S; Di Luca, Massimiliano

    2018-01-01

    Predicting the time of stimulus onset is a key component in perception. Previous investigations of perceived timing have focused on the effect of stimulus properties such as rhythm and temporal irregularity, but the influence of non-temporal properties and their role in predicting stimulus timing has not been exhaustively considered. The present study aims to understand how a non-temporal pattern in a sequence of regularly timed stimuli could improve or bias the detection of temporal deviations. We presented interspersed sequences of 3, 4, 5, and 6 auditory tones where only the timing of the last stimulus could slightly deviate from isochrony. Participants reported whether the last tone was 'earlier' or 'later' relative to the expected regular timing. In two conditions, the tones composing the sequence were either organized into musical scales or they were random tones. In one experiment, all sequences ended with the same tone; in the other experiment, each sequence ended with a different tone. Results indicate higher discriminability of anisochrony with musical scales and with longer sequences, irrespective of the knowledge of the final tone. Such an outcome suggests that the predictability of non-temporal properties, as enabled by the musical scale pattern, can be a factor in determining the sensitivity of time judgments.

  19. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  20. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  1. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  2. Objective quality assessment of tone-mapped images.

    PubMed

    Yeganeh, Hojatollah; Wang, Zhou

    2013-02-01

    Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.

  3. English and Thai Speakers' Perception of Mandarin Tones

    ERIC Educational Resources Information Center

    Li, Ying

    2016-01-01

    Language learners' language experience is predicted to display a significant effect on their accurate perception of foreign language sounds (Flege, 1995). At the superasegmental level, there is still a debate regarding whether tone language speakers are better able to perceive foreign lexical tones than non-tone language speakers (i.e Lee et al.,…

  4. Pitch Ability as an Aptitude for Tone Learning

    ERIC Educational Resources Information Center

    Bowles, Anita R.; Chang, Charles B.; Karuzis, Valerie P.

    2016-01-01

    Tone languages such as Mandarin use voice pitch to signal lexical contrasts, presenting a challenge for second/foreign language (L2) learners whose native languages do not use pitch in this manner. The present study examined components of an aptitude for mastering L2 lexical tone. Native English speakers with no previous tone language experience…

  5. Effects of Tone-Quality Changes on Intonation and Tone-Quality Ratings of High School and College Instrumentalists.

    ERIC Educational Resources Information Center

    Geringer, John M.; Worthy, Michael D.

    1999-01-01

    Investigates effects of variations in tone quality on listeners' perception of both tone quality and intonation. Indicates that more inexperienced instrumentalists rated stimuli that were "brighter" in quality as sharper in intonation, and those that were "darker" as flatter. Also, finds differences for brass versus woodwind instruments. (DSK)

  6. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice.

    PubMed

    Manzini, S; Pinna, C; Busnelli, M; Cinquanta, P; Rigamonti, E; Ganzetti, G S; Dellera, F; Sala, A; Calabresi, L; Franceschini, G; Parolini, C; Chiesa, G

    2015-11-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcat(wt)) and LCAT knockout (Lcat(KO)) mice exposed to noradrenaline showed reduced contractility in Lcat(KO) mice (P<0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in Lcat(KO) mice (P<0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in Lcat(KO) mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcat(wt) and Lcat(KO) mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. Copyright © 2015. Published by Elsevier Inc.

  7. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice

    PubMed Central

    Manzini, S.; Pinna, C.; Busnelli, M.; Cinquanta, P.; Rigamonti, E.; Ganzetti, G.S.; Dellera, F.; Sala, A.; Calabresi, L.; Franceschini, G.; Parolini, C.; Chiesa, G.

    2015-01-01

    Lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with hypoalphalipoproteinemia, generally a predisposing factor for premature coronary heart disease. The evidence of accelerated atherosclerosis in LCAT-deficient subjects is however controversial. In this study, the effect of LCAT deficiency on vascular tone and endothelial function was investigated in LCAT knockout mice, which reproduce the human lipoprotein phenotype. Aortas from wild-type (Lcatwt) and LCAT knockout (LcatKO) mice exposed to noradrenaline showed reduced contractility in LcatKO mice (P < 0.005), whereas acetylcholine exposure showed a lower NO-dependent relaxation in LcatKO mice (P < 0.05). Quantitative PCR and Western blotting analyses suggested an adequate eNOS expression in LcatKO mouse aortas. Real-time PCR analysis indicated increased expression of β2-adrenergic receptors vs wild-type mice. Aorta stimulation with noradrenaline in the presence of propranolol, to abolish the β-mediated relaxation, showed the same contractile response in the two mouse lines. Furthermore, propranolol pretreatment of mouse aortas exposed to L-NAME prevented the difference in responses between Lcatwt and LcatKO mice. The results indicate that LCAT deficiency leads to increased β2-adrenergic relaxation and to a consequently decreased NO-mediated vasodilation that can be reversed to guarantee a correct vascular tone. The present study suggests that LCAT deficiency is not associated with an impaired vascular reactivity. PMID:26254103

  8. Sound source localization identification accuracy: Envelope dependencies.

    PubMed

    Yost, William A

    2017-07-01

    Sound source localization accuracy as measured in an identification procedure in a front azimuth sound field was studied for click trains, modulated noises, and a modulated tonal carrier. Sound source localization accuracy was determined as a function of the number of clicks in a 64 Hz click train and click rate for a 500 ms duration click train. The clicks were either broadband or high-pass filtered. Sound source localization accuracy was also measured for a single broadband filtered click and compared to a similar broadband filtered, short-duration noise. Sound source localization accuracy was determined as a function of sinusoidal amplitude modulation and the "transposed" process of modulation of filtered noises and a 4 kHz tone. Different rates (16 to 512 Hz) of modulation (including unmodulated conditions) were used. Providing modulation for filtered click stimuli, filtered noises, and the 4 kHz tone had, at most, a very small effect on sound source localization accuracy. These data suggest that amplitude modulation, while providing information about interaural time differences in headphone studies, does not have much influence on sound source localization accuracy in a sound field.

  9. Tone and prosodic organization in Cherokee nouns

    NASA Astrophysics Data System (ADS)

    Johnson, Keith; Haag, Marcia

    2005-04-01

    Preliminary observations in the speech of one speaker of Cherokee led us to postulate three factors affecting tone in Cherokee. (1) Tone may be lexically specified with distinctive low, low fall, low rise, and high tones. (2) There is a metrically determined high fall pattern which may be distributed over not more than 2 syllables from the right edge of a prosodic domain. (3) Intonational domains may be associated with discourse functions, marked by high fall, or by pitch range upstep. This paper tests these observations in recordings of word lists and sentences produced by five additional speakers. The analysis we give, positing both lexical tone and metrical prosodic accent, is not unique in descriptions of language, but is different from the usual description of Cherokee. [Work supported by NSF.

  10. Modulation of CaV1.2 calcium channel by neuropeptide W regulates vascular myogenic tone via G protein-coupled receptor 7.

    PubMed

    Ji, Li; Zhu, Huayuan; Chen, Hong; Fan, Wenyong; Chen, Junjie; Chen, Jing; Zhu, Guoqing; Wang, Juejin

    2015-12-01

    Neuropeptide W (NPW), an endogenous ligand for the G protein-coupled receptor 7 (GPR7), was first found to make important roles in central nerve system. In periphery, NPW was also present and regulated intracellular calcium homeostasis by L-type calcium channels. This study was designed to discover the effects of NPW-GPR7 on the function of CaV1.2 calcium channels in the vascular smooth muscle cells (VSMCs) and vasotone of arterial vessels. By whole-cell patch clamp, we studied the effects of NPW-23, the active form of NPW, on the CaV1.2 channels in the heterologously transfected human embryonic kidney 293 cells and VSMCs isolated from rat. Living system was used to explore the physiological function of NPW-23 in arterial myogenic tone. To investigate the pathological relevance, NPW mRNA level of mesenteric arteries was measured in the hypertensive and normotensive rats. NPW's receptor GPR7 was coexpressed with CaV1.2 channels in arterial smooth muscle. NPW-23 increased the ICa,L in transfected human embryonic kidney 293 cells and VSMCs via GPR7, which could be abrogated by phospholipase C (PLC)/protein kinase C (PKC) inhibitors, not protein kinase A or protein kinase G inhibitor. After NPW-23 application, the expression of pan phospho-PKC was increased; moreover, intracellular diacylglycerol level, the second messenger catalyzed by PLC, was increased 1.5-2-fold. Application with NPW-23 increased pressure-induced vasotone of the rat mesenteric arteries. Importantly, the expression of NPW was decreased in the hypertensive rats. NPW-23 regulates ICa,L via GPR7, which is mediated by PLC/PKC signaling, and such a mechanism plays a role in modulating vascular myogenic tone, which may involve in the development of vascular hypertension.

  11. The effect of microphone wind noise on the amplitude modulation of wind turbine noise and its mitigation.

    PubMed

    Kendrick, Paul; von Hünerbein, Sabine; Cox, Trevor J

    2016-07-01

    Microphone wind noise can corrupt outdoor recordings even when wind shields are used. When monitoring wind turbine noise, microphone wind noise is almost inevitable because measurements cannot be made in still conditions. The effect of microphone wind noise on two amplitude modulation (AM) metrics is quantified in a simulation, showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can result. As microphone wind noise is intermittent, a wind noise detection algorithm is used to automatically find uncorrupted sections of the recording, and so recover the true AM metrics to within ±2/±0.5 dBA.

  12. Two-way satellite time transfer using low power CW tones

    NASA Technical Reports Server (NTRS)

    Costain, C. C.; Daams, H.; Boulanger, J. S.

    1983-01-01

    In the search for an economical means of precise time transfer, the NRC Time Laboratory decided to adapt the techniques used by radio astronomers in an experiment to compare the phases of the local oscillators at widely separated VLBI stations. The objective is to design a system which would use commercial satellites, and which would be of reasonable cost for the ground stations and for operations. Two satellite ground stations were installed at NRC about 100 m from the Time Laboratory. For the preliminary experiment, a channel on the Anik Al 6/4 GHz satellite was made available by TELESAT Canada. Two tones were transmitted + or - MHz from the suppressed carrier. The difference frequency of 32 MHz was recorded using narrow band receivers. A low level 1 MHz phase modulation was added to identify the 32 MHz cycle, giving 1 microsec ambiguity in the time transfer. With less than 1/4 W in each tone, the EIRP is 43 dB below that of a normal TV Earth station, and no frequency dispersion is required. The measurements taken each second for the 32 MHz have an rms scatter of 1 ns.

  13. Moderate Baseline Vagal Tone Predicts Greater Prosociality in Children

    PubMed Central

    Miller, Jonas G.; Kahle, Sarah; Hastings, Paul D.

    2016-01-01

    Vagal tone is widely believed to be an important physiological aspect of emotion regulation and associated positive behaviors. However, there is inconsistent evidence for relations between children’s baseline vagal tone and their helpful or prosocial responses to others (Hastings & Miller, 2014). Recent work in adults suggests a quadratic association (inverted U-shape curve) between baseline vagal tone and prosociality (Kogan et al., 2014). The present research examined whether this nonlinear association was evident in children. We found consistent evidence for a quadratic relation between vagal tone and prosociality across 3 samples of children using 6 different measures. Compared to low and high vagal tone, moderate vagal tone in early childhood concurrently predicted greater self-reported prosociality (Study 1), observed empathic concern in response to the distress of others and greater generosity toward less fortunate peers (Study 2), and longitudinally predicted greater self-, mother-, and teacher-reported prosociality 5.5 years later in middle childhood (Study 3). Taken together, our findings suggest that moderate vagal tone at rest represents a physiological preparedness or tendency to engage in different forms of prosociality across different contexts. Early moderate vagal tone may reflect an optimal balance of regulation and arousal that helps prepare children to sympathize, comfort, and share with others. PMID:27819463

  14. Circular birefringence/dichroism measurement of optical scattering samples using amplitude-modulation polarimetry

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Chun; Lo, Yu-Lung; Phan, Quoc-Hung

    2018-03-01

    A method is proposed for extracting the circular birefringence (CB), circular dichroism (CD) and depolarization (Dep) properties of optical scattering samples using an amplitude-modulation polarimetry technique. The validity of the proposed method is demonstrated by extracting the CB property of pure glucose aqueous samples, the CB/Dep properties of glucose solutions containing 0.02% lipofundin particles, and the CD/Dep properties of chlorophyllin solutions containing suspended polystyrene microspheres. The results show that the proposed technique has the ability to detect pure glucose with a resolution of 66 mg/dL over a concentration range of 0-500 mg/dL. Moreover, the glucose concentration of the CB/Dep samples can be detected over the same range with a resolution of 168 mg/dL. Finally, the chlorophyllin concentration of the CD/Dep sample can be detected over the range of 0-200 μg/dL with a resolution of 6.5 × 10-5. In general, the results show that the proposed technique provides a reliable and accurate means of measuring the CB/CD properties of optical samples with scattering effects, and thus has significant potential for biological sensing applications.

  15. Cortical Auditory Evoked Potentials with Simple (Tone Burst) and Complex (Speech) Stimuli in Children with Cochlear Implant

    PubMed Central

    Martins, Kelly Vasconcelos Chaves; Gil, Daniela

    2017-01-01

    Introduction  The registry of the component P1 of the cortical auditory evoked potential has been widely used to analyze the behavior of auditory pathways in response to cochlear implant stimulation. Objective  To determine the influence of aural rehabilitation in the parameters of latency and amplitude of the P1 cortical auditory evoked potential component elicited by simple auditory stimuli (tone burst) and complex stimuli (speech) in children with cochlear implants. Method  The study included six individuals of both genders aged 5 to 10 years old who have been cochlear implant users for at least 12 months, and who attended auditory rehabilitation with an aural rehabilitation therapy approach. Participants were submitted to research of the cortical auditory evoked potential at the beginning of the study and after 3 months of aural rehabilitation. To elicit the responses, simple stimuli (tone burst) and complex stimuli (speech) were used and presented in free field at 70 dB HL. The results were statistically analyzed, and both evaluations were compared. Results  There was no significant difference between the type of eliciting stimulus of the cortical auditory evoked potential for the latency and the amplitude of P1. There was a statistically significant difference in the P1 latency between the evaluations for both stimuli, with reduction of the latency in the second evaluation after 3 months of auditory rehabilitation. There was no statistically significant difference regarding the amplitude of P1 under the two types of stimuli or in the two evaluations. Conclusion  A decrease in latency of the P1 component elicited by both simple and complex stimuli was observed within a three-month interval in children with cochlear implant undergoing aural rehabilitation. PMID:29018498

  16. Cross-Modulation Interference with Lateralization of Mixed-Modulated Waveforms

    ERIC Educational Resources Information Center

    Hsieh, I-Hui; Petrosyan, Agavni; Goncalves, Oscar F.; Hickok, Gregory; Saberi, Kourosh

    2010-01-01

    Purpose: This study investigated the ability to use spatial information in mixed-modulated (MM) sounds containing concurrent frequency-modulated (FM) and amplitude-modulated (AM) sounds by exploring patterns of interference when different modulation types originated from different loci as may occur in a multisource acoustic field. Method:…

  17. Prediction-guided quantization for video tone mapping

    NASA Astrophysics Data System (ADS)

    Le Dauphin, Agnès.; Boitard, Ronan; Thoreau, Dominique; Olivier, Yannick; Francois, Edouard; LeLéannec, Fabrice

    2014-09-01

    Tone Mapping Operators (TMOs) compress High Dynamic Range (HDR) content to address Low Dynamic Range (LDR) displays. However, before reaching the end-user, this tone mapped content is usually compressed for broadcasting or storage purposes. Any TMO includes a quantization step to convert floating point values to integer ones. In this work, we propose to adapt this quantization, in the loop of an encoder, to reduce the entropy of the tone mapped video content. Our technique provides an appropriate quantization for each mode of both the Intra and Inter-prediction that is performed in the loop of a block-based encoder. The mode that minimizes a rate-distortion criterion uses its associated quantization to provide integer values for the rest of the encoding process. The method has been implemented in HEVC and was tested over two different scenarios: the compression of tone mapped LDR video content (using the HM10.0) and the compression of perceptually encoded HDR content (HM14.0). Results show an average bit-rate reduction under the same PSNR for all the sequences and TMO considered of 20.3% and 27.3% for tone mapped content and 2.4% and 2.7% for HDR content.

  18. A fundamental residue pitch perception bias for tone language speakers

    NASA Astrophysics Data System (ADS)

    Petitti, Elizabeth

    A complex tone composed of only higher-order harmonics typically elicits a pitch percept equivalent to the tone's missing fundamental frequency (f0). When judging the direction of residue pitch change between two such tones, however, listeners may have completely opposite perceptual experiences depending on whether they are biased to perceive changes based on the overall spectrum or the missing f0 (harmonic spacing). Individual differences in residue pitch change judgments are reliable and have been associated with musical experience and functional neuroanatomy. Tone languages put greater pitch processing demands on their speakers than non-tone languages, and we investigated whether these lifelong differences in linguistic pitch processing affect listeners' bias for residue pitch. We asked native tone language speakers and native English speakers to perform a pitch judgment task for two tones with missing fundamental frequencies. Given tone pairs with ambiguous pitch changes, listeners were asked to judge the direction of pitch change, where the direction of their response indicated whether they attended to the overall spectrum (exhibiting a spectral bias) or the missing f0 (exhibiting a fundamental bias). We found that tone language speakers are significantly more likely to perceive pitch changes based on the missing f0 than English speakers. These results suggest that tone-language speakers' privileged experience with linguistic pitch fundamentally tunes their basic auditory processing.

  19. Pitch Perception in Tone Language-Speaking Adults With and Without Autism Spectrum Disorders

    PubMed Central

    Cheng, Stella T. T.; Lam, Gary Y. H.

    2017-01-01

    Enhanced low-level pitch perception has been universally reported in autism spectrum disorders (ASD). This study examined whether tone language speakers with ASD exhibit this advantage. The pitch perception skill of 20 Cantonese-speaking adults with ASD was compared with that of 20 neurotypical individuals. Participants discriminated pairs of real syllable, pseudo-syllable (syllables that do not conform the phonotactic rules or are accidental gaps), and non-speech (syllables with attenuated high-frequency segmental content) stimuli contrasting pitch levels. The results revealed significantly higher discrimination ability in both groups for the non-speech stimuli than for the pseudo-syllables with one semitone difference. No significant group differences were noted. Different from previous findings, post hoc analysis found that enhanced pitch perception was observed in a subgroup of participants with ASD showing no history of delayed speech onset. The tone language experience may have modulated the pitch processing mechanism in the speakers in both ASD and non-ASD groups. PMID:28616150

  20. Testing a model of intonation in a tone language.

    PubMed

    Lindau, M

    1986-09-01

    Schematic fundamental frequency curves of simple statements and questions are generated for Hausa, a two-tone language of Nigeria, using a modified version of an intonational model developed by Gårding and Bruce [Nordic Prosody II, edited by T. Fretheim (Tapir, Trondheim, 1981), pp. 33-39]. In this model, rules for intonation and tones are separated. Intonation is represented as sloping grids of (near) parallel lines, inside which tones are placed. The tones are associated with turning points of the fundamental frequency contour. Local rules may also modify the exact placement of a tone within the grid. The continuous fundamental frequency contour is modeled by concatenating the tonal points using polynomial equations. Thus the final pitch contour is modeled as an interaction between global and local factors. The slope of the intonational grid lines depends at least on sentence type (statement or question), sentence length, and tone pattern. The model is tested by reference to data from nine speakers of Kano Hausa.

  1. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation tomore » zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.« less

  2. Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

    DOE PAGES

    Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; ...

    2016-08-16

    To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less

  3. Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaki, M.; Shiokawa, K.; Miyoshi, Y.

    To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less

  4. Divided attention modulates semantic activation: evidence from a nonletter-level prime task.

    PubMed

    Otsuka, Sachio; Kawaguchi, Jun

    2007-12-01

    Research has recently shown that semantic activation is modulated in proportion to the amount of attention required for letter-level processing of the prime (the attention modulation hypothesis; Smith, Bentin, & Spalek, 2001). In this study, we examined this hypothesis with an auditory divided-attention task. Participants were asked to decide whether the pitch of a probe tone presented with the prime word was higher or lower than the basic tone presented with the fixation cross. Their target task was lexical decision to the target word. Experiment 1 showed that semantic priming was modulated by the amount of attentional resources. Moreover, in Experiment 2, this modulation was also found in a situation that eliminated the possibility of participants' response strategies. Yet, Experiment 3 showed repetition priming to be unaffected. These results support an amended attention modulation hypothesis in which modulation is not limited to letter-level processing.

  5. Online processing of tone and intonation in Mandarin: Evidence from ERPs.

    PubMed

    Liu, Min; Chen, Yiya; Schiller, Niels O

    2016-10-01

    Event-related potentials (ERPs) were used to investigate the online processing of tone and intonation in Mandarin at the attentive stage. We examined the behavioral and electrophysiological responses of native Mandarin listeners to Mandarin sentences, which contrast in final tones (rising Tone2 or falling Tone4) and intonations (Question or Statement). A clear P300 effect was observed for question-statement contrast in sentences ending with Tone4, but no ERP effect was found for question-statement contrast in sentences ending with Tone2. Our results provide ERP evidence for the interaction of tone and intonation in Mandarin, confirming the findings with behavioral metalinguistic data that native Mandarin listeners can distinguish between question intonation and statement intonation when the intonation is associated with a final Tone4, but fail to do so when the intonation is associated with a final Tone2. Our study extended the understanding of online processing of tone and intonation (1) from the pre-attentive stage to the attentive stage and (2) within a larger domain (i.e. multi-word utterances) than a single word utterance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mechanical property assessment of tissue-mimicking phantoms using remote palpation and optical read-out for amplitude of vibration and refractive index modulation.

    PubMed

    Usha Devi, C; Bharat Chandran, R S; Vasu, R Mohan; Sood, Ajay K

    2007-01-01

    A coherent light beam is used to interrogate the focal region within a tissue-mimicking phantom insonified by an ultrasound transducer. The ultrasound-tagged photons exiting from the object carry with them information on local optical path length fluctuations caused by refractive index variations and medium vibration. Through estimation of the force distribution in the focal region of the ultrasound transducer, and solving the forward elastography problem for amplitude of vibration of tissue particles, we observe that the amplitude is directed along the axis of the transducer. It is shown that the focal region interrogated by photons launched along the transducer axis carries phase fluctuations owing to both refractive index variations and particle vibration, whereas the photons launched perpendicular to the transducer axis carry phase fluctuations arising mainly from the refractive index variations, with only smaller contribution from vibration of particles. Monte-Carlo simulations and experiments done on tissue-mimicking phantoms prove that as the storage modulus of the phantom is increased, the detected modulation depth in autocorrelation is reduced, significantly for axial photons and only marginally for the transverse-directed photons. It is observed that the depth of modulation is reduced to a significantly lower and constant value as the storage modulus of the medium is increased. This constant value is found to be the same for both axial and transverse optical interrogation. This proves that the residual modulation depth is owing to refractive index fluctuations alone, which can be subtracted from the overall measured modulation depth, paving the way for a possible quantitative reconstruction of storage modulus. Moreover, since the transverse-directed photons are not significantly affected by storage modulus variations, for a quantitatively accurate read-out of absorption coefficient variation, the interrogating light should be perpendicular to the focusing

  7. Theoretical studies of tone noise from a fan rotor

    NASA Technical Reports Server (NTRS)

    Rao, G. V. R.; Chu, W. T.; Digumarthi, R. V.

    1973-01-01

    An analytical study was made of some possible rotor alone noise sources of dipole, quadrapole and monopole characters which generate discrete tone noise. Particular emphasis is given to the tone noise caused by fan inlet flow distortion and turbulence. Analytical models are developed to allow prediction of absolute levels. Experimental data measured on a small scale fan is presented which indicates inlet turbulence interaction with a fan rotor can be a source of tone noise. Predicted and measured tone noise for the small scale rotor are shown to be in reasonable agreement.

  8. Self-tuning bistable parametric feedback oscillator: Near-optimal amplitude maximization without model information

    NASA Astrophysics Data System (ADS)

    Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu

    2017-01-01

    Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.

  9. Multilevel recording of complex amplitude data pages in a holographic data storage system using digital holography.

    PubMed

    Nobukawa, Teruyoshi; Nomura, Takanori

    2016-09-05

    A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.

  10. Tone-deafness – a new disconnection syndrome?

    PubMed Central

    Loui, Psyche; Alsop, David; Schlaug, Gottfried

    2009-01-01

    Communicating with one’s environment requires efficient neural interaction between action and perception. Neural substrates ofsound perception and production are connected by the arcuate fasciculus (AF). While AF is known to be involved in language, its roles in non-linguistic functions are unexplored. Here we show that tone-deaf people, with impaired sound perception and production, have reduced AF connectivity. Diffusion tensor tractography and psychophysics were assessed in tone-deaf individuals and matched controls. Abnormally-reduced AF connectivity was observed in the tone-deaf. Furthermore, we observed relationships between AF and auditory-motor behavior: superior and inferior AF branches predict psychophysically-assessed pitch-discrimination and sound production-perception abilities respectively. This neural abnormality suggests that tone-deafness leads to a reduction in connectivity resulting in pitch-related impairments. Results support a dual-stream anatomy of sound production and perception implicated in vocal communications. By identifying white-matter differences and their psychophysical correlates, results contribute to our understanding of how neural connectivity subserves behavior. PMID:19692596

  11. Optimum detection of tones transmitted by a spacecraft

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Shihabi, M. M.; Moon, T.

    1995-01-01

    The performance of a scheme proposed for automated routine monitoring of deep-space missions is presented. The scheme uses four different tones (sinusoids) transmitted from the spacecraft (S/C) to a ground station with the positive identification of each of them used to indicate different states of the S/C. Performance is measured in terms of detection probability versus false alarm probability with detection signal-to-noise ratio as a parameter. The cases where the phase of the received tone is unknown and where both the phase and frequency of the received tone are unknown are treated separately. The decision rules proposed for detecting the tones are formulated from average-likelihood ratio and maximum-likelihood ratio tests, the former resulting in optimum receiver structures.

  12. High Frequency Amplitude Detector for GMI Magnetic Sensors

    PubMed Central

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-01-01

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003

  13. Dissociation of tone and vowel processing in Mandarin idioms.

    PubMed

    Hu, Jiehui; Gao, Shan; Ma, Weiyi; Yao, Dezhong

    2012-09-01

    Using event-related potentials, this study measured the access of suprasegmental (tone) and segmental (vowel) information in spoken word recognition with Mandarin idioms. Participants performed a delayed-response acceptability task, in which they judged the correctness of the last word of each idiom, which might deviate from the correct word in either tone or vowel. Results showed that, compared with the correct idioms, a larger early negativity appeared only for vowel violation. Additionally, a larger N400 effect was observed for vowel mismatch than tone mismatch. A control experiment revealed that these differences were not due to low-level physical differences across conditions; instead, they represented the greater constraining power of vowels than tones in the lexical selection and semantic integration of the spoken words. Furthermore, tone violation elicited a more robust late positive component than vowel violation, suggesting different reanalyses of the two types of information. In summary, the current results support a functional dissociation of tone and vowel processing in spoken word recognition. Copyright © 2012 Society for Psychophysiological Research.

  14. Cantonese tone production performance of mainstream school children with hearing impairment.

    PubMed

    Cheung, Karen K L; Lau, Ada H Y; Lam, Joffee H S; Lee, Kathy Y S

    2014-12-01

    This study investigated the Cantonese tone production ability of children with hearing impairment studying in mainstream schools. The participants were 87 Cantonese-speaking children with mild-to-profound degrees of hearing loss aged 5.92-13.58 in Hong Kong. Most of the children were fitted with hearing aids (n = 65); 17 of them had profound hearing impairment, one who had severe hearing loss had cochlear implantation, and four who had mild hearing loss were without any hearing device. The Hong Kong Cantonese Articulation Test was administered, and the tones produced were rated by two of the authors and a speech-language pathologist. Group effects of tones, hearing loss level, and also an interaction of the two were found to be significant. The children with profound hearing impairment performed significantly worse than most of the other children. Tone 1 was produced most accurately, whereas tone 6 productions were the poorest. No relationship was found between the number of years of mainstreaming and tone production ability. Tone production error pattern revealed that confusion patterns in tone perception coincided with those in production. Tones having a similar fundamental frequency (F0) at the onset also posed difficulty in tone production for children with hearing impairment.

  15. Power-Stepped HF Cross Modulation Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.; Langston, J. S.

    2013-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. In this paper, we apply experimental observations of HF cross-modulation to the related problem of ELF/VLF wave generation. HF cross-modulation measurements are used to evaluate the efficiency of ionospheric conductivity modulation during power-stepped modulated HF heating experiments. The results are compared to previously published dependencies of ELF/VLF wave amplitude on HF peak power. The experiments were performed during the March 2013 campaign at the High Frequency Active Auroral Research Program (HAARP) Observatory. HAARP was operated in a dual-beam transmission format: the first beam heated the ionosphere using sinusoidal amplitude modulation while the second beam broadcast a series of low-power probe pulses. The peak power of the modulating beam was incremented in 1-dB steps. We compare the minimum and maximum cross-modulation effect and the amplitude of the resulting cross-modulation waveform to the expected power-law dependence of ELF/VLF wave amplitude on HF power.

  16. Assessing the Role of Place and Timing Cues in Coding Frequency and Amplitude Modulation as a Function of Age.

    PubMed

    Whiteford, Kelly L; Kreft, Heather A; Oxenham, Andrew J

    2017-08-01

    Natural sounds can be characterized by their fluctuations in amplitude and frequency. Ageing may affect sensitivity to some forms of fluctuations more than others. The present study used individual differences across a wide age range (20-79 years) to test the hypothesis that slow-rate, low-carrier frequency modulation (FM) is coded by phase-locked auditory-nerve responses to temporal fine structure (TFS), whereas fast-rate FM is coded via rate-place (tonotopic) cues, based on amplitude modulation (AM) of the temporal envelope after cochlear filtering. Using a low (500 Hz) carrier frequency, diotic FM and AM detection thresholds were measured at slow (1 Hz) and fast (20 Hz) rates in 85 listeners. Frequency selectivity and TFS coding were assessed using forward masking patterns and interaural phase disparity tasks (slow dichotic FM), respectively. Comparable interaural level disparity tasks (slow and fast dichotic AM and fast dichotic FM) were measured to control for effects of binaural processing not specifically related to TFS coding. Thresholds in FM and AM tasks were correlated, even across tasks thought to use separate peripheral codes. Age was correlated with slow and fast FM thresholds in both diotic and dichotic conditions. The relationship between age and AM thresholds was generally not significant. Once accounting for AM sensitivity, only diotic slow-rate FM thresholds remained significantly correlated with age. Overall, results indicate stronger effects of age on FM than AM. However, because of similar effects for both slow and fast FM when not accounting for AM sensitivity, the effects cannot be unambiguously ascribed to TFS coding.

  17. Tone perception in Mandarin-speaking school age children with otitis media with effusion.

    PubMed

    Cai, Ting; McPherson, Bradley; Li, Caiwei; Yang, Feng

    2017-01-01

    The present study explored tone perception ability in school age Mandarin-speaking children with otitis media with effusion (OME) in noisy listening environments. The study investigated the interaction effects of noise, tone type, age, and hearing status on monaural tone perception, and assessed the application of a hierarchical clustering algorithm for profiling hearing impairment in children with OME. Forty-one children with normal hearing and normal middle ear status and 84 children with OME with or without hearing loss participated in this study. The children with OME were further divided into two subgroups based on their severity and pattern of hearing loss using a hierarchical clustering algorithm. Monaural tone recognition was measured using a picture-identification test format incorporating six sets of monosyllabic words conveying four lexical tones under speech spectrum noise, with the signal-to-noise ratio (SNR) conditions ranging from -9 to -21 dB. Linear correlation indicated tone recognition thresholds of children with OME were significantly correlated with age and pure tone hearing thresholds at every frequency tested. Children with hearing thresholds less affected by OME performed similarly to their peers with normal hearing. Tone recognition thresholds of children with auditory status more affected by OME were significantly inferior to those of children with normal hearing or with minor hearing loss. Younger children demonstrated poorer tone recognition performance than older children with OME. A mixed design repeated-measure ANCOVA showed significant main effects of listening condition, hearing status, and tone type on tone recognition. Contrast comparisons revealed that tone recognition scores were significantly better under -12 dB SNR than under -15 dB SNR conditions and tone recognition scores were significantly worse under -18 dB SNR than those obtained under -15 dB SNR conditions. Tone 1 was the easiest tone to identify and Tone 3 was the most

  18. Perception of musical and lexical tones by Taiwanese-speaking musicians.

    PubMed

    Lee, Chao-Yang; Lee, Yuh-Fang; Shr, Chia-Lin

    2011-07-01

    This study explored the relationship between music and speech by examining absolute pitch and lexical tone perception. Taiwanese-speaking musicians were asked to identify musical tones without a reference pitch and multispeaker Taiwanese level tones without acoustic cues typically present for speaker normalization. The results showed that a high percentage of the participants (65% with an exact match required and 81% with one-semitone errors allowed) possessed absolute pitch, as measured by the musical tone identification task. A negative correlation was found between occurrence of absolute pitch and age of onset of musical training, suggesting that the acquisition of absolute pitch resembles the acquisition of speech. The participants were able to identify multispeaker Taiwanese level tones with above-chance accuracy, even though the acoustic cues typically present for speaker normalization were not available in the stimuli. No correlations were found between the performance in musical tone identification and the performance in Taiwanese tone identification. Potential reasons for the lack of association between the two tasks are discussed. © 2011 Acoustical Society of America

  19. Direct Numerical Simulation of Automobile Cavity Tones

    NASA Technical Reports Server (NTRS)

    Kurbatskii, Konstantin; Tam, Christopher K. W.

    2000-01-01

    The Navier Stokes equation is solved computationally by the Dispersion-Relation-Preserving (DRP) scheme for the flow and acoustic fields associated with a laminar boundary layer flow over an automobile door cavity. In this work, the flow Reynolds number is restricted to R(sub delta*) < 3400; the range of Reynolds number for which laminar flow may be maintained. This investigation focuses on two aspects of the problem, namely, the effect of boundary layer thickness on the cavity tone frequency and intensity and the effect of the size of the computation domain on the accuracy of the numerical simulation. It is found that the tone frequency decreases with an increase in boundary layer thickness. When the boundary layer is thicker than a certain critical value, depending on the flow speed, no tone is emitted by the cavity. Computationally, solutions of aeroacoustics problems are known to be sensitive to the size of the computation domain. Numerical experiments indicate that the use of a small domain could result in normal mode type acoustic oscillations in the entire computation domain leading to an increase in tone frequency and intensity. When the computation domain is expanded so that the boundaries are at least one wavelength away from the noise source, the computed tone frequency and intensity are found to be computation domain size independent.

  20. Lexical tone and stuttering loci in Mandarin: evidence from preschool children who stutter.

    PubMed

    Chou, Fang-Chi; Zebrowski, Patricia; Yang, Shu-Lan

    2015-02-01

    The purpose of this study was to examine the relationship between stuttering loci and lexical tone in Mandarin-speaking preschoolers. Conversational samples from 20 Taiwanese children who stutter (CWS; M = 4:9; range = 3:2-6:4) were analysed for frequency and type of speech disfluency and lexical tone associated with stuttering-like disfluencies (SLDs). Results indicated that SLDs were significantly more likely to be produced on Mandarin syllables carrying Tone 3 and Tone 4 syllables compared to syllables carrying either Tone 1 or Tone 2. Post-hoc analyses revealed: (1) no significant differences in the stuttering frequencies between Tone 1 and Tone 2, or between Tone 3 and Tone 4, and (2) a higher incidence of stuttering on syllables carrying Tone 3 and Tone 4 embedded in conflicting (as opposed to compatible) tonal contexts. Results suggest that the higher incidence of stuttering on Mandarin syllables carrying either Tone 3 or 4 may be attributed to the increased level of speech motor demand underlying rapid F0 change both within and across syllables.

  1. Tone perception in Mandarin-speaking school age children with otitis media with effusion

    PubMed Central

    McPherson, Bradley; Li, Caiwei; Yang, Feng

    2017-01-01

    Objectives The present study explored tone perception ability in school age Mandarin-speaking children with otitis media with effusion (OME) in noisy listening environments. The study investigated the interaction effects of noise, tone type, age, and hearing status on monaural tone perception, and assessed the application of a hierarchical clustering algorithm for profiling hearing impairment in children with OME. Methods Forty-one children with normal hearing and normal middle ear status and 84 children with OME with or without hearing loss participated in this study. The children with OME were further divided into two subgroups based on their severity and pattern of hearing loss using a hierarchical clustering algorithm. Monaural tone recognition was measured using a picture-identification test format incorporating six sets of monosyllabic words conveying four lexical tones under speech spectrum noise, with the signal-to-noise ratio (SNR) conditions ranging from -9 to -21 dB. Results Linear correlation indicated tone recognition thresholds of children with OME were significantly correlated with age and pure tone hearing thresholds at every frequency tested. Children with hearing thresholds less affected by OME performed similarly to their peers with normal hearing. Tone recognition thresholds of children with auditory status more affected by OME were significantly inferior to those of children with normal hearing or with minor hearing loss. Younger children demonstrated poorer tone recognition performance than older children with OME. A mixed design repeated-measure ANCOVA showed significant main effects of listening condition, hearing status, and tone type on tone recognition. Contrast comparisons revealed that tone recognition scores were significantly better under -12 dB SNR than under -15 dB SNR conditions and tone recognition scores were significantly worse under -18 dB SNR than those obtained under -15 dB SNR conditions. Tone 1 was the easiest tone to

  2. Multidimensional signal modulation and/or demodulation for data communications

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2008-03-04

    Systems and methods are described for multidimensional signal modulation and/or demodulation for data communications. A method includes modulating a carrier signal in a first domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; modulating the carrier signal in a second domain selected from the group consisting of phase, frequency, amplitude, polarization and spread; and modulating the carrier signal in a third domain selected from the group consisting of phase, frequency, amplitude, polarization and spread.

  3. Optical correlation based pose estimation using bipolar phase grayscale amplitude spatial light modulators

    NASA Astrophysics Data System (ADS)

    Outerbridge, Gregory John, II

    Pose estimation techniques have been developed on both optical and digital correlator platforms to aid in the autonomous rendezvous and docking of spacecraft. This research has focused on the optical architecture, which utilizes high-speed bipolar-phase grayscale-amplitude spatial light modulators as the image and correlation filter devices. The optical approach has the primary advantage of optical parallel processing: an extremely fast and efficient way of performing complex correlation calculations. However, the constraints imposed on optically implementable filters makes optical correlator based posed estimation technically incompatible with the popular weighted composite filter designs successfully used on the digital platform. This research employs a much simpler "bank of filters" approach to optical pose estimation that exploits the inherent efficiency of optical correlation devices. A novel logarithmically mapped optically implementable matched filter combined with a pose search algorithm resulted in sub-degree standard deviations in angular pose estimation error. These filters were extremely simple to generate, requiring no complicated training sets and resulted in excellent performance even in the presence of significant background noise. Common edge detection and scaling of the input image was the only image pre-processing necessary for accurate pose detection at all alignment distances of interest.

  4. Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus.

    PubMed

    Pressnitzer, D; Meddis, R; Delahaye, R; Winter, I M

    2001-08-15

    Comodulation masking release (CMR) enhances the detection of signals embedded in wideband, amplitude-modulated maskers. At least part of the CMR is attributable to across-frequency processing, however, the relative contribution of different stages in the auditory system to across-frequency processing is unknown. We have measured the responses of single units from one of the earliest stages in the ascending auditory pathway, the ventral cochlear nucleus, where across frequency processing may take place. A sinusoidally amplitude-modulated tone at the best frequency of each unit was used as a masker. A pure tone signal was added in the dips of the masker modulation (reference condition). Flanking components (FCs) were then added at frequencies remote from the unit best frequency. The FCs were pure tones amplitude modulated either in phase (comodulated) or out of phase (codeviant) with the on-frequency component. Psychophysically, this CMR paradigm reduces within-channel cues while producing an advantage of approximately 10 dB for the comodulated condition in comparison with the reference condition. Some of the recorded units showed responses consistent with perceptual CMR. The addition of the comodulated FCs produced a strong reduction in the response to the masker modulation, making the signal more salient in the poststimulus time histograms. A decision statistic based on d' showed that threshold was reached at lower signal levels for the comodulated condition than for reference or codeviant conditions. The neurons that exhibited such a behavior were mainly transient chopper or primary-like units. The results obtained from a subpopulation of transient chopper units are consistent with a possible circuit in the cochlear nucleus consisting of a wideband inhibitor contacting a narrowband cell. A computational model was used to confirm the feasibility of such a circuit.

  5. Perception and Acoustic Correlates of the Taiwanese Tone Sandhi Group

    ERIC Educational Resources Information Center

    Kuo, Chen-Hsiu

    2013-01-01

    This dissertation investigates how the Taiwanese Tone Sandhi Groups are perceived, and the acoustic/phonetics correlates of listeners' judgments. A series of perception experiments have been conducted to scrutinize the following topics--Taiwanese tone neutralization, Tone Sandhi Group (TSG) as a prosodic domain, perceived boundary strength in…

  6. The Theory of Adaptive Dispersion and Acoustic-phonetic Properties of Cross-language Lexical-tone Systems

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Alexandra

    Lexical-tone languages use fundamental frequency (F0/pitch) to convey word meaning. About 41.8% of the world's languages use lexical tone (Maddieson, 2008), yet those systems are under-studied. I aim to increase our understanding of speech-sound inventory organization by extending to tone-systems a model of vowel-system organization, the Theory of Adaptive Dispersion (TAD) (Liljencrants and Lindblom, 1972). This is a cross-language investigation of whether and how the size of a tonal inventory affects (A) acoustic tone-space size and (B) dispersion of tone categories within the tone-space. I compared five languages with very different tone inventories: Cantonese (3 contour, 3 level tones); Mandarin (3 contour, 1 level tone); Thai (2 contour, 3 level tones); Yoruba (3 level tones only); and Igbo (2 level tones only). Six native speakers (3 female) of each language produced 18 CV syllables in isolation, with each of his/her language's tones, six times. I measured tonal F0 across the vowel at onset, midpoint, and offglide. Tone-space size was the F0 difference in semitones (ST) between each language's highest and lowest tones. Tone dispersion was the F0 distance (ST) between two tones shared by multiple languages. Following the TAD, I predicted that languages with larger tone inventories would have larger tone-spaces. Against expectations, tone-space size was fixed across level-tone languages at midpoint and offglide, and across contour-tone languages (except Thai) at offglide. However, within each language type (level-tone vs. contour-tone), languages with smaller tone inventories had larger tone spaces at onset. Tone-dispersion results were also unexpected. The Cantonese mid-level tone was further dispersed from a tonal baseline than the Yoruba mid-level tone; Cantonese mid-level tone dispersion was therefore greater than theoretically necessary. The Cantonese high-level tone was also further dispersed from baseline than the Mandarin high-level tone -- at midpoint

  7. Absolute pitch: evidence for early cognitive facilitation during passive listening as revealed by reduced P3a amplitudes.

    PubMed

    Rogenmoser, Lars; Elmer, Stefan; Jäncke, Lutz

    2015-03-01

    Absolute pitch (AP) is the rare ability to identify or produce different pitches without using reference tones. At least two sequential processing stages are assumed to contribute to this phenomenon. The first recruits a pitch memory mechanism at an early stage of auditory processing, whereas the second is driven by a later cognitive mechanism (pitch labeling). Several investigations have used active tasks, but it is unclear how these two mechanisms contribute to AP during passive listening. The present work investigated the temporal dynamics of tone processing in AP and non-AP (NAP) participants by using EEG. We applied a passive oddball paradigm with between- and within-tone category manipulations and analyzed the MMN reflecting the early stage of auditory processing and the P3a response reflecting the later cognitive mechanism during the second processing stage. Results did not reveal between-group differences in MMN waveforms. By contrast, the P3a response was specifically associated with AP and sensitive to the processing of different pitch types. Specifically, AP participants exhibited smaller P3a amplitudes, especially in between-tone category conditions, and P3a responses correlated significantly with the age of commencement of musical training, suggesting an influence of early musical exposure on AP. Our results reinforce the current opinion that the representation of pitches at the processing level of the auditory-related cortex is comparable among AP and NAP participants, whereas the later processing stage is critical for AP. Results are interpreted as reflecting cognitive facilitation in AP participants, possibly driven by the availability of multiple codes for tones.

  8. Amplitudes of solar modulation of low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Von Rosenvinge, T. T.; Paizis, C.

    1982-01-01

    There have been differences of opinion regarding the origin and behavior of the solar modulation of galactic cosmic rays. It has been shown that the return to solar maximum intensity levels beginning in early 1978 was dominated by Forbush decreases. These Forbush decreases were caused by radially moving interplanetary shocks resulting from large solar flares. The present investigation is concerned with solar modulation effects which were observed during the previous solar minimum. The effects were associated with high-speed streams in the solar wind. These streams caused the formation of corotating interaction regions with both forward and reverse shocks. The modulation effects seen near earth are intimately connected with these shocks.

  9. Tone-excited jet: Theory and experiments

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Lepicovsky, J.; Tam, C. K. W.; Morris, P. J.; Burrin, R. H.

    1982-01-01

    A detailed study to understand the phenomenon of broadband jet-noise amplification produced by upstream discrete-tone sound excitation has been carried out. This has been achieved by simultaneous acquisition of the acoustic, mean velocity, turbulence intensities, and instability-wave pressure data. A 5.08 cm diameter jet has been tested for this purpose under static and also flight-simulation conditions. An open-jet wind tunnel has been used to simulate the flight effects. Limited data on heated jets have also been obtained. To improve the physical understanding of the flow modifications brought about by the upstream discrete-tone excitation, ensemble-averaged schlieren photographs of the jets have also been taken. Parallel to the experimental study, a mathematical model of the processes that lead to broadband-noise amplification by upstream tones has been developed. Excitation of large-scale turbulence by upstream tones is first calculated. A model to predict the changes in small-scale turbulence is then developed. By numerically integrating the resultant set of equations, the enhanced small-scale turbulence distribution in a jet under various excitation conditions is obtained. The resulting changes in small-scale turbulence have been attributed to broadband amplification of jet noise. Excellent agreement has been found between the theory and the experiments. It has also shown that the relative velocity effects are the same for the excited and the unexcited jets.

  10. Noise tolerance in optical waveguide circuits for recognition of optical 16 quadrature amplitude modulation codes

    NASA Astrophysics Data System (ADS)

    Inoshita, Kensuke; Hama, Yoshimitsu; Kishikawa, Hiroki; Goto, Nobuo

    2016-12-01

    In photonic label routers, various optical signal processing functions are required; these include optical label extraction, recognition of the label, optical switching and buffering controlled by signals based on the label information and network routing tables, and label rewriting. Among these functions, we focus on photonic label recognition. We have proposed two kinds of optical waveguide circuits to recognize 16 quadrature amplitude modulation codes, i.e., recognition from the minimum output port and from the maximum output port. The recognition function was theoretically analyzed and numerically simulated by finite-difference beam-propagation method. We discuss noise tolerance in the circuit and show numerically simulated results to evaluate bit-error-rate (BER) characteristics against optical signal-to-noise ratio (OSNR). The OSNR required to obtain a BER less than 1.0×10-3 for the symbol rate of 2.5 GBaud was 14.5 and 27.0 dB for recognition from the minimum and maximum output, respectively.

  11. Evidence that tachykinin NK2 receptors modulate resting tone in the rat isolated small intestine.

    PubMed Central

    Maggi, C. A.; Giuliani, S.

    1996-01-01

    1. In the progress of experiments aimed at evaluating the role of tachykinins as enteric nonadrenergic noncholinergic (NANC) transmitters, we noted that certain tachykinin receptor antagonists produce a relaxation of circular muscle strips in the rat small intestine. This study aimed to assess the nature of this response and to determine the receptor type involved. The majority of the experiments were performed in capsaicin- (10 microM for 15 min) pretreated mucosa-free circular muscle strips from the rat small intestine, in the presence of atropine (1 microM), guanethidine (3 microM) and indomethacin (10 microM). 2. Under isometric recording of mechanical activity, the tachykinin NK1 receptor antagonist SR 140,333 (0.1 microM) had no effect on resting tone or spontaneous activity in duodenal or ileal circular muscle strips. The NK2 receptor antagonists, MEN 10,627 (0.1 microM) and GR 94,800 (0.1 microM) produced, after a delay of 10-15 min, a relaxation which averaged 61 +/- 3 and 57 +/- 6% (n = 6 and 4, respectively) of the maximal response (Emax) to isoprenaline (1 microM). The effect of maximal concentrations of MEN 10,627 and GR 94,800 when applied together was non-additive. The relaxant effect of MEN 10,627 (0.1 microM) was similar in the absence and presence of apamin (0.3 microM) and L-nitroarginine (100 microM). 3. Under isotonic recording of mechanical activity, MEN 10,627 (10 nM-1 microM) produced a concentration- and time-related relaxation of duodenal strips. The maximal relaxation averaged 72 +/- 4 and 69 +/- 4% (n = 5 each) of Emax to isoprenaline (1 microM) and was achieved 15-20 or 20-30 min after application of 1.0 or 0.1 microM MEN 10,627, respectively. 4. Duodenal strips were relaxed by other NK2 receptor selective antagonists (values in parentheses are % of Emax to isoprenaline at the given concentration of antagonist) GR 94,800 (69 +/- 3% at 1 microM, n = 4), SR 48,968 (60 +/- 3% at 1 microM, n = 4) and MDL 29,913 (66 +/- 4% at 1 microM, n = 4

  12. Evidence that tachykinin NK2 receptors modulate resting tone in the rat isolated small intestine.

    PubMed

    Maggi, C A; Giuliani, S

    1996-07-01

    1. In the progress of experiments aimed at evaluating the role of tachykinins as enteric nonadrenergic noncholinergic (NANC) transmitters, we noted that certain tachykinin receptor antagonists produce a relaxation of circular muscle strips in the rat small intestine. This study aimed to assess the nature of this response and to determine the receptor type involved. The majority of the experiments were performed in capsaicin- (10 microM for 15 min) pretreated mucosa-free circular muscle strips from the rat small intestine, in the presence of atropine (1 microM), guanethidine (3 microM) and indomethacin (10 microM). 2. Under isometric recording of mechanical activity, the tachykinin NK1 receptor antagonist SR 140,333 (0.1 microM) had no effect on resting tone or spontaneous activity in duodenal or ileal circular muscle strips. The NK2 receptor antagonists, MEN 10,627 (0.1 microM) and GR 94,800 (0.1 microM) produced, after a delay of 10-15 min, a relaxation which averaged 61 +/- 3 and 57 +/- 6% (n = 6 and 4, respectively) of the maximal response (Emax) to isoprenaline (1 microM). The effect of maximal concentrations of MEN 10,627 and GR 94,800 when applied together was non-additive. The relaxant effect of MEN 10,627 (0.1 microM) was similar in the absence and presence of apamin (0.3 microM) and L-nitroarginine (100 microM). 3. Under isotonic recording of mechanical activity, MEN 10,627 (10 nM-1 microM) produced a concentration- and time-related relaxation of duodenal strips. The maximal relaxation averaged 72 +/- 4 and 69 +/- 4% (n = 5 each) of Emax to isoprenaline (1 microM) and was achieved 15-20 or 20-30 min after application of 1.0 or 0.1 microM MEN 10,627, respectively. 4. Duodenal strips were relaxed by other NK2 receptor selective antagonists (values in parentheses are % of Emax to isoprenaline at the given concentration of antagonist) GR 94,800 (69 +/- 3% at 1 microM, n = 4), SR 48,968 (60 +/- 3% at 1 microM, n = 4) and MDL 29,913 (66 +/- 4% at 1 microM, n = 4

  13. Digital Tone Ranging Modem.

    DOT National Transportation Integrated Search

    1976-05-01

    This report describes a digital ranging modem implementation based on side-tone ranging concepts. The ranging technique implemented and tested in the DOT/TSC avionics laboratory has direct application to the AEROSAT surveillance system. The performan...

  14. Vagal tone during infant contingency learning and its disruption.

    PubMed

    Sullivan, Margaret Wolan

    2016-04-01

    This study used contingency learning to examine changes in infants' vagal tone during learning and its disruption. The heart rate of 160 five-month-old infants was recorded continuously during the first of two training sessions as they experienced an audiovisual event contingent on their pulling. Maternal reports of infant temperament were also collected. Baseline vagal tone, a measure of parasympathetic regulation of the heart, was related to vagal levels during the infants' contingency learning session, but not to their learner status. Vagal tone levels did not vary significantly over session minutes. Instead, vagal tone levels were a function of both individual differences in learner status and infant soothability. Vagal levels of infants who learned in the initial session were similar regardless of their soothability; however, vagal levels of infants who learned in a subsequent session differed as a function of soothability. Additionally, vagal levels during contingency disruption were significantly higher among infants in this group who were more soothable as opposed to those who were less soothable. The results suggest that contingency learning and disruption is associated with stable vagal tone in the majority of infants, but that individual differences in attention processes and state associated with vagal tone may be most readily observed during the disruption phase. © 2015 Wiley Periodicals, Inc.

  15. Vagal Tone During Infant Contingency Learning and Its Disruption

    PubMed Central

    Sullivan, Margaret Wolan

    2015-01-01

    This study used contingency learning to examine changes in infants’ vagal tone during learning and its disruption. The heart rate of 160 five-month-old infants was recorded continuously during the first of two training sessions as they experienced an audiovisual event contingent on their pulling. Maternal reports of infant temperament were also collected. Baseline vagal tone, a measure of parasympathetic regulation of the heart, was related to vagal levels during the infants’ contingency learning session, but not to their learner status. Vagal tone levels did not vary significantly over session minutes. Instead, vagal tone levels were a function of both individual differences in learner status and infant soothability. Vagal levels of infants who learned in the initial session were similar regardless of their soothability; however, vagal levels of infants who learned in a subsequent session differed as a function of soothability. Additionally, vagal levels during contingency disruption were significantly higher among infants in this group who were more soothable as opposed to those who were less soothable. The results suggest that contingency learning and disruption is associated with stable vagal tone in the majority of infants, but that individual differences in attention processes and state associated with vagal tone may be most readily observed during the disruption phase. PMID:26517573

  16. The perception of complex tones by a false killer whale (Pseudorca crassidens).

    PubMed

    Yuen, Michelle M L; Nachtigall, Paul E; Breese, Marlee; Vlachos, Stephanie A

    2007-03-01

    Complex tonal whistles are frequently produced by some odontocete species. However, no experimental evidence exists regarding the detection of complex tones or the discrimination of harmonic frequencies by a marine mammal. The objectives of this investigation were to examine the ability of a false killer whale to discriminate pure tones from complex tones and to determine the minimum intensity level of a harmonic tone required for the whale to make the discrimination. The study was conducted with a go/no-go modified staircase procedure. The different stimuli were complex tones with a fundamental frequency of 5 kHz with one to five harmonic frequencies. The results from this complex tone discrimination task demonstrated: (1) that the false killer whale was able to discriminate a 5 kHz pure tone from a complex tone with up to five harmonics, and (2) that discrimination thresholds or minimum intensity levels exist for each harmonic combination measured. These results indicate that both frequency level and harmonic content may have contributed to the false killer whale's discrimination of complex tones.

  17. Statistics of EMIC Rising Tones Observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Sigsbee, K. M.; Kletzing, C.; Smith, C. W.; Santolik, O.

    2017-12-01

    We will present results from an ongoing statistical study of electromagnetic ion cyclotron (EMIC) wave rising tones observed by the Van Allen Probes. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) fluxgate magnetometer, we have identified orbits by both Van Allen Probes with EMIC wave events from the start of the mission in fall 2012 through fall 2016. Orbits with EMIC wave events were further examined for evidence of rising tones. Most EMIC wave rising tones were found during H+ band EMIC wave events. In Fourier time-frequency power spectrograms of the fluxgate magnetometer data, H+ band rising tones generally took the form of triggered emission type events, where the discrete rising tone structures rapidly rise in frequency out of the main band of observed H+ EMIC waves. A smaller percentage of EMIC wave rising tone events were found in the He+ band, where rising tones may appear as discrete structures with a positive slope embedded within the main band of observed He+ EMIC waves, similar in appearance to whistler-mode chorus elements. Understanding the occurrence rate and properties of rising tone EMIC waves will provide observational context for theoretical studies indicating that EMIC waves exhibiting non-linear behavior, such as rising tones, may be more effective at scattering radiation belt electrons than ordinary EMIC waves.

  18. Modulatory compartments in cortex and local regulation of cholinergic tone.

    PubMed

    Coppola, Jennifer J; Ward, Nicholas J; Jadi, Monika P; Disney, Anita A

    2016-09-01

    Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of

  20. 47 CFR 64.1514 - Generation of signalling tones.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Generation of signalling tones. 64.1514 Section 64.1514 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Services § 64.1514 Generation of signalling tones. No common carrier shall assign a telephone number for...

  1. 47 CFR 64.1514 - Generation of signalling tones.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Generation of signalling tones. 64.1514 Section 64.1514 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Services § 64.1514 Generation of signalling tones. No common carrier shall assign a telephone number for...

  2. 47 CFR 64.1514 - Generation of signalling tones.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Generation of signalling tones. 64.1514 Section 64.1514 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Services § 64.1514 Generation of signalling tones. No common carrier shall assign a telephone number for...

  3. 47 CFR 64.1514 - Generation of signalling tones.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Generation of signalling tones. 64.1514 Section 64.1514 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Services § 64.1514 Generation of signalling tones. No common carrier shall assign a telephone number for...

  4. Habituation analysis of chirp vs. tone evoked auditory late responses.

    PubMed

    Kern, Kevin; Royter, Vladislav; Corona-Strauss, Farah I; Mariam, Mai; Strauss, Daniel J

    2010-01-01

    We have recently shown that tone evoked auditory late responses are able to proof that habituation is occurring [1], [2]. The sweep to sweep analysis using time scale coherence method from [1] is used. Where clear results using tone evoked ALRs were obtained. Now it is of interest how does the results behave using chirp evoked ALRs compared to tone evoked ALRs so that basilar membrane dispersion is compensated. We presented three different tone bursts and three different band limited chirps to 10 subjects using two different loudness levels which the subjects determined themselves before as medium and uncomfortably loud. The 3 chirps are band limited within 3 different ranges, the chirp with the lowest center frequency has the smallest range (according to octave-band). Chirps and tone bursts are using the same center frequencies.

  5. The Binaural Masking-Level Difference of Mandarin Tone Detection and the Binaural Intelligibility-Level Difference of Mandarin Tone Recognition in the Presence of Speech-Spectrum Noise

    PubMed Central

    Ho, Cheng-Yu; Li, Pei-Chun; Chiang, Yuan-Chuan; Young, Shuenn-Tsong; Chu, Woei-Chyn

    2015-01-01

    Binaural hearing involves using information relating to the differences between the signals that arrive at the two ears, and it can make it easier to detect and recognize signals in a noisy environment. This phenomenon of binaural hearing is quantified in laboratory studies as the binaural masking-level difference (BMLD). Mandarin is one of the most commonly used languages, but there are no publication values of BMLD or BILD based on Mandarin tones. Therefore, this study investigated the BMLD and BILD of Mandarin tones. The BMLDs of Mandarin tone detection were measured based on the detection threshold differences for the four tones of the voiced vowels /i/ (i.e., /i1/, /i2/, /i3/, and /i4/) and /u/ (i.e., /u1/, /u2/, /u3/, and /u4/) in the presence of speech-spectrum noise when presented interaurally in phase (S0N0) and interaurally in antiphase (SπN0). The BILDs of Mandarin tone recognition in speech-spectrum noise were determined as the differences in the target-to-masker ratio (TMR) required for 50% correct tone recognitions between the S0N0 and SπN0 conditions. The detection thresholds for the four tones of /i/ and /u/ differed significantly (p<0.001) between the S0N0 and SπN0 conditions. The average detection thresholds of Mandarin tones were all lower in the SπN0 condition than in the S0N0 condition, and the BMLDs ranged from 7.3 to 11.5 dB. The TMR for 50% correct Mandarin tone recognitions differed significantly (p<0.001) between the S0N0 and SπN0 conditions, at –13.4 and –18.0 dB, respectively, with a mean BILD of 4.6 dB. The study showed that the thresholds of Mandarin tone detection and recognition in the presence of speech-spectrum noise are improved when phase inversion is applied to the target speech. The average BILDs of Mandarin tones are smaller than the average BMLDs of Mandarin tones. PMID:25835987

  6. The value of visualizing tone of voice.

    PubMed

    Pullin, Graham; Cook, Andrew

    2013-10-01

    Whilst most of us have an innate feeling for tone of voice, it is an elusive quality that even phoneticians struggle to describe with sufficient subtlety. For people who cannot speak themselves this can have particularly profound repercussions. Augmentative communication often involves text-to-speech, a technology that only supports a basic choice of prosody based on punctuation. Given how inherently difficult it is to talk about more nuanced tone of voice, there is a risk that its absence from current devices goes unremarked and unchallenged. Looking ahead optimistically to more expressive communication aids, their design will need to involve more subtle interactions with tone of voice-interactions that the people using them can understand and engage with. Interaction design can play a role in making tone of voice visible, tangible, and accessible. Two projects that have already catalysed interdisciplinary debate in this area, Six Speaking Chairs and Speech Hedge, are introduced together with responses. A broader role for design is advocated, as a means to opening up speech technology research to a wider range of disciplinary perspectives, and also to the contributions and influence of people who use it in their everyday lives.

  7. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    PubMed

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall

    PubMed Central

    Liu, Xiaoping; El-Mahdy, Mohamed A.; Boslett, James; Varadharaj, Saradhadevi; Hemann, Craig; Abdelghany, Tamer M.; Ismail, Raed S.; Little, Sean C.; Zhou, Danlei; Thuy, Le Thi Thanh; Kawada, Norifumi; Zweier, Jay L.

    2017-01-01

    The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay, increases vascular relaxation, and lowers blood pressure and systemic vascular resistance. We further demonstrate that downregulation of Cygb prevents angiotensin-mediated hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We suggest that modulation of the expression and NOD activity of Cygb represents a strategy for the treatment of cardiovascular disease. PMID:28393874

  9. Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoping; El-Mahdy, Mohamed A.; Boslett, James; Varadharaj, Saradhadevi; Hemann, Craig; Abdelghany, Tamer M.; Ismail, Raed S.; Little, Sean C.; Zhou, Danlei; Thuy, Le Thi Thanh; Kawada, Norifumi; Zweier, Jay L.

    2017-04-01

    The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay, increases vascular relaxation, and lowers blood pressure and systemic vascular resistance. We further demonstrate that downregulation of Cygb prevents angiotensin-mediated hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We suggest that modulation of the expression and NOD activity of Cygb represents a strategy for the treatment of cardiovascular disease.

  10. Feelings of helplessness increase ERN amplitudes in healthyindividuals

    PubMed Central

    Pfabigan, D.M.; Pintzinger, N.M.; Siedek, D.R.; Lamm, C.; Derntl, B.; Sailer, U.

    2013-01-01

    Experiencing feelings of helplessness has repeatedly been reported to contribute to depressive symptoms and negative affect. In turn, depression and negative affective states are associated, among others, with impairments in performance monitoring. Thus, the question arises whether performance monitoring is also affected by feelings of helplessness. To this end, after the induction of feelings of helplessness via an unsolvable reasoning task, 37 participants (20 females) performed a modified version of a Flanker task. Based on a previously validated questionnaire, 17 participants were classified as helpless and 20 as not-helpless. Behavioral measures revealed no differences between helpless and not-helpless individuals. However, we observed enhanced Error-Related Negativity (ERN) amplitude differences between erroneous and correct responses in the helpless compared to the not-helpless group. Furthermore, correlational analysis revealed that higher scores of helplessness were associated with increased ERN difference scores. No influence of feelings of helplessness on later stages of performance monitoring was observed as indicated by Error-Positivity (Pe) amplitude. The present study is the first to demonstrate that feelings of helplessness modulate the neuronal correlates of performance monitoring. Thus, even a short-lasting subjective state manipulation can lead to ERN amplitude variation, probably via modulation of mesencephalic dopamine activity. PMID:23267824

  11. Average symbol error rate for M-ary quadrature amplitude modulation in generalized atmospheric turbulence and misalignment errors

    NASA Astrophysics Data System (ADS)

    Sharma, Prabhat Kumar

    2016-11-01

    A framework is presented for the analysis of average symbol error rate (SER) for M-ary quadrature amplitude modulation in a free-space optical communication system. The standard probability density function (PDF)-based approach is extended to evaluate the average SER by representing the Q-function through its Meijer's G-function equivalent. Specifically, a converging power series expression for the average SER is derived considering the zero-boresight misalignment errors in the receiver side. The analysis presented here assumes a unified expression for the PDF of channel coefficient which incorporates the M-distributed atmospheric turbulence and Rayleigh-distributed radial displacement for the misalignment errors. The analytical results are compared with the results obtained using Q-function approximation. Further, the presented results are supported by the Monte Carlo simulations.

  12. Perceptual Reorganization of Lexical Tones: Effects of Age and Experimental Procedure

    PubMed Central

    Götz, Antonia; Yeung, H. Henny; Krasotkina, Anna; Schwarzer, Gudrun; Höhle, Barbara

    2018-01-01

    Findings on the perceptual reorganization of lexical tones are mixed. Some studies report good tone discrimination abilities for all tested age groups, others report decreased or enhanced discrimination with increasing age, and still others report U-shaped developmental curves. Since prior studies have used a wide range of contrasts and experimental procedures, it is unclear how specific task requirements interact with discrimination abilities at different ages. In the present work, we tested German and Cantonese adults on their discrimination of Cantonese lexical tones, as well as German-learning infants between 6 and 18 months of age on their discrimination of two specific Cantonese tones using two different types of experimental procedures. The adult experiment showed that German native speakers can discriminate between lexical tones, but native Cantonese speakers show significantly better performance. The results from German-learning infants suggest that 6- and 18-month-olds discriminate tones, while 9-month-olds do not, supporting a U-shaped developmental curve. Furthermore, our results revealed an effect of methodology, with good discrimination performance at 6 months after habituation but not after familiarization. These results support three main conclusions. First, habituation can be a more sensitive procedure for measuring infants' discrimination than familiarization. Second, the previous finding of a U-shaped curve in the discrimination of lexical tones is further supported. Third, discrimination abilities at 18 months appear to reflect mature perceptual sensitivity to lexical tones, since German adults also discriminated the lexical tones with high accuracy. PMID:29681877

  13. Optimizing binary phase and amplitude filters for PCE, SNR, and discrimination

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1992-01-01

    Binary phase-only filters (BPOFs) have generated much study because of their implementation on currently available spatial light modulator devices. On polarization-rotating devices such as the magneto-optic spatial light modulator (SLM), it is also possible to encode binary amplitude information into two SLM transmission states, in addition to the binary phase information. This is done by varying the rotation angle of the polarization analyzer following the SLM in the optical train. Through this parameter, a continuum of filters may be designed that span the space of binary phase and amplitude filters (BPAFs) between BPOFs and binary amplitude filters. In this study, we investigate the design of optimal BPAFs for the key correlation characteristics of peak sharpness (through the peak-to-correlation energy (PCE) metric), signal-to-noise ratio (SNR), and discrimination between in-class and out-of-class images. We present simulation results illustrating improvements obtained over conventional BPOFs, and trade-offs between the different performance criteria in terms of the filter design parameter.

  14. Continuous tone printing in silicone from CNC milled matrices

    NASA Astrophysics Data System (ADS)

    Hoskins, S.; McCallion, P.

    2014-02-01

    Current research at the Centre for Fine Print Research (CFPR) at the University of the West of England, Bristol, is exploring the potential of creating coloured pictorial imagery from a continuous tone relief surface. To create the printing matrices the research team have been using CNC milled images where the height of the relief image is dictated by creating a tone curve and then milling this curve into a series of relief blocks from which the image is cast in a silicone ink. A translucent image is cast from each of the colour matrices and each colour is assembled - one on top of another - resulting is a colour continuous tone print, where colour tone is created by physical depth of colour. This process is a contemporary method of continuous tone colour printing based upon the Nineteenth Century black and white printing process of Woodburytype as developed by Walter Bentley Woodbury in 1865. Woodburytype is the only true continuous tone printing process invented, and although its delicate and subtle surfaces surpassed all other printing methods at the time. The process died out in the late nineteenth century as more expedient and cost effective methods of printing prevailed. New research at CFPR builds upon previous research that combines 19th Century Photomechanical techniques with digital technology to reappraise the potential of these processes.

  15. The Study of Tone and Related Phenomena in an Amazonian Tone Language: Gavião of Rondônia

    ERIC Educational Resources Information Center

    Moore, Denny; Meyer, Julien

    2014-01-01

    This paper describes the methods used to study the tone and some related phenomena of the language of the Gavião of Rondônia, Brazil, which is part of the Mondé branch of the Tupi family. Whistling of words by indigenous informants was discovered to be a very effective method for obtaining phonetic accuracy in tone and length. Methods were devised…

  16. Representations of race and skin tone in medical textbook imagery.

    PubMed

    Louie, Patricia; Wilkes, Rima

    2018-04-01

    Although a large literature has documented racial inequities in health care delivery, there continues to be debate about the potential sources of these inequities. Preliminary research suggests that racial inequities are embedded in the curricular edification of physicians and patients. We investigate this hypothesis by considering whether the race and skin tone depicted in images in textbooks assigned at top medical schools reflects the diversity of the U.S. We analyzed 4146 images from Atlas of Human Anatomy, Bates' Guide to Physical Examination & History Taking, Clinically Oriented Anatomy, and Gray's Anatomy for Students by coding race (White, Black, and Person of Color) and skin tone (light, medium, and dark) at the textbook, chapter, and topic level. While the textbooks approximate the racial distribution of the U.S. population - 62.5% White, 20.4% Black, and 17.0% Person of Color - the skin tones represented - 74.5% light, 21% medium, and 4.5% dark - overrepresent light skin tone and underrepresent dark skin tone. There is also an absence of skin tone diversity at the chapter and topic level. Even though medical texts often have overall proportional racial representation this is not the case for skin tone. Furthermore, racial minorities are still often absent at the topic level. These omissions may provide one route through which bias enters medical treatment. Copyright © 2018. Published by Elsevier Ltd.

  17. Posttraumatic Stress Disorder Disturbs Coronary Tone and Its Regulatory Mechanisms.

    PubMed

    Lazuko, Svetlana S; Kuzhel, Olga P; Belyaeva, Lyudmila E; Manukhina, Eugenia B; Fred Downey, H; Tseilikman, Olga B; Komelkova, Maria V; Tseilikman, Vadim E

    2018-01-01

    Posttraumatic stress disorder (PTSD) is associated with myocardial injury, but changes in coronary regulatory mechanisms in PTSD have not been investigated. This study evaluated the effect of PTSD-inducing stress on coronary tone and its regulation by nitric oxide (NO) and voltage-gated K + channels. PTSD was induced by exposing rats to predator stress, 15 min daily for 10 days, followed by 14 stress-free days. Presence of PTSD was confirmed by the elevated plus-maze test. Coronary tone was evaluated from changes in coronary perfusion pressure of Langendorff isolated hearts. Predator stress induced significant decreases in coronary tone of isolated hearts and in blood pressure of intact rats. L-NAME, a non-selective NO synthase (NOS) inhibitor, but not S-MT, a selective iNOS inhibitor, and increased coronary tone of control rats. In PTSD rats, both L-NAME and S-MT increased coronary tone. Therefore, the stress-induced coronary vasodilation resulted from NO overproduction by both iNOS and eNOS. NOS induction was apparently due to systemic inflammation as evidenced by increased serum interleukin-1β and C-reactive protein in PTSD rats. Decreased corticosterone in PTSD rats may have contributed to inflammation and its effect on coronary tone. PTSD was also associated with voltage-gated K + channel dysfunction, which would have also reduced coronary tone.

  18. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs

    PubMed Central

    Posada-Roman, Julio E.; Garcia-Souto, Jose A.; Poiana, Dragos A.; Acedo, Pablo

    2016-01-01

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal. PMID:27898043

  19. Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.

    PubMed

    Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo

    2016-11-26

    Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.

  20. First Language Attrition: An Investigation of Taiwanese Tones and Tone Sandhi

    ERIC Educational Resources Information Center

    Chang, Yufen

    2012-01-01

    First language (L1) attrition research focuses on syntactic and morphological deterioration in environments where L1 "attriters" rarely have contact with their L1, such as immigrants. There is no study that investigates L1 attrition in tones and in contexts where L1 can still be often heard. This study examines this attrition type in…

  1. Effects of tones associated with drilling activities on bowhead whale calling rates.

    PubMed

    Blackwell, Susanna B; Nations, Christopher S; Thode, Aaron M; Kauffman, Mandy E; Conrad, Alexander S; Norman, Robert G; Kim, Katherine H

    2017-01-01

    During summer 2012 Shell performed exploratory drilling at Sivulliq, a lease holding located in the autumn migration corridor of bowhead whales (Balaena mysticetus), northwest of Camden Bay in the Beaufort Sea. The drilling operation involved a number of vessels performing various activities, such as towing the drill rig, anchor handling, and drilling. Acoustic data were collected with six arrays of directional recorders (DASARs) deployed on the seafloor over ~7 weeks in Aug-Oct. Whale calls produced within 2 km of each DASAR were identified and localized using triangulation. A "tone index" was defined to quantify the presence and amplitude of tonal sounds from industrial machinery. The presence of airgun pulses originating from distant seismic operations was also quantified. For each 10-min period at each of the 40 recorders, the number of whale calls localized was matched with the "dose" of industrial sound received, and the relationship between calling rates and industrial sound was modeled using negative binomial regression. The analysis showed that with increasing tone levels, bowhead whale calling rates initially increased, peaked, and then decreased. This dual behavioral response is similar to that described for bowhead whales and airgun pulses in earlier work. Increasing call repetition rates can be a viable strategy for combating decreased detectability of signals arising from moderate increases in background noise. Meanwhile, as noise increases, the benefits of calling may decrease because information transfer becomes increasingly error-prone, and at some point calling may no longer be worth the effort.

  2. The relationship between amplitude modulation, coherent structure and critical layers in wall turbulence

    NASA Astrophysics Data System (ADS)

    McKeon, Beverley

    2015-11-01

    The importance of critical layers in determining aspects of the structure of wall turbulence is discussed. We have shown (Jacobi & McKeon, 2013) that the amplitude modulation coefficient investigated most recently by Hutchins & Marusic (2007) and co-authors, which describes the correlation between large scales above a (spatial) wavelength filter with the envelope of small scales below the filter, is dominated by very large scale motion (VLSM) at a single wavelength. The resolvent analysis of McKeon & Sharma (2010) gives a suitable model for the three-dimensional, three-component form of the VLSM and energetic structure at other wavelengths. This model is used to identify the three-dimensional spatial variation of instantaneous critical layers in the presence of a mean velocity profile and to relate this to earlier observations of coherent structure in unperturbed flows (both experimental and via the resolvent model, Sharma & McKeon, 2013); to the phase relationships between scales identified by Chung & McKeon (2010, 2014); and to the structure of wall turbulence that has been modified by the addition of single synthetic scales, e.g. Jacobi & McKeon (2011), Duvvuri & McKeon (2015). The support of AFOSR under grant number FA 9550-12-1-0469 is gratefully acknowledged.

  3. The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks.

    PubMed

    Flanagan, Sheila; Goswami, Usha

    2018-03-01

    Recent models of the neural encoding of speech suggest a core role for amplitude modulation (AM) structure, particularly regarding AM phase alignment. Accordingly, speech tasks that measure linguistic development in children may exhibit systematic properties regarding AM structure. Here, the acoustic structure of spoken items in child phonological and morphological tasks, phoneme deletion and plural elicitation, was investigated. The phase synchronisation index (PSI), reflecting the degree of phase alignment between pairs of AMs, was computed for 3 AM bands (delta, theta, beta/low gamma; 0.9-2.5 Hz, 2.5-12 Hz, 12-40 Hz, respectively), for five spectral bands covering 100-7250 Hz. For phoneme deletion, data from 94 child participants with and without dyslexia was used to relate AM structure to behavioural performance. Results revealed that a significant change in magnitude of the phase synchronisation index (ΔPSI) of slower AMs (delta-theta) systematically accompanied both phoneme deletion and plural elicitation. Further, children with dyslexia made more linguistic errors as the delta-theta ΔPSI increased. Accordingly, ΔPSI between slower temporal modulations in the speech signal systematically distinguished test items from accurate responses and predicted task performance. This may suggest that sensitivity to slower AM information in speech is a core aspect of phonological and morphological development.

  4. Binaural beat salience

    PubMed Central

    Grose, John H.; Buss, Emily; Hall, Joseph W.

    2012-01-01

    Previous studies of binaural beats have noted individual variability and response lability, but little attention has been paid to the salience of the binaural beat percept. The purpose of this study was to gauge the strength of the binaural beat percept by matching its salience to that of sinusoidal amplitude modulation (SAM), and to then compare rate discrimination for the two types of fluctuation. Rate discrimination was measured for standard rates of 4, 8, 16, and 32 Hz – all in the 500-Hz carrier region. Twelve normal-hearing adults participated in this study. The results indicated that discrimination acuity for binaural beats is similar to that for SAM tones whose depths of modulation have been adjusted to provide equivalent modulation salience. The matched-salience SAM tones had relatively shallow depths of modulation, suggesting that the perceptual strength of binaural beats is relatively weak, although all listeners perceived them. The Weber fraction for detection of an increase in binaural beat rate is roughly constant across beat rates, at least for rates above 4 Hz, as is rate discrimination for SAM tones. PMID:22326292

  5. Amplitude envelope correlations measure synchronous cortical oscillations in performing musicians.

    PubMed

    Zamm, Anna; Debener, Stefan; Bauer, Anna-Katharina R; Bleichner, Martin G; Demos, Alexander P; Palmer, Caroline

    2018-05-14

    A major question facing cognitive neuroscience is measurement of interbrain synchrony between individuals performing joint actions. We describe the application of a novel method for measuring musicians' interbrain synchrony: amplitude envelope correlations (AECs). Amplitude envelopes (AEs) reflect energy fluctuations in cortical oscillations over time; AE correlations measure the degree to which two envelope fluctuations are temporally correlated, such as cortical oscillations arising from two individuals performing a joint action. Wireless electroencephalography was recorded from two pianists performing a musical duet; an analysis pipeline is described for computing AEs of cortical oscillations at the duet performance frequency (number of tones produced per second) to test whether these oscillations reflect the temporal dynamics of partners' performances. The pianists' AE correlations were compared with correlations based on a distribution of AEs simulated from white noise signals using the same methods. The AE method was also applied to the temporal characteristics of the pianists' performances, to show that the observed pair's AEs reflect the temporal dynamics of their performance. AE correlations offer a promising approach for assessing interbrain correspondences in cortical activity associated with performing joint tasks. © 2018 New York Academy of Sciences.

  6. Specificity of the Human Frequency Following Response for Carrier and Modulation Frequency Assessed Using Adaptation.

    PubMed

    Gockel, Hedwig E; Krugliak, Alexandra; Plack, Christopher J; Carlyon, Robert P

    2015-12-01

    The frequency following response (FFR) is a scalp-recorded measure of phase-locked brainstem activity to stimulus-related periodicities. Three experiments investigated the specificity of the FFR for carrier and modulation frequency using adaptation. FFR waveforms evoked by alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. The first experiment investigated peristimulus adaptation of the FFR for pure and complex tones as a function of stimulus frequency and fundamental frequency (F0). It showed more adaptation of the FFR in response to sounds with higher frequencies or F0s than to sounds with lower frequency or F0s. The second experiment investigated tuning to modulation rate in the FFR. The FFR to a complex tone with a modulation rate of 213 Hz was not reduced more by an adaptor that had the same modulation rate than by an adaptor with a different modulation rate (90 or 504 Hz), thus providing no evidence that the FFR originates mainly from neurons that respond selectively to the modulation rate of the stimulus. The third experiment investigated tuning to audio frequency in the FFR using pure tones. An adaptor that had the same frequency as the target (213 or 504 Hz) did not generally reduce the FFR to the target more than an adaptor that differed in frequency (by 1.24 octaves). Thus, there was no evidence that the FFR originated mainly from neurons tuned to the frequency of the target. Instead, the results are consistent with the suggestion that the FFR for low-frequency pure tones at medium to high levels mainly originates from neurons tuned to higher frequencies. Implications for the use and interpretation of the FFR are discussed.

  7. Forward and backward tone mapping of high dynamic range images based on subband architecture

    NASA Astrophysics Data System (ADS)

    Bouzidi, Ines; Ouled Zaid, Azza

    2015-01-01

    This paper presents a novel High Dynamic Range (HDR) tone mapping (TM) system based on sub-band architecture. Standard wavelet filters of Daubechies, Symlets, Coiflets and Biorthogonal were used to estimate the proposed system performance in terms of Low Dynamic Range (LDR) image quality and reconstructed HDR image fidelity. During TM stage, the HDR image is firstly decomposed in sub-bands using symmetrical analysis-synthesis filter bank. The transform coefficients are then rescaled using a predefined gain map. The inverse Tone Mapping (iTM) stage is straightforward. Indeed, the LDR image passes through the same sub-band architecture. But, instead of reducing the dynamic range, the LDR content is boosted to an HDR representation. Moreover, in our TM sheme, we included an optimization module to select the gain map components that minimize the reconstruction error, and consequently resulting in high fidelity HDR content. Comparisons with recent state-of-the-art methods have shown that our method provides better results in terms of visual quality and HDR reconstruction fidelity using objective and subjective evaluations.

  8. Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex.

    PubMed

    Shetake, Jai A; Engineer, Navzer D; Vrana, Will A; Wolf, Jordan T; Kilgard, Michael P

    2012-01-01

    The selectivity of neurons in sensory cortex can be modified by pairing neuromodulator release with sensory stimulation. Repeated pairing of electrical stimulation of the cholinergic nucleus basalis, for example, induces input specific plasticity in primary auditory cortex (A1). Pairing nucleus basalis stimulation (NBS) with a tone increases the number of A1 neurons that respond to the paired tone frequency. Pairing NBS with fast or slow tone trains can respectively increase or decrease the ability of A1 neurons to respond to rapidly presented tones. Pairing vagus nerve stimulation (VNS) with a single tone alters spectral tuning in the same way as NBS-tone pairing without the need for brain surgery. In this study, we tested whether pairing VNS with tone trains can change the temporal response properties of A1 neurons. In naïve rats, A1 neurons respond strongly to tones repeated at rates up to 10 pulses per second (pps). Repeatedly pairing VNS with 15 pps tone trains increased the temporal following capacity of A1 neurons and repeatedly pairing VNS with 5 pps tone trains decreased the temporal following capacity of A1 neurons. Pairing VNS with tone trains did not alter the frequency selectivity or tonotopic organization of auditory cortex neurons. Since VNS is well tolerated by patients, VNS-tone train pairing represents a viable method to direct temporal plasticity in a variety of human conditions associated with temporal processing deficits. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Development of low postural tone compensatory patterns in children - theoretical basis.

    PubMed

    Gogola, Anna; Saulicz, Edward; Kuszewski, Michał; Matyja, Małgorzata; Myśliwiec, Andrzej

    2014-01-01

    Neurological literature indicates the existence of children with low postural tone without association with central nervous system damage. This fact induces to think about mechanisms, which allow these children to maintain upright posture. There is a suspicion that compensatory mechanism included in this process, enables to achieve upright posture, but at expense of body posture quality. Observations of children's developmental stages caused determination of some postural tone area, which comprise both children with normotonia and with low postural tone without characteristics of central nervous system (CNS) damage. Set of specific qualities allows determination of two types of low postural tone: spastoidal and atetoidal type. Spastoidal type is characterized by deep trunk muscles (local) low postural tone compensated by excessive tension of superficial muscles (global). Atetoidal type includes children with low postural tone in both deep and superficial muscles. At inefficient active subsystem, verticalization proceeds at excessive use of passive subsystem qualities, that is meniscus, ligament, bone shape, and muscles passive features. From neurodevelopmental point of view compensatory mechanisms can be used in children with low postural tone in order to achieve upright posture, but at expense of body posture quality.

  10. [Perception by teenagers and adults of the changed by amplitude sound sequences used in models of movement of the sound source].

    PubMed

    Andreeva, I G; Vartanian, I A

    2012-01-01

    The ability to evaluate direction of amplitude changes of sound stimuli was studied in adults and in the 11-12- and 15-16-year old teenagers. The stimuli representing sequences of fragments of the tone of 1 kHz, whose amplitude is changing with time, are used as model of approach and withdrawal of the sound sources. The 11-12-year old teenagers at estimation of direction of amplitude changes were shown to make the significantly higher number of errors as compared with two other examined groups, including those in repeated experiments. The structure of errors - the ratio of the portion of errors at estimation of increasing and decreasing by amplitude stimulus - turned out to be different in teenagers and in adults. The question is discussed about the effect of unspecific activation of the large hemisphere cortex in teenagers on processes if taking solution about the complex sound stimulus, including a possibility estimation of approach and withdrawal of the sound source.

  11. Single SOA based simultaneous amplitude regeneration for WDM-PDM RZ-PSK signals.

    PubMed

    Wu, Wenhan; Yu, Yu; Zou, Bingrong; Yang, Weili; Zhang, Xinliang

    2013-03-25

    We propose and demonstrate all-optical amplitude regeneration for the wavelength division multiplexing and polarization division multiplexing (WDM-PDM) return-to-zero phase shift keying (RZ-PSK) signals using a single semiconductor optical amplifier (SOA) and subsequent filtering. The regeneration is based on the cross phase modulation (XPM) effect in the saturated SOA and the subsequent narrow filtering. The spectrum of the distorted signal can be broadened due to the phase modulation induced by the synchronous optical clock signal. A narrow band pass filter is utilized to extract part of the broadened spectrum and remove the amplitude noise, while preserving the phase information. The working principle for multi-channel and polarization orthogonality preserving is analyzed. 4-channel dual polarization signals can be simultaneously amplitude regenerated without introducing wavelength and polarization demultiplexing. An average power penalty improvement of 1.75dB can be achieved for the WDM-PDM signals.

  12. Envelope Interactions in Multi-Channel Amplitude Modulation Frequency Discrimination by Cochlear Implant Users.

    PubMed

    Galvin, John J; Oba, Sandra I; Başkent, Deniz; Chatterjee, Monita; Fu, Qian-Jie

    2015-01-01

    Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure ("which interval is different?"). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2-4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Besides the increased loudness, the present results also suggest that multiple envelope

  13. Amplitude-phase cross talk as a deterioration factor of signal-to-noise ratio in phase-detection noise-cancellation technique for spectral pump/probe measurements and compensation of the amplitude-phase cross talk

    NASA Astrophysics Data System (ADS)

    Seto, Keisuke; Tarumi, Takashi; Tokunaga, Eiji

    2018-06-01

    Noise cancellation of the light source is an important method to enhance the signal-to-noise ratio (SNR) and facilitate high-speed detection in pump/probe measurements. We developed a method to eliminate the noise for the multichannel spectral pump/probe measurements with a spectral dispersion of a white probe pulse light. In this method, the sample-induced intensity modulation is converted to the phase modulation of the pulse repetition irrespective of the intensity noise of the light source. The SNR is enhanced through the phase detection of the observed signal with the signal synchronized to the pulse repetition serving as the phase reference (synchronized signal). However, the shot-noise limited performance is not achieved with an intense probe light. In this work, we demonstrate that the performance limitation below the shot noise limit is caused by the amplitude-phase cross talk. It converts the amplitude noise into the phase noise and is caused by the space-charge effect in the photodetector, the reverse bias voltage drop across the load impedance, and the phase detection circuit. The phase delay occurs with an intense light at a PIN photodiode, whereas the phase is advanced in an avalanche photodiode. Although the amplitude distortion characteristics also reduce the performance, the distortion effect is equivalent to the amplitude-phase cross talk. We also propose possible ways to compensate the cross talk effect by using the phase modulation of the synchronized signal for the phase detection based on the instantaneous amplitude.

  14. 47 CFR 11.12 - Two-tone Attention Signal encoder and decoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Two-tone Attention Signal encoder and decoder... SYSTEM (EAS) General § 11.12 Two-tone Attention Signal encoder and decoder. Existing two-tone Attention Signal encoder and decoder equipment type accepted for use as Emergency Broadcast System equipment under...

  15. 47 CFR 11.12 - Two-tone Attention Signal encoder and decoder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Two-tone Attention Signal encoder and decoder... SYSTEM (EAS) General § 11.12 Two-tone Attention Signal encoder and decoder. Existing two-tone Attention Signal encoder and decoder equipment type accepted for use as Emergency Broadcast System equipment under...

  16. Communication Disorders in Speakers of Tone Languages: Etiological Bases and Clinical Considerations

    PubMed Central

    Wong, Patrick C. M.; Perrachione, Tyler K.; Gunasekera, Geshri; Chandrasekaran, Bharath

    2009-01-01

    Lexical tones are a phonetic contrast necessary for conveying meaning in a majority of the world’s languages. Various hearing, speech, and language disorders affect the ability to perceive or produce lexical tones, thereby seriously impairing individuals’ communicative abilities. The number of tone language speakers is increasing, even in otherwise English-speaking nations, yet insufficient emphasis has been placed on clinical assessment and rehabilitation of lexical tone disorders. The similarities and dissimilarities between lexical tones and other speech sounds make a richer scientific understanding of their physiological bases paramount to more effective remediation of speech and language disorders in general. Here we discuss the cognitive and biological bases of lexical tones, emphasizing the neural structures and networks that support their acquisition, perception, and cognitive representation. We present emerging research on lexical tone learning in the context of the clinical disorders of hearing, speech, and language that this body of research will help to address. PMID:19711234

  17. Electrophysiological evidence for a general auditory prediction deficit in adults who stutter

    PubMed Central

    Daliri, Ayoub; Max, Ludo

    2015-01-01

    We previously found that stuttering individuals do not show the typical auditory modulation observed during speech planning in nonstuttering individuals. In this follow-up study, we further elucidate this difference by investigating whether stuttering speakers’ atypical auditory modulation is observed only when sensory predictions are based on movement planning or also when predictable auditory input is not a consequence of one’s own actions. We recorded 10 stuttering and 10 nonstuttering adults’ auditory evoked potentials in response to random probe tones delivered while anticipating either speaking aloud or hearing one’s own speech played back and in a control condition without auditory input (besides probe tones). N1 amplitude of nonstuttering speakers was reduced prior to both speaking and hearing versus the control condition. Stuttering speakers, however, showed no N1 amplitude reduction in either the speaking or hearing condition as compared with control. Thus, findings suggest that stuttering speakers have general auditory prediction difficulties. PMID:26335995

  18. Nondegenerate parametric oscillations in a tunable superconducting resonator

    NASA Astrophysics Data System (ADS)

    Bengtsson, Andreas; Krantz, Philip; Simoen, Michaël; Svensson, Ida-Maria; Schneider, Ben; Shumeiko, Vitaly; Delsing, Per; Bylander, Jonas

    2018-04-01

    We investigate nondegenerate parametric oscillations in a superconducting microwave multimode resonator that is terminated by a superconducting quantum interference device (SQUID). The parametric effect is achieved by modulating magnetic flux through the SQUID at a frequency close to the sum of two resonator-mode frequencies. For modulation amplitudes exceeding an instability threshold, self-sustained oscillations are observed in both modes. The amplitudes of these oscillations show good quantitative agreement with a theoretical model. The oscillation phases are found to be correlated and exhibit strong fluctuations which broaden the oscillation spectral linewidths. These linewidths are significantly reduced by applying a weak on-resonant tone, which also suppresses the phase fluctuations. When the weak tone is detuned, we observe synchronization of the oscillation frequency with the frequency of the input. For the detuned input, we also observe an emergence of three idlers in the output. This observation is in agreement with theory indicating four-mode amplification and squeezing of a coherent input.

  19. Obliquity Modulation of the Incoming Solar Radiation

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  20. Neural Control of Fundamental Frequency Rise and Fall in Mandarin Tones

    ERIC Educational Resources Information Center

    Howell, Peter; Jiang, Jing; Peng, Danling; Lu, Chunming

    2012-01-01

    The neural mechanisms used in tone rises and falls in Mandarin were investigated. Nine participants were scanned while they named one-character pictures that required rising or falling tone responses in Mandarin: the left insula and right putamen showed stronger activation between rising and falling tones; the left brainstem showed weaker…

  1. Audiometric Testing With Pulsed, Steady, and Warble Tones in Listeners With Tinnitus and Hearing Loss

    PubMed Central

    Walker, Matthew A.; Short, Ciara E.; Skinner, Kimberly G.

    2017-01-01

    Purpose This study evaluated the American Speech-Language-Hearing Association's recommendation that audiometric testing for patients with tinnitus should use pulsed or warble tones. Using listeners with varied audiometric configurations and tinnitus statuses, we asked whether steady, pulsed, and warble tones yielded similar audiometric thresholds, and which tone type was preferred. Method Audiometric thresholds (octave frequencies from 0.25–16 kHz) were measured using steady, pulsed, and warble tones in 61 listeners, who were divided into 4 groups on the basis of hearing and tinnitus status. Participants rated the appeal and difficulty of each tone type on a 1–5 scale and selected a preferred type. Results For all groups, thresholds were lower for warble than for pulsed and steady tones, with the largest effects above 4 kHz. Appeal ratings did not differ across tone type, but the steady tone was rated as more difficult than the warble and pulsed tones. Participants generally preferred pulsed and warble tones. Conclusions Pulsed tones provide advantages over steady and warble tones for patients regardless of hearing or tinnitus status. Although listeners preferred pulsed and warble tones to steady tones, pulsed tones are not susceptible to the effects of off-frequency listening, a consideration when testing listeners with sloping audiograms. PMID:28892822

  2. Audiometric Testing With Pulsed, Steady, and Warble Tones in Listeners With Tinnitus and Hearing Loss.

    PubMed

    Lentz, Jennifer J; Walker, Matthew A; Short, Ciara E; Skinner, Kimberly G

    2017-09-18

    This study evaluated the American Speech-Language-Hearing Association's recommendation that audiometric testing for patients with tinnitus should use pulsed or warble tones. Using listeners with varied audiometric configurations and tinnitus statuses, we asked whether steady, pulsed, and warble tones yielded similar audiometric thresholds, and which tone type was preferred. Audiometric thresholds (octave frequencies from 0.25-16 kHz) were measured using steady, pulsed, and warble tones in 61 listeners, who were divided into 4 groups on the basis of hearing and tinnitus status. Participants rated the appeal and difficulty of each tone type on a 1-5 scale and selected a preferred type. For all groups, thresholds were lower for warble than for pulsed and steady tones, with the largest effects above 4 kHz. Appeal ratings did not differ across tone type, but the steady tone was rated as more difficult than the warble and pulsed tones. Participants generally preferred pulsed and warble tones. Pulsed tones provide advantages over steady and warble tones for patients regardless of hearing or tinnitus status. Although listeners preferred pulsed and warble tones to steady tones, pulsed tones are not susceptible to the effects of off-frequency listening, a consideration when testing listeners with sloping audiograms.

  3. Effects of production training and perception training on lexical tone perception--A behavioral and ERP study.

    PubMed

    Lu, Shuang; Wayland, Ratree; Kaan, Edith

    2015-10-22

    The present study recorded both behavioral data and event-related brain potentials to examine the effectiveness of a perception-only training and a perception-plus-production training procedure on the intentional and unintentional perception of lexical tone by native English listeners. In the behavioral task, both the perception-only and the perception-plus-production groups improved on the tone discrimination abilities after the training session. Moreover, the participants in both groups generalized the improvements gained through the trained stimuli to the untrained stimuli. In the ERP task, the Mismatch Negativity was smaller in the post-training task than in the pre-training task. However, the two training groups did not differ in tone processing at the intentional or unintentional level after training. These results suggest that the employment of the motor system does not specifically benefit the tone perceptual skills. Furthermore, the present study investigated whether some tone pairs are more easily confused than others by native English listeners, and whether the order of tone presentation influences non-native tone discrimination. In the behavioral task, Tone2-Tone1 (rising-level) and Tone2-Tone4 (rising-falling) were the most difficult tone pairs, while Tone1-Tone2 and Tone4-Tone2 were the easiest tone pairs, even though they involved the same tone contrasts respectively. In the ERP task, the native English listeners had good discrimination when Tone2 and Tone4 were embedded in strings of Tone1, while poor discrimination when Tone1 was inserted in the context of Tone2 or Tone4. These asymmetries in tone perception might be attributed to the interference of native intonation system and can be altered by training. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Tones Encountered with a Coannular Nozzle and a Method for Their Suppression

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul Bmq; Bridges, James E.; Fagan, Amy Florence; Miller, Christopher J.

    2017-01-01

    With multi-stream coannular nozzles, sometimes tones occur that may cause the nozzle to fail noise regulation standards. A two-stream nozzle was studied experimentally and numerically in an attempt to identify the sources of such tones and explore remedies. For the given nozzle configuration, sharp tones occurred in a range of low jet Mach numbers. The tones apparently occurred due to a coupling between vortex shedding from the struts, which held the nozzles and the center-body together, with various duct acoustic modes. A leading edge treatment of the struts is shown to eliminate the tones via disruption of the vortex shedding.

  5. Placebo-controlled vagus nerve stimulation paired with tones in a patient with refractory tinnitus: a case report.

    PubMed

    De Ridder, Dirk; Kilgard, Michael; Engineer, Navzer; Vanneste, Sven

    2015-04-01

    Classical neuromodulation consists of applying electrical or magnetic stimuli to the nervous system to modulate ongoing activity and connectivity. However, recently, an exciting novel neuromodulation technique was developed in which stimulation of the vagal nerve was paired with simultaneous presentation of tones, demonstrating that it reverses a tinnitus percept in noise-exposed rats. To determine whether this therapy could also be effective in humans, we delivered a similar therapy in a patient with chronic tinnitus unresponsive to previous therapies. In this report, we describe the case of a 59-year-old man who suffered from bilateral tinnitus for 14 years that arose after a cervical fusion operation. Pharmacotherapy, transcranial magnetic stimulation, transcranial direct current stimulation, neurofeedback, and bilateral auditory cortex stimulation via implanted electrodes did not improve the tinnitus. After implanting the vagal nerve stimulator, the patient received daily vagus nerve stimulation tone pairings for 4 weeks in a non-placebo-controlled way. At the end of therapy, the patient experienced a significant reduction in tinnitus symptoms that lasted for 2 months after treatment. Tinnitus Handicap Inventory and Tinnitus Reaction Questionnaire were reduced by 48% and 68%, respectively. Symptoms of depression were also improved by 40%, as quantified by the Beck Depression Inventory. Three months after ending therapy, placebo stimulation was performed consisting of only tone presentation without the simultaneous electrical stimuli. This resulted in further continuation of the gradual relapse to the baseline state, without renewed improvement. Our results suggest that vagus nerve stimulation paired with tones could become an effective therapy for the treatment of tinnitus.

  6. Spectro-temporal modulation masking patterns reveal frequency selectivity.

    PubMed

    Oetjen, Arne; Verhey, Jesko L

    2015-02-01

    The present study investigated the possibility that the human auditory system demonstrates frequency selectivity to spectro-temporal amplitude modulations. Threshold modulation depth for detecting sinusoidal spectro-temporal modulations was measured using a generalized masked threshold pattern paradigm with narrowband masker modulations. Four target spectro-temporal modulations were examined, differing in their temporal and spectral modulation frequencies: a temporal modulation of -8, 8, or 16 Hz combined with a spectral modulation of 1 cycle/octave and a temporal modulation of 4 Hz combined with a spectral modulation of 0.5 cycles/octave. The temporal center frequencies of the masker modulation ranged from 0.25 to 4 times the target temporal modulation. The spectral masker-modulation center-frequencies were 0, 0.5, 1, 1.5, and 2 times the target spectral modulation. For all target modulations, the pattern of average thresholds for the eight normal-hearing listeners was consistent with the hypothesis of a spectro-temporal modulation filter. Such a pattern of modulation-frequency sensitivity was predicted on the basis of psychoacoustical data for purely temporal amplitude modulations and purely spectral amplitude modulations. An analysis of separability indicates that, for the present data set, selectivity in the spectro-temporal modulation domain can be described by a combination of a purely spectral and a purely temporal modulation filter function.

  7. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface

    NASA Astrophysics Data System (ADS)

    Song, Xu; Huang, Lingling; Sun, Lin; Zhang, Xiaomeng; Zhao, Ruizhe; Li, Xiaowei; Wang, Jia; Bai, Benfeng; Wang, Yongtian

    2018-02-01

    Metasurfaces have recently intrigued extensive interest due to their ability to locally manipulate electromagnetic waves, which provide great feasibility for tailoring both propagation waves and surface plasmon polaritons (SPPs). Manipulation of SPPs with arbitrary complex fields is an important issue in integrated nanophotonics due to their capability of guiding waves with subwavelength footprints. Here, an approach with metasurfaces composed of nanoaperture arrays is proposed and experimentally demonstrated which can effectively manipulate the complex amplitude of SPPs in the near-field regime. Tailoring the azimuthal angles of individual nanoapertures and simultaneously tuning their geometric parameters, the phase and amplitude are controlled based on the Pancharatnam-Berry phases and their individual transmission coefficients. For the verification of the concept, Airy plasmons and axisymmetric Airy-SPPs are generated. The results of numerical simulations and near-field imaging are consistent with each other. Besides the rigorous simulations, we applied a 2D dipole analysis for additional analysis. This strategy of complex amplitude manipulation with metasurfaces can be used for potential applications in plasmonic beam shaping, integrated optoelectronic systems, and surface wave holography.

  8. Effects of Early Bilingual Experience with a Tone and a Non-Tone Language on Speech-Music Integration

    PubMed Central

    Asaridou, Salomi S.; Hagoort, Peter; McQueen, James M.

    2015-01-01

    We investigated music and language processing in a group of early bilinguals who spoke a tone language and a non-tone language (Cantonese and Dutch). We assessed online speech-music processing interactions, that is, interactions that occur when speech and music are processed simultaneously in songs, with a speeded classification task. In this task, participants judged sung pseudowords either musically (based on the direction of the musical interval) or phonologically (based on the identity of the sung vowel). We also assessed longer-term effects of linguistic experience on musical ability, that is, the influence of extensive prior experience with language when processing music. These effects were assessed with a task in which participants had to learn to identify musical intervals and with four pitch-perception tasks. Our hypothesis was that due to their experience in two different languages using lexical versus intonational tone, the early Cantonese-Dutch bilinguals would outperform the Dutch control participants. In online processing, the Cantonese-Dutch bilinguals processed speech and music more holistically than controls. This effect seems to be driven by experience with a tone language, in which integration of segmental and pitch information is fundamental. Regarding longer-term effects of linguistic experience, we found no evidence for a bilingual advantage in either the music-interval learning task or the pitch-perception tasks. Together, these results suggest that being a Cantonese-Dutch bilingual does not have any measurable longer-term effects on pitch and music processing, but does have consequences for how speech and music are processed jointly. PMID:26659377

  9. Effects of Early Bilingual Experience with a Tone and a Non-Tone Language on Speech-Music Integration.

    PubMed

    Asaridou, Salomi S; Hagoort, Peter; McQueen, James M

    2015-01-01

    We investigated music and language processing in a group of early bilinguals who spoke a tone language and a non-tone language (Cantonese and Dutch). We assessed online speech-music processing interactions, that is, interactions that occur when speech and music are processed simultaneously in songs, with a speeded classification task. In this task, participants judged sung pseudowords either musically (based on the direction of the musical interval) or phonologically (based on the identity of the sung vowel). We also assessed longer-term effects of linguistic experience on musical ability, that is, the influence of extensive prior experience with language when processing music. These effects were assessed with a task in which participants had to learn to identify musical intervals and with four pitch-perception tasks. Our hypothesis was that due to their experience in two different languages using lexical versus intonational tone, the early Cantonese-Dutch bilinguals would outperform the Dutch control participants. In online processing, the Cantonese-Dutch bilinguals processed speech and music more holistically than controls. This effect seems to be driven by experience with a tone language, in which integration of segmental and pitch information is fundamental. Regarding longer-term effects of linguistic experience, we found no evidence for a bilingual advantage in either the music-interval learning task or the pitch-perception tasks. Together, these results suggest that being a Cantonese-Dutch bilingual does not have any measurable longer-term effects on pitch and music processing, but does have consequences for how speech and music are processed jointly.

  10. Understanding multidecadal variability in ENSO amplitude

    NASA Astrophysics Data System (ADS)

    Russell, A.; Gnanadesikan, A.

    2013-12-01

    Sea surface temperatures (SSTs) in the tropical Pacific vary as a result of the coupling between the ocean and atmosphere driven largely by the El Niño - Southern Oscillation (ENSO). ENSO has a large impact on the local climate and hydrology of the tropical Pacific, as well as broad-reaching effects on global climate. ENSO amplitude is known to vary on long timescales, which makes it very difficult to quantify its response to climate change and constrain the physical processes that drive it. In order to assess the extent of unforced multidecadal changes in ENSO variability, a linear regression of local SST changes is applied to the GFDL CM2.1 model 4000-yr pre-industrial control run. The resulting regression coefficient strengths, which represent the sensitivity of SST changes to thermocline depth and zonal wind stress, vary by up to a factor of 2 on multi-decadal time scales. This long-term modulation in ocean-atmosphere coupling is highly correlated with ENSO variability, but do not explain the reasons for such variability. Variation in the relationship between SST changes and wind stress points to a role for changing stratification in the central equatorial Pacific in modulating ENSO amplitudes with stronger stratification reducing the response to winds. The main driving mechanism we have identified for higher ENSO variance are changes in the response of zonal winds to SST anomalies. The shifting convection and precipitation patterns associated with the changing state of the atmosphere also contribute to the variability of the regression coefficients. These mechanisms drive much of the variability in ENSO amplitude and hence ocean-atmosphere coupling in the tropical Pacific.

  11. Tone classification of syllable-segmented Thai speech based on multilayer perception

    NASA Astrophysics Data System (ADS)

    Satravaha, Nuttavudh; Klinkhachorn, Powsiri; Lass, Norman

    2002-05-01

    Thai is a monosyllabic tonal language that uses tone to convey lexical information about the meaning of a syllable. Thus to completely recognize a spoken Thai syllable, a speech recognition system not only has to recognize a base syllable but also must correctly identify a tone. Hence, tone classification of Thai speech is an essential part of a Thai speech recognition system. Thai has five distinctive tones (``mid,'' ``low,'' ``falling,'' ``high,'' and ``rising'') and each tone is represented by a single fundamental frequency (F0) pattern. However, several factors, including tonal coarticulation, stress, intonation, and speaker variability, affect the F0 pattern of a syllable in continuous Thai speech. In this study, an efficient method for tone classification of syllable-segmented Thai speech, which incorporates the effects of tonal coarticulation, stress, and intonation, as well as a method to perform automatic syllable segmentation, were developed. Acoustic parameters were used as the main discriminating parameters. The F0 contour of a segmented syllable was normalized by using a z-score transformation before being presented to a tone classifier. The proposed system was evaluated on 920 test utterances spoken by 8 speakers. A recognition rate of 91.36% was achieved by the proposed system.

  12. Numerical Simulation of the Generation of Axisymmetric Mode Jet Screech Tones

    NASA Technical Reports Server (NTRS)

    Shen, Hao; Tam, Christopher K. W.

    1998-01-01

    An imperfectly expanded supersonic jet, invariably, radiates both broadband noise and discrete frequency sound called screech tones. Screech tones are known to be generated by a feedback loop driven by the large scale instability waves of the jet flow. Inside the jet plume is a quasi-periodic shock cell structure. The interaction of the instability waves and the shock cell structure, as the former propagates through the latter, is responsible for the generation of the tones. Presently, there are formulas that can predict the tone frequency fairly accurately. However, there is no known way to predict the screech tone intensity. In this work, the screech phenomenon of an axisymmetric jet at low supersonic Mach number is reproduced by numerical simulation. The computed mean velocity profiles and the shock cell pressure distribution of the jet are found to be in good agreement with experimental measurements. The same is true with the simulated screech frequency. Calculated screech tone intensity and directivity at selected jet Mach number are reported in this paper. The present results demonstrate that numerical simulation using computational aeroacoustics methods offers not only a reliable way to determine the screech tone intensity and directivity but also an opportunity to study the physics and detailed mechanisms of the phenomenon by an entirely new approach.

  13. Importance of vagal input in maintaining gastric tone in the dog.

    PubMed Central

    Azpiroz, F; Malagelada, J R

    1987-01-01

    1. Using a gastric barostat to quantify variations in gastric tone, we had previously demonstrated that food ingestion or intestinal nutrient perfusion induces gastric relaxation. These data suggested a basal tonic contraction of the stomach during fasting. 2. To determine the role of vagal input in maintaining fasting gastric tone, we prepared two chronic canine models, either isolating both cervical vagal trunks in a cutaneous tunnel or including the supradiaphragmatic vagi within an implanted cooling jacket. In the fasted conscious dogs, we then studied the effect, on gastric tone, of acute and reversible vagal blockade by cooling. 3. Cervical vagal cooling produced a reversible gastric relaxation and increased the heart rate. Supradiaphragmatic vagal cooling produced a similar gastric relaxation without the cardiac effect. 4. Adrenergic blockade did not change either the base-line gastric tone or the cooling-induced relaxation. Adrenaline decreased gastric tone, but vagal cooling still produced a significant relaxation. 5. Atropine alone or combined with adrenergic antagonists produced a gastric relaxation that was not further increased by vagal cooling. Bethanechol increased gastric tone, an effect unchanged by vagal cooling. 6. We conclude that gastric tone during fasting is maintained by a cholinergic input, which is vagally mediated at both the cervical and the supradiaphragmatic levels. Images Fig. 1 PMID:2888879

  14. Context, Contrast, and Tone of Voice in Auditory Sarcasm Perception.

    PubMed

    Voyer, Daniel; Thibodeau, Sophie-Hélène; Delong, Breanna J

    2016-02-01

    Four experiments were conducted to investigate the interplay between context and tone of voice in the perception of sarcasm. These experiments emphasized the role of contrast effects in sarcasm perception exclusively by means of auditory stimuli whereas most past research has relied on written material. In all experiments, a positive or negative computer-generated context spoken in a flat emotional tone was followed by a literally positive statement spoken in a sincere or sarcastic tone of voice. Participants indicated for each statement whether the intonation was sincere or sarcastic. In Experiment 1, a congruent context/tone of voice pairing (negative/sarcastic, positive/sincere) produced fast response times and proportions of sarcastic responses in the direction predicted by the tone of voice. Incongruent pairings produced mid-range proportions and slower response times. Experiment 2 introduced ambiguous contexts to determine whether a lower context/statements contrast would affect the proportion of sarcastic responses and response time. Results showed the expected findings for proportions (values between those obtained for congruent and incongruent pairings in the direction predicted by the tone of voice). However, response time failed to produce the predicted pattern, suggesting potential issues with the choice of stimuli. Experiments 3 and 4 extended the results of Experiments 1 and 2, respectively, to auditory stimuli based on written vignettes used in neuropsychological assessment. Results were exactly as predicted by contrast effects in both experiments. Taken together, the findings suggest that both context and tone influence how sarcasm is perceived while supporting the importance of contrast effects in sarcasm perception.

  15. The role of tone and segmental information in visual-word recognition in Thai.

    PubMed

    Winskel, Heather; Ratitamkul, Theeraporn; Charoensit, Akira

    2017-07-01

    Tone languages represent a large proportion of the spoken languages of the world and yet lexical tone is understudied. Thai offers a unique opportunity to investigate the role of lexical tone processing during visual-word recognition, as tone is explicitly expressed in its script. We used colour words and their orthographic neighbours as stimuli to investigate facilitation (Experiment 1) and interference (Experiment 2) Stroop effects. Five experimental conditions were created: (a) the colour word (e.g., ขาว /k h ã:w/ [white]), (b) tone different word (e.g., ข่าว /k h à:w/[news]), (c) initial consonant phonologically same word (e.g., คาว /k h a:w/ [fishy]), where the initial consonant of the word was phonologically the same but orthographically different, (d) initial consonant different, tone same word (e.g., หาว /hã:w/ yawn), where the initial consonant was orthographically different but the tone of the word was the same, and (e) initial consonant different, tone different word (e.g., กาว /ka:w/ glue), where the initial consonant was orthographically different, and the tone was different. In order to examine whether tone information per se had a facilitative effect, we also included a colour congruent word condition where the segmental (S) information was different but the tone (T) matched the colour word (S-T+) in Experiment 2. Facilitation/interference effects were found for all five conditions when compared with a neutral control word. Results of the critical comparisons revealed that tone information comes into play at a later stage in lexical processing, and orthographic information contributes more than phonological information.

  16. 100 Gb/s optical discrete multi-tone transceivers for intra- and inter-datacenter networks

    NASA Astrophysics Data System (ADS)

    Okabe, Ryo; Tanaka, Toshiki; Nishihara, Masato; Kai, Yutaka; Takahara, Tomoo; Liu, Bo; Li, Lei; Tao, Zhenning; Rasmussen, Jens C.

    2016-03-01

    Discrete multi-tone (DMT) technology is an attractive modulation technology for short-reach application due to its high spectral efficiency and simple configuration. In this paper, we first explain the features of DMT technology then discuss the impact of fiber dispersion and chirp on the frequency responses of the DMT signal and the importance in the relationship between chirp and the optical transmission band. Next, we explain our experiments of 100-Gb/s DMT transmission of 10 km in the O-band using directly modulated lasers for low-cost application. In an inter-datacenter network of more than several tens of kilometers, fiber dispersion mainly limits system performance. We also discuss our experiment of 100-Gb/s DMT transmission up to 100 km in the C-band without a dispersion compensator by using vestigial sideband spectrum shaping and nonlinear compensation.

  17. Normative behavioral thresholds for short tone-bursts.

    PubMed

    Beattie, R C; Rochverger, I

    2001-10-01

    Although tone-bursts have been commonly used in auditory brainstem response (ABR) evaluations for many years, national standards describing normal calibration values have not been established. This study was designed to gather normative threshold data to establish a physical reference for tone-burst stimuli that can be reproduced across clinics and laboratories. More specifically, we obtained norms for 3-msec tone-bursts presented at two repetition rates (9.3/sec and 39/sec), two gating functions (Trapezoid and Blackman), and four frequencies (500, 1000, 2000, and 4000 Hz). Our results are specified using three physical references: dB peak sound pressure level, dB peak-to-peak equivalent sound pressure level, and dB SPL (fast meter response, rate = 50 stimuli/sec). These data are offered for consideration when calibrating ABR equipment. The 39/sec stimulus rate yielded tone-burst thresholds that were approximately 3 dB lower than the 9.3/sec rate. The improvement in threshold with increasing stimulus rate may reflect the ability of the auditory system to integrate energy that occurs within a time interval of 200 to 500 msec (temporal integration). The Trapezoid gating function yielded thresholds that averaged 1.4 dB lower than the Blackman function. Although these differences are small and of little clinical importance, the cumulative effects of several instrument and/or procedural variables may yield clinically important differences.

  18. Diurnal cortisol amplitude and fronto-limbic activity in response to stressful stimuli

    PubMed Central

    Cunningham-Bussel, Amy C.; Root, James C.; Butler, Tracy; Tuescher, Oliver; Pan, Hong; Epstein, Jane; Weisholtz, Daniel S.; Pavony, Michelle; Silverman, Michael E.; Goldstein, Martin S.; Altemus, Margaret; Cloitre, Marylene; LeDoux, Joseph; McEwen, Bruce; Stern, Emily; Silbersweig, David

    2014-01-01

    Summary The development and exacerbation of many psychiatric and neurologic conditions are associated with dysregulation of the hypothalamic pituitary adrenal (HPA) axis as measured by aberrant levels of cortisol secretion. Here we report on the relationship between the amplitude of diurnal cortisol secretion, measured across 3 typical days in 18 healthy individuals, and blood oxygen level dependant (BOLD) response in limbic fear/stress circuits, elicited by in-scanner presentation of emotionally negative stimuli, specifically, images of the World Trade Center (WTC) attack. Results indicate that subjects who secrete a greater amplitude of cortisol diurnally demonstrate less brain activation in limbic regions, including the amygdala and hippocampus/parahippocampus, and hypothalamus during exposure to traumatic WTC-related images. Such initial findings can begin to link our understanding, in humans, of the relationship between the diurnal amplitude of a hormone integral to the stress response, and those neuroanatomical regions that are implicated as both modulating and being modulated by that response. PMID:19135805

  19. ELF/VLF Wave Generation and Scattering from Modulated Heating of the Ionosphere at Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; McCormick, J.; Cohen, M.; Hosseini, P.; Bittle, J.

    2017-12-01

    The recently completed ionospheric heater at Arecibo Observatory is used for modulated HF (5 or 8 MHz) heating of the ionosphere, to generate ELF/VLF (3 Hz - 30 kHz) waves. Observation of ramp and tone signals at frequencies from hundreds of Hz to several kHz at multiple receivers confirms the ability of the heater to modulate D region currents and create an ELF/VLF antenna in the ionosphere. Observed ELF/VLF signal amplitudes are lower than for similar experiments performed at high latitudes at the HAARP and Tromso facilities, for a variety of reasons including the reduced natural currents at mid latitudes, and the lower HF power of the Arecibo heater. The heating of the overhead ionosphere is also observed to change the Earth-ionosphere waveguide propagation characteristics as is evident from simultaneous observations of lightning induced sferics and VLF transmitter signals that propagate under the heated region. The active heating of the ionosphere modifies the reflection of incident VLF (3-30 kHz) waves. We present initial observations of HF heating of the D-region and resulting ELF/VLF wave generation.

  20. Voice responses to changes in pitch of voice or tone auditory feedback

    NASA Astrophysics Data System (ADS)

    Sivasankar, Mahalakshmi; Bauer, Jay J.; Babu, Tara; Larson, Charles R.

    2005-02-01

    The present study was undertaken to examine if a subject's voice F0 responded not only to perturbations in pitch of voice feedback but also to changes in pitch of a side tone presented congruent with voice feedback. Small magnitude brief duration perturbations in pitch of voice or tone auditory feedback were randomly introduced during sustained vowel phonations. Results demonstrated a higher rate and larger magnitude of voice F0 responses to changes in pitch of the voice compared with a triangular-shaped tone (experiment 1) or a pure tone (experiment 2). However, response latencies did not differ across voice or tone conditions. Data suggest that subjects responded to the change in F0 rather than harmonic frequencies of auditory feedback because voice F0 response prevalence, magnitude, or latency did not statistically differ across triangular-shaped tone or pure-tone feedback. Results indicate the audio-vocal system is sensitive to the change in pitch of a variety of sounds, which may represent a flexible system capable of adapting to changes in the subject's voice. However, lower prevalence and smaller responses to tone pitch-shifted signals suggest that the audio-vocal system may resist changes to the pitch of other environmental sounds when voice feedback is present. .

  1. Temporal resolution of the Florida manatee (Trichechus manatus latirostris) auditory system.

    PubMed

    Mann, David A; Colbert, Debborah E; Gaspard, Joseph C; Casper, Brandon M; Cook, Mandy L H; Reep, Roger L; Bauer, Gordon B

    2005-10-01

    Auditory evoked potential (AEP) measurements of two Florida manatees (Trichechus manatus latirostris) were measured in response to amplitude modulated tones. The AEP measurements showed weak responses to test stimuli from 4 kHz to 40 kHz. The manatee modulation rate transfer function (MRTF) is maximally sensitive to 150 and 600 Hz amplitude modulation (AM) rates. The 600 Hz AM rate is midway between the AM sensitivities of terrestrial mammals (chinchillas, gerbils, and humans) (80-150 Hz) and dolphins (1,000-1,200 Hz). Audiograms estimated from the input-output functions of the EPs greatly underestimate behavioral hearing thresholds measured in two other manatees. This underestimation is probably due to the electrodes being located several centimeters from the brain.

  2. Tone Attrition in Mandarin Speakers of Varying English Proficiency

    PubMed Central

    Creel, Sarah C.

    2017-01-01

    Purpose The purpose of this study was to determine whether the degree of dominance of Mandarin–English bilinguals' languages affects phonetic processing of tone content in their native language, Mandarin. Method We tested 72 Mandarin–English bilingual college students with a range of language-dominance profiles in the 2 languages and ages of acquisition of English. Participants viewed 2 photographs at a time while hearing a familiar Mandarin word referring to 1 photograph. The names of the 2 photographs diverged in tone, vowels, or both. Word recognition was evaluated using clicking accuracy, reaction times, and an online recognition measure (gaze) and was compared in the 3 conditions. Results Relative proficiency in English was correlated with reduced word recognition success in tone-disambiguated trials, but not in vowel-disambiguated trials, across all 3 dependent measures. This selective attrition for tone content emerged even though all bilinguals had learned Mandarin from birth. Lengthy experience with English thus weakened tone use. Conclusions This finding has implications for the question of the extent to which bilinguals' 2 phonetic systems interact. It suggests that bilinguals may not process pitch information language-specifically and that processing strategies from the dominant language may affect phonetic processing in the nondominant language—even when the latter was learned natively. PMID:28124064

  3. Tones Encountered with a Coannular Nozzle and a Method for their Suppression

    NASA Technical Reports Server (NTRS)

    Zaman, Khairul; Bridges, James; Fagan, Amy; Miller, Chris

    2017-01-01

    With multi-stream coannular nozzles, sometimes tones are generated that make the nozzle fail noise regulation criteria. A two-stream nozzle was studied experimentally in an attempt to identify the sources of such tones and explore remedies. With the given nozzle configuration, sharp tones occurred in a range of low jet Mach numbers (M (sub j)). The tones could be traced to a coupling of vortex shedding from the struts, that hold the nozzles and the center-body together, and various acoustic resonance modes of the ducts. A leading edge treatment of the struts is shown to suppress the vortex shedding and eliminate the tones.

  4. Tones Encountered with a Coannular Nozzle and a Method for their Suppression

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Bridges, J. E.; Fagan, A. F.; Miller, C. J.

    2017-01-01

    With multi-stream coannular nozzles, sometimes tones occur that may cause the nozzle to fail noise regulation standards. A two-stream nozzle was studied experimentally and numerically in an at-tempt to identify the sources of such tones and explore remedies. For the given nozzle configuration, sharp tones occurred in a range of low jet Mach numbers. The tones apparently occurred due to a coupling between vortex shedding from the struts, which held the nozzles and the center-body together, with various duct acoustic modes. A leading edge treatment of the struts is shown to eliminate the tones via disruption of the vortex shedding.

  5. A Solid-State Modulator for High Speed Kickers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, J A; Cook, E G; Chen, Y J

    2001-06-11

    An all solid-state modulator with multi-pulse burst capability, very fast rise and fall times, pulse width agility, and amplitude modulation capability for use with high-speed beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. It provides a nominal 18kV pulse with {+-} 10% amplitude modulation on the order of several MHz, rise times on the order of 10nS, and can be configured for either positive or negative polarity. The presentation will include measured performance data.

  6. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  7. Tone based command system for reception of very weak signals

    NASA Technical Reports Server (NTRS)

    Bokulic, Robert Steven (Inventor); Jensen, James Robert (Inventor)

    2006-01-01

    This disclosure presents a communication receiver system for spacecraft that includes an open loop receiver adapted to receive a communication signal. An ultrastable oscillator (USO) and a tone detector are connected to the open loop receiver. The open loop receiver translates the communication signal to an intermediate frequency signal using a highly stable reference frequency from the USO. The tone detector extracts commands from the communication signal by evaluating the difference between tones of the communication signal.

  8. Lower P300 amplitude in eight-year-old offspring of alcoholic fathers with a delinquent history.

    PubMed

    Viana-Wackermann, Paula C; Furtado, Erikson F; Esser, Günter; Schmidt, Martin H; Laucht, Manfred

    2007-06-01

    The aim of the present study was to investigate the P300 amplitude as a possible vulnerability marker in children of alcoholic (COA) fathers with and without paternal delinquency. Event-related potentials (ERPs) of 122 children aged 8 years (63 boys, 59 girls) were compared depending on father's alcoholism subtype: 30 COAs without paternal delinquency, 10 COAs with paternal delinquency, and 82 children of non-alcoholic and non-delinquent fathers. ERPs were recorded from Fz, Cz, and Pz, using an auditory oddball paradigm. Sinus tones of 60 dB HL were presented binaurally at 1,000 Hz (standard stimulus) and 2,000 Hz (target stimulus), at a relative frequency ratio of 80:20. Two trial blocks of 250 stimuli each were collected. Results indicated that only COAs with paternal delinquency displayed significant differences from the control group, characterized by reduced P300 amplitude at frontal site and in the second trial block. Thus, the combination of fathers' alcoholism and delinquency was more likely to relate to attenuated P300 amplitude in the offspring than paternal alcoholism alone. Our results suggest that both alcoholic and delinquent family history appear to play a role in P300 amplitude reduction in the offspring.

  9. The coordination of boundary tones and its interaction with prominence.

    PubMed

    Katsika, Argyro; Krivokapić, Jelena; Mooshammer, Christine; Tiede, Mark; Goldstein, Louis

    2014-05-01

    This study investigates the coordination of boundary tones as a function of stress and pitch accent. Boundary tone coordination has not been experimentally investigated previously, and the effect of prominence on this coordination, and whether it is lexical (stress-driven) or phrasal (pitch accent-driven) in nature is unclear. We assess these issues using a variety of syntactic constructions to elicit different boundary tones in an Electromagnetic Articulography (EMA) study of Greek. The results indicate that the onset of boundary tones co-occurs with the articulatory target of the final vowel. This timing is further modified by stress, but not by pitch accent: boundary tones are initiated earlier in words with non-final stress than in words with final stress regardless of accentual status. Visual data inspection reveals that phrase-final words are followed by acoustic pauses during which specific articulatory postures occur. Additional analyses show that these postures reach their achievement point at a stable temporal distance from boundary tone onsets regardless of stress position. Based on these results and parallel findings on boundary lengthening reported elsewhere, a novel approach to prosody is proposed within the context of Articulatory Phonology: rather than seeing prosodic (lexical and phrasal) events as independent entities, a set of coordination relations between them is suggested. The implications of this account for prosodic architecture are discussed.

  10. Tone series and the nature of working memory capacity development.

    PubMed

    Clark, Katherine M; Hardman, Kyle O; Schachtman, Todd R; Saults, J Scott; Glass, Bret A; Cowan, Nelson

    2018-04-01

    Recent advances in understanding visual working memory, the limited information held in mind for use in ongoing processing, are extended here to examine auditory working memory development. Research with arrays of visual objects has shown how to distinguish the capacity, in terms of the number of objects retained, from the precision of the object representations. We adapt the technique to sequences of nonmusical tones, in an investigation including children (6-13 years, N = 84) and adults (26-50 years, N = 31). For each series of 1 to 4 tones, the participant responded by using an 80-choice scale to try to reproduce the tone at a queried serial position. Despite the much longer-lasting usefulness of sensory memory for tones compared with visual objects, the observed tone capacity was similar to previous findings for visual capacity. The results also constrain theories of childhood working memory development, indicating increases with age in both the capacity and the precision of the tone representations, similar to the visual studies, rather than age differences in time-based memory decay. The findings, including patterns of correlations between capacity, precision, and some auxiliary tasks and questionnaires, establish capacity and precision as dissociable processes and place important constraints on various hypotheses of working memory development. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. A weak-scattering model for turbine-tone haystacking

    NASA Astrophysics Data System (ADS)

    McAlpine, A.; Powles, C. J.; Tester, B. J.

    2013-08-01

    Noise and emissions are critical technical issues in the development of aircraft engines. This necessitates the development of accurate models to predict the noise radiated from aero-engines. Turbine tones radiated from the exhaust nozzle of a turbofan engine propagate through turbulent jet shear layers which causes scattering of sound. In the far-field, measurements of the tones may exhibit spectral broadening, where owing to scattering, the tones are no longer narrow band peaks in the spectrum. This effect is known colloquially as 'haystacking'. In this article a comprehensive analytical model to predict spectral broadening for a tone radiated through a circular jet, for an observer in the far field, is presented. This model extends previous work by the authors which considered the prediction of spectral broadening at far-field observer locations outside the cone of silence. The modelling uses high-frequency asymptotic methods and a weak-scattering assumption. A realistic shear layer velocity profile and turbulence characteristics are included in the model. The mathematical formulation which details the spectral broadening, or haystacking, of a single-frequency, single azimuthal order turbine tone is outlined. In order to validate the model, predictions are compared with experimental results, albeit only at polar angle equal to 90°. A range of source frequencies from 4 to 20kHz, and jet velocities from 20 to 60ms-1, are examined for validation purposes. The model correctly predicts how the spectral broadening is affected when the source frequency and jet velocity are varied.

  12. Effects of tones associated with drilling activities on bowhead whale calling rates

    PubMed Central

    Nations, Christopher S.; Thode, Aaron M.; Kauffman, Mandy E.; Conrad, Alexander S.; Norman, Robert G.; Kim, Katherine H.

    2017-01-01

    During summer 2012 Shell performed exploratory drilling at Sivulliq, a lease holding located in the autumn migration corridor of bowhead whales (Balaena mysticetus), northwest of Camden Bay in the Beaufort Sea. The drilling operation involved a number of vessels performing various activities, such as towing the drill rig, anchor handling, and drilling. Acoustic data were collected with six arrays of directional recorders (DASARs) deployed on the seafloor over ~7 weeks in Aug–Oct. Whale calls produced within 2 km of each DASAR were identified and localized using triangulation. A “tone index” was defined to quantify the presence and amplitude of tonal sounds from industrial machinery. The presence of airgun pulses originating from distant seismic operations was also quantified. For each 10-min period at each of the 40 recorders, the number of whale calls localized was matched with the “dose” of industrial sound received, and the relationship between calling rates and industrial sound was modeled using negative binomial regression. The analysis showed that with increasing tone levels, bowhead whale calling rates initially increased, peaked, and then decreased. This dual behavioral response is similar to that described for bowhead whales and airgun pulses in earlier work. Increasing call repetition rates can be a viable strategy for combating decreased detectability of signals arising from moderate increases in background noise. Meanwhile, as noise increases, the benefits of calling may decrease because information transfer becomes increasingly error-prone, and at some point calling may no longer be worth the effort. PMID:29161308

  13. Moderate Baseline Vagal Tone Predicts Greater Prosociality in Children

    ERIC Educational Resources Information Center

    Miller, Jonas G.; Kahle, Sarah; Hastings, Paul D.

    2017-01-01

    Vagal tone is widely believed to be an important physiological aspect of emotion regulation and associated positive behaviors. However, there is inconsistent evidence for relations between children's baseline vagal tone and their helpful or prosocial responses to others (Hastings & Miller, 2014). Recent work in adults suggests a quadratic…

  14. Gas Phase Photoacoustic Sensor at 8.41 mu m Using Quartz Tuning Forks and Amplitude Modulated Quantum Cascade Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojcik, Michael D.; Phillips, Mark C.; Cannon, Bret D.

    2006-10-01

    We demonstrate the performance of a novel long-wave infrared photoacoustic laser absorbance spectrometer for gas-phase species using an amplitude modulated (AM) quantum cascade (QC) laser and a quartz tuning fork microphone. Photoacoustic signal was generated by focusing the output of a Fabry-Perot QC laser operating at 8.41 ?m between the legs of a quartz tuning fork which served as a transducer for the transient acoustic pressure wave. The QC laser was modulated at the resonant frequency of the tuning fork (32.8 kHz) and delivered a modest 5.3 mW at the tuning fork. This spectrometer was calibrated using the infrared absorbermore » Freon-134a by performing a simultaneous absorption measurement using a 35 cm absorption cell. The NEAS of this instrument was determined to be 2 x 10{sup -8} W cm-1 Hz{sup -1/2}. A corresponding theoretical analysis of the instrument sensitivity is presented and is capable of quantitatively reproducing the experimental NEAS, indicating that the fundamental sensitivity of this technique is limited by the noise floor of the tuning fork itself.« less

  15. 47 CFR 78.115 - Modulation limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Modulation limits. 78.115 Section 78.115... SERVICE Technical Regulations § 78.115 Modulation limits. (a) If amplitude modulation is employed, negative modulation peaks shall not exceed 100 percent modulation. [37 FR 3292, Feb. 12, 1972, as amended...

  16. Tone Gestures and Constraint Interaction in Sierra Juarez Zapotec

    ERIC Educational Resources Information Center

    Tejada, Laura

    2012-01-01

    This dissertation examines floating tones and tone gesture deactivation in Sierra Juarez Zapotec (SJZ), and provides an Optimality Theoretic account of tonal spreading and placement using insights from Articulatory Phonology. While the data portion of the dissertation is drawn from SJZ, the approach has broader implications for theories of tonal…

  17. Influences of Tone on Vowel Articulation in Mandarin Chinese

    ERIC Educational Resources Information Center

    Shaw, Jason A.; Chen, Wei-rong; Proctor, Michael I.; Derrick, Donald

    2016-01-01

    Purpose: Models of speech production often abstract away from shared physiology in pitch control and lingual articulation, positing independent control of tone and vowel units. We assess the validity of this assumption in Mandarin Chinese by evaluating the stability of lingual articulation for vowels across variation in tone. Method:…

  18. Task-induced frequency modulation features for brain-computer interfacing.

    PubMed

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects' intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects' intents with an accuracy comparable to task-induced amplitude modulation. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  19. Task-induced frequency modulation features for brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Jayaram, Vinay; Hohmann, Matthias; Just, Jennifer; Schölkopf, Bernhard; Grosse-Wentrup, Moritz

    2017-10-01

    Objective. Task-induced amplitude modulation of neural oscillations is routinely used in brain-computer interfaces (BCIs) for decoding subjects’ intents, and underlies some of the most robust and common methods in the field, such as common spatial patterns and Riemannian geometry. While there has been some interest in phase-related features for classification, both techniques usually presuppose that the frequencies of neural oscillations remain stable across various tasks. We investigate here whether features based on task-induced modulation of the frequency of neural oscillations enable decoding of subjects’ intents with an accuracy comparable to task-induced amplitude modulation. Approach. We compare cross-validated classification accuracies using the amplitude and frequency modulated features, as well as a joint feature space, across subjects in various paradigms and pre-processing conditions. We show results with a motor imagery task, a cognitive task, and also preliminary results in patients with amyotrophic lateral sclerosis (ALS), as well as using common spatial patterns and Laplacian filtering. Main results. The frequency features alone do not significantly out-perform traditional amplitude modulation features, and in some cases perform significantly worse. However, across both tasks and pre-processing in healthy subjects the joint space significantly out-performs either the frequency or amplitude features alone. This result only does not hold for ALS patients, for whom the dataset is of insufficient size to draw any statistically significant conclusions. Significance. Task-induced frequency modulation is robust and straight forward to compute, and increases performance when added to standard amplitude modulation features across paradigms. This allows more information to be extracted from the EEG signal cheaply and can be used throughout the field of BCIs.

  20. Digital micromirror device as amplitude diffuser for multiple-plane phase retrieval

    NASA Astrophysics Data System (ADS)

    Abregana, Timothy Joseph T.; Hermosa, Nathaniel P.; Almoro, Percival F.

    2017-06-01

    Previous implementations of the phase diffuser used in the multiple-plane phase retrieval method included a diffuser glass plate with fixed optical properties or a programmable yet expensive spatial light modulator. Here a model for phase retrieval based on a digital micromirror device as amplitude diffuser is presented. The technique offers programmable, convenient and low-cost amplitude diffuser for a non-stagnating iterative phase retrieval. The technique is demonstrated in the reconstructions of smooth object wavefronts.